WorldWideScience

Sample records for accident codes applications

  1. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  2. Development of system of computer codes for severe accident analysis and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  3. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    Science.gov (United States)

    Van Uffelen, P.; Győri, C.; Schubert, A.; van de Laar, J.; Hózer, Z.; Spykman, G.

    2008-12-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events.

  4. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Jow, H.N. (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management.

  5. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  6. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  7. Multi-physics modelling in the frame of the DRACCAR code development and its application to spent-fuel pool draining accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jacq, F.; Luze, O. de; Guillard, G.; Bascou, S. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2013-07-01

    To meet the simulation needs of its LOCA R and D program, the IRSN is developing a multi-pin computational tool named DRACCAR. In order to realistically describe the behavior of the reactor core during a Loss Of Coolant Accident (LOCA), modeling has to take into account many coupled phenomena such as thermics (heat generation, radiation, convection and conduction), hydraulics (multi dimensional 1-3 phase flow, shrinkage), mechanics (thermal dilatation, creep, embrittlement) and chemistry (oxidation, oxygen diffusion, hydriding,..). This paper presents several aspects of the DRACCAR code abilities: investigation of the bundle rods strain during a LOCA transient, checking of the thermalhydraulics during reflooding of a partially ballooned bundle, and application to spent-fuel-pool draining accidents in the case of a propagation of the burn front in a typical non axis-symmetrical situation for the thermal heat exchanges which are driving the accident. (orig.)

  8. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-15

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR.

  9. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    Energy Technology Data Exchange (ETDEWEB)

    Camous, F.; Jacq, F.; Chatelard, P. [IPSN/DRS/SEMAR CE-Cadarache, St Paul Lez Durance (France)] [and others

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  10. Review of Severe Accident Phenomena in LWR and Related Severe Accident Analysis Codes

    Directory of Open Access Journals (Sweden)

    Muhammad Hashim

    2013-04-01

    Full Text Available Firstly, importance of severe accident provision is highlighted in view of Fukushima Daiichi accident. Then, extensive review of the past researches on severe accident phenomena in LWR is presented within this study. Various complexes, physicochemical and radiological phenomena take place during various stages of the severe accidents of Light Water Reactor (LWR plants. The review deals with progression of the severe accidents phenomena by dividing into core degradation phenomena in reactor vessel and post core melt phenomena in the containment. The development of various computer codes to analyze these severe accidents phenomena is also summarized in the review. Lastly, the need of international activity is stressed to assemble various severe accidents related knowledge systematically from research organs and compile them on the open knowledge base via the internet to be available worldwide.

  11. Qualification and application of nuclear reactor accident analysis code with the capability of internal assessment of uncertainty; Qualificacao e aplicacao de codigo de acidentes de reatores nucleares com capacidade interna de avaliacao de incerteza

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ronaldo Celem

    2001-10-15

    This thesis presents an independent qualification of the CIAU code ('Code with the capability of - Internal Assessment of Uncertainty') which is part of the internal uncertainty evaluation process with a thermal hydraulic system code on a realistic basis. This is done by combining the uncertainty methodology UMAE ('Uncertainty Methodology based on Accuracy Extrapolation') with the RELAP5/Mod3.2 code. This allows associating uncertainty band estimates with the results obtained by the realistic calculation of the code, meeting licensing requirements of safety analysis. The independent qualification is supported by simulations with RELAP5/Mod3.2 related to accident condition tests of LOBI experimental facility and to an event which has occurred in Angra 1 nuclear power plant, by comparison with measured results and by establishing uncertainty bands on safety parameter calculated time trends. These bands have indeed enveloped the measured trends. Results from this independent qualification of CIAU have allowed to ascertain the adequate application of a systematic realistic code procedure to analyse accidents with uncertainties incorporated in the results, although there is an evident need of extending the uncertainty data base. It has been verified that use of the code with this internal assessment of uncertainty is feasible in the design and license stages of a NPP. (author)

  12. FGR Evaluation Code for CANDU Fuel under an Accidents: REDOU

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jung, Jong Yeob

    2006-12-15

    When an end fitting failure is occurred, the sheath is broken and the fission gases are released promptly from the gap between the pellet and sheath and also released continuously from the inside of the pellet due to the oxidation of the pellet. Thus, the accurate calculation of the fission gas release from the gap and from the inside of the pellet is an essential to the accident analysis of the fuel behavior and to prepare the safety strategy. In this report, among the performance analysis or the transient behavior prediction computer codes, the REDOU code which is the fission gas calculating code for the postulated accident scenario such as an end fitting failure is introduced. Then, the user manual for REDOU code is provided so that it can be the guidance to the potential users of the code and save the time and economic loss by reducing the trial and error.

  13. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Trambauer, K. [GRS, Garching (Germany)

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  14. Test Data for USEPR Severe Accident Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  15. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor [Zagreb Univ. (Croatia). Faculty of Electrical Engineering and Computing

    2013-12-15

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  16. A Deformation Analysis Code of CANDU Fuel under the Postulated Accident: ELOCA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jung, Jong Yeob

    2006-11-15

    Deformations of the fuel element or fuel channel might be the main cause of the fuel failure. Therefore, the accurate prediction of the deformation and the analysis capabilities are closely related to the increase of the safety margin of the reactor. In this report, among the performance analysis or the transient behavior prediction computer codes, the analysis codes for deformation such as the ELOCA, HOTSPOT, CONTACT-1, and PTDFORM are briefly introduced and each code's objectives, applicability, and relations are explained. Especially, the user manual for ELOCA code which is the analysis code for the fuel deformation and the release of fission product during the transient period after the postulated accidents is provided so that it can be the guidance to the potential users of the code and save the time and economic loss by reducing the trial and err000.

  17. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Chatelard, P., E-mail: patrick.chatelard@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France); Reinke, N.; Arndt, S. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50677 Köln (Germany); Belon, S.; Cantrel, L.; Carenini, L.; Chevalier-Jabet, K.; Cousin, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France); Eckel, J. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50677 Köln (Germany); Jacq, F.; Marchetto, C.; Mun, C.; Piar, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France)

    2014-06-01

    The severe accident integral code ASTEC, jointly developed since almost 20 years by IRSN and GRS, simulates the behaviour of a whole nuclear power plant under severe accident conditions, including severe accident management by engineering systems and procedures. Since 2004, the ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out in the frame of the SARNET European network of excellence. The first version of the new series ASTEC V2 was released in 2009 to about 30 organizations worldwide and in particular to SARNET partners. With respect to the previous V1 series, this new V2 series includes advanced core degradation models (issued from the ICARE2 IRSN mechanistic code) and necessary extensions to be applicable to Gen. III reactor designs, notably a description of the core catcher component to simulate severe accidents transients applied to the EPR reactor. Besides these two key-evolutions, most of the other physical modules have also been improved and ASTEC V2 is now coupled to the SUNSET statistical tool to make easier the uncertainty and sensitivity analyses. The ASTEC models are today at the state of the art (in particular fission product models with respect to source term evaluation), except for quenching of a severely damage core. Beyond the need to develop an adequate model for the reflooding of a degraded core, the main other mean-term objectives are to further progress on the on-going extension of the scope of application to BWR and CANDU reactors, to spent fuel pool accidents as well as to accidents in both the ITER Fusion facility and Gen. IV reactors (in priority on sodium-cooled fast reactors) while making ASTEC evolving towards a severe accident simulator constitutes the main long-term objective. This paper presents the status of the ASTEC V2 versions, focussing on the description of V2.0 models for water-cooled nuclear plants.

  18. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    Energy Technology Data Exchange (ETDEWEB)

    Sprung, J.L.; Jow, H-N (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA))

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.

  19. Algebraic geometric codes with applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2007-01-01

    The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.

  20. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  1. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  2. Validation of system codes for plant application on selected experiments

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Marco K.; Risken, Tobias; Agethen, Kathrin; Bratfisch, Christoph [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2016-05-15

    For decades, the Reactor Simulation and Safety Group at Ruhr-Universitaet Bochum (RUB) contributes to nuclear safety by computer code validation and model development for nuclear safety analysis. Severe accident analysis codes are relevant tools for the understanding and the development of accident management measures. The accidents in the plants Three Mile Island (USA) in 1979 and Fukushima Daiichi (Japan) in 2011 influenced these research activities significantly due to the observed phenomena, such as molten core concrete interaction and hydrogen combustion. This paper gives a brief outline of recent research activities at RUB in the named fields, contributing to code preparation for plant applications. Simulations of the molten core concrete interaction tests CCI-2 and CCI-3 with ASTEC and the hydrogen combustion test Ix9 with COCOSYS are presented exemplarily. Additionally, the application on plants is demonstrated on chosen results of preliminary Fukushima calculations.

  3. Recent SCDAP/RELAP5 code applications and improvements

    Energy Technology Data Exchange (ETDEWEB)

    Harvego, E.A.; Ghan, L.S.; Knudson, D.L.; Siefken, L.J. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-03-01

    This paper summarizes (1) a recent application of the severe accident analysis code SCDAP/RELAP5/MOD3.1, and (2) development and assessment activities associated with the release of SACDAP/RELAP5/MOD3.2. The Nuclear Regulatory Commission (NRC) has been evaluating the integrity of steam generator tubes during severe accidents. MOD3.1 has been used to support that evaluation. Studies indicate that the pressurizer surge line will fail before any steam generator tubes are damaged. Thus, core decay energy would be released as steam through the surge line and the tube wall would be spared from exposure to prolonged flow of high temperature steam. The latest code version, MOD3.2, contains several improvements to models that address both the early phase and late phase of a severe accident. The impact of these improvements to the overall code capabilities has been assessed. Results of the assessment are summarized in this paper.

  4. ASTEC V2 severe accident integral code: Fission product modelling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Cantrel, L., E-mail: laurent.cantrel@irsn.fr; Cousin, F.; Bosland, L.; Chevalier-Jabet, K.; Marchetto, C.

    2014-06-01

    One main goal of the severe accident integral code ASTEC V2, jointly developed since almost more than 15 years by IRSN and GRS, is to simulate the overall behaviour of fission products (FP) in a damaged nuclear facility. ASTEC applications are source term determinations, level 2 Probabilistic Safety Assessment (PSA2) studies including the determination of uncertainties, accident management studies and physical analyses of FP experiments to improve the understanding of the phenomenology. ASTEC is a modular code and models of a part of the phenomenology are implemented in each module: the release of FPs and structural materials from degraded fuel in the ELSA module; the transport through the reactor coolant system approximated as a sequence of control volumes in the SOPHAEROS module; and the radiochemistry inside the containment nuclear building in the IODE module. Three other modules, CPA, ISODOP and DOSE, allow respectively computing the deposition rate of aerosols inside the containment, the activities of the isotopes as a function of time, and the gaseous dose rate which is needed to model radiochemistry in the gaseous phase. In ELSA, release models are semi-mechanistic and have been validated for a wide range of experimental data, and noticeably for VERCORS experiments. For SOPHAEROS, the models can be divided into two parts: vapour phase phenomena and aerosol phase phenomena. For IODE, iodine and ruthenium chemistry are modelled based on a semi-mechanistic approach, these FPs can form some volatile species and are particularly important in terms of potential radiological consequences. The models in these 3 modules are based on a wide experimental database, resulting for a large part from international programmes, and they are considered at the state of the art of the R and D knowledge. This paper illustrates some FPs modelling capabilities of ASTEC and computed values are compared to some experimental results, which are parts of the validation matrix.

  5. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heui Dong; Cho, Sung Won; Park, Jong Hwa; Hong, Sung Wan; Yoo, Dong Han; Hwang, Moon Kyoo; Noh, Kee Man; Song, Yong Man [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H{sub 2}/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author).

  6. Development of accident management technology and computer codes -A study for nuclear safety improvement-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Kyu; Jae, Moo Sung; Jo, Young Gyun; Park, Rae Jun; Kim, Jae Hwan; Ha, Jae Ju; Kang, Dae Il; Choi, Sun Young; Kim, Si Hwan [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    We have surveyed new technologies and research results for the accident management of nuclear power plants. And, based on the concept of using the existing plant capabilities for accident management, both in-vessel and ex-vessel strategies were identified and analyzed. When assessing accident management strategies, their effectiveness, adverse effects, and their feasibility must be considered. We have developed a framework for assessing the strategies with these factors in mind. We have applied the developed framework to assessing the strategies, including the likelihood that the operator correctly diagnoses the situation and successfully implements the strategies. Finally, the cavity flooding strategy was assessed by applying it to the station blackout sequence, which have been identified as one of the major contributors to risk at the reference plant. The thermohydraulic analyses with sensitivity calculations have been performed using MAAP 4 computer code. (Author).

  7. Network Coding Fundamentals and Applications

    CERN Document Server

    Medard, Muriel

    2011-01-01

    Network coding is a field of information and coding theory and is a method of attaining maximum information flow in a network. This book is an ideal introduction for the communications and network engineer, working in research and development, who needs an intuitive introduction to network coding and to the increased performance and reliability it offers in many applications. This book is an ideal introduction for the research and development communications and network engineer who needs an intuitive introduction to the theory and wishes to understand the increased performance and reliabil

  8. Development of Parameter Network for Accident Management Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sukyoung; Ahemd, Rizwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek; Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation.

  9. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    Science.gov (United States)

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  10. SACO-1: a fast-running LMFBR accident-analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.J.; Cahalan, J.E.; Vaurio, J.K.

    1980-01-01

    SACO is a fast-running computer code that simulates hypothetical accidents in liquid-metal fast breeder reactors to the point of permanent subcriticality or to the initiation of a prompt-critical excursion. In the tradition of the SAS codes, each subassembly is modeled by a representative fuel pin with three distinct axial regions to simulate the blanket and core regions. However, analytic and integral models are used wherever possible to cut down the computing time and storage requirements. The physical models and basic equations are described in detail. Comparisons of SACO results to analogous SAS3D results comprise the qualifications of SACO and are illustrated and discussed.

  11. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    Energy Technology Data Exchange (ETDEWEB)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.

  12. Use of detailed thermochemical databases to model chemical interactions in the Severe Accident codes

    Energy Technology Data Exchange (ETDEWEB)

    Barrachin, M. [IPSN/DRS, CEA Cadarache (France)

    2001-07-01

    For the prevention, mitigation and management of severe accidents, many problems related to core melt have to be solved: fuel degradation, melting and relocation, convection in the core melt(s), coolability of the core melt(s), fission product release, hydrogen production, behavior of the materials of the protective layers, ex-vessel spreading of the core melt(s).. To solve these problems such properties like thermal conductivity, heat capacity, density, viscosity, evaporation or sublimation of melts, the solidification behavior (solid/liquid fraction), the tendency to trap or to release the fission products, the stratification of melts notably metallic and oxide, must be known. However most of these properties are delicate to measure directly at high temperature and/or in the radio-active environment produced by the fission products. Therefore some of them must be derived by calculations from the physical-chemical description of the melt: number of phases, phase compositions, proportions of solids and liquids and their respective oxidation state, miscibility of the liquids, solubility of one phase in another, etc. This information is given by the phase diagrams of the materials in presence. Since more than ten years, IPSN has developed in collaboration with THERMODATA (Grenoble, France) a very detailed thermochemical database for the complex system U-O-Zr-Fe-Ni-La-Ba-Ru-Sr-Si-Mg-Ca-Al-(H-Ar). The direct coupling between the severe accident (SA) Codes and a thermochemical code with its database is not actually possible because of the computer time consuming and the size of the database. For this reason, most of the Severe Accident codes usually have a very simplified description for the phase diagrams which are not in agreement with the status of the art. In this presentation, alternative methodologies are detailed with their respective difficulties, the goal being to build an interface between a thermochemical database and a SA Code and to get a fast, accurate and

  13. A2 Code - Internal Accident Report. Does it ring a bell?

    CERN Multimedia

    HSE Unit

    2015-01-01

    A2 Code* - It is under this designation (used by the CERN community) that the form for internal accident reports is hidden. More specifically it refers to the CERN Safety Code A2 “Reporting of Accidents and Near Misses” (EDMS: 335502 or here via the official Safety Rules website).   Which events should be declared? All accidental events, which cause or could have caused injuries or damage to property or the environment, must be reported especially if they involve: a) a member of the personnel, visitor, temporary labourer or contractor if it occurred on the CERN site or between sites. b) a member of the personnel if it occurred while commuting or during duty travel. Who can fill in the report? The reporting of occurred accidents or near misses should be made by the person involved or by any direct or indirect witness of the event as soon as possible after the event. Contribute to the improvement of Safety within the Organizatio...

  14. Severe accident source term characteristics for selected Peach Bottom sequences predicted by the MELCOR Code

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    The purpose of this report is to compare in-containment source terms developed for NUREG-1159, which used the Source Term Code Package (STCP), with those generated by MELCOR to identify significant differences. For this comparison, two short-term depressurized station blackout sequences (with a dry cavity and with a flooded cavity) and a Loss-of-Coolant Accident (LOCA) concurrent with complete loss of the Emergency Core Cooling System (ECCS) were analyzed for the Peach Bottom Atomic Power Station (a BWR-4 with a Mark I containment). The results indicate that for the sequences analyzed, the two codes predict similar total in-containment release fractions for each of the element groups. However, the MELCOR/CORBH Package predicts significantly longer times for vessel failure and reduced energy of the released material for the station blackout sequences (when compared to the STCP results). MELCOR also calculated smaller releases into the environment than STCP for the station blackout sequences.

  15. Simulation of the core degradation phase of the Fukushima accidents using the ASTEC code

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, H., E-mail: herve.bonneville@irsn.fr; Luciani, A.

    2014-06-01

    The French Institute for Nuclear Safety and Radioprotection (IRSN) attempts to simulate the Fukushima accidents using the ASTEC integral code. This paper summarizes the main results of the simulations conducted before the beginning of the OECD/NEA/CSNI Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. The first analysis carried out concerned the unit 2 transient. Results were considered as satisfactory being quite consistent with measures reported by TEPCO and similar computations performed with MELCOR or MAAP. Knowledge gained from PWR practice and different lectures available in the open literature for BWR provided valuable technical elements to explain observations or to validate assumptions. Leakage model from the containment up to the refuelling bay through the head flange seal was very efficient to retrieve pressure evolution inside the dry well. Extension of the model to reactor number 3 gave also results quite consistent with what similar codes computed. However for both reactors some figures characteristic of the transient as hydrogen production are liable to vary a lot if models for bottom and top nozzles are added which has not been done in reference computation due to present lack of data. Uncertainties with simulation of accident on reactor number 1 are rather large due to the scarcity of data. Further, as the measurement points were quasi absent for most of the first 24 h there is no reference to compare to simulation results. Bottom vessel head failure is predicted but due to the high number of penetrations the mechanical failure models developed for PWR may not be so relevant for BWR.

  16. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Kenji; Ebata, Shigeo [Toshiba Corp., Yokohama (Japan)

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  17. Review of current severe accident management approaches in Europe and identification of related modelling requirements for the computer code ASTEC V2.1

    Energy Technology Data Exchange (ETDEWEB)

    Hermsmeyer, S. [European Commission JRC, Petten (Netherlands). Inst. for Energy and Transport; Herranz, L.E.; Iglesias, R. [CIEMAT, Madrid (Spain); and others

    2015-07-15

    The severe accident at the Fukushima-Daiichi nuclear power plant (NPP) has led to a worldwide review of nuclear safety approaches and is bringing a refocussing of R and D in the field. To support these efforts several new Euratom FP7 projects have been launched. The CESAM project focuses on the improvement of the ASTEC computer code. ASTEC is jointly developed by IRSN and GRS and is considered as the European reference code for Severe Accident Analyses since it capitalizes knowledge from the extensive Euro-pean R and D in the field. The project aims at the code's enhancement and extension for use in Severe Accident Management (SAM) analysis of the NPPs of Generation II-III presently under operation or foreseen in the near future in Europe, spent fuel pools included. The work reported here is concerned with the importance, for the further development of the code, of SAM strategies to be simulated. To this end, SAM strategies applied in the EU have been compiled. This compilation is mainly based on the public information made available in the frame of the EU ''stress tests'' for NPPs and has been complemented by information pro-vided by the different CESAM partners. The context of SAM is explained and the strategies are presented. The modelling capabilities for the simulation of these strategies in the current production version 2.0 of ASTEC are discussed. Furthermore, the requirements for the next version of ASTEC V2.1 that is supported in the CESAM project are highlighted. They are a necessary complement to the list of code improvements that is drawn from consolidating new fields of application, like SFP and BWR model enhancements, and from new experimental results on severe accident phenomena.

  18. Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code

    Directory of Open Access Journals (Sweden)

    Tate Warren P

    2008-12-01

    Full Text Available Abstract Background Transfer RNA (tRNA is the means by which the cell translates DNA sequence into protein according to the rules of the genetic code. A credible proposition is that tRNA was formed from the duplication of an RNA hairpin half the length of the contemporary tRNA molecule, with the point at which the hairpins were joined marked by the canonical intron insertion position found today within tRNA genes. If these hairpins possessed a 3'-CCA terminus with different combinations of stem nucleotides (the ancestral operational RNA code, specific aminoacylation and perhaps participation in some form of noncoded protein synthesis might have occurred. However, the identity of the first tRNA and the initial steps in the origin of the genetic code remain elusive. Results Here we show evidence that glycine tRNA was the first tRNA, as revealed by a vestigial imprint in the anticodon loop sequences of contemporary descendents. This provides a plausible mechanism for the missing first step in the origin of the genetic code. In 448 of 466 glycine tRNA gene sequences from bacteria, archaea and eukaryote cytoplasm analyzed, CCA occurs immediately upstream of the canonical intron insertion position, suggesting the first anticodon (NCC for glycine has been captured from the 3'-terminal CCA of one of the interacting hairpins as a result of an ancestral ligation. Conclusion That this imprint (including the second and third nucleotides of the glycine tRNA anticodon has been retained through billions of years of evolution suggests Crick's 'frozen accident' hypothesis has validity for at least this very first step at the dawn of the genetic code. Reviewers This article was reviewed by Dr Eugene V. Koonin, Dr Rob Knight and Dr David H Ardell.

  19. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code

    Energy Technology Data Exchange (ETDEWEB)

    Gyoergy, Hunor [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques (BME NTI); Trosztel, Istvan [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research (MTA EK)

    2013-09-15

    Severe accident - if no mitigation action is taken - leads to core melt. An effective severe accident management strategy can be the external reactor pressure vessel cooling for corium localization and stabilization. For some time discussion was going on, whether the in-vessel retention can be applied for the VVER-440 type reactors. It had to be demonstrated that the available space between the reactor vessel and biological protection allows sufficient cooling to keep the melted core in the vessel, without the reactor pressure vessel losing its integrity. In order to demonstrate the feasibility of the concept an experimental facility was realized in Hungary. The facility called Cooling Effectiveness on the Reactor External Surface (CERES) is modeling the vessel external surface and the biological protection of Paks NPP. A model of the CERES facility for the ATHLET TH system code was developed. The results of the ATHLET calculation agree well with the measurements showing that the vessel cooling can be insured for a long time in a VVER-440 reactor. (orig.)

  20. Accurate dose assessment system for an exposed person utilising radiation transport calculation codes in emergency response to a radiological accident.

    Science.gov (United States)

    Takahashi, F; Shigemori, Y; Seki, A

    2009-01-01

    A system has been developed to assess radiation dose distribution inside the body of exposed persons in a radiological accident by utilising radiation transport calculation codes-MCNP and MCNPX. The system consists mainly of two parts, pre-processor and post-processor of the radiation transport calculation. Programs for the pre-processor are used to set up a 'problem-dependent' input file, which defines the accident condition and dosimetric quantities to be estimated. The program developed for the post-processor part can effectively indicate dose information based upon the output file of the code. All of the programs in the dosimetry system can be executed with a generally used personal computer and accurately give the dose profile to an exposed person in a radiological accident without complicated procedures. An experiment using a physical phantom was carried out to verify the availability of the dosimetry system with the developed programs in a gamma ray irradiation field.

  1. Laser Marked Codes For Paperless Tracking Applications

    Science.gov (United States)

    Crater, David

    1987-01-01

    The application of laser markers for marking machine readable codes is described. Use of such codes for automatic tracking and considerations for marker performance and features are discussed. Available laser marker types are reviewed. Compatibility of laser/material combinations and material/code/reader systems are reviewed.

  2. A Mobile Application Prototype using Network Coding

    DEFF Research Database (Denmark)

    Pedersen, Morten Videbæk; Heide, Janus; Fitzek, Frank

    2010-01-01

    This paper looks into implementation details of network coding for a mobile application running on commercial mobile phones. We describe the necessary coding operations and algorithms that implements them. The coding algorithms forms the basis for a implementation in C++ and Symbian C++. We report...

  3. SiC MODIFICATIONS TO MELCOR FOR SEVERE ACCIDENT ANALYSIS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brad J. Merrill; Shannon M Bragg-Sitton

    2013-09-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) Light Water Reactor (LWR) Sustainability Program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. The Fuels Pathway within this program focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement (e.g. fully ceramic cladding). The DOE-NE Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) is also conducting research on materials for advanced, accident tolerant fuels and cladding for application in operating LWRs. To aide in this assessment, a silicon carbide (SiC) version of the MELCOR code was developed by substituting SiC in place of Zircaloy in MELCOR’s reactor core oxidation and material property routines. The purpose of this development effort is to provide a numerical capability for estimating the safety advantages of replacing Zr-alloy components in LWRs with SiC components. This modified version of the MELCOR code was applied to the Three Mile Island (TMI-2) plant accident. While the results are considered preliminary, SiC cladding showed a dramatic safety advantage over Zircaloy cladding during this accident.

  4. Ruthenium release modelling in air under severe accident conditions using the MAAP4 code

    Energy Technology Data Exchange (ETDEWEB)

    Beuzet, E.; Lamy, J.S. [EDF R and D, 1 avenue du General de Gaulle, F-92140 Clamart (France); Perron, H. [EDF R and D, Avenue des Renardieres, Ecuelles, F-77818 Moret sur Loing (France); Simoni, E. [Institut de Physique Nucleaire, Universite de Paris Sud XI, F-91406 Orsay (France)

    2010-07-01

    In a nuclear power plant (NPP), in some situations of low probability of severe accidents, an air ingress into the vessel occurs. Air is a highly oxidizing atmosphere that can lead to an enhanced core degradation affecting the release of Fission Products (FPs) to the environment (source term). Indeed, Zircaloy-4 cladding oxidation by air yields 85% more heat than by steam. Besides, UO{sub 2} can be oxidised to UO{sub 2+x} and mixed with Zr, which may lead to a decrease of the fuel melting temperature. Finally, air atmosphere can enhance the FPs release, noticeably that of ruthenium. Ruthenium is of particular interest for two main reasons: first, its high radiotoxicity due to its short and long half-life isotopes ({sup 103}Ru and {sup 106}Ru respectively) and second, its ability to form highly volatile compounds such as ruthenium gaseous tetra-oxide (RuO{sub 4}). Considering that the oxygen affinity decreases between cladding, fuel and ruthenium inclusions, it is of great need to understand the phenomena governing fuel oxidation by air and ruthenium release as prerequisites for the source term issues. A review of existing data on ruthenium release, controlled by fuel oxidation, leads us to implement a new model in the EDF version of MAAP4 severe accident code (Modular Accident Analysis Program). This model takes into account the fuel stoichiometric deviation and the oxygen partial pressure evolution inside the fuel to simulate its oxidation by air. Ruthenium is then oxidised. Its oxides are released by volatilisation above the fuel. All the different ruthenium oxides formed and released are taken into consideration in the model, in terms of their particular reaction constants. In this way, partial pressures of ruthenium oxides are given in the atmosphere so that it is possible to know the fraction of ruthenium released in the atmosphere. This new model has been assessed against an analytical test of FPs release in air atmosphere performed at CEA (VERCORS RT8). The

  5. C++ application development with Code::Blocks

    CERN Document Server

    Modak, Biplab Kumar

    2013-01-01

    This is a comprehensive tutorial with step-by-step instructions on how to develop applications with Code::Blocks.This book is for C++ developers who wish to use Code::Blocks to create applications with a consistent look and feel across multiple platforms. This book assumes that you are familiar with the basics of the C++ programming language.

  6. An application of probabilistic safety assessment methods to model aircraft systems and accidents

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1998-08-01

    A case study modeling the thrust reverser system (TRS) in the context of the fatal accident of a Boeing 767 is presented to illustrate the application of Probabilistic Safety Assessment methods. A simplified risk model consisting of an event tree with supporting fault trees was developed to represent the progression of the accident, taking into account the interaction between the TRS and the operating crew during the accident, and the findings of the accident investigation. A feasible sequence of events leading to the fatal accident was identified. Several insights about the TRS and the accident were obtained by applying PSA methods. Changes proposed for the TRS also are discussed.

  7. Calculation of an accident with delayed scram at NPP Greifswald using the coupled code DYN3D/ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    1998-10-01

    Complex computer codes modeling the whole reactor system including 3D neutron kinetics in combination with advanced thermohydraulic plant models become more and more important for the safety assessment of nuclear reactors. Transients or experiments with both neutron kinetic and thermalhydraulic data are needed for the validation of such coupled codes like DYN3D/ATHLET. First of all measured results from nuclear power plant (NPP) transients should be used, because the experimental thermalhydraulic facilities do not offer the possibility to model space-dependent neutron kinetic effects and research reactors with reliably measured 3D neutron kinetic data do not allow to study thermalhydraulic feedback effects. In this paper, an accident with delayed scram which occurred in 1989 at the NPP Greifswald is analyzed. Calculations of this accident were carried out with the goal to validate the coupled code DYN3D/ATHLET. (orig.)

  8. An Evaluation Methodology Development and Application Process for Severe Accident Safety Issue Resolution

    Directory of Open Access Journals (Sweden)

    Robert P. Martin

    2012-01-01

    Full Text Available A general evaluation methodology development and application process (EMDAP paradigm is described for the resolution of severe accident safety issues. For the broader objective of complete and comprehensive design validation, severe accident safety issues are resolved by demonstrating comprehensive severe-accident-related engineering through applicable testing programs, process studies demonstrating certain deterministic elements, probabilistic risk assessment, and severe accident management guidelines. The basic framework described in this paper extends the top-down, bottom-up strategy described in the U.S Nuclear Regulatory Commission Regulatory Guide 1.203 to severe accident evaluations addressing U.S. NRC expectation for plant design certification applications.

  9. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.

  10. Code Development on Aerosol Behavior under Severe Accident-Aerosol Coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Sung Il; Ryu, Eun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The behaviors of the larger aerosol particles are described usually by continuum mechanics. The smallest particles have diameters less than the mean free path of gas phase molecules and the behavior of these particles can often be described well by free molecular physics. The vast majority of aerosol particles arising in reactor accident analyses have behaviors in the very complicated regime intermediate between the continuum mechanics and free molecular limit. The package includes initial inventories, release from fuel and debris, aerosol dynamics with vapor condensation and revaporization, deposition on structure surfaces, transport through flow paths, and removal by engineered safety features. Aerosol dynamic processes and the condensation and evaporation of fission product vapors after release from fuel are considered within each MELCOR control volume. The aerosol dynamics models are based on MAEROS, a multi-section, multicomponent aerosol dynamics code, but without calculation of condensation. Aerosols can deposit directly on surfaces such as heat structures and water pools, or can agglomerate and eventually fall out once they exceed the largest size specified by the user for the aerosol size distribution. Aerosols deposited on surfaces cannot currently be resuspended.

  11. Hybrid codes: Methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D. (Los Alamos National Lab., NM (USA)); Omidi, N. (California Univ., San Diego, La Jolla, CA (USA))

    1991-01-01

    In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.

  12. Reactor physics modelling of accident tolerant fuel for LWRs using ANSWERS codes

    Directory of Open Access Journals (Sweden)

    Lindley Benjamin A.

    2016-01-01

    Full Text Available The majority of nuclear reactors operating in the world today and similarly the majority of near-term new build reactors will be LWRs. These currently accommodate traditional Zr clad UO2/PuO2 fuel designs which have an excellent performance record for normal operation. However, the events at Fukushima culminated in significant hydrogen production and hydrogen explosions, resulting from high temperature Zr/steam interaction following core uncovering for an extended period. These events have resulted in increased emphasis towards developing more accident tolerant fuels (ATFs-clad systems, particularly for current and near-term build LWRs. R&D programmes are underway in the US and elsewhere to develop ATFs and the UK is engaging in these international programmes. Candidate advanced fuel materials include uranium nitride (UN and uranium silicide (U3Si2. Candidate cladding materials include advanced stainless steel (FeCrAl and silicon carbide. The UK has a long history in industrial fuel manufacture and fabrication for a wide range of reactor systems including LWRs. This is supported by a national infrastructure to perform experimental and theoretical R&D in fuel performance, fuel transient behaviour and reactor physics. In this paper, an analysis of the Integral Inherently Safe LWR design (I2S-LWR, a reactor concept developed by an international collaboration led by the Georgia Institute of Technology, within a US DOE Nuclear Energy University Program (NEUP Integrated Research Project (IRP is considered. The analysis is performed using the ANSWERS reactor physics code WIMS and the EDF Energy core simulator PANTHER by researchers at the University of Cambridge. The I2S-LWR is an advanced 2850 MWt integral PWR with inherent safety features. In order to enhance the safety features, the baseline fuel and cladding materials that were chosen for the I2S-LWR design are U3Si2 and advanced stainless steel respectively. In addition, the I2S-LWR design

  13. Application of RS Codes in Decoding QR Code

    Institute of Scientific and Technical Information of China (English)

    Zhu Suxia(朱素霞); Ji Zhenzhou; Cao Zhiyan

    2003-01-01

    The QR Code is a 2-dimensional matrix code with high error correction capability. It employs RS codes to generate error correction codewords in encoding and recover errors and damages in decoding. This paper presents several QR Code's virtues, analyzes RS decoding algorithm and gives a software flow chart of decoding the QR Code with RS decoding algorithm.

  14. Estimation of doses received by operators in the 1958 RB reactor accident using the MCNP5 computer code simulation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2012-01-01

    Full Text Available A numerical simulation of the radiological consequences of the RB reactor reactivity excursion accident, which occurred on October 15, 1958, and an estimation of the total doses received by the operators were run by the MCNP5 computer code. The simulation was carried out under the same assumptions as those used in the 1960 IAEA-organized experimental simulation of the accident: total fission energy of 80 MJ released in the accident and the frozen positions of the operators. The time interval of exposure to high doses received by the operators has been estimated. Data on the RB1/1958 reactor core relevant to the accident are given. A short summary of the accident scenario has been updated. A 3-D model of the reactor room and the RB reactor tank, with all the details of the core, created. For dose determination, 3-D simplified, homogenised, sexless and faceless phantoms, placed inside the reactor room, have been developed. The code was run for a number of neutron histories which have given a dose rate uncertainty of less than 2%. For the determination of radiation spectra escaping the reactor core and radiation interaction in the tissue of the phantoms, the MCNP5 code was run (in the KCODE option and “mode n p e”, with a 55-group neutron spectra, 35-group gamma ray spectra and a 10-group electron spectra. The doses were determined by using the conversion of flux density (obtained by the F4 tally in the phantoms to doses using factors taken from ICRP-74 and from the deposited energy of neutrons and gamma rays (obtained by the F6 tally in the phantoms’ tissue. A rough estimation of the time moment when the odour of ozone was sensed by the operators is estimated for the first time and given in Appendix A.1. Calculated total absorbed and equivalent doses are compared to the previously reported ones and an attempt to understand and explain the reasons for the obtained differences has been made. A Root Cause Analysis of the accident was done and

  15. Performance and scenario evaluation of PAFS through the LOFW accident in APR1400 by using MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Won; Bae, Byoung Uhn; Yun, Byong Jo [Korea Atomic Energy Institute, Daejeon (Korea, Republic of)

    2009-07-01

    In order to enhance the safety feature of the APR1400 through the passive ways, the passive auxiliary feedwater system(PAFS) is under preliminary consideration by KAERI. For the successful adaptation of PAFS, accident scenario evaluation of PWR plant that is assumed to have the PAFS system should be performed. Condensing heat exchanger assemblies are installed at the exterior boundary of the containment building per one steam generator. The performance of the heat exchanger is designed to remove the decay heat of the fuel completely. In normal operation condition, PAFS system is not connected with the steam and feed lines. A Total Loss of Feed Water(TLOFW) accident is selected for the performance and scenario evaluation after the severity check. The PAFS connection valves are open at the signal of 25% level trip of steam generator. With the single failure assumption of PAFS open valve, the scenario propagations are calculated by using MARS code.

  16. Steady state and accident analysis of SCOR (simple compact reactor) with the CATHARE code

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Sophie Chenaud; Guy-Marie Gautier [CEA Cadarache- 13108 St Paul Lez Durance (France)

    2005-07-01

    Full text of publication follows: Within the framework of innovative reactors studies, the CEA was led to propose the SCOR design (Simple Compact Reactor). This design is based on a compact 600 MWe PWR and combines most of the advantages of innovative reactors. All main components such as the pressurizer, the canned pumps, the control rod mechanics and the dedicated heat exchangers on the passive residual heat removal system are integrated in the vessel.The only steam generator is located above the vessel in place of the upper head. The reactor operates at much lower primary circuit pressure than standard PWRs (85 bar instead of the usual 155 bar) and the power density is low (70 MW/m{sup 3} instead of 100 MW/m{sup 3} for the present PWRs). The reactivity being controlled by control rods and burnable poisons, there is no soluble boron. The elimination of a serious LOCA (Loss Of Coolant Accident) and the integrated residual heat removal system lead to enhanced safety with simple safety systems. Main features of the SCOR design and functional parameters have been previously reported. This paper focuses on the safety analysis of SCOR. Thermo hydraulic calculations have been run with the CATHARE code. Some calculations were run with the point kinetics module of CATHARE. Several transient simulations have been assessed. They concern a normal reactor trip from full power operation till refueling shutdown and accidental scenarios such as: - Loss of power, - Breaks from 0.02 m to 0.1 m on circuits connected to the vessel, - Steam generator tubes rupture, - Reactivity insertion by cold shock. Results of transient simulations enable us to conclude upon: - the increase of grace periods in comparison with standard PWRs if no safety systems operate besides emergency shutdown, - the expected efficiency of designed safety systems and in particular of the residual heat removal system in passive configuration even when integrated exchanger are dewatered. It will be retained that

  17. Network Coding Protocols for Data Gathering Applications

    DEFF Research Database (Denmark)

    Nistor, Maricica; Roetter, Daniel Enrique Lucani; Barros, João

    2015-01-01

    Tunable sparse network coding (TSNC) with various sparsity levels of the coded packets and different feedback mechanisms is analysed in the context of data gathering applications in multi-hop networks. The goal is to minimize the completion time, i.e., the total time required to collect all data...... packets from the nodes while maintaining the per packet overhead at a minimum. We exploit two types of feedback, (1) the explicit feedback sent deliberately between nodes and (2) the implicit feedback emerged when a node hears its neighbour transmissions. Analytical bounds for a line network are derived...... using a fluid model, which is valid for any field size, various sparsity levels and the aforesaid feedback mechanisms. Our results show that implicit and explicit feedback mechanisms are instrumental in reducing the completion time for sparse codes....

  18. Modelling of sprays in containment applications with A CMFD code

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.f [Electricite de France R and D Division, 6 Quai Watier, F-78400 Chatou (France); Lamy, J.-S. [Electricite de France R and D Division, 1 av. du General de Gaulle, F-92140 Clamart (France); Lavieville, J. [Electricite de France R and D Division, 6 Quai Watier, F-78400 Chatou (France); Guieu, S.; Martin, M. [Electricite de France SEPTEN Division, 12-14 av. Dutrievoz, 69628 Villeurbanne (France)

    2010-09-15

    During the course of a hypothetical severe accident in a Pressurized Water Reactor (PWR), spray systems are used in the containment in order to prevent overpressure in case of a steam line break, and to enhance the gas mixing in case of the presence of hydrogen. In the frame of the Severe Accident Research Network (SARNET) of the 6th EC Framework Programme, two tests was produced in the TOSQAN facility in order to study the spray behaviour under severe accident conditions: TOSQAN 101 and TOSQAN 113. The TOSQAN facility is a closed cylindrical vessel. The inner spray system is located on the top of the enclosure on the vertical axis. For the TOSQAN 101 case, an initial pressurization in the vessel is performed with superheated steam up to 2.5 bar. Then, steam injection is stopped and spraying starts simultaneously at a given water temperature (around 25 {sup o}C) and water mass flow-rate (around 30 g/s). The depressurization transient starts and continues until the equilibrium phase, which corresponds to the stabilization of the average temperature and pressure of the gaseous mixture inside the vessel. The purpose of the TOSQAN 113 cold spray test is to study helium mixing due to spray activation without heat and mass transfers between gas and droplets. We present in this paper the spray modelling implemented in NEPTUNE{sub C}FD, a three-dimensional multi-fluid code developed especially for nuclear reactor applications. A new model dedicated to the droplet evaporation at the wall is also detailed. Keeping in mind the Best Practice Guidelines, closure laws have been selected to ensure a grid-dependence as weak as possible. For the TOSQAN 113 case, the time evolution of the helium volume fraction calculated shows that the physical approach described in the paper is able to reproduce the mixing of helium by the spray. The prediction of the transient behaviour should be improved by including in the model corrections based on better understanding of the influence of the

  19. Application of Fuzzy Algebra in Coding Theory

    Directory of Open Access Journals (Sweden)

    Kharatti Lal

    2016-01-01

    Full Text Available Fuzziness means different things depending upon the domain of application and the way it is measured. By means of fuzzy sets, vague notions can be described mathematically now a vigorous area of research with manifold applications. It should be mentioned that there are natural ways (not necessarily trivial to fuzzily various mathematical structures such as topological spaces, algebraic structure etc. The notion of L-fuzzy sets later more generalizations were also made using various membership sets and operations. In this section we let F denote the field of integers module 2, we define a fuzzy code as a fuzzy subset of Fn where F n = {(a1, ....an | a i  F, i = 1, ...n} and n is a fixed arbitrary positive integers we recall that Fn is a vector space over F. We give an analysis of the Hamming distance between two fuzzy code words and the error – correcting capability of a code in terms of its corresponding fuzzy codes. The results appearing in the first part of this section are from [17].

  20. Study on virtual redundancy among process parameters for accident management applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rizwan; Pak, Sukyoung; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jungtaek; Park, Soo Yong; Ahn, Kwangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The research at this point can be divided into three streams, focused on the development of self powered sensors and instrumentation, developing intelligent systems that can diagnose and accident type and developing indirect ways that is, methods to assess the safety critical parameters from other statistically related parameters. This first approach is quite expensive, second approach suffers from the limitation that infinite number of accident scenarios cannot be simulated. However, the only way to access the parameters during severe accidents is through simulation codes. Even-though, the process parameters data contain uncertainty, this is the only thing to start with severe accident management. International Nuclear Energy Research Initiative (Inert) project has started research to address various aspects of safety management during severe accidents. As a part of Inert team, we are investigating correlations among process parameters in such a way that safety critical information could be secured by means of other non-safety or virtual parameters during a severe accident. This is known as virtual redundancy of information. This will improve the availability of information in case one channel for information is lost. In this paper, we will discuss methodology, preliminary results and directions for further study. We found that several process parameters exhibit distinct variation pattern for a particular accident and several other parameters can also have the similar trends which strengthens the possibility of having virtual redundancy of information.

  1. Validation of CONTAIN-LMR code for accident analysis of sodium-cooled fast reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Hering, W.; Schikorr, M.; Stieglitz, R. [Inst. for Neutron Physic and Reactor Technology, Karlsruhe Inst. of Technology, Campus Nord (Germany)

    2012-07-01

    CONTAIN-LMR 1 is an analytical tool for the containment performance of sodium cooled fast reactors. In this code, the modelling for the sodium fire is included: the oxygen diffusion model for the sodium pool fire, and the liquid droplet model for the sodium spray fire. CONTAIN-LMR is also able to model the interaction of liquid sodium with concrete structure. It may be applicable to different concrete compositions. Testing and validation of these models will help to qualify the simulation results. Three experiments with sodium performed in the FAUNA facility at FZK have been used for the validation of CONTAIN-LMR. For pool fire tests, calculations have been performed with two models. The first model consists of one gas cell representing the volume of the burn compartment. The volume of the second model is subdivided into 32 coupled gas cells. The agreement between calculations and experimental data is acceptable. The detailed pool fire model shows less deviation from experiments. In the spray fire, the direct heating from the sodium burning in the media is dominant. Therefore, single cell modeling is enough to describe the phenomena. Calculation results have reasonable agreement with experimental data. Limitations of the implemented spray model can cause the overestimation of predicted pressure and temperature in the cell atmosphere. The ability of the CONTAIN-LMR to simulate the sodium pool fire accompanied by sodium-concrete reactions was tested using the experimental study of sodium-concrete interactions for construction concrete as well as for shielding concrete. The model provides a reasonably good representation of chemical processes during sodium-concrete interaction. The comparison of time-temperature profiles of sodium and concrete shows, that the model requires modifications for predictions of the test results. (authors)

  2. Analysis of Hydrogen Risk Mitigation System for Severe Accidents of EU-APR1400 Using MAAP4 code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mun Soo; Suh, Jung Soo; Bae, Byoung Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    According to the EUR (European Utility Requirements for LWR Nuclear Power Plants), it is mandatory that the HMS (Hydrogen Mitigation System) of the Eu-APR1400 should be equipped with a passive or automatic hydrogen control system. Considering this requirement, a PAR (Passive Autocatalytic Recombiner) system was adopted for the HMS of the Eu-APR1400. This passive HMS should be evaluated carefully in order to ensure that the HMS has adequate capacity to control hydrogen concentrations during severe accident conditions and to show that the system can satisfy the design requirements of the EUR. In this paper, analyses were carried out to examine the effectiveness of the HMS incorporated into the Eu- APR1400 design. These analyses were performed using the MAAP (Modular Accident Analysis Program) 4 code. in order to identify whether the HMS could control the average hydrogen concentrations in the containment, such that the concentration would not exceed 10 percent by volume: the analyses also considered whether there was the possibility of inadvertent hydrogen combustion in such processes as FA (Flame Acceleration) and DDT (Deflagration to Detonation Transition)

  3. An Analysis of Station Blackout Sequences Using MELCOR1.8.5 Code for the Severe Accident Analysis DB

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. M.; Ahn, K. I. [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    The Korea Atomic Energy Research Institute (KAERI) has been constructing severe accident analysis database (DB) under a National Nuclear R and D Program. Especially, MAAP (commercial code being widely used for industries) DB for many scenarios including station blackout (SBO) has been completed up to now. This report shows the analysis results for SBO scenarios using MELCOR code. These results will be used for the degree of completion after being compared with MAAP results. The developing strategy of MELCOR code is the same with that of MAAP DB. For the generation of data set, the Korean standard nuclear power plant (KSNP) has been selected as a reference plant and the eight SBO scenarios are chosen to be analyzed based on the PSA results (these eight scenarios accounted for 99 percent of occurrence frequency of total 197 SBO scenarios). Both thermal hydraulics (T/H) and source term analysis have been performed using MELCOR version 1.8.5 for the chosen scenarios. But only major T/H variables treated in the MAAP report are listed among the generated data set, which shows the characteristics of each scenario. These SBO results together with those of the other initiating events (to be analyzed in the future) will be used as inputs for DB construction and special value will be found in the comparing and complimentary process with MAAP DB

  4. Comparison of MACCS users calculations for the international comparison exercise on probabilistic accident consequence assessment code, October 1989--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Neymotin, L. [Brookhaven National Lab., Upton, NY (United States)

    1994-04-01

    Over the past several years, the OECD/NEA and CEC sponsored an international program intercomparing a group of six probabilistic consequence assessment (PCA) codes designed to simulate health and economic consequences of radioactive releases into atmosphere of radioactive materials following severe accidents at nuclear power plants (NPPs): ARANO (Finland), CONDOR (UK), COSYMA (CEC), LENA (Sweden), MACCS (USA), and OSCAAR (Japan). In parallel with this effort, two separate groups performed similar calculations using the MACCS and COSYMA codes. Results produced in the MACCS Users Group (Greece, Italy, Spain, and USA) calculations and their comparison are contained in the present report. Version 1.5.11.1 of the MACCS code was used for the calculations. Good agreement between the results produced in the four participating calculations has been reached, with the exception of the results related to the ingestion pathway dose predictions. The main reason for the scatter in those particular results is attributed to the lack of a straightforward implementation of the specifications for agricultural production and counter-measures criteria provided for the exercise. A significantly smaller scatter in predictions of other consequences was successfully explained by differences in meteorological files and weather sampling, grids, rain distance intervals, dispersion model options, and population distributions.

  5. A restructuring proposal based on MELCOR for severe accident analysis code development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Song, Y. M.; Kim, D. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    In order to develop a template based on existing MELCOR code, current data saving and transferring methods used in MELCOR are addressed first. Then a naming convention for the constructed module is suggested and an automatic program to convert old variables into new derived type variables has been developed. Finally, a restructured module for the SPR package has been developed to be applied to MELCOR. The current MELCOR code ensures a fixed-size storage for four different data types, and manages the variable-sized data within the storage limit by storing the data on the stacked packages. It uses pointer to identify the variables between the packages. This technique causes a difficult grasping of the meaning of the variables as well as memory waste. New features of FORTRAN90, however, make it possible to allocate the storage dynamically, and to use the user-defined data type which lead to a restructured module development for the SPR package. An efficient memory treatment and as easy understanding of the code are allowed in this developed module. The validation of the template has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. The template for the SPR package suggested in this report hints the extension of the template to the entire code. It is expected that the template will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models. 3 refs., 15 figs., 16 tabs. (Author)

  6. Zip Codes, Zip Codes, Published in 2008, Not Applicable scale, Dunn County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Zip Codes dataset, published at Not Applicable scale, was produced all or in part from Other information as of 2008. It is described as 'Zip Codes'. Data by...

  7. Two Applications of the Hamming-Golay Code

    Science.gov (United States)

    Liu, Andy

    2009-01-01

    In this paper, we give two unexpected applications of a Hamming code. The first one, also known as the "Hat Problem," is based on the fact that a small portion of the available code words are actually used in a Hamming code. The second one is a magic trick based on the fact that a Hamming code is perfect for single-error correction.

  8. Thailand Ranks Second in the World for Number of Road Accidents under Thailand’s Codes of Geometrical Design and Traffic Engineering Concept When Compared with AASHTO

    Directory of Open Access Journals (Sweden)

    Cheewapattananuwong Weeradej

    2016-01-01

    Full Text Available Traffic problems in Bangkok have an influence on road users during peak hours. Especially, the traffic bottleneck on curves under the saturation flow situation must be remedied in order to increase the roadway capacity and speed. However, the appropriate speed for heavy vehicles is taken into consideration during off peak after the increasing lanes. This leads to the Rollover of heavy truck and rear-end collisions which are the main causes of vehicles accidents on curves. In addition, road accidents on curves account for the majority of all accidents in Thailand. According to the road accidents data collected in Thailand, 44 road deaths per 100,000 people, the country ranks second in the world for road accidents. When Thailand’s Code of Geometrical Design is compared with AASHTO (The American Association of State Highway and Transportation Officials, the super elevation length of Thailand’s Code is more than AASHTO. As a result, drivers are not made aware of the appropriate speed and the stooping sight distances (SSD on curves. Therefore, the Design of Traffic Signage under the Perception and Reaction Times (PRT for Thai Drivers will be taken into account.

  9. Error-correction coding and decoding bounds, codes, decoders, analysis and applications

    CERN Document Server

    Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak

    2017-01-01

    This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...

  10. A POTENTIAL APPLICATION OF UNCERTAINTY ANALYSIS TO DOE-STD-3009-94 ACCIDENT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Palmrose, D E; Yang, J M

    2007-05-10

    The objective of this paper is to assess proposed transuranic waste accident analysis guidance and recent software improvements in a Windows-OS version of MACCS2 that allows the inputting of parameter uncertainty. With this guidance and code capability, there is the potential to perform a quantitative uncertainty assessment of unmitigated accident releases with respect to the 25 rem Evaluation Guideline (EG) of DOE-STD-3009-94 CN3 (STD-3009). Historically, the classification of safety systems in a U.S. Department of Energy (DOE) nuclear facility's safety basis has involved how subject matter experts qualitatively view uncertainty in the STD-3009 Appendix A accident analysis methodology. Specifically, whether consequence uncertainty could be larger than previously evaluated so the site-specific accident consequences may challenge the EG. This paper assesses whether a potential uncertainty capability for MACCS2 could provide a stronger technical basis as to when the consequences from a design basis accident (DBA) truly challenges the 25 rem EG.

  11. Review of the status of validation of the computer codes used in the severe accident source term reassessment study (BMI-2104). [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kress, T. S. [comp.

    1985-04-01

    The determination of severe accident source terms must, by necessity it seems, rely heavily on the use of complex computer codes. Source term acceptability, therefore, rests on the assessed validity of such codes. Consequently, one element of NRC's recent efforts to reassess LWR severe accident source terms is to provide a review of the status of validation of the computer codes used in the reassessment. The results of this review is the subject of this document. The separate review documents compiled in this report were used as a resource along with the results of the BMI-2104 study by BCL and the QUEST study by SNL to arrive at a more-or-less independent appraisal of the status of source term modeling at this time.

  12. Applications of Derandomization Theory in Coding

    CERN Document Server

    Cheraghchi, Mahdi

    2011-01-01

    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals w...

  13. Coding Theory and Applications : 4th International Castle Meeting

    CERN Document Server

    Malonek, Paula; Vettori, Paolo

    2015-01-01

    The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event’s scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.

  14. MOCAGE-accident: From research to operational applications

    Science.gov (United States)

    Martet, M.; Josse, M.; Peuch, Mr.; Peuch, M.; Bonnardot, Mr.

    2009-09-01

    MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) is the multi-scale 3D Chemistry and Transport Model of Météo-France. From air quality forecasting to the study of interactions between climate and chemistry, MOCAGE is a flexible tool that is currently used for both research on atmospheric composition (over 35 publications in the international literature) and operations in Météo-France and at several collaborating institutes. In particular, MOCAGE products are used for the French operational Air Quality platform Prév'Air as well as in projects building up the GMES Atmospheric Service. Here, we present a new specific configuration "MOCAGE-accident”, currently used in pre-operations trial by Météo-France forecasters, in support of our international responsibilities as RSMC (Regional Meteorological Specialized Centre) and VAAC (Volcanic Ash Advisory Centre). Briefly, a semi-lagrangian scheme is used for advection (Williamson and Rash, 1989), while turbulent diffusion, using the Louis scheme (Louis, 1979) and convection, using the Bechtold scheme (Kain and Fritsch, 1990 and Bechtold, 2001) are parameterized. In the specific "accident” configuration, no chemical reactions are considered and a module allows to specify the temporal and geometrical characteristics of the release. Three types of pollutants can be considered : - tracers: no interactions between this tracer and the other atmospheric components are considered ; only transport, wet and dry deposition are taken into account. - radionucleides: in this case, radioactive disintegration is treated following the type of radionuclide and its lifetime. - volcanic ashes: solid materials are considered and sedimentation of the particles is also considered. Concerning the current pre-operations trial, the horizontal resolution of MOCAGE-accident is 0,5° all over the globe, with 47 levels from surface to 5 hPa. This model is thus able to represent accidental emissions on every place of the world, in

  15. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO, A library of materials properties for Light-Water-Reactor accident analysis. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.T. [ed.; Allison, C.M.; Berna, G.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)] [and others

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light -- water-reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission products released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume, Volume IV, describes the material properties correlations and computer subroutines (MATPRO) used by SCDAP/RELAP5. formulation of the materials properties are generally semi-empirical in nature. The materials property subroutines contained in this document are for uranium, uranium dioxide, mixed uranium-plutonium dioxide fuel, zircaloy cladding, zirconium dioxide, stainless steel, stainless steel oxide, silver-indium-cadmium alloy, cadmium, boron carbide, Inconel 718, zirconium-uranium-oxygen melts, fill gas mixtures, carbon steel, and tungsten. This document also contains descriptions of the reaction and solution rate models needed to analyze a reactor accident.

  16. Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code

    Energy Technology Data Exchange (ETDEWEB)

    Beuzet, Emilie, E-mail: emilie.beuzet@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Lamy, Jean-Sylvestre, E-mail: jean-sylvestre.lamy@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Bretault, Armelle, E-mail: armelle.bretault@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Simoni, Eric, E-mail: simoni@ipno.in2p3.f [Institut de Physique Nucleaire, Universite Paris Sud XI, F-91406 Orsay (France)

    2011-04-15

    In a nuclear power plant, a potential risk in some low probability situations in severe accidents is air ingress into the vessel. Air is a highly oxidizing atmosphere that can lead to an enhanced core oxidation and degradation affecting the release of Fission Products (FP), especially increasing that of ruthenium. This FP is of particular importance because of its high radio-toxicity and its ability to form highly volatile oxides. Oxygen affinity is decreasing between Zircaloy cladding, fuel and ruthenium inclusions in the fuel. It is consequently of great need to understand the phenomena governing cladding oxidation by air as a prerequisite for the source term issues. A review of existing data in the field of Zircaloy-4 oxidation in air-containing atmosphere shows that this phenomenon is quantitatively well understood. The cladding oxidation process can be divided into two kinetic regimes separated by a breakaway transition. Before transition, a protective dense zirconia scale grows following a solid state diffusion-limited regime for which experimental data are well fitted by a parabolic time dependence. For a given thickness, which depends mainly on temperature and the extent of pre-oxidation in steam, the dense scale can potentially breakdown. In case of breakaway combined with oxygen starvation, cladding oxidation can then be much faster because of the combined action of oxygen and nitrogen through a complex self sustaining nitriding-oxidation process. A review of the pre-existing correlations used to simulate zirconia scale growth under air atmospheres shows a high degree of variation from parabolic to accelerated time dependence. Variations also exist in the choice of the breakaway parameter based on zirconia phase change or oxide thickness. Several correlations and breakaway parameters found in the literature were implemented in the MAAP4.07 Severe Accident code. They were assessed by simulation of the QUENCH-10 test, which is a semi-integral test designed

  17. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  18. Twenty years' application of agricultural countermeasures following the Chernobyl accident: lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S V [International Atomic Energy Agency, 1400 Vienna (Austria); Alexakhin, R M [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Balonov, M I [International Atomic Energy Agency, 1400 Vienna (Austria); Bogdevich, I M [Research Institute for Soil Science and Agrochemistry, Minsk (Belarus); Howard, B J [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LAI 4AP (United Kingdom); Kashparov, V A [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Street 7, Chabany, Kiev Region 08162 (Ukraine); Sanzharova, N I [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Panov, A V [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation); Voigt, G [International Atomic Energy Agency, 1400 Vienna (Austria); Zhuchenka, Yu M [Research Institute of Radiology, 246000 Gomel (Belarus)

    2006-12-15

    The accident at the Chernobyl NPP (nuclear power plant) was the most serious ever to have occurred in the history of nuclear energy. The consumption of contaminated foodstuffs in affected areas was a significant source of irradiation for the population. A wide range of different countermeasures have been used to reduce exposure of people and to mitigate the consequences of the Chernobyl accident for agriculture in affected regions in Belarus, Russia and Ukraine. This paper for the first time summarises key data on countermeasure application over twenty years for all three countries and describes key lessons learnt from this experience. (review)

  19. Applications of Coding in Network Communications

    Science.gov (United States)

    Chang, Christopher SungWook

    2012-01-01

    This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…

  20. 'Turbo' coding for deep space applications

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl

    1995-01-01

    The performance of the `turbo' coding scheme is measured and an error floor is discovered. These residual errors are corrected with an outer BCH code. The complexity of the system is discussed, and for low data rates a realizable system operating at Eb/N0 below 0.2 dB is presented...

  1. From Barcode to QR Code Applications

    Directory of Open Access Journals (Sweden)

    László Várallyai

    2012-12-01

    Full Text Available This paper shows the Zsohár Horticulture Company in Nagyrákos, how they want to change their barcode identification system to QR code. They cultivate herbaceous, perpetual decorational plants, rock-garden, flower-bed and swamp perpetuals, decorational grasses and spices. A part of the perpetuals are evergreens, but most of them has special organs - such as onions, thick-, bulbous roots, "winter-proof" buds - so they can survive winter. In the first part of the paper I introduce the different barcode standards, how can it be printed and how can it be read. In the second part of the paper I give details about the quick response code (QR code and the two-dimensional (2D barcode. Third part of this paper illustrates the QR code usability in agriculture focused on the gardening.

  2. Zip Codes, Zip Codes for Limestone and Madison Counties, Published in 2014, Not Applicable scale, GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Zip Codes dataset, published at Not Applicable scale, was produced all or in part from Published Reports/Deeds information as of 2014. It is described as 'Zip...

  3. Challenge Identification for the Objective Provision Tree Application to the Effectiveness Evaluation for the Accident Management Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Kim, Hanchul; Lee, Sunghan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    As a part of the OPT application for the effectiveness evaluation of the accident management guidelines, challenges which could threaten the safety functions required to maintain the safety, were identified. The identification of detailed provisions in terms of the accident management guidelines is being performed and the visualizing the identified elements of OPT is also under performance. With this logical structure of OPT, the provision of useful tool to evaluate the effectiveness of accident management guideline framework, is expected. The OPT method is a highly logical and top-down approach to identify the vulnerable aspect of the framework which includes the accident management guidelines, such as Emergency Operating Procedures (EOPs), Severe Accident Management Guides (SAMGs) and even Extensive Damage Mitigating Guidelines and FLEX guides. In virtue of this logical tool, the evaluation for the framework of the accident management guidelines was tried in this study.

  4. Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications

    CERN Document Server

    Matsumoto, Yosuke; Kudoh, Yuki; Kawashima, Tomohisa; Matsumoto, Jin; Takahashi, Hiroyuki R; Minoshima, Takashi; Zenitani, Seiji; Miyoshi, Takahiro; Matsumoto, Ryoji

    2016-01-01

    We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD scheme. The present code enabled us to explore long-term evolution of a three-dimensional global accretion disk, in which compressible MHD turbulence saturated at much higher levels via the magneto-rotational instability than that given by the second-order scheme owing to the adoption of the high-resolution, nume...

  5. BAR-MOM Code and Its Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    BAR-MOM [1,2] code to calculate the height of the fission barrier Bf, the energy of the ground state, the compound nucleus stability by limit with respect to fission, i.e., the angular momentum(the spin value) Lmax at which the fission barrier disappears, the three principal axis moments of inertia at saddle point for a certain nucleus with atomic number Z, atomic mass number and angular momentum L for 19code to include the results for Z≥102[3] by using more recent parameterization of the Thomas Fermi fission

  6. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  7. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    Directory of Open Access Journals (Sweden)

    Itamar Iliuk

    2016-01-01

    Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.

  8. An Overview of the Monte Carlo Methods, Codes, & Applications Group

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-30

    This report sketches the work of the Group to deliver first-principle Monte Carlo methods, production quality codes, and radiation transport-based computational and experimental assessments using the codes MCNP and MCATK for such applications as criticality safety, non-proliferation, nuclear energy, nuclear threat reduction and response, radiation detection and measurement, radiation health protection, and stockpile stewardship.

  9. MELCOR analysis of the TMI-2 accident

    Energy Technology Data Exchange (ETDEWEB)

    Boucheron, E.A.

    1990-01-01

    This paper describes the analysis of the Three Mile Island-2 (TMI-2) standard problem that was performed with MELCOR. The MELCOR computer code is being developed by Sandia National Laboratories for the Nuclear Regulatory Commission for the purpose of analyzing severe accident in nuclear power plants. The primary role of MELCOR is to provide realistic predictions of severe accident phenomena and the radiological source team. The analysis of the TMI-2 standard problem allowed for comparison of the model predictions in MELCOR to plant data and to the results of more mechanistic analyses. This exercise was, therefore valuable for verifying and assessing the models in the code. The major trends in the TMI-2 accident are reasonably well predicted with MELCOR, even with its simplified modeling. Comparison of the calculated and measured results is presented and, based on this comparison, conclusions can be drawn concerning the applicability of MELCOR to severe accident analysis. 5 refs., 10 figs., 3 tabs.

  10. TRIPOLI-4: Monte Carlo transport code functionalities and applications; TRIPOLI-4: code de transport Monte Carlo fonctionnalites et applications

    Energy Technology Data Exchange (ETDEWEB)

    Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), Service d' Etudes de Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France)

    2003-07-01

    Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)

  11. Application of Inertia Ellipse in Code Marker Matching

    Institute of Scientific and Technical Information of China (English)

    XU Fang; JIANG Weiwei; HE Qing; HU Xiaobin

    2010-01-01

    In close-range photogrammetry, 3D information acquisition is based on image matching. The application of code marker helps to improve the level of automatic matching and the matching accuracy. This paper inyestigates the application of inertia ellipse algorithm to code marker matching. We can calculate the inertia ellipse of a target with a certain boundary. First, the method is applied to a single code marker; the angle and scaling are valid. Then, the paper introduces the multi code markers matching method by the inertia ellipse. Rotation and scaling changes of homonymy images can be calculated by inertia ellipse algorithm. These parameters can be used for code marker matching in arbitrary attitude close-range photogrammetry.

  12. Coded optical time domain reflectometry: principle and applications

    Science.gov (United States)

    Park, Namkyoo; Lee, Jeonghwan; Park, Jonghan; Shim, Jae Gwang; Yoon, Hosung; Kim, Jin Hee; Kim, Kyoungmin; Byun, Jae-Oh; Bolognini, Gabriele; Lee, Duckey; Di Pasquale, Fabrizio

    2007-11-01

    In this paper, we will briefly outline our contributions for the physical realization of coded OTDR, along with its principles and also highlight recent key results related with its applications. For the communication network application, we report a multi-port / multi-wavelength, high-speed supervisory system for the in-service monitoring of a bidirectional WDM-PON system transmission line up to 16 ports x 32 nodes (512 users) capacity. Monitoring of individual branch traces up to 60 km was achieved with the application of a 127-bit simplex code, corresponding to a 7.5dB SNR coding gain effectively reducing the measurement time about 30 times when compared to conventional average mode OTDR. Transmission experiments showed negligible penalty from the monitoring system to the transmission signal quality, at a 2.5Gbps / 125Mbps (down / up stream) data rate. As an application to sensor network, a Raman scattering based coded-OTDR distributed temperature sensor system will be presented. Utilizing a 255-bit Simplex coded OTDR together with optimized sensing link (composed of cascaded fibers with different Raman coefficients), significant enhancement in the interrogation distance (19.5km from coding gain, and 9.6km from link-combination optimization) was achieved to result a total sensing range of 37km (at 17m/3K spatial/temperature resolution), employing a conventional off-shelf low power (80mW) laser diode.

  13. Development of a severe accident module of a nuclear power plant based in the MELCOR nuclear code and its incorporation to the room simulator; Desarrollo del modulo de accidentes severos de una central nucleoelectrica basado en el codigo nuclear MELCOR y su incorporacion al simulador de aula

    Energy Technology Data Exchange (ETDEWEB)

    Cortes M, F.S.; Ramos P, J.C.; Nelson E, P.; Chavez M, C. [Facultad de Ingenieria, Division de Ingenieria Electrica, Grupo de Ingenieria Nuclear, UNAM, Ciudad Universitaria, Distrito Federal (Mexico)]. E-mail: samuelcortes@correo.unam.mx

    2004-07-01

    This work describes the development of the Severe Accidents Module (MAS) based on the Code MELCOR and its incorporation to the Simulator of Classroom of the Group of Nuclear Engineering of the Engineering Faculty (GrINFI) of the National Autonomous University of Mexico (UNAM). The module of Severe Accidents has the purpose of counting with installed and operational capacity for the simulation of accident sequences with capacitation purposes, training, analysis and design. A shallow description of SimAula is presented, and the philosophy used to obtain the interactive version of MELCOR are discussed, as well as its implementation in the atmosphere of SimAula. Finally, after confirming the correct operation of the development of the tool, some possible topics are discussed for specific applications of the MAS. (Author)

  14. Chemical speciation code CHEMSPEC and its applications

    Institute of Scientific and Technical Information of China (English)

    WANG XiangYun; CHEN Tao; LIU ChunLi

    2009-01-01

    The adsorption and migration behavior of a radionuclide in geological media heavily depends on its chemical forms in a given chemical environment.In order to predict the temporal and spatial distribution of radionuclides around a disposal site when its canister is damaged,it is necessary to develop coupled chemical speciation-solute transport models and relevant software.For that reason,we wrote a new chemical speciation program CHEMSPEC.In this paper,the principles and structure of CHEMSPEC are briefly described,and the strategy and algorithms that were used in this code are interpreted in some detail,such as the measures adopted to prevent divergence in iteratively solving the mass balance equations,the "predictor-corrector" algorithm for calculation of the number and quantities of solid species formed,and the alternate use of "freezing" and "defreezing" oxidation states in handling of co-existent redox and precipitation equilibria.Four examples are given to illustrate CHEMSPEC's features and capabilities.

  15. Chemical speciation code CHEMSPEC and its applications

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The adsorption and migration behavior of a radionuclide in geological media heavily depends on its chemical forms in a given chemical environment.In order to predict the temporal and spatial distribution of radionuclides around a disposal site when its canister is damaged,it is necessary to develop coupled chemical speciation-solute transport models and relevant software.For that reason,we wrote a new chemical speciation program CHEMSPEC.In this paper,the principles and structure of CHEMSPEC are briefly described,and the strategy and algorithms that were used in this code are interpreted in some detail,such as the measures adopted to prevent divergence in iteratively solving the mass balance equations,the "predictor-corrector" algorithm for calculation of the number and quantities of solid species formed,and the alternate use of "freezing" and "defreezing" oxidation states in handling of co-existent redox and precipitation equilibria.Four examples are given to illustrate CHEMSPEC’s features and capabilities.

  16. Preliminary Analysis of a Steam Line Break Accident with the MARS-KS code for the SMART Design with Passive Safety Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doohyuk; Ko, Yungjoo; Suh, Jaeseung [Hannam Univ., Daejeon (Korea, Republic of); Bae, Hwang; Ryu, Sunguk; Yi, Sungjae; Park, Hyunsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    SMART has been developed by KAERI, and SMART-Standard Design Approval (SDA) was recently granted in 2012. A SMART design with Passive Safety System (PSS) features (called SMART-PSS) is being developed and added to the standard design of SMART by KAERI to improve its safety system. Active safety systems such as safety injection pumps will be replaced by a passive safety system, which is actuated only by the gravity force caused by the height difference. All tanks for the passive safety systems are higher than the injection nozzle, which is located around the reactor coolant pumps (RCPs). In this study, a preliminary analysis of the main steam line break accident (MSLB) was performed using the MARS-KS code to understand the general behavior of the SMART-PSS design and to prepare its validation test with the SMART-ITL (FESTA) facility. An anticipated accident for the main steam line break (MSLB) was performed using the MARS-KS code to understand the thermal-hydraulic behaviors of the SMART-PSS design. The preliminary analysis provides good insight into the passive safety system design features of the SMART-PSS and the thermal-hydraulic characteristics of the SMART design. The analysis results of the MSLB showed that the core water collapsed level inside the core support barrel was maintained high over the active core top level during the transient period. Therefore, the SMART-PSS design has satisfied the requirements to maintain the plant at a safe shutdown condition during 72 hours without AC power or operator action after an anticipated accident.

  17. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Kalkahoran, Omid Noori; Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

  18. ASTEC V2.0 reactor applications on French PWR 900 MWe accident sequences and comparison with MAAP4

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, Virginie; Azarian, Garo; Ducousso, Erik; Gandrille, Pascal, E-mail: pascal.gandrille@areva.com

    2014-06-01

    In the frame of the SARNET Severe Accident Network of Excellence an important task of partners is the assessment of the ASTEC integral code, considered today as the European reference code for evaluation of the source term. A code-to-code comparison between ASTEC V2.0 rev1 and MAAP 4.0.7 code versions has been performed by AREVA NP SAS on a French PWR 900 MWe. Two transients have been analyzed, focussing on in-vessel phenomena: total loss of feedwater (H2 sequence in the French nomenclature) and total loss of onsite and offsite power (H3 sequence). The detailed analysis shows an overall good agreement between both code results on thermal-hydraulics, hydrogen production and core degradation phenomena.

  19. Development and first application of a new tool for the simulation of the initiating phase of a severe accident on SFR

    Science.gov (United States)

    Guyot, M.; Gubernatis, P.; Suteau, C.

    2014-06-01

    In order to improve the safety level of Sodium Fast Reactors, low probability events such as Hypothetical Core Disruptive Accident (HCDA) are analyzed for their potential consequences. The initiating phase of such accidents is of particular interest both for the prevention and the mitigation of routes leading to a large core disruption and recriticalities. Up to now, analysis of the initiating phase of HCDA has been performed with the SAS4A code. The SAS4A accident calculations are based on a multiple-channel approach, which requires that subassemblies or groups of similar subassemblies be represented together as independent channels. The SAS4A severe accident calculation scheme resorts to a simplified treatment in which an average pin is used to represent a channel. A point kinetics model coupled with a feedback reactivity model is also used to provide an estimate of the reactor power level. Both to increase the accuracy and decrease the uncertainties in the prediction of reactor safety margins, a new computational tool is currently under development at CEA Cadarache. The main features of this tool are the ability to provide a detailed sub-channel meshing of the sub-assembly as well as three-dimensional kinetics during severe accident conditions. To fulfill these goals, the fluid-dynamics SIMMER-III code has been coupled to the SNATCH solver using a MPI environment. This coupling allows both to compute the multi-phase and multi-component flows encountered in severe accident conditions and to model the power shape variation during voiding and melting of the different reactor materials. This new calculation scheme relies on a SAS-like multiple-channel treatment, where channel-to-channel heat and momentum exchanges are neglected. In this paper, an overview of the SIMMER-III/SNATCH coupled tool capabilities is provided. A first application of this new tool is also performed and compared with a SAS4A reference calculation. The new SIMMER-III/SNATCH tool proved to be

  20. Video over DSL with LDGM Codes for Interactive Applications

    Directory of Open Access Journals (Sweden)

    Laith Al-Jobouri

    2016-05-01

    Full Text Available Digital Subscriber Line (DSL network access is subject to error bursts, which, for interactive video, can introduce unacceptable latencies if video packets need to be re-sent. If the video packets are protected against errors with Forward Error Correction (FEC, calculation of the application-layer channel codes themselves may also introduce additional latency. This paper proposes Low-Density Generator Matrix (LDGM codes rather than other popular codes because they are more suitable for interactive video streaming, not only for their computational simplicity but also for their licensing advantage. The paper demonstrates that a reduction of up to 4 dB in video distortion is achievable with LDGM Application Layer (AL FEC. In addition, an extension to the LDGM scheme is demonstrated, which works by rearranging the columns of the parity check matrix so as to make it even more resilient to burst errors. Telemedicine and video conferencing are typical target applications.

  1. Development of a three-dimensional model and calculation code for the packed bed simulation for safety analyses of severe reactor accidents; Entwicklung eines dreidimensionalen Modells und Rechencodes zur Simulation von Schuettbetten fuer Sicherheitsanalysen von schweren Reaktorstoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Berkhan, Ana; Starflinger, Joerg [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)

    2013-07-01

    The computer code MEWA is used for the description of severe accident sequences in light-water reactors. During the reactor accident with core disruption the solidified core fragments are displaced into the lower plenum of the reactor pressure vessel (RPV) or in case of RPV failure into the water filled reactor sump. For the progress or cessation of the severe accident the cooling of the packed bed is of main importance. With the 3D version of the code it is possible to study spatially complex packed beds with respect to their coolability. Further extension of the MEWA code will include the optimization for the improvement of the calculation efficiency and reduction of computation time. The validation will be performed by re-calculation of experiments (for instance DEBRIS experiments at the IKE) and the comparison with results of the 2D version.

  2. Computer code applicability assessment for the advanced Candu reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wren, D.J.; Langman, V.J.; Popov, N.; Snell, V.G. [Atomic Energy of Canada Ltd (Canada)

    2004-07-01

    AECL Technologies, the 100%-owned US subsidiary of Atomic Energy of Canada Ltd. (AECL), is currently the proponents of a pre-licensing review of the Advanced Candu Reactor (ACR) with the United States Nuclear Regulatory Commission (NRC). A key focus topic for this pre-application review is the NRC acceptance of the computer codes used in the safety analysis of the ACR. These codes have been developed and their predictions compared against experimental results over extended periods of time in Canada. These codes have also undergone formal validation in the 1990's. In support of this formal validation effort AECL has developed, implemented and currently maintains a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper discusses the SQA program used to develop, qualify and maintain the computer codes used in ACR safety analysis, including the current program underway to confirm the applicability of these computer codes for use in ACR safety analyses. (authors)

  3. Monte Carlo dose reconstruction in case of a radiological accident: application to the accident in Chile in December 2005; Reconstitution de dose par calcul Monte Carlo en cas d'accident radiologique: application a l'accident du Chili de decembre 2005

    Energy Technology Data Exchange (ETDEWEB)

    Huet, C.; Clairand, I.; Trompier, F.; Bottollier-Depois, J.F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Dir. de la Radioprotection de l' Homme, 92 - Fontenay aux Roses (France); Bey, E. [Hopital d' Instruction des Armees Percy, 92 - Clamart (France)

    2007-10-15

    Following a radiological accident caused by a gamma-graphy source in Chile in December 2005 involving one victim, I.R.S.N. was contacted to perform the dosimetric reconstruction of the accident using numerical simulation. Tools developed in the laboratory, associating anthropomorphic mathematic or voxel phantoms with the Monte Carlo calculation code m.c.n.p.x., were used in order to determine the dose distribution on the left buttock and absorbed doses to critical organs. The dosimetric mapping show that the absorbed at the skin surface is very high (1900 Gy) but drops rapidly at deep. At a depth of 5 cm, it is 20 Gy. Calculations performed with a mathematical phantom indicate that average doses to the critical organs are relatively low. Moreover, possible bone marrow sites for puncture are identified. Based on the dosimetric mapping, an excision measuring 5 cm in depth by 10 cm in diameter was performed on the left buttock of the victim. (authors)

  4. Road Traffic Accident Analysis of Ajmer City Using Remote Sensing and GIS Technology

    Science.gov (United States)

    Bhalla, P.; Tripathi, S.; Palria, S.

    2014-12-01

    With advancement in technology, new and sophisticated models of vehicle are available and their numbers are increasing day by day. A traffic accident has multi-facet characteristics associated with it. In India 93% of crashes occur due to Human induced factor (wholly or partly). For proper traffic accident analysis use of GIS technology has become an inevitable tool. The traditional accident database is a summary spreadsheet format using codes and mileposts to denote location, type and severity of accidents. Geo-referenced accident database is location-referenced. It incorporates a GIS graphical interface with the accident information to allow for query searches on various accident attributes. Ajmer city, headquarter of Ajmer district, Rajasthan has been selected as the study area. According to Police records, 1531 accidents occur during 2009-2013. Maximum accident occurs in 2009 and the maximum death in 2013. Cars, jeeps, auto, pickup and tempo are mostly responsible for accidents and that the occurrence of accidents is mostly concentrated between 4PM to 10PM. GIS has proved to be a good tool for analyzing multifaceted nature of accidents. While road safety is a critical issue, yet it is handled in an adhoc manner. This Study is a demonstration of application of GIS for developing an efficient database on road accidents taking Ajmer City as a study. If such type of database is developed for other cities, a proper analysis of accidents can be undertaken and suitable management strategies for traffic regulation can be successfully proposed.

  5. Extracting recurrent scenarios from narrative texts using a Bayesian network: application to serious occupational accidents with movement disturbance.

    Science.gov (United States)

    Abdat, F; Leclercq, S; Cuny, X; Tissot, C

    2014-09-01

    A probabilistic approach has been developed to extract recurrent serious Occupational Accident with Movement Disturbance (OAMD) scenarios from narrative texts within a prevention framework. Relevant data extracted from 143 accounts was initially coded as logical combinations of generic accident factors. A Bayesian Network (BN)-based model was then built for OAMDs using these data and expert knowledge. A data clustering process was subsequently performed to group the OAMDs into similar classes from generic factor occurrence and pattern standpoints. Finally, the Most Probable Explanation (MPE) was evaluated and identified as the associated recurrent scenario for each class. Using this approach, 8 scenarios were extracted to describe 143 OAMDs in the construction and metallurgy sectors. Their recurrent nature is discussed. Probable generic factor combinations provide a fair representation of particularly serious OAMDs, as described in narrative texts. This work represents a real contribution to raising company awareness of the variety of circumstances, in which these accidents occur, to progressing in the prevention of such accidents and to developing an analysis framework dedicated to this kind of accident.

  6. An Application of Discrete Mathematics to Coding Theory.

    Science.gov (United States)

    Donohoe, L. Joyce

    1992-01-01

    Presents a public-key cryptosystem application to introduce students to several topics in discrete mathematics. A computer algorithms using recursive methods is presented to solve a problem in which one person wants to send a coded message to a second person while keeping the message secret from a third person. (MDH)

  7. Verification of Gyrokinetic codes: theoretical background and applications

    Science.gov (United States)

    Tronko, Natalia

    2016-10-01

    In fusion plasmas the strong magnetic field allows the fast gyro motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the consequent transport. We present a new and generic theoretical framework and specific numerical applications to test the validity and the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The indirect verification of numerical scheme is proposed via the Benchmark process. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC), and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations using the generic variational formulation. Then, we derive and include the models implemented in ORB5 and GENE inside this hierarchy. At the computational level, detailed verification of global electromagnetic test cases based on the CYCLONE are considered, including a parametric β-scan covering the transition between the ITG to KBM and the spectral properties at the nominal β value.

  8. Application of Gray Markov SCGM(1,1) c Model to Prediction of Accidents Deaths in Coal Mining.

    Science.gov (United States)

    Lan, Jian-Yi; Zhou, Ying

    2014-01-01

    The prediction of mine accident is the basis of aviation safety assessment and decision making. Gray prediction is suitable for such kinds of system objects with few data, short time, and little fluctuation, and Markov chain theory is just suitable for forecasting stochastic fluctuating dynamic process. Analyzing the coal mine accident human error cause, combining the advantages of both Gray prediction and Markov theory, an amended Gray Markov SCGM(1,1) c model is proposed. The gray SCGM(1,1) c model is applied to imitate the development tendency of the mine safety accident, and adopt the amended model to improve prediction accuracy, while Markov prediction is used to predict the fluctuation along the tendency. Finally, the new model is applied to forecast the mine safety accident deaths from 1990 to 2010 in China, and, 2011-2014 coal accidents deaths were predicted. The results show that the new model not only discovers the trend of the mine human error accident death toll but also overcomes the random fluctuation of data affecting precision. It possesses stronger engineering application.

  9. Optical code division multiple access fundamentals and applications

    CERN Document Server

    Prucnal, Paul R

    2005-01-01

    Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's

  10. Application of the MACCS code to DOE production reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    O' Kula, K.R.; East, J.M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-01-01

    A three-level probabilistic risk assessment (PRA) of the special materials production reactor operation at the US Department of Energy's (DOE's) Savannah River site (SRS) has been completed. The goals of this analysis were to: (1) analyze existing margins of safety provided by the heavy water reactor (HWR) design challenged by postulated severe accidents; (2) compare measures of risk to the general public and on-site workers to guideline values, as well as to those posed by commercial reactor operation; and (3) develop the methodology and data base necessary to determine the equipment, human actions, and engineering systems that contribute significantly to ensuring overall plant safety. In particular, the third point provides the most tangible benefit of a PRA since the process yields a prioritized approach to increasing safety through design and operating practices. This paper describes key aspects of the consequence analysis portion of the SRS PRA: Given the radiological releases quantified through the level-2 PRA analysis, the consequences to the off-site general public and to the on-site SRS workforce are calculated. This analysis, the third level of the PRA, is conducted primarily with the MACCS 1.5 code. The level-3 PRA yields a probabilistic assessment of health and economic effects based on meteorological conditions sampled from site-specific data.

  11. List Decoding of Matrix-Product Codes from nested codes: an application to Quasi-Cyclic codes

    DEFF Research Database (Denmark)

    Hernando, Fernando; Høholdt, Tom; Ruano, Diego

    2012-01-01

    A list decoding algorithm for matrix-product codes is provided when $C_1,..., C_s$ are nested linear codes and $A$ is a non-singular by columns matrix. We estimate the probability of getting more than one codeword as output when the constituent codes are Reed-Solomon codes. We extend this list de...

  12. Thermal-hydraulic analysis best-estimate of an accident in the containment a PWR-W reactor with GOTHIC code using a 3D model detailed; Analisis termo-hidraulico best-estimate de un accidente en contencion de un reactor PWR-W con el codigo GOTHIC mediante un modelo 3D detallado

    Energy Technology Data Exchange (ETDEWEB)

    Bocanegra, R.; Jimenez, G.

    2013-07-01

    The objective of this project will be a model of containment PWR-W with the GOTHIC code that allows analyzing the behavior detailed after a design basis accident or a severe accident. Unlike the models normally used in codes of this type, the analysis will take place using a three-dimensional model of the containment, being this much more accurate.

  13. WSPEEDI (worldwide version of SPEEDI): A computer code system for the prediction of radiological impacts on Japanese due to a nuclear accident in foreign countries

    Energy Technology Data Exchange (ETDEWEB)

    Chino, Masamichi; Yamazawa, Hiromi; Nagai, Haruyasu; Moriuchi, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishikawa, Hirohiko

    1995-09-01

    A computer code system has been developed for near real-time dose assessment during radiological emergencies. The system WSPEEDI, the worldwide version of SPEEDI (System for Prediction of Environmental Emergency Dose Information) aims at predicting the radiological impact on Japanese due to a nuclear accident in foreign countries. WSPEEDI consists of a mass-consistent wind model WSYNOP for large-scale wind fields and a particle random walk model GEARN for atmospheric dispersion and dry and wet deposition of radioactivity. The models are integrated into a computer code system together with a system control software, worldwide geographic database, meteorological data processor and graphic software. The performance of the models has been evaluated using the Chernobyl case with reliable source terms, well-established meteorological data and a comprehensive monitoring database. Furthermore, the response of the system has been examined by near real-time simulations of the European Tracer Experiment (ETEX), carried out over about 2,000 km area in Europe. (author).

  14. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  15. Lifting transforms on graphs and their application to video coding

    OpenAIRE

    Martínez Enríquez, Eduardo

    2016-01-01

    Compact representations of data are very useful in many applications such as coding, denoising or feature extraction. “Classical” transforms such as Discrete Cosine Transforms (DCT) or Discrete Wavelets Transforms (DWT) provide sparse approximations of smooth signals, but lose efficiency when they are applied to signals with large discontinuities. In such cases, directional transforms, which are able to adapt their basis functions to the underlying signal structure, improve the...

  16. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC

  17. Development of Database for Accident Analysis in Indian Mines

    Science.gov (United States)

    Tripathy, Debi Prasad; Guru Raghavendra Reddy, K.

    2015-08-01

    Mining is a hazardous industry and high accident rates associated with underground mining is a cause of deep concern. Technological developments notwithstanding, rate of fatal accidents and reportable incidents have not shown corresponding levels of decline. This paper argues that adoption of appropriate safety standards by both mine management and the government may result in appreciable reduction in accident frequency. This can be achieved by using the technology in improving the working conditions, sensitising workers and managers about causes and prevention of accidents. Inputs required for a detailed analysis of an accident include information on location, time, type, cost of accident, victim, nature of injury, personal and environmental factors etc. Such information can be generated from data available in the standard coded accident report form. This paper presents a web based application for accident analysis in Indian mines during 2001-2013. An accident database (SafeStat) prototype based on Intranet of the TCP/IP agreement, as developed by the authors, is also discussed.

  18. Development of Database for Accident Analysis in Indian Mines

    Science.gov (United States)

    Tripathy, Debi Prasad; Guru Raghavendra Reddy, K.

    2016-10-01

    Mining is a hazardous industry and high accident rates associated with underground mining is a cause of deep concern. Technological developments notwithstanding, rate of fatal accidents and reportable incidents have not shown corresponding levels of decline. This paper argues that adoption of appropriate safety standards by both mine management and the government may result in appreciable reduction in accident frequency. This can be achieved by using the technology in improving the working conditions, sensitising workers and managers about causes and prevention of accidents. Inputs required for a detailed analysis of an accident include information on location, time, type, cost of accident, victim, nature of injury, personal and environmental factors etc. Such information can be generated from data available in the standard coded accident report form. This paper presents a web based application for accident analysis in Indian mines during 2001-2013. An accident database (SafeStat) prototype based on Intranet of the TCP/IP agreement, as developed by the authors, is also discussed.

  19. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  20. Tool Support for Inspecting the Code Quality of HPC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T; Quinlan, D; Vuduc, R

    2007-03-16

    The nature of HPC application development encourages ad hoc design and implementation, rather than formal requirements analysis and design specification as is typical in software engineering. However, we cannot simply expect HPC developers to adopt formal software engineering processes wholesale, even while there is a need to improve software structure and quality to ensure future maintainability. Therefore, we propose tools that HPC developers can use at their discretion to obtain feedback on the structure and quality of their codes. This feedback would come in the form of code quality metrics and analyses, presented when necessary in intuitive and interactive visualizations. This paper summarizes our implementation of just such a tool, which we apply to a standard HPC benchmark as ''proof-of-concept.''

  1. Test and validation of CFD codes for the simulation of accident-typical phenomena in the reactor containment; Erprobung und Validierung von CFD-Codes fuer die Simulation von unfalltypischen Phaenomenen im Sicherheitseinschluss

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Berthold; Stewering, Joern; Sonnenkalb, Martin

    2014-03-15

    CFD (Computational Fluid Dynamic) simulation techniques have a growing relevance for the simulation and assessment of accidents in nuclear reactor containments. Some fluid dynamic problems like the calculation of the flow resistances in a complex geometry, turbulence calculations or the calculation of deflagrations could only be solved exactly for very simple cases. These fluid dynamic problems could not be represented by lumped parameter models and must be approximated numerically. Therefore CFD techniques are discussed by a growing international community in conferences like the CFD4NRS-conference. Also the number of articles with a CFD topic is increasing in professional journals like Nuclear Engineering and Design. CFD tools like GASFLOW or GOTHIC are already in use in European nuclear site licensing processes for future nuclear power plants like EPR or AP1000 and the results of these CFD tools are accepted by the authorities. For these reasons it seems to be necessary to build up national competences in the field of CFD techniques and it is important to validate and assess the existing CFD tools. GRS continues the work for the validation and assessment of CFD codes for the simulation of accident scenarios in a nuclear reactor containment within the framework of the BMWi sponsored project RS1500. The focus of this report is on the following topics: - Further validation of condensation models from GRS, FZJ and ANSYS and development of a new condensate model. - Validation of a new turbulence model which was developed by the University of Stuttgart in cooperation with ANSYS. - The formation and dissolution of light gas stratifications are analyzed by large scale experiments. These experiments were simulated by GRS. - The AREVA correlations for hydrogen recombiners (PARs) could be improved by GRS after the analysis of experimental data. Relevant experiments were simulated with this improved recombiner correlation. - Analyses on the simulation of H{sub 2

  2. Analysis of an accident type sbloca in reactor contention AP1000 with 8.0 Gothic code; Analisis de un accidente tipo Sbloca en la contencion del reactor AP1000 con el codigo Gothic 8.0

    Energy Technology Data Exchange (ETDEWEB)

    Goni, Z.; Jimenez Varas, G.; Fernandez, K.; Queral, C.; Montero, J.

    2016-08-01

    The analysis is based on the simulation of a Small Break Loss-of-Coolant-Accident in the AP1000 nuclear reactor using a Gothic 8.0 tri dimensional model created in the Science and Technology Group of Nuclear Fision Advanced Systems of the UPM. The SBLOCA has been simulated with TRACE 5.0 code. The main purpose of this work is the study of the thermo-hydraulic behaviour of the AP1000 containment during a SBLOCA. The transients simulated reveal close results to the realistic behaviour in case of an accident with similar characteristics. The pressure and temperature evolution enables the identification of the accident phases from the RCS point of view. Compared to the licensing calculations included in the AP1000 Safety Analysis, it has been proved that the average pressure and temperature evolution is similar, yet lower than the licensing calculations. However, the temperature and inventory distribution are significantly heterogeneous. (Author)

  3. Coded access optical sensor (CAOS) imager and applications

    Science.gov (United States)

    Riza, Nabeel A.

    2016-04-01

    Starting in 2001, we proposed and extensively demonstrated (using a DMD: Digital Micromirror Device) an agile pixel Spatial Light Modulator (SLM)-based optical imager based on single pixel photo-detection (also called a single pixel camera) that is suited for operations with both coherent and incoherent light across broad spectral bands. This imager design operates with the agile pixels programmed in a limited SNR operations starring time-multiplexed mode where acquisition of image irradiance (i.e., intensity) data is done one agile pixel at a time across the SLM plane where the incident image radiation is present. Motivated by modern day advances in RF wireless, optical wired communications and electronic signal processing technologies and using our prior-art SLM-based optical imager design, described using a surprisingly simple approach is a new imager design called Coded Access Optical Sensor (CAOS) that has the ability to alleviate some of the key prior imager fundamental limitations. The agile pixel in the CAOS imager can operate in different time-frequency coding modes like Frequency Division Multiple Access (FDMA), Code-Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA). Data from a first CAOS camera demonstration is described along with novel designs of CAOS-based optical instruments for various applications.

  4. Development of analytical code for core disruptive accident of metallic fuel core and evaluation of upper limitation of coolant void reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Nobuyuki [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2001-06-01

    In the event of HCDA (Hypothetical Core Damage Accident) the safety of the metallic core must be ensured. Coolant void reactivity, which produces a positive reactivity effect, must be restrained to exclude 'energetic sequence' (uncontrollable power generation). As this reactivity and the core performance are in a state of confrontation, an upper limit must be determined through safety analyses. The larger the coolant void reactivity becomes, the more the core performance improves. A core dynamics analysis code named CANIS has been developed to analysis metallic fuel properties, irradiation behavior, and transient behavior in the initiating phase of HCDA. ULOF (Unprotected Loss Of Flow) events, which are considered major HCDA initiators, are analyzed with various parameters of cladding failure conditions and molten fuel dispersion velocities. The results indicate, the cladding failure condition is the most sensitive safety parameter. The coolant void reactivity of 12$ is acceptable in the condition that cladding fails at 1,000 degC. And the upper value is limited to 8$ for the conservative condition of a 1,200 degC failure criteria. (author)

  5. Large-Eddy Simulation Code Developed for Propulsion Applications

    Science.gov (United States)

    DeBonis, James R.

    2003-01-01

    A large-eddy simulation (LES) code was developed at the NASA Glenn Research Center to provide more accurate and detailed computational analyses of propulsion flow fields. The accuracy of current computational fluid dynamics (CFD) methods is limited primarily by their inability to properly account for the turbulent motion present in virtually all propulsion flows. Because the efficiency and performance of a propulsion system are highly dependent on the details of this turbulent motion, it is critical for CFD to accurately model it. The LES code promises to give new CFD simulations an advantage over older methods by directly computing the large turbulent eddies, to correctly predict their effect on a propulsion system. Turbulent motion is a random, unsteady process whose behavior is difficult to predict through computer simulations. Current methods are based on Reynolds-Averaged Navier- Stokes (RANS) analyses that rely on models to represent the effect of turbulence within a flow field. The quality of the results depends on the quality of the model and its applicability to the type of flow field being studied. LES promises to be more accurate because it drastically reduces the amount of modeling necessary. It is the logical step toward improving turbulent flow predictions. In LES, the large-scale dominant turbulent motion is computed directly, leaving only the less significant small turbulent scales to be modeled. As part of the prediction, the LES method generates detailed information on the turbulence itself, providing important information for other applications, such as aeroacoustics. The LES code developed at Glenn for propulsion flow fields is being used to both analyze propulsion system components and test improved LES algorithms (subgrid-scale models, filters, and numerical schemes). The code solves the compressible Favre-filtered Navier- Stokes equations using an explicit fourth-order accurate numerical scheme, it incorporates a compressible form of

  6. Operator Design Methodology and Application in H.264 Entropy Coding

    Directory of Open Access Journals (Sweden)

    Ziyi Hu

    2010-11-01

    Full Text Available Currently ASIC applications, such as multimedia processing, require shorter time-to-market and lower cost of Non Recurring Engineering (NRE. Also, with the IC manufacturing technology developing continually, from transistor level to logic gate level, the size of design cells in digital circuits is increasing correspondingly. New design methodology is in urgent need to meet the requirement for the developing processing technology and shorter time-to-market in IC industry. This paper proposed the concepts and principles of operator design methodology, then focused on the entropy coding application based on the operators and finally presented the implementation results. The results show that with the proposed methodology, a comparable hardware performance can be obtained against the traditional standard cell based design flow. Furthermore, the design speed can be improved efficiently.

  7. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  8. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    Science.gov (United States)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  9. APPLICATION OF CODES WITH NATURAL REDUNDANCY FOR INFORMATION PROTECTION

    Directory of Open Access Journals (Sweden)

    Jablonovsky Y. A.

    2014-04-01

    Full Text Available In the article we provide a survey of cryptographic systems on the basis of unjammable coding; we offer the aspect of codes with natural redundancy for the solution of a problem of simultaneous protection of the information and detection and correction of errors; the demonstration is resulted that codes with natural redundancy are group codes

  10. Network Coding Applications and Implementations on Mobile Devices

    DEFF Research Database (Denmark)

    Fitzek, Frank; Pedersen, Morten Videbæk; Heide, Janus

    2010-01-01

    Network coding has attracted a lot of attention lately. The goal of this paper is to demonstrate that the implementation of network coding is feasible on mobile platforms. The paper will guide the reader through some examples and demonstrate uses for network coding. Furthermore the paper will als...... show that the implementation of network coding is feasible today on commercial mobile platforms....

  11. Quantitative information measurement and application for machine component classification codes

    Institute of Scientific and Technical Information of China (English)

    LI Ling-Feng; TAN Jian-rong; LIU Bo

    2005-01-01

    Information embodied in machine component classification codes has internal relation with the probability distribution of the code symbol. This paper presents a model considering codes as information source based on Shannon's information theory. Using information entropy, it preserves the mathematical form and quantitatively measures the information amount of a symbol and a bit in the machine component classification coding system. It also gets the maximum value of information amount and the corresponding coding scheme when the category of symbols is fixed. Samples are given to show how to evaluate the information amount of component codes and how to optimize a coding system.

  12. Current and anticipated uses of thermal-hydraulic codes in NFI

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, K. [Nuclear Fuel Industries, Ltd., Tokyo (Japan); Takayasu, M. [Nuclear Fuel Industries, Ltd., Sennann-gun (Japan)

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  13. Accident Locations, Currently this layer is maintained by our County Sheriff Department & done with a desktop GIS program., Published in 2013, Not Applicable scale, Chippewa County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Accident Locations dataset, published at Not Applicable scale, was produced all or in part from Other information as of 2013. It is described as 'Currently this...

  14. Efficient coding of wavelet trees and its applications in image coding

    Science.gov (United States)

    Zhu, Bin; Yang, En-hui; Tewfik, Ahmed H.; Kieffer, John C.

    1996-02-01

    We propose in this paper a novel lossless tree coding algorithm. The technique is a direct extension of the bisection method, the simplest case of the complexity reduction method proposed recently by Kieffer and Yang, that has been used for lossless data string coding. A reduction rule is used to obtain the irreducible representation of a tree, and this irreducible tree is entropy-coded instead of the input tree itself. This reduction is reversible, and the original tree can be fully recovered from its irreducible representation. More specifically, we search for equivalent subtrees from top to bottom. When equivalent subtrees are found, a special symbol is appended to the value of the root node of the first equivalent subtree, and the root node of the second subtree is assigned to the index which points to the first subtree, an all other nodes in the second subtrees are removed. This procedure is repeated until it cannot be reduced further. This yields the irreducible tree or irreducible representation of the original tree. The proposed method can effectively remove the redundancy in an image, and results in more efficient compression. It is proved that when the tree size approaches infinity, the proposed method offers the optimal compression performance. It is generally more efficient in practice than direct coding of the input tree. The proposed method can be directly applied to code wavelet trees in non-iterative wavelet-based image coding schemes. A modified method is also proposed for coding wavelet zerotrees in embedded zerotree wavelet (EZW) image coding. Although its coding efficiency is slightly reduced, the modified version maintains exact control of bit rate and the scalability of the bit stream in EZW coding.

  15. Modified NASA-Lewis Chemical Equilibrium Code for MHD applications

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-12-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code has recently been developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. This report describes the effect of the programming details from a user point of view, but does not describe the Code in detail.

  16. Application of T-Code, Turbo Codes and Pseudo-Random Sequence for Steganography

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2006-01-01

    Full Text Available In this study, we propose new technique that will address the problem of robustness and data safety in steganography. The steganography consists of techniques to allow the communication between two persons, hiding not only the contents but also the very existence of the communication in the eyes of any observer. T-Codes used with Turbo Codes generates cryptic and error-coded data stream, which is hidden in the stego-object using Pseudo-Random sequence. This technique makes our processed data stream non-vulnerable to the attack of an active intruder, or due to noise in the transmission link.

  17. Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue

    Science.gov (United States)

    Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng

    A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.

  18. Fixed-Length Error Resilient Code and Its Application in Video Coding

    Institute of Scientific and Technical Information of China (English)

    FANChen; YANGMing; CUIHuijuan; TANGKun

    2003-01-01

    Since popular entropy coding techniques such as Variable-length code (VLC) tend to cause severe error propagation in noisy environments, an error resilient entropy coding technique named Fixed-length error resilient code (FLERC) is proposed to mitigate the problem. It is found that even for a non-stationary source, the probability of error propagation could be minimized through introducing intervals into the codeword space of the fixed-length codes. FLERC is particularly suitable for the entropy coding for video signals in error-prone environments, where a little distortion is tolerable, but severe error propagation would lead to fatal consequences. An iterative construction algorithm for FLERC is presented in this paper. In addition, FLERC is adopted instead of VLC as the entropy coder of the DCT coefficients in H.263++Data partitioning slice (DPS) mode, and tested on noisy channels. The simulation results show that this scheme outperforms the scheme of H.263++ combined with FEC when the channel noise is highly extensive, since the error propagation is effectively suppressed by using FLERC. Moreover, it is observed that the reconstructed video quality degrades gracefully as the bit error rate increases.

  19. Incorporation of phenomenological uncertainties in probabilistic safety analysis - application to LMFBR core disruptive accident energetics

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, B; Theofanous, T G; Rumble, E T; Atefi, B

    1984-08-01

    This report describes a method for quantifying frequency and consequence uncertainty distribution associated with core disruptive accidents (CDAs). The method was developed to estimate the frequency and magnitude of energy impacting the reactor vessel head of the Clinch River Breeder Plant (CRBRP) given the occurrence of hypothetical CDAs. The methodology is illustrated using the CRBR example.

  20. The impacts of speed cameras on road accidents: an application of propensity score matching methods.

    Science.gov (United States)

    Li, Haojie; Graham, Daniel J; Majumdar, Arnab

    2013-11-01

    This paper aims to evaluate the impacts of speed limit enforcement cameras on reducing road accidents in the UK by accounting for both confounding factors and the selection of proper reference groups. The propensity score matching (PSM) method is employed to do this. A naïve before and after approach and the empirical Bayes (EB) method are compared with the PSM method. A total of 771 sites and 4787 sites for the treatment and the potential reference groups respectively are observed for a period of 9 years in England. Both the PSM and the EB methods show similar results that there are significant reductions in the number of accidents of all severities at speed camera sites. It is suggested that the propensity score can be used as the criteria for selecting the reference group in before-after control studies. Speed cameras were found to be most effective in reducing accidents up to 200 meters from camera sites and no evidence of accident migration was found.

  1. Rising and boiling of a drop of volatile liquid in a heavier one: application to the LMFBR severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Pigny, Sylvain L.; Coste, Pierre F. [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: The rising and, simultaneously the boiling, of a droplet of volatile liquid in a heavier one is computation-ally investigated. Our calculations are performed with the help of the SIMMER code, in which a specific DNS algorithm is developed, to represent surface tension between the different media in an explicit way. This is required to represent the physical contact that occurs between two liquids and the vapor from the lighter one, since interfacial heat transfers, and therefore boiling kinetics, merely depend on it. The behavior of the three fluids system is of interest as a key phenomenon related to the transition phase of LMFBR severe accidents, before the formation of a fully developed bubble column. The driven force due to the boiling of steel drops can play a major role in the relocation, and, consequently, the recriticality of UO{sub 2} fuel. The problem is investigated focusing first on analytical experiments, built-up with simulating materials, and for which accurate experimental results are provided. The dependence of results with regard to thermodynamical and physical properties is underlined. This point is of interest in view of some uncertainties in the knowledge of data concerning the materials present in the reactor at high temperature. The pressure level is a key parameter in the accident scenarios: its influence is uppermost on the volumic mass of the gas. It is also outlined. (authors)

  2. Trends in EFL Technology and Educational Coding: A Case Study of an Evaluation Application Developed on LiveCode

    Science.gov (United States)

    Uehara, Suwako; Noriega, Edgar Josafat Martinez

    2016-01-01

    The availability of user-friendly coding software is increasing, yet teachers might hesitate to use this technology to develop for educational needs. This paper discusses studies related to technology for educational uses and introduces an evaluation application being developed. Through questionnaires by student users and open-ended discussion by…

  3. Bicycle accidents.

    Science.gov (United States)

    Lind, M G; Wollin, S

    1986-01-01

    Information concerning 520 bicycle accidents and their victims was obtained from medical records and the victims' replies to questionnaires. The analyzed aspects included risk of injury, completeness of accident registrations by police and in hospitals, types of injuries and influence of the cyclists' age and sex, alcohol, fatigue, hunger, haste, physical disability, purpose of cycling, wearing of protective helmet and other clothing, type and quality of road surface, site of accident (road junctions, separate cycle paths, etc.) and turning manoeuvres.

  4. Ink-constrained halftoning with application to QR codes

    Science.gov (United States)

    Bayeh, Marzieh; Compaan, Erin; Lindsey, Theodore; Orlow, Nathan; Melczer, Stephen; Voller, Zachary

    2014-01-01

    This paper examines adding visually significant, human recognizable data into QR codes without affecting their machine readability by utilizing known methods in image processing. Each module of a given QR code is broken down into pixels, which are halftoned in such a way as to keep the QR code structure while revealing aspects of the secondary image to the human eye. The loss of information associated to this procedure is discussed, and entropy values are calculated for examples given in the paper. Numerous examples of QR codes with embedded images are included.

  5. CONTAIN-LMR程序中池式钠火事故分析计算模型的验证%Verification of sodium pool fire accident analysis model in CONTAIN-LMR code

    Institute of Scientific and Technical Information of China (English)

    李世锐; 任丽霞; 胡文军; 乔鹏瑞

    2016-01-01

    CONTAIN-LMR是针对以液态钠为冷却剂的反应堆而开发的安全壳事故一体化分析程序。我国目前的CONTAIN-LMR程序版本为2000年左右从法国引进,还未进行过面向工程设计的系统性地程序开发和验证。本文主要针对 CONTAIN-LMR 程序中模拟池式钠火事故的分析模型进行详细分析,并采用国际上的池式钠火实验进行验证,实验验证结果表明 CONTAIN-LMR 程序可以较准确地模拟池式钠火事故造成的钠工艺间内的温度、压力升高及放射性钠气溶胶行为。本文的研究结果初步表明CONTAIN-LMR程序可用于钠冷快堆的钠火事故分析。%CONTAIN-LMR is an integrated code which aims at sodium cooled fast reactor containment accident analysis. The current version of the CONTAIN-LMR code in China was imported from France around 2000,program development and verification of engineering level design has not undertaken systematically. This paper makes a detailed analysis for the models of sodium pool fire accident simulation in CONTAIN-LMR code,and uses international sodium pool fire experiments for verification,the result shows that the CONTAIN-LMR code can simulate the temperature,pressure rising and radioactive sodium aerosol behavior in containment caused by sodium pool fire accidents. The studies in this paper indicated that the CONTAIN-LMR code can be used for the analysis of sodium fire accidents in sodium cooled fast reactor.

  6. PROSA-1: a probabilistic response-surface analysis code. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, J. K.; Mueller, C.

    1978-06-01

    Techniques for probabilistic response-surface analysis have been developed to obtain the probability distributions of the consequences of postulated nuclear-reactor accidents. The uncertainties of the consequences are caused by the variability of the system and model input parameters used in the accident analysis. Probability distributions are assigned to the input parameters, and parameter values are systematically chosen from these distributions. These input parameters are then used in deterministic consequence analyses performed by mechanistic accident-analysis codes. The results of these deterministic consequence analyses are used to generate the coefficients for analytical functions that approximate the consequences in terms of the selected input parameters. These approximating functions are used to generate the probability distributions of the consequences with random sampling being used to obtain values for the accident parameters from their distributions. A computer code PROSA has been developed for implementing the probabilistic response-surface technique. Special features of the code generate or treat sensitivities, statistical moments of the input and output variables, regionwise response surfaces, correlated input parameters, and conditional distributions. The code can also be used for calculating important distributions of the input parameters. The use of the code is illustrated in conjunction with the fast-running accident-analysis code SACO to provide probability studies of LMFBR hypothetical core-disruptive accidents. However, the methods and the programming are general and not limited to such applications.

  7. MELCOR computer code manuals

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  8. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  9. Potent Tree Codes and their applications: Coding for Interactive Communication, revisited

    CERN Document Server

    Gelles, Ran

    2011-01-01

    We study the fundamental problem of reliable interactive communication over a noisy channel. In a breakthrough sequence of papers published in 1992 and 1993, Schulman gave non-constructive proofs of the existence of general methods to emulate any two-party interactive protocol such that: (1) the emulation protocol takes a constant-factor longer than the original protocol, and (2) if the emulation protocol is executed over a noisy channel, then the probability that the emulation protocol fails is exponentially small in the total length of the protocol. Unfortunately, Schulman's emulation procedures either only work in a model with a large amount of shared randomness, or are non-constructive in that they rely on the existence of good tree codes. The only known proofs of the existence of good tree codes are non-constructive, and finding an explicit construction remains an important open problem. Indeed, randomly generated tree codes are not good tree codes with overwhelming probability. In this work, we revisit ...

  10. Extending the entry consistency model to enable efficient visualization for code-coupling grid applications

    OpenAIRE

    Antoniu, Gabriel; Cudennec, Loïc; Monnet, Sébastien

    2006-01-01

    This paper addresses the problem of efficient visualization of shared data within code coupling grid applications. These applications are structured as a set of distributed, autonomous, weakly-coupled codes. We focus on the case where the codes are able to interact using the abstraction of a shared data space. We propose an efficient visualization scheme by adapting the mechanisms used to maintain the data consistency. We introduce a new operation called relaxed read, as an extension to the e...

  11. Development of an Ontology to Assist the Modeling of Accident Scenarii "Application on Railroad Transport "

    CERN Document Server

    Maalel, Ahmed; Mejri, Lassad; Ghezela, Henda Hajjami Ben

    2012-01-01

    In a world where communication and information sharing are at the heart of our business, the terminology needs are most pressing. It has become imperative to identify the terms used and defined in a consensual and coherent way while preserving linguistic diversity. To streamline and strengthen the process of acquisition, representation and exploitation of scenarii of train accidents, it is necessary to harmonize and standardize the terminology used by players in the security field. The research aims to significantly improve analytical activities and operations of the various safety studies, by tracking the error in system, hardware, software and human. This paper presents the contribution of ontology to modeling scenarii for rail accidents through a knowledge model based on a generic ontology and domain ontology. After a detailed presentation of the state of the art material, this article presents the first results of the developed model.

  12. Application of the coupled code RELAP5-QUABOX/CUBBOX in the system analysis of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bencik, V.; Feretic, D.; Debrecin, N. [Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2002-11-01

    Best estimate codes and methods for the realistic simulation of operational transients and accidents are being developed in two directions. First, computer codes with models of the interaction between multidimensional neutron kinetic and NPP dynamic behavior enable realistic simulation of transients characterized by strong coupling between neutronics and thermal-hydraulics as well as of transients that result in asymmetrical spatial core power distribution. Coupled codes consisting of a system thermal-hydraulic code and a multidimensional neutronic code are being developed worldwide in order to accomplish that task. Secondly, development of the qualified plant nodalization and of the models of plant protection and control systems is important for the realistic system analysis of operational transients and accidents. Comparison of the coupled code and point kinetic results is important for the validation of the coupled code and to gain more experience in the use of the coupled code in realistic analyses. In this paper the results of two transients for NPP Krsko using the coupled code RELAP5-QUABOX/CUBBOX (R5QC) and RELAP5 stand alone code are discussed. (orig.)

  13. Application of Electron Microscopy Techniques to the Investigation of Space Shuttle Columbia Accident

    Science.gov (United States)

    Shah, Sandeep

    2005-01-01

    This viewgraph presentation gives an overview of the investigation into the breakup of the Space Shuttle Columbia, and addresses the importance of a failure analysis strategy for the investigation of the Columbia accident. The main focus of the presentation is on the usefulness of electron microscopy for analyzing slag deposits from the tiles and reinforced carbon-carbon (RCC) wing panels of the Columbia orbiter.

  14. Dynamic modelling of radionuclide uptake by marine biota: application to the Fukushima nuclear power plant accident.

    Science.gov (United States)

    Vives i Batlle, Jordi

    2016-01-01

    The dynamic model D-DAT was developed to study the dynamics of radionuclide uptake and turnover in biota and sediments in the immediate aftermath of the Fukushima accident. This dynamics is determined by the interplay between the residence time of radionuclides in seawater/sediments and the biological half-lives of elimination by the biota. The model calculates time-variable activity concentration of (131)I, (134)Cs, (137)Cs and (90)Sr in seabed sediment, fish, crustaceans, molluscs and macroalgae from surrounding activity concentrations in seawater, with which to derive internal and external dose rates. A central element of the model is the inclusion of dynamic transfer of radionuclides to/from sediments by factorising the depletion of radionuclides adsorbed onto suspended particulates, molecular diffusion, pore water mixing and bioturbation, represented by a simple set of differential equations coupled with the biological uptake/turnover processes. In this way, the model is capable of reproducing activity concentration in sediment more realistically. The model was used to assess the radiological impact of the Fukushima accident on marine biota in the acute phase of the accident. Sediment and biota activity concentrations are within the wide range of actual monitoring data. Activity concentrations in marine biota are thus shown to be better calculated by a dynamic model than with the simpler equilibrium approach based on concentration factors, which tends to overestimate for the acute accident period. Modelled dose rates from external exposure from sediment are also significantly below equilibrium predictions. The model calculations confirm previous studies showing that radioactivity levels in marine biota have been generally below the levels necessary to cause a measurable effect on populations. The model was used in mass-balance mode to calculate total integrated releases of 103, 30 and 3 PBq for (131)I, (137)Cs and (90)Sr, reasonably in line with previous

  15. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  16. QR Code 二维码在准考证中的应用%Application of QR code two - dimensional code in the examination certificate

    Institute of Scientific and Technical Information of China (English)

    李文江; 陈诗琴

    2015-01-01

    针对现有纸质准考证身份验证存在的缺点,基于 QR Code 二维码技术,设计并实现了准考证的二维码生成、发布与识别,并从需求分析与技术思路、应用设计、具体实现和实际运行效果等方面进行阐述。二维码的应用可以极大地方便考试组织部门和考生。%Based on the QR Code technology,this paper designs and implements the confirmation code generation,distribution and identification according to the disadvantages of the existing paper ticket authenti-cation,and the paper explains in detail from the aspects of demand analysis and technical ideas,application design,implementation and practical operation effect. The application of two - dimensional code promotes the fairness of the exam. Also it greatly facilitates the examination of the organization department and the candidates.

  17. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    Science.gov (United States)

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  18. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  19. Applications guide to the MORSE Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, S.N.

    1985-08-01

    A practical guide for the implementation of the MORESE-CG Monte Carlo radiation transport computer code system is presented. The various versions of the MORSE code are compared and contrasted, and the many references dealing explicitly with the MORSE-CG code are reviewed. The treatment of angular scattering is discussed, and procedures for obtaining increased differentiality of results in terms of reaction types and nuclides from a multigroup Monte Carlo code are explained in terms of cross-section and geometry data manipulation. Examples of standard cross-section data input and output are shown. Many other features of the code system are also reviewed, including (1) the concept of primary and secondary particles, (2) fission neutron generation, (3) albedo data capability, (4) DOMINO coupling, (5) history file use for post-processing of results, (6) adjoint mode operation, (7) variance reduction, and (8) input/output. In addition, examples of the combinatorial geometry are given, and the new array of arrays geometry feature (MARS) and its three-dimensional plotting code (JUNEBUG) are presented. Realistic examples of user routines for source, estimation, path-length stretching, and cross-section data manipulation are given. A deatiled explanation of the coupling between the random walk and estimation procedure is given in terms of both code parameters and physical analogies. The operation of the code in the adjoint mode is covered extensively. The basic concepts of adjoint theory and dimensionality are discussed and examples of adjoint source and estimator user routines are given for all common situations. Adjoint source normalization is explained, a few sample problems are given, and the concept of obtaining forward differential results from adjoint calculations is covered. Finally, the documentation of the standard MORSE-CG sample problem package is reviewed and on-going and future work is discussed.

  20. The Application of Code Switching in Private College English Teaching

    Institute of Scientific and Technical Information of China (English)

    王艳丽

    2015-01-01

    The paper presents an overview of code switching in terms of its definition,classification and functions on the part of both teachers and students.The appropriate use of code switching between the target language English and the native language Chinese in classroom teaching will help facilitate private college students’ English proficiency,improve their learning efficiency as well as achieve better classroom teaching effect.

  1. The Genomic Code: Genome Evolution and Potential Applications

    KAUST Repository

    Bernardi, Giorgio

    2016-01-25

    The genome of metazoans is organized according to a genomic code which comprises three laws: 1) Compositional correlations hold between contiguous coding and non-coding sequences, as well as among the three codon positions of protein-coding genes; these correlations are the consequence of the fact that the genomes under consideration consist of fairly homogeneous, long (≥200Kb) sequences, the isochores; 2) Although isochores are defined on the basis of purely compositional properties, GC levels of isochores are correlated with all tested structural and functional properties of the genome; 3) GC levels of isochores are correlated with chromosome architecture from interphase to metaphase; in the case of interphase the correlation concerns isochores and the three-dimensional “topological associated domains” (TADs); in the case of mitotic chromosomes, the correlation concerns isochores and chromosomal bands. Finally, the genomic code is the fourth and last pillar of molecular biology, the first three pillars being 1) the double helix structure of DNA; 2) the regulation of gene expression in prokaryotes; and 3) the genetic code.

  2. The modeling of core melting and in-vessel corium relocation in the APRIL code

    Energy Technology Data Exchange (ETDEWEB)

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  3. Wavelet image coding with parametric thresholding: application to JPEG2000

    Science.gov (United States)

    Zaid, Azza O.; Olivier, Christian; Marmoiton, Francois

    2003-05-01

    With the increasing use of multimedia technologies, image compression requires higher performance as well as new features. To address this need in the specific area of image coding, the latest ISO/IEC image compression standard, JPEG2000, has been developed. In part II of the standard, the Wavelet Trellis Coded Quantization (WTCQ) algorithm was adopted. It has been proved that this quantization design provides subjective image quality superior to other existing quantization techniques. In this paper we are aiming to improve the rate-distortion performance of WTCQ, by incorporating a thresholding process in JPEG2000 coding chain. The threshold decisions are derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD). The threshold value depends on the parametric model estimation of the subband wavelet coefficient distribution. Our algorithm approaches the lowest possible memory usage by using line-based wavelet transform and a scan-based bit allocation technique. In our work, we investigate an efficient way to apply the TCQ to wavelet image coding with regard to both the computational complexity and the compression performance. Experimental results show that the proposed algorithm performs competitively with the best available coding algorithms reported in the literature in terms quality performance.

  4. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  5. Shipping container response to severe highway and railway accident conditions: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    Volume 2 contains the following appendices: Severe accident data; truck accident data; railroad accident data; highway survey data and bridge column properties; structural analysis; thermal analysis; probability estimation techniques; and benchmarking for computer codes used in impact analysis. (LN)

  6. MAESTRO, CASTRO, and SEDONA -- Petascale Codes for Astrophysical Applications

    CERN Document Server

    Almgren, A; Kasen, D; Lijewski, M; Nonaka, A; Nugent, P; Rendleman, C; Thomas, R; Zingale, M

    2010-01-01

    Performing high-resolution, high-fidelity, three-dimensional simulations of Type Ia supernovae (SNe Ia) requires not only algorithms that accurately represent the correct physics, but also codes that effectively harness the resources of the most powerful supercomputers. We are developing a suite of codes that provide the capability to perform end-to-end simulations of SNe Ia, from the early convective phase leading up to ignition to the explosion phase in which deflagration/detonation waves explode the star to the computation of the light curves resulting from the explosion. In this paper we discuss these codes with an emphasis on the techniques needed to scale them to petascale architectures. We also demonstrate our ability to map data from a low Mach number formulation to a compressible solver.

  7. [The QR code in society, economy and medicine--fields of application, options and chances].

    Science.gov (United States)

    Flaig, Benno; Parzeller, Markus

    2011-01-01

    2D codes like the QR Code ("Quick Response") are becoming more and more common in society and medicine. The application spectrum and benefits in medicine and other fields are described. 2D codes can be created free of charge on any computer with internet access without any previous knowledge. The codes can be easily used in publications, presentations, on business cards and posters. Editors choose between contact details, text or a hyperlink as information behind the code. At expert conferences, linkage by QR Code allows the audience to download presentations and posters quickly. The documents obtained can then be saved, printed, processed etc. Fast access to stored data in the internet makes it possible to integrate additional and explanatory multilingual videos into medical posters. In this context, a combination of different technologies (printed handout, QR Code and screen) may be reasonable.

  8. Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  9. A Bayesian ensemble of sensitivity measures for severe accident modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

  10. Sports Accidents

    CERN Multimedia

    Kiebel

    1972-01-01

    Le Docteur Kiebel, chirurgien à Genève, est aussi un grand ami de sport et de temps en temps médecin des classes genevoises de ski et également médecin de l'équipe de hockey sur glace de Genève Servette. Il est bien qualifié pour nous parler d'accidents de sport et surtout d'accidents de ski.

  11. Python-Assisted MODFLOW Application and Code Development

    Science.gov (United States)

    Langevin, C.

    2013-12-01

    The U.S. Geological Survey (USGS) has a long history of developing and maintaining free, open-source software for hydrological investigations. The MODFLOW program is one of the most popular hydrologic simulation programs released by the USGS, and it is considered to be the most widely used groundwater flow simulation code. MODFLOW was written using a modular design and a procedural FORTRAN style, which resulted in code that could be understood, modified, and enhanced by many hydrologists. The code is fast, and because it uses standard FORTRAN it can be run on most operating systems. Most MODFLOW users rely on proprietary graphical user interfaces for constructing models and viewing model results. Some recent efforts, however, have focused on construction of MODFLOW models using open-source Python scripts. Customizable Python packages, such as FloPy (https://code.google.com/p/flopy), can be used to generate input files, read simulation results, and visualize results in two and three dimensions. Automating this sequence of steps leads to models that can be reproduced directly from original data and rediscretized in space and time. Python is also being used in the development and testing of new MODFLOW functionality. New packages and numerical formulations can be quickly prototyped and tested first with Python programs before implementation in MODFLOW. This is made possible by the flexible object-oriented design capabilities available in Python, the ability to call FORTRAN code from Python, and the ease with which linear systems of equations can be solved using SciPy, for example. Once new features are added to MODFLOW, Python can then be used to automate comprehensive regression testing and ensure reliability and accuracy of new versions prior to release.

  12. Application and Implementation of Network Coding for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Pedersen, Morten Videbæk

    2012-01-01

    network coding, which from a theoretical point of view has the potential to make our networks faster, energy-efficient, robust and more secure. In this PhD I provide an experimental platform for network coding in order to evaluate whether these theoretical merits may be transferred to practice. I provide......Today the traditional client-server network architecture is the predominant model in our network infrastructure. However, for the increasing amount of \\live" services such as TV and radio being digitalized and the growing amount of user generated content, the centralized model can provide a poor...... utilization of the available network resources. To efficiently support these services we look towards the field of user cooperation. In order to create the incentive for users to join the cooperation we must make the gain larger than the expense. In this PhD I have suggested two central ways of achieving this...

  13. Applications of Bar Code Technology in the Construction Industry

    Science.gov (United States)

    1991-01-01

    per week. This is an indication that we have much better control of our inventory " ( Ryan 87 ). Producto Machine Company of Bridgeport, Connecticut... marketing and patenting advanced technologies to encourage firms to take on the risks involved. Our country, however, has no such policy. Until it does...assistance in marketing and patenting their achievements. 2) The Department of Defense, who already requires bar codes on all supplies accepted into

  14. Unitary Application of the Quantum Error Correction Codes

    Institute of Scientific and Technical Information of China (English)

    游波; 许可; 吴小华

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  15. Application of QR Code in University Environment%QR码的校园应用

    Institute of Scientific and Technical Information of China (English)

    鞠文飞

    2012-01-01

    This article introduces the characteristics of the QR Code, describes the use of technologies such as PHP QR Code generation and recognition of QR Code, and describes in typical application scenarios for the QR Code in the campus environment.%文章介绍了QR码的特点,介绍了利用PHPQRCode等技术生成和识别QR码的方法,并针对校园环境中QR码的典型应用场景进行了描述。

  16. Application of the thermal-hydraulic codes in VVER-440 steam generators modelling

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, P.; Vranca, L.; Vaclav, E. [Nuclear Power Plant Research Inst. VUJE (Slovakia)

    1995-12-31

    Performances with the CATHARE2 V1.3U and RELAP5/MOD3.0 application to the VVER-440 SG modelling during normal conditions and during transient with secondary water lowering are described. Similar recirculation model was chosen for both codes. In the CATHARE calculation, no special measures were taken with the aim to optimize artificially flow rate distribution coefficients for the junction between SG riser and steam dome. Contrary to RELAP code, the CATHARE code is able to predict reasonable the secondary swell level in nominal conditions. Both codes are able to model properly natural phase separation on the SG water level. 6 refs.

  17. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications

    Science.gov (United States)

    Johnson, Kyle D.; Raftery, Alicia M.; Lopes, Denise Adorno; Wallenius, Janne

    2016-08-01

    In this study, U3Si2 was synthesized via the use of arc-melting and mixed with UN powders, which together were sintered using the SPS method. The study revealed a number of interesting conclusions regarding the stability of the system - namely the formation of a probable but as yet unidentified ternary phase coupled with the reduction of the stoichiometry in the nitride phase - as well as some insights into the mechanics of the sintering process itself. By milling the silicide powders and reducing its particle size ratio compared to UN, it was possible to form a high density UN-U3Si2 composite, with desirable microstructural characteristics for accident tolerant fuel applications.

  18. Three-dimensional all-speed CFD code for safety analysis of nuclear reactor containment: Status of GASFLOW parallelization, model development, validation and application

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianjun, E-mail: jianjun.xiao@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, John R., E-mail: jack_travis@comcast.com [Engineering and Scientific Software Inc., 3010 Old Pecos Trail, Santa Fe, NM 87505 (United States); Royl, Peter, E-mail: peter.royl@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Necker, Gottfried, E-mail: gottfried.necker@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Svishchev, Anatoly, E-mail: anatoly.svishchev@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Jordan, Thomas, E-mail: thomas.jordan@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-05-15

    Highlights: • 3-D scalable semi-implicit pressure-based CFD code for containment safety analysis. • Robust solution algorithm valid for all-speed flows. • Well validated and widely used CFD code for hydrogen safety analysis. • Code applied in various types of nuclear reactor containments. • Parallelization enables high-fidelity models in large scale containment simulations. - Abstract: GASFLOW is a three dimensional semi-implicit all-speed CFD code which can be used to predict fluid dynamics, chemical kinetics, heat and mass transfer, aerosol transportation and other related phenomena involved in postulated accidents in nuclear reactor containments. The main purpose of the paper is to give a brief review on recent GASFLOW code development, validations and applications in the field of nuclear safety. GASFLOW code has been well validated by international experimental benchmarks, and has been widely applied to hydrogen safety analysis in various types of nuclear power plants in European and Asian countries, which have been summarized in this paper. Furthermore, four benchmark tests of a lid-driven cavity flow, low Mach number jet flow, 1-D shock tube and supersonic flow over a forward-facing step are presented in order to demonstrate the accuracy and wide-ranging capability of ICE’d ALE solution algorithm for all-speed flows. GASFLOW has been successfully parallelized using the paradigms of Message Passing Interface (MPI) and domain decomposition. The parallel version, GASFLOW-MPI, adds great value to large scale containment simulations by enabling high-fidelity models, including more geometric details and more complex physics. It will be helpful for the nuclear safety engineers to better understand the hydrogen safety related physical phenomena during the severe accident, to optimize the design of the hydrogen risk mitigation systems and to fulfill the licensing requirements by the nuclear regulatory authorities. GASFLOW-MPI is targeting a high

  19. Efficient Signal-Time Coding Design and its Application in Wireless Gaussian Relay Networks

    CERN Document Server

    Fan, Pingyi; Letaief, Khaled Ben

    2009-01-01

    Signal-time coding, which combines the traditional encoding/modulation mode in the signal domain with signal pulse phase modulation in the time domain, was proposed to improve the information flow rate in relay networks. In this paper, we mainly focus on the efficient signal-time coding design. We first derive an explicit iterative algorithm to estimate the maximum number of available codes given the code length of signal-time coding, and then present an iterative construction method of codebooks. It is shown that compared with conventional computer search, the proposed iterative construction method can reduce the complexity greatly. Numerical results will also indicate that the new constructed codebook is optimal in terms of coding rate. To minimize the buffer size needed to store the codebook while keeping a relatively high efficiency, we shall propose a combinatorial construction method. We will then consider applications in wireless Gaussian relay networks. It will be shown that in the three node network ...

  20. Criticality accident detector coverage analysis using the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Zino, J.F.; Okafor, K.C.

    1993-12-31

    As a result of the need for a more accurate computational methodology, the Los Alamos developed Monte Carlo code MCNP is used to show the implementation of a more advanced and accurate methodology in criticality accident detector analysis. This paper will detail the application of MCNP for the analysis of the areas of coverage of a criticality accident alarm detector located inside a concrete storage vault at the Savannah River Site. The paper will discuss; (1) the generation of fixed-source representations of various criticality fission sources (for spherical geometries); (2) the normalization of these sources to the ``minimum criticality of concern`` as defined by ANS 8.3; (3) the optimization process used to determine which source produces the lowest total detector response for a given set of conditions; and (4) the use of this minimum source for the analysis of the areas of coverage of the criticality accident alarm detector.

  1. A new trend in Sabancı University Information Center: QR code application

    OpenAIRE

    Özel, Cem; Ozel, Cem; Akkurt, Mine

    2014-01-01

    The rapid development of mobile technologies in recent years has facilitated the use of the popular QR code application for various purposes. The new generation’s rapid adaptation to change has allowed this application's widespread usage. QR codes with structural properties can be supported with new ideas. It has developed into a new trend in libraries/information centers, as well as in the other areas. One of the usage areas of the QR code is in the marketing field. In this study, various QR...

  2. Tools for signal compression applications to speech and audio coding

    CERN Document Server

    Moreau, Nicolas

    2013-01-01

    This book presents tools and algorithms required to compress/uncompress signals such as speech and music. These algorithms are largely used in mobile phones, DVD players, HDTV sets, etc. In a first rather theoretical part, this book presents the standard tools used in compression systems: scalar and vector quantization, predictive quantization, transform quantization, entropy coding. In particular we show the consistency between these different tools. The second part explains how these tools are used in the latest speech and audio coders. The third part gives Matlab programs simulating t

  3. Video Coding and Modeling with Applications to ATM Multiplexing

    Science.gov (United States)

    Nguyen, Hien

    A new vector quantization (VQ) coding method based on optimized concentric shell partitioning of the image space is proposed. The advantages of using the concentric shell partition vector quantizer (CSPVQ) are that it is very fast and the image patterns found in each different subspace can be more effectively coded by using a codebook that is best matched to that particular subspace. For intra-frame coding, the CSPVQ is shown to have the same performance, if not better, than the optimized gain-shape VQ in terms of encoded picture quality while it definitely surpasses the gain-shape VQ in term of computational complexity. A variable bit rate (VBR) video coder for moving video is then proposed where the idea of CSPVQ is coupled with the idea of regular quadtree decomposition to further reduce the bit rate of the encoded picture sequence. The usefulness of a quadtree coding technique comes from the fact that different homogeneous regions occurring within an image can be compactly represented by various nodes in a quadtree. It is found that this image representation technique is particularly useful in providing a low bit rate video encoder without compromising the image quality when it is used in conjunction with the CSPVQ. The characteristics of the VBR coder's output as applied to ATM transmission are investigated. Three video models are used to study the performance of the ATM multiplexer. These models are the auto regressive (AR) model, the auto regressive hidden Markov model (AR-HMM), and the fluid flow uniform arrival and service (UAS) model. The AR model is allowed to have arbitrary order and is used to model a video source which has a constant amount of motion, that is, a stationary video source. The AR-HMM is a more general video model which is based on the idea of auto regressive hidden Markov chain formulated by Baum and is used to describe highly non-stationary sources. Hence, it is expected that the AR-HMM model may also be used top represent a video

  4. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  5. Comparison of THALES and VIPRE-01 Subchannel Codes for Loss of Flow and Single Reactor Coolant Pump Rotor Seizure Accidents using Lumped Channel APR1400 Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, Erdal; Moon, Kang Hoon; Oh, Seung Jong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Kim, Yongdeog [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    Subchannel analysis plays important role to evaluate safety critical parameters like minimum departure from nucleate boiling ratio (MDNBR), peak clad temperature and fuel centerline temperature. In this study, two different subchannel codes, VIPRE-01 (Versatile Internals and Component Program for Reactors: EPRI) and THALES (Thermal Hydraulic AnaLyzer for Enhanced Simulation of core) are examined. In this study, two different transient cases for which MDNBR result play important role are selected to conduct analysis with THALES and VIPRE-01 subchannel codes. In order to get comparable results same core geometry, fuel parameters, correlations and models are selected for each code. MDNBR results from simulations by both code are agree with each other with negligible difference. Whereas, simulations conducted by enabling conduction model in VIPRE-01 shows significant difference from the results of THALES.

  6. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment.

    Science.gov (United States)

    Zhang, X L; Su, G F; Chen, J G; Raskob, W; Yuan, H Y; Huang, Q Y

    2015-10-30

    Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r=0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used.

  7. Code assessment and modelling for Design Basis Accident Analysis of the European sodium fast reactor design. Part I: System description, modelling and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro, A., E-mail: aurelio.lazaro-chueca@ec.europa.eu [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); UPV—Universidad Politecnica de Valencia, Cami de vera s/n-46002, Valencia (Spain); Ammirabile, L. [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Massara, S. [EDF, 1 avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2-28006 Madrid (Spain); Mikityuk, K. [PSI—Paul Scherrer Institut, 5232 Villigen Switzerland (Switzerland); Schikorr, M.; Bubelis, E.; Ponomarev, A.; Kruessmann, R. [KIT—Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, PO Box 9034 6800 ES, Arnhem (Netherlands)

    2014-01-15

    Highlights: • Ten system-code models of the ESFR were developed in the frame of the CP-ESFR project. • Eight different thermohydraulic system codes adapted to sodium fast reactor's technology. • Benchmarking exercise settled to check the consistency of the calculations. • Upgraded system codes able to simulate the reactivity feedback and key safety parameters. -- Abstract: The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes.

  8. Moral sensitivity relating to the application of the code of ethics.

    Science.gov (United States)

    Kim, Yong-Soon; Kang, Se-Won; Ahn, Jeong-Ah

    2013-06-01

    This study investigated the clinical application of the 2006 Third Revised Korean Nurses' Code of Ethics and the moral sensitivity of nurses. A total of 303 clinical nurses in South Korea participated in the survey in May and June 2011. As instruments of this study, we used the 15 statements of the Korean Nurses' Code of Ethics and Korean Moral Sensitivity Questionnaire. The mean score for application was 3.77 ± 0.59 (out of 5), and the mean score for moral sensitivity was 5.14 ± 0.55 (out of 7). The correlation coefficient (r) of the application and moral sensitivity was 0.336 (p moral sensitivity also scored high on application (t = -5.018, p moral sensitivity of nurses are necessary for improving the application of the code of ethics.

  9. Advancements and performance of iterative methods in industrial applications codes on CRAY parallel/vector supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Poole, G.; Heroux, M. [Engineering Applications Group, Eagan, MN (United States)

    1994-12-31

    This paper will focus on recent work in two widely used industrial applications codes with iterative methods. The ANSYS program, a general purpose finite element code widely used in structural analysis applications, has now added an iterative solver option. Some results are given from real applications comparing performance with the tradition parallel/vector frontal solver used in ANSYS. Discussion of the applicability of iterative solvers as a general purpose solver will include the topics of robustness, as well as memory requirements and CPU performance. The FIDAP program is a widely used CFD code which uses iterative solvers routinely. A brief description of preconditioners used and some performance enhancements for CRAY parallel/vector systems is given. The solution of large-scale applications in structures and CFD includes examples from industry problems solved on CRAY systems.

  10. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.L.; Su, G.F.; Chen, J.G. [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Raskob, W. [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Karlsruhe, D-76021 (Germany); Yuan, H.Y., E-mail: hy-yuan@outlook.com [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Huang, Q.Y. [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2015-10-30

    Highlights: • We integrate the iterative EnKF method into the POLYPHEMUS platform. • We thoroughly evaluate the data assimilation system against the Kincaid dataset. • The data assimilation system substantially improves the model predictions. • More than 60% of the retrieved emissions are within a factor two of actual values. • The results reveal that the boundary layer height is the key influential factor. - Abstract: Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r = 0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used.

  11. Severe accident analysis using dynamic accident progression event trees

    Science.gov (United States)

    Hakobyan, Aram P.

    In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. One of the principal deficiencies lies in the static nature of conventional APETs. In the conventional event tree techniques, the sequence of events is pre-determined in a fixed order based on the expert judgments. The main objective of this PhD dissertation was to develop a software tool (ADAPT) for automated APET generation using the concept of dynamic event trees. As implied by the name, in dynamic event trees the order and timing of events are determined by the progression of the accident. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. The function of a dynamic APET developed includes prediction of the conditions, timing, and location of containment failure or bypass leading to the release of radioactive material, and calculation of probabilities of those failures. Thus, scenarios that can potentially lead to early containment failure or bypass, such as through accident induced failure of steam generator tubes, are of particular interest. Also, the work is focused on treatment of uncertainties in severe accident phenomena such as creep rupture of major RCS components, hydrogen burn, containment failure, timing of power recovery, etc. Although the ADAPT methodology (Analysis of Dynamic Accident Progression Trees) could be applied to any severe accident analysis code, in this dissertation the approach is demonstrated by applying it to the MELCOR code [1]. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a

  12. Turbo product codes and their application in the fourth-generation mobile communication system

    Science.gov (United States)

    He, Yejun; Zhu, Guangxi; Liu, Ying Zhuang; Liu, Jian

    2004-04-01

    In this paper, we firstly present turbo product codes (TPCs) for forward error correction (FEC) coding, including TPCs encoding process and decoding principle, and then compare TPCs with turbo convolutional codes (TCCs) error coding solution. The performance of TPCs is shown to be closer to the Shannon limit than TCCs. Secondly, we introduce TPCs" application in the 4th generation (4G) mobile communication system which is being developed in our country at present. The concept of TPC-OFDM system which promises higher code rate than conventional OFDM is first modified. Finally, simulation results show that the simplified 4G uplink systems offer Bit Error Rate of nearly 0 over IMT-2000 channel at Eb/N0 > 15dB.

  13. Performance of the primary containment of a BWR during a severe accident whit the code RELAP/SCDAPSIM; Comportamiento del contenedor primario de un reactor BWR durante un accidente severo con el codigo RELAP/SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Castillo G, F.

    2015-07-01

    In this thesis work, it was developed a model of the vacuum breaker valves and down comers for a BWR Mark II primary containment for the code RELAP/SCDAPSIM Mod. 3.4. This code was used to simulate a Station Blackout (Sbo) that evolves to a severe accident scenario. To accomplish this task, the vacuum breaker valves and down comers were included in a simplified model of the primary containment that includes both wet well and dry well, which was coupled with a model of the Nuclear Steam Supply System (NSSS), in order to study the behavior of the primary containment during the evolution of the accident scenario. In the analysis of the results of the simulation, the behavior of the wet well and dry well during the event was particularly monitored, by analyzing the evolution of temperature and pressure profiles in such volumes, this to determine the impact of the inclusion of the breaker vacuum valves and down comers. The results show that the effect of this extension of the model is that more conservative results are obtained, i.e., higher pressures are reached in both wet well and dry well than when it is used a containment model that does not include neither the vacuum valves nor the down comers. The most relevant results obtained show that the Rcic alone is able to keep the core fully covered, but even in such a case, it evaporates about 15% of the initial inventory of liquid water in the Pressure Suppression Pool (Psp). When the Rcic operation is lost, 20% more of the liquid water inventory in the Psp is further reduced within four to twelve hours (approximately), time at which the simulation crashed. Besides, there is a significant increase of pressure in the containment. As the accident evolves, the pressure in the containment continues increasing, but there is still considerable margin to reach the design pressure of the containment. At the end of the simulation, the results show a gauge pressure value of 224,550 Pa in the Psp and 187,482 Pa in the wet well

  14. Radiative Transfer Code: Application to the calculation of PAR

    Indian Academy of Sciences (India)

    D Emmanuel; D Phillippe; C Malik

    2000-12-01

    The production of carbon in the ocean, the so-called primary production, depends on various physico- biological parameters: the biomass and nutrient amounts in oceans, the salinity and temperature of the water and the light available in the water column. We focus on the visible spectrum of the solar radiation defined as the Photosynthetically Active Radiation (PAR). We developed a model (Chami et al. 1997) to simulate the behavior of the solar beam in the atmosphere and the ocean. We first describe the theoretical basis of the code and the method we used to solve the radiative transfer equation (RTE): the successive orders of scattering (SO). The second part deals with a sensitivity study of the PAR just above and below the sea surface for various atmospheric conditions. In a cloudy sky, we computed a ratio between vector fluxes just above the sea surface and spherical fluxes just beneath the sea surface. When the optical thickness of the cloud increases this ratio remains constant and around 1.29. This parameter is convenient to convert vector flux at the sea surface as retrieved from satellite to PAR. Subsequently, we show how solar radiation as vector flux rather than PAR leads to an underestimate of the primary production up to 40% for extreme cases.

  15. Internal Accident Report on EDH

    CERN Multimedia

    SC Department

    2006-01-01

    The A2 Safety Code requires that, the Internal Accident Report form must be filled in by the person concerned or any witness to ensure that all the relevant services are informed. Please note that an electronic version of this form has been elaborated in collaboration with SC-IE, HR-OPS-OP and IT-AIS. Whenever possible, the electronic form shall be used. The relative icon is available on the EDH Desktop, Other tasks page, under the Safety heading, or directly here: https://edh.cern.ch/Document/Accident/. If you have any questions, please contact the SC Secretariat, tel. 75097 Please notice that the Internal Accident Report is an integral part of the Safety Code A2 and does not replace the HS50.

  16. Application of grammar-based codes for lossless compression of digital mammograms

    Science.gov (United States)

    Li, Xiaoli; Krishnan, Srithar; Ma, Ngok-Wah

    2006-01-01

    A newly developed grammar-based lossless source coding theory and its implementation was proposed in 1999 and 2000, respectively, by Yang and Kieffer. The code first transforms the original data sequence into an irreducible context-free grammar, which is then compressed using arithmetic coding. In the study of grammar-based coding for mammography applications, we encountered two issues: processing time and limited number of single-character grammar G variables. For the first issue, we discover a feature that can simplify the matching subsequence search in the irreducible grammar transform process. Using this discovery, an extended grammar code technique is proposed and the processing time of the grammar code can be significantly reduced. For the second issue, we propose to use double-character symbols to increase the number of grammar variables. Under the condition that all the G variables have the same probability of being used, our analysis shows that the double- and single-character approaches have the same compression rates. By using the methods proposed, we show that the grammar code can outperform three other schemes: Lempel-Ziv-Welch (LZW), arithmetic, and Huffman on compression ratio, and has similar error tolerance capabilities as LZW coding under similar circumstances.

  17. Next generation video coding for mobile applications: industry requirements and technologies

    Science.gov (United States)

    Budagavi, Madhukar; Zhou, Minhua

    2007-01-01

    Handheld battery-operated consumer electronics devices such as camera phones, digital still cameras, digital camcorders, and personal media players have become very popular in recent years. Video codecs are extensively used in these devices for video capture and/or playback. The annual shipment of such devices already exceeds a hundred million units and is growing, which makes mobile battery-operated video device requirements very important to focus in video coding research and development. This paper highlights the following unique set of requirements for video coding for these applications: low power consumption, high video quality at low complexity, and low cost, and motivates the need for a new video coding standard that enables better trade-offs of power consumption, complexity, and coding efficiency to meet the challenging requirements of portable video devices. This paper also provides a brief overview of some of the video coding technologies being presented in the ITU-T Video Coding Experts Group (VCEG) standardization body for computational complexity reduction and for coding efficiency improvement in a future video coding standard.

  18. Preliminary Assessment of the Loss of Flow Accident for PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Choi, Yong Won; Bae, Moohoon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    TRACE code have being considered as a candidate tool for SFR audit calculation for licensing review since 2012. On the basis of modeling and precalculation experience for the Demonstration Sodium cooled Fast Reactor (DSFR-600), TRACE code model for PGSFR was developed this year. In this paper, one of representing Design Base Event (DBE), Loss of Flow (LOF) accident was pre-calculated and Locked Rotor (LR) case was compared with LOF case since it could be a possible limiting case for LOF representing DBE. Sensitivity calculation for the LR case was implemented for identifying major parameters for the scenario. For the preparation of the review of licensing application for PGSFR, TRACE model for the PGSFR was developed and the loss of flow accident was precalculated. The locked pump rotor case was also calculated as a possible bounding case for the loss of flow scenario. Pre-calculation showed that the locked rotor case was similar or worst case to the loss of flow accident. Therefore, the locked rotor case should take into account in design base accident assessment of PGSFR. Sensitivity calculations for the rocked rotor case also studied for identification of unfixed design parameters influencing to estimation of inner surface temperature. Sensitivity result showed that the first temperature peak was largely influenced by reactor trip delay and second peak mostly influenced by pump coast down characteristic.

  19. The Application of Data Mining Technology to Build a Forecasting Model for Classification of Road Traffic Accidents

    Directory of Open Access Journals (Sweden)

    Yau-Ren Shiau

    2015-01-01

    Full Text Available With the ever-increasing number of vehicles on the road, traffic accidents have also increased, resulting in the loss of lives and properties, as well as immeasurable social costs. The environment, time, and region influence the occurrence of traffic accidents. The life and property loss is expected to be reduced by improving traffic engineering, education, and administration of law and advocacy. This study observed 2,471 traffic accidents which occurred in central Taiwan from January to December 2011 and used the Recursive Feature Elimination (RFE of Feature Selection to screen the important factors affecting traffic accidents. It then established models to analyze traffic accidents with various methods, such as Fuzzy Robust Principal Component Analysis (FRPCA, Backpropagation Neural Network (BPNN, and Logistic Regression (LR. The proposed model aims to probe into the environments of traffic accidents, as well as the relationships between the variables of road designs, rule-violation items, and accident types. The results showed that the accuracy rate of classifiers FRPCA-BPNN (85.89% and FRPCA-LR (85.14% combined with FRPCA is higher than that of BPNN (84.37% and LR (85.06% by 1.52% and 0.08%, respectively. Moreover, the performance of FRPCA-BPNN and FRPCA-LR combined with FRPCA in classification prediction is better than that of BPNN and LR.

  20. Accident: Reminder

    CERN Multimedia

    2003-01-01

    There is no left turn to Point 1 from the customs, direction CERN. A terrible accident happened last week on the Route de Meyrin just outside Entrance B because traffic regulations were not respected. You are reminded that when travelling from the customs, direction CERN, turning left to Point 1 is forbidden. Access to Point 1 from the customs is only via entering CERN, going down to the roundabout and coming back up to the traffic lights at Entrance B

  1. Computer code system for the R and D of nuclear fuel cycle with fast reactor. 5. Development and application of reactor analysis code system

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kenji; Hazama, Taira; Chiba, Go; Ohki, Shigeo; Ishikawa, Makoto [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2002-12-01

    In the core design of fast reactors (FRs), it is very important to improve the prediction accuracy of the nuclear characteristics for both reducing cost and ensuring reliability of FR plants. A nuclear reactor analysis code system for FRs has been developed by the Japan Nuclear Cycle Development Institute (JNC). This paper describes the outline of the calculation models and methods in the system consisting of several analysis codes, such as the cell calculation code CASUP, the core calculation code TRITAC and the sensitivity analysis code SAGEP. Some examples of verification results and improvement of the design accuracy are also introduced based on the measurement data from critical assemblies, e.g, the JUPITER experiment (USA/Japan), FCA (Japan), MASURCA (France), and BFS (Russia). Furthermore, application fields and future plans, such as the development of new generation nuclear constants and applications to MA{center_dot}FP transmutation, are described. (author)

  2. Application of the Bulgarian emergency response system in case of nuclear accident in environmental assessment study

    Science.gov (United States)

    Syrakov, Dimiter; Veleva, Blagorodka; Georgievs, Emilia; Prodanova, Maria; Slavov, Kiril; Kolarova, Maria

    2014-05-01

    The development of the Bulgarian Emergency Response System (BERS) for short term forecast in case of accidental radioactive releases to the atmosphere has been started in the mid 1990's [1]. BERS comprises of two main parts - operational and accidental, for two regions 'Europe' and 'Northern Hemisphere'. The operational part runs automatically since 2001 using the 72 hours meteorological forecast from DWD Global model, resolution in space of 1.5o and in time - 12 hours. For specified Nuclear power plants (NPPs), 3 days trajectories are calculated and presented on NIMH's specialized Web-site (http://info.meteo.bg/ews/). The accidental part is applied when radioactive releases are reported or in case of emergency exercises. BERS is based on numerical weather forecast information and long-range dispersion model accounting for the transport, dispersion, and radioactive transformations of pollutants. The core of the accidental part of the system is the Eulerian 3D dispersion model EMAP calculating concentration and deposition fields [2]. The system is upgraded with a 'dose calculation module' for estimation of the prognostic dose fields of 31 important radioactive gaseous and aerosol pollutants. The prognostic doses significant for the early stage of a nuclear accident are calculated as follows: the effective doses from external irradiation (air submersion + ground shinning); effective dose from inhalation; summarized effective dose and absorbed thyroid dose [3]. The output is given as 12, 24, 36, 48, 60 and 72 hours prognostic dose fields according the updated meteorology. The BERS was upgraded to simulate the dispersion of nuclear materials from Fukushima NPP [4], and results were presented in NIMH web-site. In addition BERS took part in the respective ENSEMBLE exercises to model 131I and 137Cs in Fukushima source term. In case of governmental request for expertise BERS was applied for environmental impact assessment of hypothetical accidental transboundary

  3. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Böhlen, T.T.; Cerutti, F.; Chin, M.P.W. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Fassò, A. [ELI Beamlines, Harfa Office Park Ceskomoravská 2420/15a, 190 93 Prague 9 (Czech Republic); Ferrari, A., E-mail: alfredo.ferrari@cern.ch [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Ortega, P.G. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Mairani, A. [Unità di Fisica Medica, Fondazione CNAO, I-27100 Pavia (Italy); Sala, P.R. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Smirnov, G.; Vlachoudis, V. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-06-15

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  4. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    CERN Document Server

    Böhlen, T T; Chin, M P W; Fassò, A; Ferrari, A; Ortega, P G; Mairani, A; Sala, P R; Smirnov, G; Vlachoudis, V

    2014-01-01

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  5. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    Science.gov (United States)

    Böhlen, T. T.; Cerutti, F.; Chin, M. P. W.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Mairani, A.; Sala, P. R.; Smirnov, G.; Vlachoudis, V.

    2014-06-01

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  6. APPLICATION OF TURBO CODES IN HIGH-SPEED REAL-TIME CHANNEL

    Institute of Scientific and Technical Information of China (English)

    Zhao Danfeng; Yue Li; Yang Jianhua

    2006-01-01

    The time delay of Turbo codes due to its iterative decoding is the main bottleneck of its application in real-time channel. However, the time delay can be greatly shortened through the adoption of parallel decoding algorithm, dividing the received bits into several sub-blocks and processing in parallel. This letter mainly discusses the applicability of turbo codes in high-speed real-time channel through the study of a parallel turbo decoding algorithm based on 3GPP-proposed turbo encoder and interleaver in various channel. Simulation result shows that, by choosing an appropriate sub-block length, the time delay can be obviously shortened without degrading the performance and increasing hardware complexity, and furthermore indicates the applicability of Turbo codes in high-speed real-time channel.

  7. Compiled reports on the applicability of selected codes and standards to advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, E.L.; Hoopingarner, K.R.; Markowski, F.J.; Mitts, T.M.; Nickolaus, J.R.; Vo, T.V.

    1994-08-01

    The following papers were prepared for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission under contract DE-AC06-76RLO-1830 NRC FIN L2207. This project, Applicability of Codes and Standards to Advance Reactors, reviewed selected mechanical and electrical codes and standards to determine their applicability to the construction, qualification, and testing of advanced reactors and to develop recommendations as to where it might be useful and practical to revise them to suit the (design certification) needs of the NRC.

  8. TASS/SMR code improvement for small break LOCA applicability at an integral type reactor, SMART

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young-Jong, E-mail: chung@kaeri.re.kr; Kim, Soo-Hyung; Lim, Sung-Won; Bae, Kyoo-Hwan

    2015-12-15

    Highlights: • SMART adopts a passive system to enhance its safety. • TASS/SMR code is developed to analyze thermal hydraulic phenomena of the SMART plant. • Improved TASS/SMR code predicts well the results of the OSU-MASLWR total-loss-of-feedwater test. - Abstract: Small reactors are a suitable option for nuclear system deployment in developing countries or non-electrical applications for various facilities. SMART is one of the small integral type reactors to apply flexibly local power demands or sea water desalination. A thermal hydraulic analysis code, TASS/SMR, having SMART specific models, was developed to simulate thermal hydraulic phenomena of the SMART plant. The improved TASS/SMR code predicts well the system behaviors under two-phase conditions compared with the OSU-MASLWR experimental results. A small break LOCA simulation of the SMART plant is improved a void distribution, a break flow, and a collapsed water level in the core.

  9. Recent Updates to the MELCOR 1.8.2 Code for ITER Applications

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J

    2007-05-01

    This report documents recent changes made to the MELCOR 1.8.2 computer code for application to the International Thermonuclear Experimental Reactor (ITER), as required by ITER Task Agreement ITA 81-18. There are four areas of change documented by this report. The first area is the addition to this code of a model for transporting HTO. The second area is the updating of the material oxidation correlations to match those specified in the ITER Safety Analysis Data List (SADL). The third area replaces a modification to an aerosol tranpsort subroutine that specified the nominal aerosol density internally with one that now allows the user to specify this density through user input. The fourth area corrected an error that existed in an air condensation subroutine of previous versions of this modified MELCOR code. The appendices of this report contain FORTRAN listings of the coding for these modifications.

  10. Recent Updates to the MELCOR 1.8.2 Code for ITER Applications

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J

    2007-04-01

    This report documents recent changes made to the MELCOR 1.8.2 computer code for application to the International Thermonuclear Experimental Reactor (ITER), as required by ITER Task Agreement ITA 81-18. There are four areas of change documented by this report. The first area is the addition to this code of a model for transporting HTO. The second area is the updating of the material oxidation correlations to match those specified in the ITER Safety Analysis Data List (SADL). The third area replaces a modification to an aerosol tranpsort subroutine that specified the nominal aerosol density internally with one that now allows the user to specify this density through user input. The fourth area corrected an error that existed in an air condensation subroutine of previous versions of this modified MELCOR code. The appendices of this report contain FORTRAN listings of the coding for these modifications.

  11. Kranc: a Mathematica application to generate numerical codes for tensorial evolution equations

    CERN Document Server

    Husa, S; Lechner, C; Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2004-01-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations.

  12. Specifications and applications of the technical code for monitoring of building and bridge structures in China

    Directory of Open Access Journals (Sweden)

    Y Yang

    2016-12-01

    Full Text Available Recently, the exclusive compulsory technical code (GB 50982-2014 for structural health monitoring of buildings and bridges in China has been developed and implemented. This code covers the majority of the field monitoring methods and stipulates the corresponding technical parameters for monitoring of high-rise structures, large-span spatial structures, bridges and base-isolated structures. This article first presents the comprehensive review and linear comparison of existing structural health monitoring codes and standards. Subsequently, the progress of the codification of GB 50982-2014 is imparted and its main features and specifications are summarized. Finally, in accordance with GB50982-2014, several representative structural health monitoring practical applications of large-scale infrastructures in China are exemplified to illustrate how this national code can bridge the gap between theory and practical applications of structural health monitoring. This technical code is an important milestone in the application of well-established structural health monitoring techniques into the realistic and complex engineering projects. Also, it can provide abundant and authoritative information for practitioners and researchers involving the structural health monitoring techniques.

  13. RELAP5/MOD3 code manual: User`s guide and input requirements. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. Volume II contains detailed instructions for code application and input data preparation.

  14. Validation of physics and thermalhydraulic computer codes for advanced Candu reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Wren, D.J.; Popov, N.; Snell, V.G. [Atomic Energy of Canada Ltd, (Canada)

    2004-07-01

    Atomic Energy of Canada Ltd. (AECL) is developing an Advanced Candu Reactor (ACR) that is an evolutionary advancement of the currently operating Candu 6 reactors. The ACR is being designed to produce electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular Candu concept of horizontal fuel channels surrounded by a heavy water moderator. However, ACR uses slightly enriched uranium fuel compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (via large reductions in the heavy water moderator volume and replacement of the heavy water coolant with light water coolant) and improved safety. AECL has developed and implemented a software quality assurance program to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. Since the basic design of the ACR is equivalent to that of the Candu 6, most of the key phenomena associated with the safety analyses of ACR are common, and the Candu industry standard tool-set of safety analysis codes can be applied to the analysis of the ACR. A systematic assessment of computer code applicability addressing the unique features of the ACR design was performed covering the important aspects of the computer code structure, models, constitutive correlations, and validation database. Arising from this assessment, limited additional requirements for code modifications and extensions to the validation databases have been identified. This paper provides an outline of the AECL software quality assurance program process for the validation of computer codes used to perform physics and thermal-hydraulics safety analyses of the ACR. It describes the additional validation work that has been identified for these codes and the planned, and ongoing, experimental programs to extend the code validation as required to address specific ACR design

  15. Applications of FLUKA Monte Carlo code for nuclear and accelerator physics

    CERN Document Server

    Battistoni, Giuseppe; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; Roesler, Stefan; Rollet, Sofia; Sala, Paola R; Santana, Mario; Sarchiapone, Lucia; Sioli, Maximiliano; Smirnov, George; Sommerer, Florian; Theis, Christian; Trovati, Stefania; Villari, R; Vincke, Heinz; Vincke, Helmut; Vlachoudis, Vasilis; Vollaire, Joachim; Zapp, Neil

    2011-01-01

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such top...

  16. Improved DCT-based image coding and decoding methods for low-bit-rate applications

    Science.gov (United States)

    Jung, Sung-Hwan; Mitra, Sanjit K.

    1994-05-01

    The discrete cosine transform (DCT) is well known for highly efficient coding performance, and it is widely used in many image compression applications. However, in low-bit rate coding, it produces undesirable block artifacts that are visually not pleasing. In addition, in many applications, faster compression and easier VLSI implementation of DCT coefficients are also important issues. The removal of the block artifacts and faster DCT computation are therefore of practical interest. In this paper, we outline a modified DCT computation scheme that provides a simple efficient solution to the reduction of the block artifacts while achieving faster computation. We also derive a similar solution for the efficient computation of the inverse DCT. We have applied the new approach for the low-bit rate coding and decoding of images. Initial simulation results on real images have verified the improved performance obtained using the proposed method over the standard JPEG method.

  17. Fine-Grained Energy Modeling for the Source Code of a Mobile Application

    DEFF Research Database (Denmark)

    Li, Xueliang; Gallagher, John Patrick

    2016-01-01

    The goal of an energy model for source code is to lay a foundation for the application of energy-aware programming techniques. State of the art solutions are based on source-line energy information. In this paper, we present an approach to constructing a fine-grained energy model which is able...

  18. An Automatic Code Generator Expert System Using Proprietary Language for Wider Business Application

    Directory of Open Access Journals (Sweden)

    Aurangzeb Khan

    2014-05-01

    Full Text Available The proposed System is an automatic front-end Code Generator Expert System (CGES for ensuring wider business application for the generation of GUI with a source code for Databases. Safe keeping of data for smooth transaction in business has always been a matter of concern. With the help of the proposed CGES, with economy of effort and time, a customizable database application may be produced with a simple wizard. The CGES requires a database as a pre-requisite input. Once the normalized database is featured with a diagram, the CGES shall apply techniques according to the pre-defined algorithm; the complete application with source code in various modules shall automatically produce. By selecting the CGES solutions, an N-tier application shall give rise to a product, comprising of SQL server queries, Object Oriented features and modules. The results prove on a test working principles of the system are written in MS SQL Server and on the Visual Basic.NET source code generated by CGES.

  19. Random wavelet transforms, algebraic geometric coding, and their applications in signal compression and de-noising

    Energy Technology Data Exchange (ETDEWEB)

    Bieleck, T.; Song, L.M.; Yau, S.S.T. [Univ. of Illinois, Chicago, IL (United States); Kwong, M.K. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-07-01

    The concepts of random wavelet transforms and discrete random wavelet transforms are introduced. It is shown that these transforms can lead to simultaneous compression and de-noising of signals that have been corrupted with fractional noises. Potential applications of algebraic geometric coding theory to encode the ensuing data are also discussed.

  20. Development of a shell finite element. Application to the thermo-viscoplastic behaviour of a PWR vessel during a severe accident; Developpement d`un element fini coque. Application au comportement thermo-viscoplastique d`une cuve de reacteur nucleaire (REP) en situation d`accident grave

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, V

    1998-10-07

    The aim of this study is to develop a model for the thermo-viscoplastic behaviour of he power water reactor lower head during a severe accident, so as to implement it in codes representing the whole accident progress (scenario codes). So it has to give a precise solution in a short cpu-time. The main loadings are the internal pressure and the strong longitudinal and transverse thermal gradients. To deal with this problem, the idea is to develop a new shell element with variable mechanical parameters with the temperature. This is possible in taking advantage of the properties of the bending center line, called neutral fiber. Besides, this new shell element has the particularity to be able to melt without modifying the initial dimensions of the structure. Then, we have developed a complete program to study the mechanical resistance of the vessel. The visco-plastic behaviour is considered as a loading (so it is placed in the second member of the system to be solved) and represented by a Norton law whose parameters depend on the temperature, the law is integrated explicitly which necessitates the introduction of criteria limiting the time step. The rupture criterion by creep is defined by a damage law whereas the rupture criterion by plasticity is based on the exceeding of the mean limit stress in the thickness. Then the model was validated by comparing the results with those of a Castem 2000 volume mesh (finite element code). Finally the model was coupled with the scenario codes ICARE2 and MAAP4 and tested on two typical severe accidents. The results are very satisfactory both on accuracy and cpu-time execution. (author) 113 refs.

  1. Development of probabilistic RESRAD computer codes for NRC decommissioning and license termination applications.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. Y.; Yu, C.; Mo. T.; Trottier, C.

    2000-10-17

    In 1999, the US Nuclear Regulatory Commission (NRC) tasked Argonne National Laboratory to modify the existing RESRAD and RESRAD-BUILD codes to perform probabilistic, site-specific dose analysis for use with the NRC's Standard Review Plan for demonstrating compliance with the license termination rule. The RESRAD codes have been developed by Argonne to support the US Department of Energy's (DOEs) cleanup efforts. Through more than a decade of application, the codes already have established a large user base in the nation and a rigorous QA support. The primary objectives of the NRC task are to: (1) extend the codes' capabilities to include probabilistic analysis, and (2) develop parameter distribution functions and perform probabilistic analysis with the codes. The new codes also contain user-friendly features specially designed with graphic-user interface. In October 2000, the revised RESRAD (version 6.0) and RESRAD-BUILD (version 3.0), together with the user's guide and relevant parameter information, have been developed and are made available to the general public via the Internet for use.

  2. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident

    Science.gov (United States)

    Vazquez, Justin A.; Caracappa, Peter F.; Xu, X. George

    2014-09-01

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.

  3. Bridging Inter-flow and Intra-flow Network Coding for Video Applications

    DEFF Research Database (Denmark)

    Hansen, Jonas; Krigslund, Jeppe; Roetter, Daniel Enrique Lucani;

    2013-01-01

    transmission approach to decide how much and when to send redundancy in the network, and a minimalistic feedback mechanism to guarantee delivery of generations of the different flows. Given the delay constraints of video applications, we proposed a simple yet effective coding mechanism, Block Coding On The Fly...... (BCFly), that allows a block encoder to be fed on-the-fly, thus reducing the delay to accumulate enough packets that is introduced by typical generation based NC techniques. Our measurements and comparison to forwarding and COPE show that CORE not only outperforms these schemes even for small packet...

  4. Review of application code and standards for mechanical and piping design of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the propriety of application code and standards for mechanical and piping of HANARO fuel test loop and to decide the technical specification of FTL systems. (author). 18 refs., 8 tabs., 6 figs.

  5. MPI performance evaluation and characterization using a compact application benchmark code

    Energy Technology Data Exchange (ETDEWEB)

    Worley, P.H.

    1996-06-01

    In this paper the parallel benchmark code PSTSWM is used to evaluate the performance of the vendor-supplied implementations of the MPI message-passing standard on the Intel Paragon, IBM SP2, and Cray Research T3D. This study is meant to complement the performance evaluation of individual MPI commands by providing information on the practical significance of MPI performance on the execution of a communication-intensive application code. In particular, three performance questions are addressed: how important is the communication protocol in determining performance when using MPI, how does MPI performance compare with that of the native communication library, and how efficient are the collective communication routines.

  6. Self-reported accidents

    DEFF Research Database (Denmark)

    Møller, Katrine Meltofte; Andersen, Camilla Sloth

    2016-01-01

    The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals.......The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals....

  7. CowLog – Cross-Platform Application for Coding Behaviours from Video

    Directory of Open Access Journals (Sweden)

    Matti Pastell

    2016-04-01

    Full Text Available CowLog is a cross-platform application to code behaviours from video recordings for use in behavioural research. The software has been used in several studies e.g. to study sleep in dairy calves, emotions in goats and the mind wandering related to computer use during lectures. CowLog 3 is implemented using JavaScript and HTML using the Electron framework. The framework allows the development of packaged cross-platform applications using features from web browser (Chromium as well as server side JavaScript from Node.js. The program supports using multiple videos simultaneously and HTML5 and VLC video players. CowLog can be used for any project that requires coding the time of events from digital video. It is released under GNU GPL v2 making it possible for users to modify the application for their own needs. The software is available through its website http://cowlog.org.

  8. Applicability of GALE-86 Codes to Integral Pressurized Water Reactor designs

    Energy Technology Data Exchange (ETDEWEB)

    Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rishel, Jeremy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-01

    This report describes work that Pacific Northwest National Laboratory is doing to assist the U.S. Nuclear Regulatory Commission (NRC) Office of New Reactors (NRO) staff in their reviews of applications for nuclear power plants using new reactor core designs. These designs include small integral PWRs (IRIS, mPower, and NuScale reactor designs), HTGRs, (pebble-bed and prismatic-block modular reactor designs) and SFRs (4S and PRISM reactor designs). Under this specific task, PNNL will assist the NRC staff in reviewing the current versions of the GALE codes and identify features and limitations that would need to be modified to accommodate the technical review of iPWR and mPower® license applications and recommend specific changes to the code, NUREG-0017, and associated NRC guidance. This contract is necessary to support the licensing of iPWRs with a near-term focus on the B&W mPower® reactor design. While the focus of this review is on the mPower® reactor design, the review of the code and the scope of recommended changes consider a revision of the GALE codes that would make them universally applicable for other types of integral PWR designs. The results of a detailed comparison between PWR and iPWR designs are reported here. Also included is an investigation of the GALE code and its basis and a determination as to the applicability of each of the bases to an iPWR design. The issues investigated come from a list provided by NRC staff, the results of comparing the PWR and iPWR designs, the parameters identified as having a large impact on the code outputs from a recent sensitivity study and the main bases identified in NUREG-0017. This report will provide a summary of the gaps in the GALE codes as they relate to iPWR designs and for each gap will propose what work could be performed to fill that gap and create a version of GALE that is applicable to integral PWR designs.

  9. Development and application of a deflagration pressure analysis code for high level waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, S.J.; Thomas, J.K.

    1994-06-01

    The Deflagration Pressure Analysis Code (DPAC) was developed primarily to evaluate peak pressures for deflagrations in radioactive waste storage and process facilities at the Savannah River Site (SRS). Deflagrations in these facilities are generally considered to be incredible events, but it was judged prudent to develop modeling capabilities in order to facilitate risk estimates. DPAC is essentially an engineering analysis tool, as opposed to a detailed thermal hydraulics code. It accounts for mass loss via venting, energy dissipation by radiative heat transfer, and gas PdV work. Volume increases due to vessel deformation can also be included using pressure-volume data from a structural analysis of the enclosure. This paper presents an overview of the code, benchmarking, and applications at SRS.

  10. Implementational Aspects of the Contourlet Filter Bank and Application in Image Coding

    Directory of Open Access Journals (Sweden)

    Truong T. Nguyen

    2009-02-01

    Full Text Available This paper analyzed the implementational aspects of the contourlet filter bank (or the pyramidal directional filter bank (PDFB, and considered its application in image coding. First, details of the binary tree-structured directional filter bank (DFB are presented, including a modification to minimize the phase delay factor and necessary steps for handling rectangular images. The PDFB is viewed as an overcomplete filter bank, and the directional filters are expressed in terms of polyphase components of the pyramidal filter bank and the conventional DFB. The aliasing effect of the conventional DFB and the Laplacian pyramid to the directional filters is then considered, and the conditions for reducing this effect are presented. The new filters obtained by redesigning the PDFBs satisfying these requirements have much better frequency responses. A hybrid multiscale filter bank consisting of the PDFB at higher scales and the traditional maximally decimated wavelet filter bank at lower scales is constructed to provide a sparse image representation. A novel embedded image coding system based on the image decomposition and a morphological dilation algorithm is then presented. The coding algorithm efficiently clusters the significant coefficients using progressive morphological operations. Context models for arithmetic coding are designed to exploit the intraband dependency and the correlation existing among the neighboring directional subbands. Experimental results show that the proposed coding algorithm outperforms the current state-of-the-art wavelet-based coders, such as JPEG2000, for images with directional features.

  11. Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling

    Science.gov (United States)

    Lareo, Angel; Forlim, Caroline G.; Pinto, Reynaldo D.; Varona, Pablo; Rodriguez, Francisco de Borja

    2016-01-01

    Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox. PMID:27766078

  12. Foundations of Coding Theory and Applications of Error-Correcting Codes with an Introduction to Cryptography and Information Theory

    CERN Document Server

    Adamek, Jiri

    1991-01-01

    Although devoted to constructions of good codes for error control, secrecy or data compression, the emphasis is on the first direction. Introduces a number of important classes of error-detecting and error-correcting codes as well as their decoding methods. Background material on modern algebra is presented where required. The role of error-correcting codes in modern cryptography is treated as are data compression and other topics related to information theory. The definition-theorem proof style used in mathematics texts is employed through the book but formalism is avoided wherever possible.

  13. Generating Safety-Critical PLC Code From a High-Level Application Software Specification

    Science.gov (United States)

    2008-01-01

    The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is

  14. Verification and Validation of the BISON Fuel Performance Code for PCMI Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Gardner, Russell James [Idaho National Laboratory; Perez, Danielle Marie [Idaho National Laboratory; Pastore, Giovanni [Idaho National Laboratory; Hales, Jason Dean [Idaho National Laboratory

    2016-06-01

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described. Validation for application to light water reactor (LWR) PCMI problems is assessed by comparing predicted and measured rod diameter following base irradiation and power ramps. Results indicate a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. Initial rod diameter comparisons have led to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.

  15. Validation and Application of the Thermal Hydraulic System Code TRACE for Analysis of BWR Transients

    Directory of Open Access Journals (Sweden)

    V. H. Sánchez

    2012-01-01

    Full Text Available The Karlsruhe Institute of Technology (KIT is participating on (Code Applications and Maintenance Program CAMP of the US Nuclear Regulatory Commission (NRC to validate TRACE code for LWR transient analysis. The application of TRACE for the safety assessment of BWR requires a throughout verification and validation using experimental data from separate effect and integral tests but also using plant data. The validation process is normally focused on safety-relevant phenomena for example, pressure drop, void fraction, heat transfer, and critical power models. The purpose of this paper is to validate selected BWR-relevant TRACE-models using both data of bundle tests such as the (Boiling Water Reactor Full-Size Fine-Mesh Bundle Test BFBT and plant data recorded during a turbine trip event (TUSA occurred in a Type-72 German BWR plant. For the validation, TRACE models of the BFBT bundle and of the BWR plant were developed. The performed investigations have shown that the TRACE code is appropriate to describe main BWR-safety-relevant phenomena (pressure drop, void fraction, and critical power with acceptable accuracy. The comparison of the predicted global BWR plant parameters for the TUSA event with the measured plant data indicates that the code predictions are following the main trends of the measured parameters such as dome pressure and reactor power.

  16. Development of a taxonomy of performance influencing factors for human reliability assessment of accident management tasks and its application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dae; Kang, Dae Il; Ha, Jae Joo

    1999-06-01

    In this study, a new PIF taxonomy for HRA of the tasks during emergency operation and accident management situations. We collected the existing PIF taxonomies as many as possible. Then, we analyzed the trend in the selection of PIFs, the frequency of use between PIFs in HRA methods, and the level of definition of PIFs, in order to reflect these characteristics into the development of a new PIF taxonomy. Next, we analyzed the principal task context during accident management to draw the context specific PIFs. Afterwards, we established several criteria for the selection of the appropriate PIFs for HRA under emergency operation and accident management situations. Finally, the final PIF taxonomy containing the subitems for assessing each PIF was constructed based on the results of the previous steps and the selection criteria. The final result ofthis study is the new PIF taxonomy for HRA of the tasks during emergency operation and accident management situations. The selected 11 PIFs in the study are as follows: training and experience, availability and quality of information, status and trend of critical parameters, status of safety system/component, time pressure, working environment features, team cooperation and communication, plant policy and safety culture. (author). 35 refs., 23 tabs.

  17. Overview of HiFi -- implicit spectral element code framework for multi-fluid plasma applications

    CERN Document Server

    Lukin, Vyacheslav S; Lowrie, Weston; Meier, Eric T

    2016-01-01

    An overview of the algorithm and a sampling of plasma applications of the implicit, adaptive high order finite (spectral) element modeling framework, HiFi, is presented. The distinguishing capabilities of the HiFi code include adaptive spectral element spatial representation with flexible geometry, highly parallelizable implicit time advance, and general flux-source form of the partial differential equations and boundary conditions that can be implemented in its framework. Early algorithm development and extensive verification studies of the two-dimensional version of the code, known as SEL, have been previously described [A.H. Glasser & X.Z. Tang, Comp. Phys. Comm., 164 (2004); V.S. Lukin, Ph.D. thesis, Princeton University (2008)]. Here, substantial algorithmic improvements and extensions are presented together with examples of two- and three- dimensional applications of the HiFi framework. These include a Cartesian two-dimensional incompressible magnetohydrodynamic simulation of low dissipation magneti...

  18. Shared and Distributed Memory Parallel Security Analysis of Large-Scale Source Code and Binary Applications

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, D; Barany, G; Panas, T

    2007-08-30

    Many forms of security analysis on large scale applications can be substantially automated but the size and complexity can exceed the time and memory available on conventional desktop computers. Most commercial tools are understandably focused on such conventional desktop resources. This paper presents research work on the parallelization of security analysis of both source code and binaries within our Compass tool, which is implemented using the ROSE source-to-source open compiler infrastructure. We have focused on both shared and distributed memory parallelization of the evaluation of rules implemented as checkers for a wide range of secure programming rules, applicable to desktop machines, networks of workstations and dedicated clusters. While Compass as a tool focuses on source code analysis and reports violations of an extensible set of rules, the binary analysis work uses the exact same infrastructure but is less well developed into an equivalent final tool.

  19. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report; Qualifizierung des Kernmodells DYN3D im Komplex mit dem Stoerfallcode ATHLET als fortgeschrittenes Werkzeug fuer die Stoerfallanalyse von WWER-Reaktoren. T. 1. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.

    1998-03-01

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [Deutsch] Das Reaktorkernmodell DYN3D mit 3D Neutronenkinetik wurde an den Thermohydraulik-Systemcode ATHLET angekoppelt. Im vorliegenden Bericht werden Arbeiten zur Qualifizierung des gekoppelten Codekomplexes zu einem validierten Hilfsmittel fuer Stoerfallablaufanalysen zu Reaktoren des russischen Typs WWER dargestellt. Diese umfassten im einzelnen: - Beitraege zur Validierung der Einzelcodes ATHLET und DYN3D anhand der Nachrechnung von Experimenten zum

  20. Ruthenium release from fuel in accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G.; Marchetto, C.; Plumecocq, W. [Inst. de Radioprotection et de Surete Nucleaire, DPAM, SEMIC, LETR and LIMSI, Saint-Paul-Lez-Durance (France)

    2010-07-01

    During a hypothetical nuclear power plant accident, fission products may be released from the fuel matrix and then reach the containment building and the environment. Ruthenium is a very hazardous fission product that can be highly and rapidly released in some accident scenarios. The impact of the atmosphere redox properties, temperature, and fuel burn-up on the ruthenium release is discussed. In order to improve the evaluation of the radiological impact by accident codes, a model of the ruthenium release from fuel is proposed using thermodynamic equilibrium calculations. In addition, a model of fuel oxidation under air is described. Finally, these models have been integrated in the ASTEC accident code and validation calculations have been performed on several experimental tests. (orig.)

  1. The Serpent Monte Carlo Code: Status, Development and Applications in 2013

    Science.gov (United States)

    Leppänen, Jaakko; Pusa, Maria; Viitanen, Tuomas; Valtavirta, Ville; Kaltiaisenaho, Toni

    2014-06-01

    The Serpent Monte Carlo reactor physics burnup calculation code has been developed at VTT Technical Research Centre of Finland since 2004, and is currently used in 100 universities and research organizations around the world. This paper presents the brief history of the project, together with the currently available methods and capabilities and plans for future work. Typical user applications are introduced in the form of a summary review on Serpent-related publications over the past few years.

  2. Object-oriented electrodynamic S-matrix code with modern applications

    Science.gov (United States)

    Yuffa, Alex J.; Scales, John A.

    2012-05-01

    The S-matrix algorithm for the propagation of an electromagnetic wave through planar stratified media has been implemented in a modern object-oriented programing language. This implementation is suitable for the study of such applications as the Anderson localization of light and super-resolution (perfect lensing). For our open-source code to be as useful as possible to the scientific community, we paid particular attention to the pathological cases that arise in the limit of vanishing absorption.

  3. Bumpy Application of Utility Code for Genomic Inventions: With Special Reference to Express Sequence Tags

    Directory of Open Access Journals (Sweden)

    M R Sreenivasa Murthy

    2013-12-01

    Full Text Available Genomics, a new bough of biotechnology responsible for gene mapping has acquired a rapid significance in the field of patents. Brisk growth of patent filing in genomic subject matter is raising serious concerns about their utility from the perspective of societal benefit. Though the genomic related patent application qualifies the criterion of invention and non-obviousness in major instances, the inventors are unable to satisfy the utility criterion. Some instances such as patent application for ESTs have no utility at all. The patent regulators constructed various tests to deal with the situation such as specificity, substantiality (real world credibility tests etc. Hoverer, it is noteworthy that an attempt to uniform the standard of utility test for genomic inventions especially in the field of ESTs, cloning and creation of chimeras, has been made by America and Europe through specific regulations. Thus, the objective of this paper is firstly, to explain the importance of biotechnology and genomic inventions for mankind and significance of ESTs for future research. Secondly, to analyze the application of Utility code prior to the emergence of Utility code in America and Europe. Thirdly to scrutinize the Utility code in both countries and their implication on aftermath cases, and. fourthly and finally, to critically evaluate the both countries utility pathways in the light of societal benefit.

  4. A Protection Mechanism against Malicious HTML and JavaScript Code in Vulnerable Web Applications

    Directory of Open Access Journals (Sweden)

    Shukai Liu

    2016-01-01

    Full Text Available The high-profile attacks of malicious HTML and JavaScript code have seen a dramatic increase in both awareness and exploitation in recent years. Unfortunately, exiting security mechanisms provide no enough protection. We propose a new protection mechanism named PMHJ based on the support of both web applications and web browsers against malicious HTML and JavaScript code in vulnerable web applications. PMHJ prevents the injection attack of HTML elements with a random attribute value and the node-split attack by an attribute with the hash value of the HTML element. PMHJ ensures the content security in web pages by verifying HTML elements, confining the insecure HTML usages which can be exploited by attackers, and disabling the JavaScript APIs which may incur injection vulnerabilities. PMHJ provides a flexible way to rein the high-risk JavaScript APIs with powerful ability according to the principle of least authority. The PMHJ policy is easy to be deployed into real-world web applications. The test results show that PMHJ has little influence on the run time and code size of web pages.

  5. Pressure Load Analysis during Severe Accidents for the Evaluation of Late Containment Failure in OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Ahn, K. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The MAAP code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a level 2 probabilistic safety assessment or severe accident management strategy developments. The code employs lots of user-options for supporting a sensitivity and uncertainty analysis. The present application is mainly focused on determining an estimate of the containment building pressure load caused by severe accident sequences. Key modeling parameters and phenomenological models employed for the present uncertainty analysis are closely related to in-vessel hydrogen generation, gas combustion in the containment, corium distribution in the containment after a reactor vessel failure, corium coolability in the reactor cavity, and molten-corium interaction with concrete. The phenomenology of severe accidents is extremely complex. In this paper, a sampling-based phenomenological uncertainty analysis was performed to statistically quantify uncertainties associated with the pressure load of a containment building for a late containment failure evaluation, based on the key modeling parameters employed in the MAAP code and random samples for those parameters. Phenomenological issues surrounding the late containment failure mode are highly complex. Included are the pressurization owing to steam generation in the cavity, molten corium-concrete interaction, late hydrogen burn in the containment, and the secondary heat removal availability. The methodology and calculation results can be applied for the optimum assessment of a late containment failure model. The accident sequences considered were a loss of coolant accidents and loss of offsite accidents expected in the OPR-1000 plant. As a result, uncertainties addressed in the pressure load of the containment building were quantified as a function of time. A realistic evaluation of the mean and variance estimates provides a more complete

  6. Investigations on boron carbide oxidation for nuclear reactors safety-General modelling for ICARE/CATHARE code applications

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, N. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Cadarache, BP 3, 13 115 Saint Paul lez Durance Cedex (France)], E-mail: nathalie.seiler@irsn.fr; Bertrand, F.; Marchand, O.; Repetto, G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Cadarache, BP 3, 13 115 Saint Paul lez Durance Cedex (France); Ederli, S. [ENEA, Ente per le Nuove Tecnologie l' Energia et l' Ambiente (Italy)

    2008-04-15

    The present paper deals with the problem of boron carbide pellet oxidation which might occur during a severe accident. A basic correlation, involving global variables, has been developed for the simulation of boron carbide oxidation with the ICARE/CATHARE code. This modelling has been based on available experimental data, including the VERDI separate effects experiments performed by IRSN at low pressures and high temperatures. According to the agreement between the measured and the calculated bundle temperatures as well as hydrogen release and oxidized B{sub 4}C, the ICARE/CATHARE code simulates rather well QUENCH experiments involving B{sub 4}C control rod degradation, Zircaloy oxidation under starvation and cooling with steam. Based on simulations results, it has been noticed that the B{sub 4}C degradation has a slight direct effect on global bundle degradation but a non-negligible influence on Zircaloy oxidation through power release, material melting and flowing down.

  7. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  8. Development and application of a random walk model of atmospheric diffusion in the emergency response of nuclear accidents

    Institute of Scientific and Technical Information of China (English)

    CHI Bing; LI Hong; FANG Dong

    2007-01-01

    Plume concentration prediction is one of the main contents of radioactive consequence assessment for early emergency response to nuclear accidents. Random characteristics of atmospheric diffusion itself was described, a random walk model of atmospheric diffusion (Random Walk) was introduced and compared with the Lagrangian puff model (RIMPUFF) in the nuclear emergency decision support system (RODOS) developed by the European Community for verification. The results show the concentrations calculated by the two models are quite close except that the plume area calculated by Random Walk is a little smaller than that by RIMPUFF. The random walk model for atmospheric diffusion can simulate the atmospheric diffusion in case of nuclear accidents, and provide more actual information for early emergency and consequence assessment as one of the atmospheric diffusion module of the nuclear emergency decision support system.

  9. Contribution of Case Based Reasoning (CBR) in the Exploitation of Return of Experience. Application to Accident Scenarii in Railroad Transport

    CERN Document Server

    Maalel, Ahmed

    2012-01-01

    The study is from a base of accident scenarii in rail transport (feedback) in order to develop a tool to share build and sustain knowledge and safety and secondly to exploit the knowledge stored to prevent the reproduction of accidents / incidents. This tool should ultimately lead to the proposal of prevention and protection measures to minimize the risk level of a new transport system and thus to improve safety. The approach to achieving this goal largely depends on the use of artificial intelligence techniques and rarely the use of a method of automatic learning in order to develop a feasibility model of a software tool based on case based reasoning (CBR) to exploit stored knowledge in order to create know-how that can help stimulate domain experts in the task of analysis, evaluation and certification of a new system.

  10. Application of a Step-by-Step Fingerprinting Identification Method on a Spilled Oil Accident in the Bohai Sea Area

    Institute of Scientific and Technical Information of China (English)

    SUN Peiyan; GAO Zhenhui; CAO Lixin; WANG Xinping; ZHOU Qing; ZHAO Yuhui; LI Guangmei

    2011-01-01

    In recent years, oil spill accidents occur frequently in the marine area of China. Finding out the spilled oil source is a key step in the relevant investigation. In this paper, a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002. Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples. The original gas chromatography -flame ionization detection (GC-FID) chromatogram of saturated hydrocarbons was compared. The gas chromatography-mass spectrometry (GC/MS)chromatograms of aromatic hydrocarbons terpane and sterane, n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed. The correlation analysis on diagnostic ratios was performed with Student's t-test. It is found that the oil fingerprinting of the spilled oil (designated as szl) from the polluted sand beach was identical with the suspected oil (designated as kyl) from a nearby crude oil refinery factory. They both showed the fingerprinting character of mixed oil. The oil fingerprinting of the spilled oil (designated as msl) collected from the port was significantly different from oil kyl and oil szl and was with a lubricating oil fingerprint character. The identification result not only gave support for the spilled oil investigation, but also served as an example for studying spilled oil accidents.

  11. A Novel Container ISO Code Localization Using an Object Clustering Method with Opencv and Visual Studio Application

    Directory of Open Access Journals (Sweden)

    Ronesh Sharma

    2013-06-01

    Full Text Available An automatic container code recognition system is of a great importance to the logistic supply chain management. Techniques have been proposed and implemented for the ISO container code region identification and recognition, however those systems have limitations on the type of container images with illumination factor and marks present on the container due to handling in the mass environmental condition. Moreover the research is not limited for differentiating between different formats of code and color of code characters. In this paper firstly an object clustering method is proposed to localize each line of the container code region. Secondly, the localizing algorithm is implemented with opencv and visual studio to perform localization and then recognition. Thus for real time application, the implemented system has added advantage of being easily integrated with other web application to increase the efficiency of the supply chain management. The experimental results and the application demonstrate the effectiveness of the proposed system for practical use.

  12. Squeal Those Tires! Automobile-Accident Reconstruction.

    Science.gov (United States)

    Caples, Linda Griffin

    1992-01-01

    Methods use to reconstruct traffic accidents provide settings for real life applications for students in precalculus, mathematical analysis, or trigonometry. Described is the investigation of an accident in conjunction with the local Highway Patrol Academy integrating physics, vector, and trigonometry. Class findings were compared with those of…

  13. Melt spreading code assessment, modifications, and application to the EPR core catcher design.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T .; Nuclear Engineering Division

    2009-03-30

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial

  14. A general panel sizing computer code and its application to composite structural panels

    Science.gov (United States)

    Anderson, M. S.; Stroud, W. J.

    1978-01-01

    A computer code for obtaining the dimensions of optimum (least mass) stiffened composite structural panels is described. The procedure, which is based on nonlinear mathematical programming and a rigorous buckling analysis, is applicable to general cross sections under general loading conditions causing buckling. A simplified method of accounting for bow-type imperfections is also included. Design studies in the form of structural efficiency charts for axial compression loading are made with the code for blade and hat stiffened panels. The effects on panel mass of imperfections, material strength limitations, and panel stiffness requirements are also examined. Comparisons with previously published experimental data show that accounting for imperfections improves correlation between theory and experiment.

  15. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, J.M.; Winkelmann, F.

    1992-09-01

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of these methods to solving the partial differential equations for two-dimensional heat flow is illustrated.

  16. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, J.M.; Winkelmann, F.

    1992-09-01

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of these methods to solving the partial differential equations for two-dimensional heat flow is illustrated.

  17. More efficient ground truth ROI image coding technique :implementation and wavelet based application analysis

    Institute of Scientific and Technical Information of China (English)

    KUMARAYAPA Ajith; ZHANG Ye

    2007-01-01

    In this paper, more efficient, low-complexity and reliable region of interest (ROI) image codec for compressing smooth low texture remote sensing images is proposed. We explore the efficiency of the modified ROI codec with respect to the selected set of convenient wavelet filters, which is a novel method. Such ROI coding experiment analysis representing low bit rate lossy to high quality lossless reconstruction with timing analysis is useful for improving remote sensing ground truth surveillance efficiency in terms of time and quality. The subjective [i.e. fair, five observer (HVS) evaluations using enhanced 3D picture view Hyper memory display technology] and the objective results revealed that for faster ground truth ROI coding applications, the Symlet-4 adaptation performs better than Biorthogonal 4.4 and Biorthogonal 6.8. However, the discrete Meyer wavelet adaptation is the best solution for delayed ROI image reconstructions.

  18. Avoiding Interruptions - QoE Trade-offs in Block-coded Streaming Media Applications

    CERN Document Server

    Parandehgheibi, Ali; Shakkottai, Srinivas; Ozdaglar, Asu

    2010-01-01

    We take an analytical approach to study Quality of user Experience (QoE) for video streaming applications. First, we show that random linear network coding applied to blocks of video frames can significantly simplify the packet requests at the network layer and save resources by avoiding duplicate packet reception. Network coding allows us to model the receiver's buffer as a queue with Poisson arrivals and deterministic departures. We consider the probability of interruption in video playback as well as the number of initially buffered packets (initial waiting time) as the QoE metrics. We characterize the optimal trade-off between these metrics by providing upper and lower bounds on the minimum initial buffer size, required to achieve certain level of interruption probability for different regimes of the system parameters. Our bounds are asymptotically tight as the file size goes to infinity.

  19. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    Science.gov (United States)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  20. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan;

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  1. Experimental assessment of computer codes used for safety analysis of integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Falkov, A.A.; Kuul, V.S.; Samoilov, O.B. [OKB Mechanical Engineering, Nizhny Novgorod (Russian Federation)

    1995-09-01

    Peculiarities of integral reactor thermohydraulics in accidents are associated with presence of noncondensable gas in built-in pressurizer, absence of pumped ECCS, use of guard vessel for LOCAs localisation and passive RHRS through in-reactor HX`s. These features defined the main trends in experimental investigations and verification efforts for computer codes applied. The paper reviews briefly the performed experimental investigation of thermohydraulics of AST-500, VPBER600-type integral reactors. The characteristic of UROVEN/MB-3 code for LOCAs analysis in integral reactors and results of its verification are given. The assessment of RELAP5/mod3 applicability for accident analysis in integral reactor is presented.

  2. Turbo码应用于机载通信信道编码的研究%Research on Application of Turbo Code to Channel Coding of Airborne Communication

    Institute of Scientific and Technical Information of China (English)

    王兆伟; 王永达; 李秉权

    2015-01-01

    多媒体业务在军用信息系统中应用广泛,Turbo码由于良好的编译码性能而受到关注,其在低信噪比下仍能获得较好的误码性能,为通信链路的可靠传输提供了良好的保证。通过研究Turbo码在机载通信链路中的适用性,利用Matlab对不同编码参数下的Turbo码性能进行了仿真分析,并选取合适的参数,研究了空空/空地信道模型下的Turbo码性能,对于实现高速率机载通信系统具有重要意义。%With the wide application of multimedia service in military information system, Turbo code draws attention due to its good encoding and decoding performances. Since Turbo code can get better BER performance under low SNR, it provides good guarantee to reliable transmission of communication link. The applicability of Turbo code to airborne communication link was researched. The performance of Turbo code for different coding parameters was simulated and analyzed through MATLAB. Especially, the performance of Turbo code under air-air and air-ground channel models was investigated for appropriate parameters that it is highly significant to high-speed airborne communication system.

  3. Application of Freeman Chain Codes: An Alternative Recognition Technique for Malaysian Car Plates

    CERN Document Server

    Jusoh, Nor Amizam

    2011-01-01

    Various applications of car plate recognition systems have been developed using various kinds of methods and techniques by researchers all over the world. The applications developed were only suitable for specific country due to its standard specification endorsed by the transport department of particular countries. The Road Transport Department of Malaysia also has endorsed a specification for car plates that includes the font and size of characters that must be followed by car owners. However, there are cases where this specification is not followed. Several applications have been developed in Malaysia to overcome this problem. However, there is still problem in achieving 100% recognition accuracy. This paper is mainly focused on conducting an experiment using chain codes technique to perform recognition for different types of fonts used in Malaysian car plates.

  4. Interest of thermochemical data bases linked to complex equilibria calculation codes for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cenerino, G. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations; Chevalier, P.Y.; Fischer, E. [Thermodata, 38 -Saint-Martin-d`Heres (France); Marbeuf, A. [Centre National de la Recherche Scientifique (CNRS), 92 - Meudon-Bellevue (France). Lab. de Magnetisme et de Physique du Solide; Frenk, A. [Ecole Polytechnique Federale, Lausanne (Switzerland); Vahlas, C. [Laboratoire Marcel Mathieu, Centre Helioparc, 64 - Pau (France)

    1992-12-31

    Since 1974, Thermodata has been working on developing an Integrated Information System in Inorganic Chemistry. A major effort was carried on the thermochemical data assessment of both pure substances and multicomponent solution phases. The available data bases are connected to powerful calculation codes (GEMINI = Gibbs Energy Minimizer), which allow to determine the thermodynamical equilibrium state in multicomponent systems. The high interest of such an approach is illustrated by recent applications in as various fields as semi-conductors, chemical vapor deposition, hard alloys and nuclear safety. (author). 26 refs., 6 figs.

  5. [Some consequences of the application of the new Swiss penal code on legal psychiatry].

    Science.gov (United States)

    Gasser, Jacques; Gravier, Bruno

    2007-09-19

    The new text of the Swiss penal code, which entered into effect at the beginning of 2007, has many incidences on the practice of the psychiatrists realizing expertises in the penal field or engaged in the application of legal measures imposing a treatment. The most notable consequences of this text are, on the one hand, a new definition of the concept of penal irresponsibility which is not necessarily any more related to a psychiatric diagnosis and, on the other hand, a new definition of legal constraints that justice can take to prevent new punishable acts and which appreciably modifies the place of the psychiatrists in the questions binding psychiatric care and social control.

  6. Validation of a multidimensional deterministic nuclear data sensitivity and uncertainty code system: an application needing supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Bidaud, A.; Mastrangelo, V. [Conservatoire National des Arts et Metiers, Laboratoire de Physique (CNAM), 75 - Paris (France); Institut de Physique Nucleaire (IN2P3/CNRS) 91 - Orsay (France); Kodeli, I.; Sartori, E. [OECD NEA Data Bank, 92 - Issy les Moulineaux (France)

    2003-07-01

    The quality of nuclear core modelling is linked to the quality of basic nuclear data such as probability of reaction (i.e. cross sections) between neutrons and the nucleus of the core materials. Perturbation Theory, whose applications in nuclear science has been largely developed in the sixties provides tools for estimating the sensitivity of integral parameters such as k-eff, reaction rates, or breeding ratio to the cross sections. The computation with these tools requires approximations in the simulation of space, angles and energy dependent neutron transport. To minimise the impact of the geometry modelling approximations in the calculation, use of 3 dimensional multigroup transport codes is recommended. Sensitivity and uncertainty analyses are the tools needed to estimate the accuracy that a code system with data libraries can achieve. They can guide users as to the specific need for improved data to carry out reliable simulations. However, as full-scale models in 3 dimensions with refined descriptions of the phase-space are used, high performance computers and codes designed to run on parallel architectures are needed to obtain results within acceptable time limits.

  7. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  8. Selection of medical diagnostic codes for analysis of electronic patient records. Application to stroke in a primary care database.

    Directory of Open Access Journals (Sweden)

    Martin C Gulliford

    Full Text Available BACKGROUND: Electronic patient records from primary care databases are increasingly used in public health and health services research but methods used to identify cases with disease are not well described. This study aimed to evaluate the relevance of different codes for the identification of acute stroke in a primary care database, and to evaluate trends in the use of different codes over time. METHODS: Data were obtained from the General Practice Research Database from 1997 to 2006. All subjects had a minimum of 24 months of up-to-standard record before the first recorded stroke diagnosis. Initially, we identified stroke cases using a supplemented version of the set of codes for prevalent stroke used by the Office for National Statistics in Key health statistics from general practice 1998 (ONS codes. The ONS codes were then independently reviewed by four raters and a restricted set of 121 codes for 'acute stroke' was identified but the kappa statistic was low at 0.23. RESULTS: Initial extraction of data using the ONS codes gave 48,239 cases of stroke from 1997 to 2006. Application of the restricted set of codes reduced this to 39,424 cases. There were 2,288 cases whose index medical codes were for 'stroke annual review' and 3,112 for 'stroke monitoring'. The frequency of stroke review and monitoring codes as index codes increased from 9 per year in 1997 to 1,612 in 2004, 1,530 in 2005 and 1,424 in 2006. The one year mortality of cases with the restricted set of codes was 29.1% but for 'stroke annual review,' 4.6% and for 'stroke monitoring codes', 5.7%. CONCLUSION: In the analysis of electronic patient records, different medical codes for a single condition may have varying clinical and prognostic significance; utilisation of different medical codes may change over time; researchers with differing clinical or epidemiological experience may have differing interpretations of the relevance of particular codes. There is a need for greater

  9. TITAN: a computer program for accident occurrence frequency analyses by component Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Tamaki, Hitoshi [Department of Safety Research Technical Support, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kanai, Shigeru [Fuji Research Institute Corporation, Tokyo (Japan)

    2000-04-01

    In a plant system consisting of complex equipments and components for a reprocessing facility, there might be grace time between an initiating event and a resultant serious accident, allowing operating personnel to take remedial actions, thus, terminating the ongoing accident sequence. A component Monte Carlo simulation computer program TITAN has been developed to analyze such a complex reliability model including the grace time without any difficulty to obtain an accident occurrence frequency. Firstly, basic methods for the component Monte Carlo simulation is introduced to obtain an accident occurrence frequency, and then, the basic performance such as precision, convergence, and parallelization of calculation, is shown through calculation of a prototype accident sequence model. As an example to illustrate applicability to a real scale plant model, a red oil explosion in a German reprocessing plant model is simulated to show that TITAN can give an accident occurrence frequency with relatively good accuracy. Moreover, results of uncertainty analyses by TITAN are rendered to show another performance, and a proposal is made for introducing of a new input-data format to adapt the component Monte Carlo simulation. The present paper describes the calculational method, performance, applicability to a real scale, and new proposal for the TITAN code. In the Appendixes, a conventional analytical method is shown to avoid complex and laborious calculation to obtain a strict solution of accident occurrence frequency, compared with Monte Carlo method. The user's manual and the list/structure of program are also contained in the Appendixes to facilitate TITAN computer program usage. (author)

  10. Modification and Validation of ATHLET Code for Sodium-cooled Fast Reactor Application%ATHLET程序的钠冷快堆应用扩展及其验证

    Institute of Scientific and Technical Information of China (English)

    周翀; Klaus Huber; 程旭

    2013-01-01

    System analysis code is important for the global simulation of the sodium-cooled fast reactor (SFR) system as well as transient and accident safety analysis .In this paper ,the best estimate system code ATHLET for light water reactors ,developed by Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) in Germany ,was modified for SFR application .Thermal-dynamic and transport properties as well as heat transfer correlations for sodium were implemented into the ATHLET code .The modified code was then applied to simulate the Phenix reactor in France ,and validation of the code was conducted with the Phenix reactor natural convection test .The calculation results were compared with the test data .The results show that the modified ATHLET code has good applicability in simulating SFR systems .%系统分析程序是对钠冷快堆的冷却剂回路系统进行全局模拟、瞬态及事故安全分析的重要工具。本工作对德国核设施与反应堆安全机构(GRS)开发的轻水堆最佳估算系统程序ATHLET 进行修改,增加了钠的物性公式和传热关系式,将其适用范围扩展到钠冷快堆。为验证修改过的ATHLET程序,对法国凤凰(Phenix )反应堆系统建模,并对其自然对流实验进行模拟,将计算结果与实验数据进行比较。结果显示,ATHLET程序的钠冷快堆应用扩展具有良好的适用性。

  11. The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy

    CERN Document Server

    Parodi, K; Cerutti, F; Ferrari, A; Mairani, A; Paganetti, H; Sommerer, F

    2010-01-01

    Monte Carlo (MC) methods are increasingly being utilized to support several aspects of commissioning and clinical operation of ion beam therapy facilities. In this contribution two emerging areas of MC applications are outlined. The value of MC modeling to promote accurate treatment planning is addressed via examples of application of the FLUKA code to proton and carbon ion therapy at the Heidelberg Ion Beam Therapy Center in Heidelberg, Germany, and at the Proton Therapy Center of Massachusetts General Hospital (MGH) Boston, USA. These include generation of basic data for input into the treatment planning system (TPS) and validation of the TPS analytical pencil-beam dose computations. Moreover, we review the implementation of PET/CT (Positron-Emission-Tomography / Computed- Tomography) imaging for in-vivo verification of proton therapy at MGH. Here, MC is used to calculate irradiation-induced positron-emitter production in tissue for comparison with the +-activity measurement in order to infer indirect infor...

  12. Application of the S3M and Mcnpx Codes in Particle Detector Development

    Science.gov (United States)

    Pavlovič, Márius; Sedlačková, Katarína; Šagátová, Andrea; Strašík, Ivan

    2014-02-01

    Semiconductor detectors can be used to detect neutrons if they are covered by a conversion layer. Some neutrons transfer their kinetic energy to hydrogen via elastic nuclear scattering in the conversion layer, and protons are produced as recoils. These protons enter the sensitive volume of the detector and are detected. In the process of detector development, Monte Carlo computer codes are necessary to simulate the detection process. This paper presents the main features of the S3M code (SRIM Supporting Software Modules) and shows its application potential. Examples are given for the neutron detectors with a conversion layer and for CVD (Chemical Vapor Deposition) diamond detectors for beam-condition monitors at the LHC (Large Hadron Collider). Special attention is paid to the S3M statistical modules that can be of interest also for other application areas like beam transport, accelerators, ion therapy, etc. The results are generated by MCNPX (Monte Carlo N-Particle eXtended) simulations used to optimize the thickness of the HDPE (high density polyethylene) conversion layer.

  13. Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and Its Application to Sparse Coding

    Science.gov (United States)

    Agarwal, Sapan; Quach, Tu-Thach; Parekh, Ojas; Hsia, Alexander H.; DeBenedictis, Erik P.; James, Conrad D.; Marinella, Matthew J.; Aimone, James B.

    2016-01-01

    The exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-based architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning. PMID:26778946

  14. Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and its Application to Sparse Coding

    Directory of Open Access Journals (Sweden)

    Sapan eAgarwal

    2016-01-01

    Full Text Available The exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational advantages of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an NxN crossbar, these two kernels are at a minimum O(N more energy efficient than a digital memory-based architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1. These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N reduction in energy for the entire algorithm. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.

  15. SCDAP/RELAP5/MOD2 code manual

    Energy Technology Data Exchange (ETDEWEB)

    Allison, C.M.; Johnson, E.C. (eds.); Berna, G.A.; Cheng, T.C.; Hagrman, D.L.; Johnsen, G.W.; Kiser, D.M.; Miller, C.S.; Ransom, V.H.; Riemke, R.A.; Shieh, A.S.; Siefken, L.J.; Trapp, J.A.; Wagner, R.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-09-01

    The SCDAP/RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, and the fission products and aerosols in the system during a severe accident transient as well as large and small break loss-of-coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This document, Volume III, contains detailed instructions for code application and input data preparation. In addition, Volume III contains user guidelines that have evolved over the past several years from application of the RELAP5 and SCDAP codes at the Idaho National Engineering Laboratory, at other national laboratories, and by users throughout the world. 2 refs., 32 figs., 9 tabs.

  16. Severe Accident Recriticality Analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B{sub 4}C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  17. Application of environmental magnetism on crime detection in a highway traffic accident from Yangzhou to Guazhou, Jiangsu Province, China.

    Science.gov (United States)

    Manrong, Chen; Lizhong, Yu; Xiangfeng, Niu; Bin, Chen

    2009-05-30

    Both elemental composition analysis and mineral magnetic measurements were used to infer the source of the earth dumped on a highway in China, which resulted in human life loss and injury in 2002. The results indicate that the earth and the samples from the potential two sources are very similar in geochemical compositions. However, magnetic properties show stronger difference among the samples. A plot of magnetic susceptibility (chi) vs. Anhysteretic Remanent Magnetization (ARM) clearly show that the earth at the accident site (sample No. 1) is closely matched with one sample (No. 4) from the source site B. Such a difference in geochemical and magnetic signatures among the samples is ascribed to the nature of the earth, which is derived from the Xiashu Loess in southern China. Our results indicate that environmental magnetic method can help to crime investigation by aiding in the provenance tracing of soils/sediments evidences in a simple, economic and non-destructive way.

  18. Facilitating Code Reuse for the Rapid Deployment of Web Mapping Applications at the National Renewable Energy Laboratory (NREL)

    Science.gov (United States)

    Helm, C. W.; Sparks, W.; Levene, J.; Hostetler, M.

    2008-12-01

    The National Renewable Energy Laboratory in Golden, CO has developed a software platform that provides for the development of fully customized and unique web mapping applications that reuse a common base of software code. The application capabilities that have been developed within this platform include spatial data visualization, large-scale data retrieval and the analysis of various renewable energy resource data-sets. The platform consists of three primary components of reusable code: the back-end data storage and retrieval engine, a user-customizable Data Styling Engine, and front end user interface code. Each component of the platform represents a reusable code base from which new applications can be generated with a minimal amount of new code. This reusable code base can be thought of in the same vein as object oriented development: the reusable code is analogous to a base class that specific applications inherit from and extend. The architecture was motivated by a requirement to rapidly develop and deploy multiple web-based mapping applications for varying renewable energy and alternative fuel technologies, and for different customers. It was observed that these applications share a significant set of core features and functionality, with varying degrees of customization required for each application. A series of needs instigated the development of the architecture: * New applications should not require re-implementation of existing functionality (either through re-coding or "copy and paste" reuse) * Enhancements to the base functionality could automatically propagate through all derived applications * All applications should be able to utilize a common, internal (to NREL) Web Mapping Service (WMS), or any external WMS * The framework must support user authentication, role-based access control to specific data layers, and user customization of layer styling. This requirement led to the development of the Data Styling Engine. * A developer should be able to

  19. 26 CFR 521.102 - Applicable provisions of the Internal Revenue Code.

    Science.gov (United States)

    2010-04-01

    ... Code. 521.102 Section 521.102 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Revenue Code. (a) The Internal Revenue Code provides in part as follows: Chapter I—Income Tax Sec. 22... Revenue Code, other provisions of the internal revenue laws, and to Article XXII of the convention,...

  20. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    Science.gov (United States)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  1. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    Directory of Open Access Journals (Sweden)

    Chandranath R. N. Athaudage

    2003-09-01

    Full Text Available A dynamic programming-based optimization strategy for a temporal decomposition (TD model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%–60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  2. Application of the Life Safety Code to a Historic Test Stand

    Science.gov (United States)

    Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.

    2011-01-01

    NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact

  3. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, S.A.

    1997-07-01

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.

  4. Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes

    KAUST Repository

    Lin, Sian-Jheng

    2016-09-13

    In this paper, we present a fast Fourier transform (FFT) algorithm over extension binary fields, where the polynomial is represented in a non-standard basis. The proposed Fourier-like transform requires O(h lg(h)) field operations, where h is the number of evaluation points. Based on the proposed Fourier-like algorithm, we then develop the encoding/ decoding algorithms for (n = 2m; k) Reed-Solomon erasure codes. The proposed encoding/erasure decoding algorithm requires O(n lg(n)), in both additive and multiplicative complexities. As the complexity leading factor is small, the proposed algorithms are advantageous in practical applications. Finally, the approaches to convert the basis between the monomial basis and the new basis are proposed.

  5. Space applications of the MITS electron-photon Monte Carlo transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Kensek, R.P.; Lorence, L.J.; Halbleib, J.A. [Sandia National Labs., Albuquerque, NM (United States); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-07-01

    The MITS multigroup/continuous-energy electron-photon Monte Carlo transport code system has matured to the point that it is capable of addressing more realistic three-dimensional adjoint applications. It is first employed to efficiently predict point doses as a function of source energy for simple three-dimensional experimental geometries exposed to simulated uniform isotropic planar sources of monoenergetic electrons up to 4.0 MeV. Results are in very good agreement with experimental data. It is then used to efficiently simulate dose to a detector in a subsystem of a GPS satellite due to its natural electron environment, employing a relatively complex model of the satellite. The capability for survivability analysis of space systems is demonstrated, and results are obtained with and without variance reduction.

  6. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    Science.gov (United States)

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  7. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    CERN Document Server

    Hariri, F; Jocksch, A; Lanti, E; Progsch, J; Messmer, P; Brunner, S; Gheller, G; Villard, L

    2016-01-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandybridge ...

  8. Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes

    Science.gov (United States)

    Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.

  9. Design and application of a tool for structuring, capitalizing and making more accessible information and lessons learned from accidents involving machinery.

    Science.gov (United States)

    Sadeghi, Samira; Sadeghi, Leyla; Tricot, Nicolas; Mathieu, Luc

    2016-10-11

    Accident reports are published in order to communicate the information and lessons learned from accidents. An efficient accident recording and analysis system is a necessary step towards improvement of safety. However, currently there is a shortage of efficient tools to support such recording and analysis. In this study we introduce a flexible and customizable tool that allows structuring and analysis of this information. This tool has been implemented under TEEXMA®. We named our prototype TEEXMA®SAFETY. This tool provides an information management system to facilitate data collection, organization, query, analysis and reporting of accidents. A predefined information retrieval module provides ready access to data which allows the user to quickly identify the possible hazards for specific machines and provides information on the source of hazards. The main target audience for this tool includes safety personnel, accident reporters and designers. The proposed data model has been developed by analyzing different accident reports.

  10. Research and Application of Auxiliary Optimization Technology of Power Grid Accident Processing Based on the Mode of Regulation and Control Integration

    Directory of Open Access Journals (Sweden)

    Cui Houzhen

    2015-01-01

    Full Text Available Accident processing is the most important link of the scheduling of daily monitoring. The improvement of intelligent level is of great significance for improving the efficiency of accident processing scheduling, shortening the time of accident processing and preventing further deterioration of accidents. According to features of accident processing scheduling, this paper puts forward an integrated framework of aid decision-making of online accident processing based on large power grid, and carries out a study from five aspects, namely integrated information support platform, risk perception in advance, online fault diagnosis, aid decision-making afterwards and visual display, so as to conduct real-time tracking on operating state of power grid, eliminate potential safety hazards of power grid and upgrade power grid from “manual analysis” scheduling to “intelligent analysis” scheduling.

  11. TME12/400: Application Oriented Wavelet-based Coding of Volumetric Medical Data

    Science.gov (United States)

    Menegaz, G; Grewe, L; Lozano, A; Thiran, J-Ph

    1999-01-01

    compromising compression efficiency in the LPL mode are the restriction on the choice of the contexts, and the overheading resulting from the independent coding of each layer in each sub-band. This mainly depends on the number of decomposition levels and the volume size. The isotropy of the data distribution for DSR volume results in better compression efficiency. Discussion The exploitation of the whole 3D correlation among data samples improves coding efficiency with respect to 2D systems, encoding each image independently. The number of layers to be decoded in the LPL mode in each sub-band to recover a given image is a function of the length of Wavelet filters, which makes short ones particularly suited. For the filter used the maximum this number is 4. This makes the system particularly efficient at decoding, ensuring a fast and effective access to data. Among the possible applications, it is worth citing low-rate transmission (telemedicine), archiving and remote access.

  12. Application of the micronucleus assay performed by different scorers in case of large-scale radiation accidents

    Directory of Open Access Journals (Sweden)

    Rawojć Kamila

    2015-09-01

    Full Text Available Mass casualty scenarios of radiation exposure require high throughput biological dosimetry techniques for population triage, in order to rapidly identify individuals, who require clinical treatment. Accurate dose estimates can be made by biological dosimetry, to predict the acute radiation syndrome (ARS within days after a radiation accident or a malicious act involving radiation. Timely information on dose is important for the medical management of acutely irradiated persons [1]. The aim of the study was to evaluate the usefulness of the micronuclei (MNi scoring procedure in an experimental mode, where 500 binucleated cells were analyzed in different exposure dose ranges. Whole-body exposure was simulated in an in vitro experiment by irradiating whole blood collected from one healthy donor with 60 MeV protons and 250 keV X-rays, in the dose range of 0.3-4.0 Gy. For achieving meaningful results, sample scoring was performed by three independent persons, who followed guidelines described in detail by Fenech et al. [2, 3]. Compared results revealed no significant differences between scorers, which has important meaning in reducing the analysis time. Moreover, presented data based on 500 cells distribution, show that there are significant differences between MNi yields after 1.0 Gy exposure of blood for both protons and X-rays, implicating this experimental mode as appropriate for the distinction between high and low dose-exposed individuals, which allows early classification of exposed victims into clinically relevant subgroups.

  13. Revised Safety Code A2

    CERN Multimedia

    SC Secretariat

    2005-01-01

    Please note that the revised Safety Code A2 (Code A2 rev.) entitled "REPORTING OF ACCIDENTS AND NEAR MISSES" is available on the web at the following url: https://edms.cern.ch/document/335502/LAST_RELEASED Paper copies can also be obtained from the SC Unit Secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  14. User's Manual for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code

    Energy Technology Data Exchange (ETDEWEB)

    George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease

    1997-07-07

    This document is a manual for the use of the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. The code is also capable of incorporating the various adsorption mechanisms, ranging from simple linear relations to nonlinear isotherms, needed to describe the very complex transport processes at Yucca Mountain. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data

  15. Severe accident risks from external events

    Institute of Scientific and Technical Information of China (English)

    Randall O Gauntt

    2013-01-01

    This paper reviews the early development of design requirements for seismic events in USA early developing nuclear electric generating fleet.Notable safety studies,including WASH-1400,Sandia Siting Study and the NUREG-1150 probabilistic risk study,are briefly reviewed in terms of their relevance to extreme accidents arising from seismic and other severe accident initiators.Specific characteristic about the nature of severe accidents in nuclear power plant (NPP) are reviewed along with present day state-of-art analysis methodologies (methods for estimation of leakages and consequences of releases (MELCOR) and MELCOR accident consequence code system (MACCS)) that are used to evaluate severe accidents and to optimize mitigative and protective actions against such accidents.It is the aim of this paper to make nuclear operating nations aware of the risks that accompany a much needed energy resource and to identify some of the tools,techniques and landmark safety studies that serve to make the technology safer and to maintain vigilance and adequate safety culture for the responsible management of this valuable but unforgiving technology.

  16. Analysis of Fukushima Daiichi Accident Using HFACS

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Saeed Almheiri [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    The shadow of Fukushima Daiichi nuclear power plant (NPP) accident is still too big and will last long. On the other hand, it could still teach us lots of lessons to better design and operate nuclear power plants. In this paper, we will be focusing on the Fukushima Daiichi accident, especially on human organizational factors. We will analyze the accident using Human Factors Analysis and Classification System (HFACS) in order to better understand the organizational climate of TEPCO{sup 1} and NISA{sup 2} that led to Fukushima Daiichi Accident. HFACS was developed for the U. S. aviation industry and has been used at many industries like the rail and mining industries. We found that the HFACS to be greatly beneficial in investigating the latent and organizational causes for the accident. The application results show that the causes of Fukushima Daiichi accident were spread out from sharp end (i.e. Unsafe Act) to blunt end (i. e. Organizational Influences). This means that the corresponding countermeasures should cover from front line staff to management. Thus, we managed to develop a better understanding on how to prevent similar errors or violations. The incident and near-miss have a lot of helpful information because it may show the actual and latent deficiencies of complex systems. We applied the HFACS into Fukushima Daiichi accident to better locate the causes related to both sharp and blunt ends of operation of NPP. In order to derive useful lessons from the accident analysis, the analyst should try to find the similarities not differences from the incident. It is imperative that whatever accident/incident analysis systems we use, we should fully utilize the disastrous Fukushima accident.

  17. Laser accidents: Being Prepared

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  18. AN APPLICATION OF PLANAR BINARY BITREES TO PREFIX AND HUFFMAN PREFIX CODE

    OpenAIRE

    Erjavec, Zlatko

    2004-01-01

    In this paper we construct prefix code in which the use of planar binary trees is replaced by the use of the planar binary bitrees. In addition, we apply the planar binary bitrees to the Huffman prefix code. Finally, we code English alphabet in such a way that characters have codewords different from already established ones.

  19. Concealed holographic coding for security applications by using a moire technique

    DEFF Research Database (Denmark)

    Zhang, Xiangsu; Dalsgaard, Erik

    1997-01-01

    We present an optical coding technique that enhances the anticounterfeiting power of security holograms. The principles of the technique is based on the moire phenomenon. The code in the hologram has a phase pattern that is invisible and cannot be detected by optical equipment, so that imitation...... is extremely difficult. Holographic, photographic and embossing technique are used in fabricating coded holograms and decoders....

  20. Graphical Table of Contents for Library Collections: The Application of Universal Decimal Classification Codes to Subject Maps

    Directory of Open Access Journals (Sweden)

    Victor Herrero-Solano

    2006-03-01

    Full Text Available The representation of information content by graphical maps is an extended ongoing research topic. The objective of this article consists in verifying whether it is possible to create map displays using Universal Decimal Classification (UDC codes (using co-classification analysis for the purpose of creating a graphical table of contents for a library collection. The application of UDC codes was introduced to subject maps development using the following graphic representation methods: (1 multidimensional scaling; (2 cluster analysis; and (3 neural networks (self-organizing maps. Finally, the authors conclude that the different kinds of maps have slightly different degrees of viability and types of application.

  1. [Accidents with the "paraglider"].

    Science.gov (United States)

    Lang, T H; Dengg, C; Gabl, M

    1988-09-01

    With a collective of 46 patients we show the details and kinds of accidents caused by paragliding. The base for the casuistry of the accidents was a questionnaire which was answered by most of the injured persons. These were questions about the theoretical and practical training, the course of the flight during the different phases, and the subjective point of view of the course of the accident. The patterns of the injuries showed a high incidence of injuries of the spinal column and high risks for the ankles. At the end, we give some advice how to prevent these accidents.

  2. Practical approaches in accident analysis

    Science.gov (United States)

    Stock, M.

    An accident analysis technique based on successive application of structural response, explosion dynamics, gas cloud formation, and plant operation failure mode models is proposed. The method takes into account the nonideal explosion characteristic of a deflagration in the unconfined cloud. The resulting pressure wave differs significantly from a shock wave and the response of structures like lamp posts and walls can differ correspondingly. This gives a more realistic insight into explosion courses than a simple TNT-equivalent approach.

  3. Code generator for implementing dual tree complex wavelet transform on reconfigurable architectures for mobile applications.

    Science.gov (United States)

    Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Ugurdag, H Fatih; Goren, Sezer; Aydin, Nizamettin

    2016-09-01

    The authors aimed to develop an application for producing different architectures to implement dual tree complex wavelet transform (DTCWT) having near shift-invariance property. To obtain a low-cost and portable solution for implementing the DTCWT in multi-channel real-time applications, various embedded-system approaches are realised. For comparison, the DTCWT was implemented in C language on a personal computer and on a PIC microcontroller. However, in the former approach portability and in the latter desired speed performance properties cannot be achieved. Hence, implementation of the DTCWT on a reconfigurable platform such as field programmable gate array, which provides portable, low-cost, low-power, and high-performance computing, is considered as the most feasible solution. At first, they used the system generator DSP design tool of Xilinx for algorithm design. However, the design implemented by using such tools is not optimised in terms of area and power. To overcome all these drawbacks mentioned above, they implemented the DTCWT algorithm by using Verilog Hardware Description Language, which has its own difficulties. To overcome these difficulties, simplify the usage of proposed algorithms and the adaptation procedures, a code generator program that can produce different architectures is proposed.

  4. APPLICATION OF INTEGER CODING ACCELERATING GENETIC ALGORITHM IN RECTANGULAR CUTTING STOCK PROBLEM

    Institute of Scientific and Technical Information of China (English)

    FANG Hui; YIN Guofu; LI Haiqing; PENG Biyou

    2006-01-01

    An improved genetic algorithm and its application to resolve cutting stock problem are presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SGA is a serious problem in practical application. Accelerating genetic algorithm (AGA) based on integer coding and AGA's detailed steps are developed to reduce the amount of computation, and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem. SGA is adopted to produce individuals within given evolution process, and the variation interval of these individuals is taken as initial domain of the next optimization process, thus shrinks searching range intensively and accelerates the evaluation process of SGA.To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result, fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process. According to the computational experiment, it is observed that this improved GA converges much sooner than SGA, and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem.

  5. Station Blackout Severe Accident Analysis of Spent Fuel Pool of 600 MWe NPP by Using MELCOR Code%用 MELCOR 程序分析600 MWe 核电厂乏燃料水池失去厂内外电源严重事故

    Institute of Scientific and Technical Information of China (English)

    张应超; 季松涛; 魏严凇; 史晓磊; 许倩

    2016-01-01

    Using MELCOR code ,the spent fuel pool (SFP) of 600 MWe nuclear power plant (NPP) was modeled ,and the station blackout severe accidents were calculated when the SFP was under normal condition ,refuelling condition and the reactor accident condition .The calculation results show that fuel assemblies will melt down and hydro‐gen will generate ,due to zirconium‐water reaction ,after the half height of fuel assem‐blies is uncovered .The influence of injection or spray on SFP accidents was analysed , and the results show that SFP accidents will be terminated and the water level of SFP will return up before fuel cladding damage if water is injected or sprayed into the SFP with the boiling evaporation mass rate .%利用MELCOR程序建立了600 MWe核电厂乏燃料水池计算模型,分别计算了在正常储存、正常换料和反应堆事故工况下,乏燃料水池失去厂内外电源严重事故序列。计算结果表明,燃料组件大约裸露一半后,锆水反应导致燃料熔化并产生大量氢气。分析了喷淋和注水对乏燃料水池事故的影响,分析结果表明,在燃料包壳失效前,以沸腾蒸发速率注水或喷淋能中止事故发展,并能使乏燃料水池水位缓慢回升。

  6. Desktop Severe Accident Graphic Simulator Module for CANDU6 : PSAIS

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Song, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The ISAAC ((Integrated Severe Accident Analysis Code for CANDU Plant) code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a Level 2 probabilistic safety assessment or severe accident management strategy developments. The code has the capability to predict a severe accident progression by modeling the CANDU6- specific systems and the expected physical phenomena based on the current understanding of the unique accident progressions. The code models the sequence of accident progressions from a core heatup, pressure tube/calandria tube rupture after an uncovery from inside and outside, a relocation of the damaged fuel to the bottom of the calandria, debris behavior in the calandria, corium quenching after a debris relocation from the calandria to the calandria vault and an erosion of the calandria vault concrete floor, a hydrogen burn, and a reactor building failure. Along with the thermal hydraulics, the fission product behavior is also considered in the primary system as well as in the reactor building.

  7. Applicability of the three-dimensional transport code Tort to the shielding analysis of the prototype FBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Takako, Shiraki [Mitsubishi Heavy Industries, Ltd (Japan); Shin, Usami; Zenro, Suzuoki; Takehide, Deshimaru [Japan Nuclear Cycle Development Institute (Japan); Kenji, Sasaki; Keiko, Tada; Hitoshi, Yokobori [Advanced Reactor Technology Co., Ltd (Japan)

    2003-07-01

    Shielding design of Monju was performed in 1980's by using the two-dimensional discrete ordinates transport code, DOT3.5. In view of complexity of the three-dimensional shielding geometry of Monju, the three-dimensional discrete ordinates transport code, TORT(2), has been applied to shielding measurement analyses of Monju in an attempt to prove practical usefulness of the code and to learn how much margin is associated with the shielding design performed by DOT3.5. This study has confirmed that TORT can practically be applied to the shielding measurement analyses of Monju, and has provided significant improvement in calculation accuracy thanks to its three-dimensional geometry employed, making the code applicable to the Monju shielding design evaluation analyses together with pre- and post-analyses of the shielding measurement now being planned. (authors)

  8. Lessons learned from early criticality accidents

    Energy Technology Data Exchange (ETDEWEB)

    Malenfant, R.E.

    1996-06-01

    Four accidents involving the approach to criticality occurred during the period July, 1945, through May, 1996. These have been described in the format of the OPERATING EXPERIENCE WEEKLY SUMMARY which is distributed by the Office of Nuclear and Facility Safety. Although the lessons learned have been incorporated in standards, codes, and formal procedures during the last fifty years, this is their first presentation in this format. It is particularly appropriate that they be presented in the forum of the Nuclear Criticality Technology Safety Project Workshop closest to the fiftieth anniversary of the last of the four accidents, and that which was most instrumental in demonstrating the need to incorporate lessons learned.

  9. A Preliminary PIRT Development Related to SWR Accidents from an SG Tube Failure

    Energy Technology Data Exchange (ETDEWEB)

    So, Dongsup; Jeong, Ji Young; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The results of the PIRT, the uncertainties of the phenomena ranked as high priority can be reduced by an investigation or/and theoretical evaluation. The PIRT for IHTS due to SG tube rupture of Prototype GEN-IV Sodium cooled Fast Reactor (PGSFR) is on developing stage by the KAERI-ANL experts. These plausible phenomena can be applicable to the PIRT development of PGSFR having the similar concept of KALIMER-600. The Phenomena Identification and Ranking Table (PIRT) process was created as a systematic and documented means of completing a U. S. NRC's Code Scaling, Applicability, and Uncertainty exercise with a limited amount of resources. This paper describes a preliminary PIRT development for a Sodium-Water Reaction (SWR) accident with regard to a Steam Generator (SG) tube failure of the KALIMER-600 (Korea Advanced Liquid Metal Reactor). The plausible phenomena related to SWR accidents were developed.

  10. An Adaptive Video Coding Control Scheme for Real-Time MPEG Applications

    Directory of Open Access Journals (Sweden)

    Hsia Shih-Chang

    2003-01-01

    Full Text Available This paper proposes a new rate control scheme to increase the coding efficiency for MPEG systems. Instead of using a static group of picture (GOP structure, we present an adaptive GOP structure that uses more P- and B-frame coding, while the temporal correlation among the video frames maintains high. When there is a scene change, we immediately insert intramode coding to reduce the prediction error. Moreover, an enhanced prediction frame is used to improve the coding quality in the adaptive GOP. This rate control algorithm can both achieve better coding efficiency and solve the scene change problem. Even if the coding bit rate is over the predefined level, this coding scheme does not require re-encoding for real-time systems. Simulations demonstrate that our proposed algorithm can achieve better quality than TM5, and satisfactory reliability for detecting scene changes.

  11. Recent improvements of reactor physics codes in MHI

    Science.gov (United States)

    Kosaka, Shinya; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki

    2015-12-01

    This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO's Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.

  12. Recent improvements of reactor physics codes in MHI

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Shinya, E-mail: shinya-kosaka@mhi.co.jp; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki [Mitsubishi Heavy Industries, Ltd. (Japan)

    2015-12-31

    This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO’s Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.

  13. Function and Application Areas in Medicine of Non-Coding RNA

    Directory of Open Access Journals (Sweden)

    Figen Guzelgul

    2009-06-01

    Full Text Available RNA is the genetic material converting the genetic code that it gets from DNA into protein. While less than 2 % of RNA is converted into protein , more than 98 % of it can not be converted into protein and named as non-coding RNAs. 70 % of noncoding RNAs consists of introns , however, the rest part of them consists of exons. Non-coding RNAs are examined in two classes according to their size and functions. Whereas they are classified as long non-coding and small non-coding RNAs according to their size , they are grouped as housekeeping non-coding RNAs and regulating non-coding RNAs according to their function. For long years ,these non-coding RNAs have been considered as non-functional. However, today, it has been proved that these non-coding RNAs play role in regulating genes and in structural, functional and catalitic roles of RNAs converted into protein. Due to its taking a role in gene silencing mechanism, particularly in medical world , non-coding RNAs have led to significant developments. RNAi technolgy , which is used in designing drugs to be used in treatment of various diseases , is a ray of hope for medical world. [Archives Medical Review Journal 2009; 18(3.000: 141-155

  14. Characteristics of the graded wildlife dose assessment code K-BIOTA and its application

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Kim, Byeong Ho; Choi, Yong Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    This paper describes the technical background for the Korean wildlife radiation dose assessment code, K-BIOTA, and the summary of its application. The K-BIOTA applies the graded approaches of 3 levels including the screening assessment (Level 1 and 2), and the detailed assessment based on the site specific data (Level 3). The screening level assessment is a preliminary step to determine whether the detailed assessment is needed, and calculates the dose rate for the grouped organisms, rather than an individual biota. In the Level 1 assessment, the risk quotient (RQ) is calculated by comparing the actual media concentration with the environmental media concentration limit (EMCL) derived from a bench-mark screening reference dose rate. If RQ for the Level 1 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 2 assessment, which calculates RQ using the average value of the concentration ratio (CR) and equilibrium distribution coefficient (Kd) for the grouped organisms, is carried out for the more realistic assessment. Thus, the Level 2 assessment is less conservative than the Level 1 assessment. If RQ for the Level 2 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 3 assessment is performed for the detailed assessment. In the Level 3 assessment, the radiation dose for the representative organism of a site is calculated by using the site specific data of occupancy factor, CR and Kd. In addition, the K-BIOTA allows the uncertainty analysis of the dose rate on CR, Kd and environmental medium concentration among input parameters optionally in the Level 3 assessment. The four probability density functions of normal, lognormal, uniform and exponential distribution can be applied. The applicability of the code was tested through the

  15. Communication and industrial accidents

    NARCIS (Netherlands)

    As, Sicco van

    2001-01-01

    This paper deals with the influence of organizational communication on safety. Accidents are actually caused by individual mistakes. However the underlying causes of accidents are often organizational. As a link between these two levels - the organizational failures and mistakes - I suggest the conc

  16. Accidents - personal factors

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsev, S.L.; Tsygankov, A.V.

    1982-03-01

    This paper evaluates influence of selected personal factors on accident rate in underground coal mines in the USSR. Investigations show that so-called organizational factors cause from 80 to 85% of all accidents. About 70% of the organizational factors is associated with social, personal and economic features of personnel. Selected results of the investigations carried out in Donbass mines are discussed. Causes of miner dissatisfaction are reviewed: 14% is caused by unsatisfactory working conditions, 21% by repeated machine failures, 16% by forced labor during days off, 14% by unsatisfactory material supply, 16% by hard physical labor, 19% by other reasons. About 25% of miners injured during work accidents are characterized as highly professionally qualified with automatic reactions, and about 41% by medium qualifications. About 60% of accidents is caused by miners with less than a 3 year period of service. About 15% of accidents occurs during the first month after a miner has returned from a leave. More than 30% of accidents occurs on the first work day after a day or days off. Distribution of accidents is also presented: 19% of accidents occurs during the first 2 hours of a shift, 36% from the second to the fourth hour, and 45% occurs after the fourth hour and before the shift ends.

  17. Accident investigation and analysis

    NARCIS (Netherlands)

    Kampen, J. van; Drupsteen, L.

    2013-01-01

    Many organisations and companies take extensive proactive measures to identify, evaluate and reduce occupational risks. However, despite these efforts things still go wrong and unintended events occur. After a major incident or accident, conducting an accident investigation is generally the next ste

  18. Guide for licensing evaluations using CRAC2: A computer program for calculating reactor accident consequences

    Energy Technology Data Exchange (ETDEWEB)

    White, J.E.; Roussin, R.W.; Gilpin, H.

    1988-12-01

    A version of the CRAC2 computer code applicable for use in analyses of consequences and risks of reactor accidents in case work for environmental statements has been implemented for use on the Nuclear Regulatory Commission Data General MV/8000 computer system. Input preparation is facilitated through the use of an interactive computer program which operates on an IBM personal computer. The resulting CRAC2 input deck is transmitted to the MV/8000 by using an error-free file transfer mechanism. To facilitate the use of CRAC2 at NRC, relevant background material on input requirements and model descriptions has been extracted from four reports - ''Calculations of Reactor Accident Consequences,'' Version 2, NUREG/CR-2326 (SAND81-1994) and ''CRAC2 Model Descriptions,'' NUREG/CR-2552 (SAND82-0342), ''CRAC Calculations for Accident Sections of Environmental Statements, '' NUREG/CR-2901 (SAND82-1693), and ''Sensitivity and Uncertainty Studies of the CRAC2 Computer Code,'' NUREG/CR-4038 (ORNL-6114). When this background information is combined with instructions on the input processor, this report provides a self-contained guide for preparing CRAC2 input data with a specific orientation toward applications on the MV/8000. 8 refs., 11 figs., 10 tabs.

  19. Severe accident analysis of a small LOCA accident using MAAP-CANDU support level 2 PSA for the Point Lepreau station refurbishment project

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, S.M.; Brown, M.J.; Mathew, P.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    A Level 2 Probabilistic Safety Assessment was performed for the Point Lepreau Generating Station. The MAAP4-CANDU code was used to calculate the progression of postulated severe core damage accidents and fission product releases. Five representative severe core damage accidents were selected: Station Blackout, Small Loss-of-Coolant Accident, Stagnation Feeder Break, Steam Generator Tube Rupture, and Shutdown State Accident. Analysis results for only the reference Small LOCA Accident scenario (which is a very low probability event) are discussed in this paper. (author)

  20. Application study of piecewise context-based adaptive binary arithmetic coding combined with modified LZC

    Science.gov (United States)

    Su, Yan; Jun, Xie Cheng

    2006-08-01

    An algorithm of combining LZC and arithmetic coding algorithm for image compression is presented and both theory deduction and simulation result prove the correctness and feasibility of the algorithm. According to the characteristic of context-based adaptive binary arithmetic coding and entropy, LZC was modified to cooperate the optimized piecewise arithmetic coding, this algorithm improved the compression ratio without any additional time consumption compared to traditional method.

  1. PRELIMINARY STUDY ON APPLICATION OF MAX PLUS ALGEBRA IN DISTRIBUTED STORAGE SYSTEM THROUGH NETWORK CODING

    Directory of Open Access Journals (Sweden)

    Agus Maman Abadi

    2016-04-01

    Full Text Available The increasing need in techniques of storing big data presents a new challenge. One way to address this challenge is the use of distributed storage systems. One strategy that implemented in distributed data storage systems is the use of Erasure Code which applied to network coding. The code used in this technique is based on the algebraic structure which is called as vector space. Some studies have also been carried out to create code that is based on other algebraic structures such as module.  In this study, we are going to try to set up a code based on the algebraic structure which is a generalization of the module that is semimodule by utilizing the max operations and sum operations at max plus algebra. The results of this study indicate that the max operation and the addition operation on max plus algebra cannot be used to establish a semimodule code, but by modifying the operation "+" as "min", we get a code based on semimodule. Keywords:   code, distributed storage systems, network coding, semimodule, max plus algebra

  2. Application of computational fluid dynamics methods to improve thermal hydraulic code analysis

    Science.gov (United States)

    Sentell, Dennis Shannon, Jr.

    A computational fluid dynamics code is used to model the primary natural circulation loop of a proposed small modular reactor for comparison to experimental data and best-estimate thermal-hydraulic code results. Recent advances in computational fluid dynamics code modeling capabilities make them attractive alternatives to the current conservative approach of coupled best-estimate thermal hydraulic codes and uncertainty evaluations. The results from a computational fluid dynamics analysis are benchmarked against the experimental test results of a 1:3 length, 1:254 volume, full pressure and full temperature scale small modular reactor during steady-state power operations and during a depressurization transient. A comparative evaluation of the experimental data, the thermal hydraulic code results and the computational fluid dynamics code results provides an opportunity to validate the best-estimate thermal hydraulic code's treatment of a natural circulation loop and provide insights into expanded use of the computational fluid dynamics code in future designs and operations. Additionally, a sensitivity analysis is conducted to determine those physical phenomena most impactful on operations of the proposed reactor's natural circulation loop. The combination of the comparative evaluation and sensitivity analysis provides the resources for increased confidence in model developments for natural circulation loops and provides for reliability improvements of the thermal hydraulic code.

  3. The Semi-Automatic Parallelisation of Scientific Application Codes Using a Computer Aided Parallelisation Toolkit

    Directory of Open Access Journals (Sweden)

    C.S. Ierotheou

    2001-01-01

    Full Text Available The shared-memory programming model can be an effective way to achieve parallelism on shared memory parallel computers. Historically however, the lack of a programming standard using directives and the limited scalability have affected its take-up. Recent advances in hardware and software technologies have resulted in improvements to both the performance of parallel programs with compiler directives and the issue of portability with the introduction of OpenMP. In this study, the Computer Aided Parallelisation Toolkit has been extended to automatically generate OpenMP-based parallel programs with nominal user assistance. We categorize the different loop types and show how efficient directives can be placed using the toolkit's in-depth interprocedural analysis. Examples are taken from the NAS parallel benchmarks and a number of real-world application codes. This demonstrates the great potential of using the toolkit to quickly parallelise serial programs as well as the good performance achievable on up to 300 processors for hybrid message passing-directive parallelisations.

  4. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    Science.gov (United States)

    Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.

    2016-10-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.

  5. Image embedded coding with edge preservation based on local variance analysis for mobile applications

    Science.gov (United States)

    Luo, Gaoyong; Osypiw, David

    2006-02-01

    Transmitting digital images via mobile device is often subject to bandwidth which are incompatible with high data rates. Embedded coding for progressive image transmission has recently gained popularity in image compression community. However, current progressive wavelet-based image coders tend to send information on the lowest-frequency wavelet coefficients first. At very low bit rates, images compressed are therefore dominated by low frequency information, where high frequency components belonging to edges are lost leading to blurring the signal features. This paper presents a new image coder employing edge preservation based on local variance analysis to improve the visual appearance and recognizability of compressed images. The analysis and compression is performed by dividing an image into blocks. Fast lifting wavelet transform is developed with the advantages of being computationally efficient and boundary effects minimized by changing wavelet shape for handling filtering near the boundaries. A modified SPIHT algorithm with more bits used to encode the wavelet coefficients and transmitting fewer bits in the sorting pass for performance improvement, is implemented to reduce the correlation of the coefficients at scalable bit rates. Local variance estimation and edge strength measurement can effectively determine the best bit allocation for each block to preserve the local features by assigning more bits for blocks containing more edges with higher variance and edge strength. Experimental results demonstrate that the method performs well both visually and in terms of MSE and PSNR. The proposed image coder provides a potential solution with parallel computation and less memory requirements for mobile applications.

  6. Application of wavelets to image coding in an rf-link communication system

    Science.gov (United States)

    Liou, C. S. J.; Conners, Gary H.; Muczynski, Joe

    1995-04-01

    The joint University of Rochester/Rochester Institute of Technology `Center for Electronic Imaging Systems' (CEIS) is designed to focus on research problems of interest to industrial sponsors, especially the Rochester Imaging Consortium. Compression of tactical images for transmission over an rf link is an example of this type of research project which is being worked on in collaboration with one of the CEIS sponsors, Harris Corporation/RF Communications. The Harris digital video imagery transmission system (DVITS) is designed to fulfill the need to transmit secure imagery between unwired locations at real-time rates. DVITS specializes in transmission systems for users who rely on hf equipment operating at the low end of the frequency spectrum. However, the inherently low bandwidth of hf combined with transmission characteristics such as fading and dropout severely restrict the effective throughput. The problem at designing a system such as DVITS is particularly challenging because of bandwidth and signal/noise limitations, and because of the dynamic nature of the operational environment. In this paper, a novel application of wavelets in tactical image coding is proposed to replace the current DCT compression algorithm in the DVITS system. THe effects of channel noise on the received image are determined and various design strategies combining image segmentation, compression, and error correction are described.

  7. Application of QR code in mobile library%QR码在手机图书馆中的应用

    Institute of Scientific and Technical Information of China (English)

    张蓓; 张成昱; 窦天芳; 远红亮

    2012-01-01

      As one type of two-dimensional code, QR code has the advantages of large capacity and high reliability. With the construction of the mobile library and the combination with SMS and mobile websites, QR code is widely used in scenarios like OPAC and study room reservations. QR code has extended the library services in time, space and manner. This paper briefly introduces the basic situation of QR code and analyzes several applications of QR code in the mobile library. It also points out some problems which need attention while promoting QR code in libraries. With the arrival of 3G era and popularization of smartphones, QR code will be given full play in library services.%  QR码作为二维码中的一种,具有容量大、可靠性高等优势。伴随手机图书馆的逐步建设,QR码与短信、手机网站等结合,广泛应用于书目联机查询系统(OPAC)、研读间预约等场景,促使图书馆服务的时空、方式得到拓展和延伸。简要介绍QR码的基本情况后,针对目前手机图书馆中QR码的几种具体应用形式进行分析,并指出该技术在图书馆推广过程中需要注意的问题。随着3G时代的到来、智能手机的普及,QR码在图书馆服务中将发挥更大的作用

  8. Methodology, status and plans for development and assessment of Cathare code

    Energy Technology Data Exchange (ETDEWEB)

    Bestion, D.; Barre, F.; Faydide, B. [CEA - Grenoble (France)

    1997-07-01

    This paper presents the methodology, status and plans for the development, assessment and uncertainty evaluation of the Cathare code. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the status of the code development and assessment is presented. The general strategy used for the development and the assessment of the code is presented. Analytical experiments with separate effect tests, and component tests are used for the development and the validation of closure laws. Successive Revisions of constitutive laws are implemented in successive Versions of the code and assessed. System tests or integral tests are used to validate the general consistency of the Revision. Each delivery of a code Version + Revision is fully assessed and documented. A methodology is being developed to determine the uncertainty on all constitutive laws of the code using calculations of many analytical tests and applying the Discrete Adjoint Sensitivity Method (DASM). At last, the plans for the future developments of the code are presented. They concern the optimization of the code performance through parallel computing - the code will be used for real time full scope plant simulators - the coupling with many other codes (neutronic codes, severe accident codes), the application of the code for containment thermalhydraulics. Also, physical improvements are required in the field of low pressure transients and in the modeling for the 3-D model.

  9. Modelling of impurity transport and plasma-wall interaction in fusion devices with the ERO code: basics of the code and examples of application

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, A.; Borodin, D.; Brezinsek, S.; Linsmeier, C.; Romazanov, J. [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik, Juelich (Germany); Tskhakaya, D. [Fusion rate at OeAW, Institute of Applied Physics, TU Wien (Austria); Institute of Theoretical Physics, University of Innsbruck (Austria); Kawamura, G. [National Institute for Fusion Science, Gifu (Japan); Ding, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-08-15

    The 3D ERO code, which simulates plasma-wall interaction and impurity transport in magnetically confined fusion-relevant devices is described. As application, prompt deposition of eroded tungsten has been simulated at surfaces with shallow magnetic field of 3 T. Dedicated PIC simulations have been performed to calculate the characteristics of the sheath in front of plasma-exposed surfaces to use as input for these ERO simulations. Prompt deposition of tungsten reaches 100% at the highest electron temperature and density. In comparison to more simplified assumptions for the sheath the amount of prompt deposition is in general smaller if the PIC-calculated sheath is used. Due to friction with the background plasma the impact energy of deposited tungsten can be significantly larger than the energy gained in the sheath potential. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  10. Meta-code for systematic analysis of chemical addition (SACHA): application to fluorination of C70 and carbon nanostructure growth.

    Science.gov (United States)

    Ewels, Christopher P; Lier, Gregory Van; Geerlings, Paul; Charlier, Jean-Christophe

    2007-01-01

    We present a new computer program able to systematically study chemical addition to and growth or evolution of carbon nanostructures. SACHA is a meta-code able to exploit a wide variety of pre-existing molecular structure codes, automating the otherwise onerous task of constructing, running, and analyzing the large number of input files that are required when exploring structural isomers and addition paths. By way of examples we consider fluorination of the fullerene cage C70 and carbon nanostructure growth through C2 addition. We discuss the possibilities for extension of this technique to rapidly and efficiently explore structural energy landscapes and application to other areas of chemical and materials research.

  11. Development of severe accident management and training support system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sub; Kim, Ko Ryo; Jung, Won Dae; Ha, Jae Joo

    2001-04-01

    Recently, the overall severe accident management strategy is under development according to the logical flow of severe accident management guidelines in some foreign countries. In Korea, the basis of severe accident management strategy is established due to the development of Korean severe accident guideline. In the straining system, the professional information as well as the general information for severe accident should be provided to the related personnel and the function of prior simulation for plant behavior according to strategy execution should be required. Korean severe accident management guideline is chosen as the basis logic for development of support system for decision-support and training related with execution of severe accident strategy. The training simulator is developed for prior expectation of plant behavior and the severe accident computer code, MELCOR, is utilized as the engine, and it is possible to operate equipments necessary for execution of severe accident management guidelines. And also, the graphical interface is developed to provide the plant status and provide status change of major equipments dynamically.

  12. [Is the Furness-Moore Code applicable for computer and telex?].

    Science.gov (United States)

    Rötzscher, K

    1979-12-01

    The extent to which the identification of disaster victims could be improved with the code for dental findings developed by Furness and Moore (1969) was studied. This code records the most important data for a set of teeth in 12 digits.

  13. International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B. International Agreement Report

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-12-01

    Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes.

  14. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor; Analisis para el acoplamiento del codigo NESTLE para la cinetica tridimensional del nucleo al codigo avanzado de sistemas termo-hidraulicos, RELAP5/SCDAPSIM y su aplicacion al reactor de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Salazar C, J.H.; Nunez C, A. [CNSNS, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D.F. (Mexico); Chavez M, C. [UNAM, Facultad de Ingenieria, DEPFI Campus Morelos (Mexico)]. E-mail: hsalazar22@prodigy.net.mx

    2004-07-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  15. Novel Accident-Tolerant Fuel Meat and Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; Pavel G Medvedev; Douglas L Porter; Steven L Hayes; James I. Cole; Xian-Ming Bai

    2013-09-01

    A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas release and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.

  16. Applications of the lahet simulation code to relativistic heavy ion detectors

    Energy Technology Data Exchange (ETDEWEB)

    Waters, L.; Gavron, A. [Los Alamos National Lab., NM (United States)

    1991-12-31

    The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.

  17. Application of a Two-dimensional Unsteady Viscous Analysis Code to a Supersonic Throughflow Fan Stage

    Science.gov (United States)

    Steinke, Ronald J.

    1989-01-01

    The Rai ROTOR1 code for two-dimensional, unsteady viscous flow analysis was applied to a supersonic throughflow fan stage design. The axial Mach number for this fan design increases from 2.0 at the inlet to 2.9 at the outlet. The Rai code uses overlapped O- and H-grids that are appropriately packed. The Rai code was run on a Cray XMP computer; then data postprocessing and graphics were performed to obtain detailed insight into the stage flow. The large rotor wakes uniformly traversed the rotor-stator interface and dispersed as they passed through the stator passage. Only weak blade shock losses were computerd, which supports the design goals. High viscous effects caused large blade wakes and a low fan efficiency. Rai code flow predictions were essentially steady for the rotor, and they compared well with Chima rotor viscous code predictions based on a C-grid of similar density.

  18. Persistence of airline accidents.

    Science.gov (United States)

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation.

  19. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  20. Application of Induced Containment Therapy with adapted protocol for home care and its contributions to the motor condition and patient rehabilitation after encephalic vascular accident

    Directory of Open Access Journals (Sweden)

    Daniela Tonús

    2015-09-01

    Full Text Available Introduction: Encephalic Vascular Accident (EVA is among the most important diseases that cause physical and functional limitations. Hemiplegia is the most common physical changes post-EVA, as compromises the upper and lower limbs at the same side of the body, characterized by a rigid pattern of the flexor muscles of the upper limb and the extensor muscles of the lower limb. The Induced Containment Therapy has been a major rehabilitation technique recently aiming to promote functional improvement of the hemiplegic limb of those who suffered EVA and enable performance and quality of life of the individual. Objective: This study aimed to identify the possible contributions of Induced Containment Therapy using a protocol adapted to technique application to the hemiplegic limb. Moreover, this research points out the influence of the environment interventions, which on the present study, occurred in the participant’s home. Method: this is a case study with exploratory feature. Results and Conclusion: The results indicated improvements in functional ability at the time of execution of the tasks and increased use of hemiplegic limb, increasing motor performance after applying the Induced Containment Therapy adapted protocol compared to the start of treatment

  1. Systematic approach for assessment of accident risks in chemical and nuclear processing; Abordagem sistematica para avaliacao de riscos de acidentes em instalacoes de processamento quimico e nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Senne Junior, Murillo

    2003-07-15

    The industrial accidents which occurred in the last years, particularly in the 80's, contributed a significant way to draw the attention of the government, industry and the society as a whole to the mechanisms for preventing events that could affect people's safety and the environment quality. Techniques and methods extensively used the nuclear, aeronautic and war industries so far were adapted to performing analysis and evaluation of the risks associated to other industrial activities, especially in the petroleum, chemistry and petrochemical areas. The risk analysis in industrial facilities is carried out through the evaluation of the probability or frequency of the accidents and their consequences. However, no systematized methodology that could supply the tools for identifying possible accidents likely to take place in an installation is available in the literature. Neither existing are methodologies for the identification of the models for evaluation of the accidents' consequences nor for the selection of the available techniques for qualitative or quantitative analysis of the possibility of occurrence of the accident being focused. The objective of this work is to develop and implement a methodology for identification of the risks of accidents in chemical and nuclear processing facilities as well as for the evaluation of their consequences on persons. For the development of the methodology, the main possible accidents that could occur in such installations were identified and the qualitative and quantitative techniques available for the identification of the risks and for the evaluation of the consequences of each identified accidents were selected. The use of the methodology was illustrated by applying it in two case examples adapted from the literature, involving accidents with inflammable, explosives, and radioactive materials. The computer code MRA - Methodology for Risk Assessment was developed using DELPHI, version 5.0, with the purpose of

  2. User`s manual for the FEHM application -- A finite-element heat- and mass-transfer code

    Energy Technology Data Exchange (ETDEWEB)

    Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.

    1997-07-01

    The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions.

  3. Coding for dummies

    CERN Document Server

    Abraham, Nikhil

    2015-01-01

    Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill

  4. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  5. Collection of regulatory texts relative to radiation protection. Part 2: orders and decisions taken in application of the Public Health Code and Labour Code concerning the protection of populations, patients and workers against the risks of ionizing radiations; Recueil de textes reglementaires relatifs a la radioprotection. Partie 2: arretes et decisions pris en application du Code de Sante Publique et du Code du Travail concernant la protection de la population, des patients et des travailleurs contre les dangers des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    This collection of texts includes the general measures of population protection, exposure to natural radiations, general system of authorizations and statements, protection of persons exposed to ionizing radiations for medical purpose, situations of radiological emergency and long exposure to ionizing radiations, penal dispositions, application of the Public Health code and application of the Labour code. Chronological contents by date of publication is given. (N.C.)

  6. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  7. Applicability of the SCALE code system to MOX fuel transport systems for criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toshihiro; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Toshiaki; Takasugi, Masahiro; Natsume, Toshihiro; Tsuda, Kazuaki

    1996-11-01

    In order to ascertain feasibilities of the SCALE code system for MOX fuel transport systems, criticality analyses were performed for MOX fuel (Pu enrichment; 3.0 wt.%) criticality experiments at JAERI`s TCA and for infinite fuel rod arrays as parameters of Pu enrichment and lattice pitch. The comparison with a combination of the continuous energy Monte Carlo code MCNP and JENDL-3.2 indicated that the SCALE code system with GAM-THERMOS 123-group library can produce feasible results. Though HANSEN-ROACH 16-group library gives poorer results for MOS fuel transport systems, the errors are conservative except for high enriched fuels. (author)

  8. Numerical code for fitting radial emission profile of a shell supernova remnant: Application

    Directory of Open Access Journals (Sweden)

    Opsenica Slobodan

    2011-01-01

    Full Text Available We present IDL (Interactive Data Language codes for fitting a theoretical emission profile of a shell supernova remnant (SNR to the mean profile of an SNR obtained from radio observations. Two considered theoretical models are: 1 a shell with constant emissivity and 2 a synchrotron shell with radially aligned magnetic field. The codes were applied to several observed supernova remnants. Good results are obtained in five considered cases, which justify the use of our code for remnants that are bright (so that observational errors are not large and spherically symmetric enough.

  9. Some Examples of the Application and Validation of the NUFT Subsurface Flow and Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J

    2001-08-01

    This report was written as partial fulfillment of a subcontract from DOD/DOE Strategic Environmental Research and Development Program (SERDP) as part of a project directed by the U.S. Army Engineer Research and Development Center, Waterways Experiment Station (WES), Vicksburg, Mississippi. The report documents examples of field validation of the Non-isothermal Unsaturated-saturated Flow and Transport model (NUFT) code for environmental remediation, with emphasis on soil vapor extraction, and describes some of the modifications needed to integrate the code into the DOD Groundwater Modeling System (GMS, 2000). Note that this report highlights only a subset of the full capabilities of the NUFT code.

  10. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  11. Interdisciplinary safety analysis of complex socio-technological systems based on the functional resonance accident model: An application to railway trafficsupervision

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, Fabien, E-mail: fabien.belmonte@transport.alstom.co [Alstom Transport, 48 rue Albert Dhalenne, 93482 Saint-Ouen cedex (France); Schoen, Walter [Universite de Technologie de Compiegne, Laboratoire Heudiasyc, Centre de Recherches de Royallieu, BP20529, 60205 Compiegne cedex (France); Heurley, Laurent [Universite de Picardie Jules Verne, Equipe Cognition, Langage, Emotion et Acquisition (CLEA), EA 4296, UFR de Philosophie, Sciences Humaines et Sociales, Chemin du Thil, 80025 Amiens, Cedex 1 (France); Capel, Robert [Alstom Transport, 48 rue Albert Dhalenne, 93482 Saint-Ouen cedex (France)

    2011-02-15

    This paper presents an application of functional resonance accident models (FRAM) for the safety analysis of complex socio-technological systems, i.e. systems which include not only technological, but also human and organizational components. The supervision of certain industrial domains provides a good example of such systems, because although more and more actions for piloting installations are now automatized, there always remains a decision level (at least in the management of degraded modes) involving human behavior and organizations. The field of application of the study presented here is railway traffic supervision, using modern automatic train supervision (ATS) systems. Examples taken from railway traffic supervision illustrate the principal advantage of FRAM in comparison to classical safety analysis models, i.e. their ability to take into account technical as well as human and organizational aspects within a single model, thus allowing a true multidisciplinary cooperation between specialists from the different domains involved. A FRAM analysis is used to interpret experimental results obtained from a real ATS system linked to a railway simulator that places operators (experimental subjects) in simulated situations involving incidents. The first results show a significant dispersion in performances among different operators when detecting incidents. Some subsequent work in progress aims to make these 'performance conditions' more homogeneous, mainly by ergonomic modifications. It is clear that the current human-machine interface (HMI) in ATS systems (a legacy of past technologies that used LED displays) has reached its limits and needs to be improved, for example, by highlighting the most pertinent information for a given situation (and, conversely, by removing irrelevant information likely to distract operators).

  12. Development of a plate-type fuel model for the neutronics and thermal-hydraulics coupled code - SIMMER-III - and its application to the analyses of SPERT

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ping, E-mail: ping.liu@areva.co [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), P.O. Box 3640, D-76021 Karlsruhe (Germany); Gabrielli, Fabrizio; Rineiski, Andrei; Maschek, Werner [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), P.O. Box 3640, D-76021 Karlsruhe (Germany); Bruna, Giovanni B. [Reactor Safety Division, French Institute for Radioprotection and Nuclear Safety (IRSN), B.P. 17, 92262 Fontenay aux Roses Cedex (France)

    2010-10-15

    SIMMER-III, a neutronics and thermal-hydraulics coupled code, was originally developed for core disruptive accident analyses of liquid metal cooled fast reactors. Due to its versatility in investigating scenarios of core disruption, the code has also been extended to the simulation of transients in thermal neutron systems such as the criticality accident at the JCO fuel fabrication plant, and, in recent years, applied to water-moderated thermal research reactor transient studies, too. Originally, SIMMER considered only cylindrical fuel pin geometry. Therefore, implementation of a plate-type fuel model to the SIMMER-III code is of importance for the analysis of research reactors adopting this kind of fuel. Furthermore, validation of the SIMMER-III modeling of light water-cooled thermal reactor reactivity initiated transients is of necessity. This paper presents the work carried out on the SIMMER-III code in the framework of a KIT and IRSN joint activity aimed at providing the code with experimental reactor transient study capabilities. The first step of the job was the implementation of a new fuel model in SIMMER-III. Verification on this new model indicates that it can well simulate the steady-state temperature profile in the fuel. Secondly, three cases with the shortest reactor periods of 5.0 ms, 4.6 ms and 3.2 ms among the Special Power Excursion Reactor Tests (SPERT) performed in the SPERT I D-12/25 facility have been simulated. Comparison of the results between the SIMMER-III simulation and the reported SPERT results indicates that although there is space for further improvement on the modeling of negative feedback mechanisms, with this plate-type fuel model SIMMER-III can well represent the transient phenomena of reactivity driven power excursion.

  13. Boating Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  14. Accident resistant transport container

    Science.gov (United States)

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  15. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  16. Upgrades and application of FIT3D NBI-plasma interaction code in view of LHD deuterium campaigns

    Science.gov (United States)

    Vincenzi, P.; Bolzonella, T.; Murakami, S.; Osakabe, M.; Seki, R.; Yokoyama, M.

    2016-12-01

    This work presents an upgrade of the FIT3D neutral beam-plasma interaction code, part of TASK3D, a transport suite of codes, and its application to LHD experiments in the framework of the preparation for the first deuterium experiments in the LHD. The neutral beam injector (NBI) system will be upgraded to D injection, and efforts have been recently made to extend LHD modelling capabilities to D operations. The implemented upgrades for FIT3D to enable D NBI modelling in D plasmas are presented, with a discussion and benchmark of the models used. In particular, the beam ionization module has been modified and a routine for neutron production estimation has been implemented. The upgraded code is then used to evaluate the NBI power deposition in experiments with different plasma compositions. In the recent LHD campaign, in fact, He experiments have been run to help the prediction of main effects which may be relevant in future LHD D plasmas. Identical H/He experiments showed similar electron density and temperature profiles, while a higher ion temperature with an He majority has been observed. From first applications of the upgraded FIT3D code it turns out that, although more NB power appears to be coupled with the He plasma, the NBI power deposition is unaffected, suggesting that heat deposition does not play a key role in the increased ion temperature with He plasma.

  17. Compilation of documented computer codes applicable to environmental assessment of radioactivity releases. [Nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, F. O.; Miller, C. W.; Shaeffer, D. L.; Garten, Jr., C. T.; Shor, R. W.; Ensminger, J. T.

    1977-04-01

    The objective of this paper is to present a compilation of computer codes for the assessment of accidental or routine releases of radioactivity to the environment from nuclear power facilities. The capabilities of 83 computer codes in the areas of environmental transport and radiation dosimetry are summarized in tabular form. This preliminary analysis clearly indicates that the initial efforts in assessment methodology development have concentrated on atmospheric dispersion, external dosimetry, and internal dosimetry via inhalation. The incorporation of terrestrial and aquatic food chain pathways has been a more recent development and reflects the current requirements of environmental legislation and the needs of regulatory agencies. The characteristics of the conceptual models employed by these codes are reviewed. The appendixes include abstracts of the codes and indexes by author, key words, publication description, and title.

  18. Shannon's secrecy system with informed receivers and its application to systematic coding for wiretapped channels

    CERN Document Server

    Merhav, Neri

    2007-01-01

    Shannon's secrecy system is studied in a setting, where both the legitimate decoder and the wiretapper have access to side information sequences correlated to the source, but the wiretapper receives both the coded information and the side information via channels that are more noisy than the respective channels of the legitmate decoder, which in turn, also shares a secret key with the encoder. A single--letter characterization is provided for the achievable region in the space of five figures of merit: the equivocation at the wiretapper, the key rate, the distortion of the source reconstruction at the legitimate receiver, the bandwidth expansion factor of the coded channels, and the average transmission cost (generalized power). Beyond the fact that this is an extension of earlier studies, it also provides a framework for studying fundamental performance limits of systematic codes in the presence of a wiretap channel. The best achievable performance of systematic codes is then compared to that of a general co...

  19. Simulation of multibunch motion with the Headtail code and application to the CERN SPS and LHC

    CERN Document Server

    Mounet, N; Rumolo, G

    2011-01-01

    Multibunch instabilities due to beam-coupling impedance can be a critical limitation for synchrotrons operating with many bunches. It is particularly true for the LHC under nominal conditions, where according to theoretical predictions the 2808 bunches rely entirely on the performance of the transverse feedback system to remain stable. To study these instabilities, the HEADTAIL code has been extended to simulate the motion of many bunches under the action of wake fields. All the features already present in the single-bunch version of the code, such as synchrotron motion, chromaticity, amplitude detuning due to octupoles and the ability to load any kind of wake fields through tables, have remained available. This new code has been then parallelized in order to track thousands of bunches in a reasonable amount of time. The code was benchmarked against theory and exhibited a good agreement. We also show results for bunch trains in the LHC and compare them with beam-based measurements.

  20. Decoding Generalized Reed-Solomon Codes and Its Application to RLCE Encryption Schemes

    OpenAIRE

    Wang, Yongge

    2017-01-01

    This paper presents a survey on generalized Reed-Solomon codes and various decoding algorithms: Berlekamp-Massey decoding algorithms; Berlekamp-Welch decoding algorithms; Euclidean decoding algorithms; discrete Fourier decoding algorithms, Chien's search algorithm, and Forney's algorithm.

  1. A Random Variable Substitution Lemma With Applications to Multiple Description Coding

    CERN Document Server

    Wang, Jia; Zhao, Lei; Cuff, Paul; Permuter, Haim

    2009-01-01

    We establish a random variable substitution lemma and use it to investigate the role of refinement layer in multiple description coding, which clarifies the relationship among several existing achievable multiple description rate-distortion regions. Specifically, it is shown that the El Gamal-Cover (EGC) region is equivalent to the EGC* region (an antecedent version of the EGC region) while the Venkataramani-Kramer-Goyal (VKG) region (when specialized to the 2-description case) is equivalent to the Zhang-Berger (ZB) region. Moreover, we prove that for multiple description coding with individual and hierarchical distortion constraints, the number of layers in the VKG scheme can be significantly reduced when only certain weighted sum rates are concerned. The role of refinement layer in scalable coding (a special case of multiple description coding) is also studied.

  2. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  3. MELCOR DB Construction for the Severe Accident Analysis DB

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. M.; Ahn, K. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The Korea Atomic Energy Research Institute (KAERI) has been constructing a severe accident analysis database (DB) under a National Nuclear R and D Program. In particular, an MAAP (commercial code being widely used in industries for integrated severe accident analysis) DB for many scenarios including a station blackout (SBO) has been completed. This paper shows the MELCOR DB construction process with examples of SBO scenarios, and the results will be used for a comparison with the MAAP DB

  4. Analysis of hot leg natural circulation under station blackout severe accident

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Under severe accidents, natural circulation flows are important to influence the accident progression and result in a pressurized water reactor (PWR). In a station blackout accident with no recovery of steam generator (SG) auxiliary feedwater (TMLB' severe accident scenario), the hot leg countercurrent natural circulation flow is analyzed by using a severe-accident code, to better understand its potential impacts on the creep-rupture timing among the surge line, the hot leg, and SG tubes. The results show that the natural circulation may delay the failure time of the hot leg.The recirculation ratio and the hot mixing factor are also calculated and discussed.

  5. Severe accident analysis of a station blackout accident using MAAP-CANDU for the Point Lepreau station refurbishment project level 2 PSA

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Petoukhov, S.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    A Level 2 Probabilistic Safety Assessment was performed for the Point Lepreau Generating Station, using the MAAP-CANDU code to simulate the progression of severe core damage accidents and fission product releases. Five representative severe accidents were selected: Station Blackout, Small Loss-of-Coolant, Stagnation Feeder Break, Steam Generator Tube Rupture, and Shutdown State. Analysis results for the reference station blackout accident are discussed in this paper. (author)

  6. RADIOLOGICAL SITUATION IN UKRAINE AFTER CHERNOBYL ACCIDENT AND OPTIMIZATION OF THE COUNTERMEASURES APPLICATION AT THE PRESENT STAGE

    Directory of Open Access Journals (Sweden)

    V. A. Kashparov

    2009-01-01

    Full Text Available The present radiological situation in the agricultural production of Ukraine is considered and analyzed. On the basis of optimization of the countermeasures application the approaches are proposed which would guarantee the compliance of the agricultural production with the corresponding State hygienic regulations, as well as reduction of the effective exposure dose to population below the approved limits. Taking into account the lately growing interest to radiation protection of not only human, but the environment as well, the results of the studies of frequency of the radiobiological effects of chronic irradiation to plantations of Scots pine in the Chernobyl exclusion zone depending on the levels of the dose to the trees' apical meristem are presented.

  7. KSTAR Severe Accident Analysis using MELCOR : Ex-vessel Coolant Pipe Break with Failure of Fusion Power Termination System

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    To investigate the consequence of severe accidents in fusion reactor, a number of thermal hydraulics simulation codes were used (ECART, INTRA, ATHENA/RELAP and so on). MELCOR is chosen as the thermal hydraulics code to simulate the consequence of radioactive material release from accident in preliminary safety report. Capability of the simulation code for fusion reactor severe accident analysis is ability to simulate the hydraulic system in ITER and the transport phenomenon of radionuclides. MELCOR is a fully integrated code that models the accidents in Light Water Reactor (LWR). There are three kinds of radioactive materials in fusion reactor; tritium (or Tiritiated water: HTO), activation products (AP) of divertor or first-wall and activated corrosion products(ACP). In generic Site Safety Report (GSSR), the release guidelines for tritium and activation products are listed for normal operation, incidents, and accidents. And this guidelines presented in Table 1. Not only ITER, the KSTAR (Korea Superconducting Tokamak Advanced Research) is also developing fusion research reactor. The scale of facility is smaller than ITER but this small scale of facility offers the experimental flexibility to develop fusion technology. The major differences between KSTAR and ITER systems are presented in Table 2. Fusion source difference between KSTAR and ITER is D-D fusion reaction (Deuterium-Deuterium fusion reaction) and D-T fusion reaction (Deuterium-Tritium fusion reaction). This D-D fusion makes one tritium by 50 percent chance. The radioactivity of tritium is small to consider compared to radioactive materials in nuclear fission reactor. This reaction is presented in equation (1) In the present work, conservatively estimated tritium inventory amount in KSTAR is used with one of the most severe accident in ITER; Ex-vessel pipe break with Fusion Power Termination System (FPTS). The MELCOR KSTAR input is made by scaling down the ITER input deck. So, the detail system is not same

  8. Research and application on FTA model of chemical accident fuzzy system%化工事故模糊系统FTA模型的研究与应用

    Institute of Scientific and Technical Information of China (English)

    王陈玉书; 张园园; 张巨伟; 尚思思; 刘俊亨

    2013-01-01

    针对化工事故模糊系统,基于三角模糊数和事故树建立事故定量分析模型.运用该模型进行案例分析,确定储油罐体发生火灾爆炸事故的概率分布,指出概率的波动范围、平均事故概率,得出基本事件的模糊重要度,进行模糊重要度排序,明确该化工系统危险源分布的状态,指出导致事故发生的最危险路径,给出该危险路径发生的模糊概率,以上为企业管理人员制定安全措施提供重要的参考依据.该模型对于企业进行事故预测、事故原因分析、制定安全对策、风险投资分析具有重要的意义.%Accident quantitative analysis model for chemical accident fuzzy system based on triangular fuzzy number and fault tree was established. This model was applied to analyzing a case, determining the fire and explosion accident probability distribution of oil tank, pointing out that the fluctuation range of probability and the average accident probability, getting the fuzzy important degree of basic events, sorting fuzzy degree of importance, clearing the state of dangerous source distribution about the chemical system, and pointing out the most dangerous path that causes the accident. All of above provide important reference for corporate executives to develop safety measures. The model is important for accident prediction, analyzing the cause of the accident, developing safety countermeasures and analyzing risk investment.

  9. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Kazuteru [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  10. UNSAT-H Version 1. 0: unsaturated flow code documentation and applications for the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, M.J.; Gee, G.W.; Jones, T.L.

    1986-08-01

    Waste mangement practices at the Hanford Site have relied havily on near-surface burial. Predicting the future performance of any burial site in terms of the migration of buried contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently being developed to meet this need is UNSAT-H, which was developed at Pacific Northwest Laboratory for assessing the water dynamics of near-surface waste-disposal sites at the Hanfrod Site. The code will primarily be used to predict deep drainage (i.e., recharge) as a function of environmental conditions such as climate, soil type, and vegetation. UNSAT-H will also simulate various waste-management practices such as placing surface barriers over waste sites. UNSAT-H is a one-dimensional model that simulates the dynamics processes of infiltration, drainage, redistribution, surface evaporation, and uptake of water from soil by plants. UNSAT-H is designed to utilize two auxiliary codes. These codes are DATAINH, which is used to process the input data, and DATAOUT, which is used to process the UNSAT-H output. Operation of the code requires three separate steps. First, the problem to be simulated must be conceptualized in terms of boundary conditions, available data, and soil properties. Next, the data must be correctly formatted for input. Finally, the unput data must be processed, UNSAT-H run, and the output data processed for analysis. This report includes three examples of code use. In the first example, a benchmark test case is run in which the results of UNSAT-H simulations of infiltration are compared with an analytical solution and a numerical solution. The comparisons show excellent agreement for the specific test case, and this agreement provides vertification of the infiltration portion of the UNSAT-H code. The other two examples of code use are a simulation of a layered soil and one of plant transpiration.

  11. QR code for medical information uses.

    Science.gov (United States)

    Fontelo, Paul; Liu, Fang; Ducut, Erick G

    2008-11-06

    We developed QR code online tools, simulated and tested QR code applications for medical information uses including scanning QR code labels, URLs and authentication. Our results show possible applications for QR code in medicine.

  12. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study.

    Science.gov (United States)

    Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph

    2014-01-01

    A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed.

  13. A New Code for Nonradial Stellar Pulsations and its Application to Low - Mass, Helium White Dwarfs

    CERN Document Server

    Corsico, A H

    2002-01-01

    We present a finite difference code intended for computing linear, adiabatic, nonradial pulsations of spherical stars. This code is based on a general Newton - Raphson technique in order to handle the relaxation of the eigenvalue (square of the eigenfrequency) of the modes and their corresponding eigenfunctions. This code has been tested computing the pulsation spectra of polytropic spheres finding a good agreement with previous work. Then, we have coupled this code to our evolutionary code and applied it to the computation of the pulsation spectrum of a low mass, pure - helium white dwarf of 0.3 M_{sun} for a wide range of effective temperatures. In making this calculation we have taken an evolutionary time step short enough such that eigenmodes corresponding to a given model are used as initial approximation to those of the next one. Specifically, we have computed periods, period spacing, eigenfunctions, weight functions, kinetic energies and variational periods for a wide range of modes. To our notice this...

  14. Progress in developing the ASPECT Mantle Convection Code - New Features, Benchmark Comparisons and Applications

    Science.gov (United States)

    Dannberg, Juliane; Bangerth, Wolfgang; Sobolev, Stephan

    2014-05-01

    Since there is no direct access to the deep Earth, numerical simulations are an indispensible tool for exploring processes in the Earth's mantle. Results of these models can be compared to surface observations and, combined with constraints from seismology and geochemistry, have provided insight into a broad range of geoscientific problems. In this contribution we present results obtained from a next-generation finite-element code called ASPECT (Advanced Solver for Problems in Earth's ConvecTion), which is especially suited for modeling thermo-chemical convection due to its use of many modern numerical techniques: fully adaptive meshes, accurate discretizations, a nonlinear artificial diffusion method to stabilize the advection equation, an efficient solution strategy based on a block triangular preconditioner utilizing an algebraic multigrid, parallelization of all of the steps above and finally its modular and easily extensible implementation. In particular the latter features make it a very versatile tool applicable also to lithosphere models. The equations are implemented in the form of the Anelastic Liquid Approximation with temperature, pressure, composition and strain rate dependent material properties including associated non-linear solvers. We will compare computations with ASPECT to common benchmarks in the geodynamics community such as the Rayleigh-Taylor instability (van Keken et al., 1997) and demonstrate recently implemented features such as a melting model with temperature, pressure and composition dependent melt fraction and latent heat. Moreover, we elaborate on a number of features currently under development by the community such as free surfaces, porous flow and elasticity. In addition, we show examples of how ASPECT is applied to develop sophisticated simulations of typical geodynamic problems. These include 3D models of thermo-chemical plumes incorporating phase transitions (including melting) with the accompanying density changes, Clapeyron

  15. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  16. Research on universal combinatorial coding.

    Science.gov (United States)

    Lu, Jun; Zhang, Zhuo; Mo, Juan

    2014-01-01

    The conception of universal combinatorial coding is proposed. Relations exist more or less in many coding methods. It means that a kind of universal coding method is objectively existent. It can be a bridge connecting many coding methods. Universal combinatorial coding is lossless and it is based on the combinatorics theory. The combinational and exhaustive property make it closely related with the existing code methods. Universal combinatorial coding does not depend on the probability statistic characteristic of information source, and it has the characteristics across three coding branches. It has analyzed the relationship between the universal combinatorial coding and the variety of coding method and has researched many applications technologies of this coding method. In addition, the efficiency of universal combinatorial coding is analyzed theoretically. The multicharacteristic and multiapplication of universal combinatorial coding are unique in the existing coding methods. Universal combinatorial coding has theoretical research and practical application value.

  17. Accidents in nuclear ships

    Energy Technology Data Exchange (ETDEWEB)

    Oelgaard, P.L. [Risoe National Lab., Roskilde (Denmark)]|[Technical Univ. of Denmark, Lyngby (Denmark)

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10{sup -3} per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au).

  18. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  19. Generating code adapted for interlinking legacy scalar code and extended vector code

    Science.gov (United States)

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  20. Mean-Adaptive Real-Coding Genetic Algorithm and its Applications to Electromagnetic Optimization (Part One

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2007-09-01

    Full Text Available In the paper, a novel instance of the real-coding steady-state genetic algorithm, called the Mean-adaptive real-coding genetic algorithm, is put forward. In this instance, three novel implementations of evolution operators are incorporated. Those are a recombination and two mutation operators. All of the evolution operators are designed with the aim of possessing a big explorative power. Moreover, one of the mutation operators exhibits self-adaptive behavior and the other exhibits adaptive behavior, thereby allowing the algorithm to self-control its own mutability as the search advances. This algorithm also takes advantage of population-elitist selection, acting as a replacement policy, being adopted from evolution strategies. The purpose of this paper (i.e., the first part is to provide theoretical foundations of a robust and advanced instance of the real-coding genetic algorithm having the big potential of being successfully applied to electromagnetic optimization.

  1. TOOKUIL: A case study in user interface development for safety code application

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G. [and others

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.

  2. The Hybrid Detailed / Statistical Opacity Code SCO-RCG: New Developments and Applications

    CERN Document Server

    Pain, Jean-Christophe; Porcherot, Quentin; Blenski, Thomas

    2013-01-01

    We present the hybrid opacity code SCO-RCG which combines statistical approaches with fine-structure calculations. Radial integrals needed for the computation of detailed transition arrays are calculated by the code SCO (Super-configuration Code for Opacity), which calculates atomic structure at finite temperature and density, taking into account plasma effects on the wave-functions. Levels and spectral lines are then computed by an adapted RCG routine of R. D. Cowan. SCO-RCG now includes the Partially Resolved Transition Array model, which allows one to replace a complex transition array by a small-scale detailed calculation preserving energy and variance of the genuine transition array and yielding improved high-order moments. An approximate method for studying the impact of strong magnetic field on opacity and emissivity was also recently implemented.

  3. Implementation of a tree algorithm in MCNP code for nuclear well logging applications.

    Science.gov (United States)

    Li, Fusheng; Han, Xiaogang

    2012-07-01

    The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length.

  4. Development of auditing technology for accident analysis of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Kim, H. C.; Bae, K. H.; Lee, Y. J.; Chung, Y. J.; Jeong, J. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-06-15

    The objective of this project is to develop thermal hydraulic models of the regulatory auditing codes for the application of SMART-P integrated reactor. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement. Well known PIRT methodology has been applied to identify model improvement items. As a part of PIRT process, the identification of SMART-P system and compenent has been performed. The scenario of each key accident and phenonema have been identified. To identify SMART-P thermal-hydraulic characteristics, preliminary calculation has been performed and identify the applicability and inprovement items of current auditing code, RELAP5.

  5. Iodine behaviour in severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, L.M.C.; Grindon, E.; Handy, B.J.; Sutherland, L. [NNC Ltd., Knutsford (United Kingdom); Bruns, W.G.; Sims, H.E. [AEA Technology, Harwell (United Kingdom); Dickinson, S. [AEA Technology, Winfrith (United Kingdom); Hueber, C.; Jacquemain, D. [IPSN/CEA, Cadarache, Saint Paul-Lez-Durance (France)

    1996-12-01

    A description is given of analyses which identify which aspects of the modelling and data are most important in evaluating the release of radioactive iodine to the environment following a potential severe accident at a PWR and which identify the major uncertainties which affect that release. Three iodine codes are used namely INSPECT, IODE and IMPAIR, and their predictions are compared with those of the PSA code MAAP. INSPECT is a mechanistic code which models iodine behaviour in the aqueous aerosol, spray water and sump water, and the partitioning of volatile species between the aqueous phases and containment gas space. Organic iodine is not modelled. IODE and IMPAIR are semi-empirical codes which do not model iodine behaviour in the aqueous aerosol, but model organic iodine. The fault sequences addressed are based on analyses for the Sizewell `B` design. Two types of sequence have been analysed.: (a) those in which a major release of fission products from the primary circuit to the containment occur, e.g. a large LOCAS, (b) those where the release by-passes the containment, e.g. a leak into the auxiliary building. In the analysis of the LOCA sequences where the pH of the sump is controlled to be a value of 8 or greater, all three codes predict that the oxidation of iodine to produce gas phase species does not make a significant contribution to the source term due to leakage from the reactor building and that the latter is dominated by iodide in the aerosol. In the case where the pH of the sump is not controlled, it is found that the proportion of gas phase iodine increases significantly, although the cumulative leakage predicted by all three codes is not significantly different from that predicted by MAAP. The radiolytic production of nitric acid could be a major factor in determining the pH, and if the pH were reduced, the codes predict an increase in gas phase iodine species leaked from the containment. (author) 4 figs., 7 tabs., 13 refs.

  6. Controller routines for the DECsystem-10 with application to a tandem-mirror plasma code

    Energy Technology Data Exchange (ETDEWEB)

    Faul, D.R.; Devoto, R.S.

    1979-04-12

    FORTRAN-callable subroutines have been written to enable controller--controllee interaction on the LLL DECsystem-10. These subroutines have been used to construct a controller (XTCTMR) for a tandem-mirror physics code (CTCTMR). A description of the subroutines and their use is presented. Also, sample results are given.

  7. Application of Multiple Description Coding for Adaptive QoS Mechanism for Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ilan Sadeh

    2014-02-01

    Full Text Available Multimedia transmission over cloud infrastructure is a hot research topic worldwide. It is very strongly related to video streaming, VoIP, mobile networks, and computer networks. The goal is a reliable integration of telephony, video and audio transmission, computing and broadband transmission based on cloud computing. One right approach to pave the way for mobile multimedia and cloud computing is Multiple Description Coding (MDC, i.e. the solution would be: TCP/IP and similar protocols to be used for transmission of text files, and Multiple Description Coding “Send and Forget” algorithm to be used as transmission method for Multimedia over the cloud. Multiple Description Coding would improve the Quality of Service and would provide new service of rate adaptive streaming. This paper presents a new approach for improving the quality of multimedia and other services in the cloud, by using Multiple Description Coding (MDC. Firsty MDC Send and Forget Algorithm is compared with the existing protocols such as TCP/IP, UDP, RTP, etc. Then the Achievable Rate Region for MDC system is evaluated. Finally, a new subset of Quality of Service that considers the blocking in multi-terminal multimedia network and fidelity losses is considered.

  8. Wavelet transform and Huffman coding based electrocardiogram compression algorithm: Application to telecardiology

    Science.gov (United States)

    Chouakri, S. A.; Djaafri, O.; Taleb-Ahmed, A.

    2013-08-01

    We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly.

  9. Data calculation program for RELAP 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Larissa J.B.; Sabundjian, Gaiane, E-mail: larissajbs@usp.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    As the criteria and requirements for a nuclear power plant are extremely rigid, computer programs for simulation and safety analysis are required for certifying and licensing a plant. Based on this scenario, some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors. A major difficulty in the simulation using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. The preparation of the input data leads to a very large number of mathematical operations for calculating the geometry of the components. Therefore, a mathematical friendly preprocessor was developed in order to perform these calculations and prepare RELAP5 input data. The Visual Basic for Application (VBA) combined with Microsoft EXCEL demonstrated to be an efficient tool to perform a number of tasks in the development of the program. Due to the absence of necessary information about some RELAP5 components, this work aims to make improvements to the Mathematic Preprocessor for RELAP5 code (PREREL5). For the new version of the preprocessor, new screens of some components that were not programmed in the original version were designed; moreover, screens of pre-existing components were redesigned to improve the program. In addition, an English version was provided for the new version of the PREREL5. The new design of PREREL5 contributes for saving time and minimizing mistakes made by users of the RELAP5 code. The final version of this preprocessor will be applied to Angra 2. (author)

  10. Applying Functional Modeling for Accident Management of Nucler Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigates applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...... for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented....

  11. Distributed Video Coding: Iterative Improvements

    DEFF Research Database (Denmark)

    Luong, Huynh Van

    Nowadays, emerging applications such as wireless visual sensor networks and wireless video surveillance are requiring lightweight video encoding with high coding efficiency and error-resilience. Distributed Video Coding (DVC) is a new coding paradigm which exploits the source statistics...

  12. Effect of In-Vessel Retention Strategies under Postulated SGTR Accidents of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wonjun; Lee, Yongjae; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of); Kim, Hwan-Yeol; Park, Rae-Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, MELCOR code was used to simulate the severe accident of the OPR1000. MELCOR code is computer code which enables to simulate the progression of the severe accident for light water reactors. It has been developed by Sandia National Laboratories for plant risk assessment and source term analysis since 1982. According to the probabilistic safety analysis (PSA) Level 1 of OPR1000, typical severe accident scenarios of high probability of a transition to severe accident for OPR1000 were identified as Small Break Loss of Coolant Accident (SBLOCA), Station Black out (SBO), Total Loss of Feed Water (TLOFW), and Steam Generator Tube Rupture. While the first three accidents are expected to result in the generation and transportation of the radioactive nuclides within the containment building as consequence of the core damage and subsequent reactor pressure vessel (RPV) failure, the latter accident scenario may be progressed with possible direct release of the radioactive nuclides to the environment by bypassing the containment building. Thus it is of significance to investigate the SGTR accident with a sophisticated severe accident code. This code can simulate the whole phenomena of a severe accident such as thermal-hydraulic response, core heat-up, oxidation and relocation, and fission product release and transport. Thus many researchers have used MELCOR in severe accident studies. In this study, in-vessel retention strategies were applied for postulated SGTR accidents. Mitigation effect and adverse effect of in-vessel strategies was studied in aspect of RPV failure, fission product release and containment thermal-hydraulic and hydrogen behavior. Base case of SGTR accident and three mitigation cases were simulated using MELCOR code 1.8.6. For each mitigation cases, mitigation effect and adverse effect were investigated. Conclusions can be summarized as follows: (1) RPV failure of SGTR base case occurred at 5.62 hours and fission product of RCS released to

  13. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  14. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    Energy Technology Data Exchange (ETDEWEB)

    RITTMANN, P.D.

    1999-10-07

    Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  15. A numerical study on a lumped-parameter model and a CFD code coupling for the analysis of the loss of coolant accident in a reactor containment; Etude numerique 0D-multiD pour l'analyse de perte de refrigerant dans une enceinte de confinement d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y.J.

    2005-12-15

    In the case of PWR severe accident (Loss of Coolant Accident, LOCA), the inner containment ambient properties such as temperature, pressure and gas species concentrations due to the released steam condensation are the main factors that determine the risk. For this reason, their distributions should be known accurately, but the complexity of the geometry and the computational costs are strong limitations to conduct full three-dimensional numerical simulations. An alternative approach is presented in this thesis, namely, the coupling between a lumped-parameter model and a CFD. The coupling is based on the introduction of a 'heat transfer function' between both models and it is expected that large decreases in the CPU-costs may be achieved. First of all, wall condensation models, such as the Uchida or the Chilton-Colburn models which are implemented in the code CAST3M/TONUS, are investigated. They are examined through steady-state calculations by using the code TONUS-0D, based on lumped parameter models. The temperature and the pressure within the inner containment are compared with those reported in the archival literature. In order to build the 'heat transfer function', natural convection heat transfer is then studied by using the code CAST3M for a partitioned cavity which represents a simplified geometry of the reactor containment. At a first step, two-dimensional natural convection heat transfer without condensation is investigated only. Either the incompressible-Boussinesq fluid flow model or the asymptotic low Mach model are considered for solving the time dependent conservation equations. The SUPG finite element method and the implicit scheme are applied for the numerical discretization. The computed results are qualified by the second-order Richardson extrapolation method which allows obtaining the so-called 'Exact values', i.e. grid size independent values. The computations are also validated through non-partitioned cavity case

  16. 机械完整性技术在海底管道事故分析中的应用研究%Study on application of mechanical integrity technology in analysis of submarine pipeline accidents

    Institute of Scientific and Technical Information of China (English)

    高安东

    2013-01-01

    Compared with those of onshore pipelines,the internal and external operating environments of submarine pipelines are difficult to inspect and seek evidence,making it difficult to carry out a quantitative analysis of the accidents.Besides,the difficulty in identifying the causal factors makes it hard to avoid the potential accidents after maintenance and repair.This paper proposes an analytical model of submarine pipeline integrity management,in combination with the characteristics of submarine pipeline and the requirements of pipeline integrity management.This paper also analyzes an actual leakage accident in submarine pipeline,and comes to a satisfactory conclusion.Finally,it summarizes the application of integrity technology in the investigation into submarine pipeline accidents,and looks into its future development.%相对陆地管道,海底管道运行的内外部环境不易勘察与取证,给事故定性带来很大难度,且由于难于识别致因要素,维抢修后隐患难以根治.文中总结了海底管道特点,结合管道完整性管理要求,建立了海底管道完整性管理分析模型,并对一起实际发生的海管泄漏事故进行了分析,取得了满意的结果.对完整性技术在海底管道事故调查中应用进行了总结和展望.

  17. The study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Jeun, Gyoo Dong; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Bang, Kwang Hyun; Kim, Ki Yong [Korea Maritime Univ., Busan (Korea, Republic of)

    1999-03-15

    After TMI-2 accident, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining confidence in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression is proposed.

  18. A study on the late core melt progression in pressurized water reactor severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Jeun Gyoo Dong; Bang, Kwang Hyun; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Back, Hyung Hmm [Korea Maritime Univ., Busan (Korea, Republic of)

    1998-03-15

    After TMI-2 accidents, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression os proposed.

  19. A code to simulate nuclear reactor inventories and associated gamma-ray spectra.

    Science.gov (United States)

    Cresswell, A J; Allyson, J D; Sanderson, D C

    2001-01-01

    A computer code has been developed to simulate the gamma-ray spectra that would be measured by airborne gamma spectrometry (AGS) systems from sources containing short-lived fission products. The code uses simple numerical methods to simulate the production and decay of fission products and generates spectra for sodium iodide (NaI) detectors using Monte Carlo codes. A new Monte Carlo code using a virtual array of detectors to reduce simulation times for airborne geometries is described. Spectra generated for a short irradiation and laboratory geometry have been compared with an experimental data set. The agreement is good. Spectra have also been generated for airborne geometries and longer irradiation periods. The application of this code to generate AGS spectra for accident scenarios and their uses in the development and evaluation of spectral analysis methods for such situations are discussed.

  20. A Code for Stellar Binary Evolution and its Application to the Formation of Helium White Dwarfs

    CERN Document Server

    Benvenuto, O G

    2003-01-01

    We present a numerical code intended for calculating stellar evolution in close binary systems. In doing so, we consider that mass transfer episodes occur when the stellar size overflows the corresponding Roche lobe. In such situation we equate the radius of the star with the equivalent radius of the Roche lobe. This equation is handled implicitly together with those corresponding to the whole structure of the star. We describe in detail the necessary modifications to the standard Henyey technique for treating the mass loss rate implicitly together with thin outer layers integrations. We have applied this code to the calculation of the formation of low mass, helium white dwarfs in low mass close binary systems. We found that the global numerical convergence properties are fairly good. In particular, the onset and end of mass transfer episodes is computed automatically.

  1. A new code to study structures in collisionally active, perturbed debris discs. Application to binaries

    CERN Document Server

    Thebault, Philippe

    2011-01-01

    Debris discs are traditionally studied using two distinct types of numerical models: statistical particle-in-a-box codes to study their collisional and size distribution evolution, and dynamical N-body models to study their spatial structure. The absence of collisions from N-body codes is in particular a major shortcoming, as collisional processes are expected to significantly alter the results obtained from pure N-body runs. We present a new numerical model, to study the spatial structure of perturbed debris discs at dynamical and collisional steady-state. We focus on the competing effects between gravitational perturbations by a massive body (planet or star), collisional production of small grains, and radiation pressure placing these grains in possibly dynamically unstable regions. We consider a disc of parent bodies at dynamical steady-state, from which small radiation-pressure-affected grains are released in a series of runs, each corresponding to a different orbital position of the perturber, where part...

  2. Implementation of a tree algorithm in MCNP code for nuclear well logging applications

    Energy Technology Data Exchange (ETDEWEB)

    Li Fusheng, E-mail: fusheng.li@bakerhughes.com [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States); Han Xiaogang [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States)

    2012-07-15

    The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. - Highlights: Black-Right-Pointing-Pointer Tree structure programming is suitable for Monte-Carlo based particle tracking. Black-Right-Pointing-Pointer Enhanced pulse height tally is developed for oilwell logging tool simulation. Black-Right-Pointing-Pointer Neutron interaction tally and gamma ray index tally for geochemical logging.

  3. THELMA code electromagnetic model of ITER superconducting cables and application to the ENEA stability experiment

    Science.gov (United States)

    Ciotti, M.; Nijhuis, A.; Ribani, P. L.; Savoldi Richard, L.; Zanino, R.

    2006-10-01

    The new THELMA code, including a thermal-hydraulic (TH) and an electro-magnetic (EM) model of a cable-in-conduit conductor (CICC), has been developed. The TH model is at this stage relatively conventional, with two fluid components (He flowing in the annular cable region and He flowing in the central channel) being particular to the CICC of the International Thermonuclear Experimental Reactor (ITER), and two solid components (superconducting strands and jacket/conduit). In contrast, the EM model is novel and will be presented here in full detail. The results obtained from this first version of the code are compared with experimental results from pulsed tests of the ENEA stability experiment (ESE), showing good agreement between computed and measured deposited energy and subsequent temperature increase.

  4. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  5. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model.

  6. The generation of Entangled Qudits and their Application in Probabilistic Superdense Coding

    Institute of Scientific and Technical Information of China (English)

    Lin Qing

    2009-01-01

    @@ A scheme of the generation of entangled qutrits is presented, and then is generalized to entangled ququads and entangled qudits. With the entangled qutrits, an experimental scheme of probability superdense coding with only linear optical elements is proposed. It is shown that this scheme will be suitable for the entangled ququads, even for the entangled qudits if some nonlinearity is used. This scheme is feasible in the laboratory with the current experimental technology.

  7. Application of software engineering to development of reactor-safety codes

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, N P; Niccoli, L G

    1980-11-01

    As a result of the drastically increasing cost of software and the lack of an engineering approach, the technology of Software Engineering is being developed. Software Engineering provides an answer to the increasing cost of developing and maintaining software. It has been applied extensively in the business and aerospace communities and is just now being applied to the development of scientific software and, in particular, to the development of reactor safety codes at HEDL.

  8. New Geometrical Spectra of Linear Codes with Applications to Performance Analysis

    CERN Document Server

    Ma, Xiao; Zhuang, Qiutao

    2012-01-01

    In this paper, new enumerating functions for linear codes are defined, including the triangle enumerating function and the tetrahedron enumerating function, both of which can be computed using a trellis-based algorithm over polynomial rings. The computational complexity is dominated by the complexity of the trellis. In addition, we show that these new enumerating functions can be used to improve existing performance bounds on the maximum likelihood decoding.

  9. Broadcasting XORs: On the Application of Network Coding in Access Point-to-Multipoint Networks

    OpenAIRE

    Fouli, Kerim; Sergeev, Ivan; Maier, Martin; Casse, Jerome; Medard, Muriel

    2012-01-01

    We investigate network coding (NC) in access point-to-multi-point (PMP) broadcast networks. Characterized by a shared unicast upstream channel and a time-shared broadcast downstream channel, PMP networks are widely deployed in optical and wireless access networks. We develop a queuing-theoretic model of NC at the medium access control (MAC) sublayer and analyze the impact of NC on packet delay. Our analysis is validated through discrete-event simulation and demonstrates significant delay adva...

  10. FFT Algorithm for Binary Extension Finite Fields and Its Application to Reed–Solomon Codes

    KAUST Repository

    Lin, Sian-Jheng

    2016-08-15

    Recently, a new polynomial basis over binary extension fields was proposed, such that the fast Fourier transform (FFT) over such fields can be computed in the complexity of order O(n lg(n)), where n is the number of points evaluated in FFT. In this paper, we reformulate this FFT algorithm, such that it can be easier understood and be extended to develop frequency-domain decoding algorithms for (n = 2(m), k) systematic Reed-Solomon (RS) codes over F-2m, m is an element of Z(+), with n-k a power of two. First, the basis of syndrome polynomials is reformulated in the decoding procedure so that the new transforms can be applied to the decoding procedure. A fast extended Euclidean algorithm is developed to determine the error locator polynomial. The computational complexity of the proposed decoding algorithm is O(n lg(n-k)+(n-k)lg(2)(n-k)), improving upon the best currently available decoding complexity O(n lg(2)(n) lg lg(n)), and reaching the best known complexity bound that was established by Justesen in 1976. However, Justesen\\'s approach is only for the codes over some specific fields, which can apply Cooley-Tukey FFTs. As revealed by the computer simulations, the proposed decoding algorithm is 50 times faster than the conventional one for the (2(16), 2(15)) RS code over F-216.

  11. Multiple Description Coding with Redundant Expansions and Application to Image Communications

    Directory of Open Access Journals (Sweden)

    Radulovic Ivana

    2007-01-01

    Full Text Available Multiple description coding offers an elegant and competitive solution for data transmission over lossy packet-based networks, with a graceful degradation in quality as losses increase. In the same time, coding techniques based on redundant transforms give a very promising alternative for the generation of multiple descriptions, mainly due to redundancy inherently given by a transform, which offers intrinsic resiliency in case of loss. In this paper, we show how partitioning of a generic redundant dictionary can be used to obtain an arbitrary number of multiple complementary, yet correlated, descriptions. The most significant terms in the signal representation are drawn from the partitions that better approximate the signal, and split to different descriptions, while the less important ones are alternatively distributed between the descriptions. As compared to state-of-the-art solutions, such a strategy allows for a better central distortion since atoms in different descriptions are not identical; in the same time, it does not penalize the side distortions significantly since atoms from the same partition are likely to be highly correlated. The proposed scheme is applied to the multiple description coding of digital images, and simulation results show increased performances compared to state-of-the-art schemes, both in terms of distortions and robustness to loss rate variations.

  12. An Alternative Scalable Video Coding Scheme Used For Efficient Image Representation In Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Aravinda T.V

    2010-07-01

    Full Text Available This paper describes a novel video coding scheme based on a three-dimensional Matching Pursuit algorithm. In addition to good compression performance at low bit rate, the proposed coder allows for flexible spatial, temporal and rate scalability thanks to its progressive coding structure. The Matching Pursuit algorithm generates a sparse composition of a video sequence in a series of spatio-temporal atoms, taken from an over complete dictionary of three-dimensional basis functions. The dictionary is generated by shifting, scaling and rotating two different mother atoms in order to cover the whole frequency cube. An embedded stream is then produced from the series of atoms. They are first distributed into sets through the set-partitioned position map algorithm (SPPM to form the index-map, inspired from bit plane encoding. Scalar quantization is then applied to the coefficients which are finally arithmetic coded. A completeMP3D codec has been implemented, and performances are shown to favorably compare to other scalable coders like MPEG-4 FGS and SPIHT-3D. In addition, the MP3D streams offer an incomparable flexibility for multiresolution streaming or adaptive decoding.

  13. Application programming interface document for the modernized Transient Reactor Analysis Code (TRAC-M)

    Energy Technology Data Exchange (ETDEWEB)

    Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Boyack, B.E.; Steinke, R.G. [Los Alamos National Lab., NM (United States)

    1998-05-01

    The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization.

  14. X-ray simulation with the Monte Carlo code PENELOPE. Application to Quality Control.

    Science.gov (United States)

    Pozuelo, F; Gallardo, S; Querol, A; Verdú, G; Ródenas, J

    2012-01-01

    A realistic knowledge of the energy spectrum is very important in Quality Control (QC) of X-ray tubes in order to reduce dose to patients. However, due to the implicit difficulties to measure the X-ray spectrum accurately, it is not normally obtained in routine QC. Instead, some parameters are measured and/or calculated. PENELOPE and MCNP5 codes, based on the Monte Carlo method, can be used as complementary tools to verify parameters measured in QC. These codes allow estimating Bremsstrahlung and characteristic lines from the anode taking into account specific characteristics of equipment. They have been applied to simulate an X-ray spectrum. Results are compared with theoretical IPEM 78 spectrum. A sensitivity analysis has been developed to estimate the influence on simulated spectra of important parameters used in simulation codes. With this analysis it has been obtained that the FORCE factor is the most important parameter in PENELOPE simulations. FORCE factor, which is a variance reduction method, improves the simulation but produces hard increases of computer time. The value of FORCE should be optimized so that a good agreement of simulated and theoretical spectra is reached, but with a reduction of computer time. Quality parameters such as Half Value Layer (HVL) can be obtained with the PENELOPE model developed, but FORCE takes such a high value that computer time is hardly increased. On the other hand, depth dose assessment can be achieved with acceptable results for small values of FORCE.

  15. PERFORMANCE EVALUATION OF TURBO CODED OFDM SYSTEMS AND APPLICATION OF TURBO DECODING FOR IMPULSIVE CHANNEL

    Directory of Open Access Journals (Sweden)

    Savitha H. M.

    2010-09-01

    Full Text Available A comparison of the performance of hard and soft-decision turbo coded Orthogonal Frequency Division Multiplexing systems with Quadrature Phase Shift Keying (QPSK and 16-Quadrature Amplitude Modulation (16-QAM is considered in the first section of this paper. The results show that the soft-decision method greatly outperforms the hard-decision method. The complexity of the demapper is reduced with the use of simplified algorithm for 16-QAM demapping. In the later part of the paper, we consider the transmission of data over additive white class A noise (AWAN channel, using turbo coded QPSK and 16-QAM systems. We propose a novel turbo decoding scheme for AWAN channel. Also we compare the performance of turbo coded systems with QPSK and 16-QAM on AWAN channel with two different channel values- one computed as per additive white Gaussian noise (AWGN channel conditions and the other as per AWAN channel conditions. The results show that the use of appropriate channel value in turbo decoding helps to combat the impulsive noise more effectively. The proposed model for AWAN channel exhibits comparable Bit error rate (BER performance as compared to AWGN channel.

  16. Android Protection Mechanism: A Signed Code Security Mechanism for Smartphone Applications

    Science.gov (United States)

    2011-03-01

    jar or . apk files similar to .zip archives. Android applications are typically written in the Java programming language. The Dalvik Virtual Machine...application-specific . apk file. The DVM must extract the Classes.dex file from the . apk to install and run the application. Default applications...digests from files, strings, or directly from standard input. The MDFile() method calculates hash digests for all approved . apk files offline. These

  17. MELCOR code source term characteristics for fast SBO scenario of OPR1000 plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seok Jung; Kim, Tae Woon; Park, Sun Hee; Ahn, Kwang Il [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Off site consequence analysis in Level 3 PSA is mainly affected by source terms release characteristics of nuclear plant. The severe accidents analysis codes for quantifying the source terms release characteristics, such as MELCOR or MAAP, could be available to provide the detailed information of these characteristics to assess offsite consequence. To utilize these characteristics from severe accident analysis codes, MELCOR code was used in a specific severe accident scenario, i.e., fast station black out (SBO) for OPR1000 plant.

  18. Injury risk prediction for traffic accidents in Porto Alegre/RS, Brazil

    OpenAIRE

    Perone, Christian S.

    2015-01-01

    This study describes the experimental application of Machine Learning techniques to build prediction models that can assess the injury risk associated with traffic accidents. This work uses an freely available data set of traffic accident records that took place in the city of Porto Alegre/RS (Brazil) during the year of 2013. This study also provides an analysis of the most important attributes of a traffic accident that could produce an outcome of injury to the people involved in the accident.

  19. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  20. Development of the severe accident risk information database management system SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  1. Modeling of Multisize Bubbly Flow and Application to the Simulation of Boiling Flows with the Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Christophe Morel

    2009-01-01

    Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.

  2. A study on the core analysis methodology for SMART CEA ejection accident-I

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Lee, Chung Chan; Kim, Kyo Yoon; Cho, Byung Oh

    1999-04-01

    A methodology to analyze the fuel enthalpy is developed based on MASTER that is a time dependent 3 dimensional core analysis code. Using the proposed methodology, SMART CEA ejection accident is analyzed. Moreover, radiation doses are estimated at the exclusion area boundary and low population zone to confirm the criteria for the accident. (Author). 31 refs., 13 tabs., 18 figs.

  3. A new structure of 3D dual-tree discrete wavelet transforms and applications to video denoising and coding

    Science.gov (United States)

    Shi, Fei; Wang, Beibei; Selesnick, Ivan W.; Wang, Yao

    2006-01-01

    This paper introduces an anisotropic decomposition structure of a recently introduced 3-D dual-tree discrete wavelet transform (DDWT), and explores the applications for video denoising and coding. The 3-D DDWT is an attractive video representation because it isolates motion along different directions in separate subbands, and thus leads to sparse video decompositions. Our previous investigation shows that the 3-D DDWT, compared to the standard discrete wavelet transform (DWT), complies better with the statistical models based on sparse presumptions, and gives better visual and numerical results when used for statistical denoising algorithms. Our research on video compression also shows that even with 4:1 redundancy, the 3-D DDWT needs fewer coefficients to achieve the same coding quality (in PSNR) by applying the iterative projection-based noise shaping scheme proposed by Kingsbury. The proposed anisotropic DDWT extends the superiority of isotropic DDWT with more directional subbands without adding to the redundancy. Unlike the original 3-D DDWT which applies dyadic decomposition along all three directions and produces isotropic frequency spacing, it has a non-uniform tiling of the frequency space. By applying this structure, we can improve the denoising results, and the number of significant coefficients can be reduced further, which is beneficial for video coding.

  4. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Nilseia Aparecida Barbosa

    2014-08-01

    Full Text Available Purpose: Melanoma at the choroid region is the most common primary cancer that affects the eye in adult patients. Concave ophthalmic applicators with 106Ru/106Rh beta sources are the more used for treatment of these eye lesions, mainly lesions with small and medium dimensions. The available treatment planning system for 106Ru applicators is based on dose distributions on a homogeneous water sphere eye model, resulting in a lack of data in the literature of dose distributions in the eye radiosensitive structures, information that may be crucial to improve the treatment planning process, aiming the maintenance of visual acuity. Methods: The Monte Carlo code MCNPX was used to calculate the dose distribution in a complete mathematical model of the human eye containing a choroid melanoma; considering the eye actual dimensions and its various component structures, due to an ophthalmic brachytherapy treatment, using 106Ru/106Rh beta-ray sources. Two possibilities were analyzed; a simple water eye and a heterogeneous eye considering all its structures. Two concave applicators, CCA and CCB manufactured by BEBIG and a complete mathematical model of the human eye were modeled using the MCNPX code. Results and Conclusion: For both eye models, namely water model and heterogeneous model, mean dose values simulated for the same eye regions are, in general, very similar, excepting for regions very distant from the applicator, where mean dose values are very low, uncertainties are higher and relative differences may reach 20.4%. For the tumor base and the eye structures closest to the applicator, such as sclera, choroid and retina, the maximum difference observed was 4%, presenting the heterogeneous model higher mean dose values. For the other eye regions, the higher doses were obtained when the homogeneous water eye model is taken into consideration. Mean dose distributions determined for the homogeneous water eye model are similar to those obtained for the

  5. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    Science.gov (United States)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  6. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.

    Science.gov (United States)

    Luketa-Hanlin, Anay; Koopman, Ronald P; Ermak, Donald L

    2007-02-20

    Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-epsilon model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

  7. Application of the Code THEA to the CONDOPT Experiment in SULTAN

    CERN Document Server

    Bottura, L; Marinucci, C

    2002-01-01

    The CONDOPT (CONDuctor OPTimization) experiment has been recently completed in SULTAN. The current sharing behaviour of Nb3Sn samples was assessed as a function of the number of cyclic loads experienced during current sweeps in a 10 T background field. We present here results of a computer analysis performed with the code THEATM (for consistent Thermal, Hydraulic and Electric Analysis) in support of the interpretation of the experimental results. We focus in particular on the critical current and current sharing temperature runs, providing details on the features and effects of current distribution among cable sub-stages.

  8. Grey-Markov Model for Road Accidents Forecasting

    Institute of Scientific and Technical Information of China (English)

    李相勇; 严余松; 蒋葛夫

    2003-01-01

    In order to improve the forecasting precision of road accidents, by introducing Markov chains forecasting method, a grey-Markov model for forecasting road accidents is established based on grey forecasting method. The model combines the advantages of both grey forecasting method and Markov chains forecasting method, overcomes the influence of random fluctuation data on forecasting precision and widens the application scope of the grey forecasting. An application example is conducted to evaluate the grey-Markov model, which shows that the precision of the grey-Markov model is better than that of grey model in forecasting road accidents.

  9. The kinetics of aerosol particle formation and removal in NPP severe accidents

    Science.gov (United States)

    Zatevakhin, Mikhail A.; Arefiev, Valentin K.; Semashko, Sergey E.; Dolganov, Rostislav A.

    2016-06-01

    Severe Nuclear Power Plant (NPP) accidents are accompanied by release of a massive amount of energy, radioactive products and hydrogen into the atmosphere of the NPP containment. A valid estimation of consequences of such accidents can only be carried out through the use of the integrated codes comprising a description of the basic processes which determine the consequences. A brief description of a coupled aerosol and thermal-hydraulic code to be used for the calculation of the aerosol kinetics within the NPP containment in case of a severe accident is given. The code comprises a KIN aerosol unit integrated into the KUPOL-M thermal-hydraulic code. Some features of aerosol behavior in severe NPP accidents are briefly described.

  10. Research and Trends in the Field of Technology-Enhanced Learning from 2006 to 2011: A Content Analysis of Quick Response Code (QR-Code) and Its Application in Selected Studies

    Science.gov (United States)

    Hau, Goh Bak; Siraj, Saedah; Alias, Norlidah; Rauf, Rose Amnah Abd.; Zakaria, Abd. Razak; Darusalam, Ghazali

    2013-01-01

    This study provides a content analysis of selected articles in the field of QR code and its application in educational context that were published in journals and proceedings of international conferences and workshops from 2006 to 2011. These articles were cross analysed by published years, journal, and research topics. Further analysis was…

  11. Chernobyl accident and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-06-01

    The paper concerns the Chernobyl reactor accident, with emphasis on the design of the RBMK reactor and nuclear safety. A description is given of the Chernobyl nuclear power plant, including details of the RMBK reactor and safety systems. Comments on the design of the RBMK by UK experts prior to the accident are summarized, along with post-accident design changes to improve RBMK safety. Events of the Chernobyl accident are described, as well as design deficiencies highlighted by the accident. Differences between the USSR and UK approaches to nuclear safety are commented on. Finally source terms, release periods and environmental consequences are briefly discussed.

  12. APPLICATION OF BEAM SEARCH FOR THE DECODING OF ONE CLASS OF LDPC CODES

    Institute of Scientific and Technical Information of China (English)

    Li Guangwen; Feng Guangzeng

    2008-01-01

    For one class of Low-Density Parity-Check (LDPC) codes with low row weight in their parity check matrix, a new Syndrome Decoding (SD) based on the heuristic Beam Search (BS), labeled as SD-BS, is put forward to improve the error performance. First, two observations are made and verified by simulation results. One is that in the SNR region of interest, the hard-decision on the corrupted sequence yields only a handful of erroneous bits. The other is that the true error pattern for the nonzero syndrome has a high probability to survive the competition in the BS, provided sufficient beam width. Bearing these two points in mind, the decoding of LDPC codes is transformed into seeking an error pattern with the known decoding syndrome. Secondly, the effectiveness of SD-BS depends closely on how to evaluate the bit reliability. Enlightened by a bit-flipping definition in the existing literature, a new metric is employed in the proposed SD-BS. The strength of SD-BS is demonstrated via applying it on the corrupted sequences directly and the decoding failures of the Belief Propagation (BP), respectively.

  13. FOI-PERFECT code: 3D relaxation MHD modeling and Applications

    Science.gov (United States)

    Wang, Gang-Hua; Duan, Shu-Chao; Comutational Physics Team Team

    2016-10-01

    One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. FOI-PERFECT code adopts a full relaxation magnetohydrodynamic (MHD) model. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation. The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme which is difficult to be parallelized and converge. A better alternative is to solve the full electromagnetic equations. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11571293) And Foundation of China Academy of Engineering Physics (Grant No. 2015B0201023).

  14. Numerical applications of the advective-diffusive codes for the inner magnetosphere

    Science.gov (United States)

    Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.

    2016-11-01

    In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.

  15. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INL’s fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  16. Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

  17. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2009-09-01

    Full Text Available Abstract Background Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences. Results ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence. Conclusion ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.

  18. Development of a Wrapper Object for MARS TH Systems Code and Its Applications in Object Oriented Programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Byung; Lee, Young Jin; Kim, Hyong Chol; Han, Sam Hee; Kim, Hyun Jik [Convergence Technology Research Commercialization Center, Daejeon (Korea, Republic of)

    2013-05-15

    TMARS is written for the object pascal program language, and 'wraps' the Dynamic Link Library (DLL) manifestation of the MARS-KS code written in Fortran 90. TMARS behaves as a true object and it can be instantiated, inherited, and its methods overloaded. The functionality of TMARS was verified and demonstrated using two programs built under object oriented program environment. One is a text based program for reviewing the data interface of TMARS, and the other is a graphic intensive prototype NPA program for testing the overall performance of TMARS. The prototype NPA was also used to assess the real-time capability of TMARS. The demonstration programs show that application of TMARS is straight forward and that its functions facilitate easy application developments. TMARS, a wrapper object class encapsulating the calculation functions of MARS-KS code, was successfully developed and verification of its functionality was carried out using custom made programs. The verification results show that TMARS is capable of providing reliable TH calculation results and sufficient performance to realize real time calculations.

  19. A study on the operator's errors of commission (EOC) in accident scenarios of nuclear power plants: methodology development and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun; Kang, Da Il

    2003-04-01

    As the concern on the operator's inappropriate interventions, the so-called Errors Of Commission (EOCs), that can exacerbate the plant safety has been raised, much of interest in the identification and analysis of EOC events from the risk assessment perspective has been increased. Also, one of the items in need of improvement for the conventional PSA and HRA that consider only the system-demanding human actions is the inclusion of the operator's EOC events into the PSA model. In this study, we propose a methodology for identifying and analysing human errors of commission that might be occurring from the failures in situation assessment and decision making during accident progressions given an initiating event. In order to achieve this goal, the following research items have been performed: Firstly, we analysed the error causes or situations contributed to the occurrence of EOCs in several incidents/accidents of nuclear power plants. Secondly, limitations of the advanced HRAs in treating EOCs were reviewed, and a requirement for a new methodology for analysing EOCs was established. Thirdly, based on these accomplishments a methodology for identifying and analysing EOC events inducible from the failures in situation assessment and decision making was proposed and applied to all the accident sequences of YGN 3 and 4 NPP which resulted in the identification of about 10 EOC situations.

  20. 交通事故定位中ZIGBEE技术的应用研究%Application Research on ZIGBEE Technology in The Traffic Accident Localization

    Institute of Scientific and Technical Information of China (English)

    陈璇; 李杨

    2013-01-01

    Moving vehicle positioned and tracked could solve the traffic accident localization problems by using wireless sensor network(WSN). The WSN was applied to the vehicle positioning and tracking based on ZigBee technology, the po-sitioning system hardwares design were given, and the terminal signal transmitter equations were derived. The whole sys-tem adapt to the traffic accident location management intelligence requirements, and had high precision positioning, re-quired relatively few reference nodes, it could be applied in traffic congestion and tunnels and accident-prone sections.%  利用无线传感器网络对移动车辆进行定位跟踪可以解决交通事故定位的问题。基于ZigBee技术,将无线传感器网络应用到车辆的定位跟踪上,给出了定位系统的硬件设计方案,并列出了终端信号发射器的计算方程。整套系统适应交通事故定位管理的智能化要求,并且定位精度高,所需参考节点相对较少,适合应用在车流拥挤和隧道等事故多发地段。

  1. Occupational accidents aboard merchant ships

    DEFF Research Database (Denmark)

    Hansen, H.L.; Nielsen, D.; Frydenberg, Morten

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may...... be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were...... rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious...

  2. Compression and Encryption of ECG Signal Using Wavelet and Chaotically Huffman Code in Telemedicine Application.

    Science.gov (United States)

    Raeiatibanadkooki, Mahsa; Quchani, Saeed Rahati; KhalilZade, MohammadMahdi; Bahaadinbeigy, Kambiz

    2016-03-01

    In mobile health care monitoring, compression is an essential tool for solving storage and transmission problems. The important issue is able to recover the original signal from the compressed signal. The main purpose of this paper is compressing the ECG signal with no loss of essential data and also encrypting the signal to keep it confidential from everyone, except for physicians. In this paper, mobile processors are used and there is no need for any computers to serve this purpose. After initial preprocessing such as removal of the baseline noise, Gaussian noise, peak detection and determination of heart rate, the ECG signal is compressed. In compression stage, after 3 steps of wavelet transform (db04), thresholding techniques are used. Then, Huffman coding with chaos for compression and encryption of the ECG signal are used. The compression rates of proposed algorithm is 97.72 %. Then, the ECG signals are sent to a telemedicine center to acquire specialist diagnosis by TCP/IP protocol.

  3. Golay Code Transformations for Ensemble Clustering in Application to Medical Diagnostics

    Directory of Open Access Journals (Sweden)

    Faisal Alsaby

    2015-01-01

    Full Text Available Clinical Big Data streams have accumulated large-scale multidimensional data about patients’ medical conditions and drugs along with their known side effects. The volume and the complexity of this Big Data streams hinder the current computational procedures. Effective tools are required to cluster and systematically analyze this amorphous data to perform data mining methods including discovering knowledge, identifying underlying relationships and predicting patterns. This paper presents a novel computation model for clustering tremendous amount of Big Data streams. The presented approach is utilizing the error-correction Golay Code. This clustering methodology is unique. It outperforms all other conventional techniques because it has linear time complexity and does not impose predefined cluster labels that partition data. Extracting meaningful knowledge from these clusters is an essential task; therefore, a novel mechanism that facilitates the process of predicting patterns and likelihood diseases based on a semi-supervised technique is presented.

  4. Application of hybrid coded genetic algorithm in fuzzy neural network controller

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and bi nary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during the crossover operation and decimal encoding during the mutation operation, and the way of accepting new individuals by probability adopted, by which a new individual is accepted and its parent is discarded when its fitness is higher than that of its parent, and a new individual is accepted by probability when its fitness is lower than that of its parent. And concludes with calculations made with an example that these improvements enhance the speed of genetic algorithms to optimize the fuzzy neural network controller.

  5. Feedback Channel Suppression in Distributed Video Coding with Adaptive Rate Allocation and Quantization for Multiuser Applications

    Directory of Open Access Journals (Sweden)

    Béatrice Pesquet-Popescu

    2008-12-01

    Full Text Available We present a novel rate allocation technique for distributed multiuser video coding systems without the need for a permanent feedback channel. Based on analytical calculations, the system unequally distributes the available bandwidth among the different users, taking into account the actual amount of movement in the transmitted video as well as the transmission conditions of each user. On one hand, the quantization parameters are dynamically tuned in order to optimize the decoding quality. On the other hand, a frame dropping mechanism allows the system to avoid unnecessary channel use, when the analytical estimations show that the successful decoding of a given frame is not possible because of very high motion or bad channel conditions. A significant gain in the system performance is noticed compared with the case of equal allocation of channel resources and constant quantization parameters.

  6. Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents

    Energy Technology Data Exchange (ETDEWEB)

    Ovdiienko, Iurii; Bilodid, Yevgen; Ieremenko, Maksym [State Scientific and Technical Centre on Nuclear and Radiation, Safety (SSTC N and RS), Kyiv (Ukraine); Loetsch, Thomas [TUEV SUED Industrie Service GmbH, Energie und Systeme, Muenchen (Germany)

    2016-09-15

    At present time, Ukraine faces the problem of small margins of acceptance criteria in connection with the implementation of a conservative approach for safety evaluations. The problem is particularly topical conducting feasibility analysis of power up-rating for Ukrainian nuclear power plants. Such situation requires the implementation of a best-estimate approach on the basis of an uncertainty analysis. For some kind of accidents, such as loss-of-coolant accident (LOCA), the best estimate approach is, more or less, developed and established. However, for reactivity initiated accident (RIA) analysis an application of best estimate method could be problematical. A regulatory document in Ukraine defines a nomenclature of neutronics calculations and so called ''generic safety parameters'' which should be used as boundary conditions for all VVER-1000 (V-320) reactors in RIA analysis. In this paper the ideas of uncertainty evaluations of generic safety parameters in RIA analysis in connection with the use of the 3D neutron kinetic code DYN3D and the GRS SUSA approach are presented.

  7. [Drowning accidents in childhood].

    Science.gov (United States)

    Krandick, G; Mantel, K

    1990-09-30

    This is a report on five boys aged between 1 and 5 years who, after prolonged submersion in cold water, were treated at our department. On being taken out of the water, all the patients were clinically dead. After 1- to 3-hour successful cardiopulmonary resuscitation, with a rectal temperature of about 27 degrees C, they were rewarmed at a rate of 1 degree/hour. Two patients died within a few hours after the accident. One patient survived with an apallic syndrome, 2 children survived with no sequelae. In the event of a water-related accident associated with hypothermia, we consider suitable resuscitation to have preference over rewarming measures. The most important treatment guidelines and prognostic factors are discussed.

  8. Dementia and Traffic Accidents

    DEFF Research Database (Denmark)

    Petersen, Jindong Ding; Siersma, Volkert; Nielsen, Connie Thurøe;

    2016-01-01

    BACKGROUND: As a consequence of a rapid growth of an ageing population, more people with dementia are expected on the roads. Little is known about whether these people are at increased risk of road traffic-related accidents. OBJECTIVE: Our study aims to investigate the risk of road traffic......-related accidents for people aged 65 years or older with a diagnosis of dementia in Denmark. METHODS: We will conduct a nationwide population-based cohort study consisting of Danish people aged 65 or older living in Denmark as of January 1, 2008. The cohort is followed for 7 years (2008-2014). Individual's personal...... data are available in Danish registers and can be linked using a unique personal identification number. A person is identified with dementia if the person meets at least one of the following criteria: (1) a diagnosis of the disease in the Danish National Patient Register or in the Danish Psychiatric...

  9. RELAP5/MOD3 code manual. Volume 4, Models and correlations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I presents modeling theory and associated numerical schemes; Volume II details instructions for code application and input data preparation; Volume III presents the results of developmental assessment cases that demonstrate and verify the models used in the code; Volume IV discusses in detail RELAP5 models and correlations; Volume V presents guidelines that have evolved over the past several years through the use of the RELAP5 code; Volume VI discusses the numerical scheme used in RELAP5; and Volume VII presents a collection of independent assessment calculations.

  10. Loss of Coolant Accident Analysis Methodology for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Bae, K. H.; Lee, G. H.; Yang, S. H.; Yoon, H. Y.; Kim, S. H.; Kim, H. C

    2006-02-15

    The analysis methodology on the Loss-of-coolant accidents (LOCA's) for SMART-P is described in this report. SMART-P is an advanced integral type PWR producing a maximum thermal power of 65.5 MW with metallic fuel. LOCA's are hypothetical accidents that would result from the loss of reactor coolant, at a rate in excess of the capability of the reactor coolant makeup system, from breaks in pipes in the reactor coolant pressure boundary up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system. Since SMART-P contains the major primary circuit components in a single Reactor Pressure Vessel (RPV), the possibility of a large break LOCA (LBLOCA) is inherently eliminated and only the small break LOCA is postulated. This report describes the outline and acceptance criteria of small break LOCA (SBLOCA) for SMART-P and documents the conservative analytical model and method and the analysis results using the TASS/SMR code. This analysis method is applied in the SBLOCA analysis performed for the ECCS performance evaluation which is described in the section 6.3.3 of the safety analysis report. The prediction results of SBLOCA analysis model of SMART-P for the break flow, system's pressure and temperature distributions, reactor coolant distribution, single and two-phase natural circulation phenomena, and the time of major sequence of events, etc. should be compared and verified with the applicable separate and integral effects test results. Also, it is required to set-up the feasible acceptance criteria applicable to the metallic fueled integral reactor of SMART-P. The analysis methodology for the SBLOCA described in this report will be further developed and validated as the design and licensing status of SMART-P evolves.

  11. RENEB accident simulation exercise

    OpenAIRE

    Brzozowska, Beata; Ainsbury, Elizabeth; Baert, Annelot; Beaton-Green, Lindsay; Barrios, Leonardo; Barquinero, Joan Francesc; Bassinet, Celine; Beinke, Christina; Benedek, Anett; Beukes, Philip; Bortolin, Emanuela; Buraczewska, Iwona; Burbidge, Christopher; De Amicis, Andrea; De Angelis, Cinzia

    2017-01-01

    Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results ob...

  12. Systems and methods to control multiple peripherals with a single-peripheral application code

    Science.gov (United States)

    Ransom, Ray M.

    2013-06-11

    Methods and apparatus are provided for enhancing the BIOS of a hardware peripheral device to manage multiple peripheral devices simultaneously without modifying the application software of the peripheral device. The apparatus comprises a logic control unit and a memory in communication with the logic control unit. The memory is partitioned into a plurality of ranges, each range comprising one or more blocks of memory, one range being associated with each instance of the peripheral application and one range being reserved for storage of a data pointer related to each peripheral application of the plurality. The logic control unit is configured to operate multiple instances of the control application by duplicating one instance of the peripheral application for each peripheral device of the plurality and partitioning a memory device into partitions comprising one or more blocks of memory, one partition being associated with each instance of the peripheral application. The method then reserves a range of memory addresses for storage of a data pointer related to each peripheral device of the plurality, and initializes each of the plurality of peripheral devices.

  13. Methodology, status and plans for development and assessment of the code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Teschendorff, V.; Austregesilo, H.; Lerchl, G. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH Forschungsgelaende, Garching (Germany)

    1997-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.

  14. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  15. Postulated accident scenarios in weapons disassembly

    Energy Technology Data Exchange (ETDEWEB)

    Payne, S.S. [Dept. of Energy, Albuquerque, NM (United States)

    1997-06-01

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures.

  16. Application of digital oil fingerprinting identification for investigation of oil pollution accident from ships%溢油鉴别数字化判定在船舶油污事故调查中的应用

    Institute of Scientific and Technical Information of China (English)

    尹晓楠; 周洪洋; 张海江; 秦志江; 郭恩桥; 王江涛

    2012-01-01

    This paper described comparison principle and identification process of repeatability limit comparison method and t-test method, as well as the application process of these methods in a shipping oil pollution accident investigation. Result showed that the repeatability limit comparison method and t-test method were two effective methods in accident identification of shipping oil pollution. The diagnostic ratios accuracy was an important factor, which could influence the application of two methods.%本文以一起船舶油污事故的溢油源调查为例,简述了重复性限法、t检验法两种方法的判定原则及判定流程,具体介绍了两种方法在船舶油污事故溢油源鉴定中的应用.应用结果表明,重复性限法、t检验法是两种值得在船舶溢油事故鉴定中推广应用的判别方法,诊断比值的准确性是影响两种判定方法应用的一个重要因素.

  17. 移动应用代码保护现状与技术研究%STUDY ON MOBILE APPLICATIONS CODE PROTECTION STATUS AND TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    朱洪军; 陈灏; 华保健; 刘业; 郭宇

    2016-01-01

    Android platform-based applications are easily to be attacked by viruses or malware.Apart from the causes of the platforms being open source and opening and so on,the weaker protection ability of the mobile applications code itself is also a main factor.For this problem,in the paper we take Android platform applications as the research objects,analyse the security threats model and the codes security demands of the mobile applications,study the mechanisms of code protection techniques,such as code obfuscation,code-behind,code encryption and code signature,and describe their advantages and disadvantages;Then,we design and implement an Android application code protection technology analysis engine,and analyse and summarise the experimental data.Result shows that all the samples in different sizes and types have the Android applications to certain proportion,their code protection strengths are not strong;in particular,the smaller the scale of the applications,the weaker the code protection strength,and this results in such class of applications being maliciously attacked much easier.%基于安卓平台应用极易被病毒或恶意软件攻击,除了其平台开源开放等原因外,移动应用自身代码保护强度较弱也是主要因素。针对该问题,以安卓平台应用为研究对象,分析移动应用安全威胁模型及代码安全需求,研究代码混淆、代码隐藏、代码加密及代码签名等代码保护技术机制及优缺点;设计并实现了安卓应用代码保护技术分析引擎,对实验数据进行分析和总结。结果表明,不同规模和类型的样本都存在一定比例应用,其代码保护强度较弱;特别地,应用规模越小,代码保护强度越弱,致使该类应用极其容易被恶意攻击。

  18. Correspondence model of occupational accidents

    Directory of Open Access Journals (Sweden)

    Juan C. Conte

    2011-09-01

    Full Text Available We present a new generalized model for the diagnosis and prediction of accidents among the Spanish workforce. Based on observational data of the accident rate in all Spanish companies over eleven years (7,519,732 accidents, we classified them in a new risk-injury contingency table (19×19. Through correspondence analysis, we obtained a structure composed of three axes whose combination identifies three separate risk and injury groups, which we used as a general Spanish pattern. The most likely or frequent relationships between the risk and injuries identified in the pattern facilitated the decision-making process in companies at an early stage of risk assessment. Each risk-injury group has its own characteristics, which are understandable within the phenomenological framework of the accident. The main advantages of this model are its potential application to any other country and the feasibility of contrasting different country results. One limiting factor, however, is the need to set a common classification framework for risks and injuries to enhance comparison, a framework that does not exist today. The model aims to manage work-related accidents automatically at any level.Apresentamos aqui um modelo generalizado para o diagnóstico e predição de acidentes na classe de trabalhadores da Espanha. Baseados em dados sobre a frequência de acidentes em todas as companhias da Espanha em 11 anos (7.519.732 acidentes, nós os classificamos em uma nova tabela de contingência risco-injúria (19×19. Através de uma análise por correspondência obtivemos uma estrutura composta por 3 eixos cuja combinação identifica 3 grupos separados de risco e injúria, que nós usamos como um perfil geral na Espanha. As mais prováveis ou frequentes relações entre risco e injúrias identificadas nesse perfil facilitaram o processo de decisão nas companhias em um estágio inicial de apreciação do risco. Cada grupo de risco-injúria tem suas próprias caracter

  19. Fast approximations to structured sparse coding and applications to object classification

    CERN Document Server

    Szlam, Arthur; LeCun, Yann

    2012-01-01

    We describe a method for fast approximation of sparse coding. The input space is subdivided by a binary decision tree, and we simultaneously learn a dictionary and assignment of allowed dictionary elements for each leaf of the tree. We store a lookup table with the assignments and the pseudoinverses for each node, allowing for very fast inference. We give an algorithm for learning the tree, the dictionary and the dictionary element assignment, and In the process of describing this algorithm, we discuss the more general problem of learning the groups in group structured sparse modelling. We show that our method creates good sparse representations by using it in the object recognition framework of \\cite{lazebnik06,yang-cvpr-09}. Implementing our own fast version of the SIFT descriptor the whole system runs at 20 frames per second on $321 \\times 481$ sized images on a laptop with a quad-core cpu, while sacrificing very little accuracy on the Caltech 101 and 15 scenes benchmarks.

  20. Application of CFD code for simulation of an inclined snow chute flow

    Directory of Open Access Journals (Sweden)

    R K Aggarwal

    2013-03-01

    Full Text Available In this paper, 2-D simulation of a 61 m long inclined snow chute flow and its interaction with a catch dam type obstacle has been carried out at Dhundhi field research station near Manali, Himachal Pradesh (India using a commercially available computational fluid dynamics (CFD code ANSYS Fluent. Eulerian non-granular multiphase model was chosen to model the snow flow in the surrounding atmospheric air domain. Both air and snow were assumed as laminar and incompressible fluids. User defined functions(UDF were written for the computation of bi-viscous Bingham fluid viscosity and wall shear stress of snow to account for the slip at the interface between the flowing snow and the stationary snow chute surface. Using the proposed CFD model, the velocity, dynamic pressure and debris deposition were simulatedfor flowing snow mass in the chute. Experiments were performed on the snow chute to validate the simulated results. On comparison, the simulated results were found in good agreement with the experimental results.

  1. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    Science.gov (United States)

    Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.

    2014-09-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program

  2. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    Science.gov (United States)

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  3. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    Science.gov (United States)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  4. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    CERN Document Server

    Halder, P; Roy, P Deb; Das, H S

    2014-01-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with...

  5. Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident.

    Science.gov (United States)

    Maderich, V; Bezhenar, R; Heling, R; de With, G; Jung, K T; Myoung, J G; Cho, Y-K; Qiao, F; Robertson, L

    2014-05-01

    The compartment model POSEIDON-R was modified and applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of radioactivity in the period 1945-2010, and to perform a radiological assessment on the releases of radioactivity due to the Fukushima Dai-ichi accident for the period 2011-2040. The model predicts the dispersion of radioactivity in the water column and in sediments, the transfer of radionuclides throughout the marine food web, and subsequent doses to humans due to the consumption of marine products. A generic predictive dynamic food-chain model is used instead of the biological concentration factor (BCF) approach. The radionuclide uptake model for fish has as a central feature the accumulation of radionuclides in the target tissue. The three layer structure of the water column makes it possible to describe the vertical structure of radioactivity in deep waters. In total 175 compartments cover the Northwestern Pacific, the East China and Yellow Seas and the East/Japan Sea. The model was validated from (137)Cs data for the period 1945-2010. Calculated concentrations of (137)Cs in water, bottom sediments and marine organisms in the coastal compartment, before and after the accident, are in close agreement with measurements from the Japanese agencies. The agreement for water is achieved when an additional continuous flux of 3.6 TBq y(-1) is used for underground leakage of contaminated water from the Fukushima Dai-ichi NPP, during the three years following the accident. The dynamic food web model predicts that due to the delay of the transfer throughout the food web, the concentration of (137)Cs for piscivorous fishes returns to background level only in 2016. For the year 2011, the calculated individual dose rate for Fukushima Prefecture due to consumption of fishery products is 3.6 μSv y(-1). Following the Fukushima Dai-ichi accident the collective dose due to ingestion of marine products for Japan increased in 2011 by a

  6. Development and application of the coupled thermal-hydraulics and neutron-kinetics code ATHLET/BIPR-VVER for safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lizorkin, M.; Nikonov, S. [Kurchatov Institute for Atomic Energy, Moscow (Russian Federation); Langenbuch, S.; Velkov, K. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2006-07-01

    The coupled thermal-hydraulics and neutron-kinetics code ATHLET/BIPR-VVER was developed within a co-operation between the RRC Kurchatov Institute (KI) and GRS. The modeling capability of this coupled code as well as the status of validation by benchmark activities and comparison with plant measurements are described. The paper is focused on the modeling of flow mixing in the reactor pressure vessel including its validation and the application for the safety justification of VVER plants. (authors)

  7. Prediction of hydrogen concentration in containment during severe accidents using fuzzy neural network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong; Kim, Ju Hyun; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-03-15

    Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

  8. ANS severe accident program overview & planning document

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.

    1995-09-01

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.

  9. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, George A. [U.S. Department of Health and Human Services, Office of Preparedness and Emergency Operations, 200 Independence Avenue, SW, Room 403B-1, Washington, DC 20201 (United States); Swartz, Harold M. [Dept. of Radiology and Physiology Dept., Dartmouth Medical School, HB 7785, Vail 702, Rubin 601, Hanover, NH 03755 (United States); Amundson, Sally A. [Center for Radiological Research, Columbia University Medical Center, 630 W. 168th Street, VC11-215, New York, NY 10032 (United States); Blakely, William F. [Armed Forces Radiobiology Research Inst., 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: blakely@afrri.usuhs.mil; Buddemeier, Brooke [Science and Technology, U.S. Department of Homeland Security, Washington, DC 20528 (United States); Gallez, Bernard [Biomedical Magnetic Resonance Unit and Lab. of Medicinal Chemistry and Radiopharmacy, Univ. Catholique de Louvain, Brussels (Belgium); Dainiak, Nicholas [Dept. of Medicine, Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610 (United States); Goans, Ronald E. [MJW Corporation, 1422 Eagle Bend Drive, Clinton, TN 37716-4029 (United States); Hayes, Robert B. [Remote Sensing Lab., MS RSL-47, P.O. Box 98421, Las Vegas, NV 89193 (United States); Lowry, Patrick C. [Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 (United States); Noska, Michael A. [Food and Drug Administration, FDA/CDRH, 1350 Piccard Drive, HFZ-240, Rockville, MD 20850 (United States); Okunieff, Paul [Dept. of Radiation Oncology (Box 647), Univ. of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 (United States); Salner, Andrew L. [Helen and Harry Gray Cancer Center, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102 (United States); Schauer, David A. [National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095 (United States)] (and others)

    2007-07-15

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  10. Cooperation of mobile robots for accident scene inspection

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.H.; Harrington, J.

    1992-11-01

    A telerobotic system demonstration was developed for the Department of Energy`s Accident Response group to highlight the applications of telerobotic vehicles to accident site inspection. The proof-of- principle system employs two mobile robots, Dixie and RAYBOT, to inspect a simulated accident site. Both robots are controlled serially from a single driving station, allowing an operator to take advantage of having multiple robots at the scene. The telerobotic system is described and some of the advantages of having more than one robot present are discussed. Future plans for the system are also presented.

  11. Cooperation of mobile robots for accident scene inspection

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.H.; Harrington, J.

    1992-01-01

    A telerobotic system demonstration was developed for the Department of Energy's Accident Response group to highlight the applications of telerobotic vehicles to accident site inspection. The proof-of- principle system employs two mobile robots, Dixie and RAYBOT, to inspect a simulated accident site. Both robots are controlled serially from a single driving station, allowing an operator to take advantage of having multiple robots at the scene. The telerobotic system is described and some of the advantages of having more than one robot present are discussed. Future plans for the system are also presented.

  12. Signal-Independent Timescale Analysis (SITA and its Application for Neural Coding during Reaching and Walking

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2014-08-01

    Full Text Available What are the relevant timescales of neural encoding in the brain? This question is commonly investigated with respect to well-defined stimuli or actions. However, neurons often encode multiple signals, including hidden or internal, which are not experimentally controlled, and thus excluded from such analysis. Here we consider all rate modulations as the signal, and define the rate-modulations signal-to-noise ratio (RM-SNR as the ratio between the variance of the rate and the variance of the neuronal noise. As the bin-width increases, RM-SNR increases while the update rate decreases. This tradeoff is captured by the ratio of RM-SNR to bin-width, and its variations with the bin-width reveal the timescales of neural activity. Theoretical analysis and simulations elucidate how the interactions between the recovery properties of the unit and the spectral content of the encoded signals shape this ratio and determine the timescales of neural coding. The resulting signal-independent timescale analysis (SITA is applied to investigate timescales of neural activity recorded from the motor cortex of monkeys during: (i reaching experiments with Brain-Machine Interface (BMI, and (ii locomotion experiments at different speeds. Interestingly, the timescales during BMI experiments did not change significantly with the control mode or training. During locomotion, the analysis identified units whose timescale varied consistently with the experimentally controlled speed of walking, though the specific timescale reflected also the recovery properties of the unit. Thus, the proposed method, SITA, characterizes the timescales of neural encoding and how they are affected by the motor task, while accounting for all rate modulations.

  13. Establishment and assessment of code scaling capability

    Science.gov (United States)

    Lim, Jaehyok

    In this thesis, a method for using RELAP5/MOD3.3 (Patch03) code models is described to establish and assess the code scaling capability and to corroborate the scaling methodology that has been used in the design of the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility. It was sponsored by the United States Nuclear Regulatory Commission (USNRC) under the program "PUMA ESBWR Tests". PUMA-E facility was built for the USNRC to obtain data on the performance of the passive safety systems of the General Electric (GE) Nuclear Energy Economic Simplified Boiling Water Reactor (ESBWR). Similarities between the prototype plant and the scaled-down test facility were investigated for a Gravity-Driven Cooling System (GDCS) Drain Line Break (GDLB). This thesis presents the results of the GDLB test, i.e., the GDLB test with one Isolation Condenser System (ICS) unit disabled. The test is a hypothetical multi-failure small break loss of coolant (SB LOCA) accident scenario in the ESBWR. The test results indicated that the blow-down phase, Automatic Depressurization System (ADS) actuation, and GDCS injection processes occurred as expected. The GDCS as an emergency core cooling system provided adequate supply of water to keep the Reactor Pressure Vessel (RPV) coolant level well above the Top of Active Fuel (TAF) during the entire GDLB transient. The long-term cooling phase, which is governed by the Passive Containment Cooling System (PCCS) condensation, kept the reactor containment system that is composed of Drywell (DW) and Wetwell (WW) below the design pressure of 414 kPa (60 psia). In addition, the ICS continued participating in heat removal during the long-term cooling phase. A general Code Scaling, Applicability, and Uncertainty (CSAU) evaluation approach was discussed in detail relative to safety analyses of Light Water Reactor (LWR). The major components of the CSAU methodology that were highlighted particularly focused on the

  14. Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives

    Directory of Open Access Journals (Sweden)

    Vincenza Precone

    2015-01-01

    Full Text Available Next-generation sequencing (NGS technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology’s flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.

  15. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    CrAl would tend to generate heat and hydrogen from oxidation at a slower rate compared to the zirconium-based alloys in use today. The previous study, [2], of the FeCrAl ATF concept during station blackout (SBO) severe accident scenarios in BWRs was based on simulating short term SBO (STSBO), long term SBO (LTSBO), and modified SBO scenarios occurring in a BWR-4 reactor with MARK-I containment. The analysis indicated that FeCrAl had the potential to delay the onset of fuel failure by a few hours depending on the scenario, and it could delay lower head failure by several hours. The analysis demonstrated reduced in-vessel hydrogen production. However, the work was preliminary and was based on limited knowledge of material properties for FeCrAl. Limitations of the MELCOR code were identified for direct use in modeling ATF concepts. This effort used an older version of MELCOR (1.8.5). Since these analyses, the BWR model has been updated for use in MELCOR 1.8.6 [10], and more representative material properties for FeCrAl have been modeled. Sections 2 4 present updated analyses for the FeCrAl ATF concept response during severe accidents in a BWR. The purpose of the study is to estimate the potential gains afforded by the FeCrAl ATF concept during BWR SBO scenarios.

  16. A Hybrid Scheme Based on Pipelining and Multitasking in Mobile Application Processors for Advanced Video Coding

    Directory of Open Access Journals (Sweden)

    Muhammad Asif

    2015-01-01

    Full Text Available One of the key requirements for mobile devices is to provide high-performance computing at lower power consumption. The processors used in these devices provide specific hardware resources to handle computationally intensive video processing and interactive graphical applications. Moreover, processors designed for low-power applications may introduce limitations on the availability and usage of resources, which present additional challenges to the system designers. Owing to the specific design of the JZ47x series of mobile application processors, a hybrid software-hardware implementation scheme for H.264/AVC encoder is proposed in this work. The proposed scheme distributes the encoding tasks among hardware and software modules. A series of optimization techniques are developed to speed up the memory access and data transferring among memories. Moreover, an efficient data reusage design is proposed for the deblock filter video processing unit to reduce the memory accesses. Furthermore, fine grained macroblock (MB level parallelism is effectively exploited and a pipelined approach is proposed for efficient utilization of hardware processing cores. Finally, based on parallelism in the proposed design, encoding tasks are distributed between two processing cores. Experiments show that the hybrid encoder is 12 times faster than a highly optimized sequential encoder due to proposed techniques.

  17. Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS

    Energy Technology Data Exchange (ETDEWEB)

    McCaskey, Alexander J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Slattery, Stuart [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Billings, Jay Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy s Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. There is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report will detail a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To acheive this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. The remainder of this report will describe this work in full. We will begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We will then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from accross the NEAMS toolkit to enable BISON-PROTEUS integration

  18. Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS

    Energy Technology Data Exchange (ETDEWEB)

    McCaskey, Alexander J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Slattery, Stuart [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Billings, Jay Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy's Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. There is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report details a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To achieve this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. This report describes this work in full. We begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from across the NEAMS toolkit to enable BISON-PROTEUS integration. Furthermore, we show how

  19. Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weihua, E-mail: weihua.zhang@hc-sc.gc.ca [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Ontario, K1A 1C1 (Canada); Bean, Marc; Benotto, Mike; Cheung, Jeff; Ungar, Kurt; Ahier, Brian [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Ontario, K1A 1C1 (Canada)

    2011-12-15

    A high volume aerosol sampler ('Grey Owl') has been designed and developed at the Radiation Protection Bureau, Health Canada. Its design guidance is based on the need for a low operational cost and reliable sampler to provide daily aerosol monitoring samples that can be used as reference samples for radiological studies. It has been developed to provide a constant air flow rate at low pressure drops ({approx}3 kPa for a day sampling) with variations of less than {+-}1% of the full scale flow rate. Its energy consumption is only about 1.5 kW for a filter sampling over 22,000 standard cubic meter of air. It has been demonstrated in this Fukushima nuclear accident related aerosol radioactivity monitoring study at Sidney station, B.C. that the sampler is robust and reliable. The results provided by the new monitoring system have been used to support decision-making in Canada during an emergency response. - Highlights: > A new high volume aerosol sampler ('Grey Owl') has been developed in this study. > It operates at low pressure drops with low energy consumption. > The variation of air flow rate is less than {+-}1% of the full scale. > Fukushima accident nuclide monitoring at Sidney shows that it is robust and reliable.

  20. RASCAL 及其在核事故后果评价中的应用%RASCAL and Its Application in Nuclear Accident Consequences Assessment

    Institute of Scientific and Technical Information of China (English)

    王韶伟; 侯杰; 陈海英; 曹亚丽; 乔清党; 李冰

    2014-01-01

    The development history, main function and basic principle used for emergency response of RAS-CAL, which is used for analyzing nuclear and radiate accident by American Nuclear Regulatory Commission, are presented in the study.The main modules/models are analyzed selectively, including source term to dose, field measurement to dose, meteorological data processor, source term calculation, transport, diffusion, and dose calculations.Then, RASCAL is applied to assess the radiological consequence of a nuclear power plant ac-cident emergency exercise.The assessment conclusion is displayed through Google Earth as 3D style.%介绍了美国核管会用于核与辐射事故后果分析的辐射评价系统( RASCAL)的主要功能和特性,重点分析了RASCAL的源项计算剂量模块、场外监测数据计算剂量模块、气象数据处理模块,以及源项计算模式、大气输运扩散模式和剂量计算模式。最后,将RASCAL应用于我国某核电厂事故应急演习中,评价分析事故情景下的放射性影响,并将其结果通过Google Earth进行三维展示。

  1. A database system for the management of severe accident risk information, SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K. I.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies.

  2. Development of Integrated Evaluation System for Severe Accident Management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y

    2007-06-15

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs.

  3. Optical coding theory with Prime

    CERN Document Server

    Kwong, Wing C

    2013-01-01

    Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct

  4. Revised accident source terms for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  5. Marine Offshore Accidents in Nigeria, Causes and Necessary Preventive Measures

    Directory of Open Access Journals (Sweden)

    yinkepreye L. Bebeteidoh ,Robert Poku

    2016-06-01

    Full Text Available With the ground-breaking developments in the maritime industry and the implementation of safety-related regulations and the institution of International Safety Codes and Protocols, marine offshore accidents in Nigeria are still a serious concern for global maritime organizations as the rate of offshore accidents has not reduced to the expected level. Ensuring the consistency of offshore accident investigation reports is recognized as a significant goal in order to plainly ascertain the core causes of offshore accidents. This research work though limited due to poor response on the part of the respondents as regards to releasing some data that would have been helpful, the researchers were still able to investigate the core causes of marine offshore accidents in Nigeria’s maritime industry. With emphasis on the scope of work essentially, data was collected through the administration of a well-structured questionnaire to selected seafarers connected with the offshore oil and gas industry in Nigeria, which included Captains, engineers, deckhands, oilers and Quartermasters. The data’s collected through the administration of a self-constructed questionnaire was analyzed using the concept of the statistical tool, Chi-Square, which was considered appropriate for testing the validity and reliability of each hypothesis established in this research. The aim of this research was to determine the causes of marine offshore accidents in Nigeria, which identified that human, environmental/natural, design, and technical factors comprises the major causes of marine offshore accidents. With the findings gotten, recommendations were made which if implemented by governments and maritime organizations and adhered to by maritime operators will go a long way to reduce marine offshore accidents.

  6. Research on Low Rate Turbo Code and Its Applications%极低码率Turbo码及其应用研究

    Institute of Scientific and Technical Information of China (English)

    胡东伟

    2014-01-01

    For the purpose of transmission with very low signal to noise ratios,the structure of the encoder of a low rate turbo code is presented in this paper.The corresponding decoding algorithm is analyzed,and the performance of this coding scheme is obtained by simulations.This paper presents the application method of low rate Turbo code in shortwave communications or meteor burst communica⁃tions systems is proposed in high bandwidth and complex channel environment. Comparisons are conducted between the application of low rate turbo code and the concatenating scheme of high rate turbo code and spectrum spread technique.The study proves that low rate Turbo code has better performance than traditional ones.With low rate turbo code,the application of adaptive modulation and coding technique can be extended to low signal to noise scenarios.%针对极低信噪比条件下的传输,研究了极低码率Turbo码的编译码器结构,仿真分析了其性能。提出了极低码率Turbo码在高带宽容量、复杂信道环境,例如:短波通信、流星余迹通信等系统中的使用方法。比较了极低码率Turbo码与高码率Turbo码加扩频的性能。研究表明,极低码率Turbo码较传统高码率Turbo码有更好的性能,能将自适应调制编码技术向低信噪比环境扩展。

  7. ACCIDENT PREDICTION MODELS FOR UNSIGNALISED URBAN JUNCTIONS IN GHANA

    OpenAIRE

    Mohammed SALIFU, MSc., PhD, MIHT, MGhIE

    2004-01-01

    The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of suitable accident prediction models for unsignalised urban junctions. A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development p...

  8. Code manual for MACCS2: Volume 1, user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I.; Young, M.L.

    1997-03-01

    This report describes the use of the MACCS2 code. The document is primarily a user`s guide, though some model description information is included. MACCS2 represents a major enhancement of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, distributed by government code centers since 1990, was developed to evaluate the impacts of severe accidents at nuclear power plants on the surrounding public. The principal phenomena considered are atmospheric transport and deposition under time-variant meteorology, short- and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. No other U.S. code that is publicly available at present offers all these capabilities. MACCS2 was developed as a general-purpose tool applicable to diverse reactor and nonreactor facilities licensed by the Nuclear Regulatory Commission or operated by the Department of Energy or the Department of Defense. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency-response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. Other improvements are in the areas of phenomenological modeling and new output options. Initial installation of the code, written in FORTRAN 77, requires a 486 or higher IBM-compatible PC with 8 MB of RAM.

  9. Application of a non-steady-state orbit-following Monte-Carlo code to neutron modeling in the MAST spherical tokamak

    Science.gov (United States)

    Tani, K.; Shinohara, K.; Oikawa, T.; Tsutsui, H.; McClements, K. G.; Akers, R. J.; Liu, Y. Q.; Suzuki, M.; Ide, S.; Kusama, Y.; Tsuji-Iio, S.

    2016-11-01

    As part of the verification and validation of a newly developed non-steady-state orbit-following Monte-Carlo code, application studies of time dependent neutron rates have been made for a specific shot in the Mega Amp Spherical Tokamak (MAST) using 3D fields representing vacuum resonant magnetic perturbations (RMPs) and toroidal field (TF) ripples. The time evolution of density, temperature and rotation rate in the application of the code to MAST are taken directly from experiment. The calculation results approximately agree with the experimental data. It is also found that a full orbit-following scheme is essential to reproduce the neutron rates in MAST.

  10. A dynamic model to estimate the dose rate of marine biota (K-BIOTADYN- M) and its application to the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong-Kwon; Jun, In; Kim, Byeong-Ho; Lim, Kwang-Muk; Choi, Yong-ho [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeodaero, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2014-07-01

    This paper describes a dynamic compartment model, K-BIOTA-DYN-M, to assess the activity concentration and dose rate of marine biota when the seawater activity varies with time, which is likely for the early phase after an accident. The model consists of seven compartments, phytoplankton, zooplankton, prey fish, benthic fish, crustacean, mollusk, and macro-algae. The phytoplankton compartment is assumed to be instantaneously in equilibrium with the seawater owing to the huge mass of the plankton in sea, and thus the activity of the phytoplankton is estimated using the equilibrium concentration ratio. The other compartments intake the radioactivity from both water and food, and lose the radioactivity by the biological elimination and radioactivity decay. Given the seawater activity, a set of ordinary differential equations representing the activity balance for biota is solved to obtain the time-variant activity concentration of biota, which is subsequently used to calculate the internal dose rate. The key parameters include the water intake rate, the daily feeding rate, the assimilation efficiency of radionuclides from food, the occupancy factor, and so on. The model has been applied to predict the activity concentration and dose rate of marine biota as a result the Fukushima nuclear accident on March 11, 2011. Using the seawater activities measured at three locations near the Fukushima NPPs, the time-variant activity concentration and dose rate during a few months after an accident for the seven model biota have been estimated. The preliminary results showed that the activity concentration of {sup 137}Cs in fish inhabiting the sea close to the Fukushima Daiichi NPP increased up to tenth-thousands of Bq/kg around the peak time of the seawater activity. This level is much higher than the food consumption restriction level for human protection; however, the estimated total dose rates (internal + external) for biota during the entire simulation time were all much less

  11. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, Jin-Ping [Oak Ridge National Lab., TN (United States); Yeh, Gour-Tsyh [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

    1997-02-01

    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed.

  12. Development of parallel monte carlo electron and photon transport (PMCEPT) code III: Applications to medical radiation physics

    Science.gov (United States)

    Kum, Oyeon; Han, Youngyih; Jeong, Hae Sun

    2012-05-01

    Minimizing the differences between dose distributions calculated at the treatment planning stage and those delivered to the patient is an essential requirement for successful radiotheraphy. Accurate calculation of dose distributions in the treatment planning process is important and can be done only by using a Monte Carlo calculation of particle transport. In this paper, we perform a further validation of our previously developed parallel Monte Carlo electron and photon transport (PMCEPT) code [Kum and Lee, J. Korean Phys. Soc. 47, 716 (2005) and Kim and Kum, J. Korean Phys. Soc. 49, 1640 (2006)] for applications to clinical radiation problems. A linear accelerator, Siemens' Primus 6 MV, was modeled and commissioned. A thorough validation includes both small fields, closely related to the intensity modulated radiation treatment (IMRT), and large fields. Two-dimensional comparisons with film measurements were also performed. The PMCEPT results, in general, agreed well with the measured data within a maximum error of about 2%. However, considering the experimental errors, the PMCEPT results can provide the gold standard of dose distributions for radiotherapy. The computing time was also much faster, compared to that needed for experiments, although it is still a bottleneck for direct applications to the daily routine treatment planning procedure.

  13. Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b

    Science.gov (United States)

    Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan

    2016-01-01

    We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  14. Learning from incidents and accidents

    NARCIS (Netherlands)

    Drupsteen, L.; Kampen, J. van

    2014-01-01

    There are many different definitions for what constitutes an incident or an accident, however the focus is always on unintended and often unforeseen events that cause unintended consequences. This article is focused on the process of learning from incidents and accidents. The focus is on making sure

  15. [Practical management of CPB accident].

    Science.gov (United States)

    Depoix, J-P; Fenet, L; Provenchere, S

    2012-05-01

    Accident of CPB is a reality. It is important to be prepared for discussion with the family, with the hospital administration, eventually with the justice. But we have also to support perfusionnist and anesthetic team in charge of the patient during accident.

  16. Severe accident recriticality analyses (SARA)

    DEFF Research Database (Denmark)

    Frid, W.; Højerup, C.F.; Lindholm, I.

    2001-01-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the ...

  17. Decoding of concatenated codes with interleaved outer codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Thommesen, Christian; Høholdt, Tom

    2004-01-01

    Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved Reed/Solomon codes, which allows close to errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes. (NK) N-K...

  18. A Proposed Chaotic-Switched Turbo Coding Design and Its Application for Half-Duplex Relay Channel

    Directory of Open Access Journals (Sweden)

    Tamer H. M. Soliman

    2015-01-01

    Full Text Available Both reliability and security are two important subjects in modern digital communications, each with a variety of subdisciplines. In this paper we introduce a new proposed secure turbo coding system which combines chaotic dynamics and turbo coding reliability together. As we utilize the chaotic maps as a tool for hiding and securing the coding design in turbo coding system, this proposed system model can provide both data secrecy and data reliability in one process to combat problems in an insecure and unreliable data channel link. To support our research, we provide different schemes to design a chaotic secure reliable turbo coding system which we call chaotic-switched turbo coding schemes. In these schemes the design of turbo codes chaotically changed depending on one or more chaotic maps. Extensions of these chaotic-switched turbo coding schemes to half-duplex relay systems are also described. Results of simulations of these new secure turbo coding schemes are compared to classical turbo codes with the same coding parameters and the proposed system is able to achieve secured reasonable bit error rate performance when it is made to switch between different puncturing and design configuration parameters especially with low switching rates.

  19. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents.

  20. Traffic Accidents on Slippery Roads

    DEFF Research Database (Denmark)

    Fonnesbech, J. K.; Bolet, Lars

    2014-01-01

    Police registrations from 65 accidents on slippery roads in normally Danish winters have been studied. The study showed: • 1 accident per 100 km when using brine spread with nozzles • 2 accidents per 100 km when using pre wetted salt • 3 accidents per 100 km when using kombi spreaders The results...... of accidents in normally Danish winter seasons are remarkable alike the amount of salt used in praxis in the winter 2011/2012. • 2.7 ton NaCl/km when using brine spread with nozzles • 5 ton NaCl/km when using pre wetted salt. • 5.7 ton NaCl/km when using kombi spreaders The explanation is that spreading...