WorldWideScience

Sample records for accessory olfactory bulb

  1. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs

    Alicia eMohedanoMoriano

    2012-05-01

    Full Text Available Parallel to the olfactory system, most mammals possess an accessory olfactory or vomeronasal system. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs, which in turn project to adjacent areas of the telencephalon, respectively. New data indicate that projections arising from the main and accessory olfactory bulbs partially converge in the rostral telencephalon and are non-overlapping at caudal telencephalic levels. Therefore, the basal telencephalon should be reclassified in olfactory, vomeronasal and mixed areas. On the other hand, it has been demonstrated that virtually all olfactory- and vomeronasal-recipient structures send reciprocal projections to the main and accessory olfactory bulbs, respectively. Further, non-chemosensory recipient structures also projects centrifugally to the olfactory bulbs. These feed-back projections appear to be essential modulating processing of chemosensory information. The present work aims at characterizing centrifugal projections to the main and accessory olfactory bulbs arising from olfactory, vomeronasal, mixed and non-chemosensory recipient telencephalic areas. This issue has been addressed by using tracer injections in the rat and mouse brain. Tracer injections were delivered into the main and accessory olfactory bulbs as well as in olfactory, vomeronasal, mixed and non-chemosensory recipient telencephalic structures. The results confirm that olfactory- and vomeronasal-recipient structures project to the main and accessory olfactory bulbs, respectively. Interestingly, olfactory (e.g., piriform cortex, vomeronasal (e.g., posteromedial cortical amygdala, mixed (e.g., the medial amygdala and non-chemosensory-recipient (e.g., the nucleus of the diagonal band structures project to the main and to the accessory olfactory bulbs thus providing the possibility of simultaneous modulation and interaction of both systems at different stages of chemosensory processing.

  2. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs

    Mohedano-Moriano, Alicia; de la Rosa-Prieto, Carlos; Saiz-Sanchez, Daniel; Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; de Moya-Pinilla, Miguel; Martinez-Marcos, Alino

    2012-01-01

    Parallel to the olfactory system, most mammals possess an accessory olfactory or vomeronasal system. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs, which in turn project to adjacent areas of the telencephalon, respectively. New data indicate that projections arising from the main and accessory olfactory bulbs partially converge in the rostral telencephalon and are non-overlapping at caudal telencephalic levels. Therefore, the basal telencephalon should be reclassified in olfactory, vomeronasal, and mixed areas. On the other hand, it has been demonstrated that virtually all olfactory- and vomeronasal-recipient structures send reciprocal projections to the main and accessory olfactory bulbs, respectively. Further, non-chemosensory recipient structures also projects centrifugally to the olfactory bulbs. These feed-back projections appear to be essential modulating processing of chemosensory information. The present work aims at characterizing centrifugal projections to the main and accessory olfactory bulbs arising from olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic areas. This issue has been addressed by using tracer injections in the rat and mouse brain. Tracer injections were delivered into the main and accessory olfactory bulbs as well as in olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic structures. The results confirm that olfactory- and vomeronasal-recipient structures project to the main and accessory olfactory bulbs, respectively. Interestingly, olfactory (e.g., piriform cortex), vomeronasal (e.g., posteromedial cortical amygdala), mixed (e.g., the anterior medial amygdaloid nucleus), and non-chemosensory-recipient (e.g., the nucleus of the diagonal band) structures project to the main and to the accessory olfactory bulbs thus providing the possibility of simultaneous modulation and interaction of both systems at different stages of chemosensory processing

  3. Structure and diversity in mammalian accessory olfactory bulb.

    Meisami, E; Bhatnagar, K P

    1998-12-15

    The accessory olfactory bulb (AOB) is the first neural integrative center for the olfactory-like vomeronasal sensory system. In this article, we first briefly present an overview of vomeronasal system organization and review the history of the discovery of mammalian AOB. Next, we briefly review the evolution of the vomeronasal system in vertebrates, in particular the reptiles. Following these introductory aspects, the structure of the rodent AOB, as typical of the well-developed mammalian AOB, is presented, detailing laminar organization and cell types as well as aspects of the homology with the main olfactory bulb. Then, the evolutionary origin and diversity of the AOB in mammalian orders and species is discussed, describing structural, phylogenetic, and species-specific variation in the AOB location, shape, and size and morphologic differentiation and development. The AOB is believed to be absent in fishes but present in terrestrial tetrapods including amphibians; among the reptiles AOB is absent in crocodiles, present in turtles, snakes, and some lizards where it may be as large or larger than the main bulb. The AOB is absent in bird and in the aquatic mammals (whales, porpoises, manatees). Among other mammals, AOB is present in the monotremes and marsupials, edentates, and in the majority of the placental mammals like carnivores, herbivores, as well as rodents and lagomorphs. Most bat species do not have an AOB and among those where one is found, it shows marked variation in size and morphologic development. Among insectivores and primates, AOB shows marked variation in occurrence, size, and morphologic development. It is small in shrews and moles, large in hedgehogs and prosimians; AOB continues to persist in New World monkeys but is not found in the adults of the higher primates such as the Old World monkeys, apes, and humans. In many species where AOB is absent in the adult, it often develops in the embryo and fetus but regresses in later stages of

  4. Comparison of social interaction and neural activation in the main olfactory bulb and the accessory olfactory bulb between Microtus mandarinus and Microtus fortis

    Fadao TAI, Wanying WANG, Hugh BRODERS, Ruyong SUN, Limin LIU , Hongyuan WANG

    2009-08-01

    Full Text Available To gain insight into the function of AOB and MOB during different social interaction and in different vole species, the behaviors and neural activation of the olfactory bulbs in social interactions of mandarin voles Microtus mandarinus and reed voles Microtus fortis were compared in the present research. Mandarin voles spent significantly more time attacking and sniffing its opponent and sniffing sawdust than reed voles. During same sex encounters, mandarin voles attacked its opponent for a significantly longer time and sniffed its opponent for shorter time compared with male-female interactions. However, no significant behavioral differences were found during encounters of two individual reed voles, regardless of gender composition of the pair. Using c-Fos as an indicator of neural activation, we observed that neural activation was significantly higher in almost all sub-regions of the main olfactory bulb (MOB and the accessory olfactory bulb (AOB of mandarin voles compared with reed voles. Numbers of c-Fos-ir neurons in almost all sub-regions of the AOB and the MOB during male-female interactions were also higher than those in interactions of the same sex. Anterior-posterior ratios of Fos-ir neurons in the AOBM (AOBMR and the AOBG (AOBGR in male-female interaction were significantly higher than those in interaction of the same sex. The AOBMR of male mandarin voles and reed voles were larger than those of females in male-female interactions. Behavioral patterns are consistent with cellular activity patterns. Consistent level of neural activation in MOB and AOB suggests important roles of both the main olfactory bulb and the accessory olfactory bulb in social interaction in two species [Current Zoology 55(4: 279 –287, 2009].

  5. [Oxidative metabolism of main and accessory olfactory bulbs, limpic system and hypothalamus during the estral cycle of the rat (author's transl)].

    Sánchez-Criado, J E

    1979-06-01

    The in vitro oxidative metabolism of hypothalamus, olfactory and limbic systems from female rats in the estrous cycle have been measured. The accessory olfactory bulb becomes most active during diestrous when the hypothalamus reaches its lowest values.

  6. Sexual activity increases the number of newborn cells in the accessory olfactory bulb of male rats.

    Wendy ePortillo

    2012-07-01

    Full Text Available In rodents, sexual behavior depends on the adequate detection of sexually relevant stimuli. The olfactory bulb (OB is a region of the adult mammalian brain undergoing constant cell renewal by continuous integration of new granular and periglomerular neurons in the accessory (AOB and main (MOB olfactory bulbs. The proliferation, migration, survival, maturation, and integration of these new cells to the OB depend on the stimulus that the subjects received. We have previously shown that 15 days after females control (paced the sexual interaction an increase in the number of cells is observed in the AOB. No changes are observed in the number of cells when females are not allowed to control the sexual interaction. In the present study we investigated if in male rats sexual behavior increases the number of new cells in the OB. Male rats were divided in five groups: 1 males that did not receive any sexual stimulation, 2 males that were exposed to female odors, 3 males that mated for 1 h and could not pace their sexual interaction, 4 males that paced their sexual interaction and ejaculated 1 time and 5 males that paced their sexual interaction and ejaculated 3 times. All males received three injections of the DNA synthesis marker bromodeoxyuridine at 1h intervals, starting 1h before the beginning of the behavioral test. Fifteen days later, males were sacrificed and the brains were processed to identify new cells and to evaluate if they differentiated into neurons. The number of newborn cells increased in the granular cell layer (also known as the internal cell layer of the AOB in males that ejaculated one or three times controlling (paced the rate of the sexual interaction. Some of these new cells were identified as neurons. In contrast, no significant differences were found in the mitral cell layer (also known as the external cell layer and glomerular cell layer of the AOB. In addition, no significant differences were found between groups in the MOB in

  7. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb.

    Del Punta, Karina; Puche, Adam; Adams, Niels C; Rodriguez, Ivan; Mombaerts, Peter

    2002-09-12

    The mammalian vomeronasal system is specialized in pheromone detection. The neural circuitry of the accessory olfactory bulb (AOB) provides an anatomical substrate for the coding of pheromone information. Here, we describe the axonal projection pattern of vomeronasal sensory neurons to the AOB and the dendritic connectivity pattern of second-order neurons. Genetically traced sensory neurons expressing a given gene of the V2R class of vomeronasal receptors project their axons to six to ten glomeruli distributed in globally conserved areas of the AOB, a theme similar to V1R-expressing neurons. Surprisingly, second-order neurons tend to project their dendrites to glomeruli innervated by axons of sensory neurons expressing the same V1R or the same V2R gene. Convergence of receptor type information in the olfactory bulb may represent a common design in olfactory systems.

  8. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells.

    Asaph Zylbertal

    2015-12-01

    Full Text Available Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB, which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i, which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions.

  9. Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb

    Marking, Sarah; Krosnowski, Kurt; Ogura, Tatsuya; Lin, Weihong

    2017-01-01

    Sensory information processing in the olfactory bulb (OB) relies on diverse populations of bulbar interneurons. In rodents, the accessory OB (AOB) is divided into two bulbar regions, the anterior (aAOB) and posterior (pAOB), which differ substantially in their circuitry connections and associated behaviors. We previously identified and characterized a large number of morphologically diverse cholinergic interneurons in the main OB (MOB) using transgenic mice to visualize the cell bodies of choline acetyltransferase (ChAT-expressing neurons and immunolabeling (Krosnowski et al., 2012)). However, whether there are cholinergic neurons in the AOB is controversial and there is no detailed characterization of such neurons. Using the same line of ChAT(bacterial artificial chromosome, BAC)-enhanced green fluorescent protein (eGFP) transgenic mice, we investigated cholinergic neurons in the AOB. We found significant differences in the number and location of GFP-expressing (GFP+), putative cholinergic interneurons between the aAOB and pAOB. The highest numbers of GFP+ interneurons were found in the aAOB glomerular layer (aGL) and pAOB mitral/tufted cell layer (pMCL). We also noted a high density of GFP+ interneurons encircling the border region of the pMCL. Interestingly, a small subset of glomeruli in the middle of the GL receives strong MCL GFP+ nerve processes. These local putative cholinergic-innervated glomeruli are situated just outside the aGL, setting the boundary between the pGL and aGL. Many but not all GFP+ neurons in the AOB were weakly labeled with antibodies against ChAT and vesicular acetylcholine transporter (VAChT). We further determined if these GFP+ interneurons differ from other previously characterized interneuron populations in the AOB and found that AOB GFP+ interneurons express neither GABAergic nor dopaminergic markers and most also do not express the glutamatergic marker. Similar to the cholinergic interneurons of the MOB, some AOB GFP+ interneurons

  10. Mating behavior induces changes of expression of Fos protein, plasma testosterone and androgen receptors in the accessory olfactory bulb (AOB) of the male mandarin vole Microtus mandarinus

    Fengqin HE, Fadao TAI

    2009-01-01

    In order to investigate the neuroendocrine mechanism of the mating behavior in the adult male mandarin voles Microtus mandarinus, the radioimmunoassay (RIA) and immunohistochemistry methods were used to investigate the differences in plasma testosterone (T) concentrations and distribution of T immunoreactive neurons (T-IRs), androgen receptor immunoreactive neurons (AR-IRs) and Fos protein immunoreactive neurons (Fos-IRs) in the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB)...

  11. Pheromones from males of different familiarity exert divergent effects on adult neurogenesis in the female accessory olfactory bulb.

    Wu, Jyun-Han; Han, Yueh-Ting; Yu, Jenn-Yah; Wang, Tsu-Wei

    2013-08-01

    Pheromones from urine of unfamiliar conspecific male animals can reinitiate a female's estrus cycle to cause pregnancy block through the vomeronasal organ (VNO)-accessory olfactory bulb (AOB)-hypothalamic pathway. This phenomenon is called the Bruce effect. Pheromones from the mate of the female, however, do not trigger re-entrance of the estrus cycle because an olfactory memory toward its mate is formed. The activity of the VNO-AOB-hypothalamic pathway is negatively modulated by GABAergic granule cells in the AOB. Since these cells are constantly replenished by neural stem cells in the subventricular zone (SVZ) of the lateral ventricle throughout adulthood and adult neurogenesis is required for mate recognition and fertility, we tested the hypothesis that pheromones from familiar and unfamiliar males may have different effects on adult AOB neurogenesis in female mice. When female mice were exposed to bedding used by a male or lived with one, cell proliferation and neuroblast production in the SVZ were increased. Furthermore, survival of newly generated cells in the AOB was enhanced. This survival effect was transient and mediated by norepinephrine. Interestingly, male bedding-induced newborn cell survival in the AOB but not cell proliferation in the SVZ was attenuated when females were subjected to bedding from an unfamiliar male. Our results indicate that male pheromones from familiar and unfamiliar males exert different effects on neurogenesis in the adult female AOB. Given that adult neurogenesis is required for reproductive behaviors, these divergent pheromonal effects may provide a mechanism for the Bruce effect. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 632-645, 2013.

  12. Shared and differential traits in the accessory olfactory bulb of caviomorph rodents with particular reference to the semiaquatic capybara.

    Suárez, Rodrigo; Santibáñez, Rodrigo; Parra, Daniela; Coppi, Antonio A; Abrahão, Luciana M B; Sasahara, Tais H C; Mpodozis, Jorge

    2011-05-01

    The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing Gαi2 or Gαo proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the Gαi2- and Gαo-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male-male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB.

  13. Ultrastructure and synaptic connectivity of main and accessory olfactory bulb efferent projections terminating in the rat anterior piriform cortex and medial amygdala.

    Park, Sook Kyung; Kim, Jong Ho; Yang, Eun Sun; Ahn, Dong Kuk; Moon, Cheil; Bae, Yong Chul

    2014-09-01

    Neurons in the main olfactory bulb relay peripheral odorant signals to the anterior piriform cortex (aPir), whereas neurons of the accessory olfactory bulb relay pheromone signals to the medial amygdala (MeA), suggesting that they belong to two functionally distinct systems. To help understand how odorant and pheromone signals are further processed in the brain, we investigated the synaptic connectivity of identified axon terminals of these neurons in layer Ia of the aPir and posterodorsal part of the MeA, using anterograde tracing with horseradish peroxidase, quantitative ultrastructural analysis of serial thin sections, and immunogold staining. All identified boutons contained round vesicles and some also contained many large dense core vesicles. The number of postsynaptic dendrites per labeled bouton was significantly higher in the aPir than in the MeA, suggesting higher synaptic divergence at a single bouton level. While a large fraction of identified boutons (29%) in the aPir contacted 2-4 postsynaptic dendrites, only 7% of the identified boutons in the MeA contacted multiple postsynaptic dendrites. In addition, the majority of the identified boutons in the aPir (95%) contacted dendritic spines, whereas most identified boutons in the MeA (64%) contacted dendritic shafts. Identified boutons and many of the postsynaptic dendrites showed glutamate immunoreactivity. These findings suggest that odorant and pheromone signals are processed differently in the brain centers of the main and accessory olfactory systems.

  14. Noradrenaline-induced enhancement of oscillatory local field potentials in the mouse accessory olfactory bulb does not depend on disinhibition of mitral cells.

    Leszkowicz, Emilia; Khan, Selina; Ng, Stephanie; Ved, Nikita; Swallow, Daniel L; Brennan, Peter A

    2012-05-01

    The olfactory bulb differs from other brain regions by its use of bidirectional synaptic transmission at dendrodendritic reciprocal synapses. These reciprocal synapses provide tight coupling of inhibitory feedback from granule cell interneurons to mitral cell projection neurons in the accessory olfactory bulb (AOB), at the first stage of vomeronasal processing. It has been proposed that both the mGluR2 agonist DCG-IV and noradrenaline promote mate recognition memory formation by reducing GABAergic feedback on mitral cells. The resultant mitral cell disinhibition is thought to induce a long-lasting enhancement in the gain of inhibitory feedback from granule to mitral cells, which selectively gates the transmission of the learned chemosensory information. However, we found that local infusions of both noradrenaline and DCG-IV failed to disinhibit AOB neural activity in urethane-anaesthetised mice. DCG-IV infusion had similar effects to the GABA(A) agonist isoguvacine, suggesting that it increased GABAergic inhibition in the AOB rather than reducing it. Noradrenaline infusion into the AOB also failed to disinhibit mitral cells in awake mice despite inducing long-term increases in power of AOB local field potentials, similar to those observed following memory formation. These results suggest that mitral cell disinhibition is not essential for the neural changes in the AOB that underlie mate recognition memory formation in mice.

  15. Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb.

    Prince, Janet E A; Cho, Jin Hyung; Dumontier, Emilie; Andrews, William; Cutforth, Tyler; Tessier-Lavigne, Marc; Parnavelas, John; Cloutier, Jean-François

    2009-11-11

    The ability of sensory systems to detect and process information from the environment relies on the elaboration of precise connections between sensory neurons in the periphery and second order neurons in the CNS. In mice, the accessory olfactory system is thought to regulate a wide variety of social and sexual behaviors. The expression of the Slit receptors Robo-1 and Robo-2 in vomeronasal sensory neurons (VSNs) suggests they may direct the stereotypic targeting of their axons to the accessory olfactory bulb (AOB). Here, we have examined the roles of Robo-1 and Robo-2 in the formation of connections by VSN axons within the AOB. While Robo-1 is not necessary for the segregation of VSN axons within the anterior and posterior regions of the AOB, Robo-2 is required for the targeting of some basal VSN axons to the posterior region of the AOB but is dispensable for the fasciculation of VSN axons. Furthermore, the specific ablation of Robo-2 expression in VSNs leads to mistargeting of a portion of basal VSN axons to the anterior region of the AOB, indicating that Robo-2 expression is required on projecting VSN axons. Together, these results identify Robo-2 as a receptor that controls the targeting of basal VSN axons to the posterior AOB.

  16. Mating behavior induces changes of expression of Fos protein, plasma testosterone and androgen receptors in the accessory olfactory bulb (AOB of the male mandarin vole Microtus mandarinus

    Fengqin HE, Fadao TAI

    2009-08-01

    Full Text Available In order to investigate the neuroendocrine mechanism of the mating behavior in the adult male mandarin voles Microtus mandarinus, the radioimmunoassay (RIA and immunohistochemistry methods were used to investigate the differences in plasma testosterone (T concentrations and distribution of T immunoreactive neurons (T-IRs, androgen receptor immunoreactive neurons (AR-IRs and Fos protein immunoreactive neurons (Fos-IRs in the accessory olfactory bulb (AOB and the main olfactory bulb (MOB following exposure to clean hard-wood shavings (control group, soiled bedding (exposure group or contact with an estrous female (mating group. Results showed that plasma T concentration was significantly higher in the mating group than that in the exposure group, and both the mating group and the exposure group displayed significantly higher plasma T concentration than the control group. T-IRs, AR-IRs and Fos-IRs were investigated with the immunohistochemistry method in granule cell (GC and mitral cell (MC of the MOB and the AOB in the three groups. There were significantly more T-IRs, AR-IRs and Fos-IRs in MC and GC of the AOB in the mating group than that in the exposure group or the control group. T-IRs, AR-IRs and Fos-IRs did not show significant differences between the exposure group and the control group. Furthermore, obvious differences in MC and GC of the MOB were not found among the three groups. The results confirm that both changes of T and AR in the AOB might be underlying mating behavior in the adult male mandarin voles [Current Zoology 55 (4: 288–295, 2009].

  17. Optogenetic Activation of Accessory Olfactory Bulb Input to the Forebrain Differentially Modulates Investigation of Opposite versus Same-Sex Urinary Chemosignals and Stimulates Mating in Male Mice

    McCarthy, Elizabeth A.; Korzan, Wayne J.; Doctor, Danielle; Han, Xue; Baum, Michael J.

    2017-01-01

    Abstract Surgical or genetic disruption of vomeronasal organ (VNO)-accessory olfactory bulb (AOB) function previously eliminated the ability of male mice to processes pheromones that elicit territorial behavior and aggression. By contrast, neither disruption significantly affected mating behaviors, although VNO lesions reduced males’ investigation of nonvolatile female pheromones. We explored the contribution of VNO-AOB pheromonal processing to male courtship using optogenetic activation of AOB projections to the forebrain. Protocadherin-Cre male transgenic mice received bilateral AOB infections with channelrhodopsin2 (ChR2) viral vectors, and an optical fiber was implanted above the AOB. In olfactory choice tests, males preferred estrous female urine (EFU) over water; however, this preference was eliminated when diluted (5%) EFU was substituted for 100% EFU. Optogenetic AOB activation concurrent with nasal contact significantly augmented males’ investigation compared to 5% EFU alone. Conversely, concurrent optogenetic AOB activation significantly reduced males’ nasal investigation of diluted urine from gonadally intact males (5% IMU) compared to 5% IMU alone. These divergent effects of AOB optogenetic activation were lost when males were prevented from making direct nasal contact. Optogenetic AOB stimulation also failed to augment males’ nasal investigation of deionized water or of food odors. Finally, during mating tests, optogenetic AOB stimulation delivered for 30 s when the male was in physical contact with an estrous female significantly facilitated the occurrence of penile intromission. Our results suggest that VNO-AOB signaling differentially modifies males’ motivation to seek out female vs male urinary pheromones while augmenting males’ sexual arousal leading to intromission and improved reproductive performance. PMID:28374006

  18. Transient and sustained afterdepolarizations in accessory olfactory bulb mitral cells are mediated by distinct mechanisms that are differentially regulated by neuromodulators

    G. Shpak (Guy); A. Zylbertal (Asaph); S. Wagner (Shlomo)

    2015-01-01

    textabstractSocial interactions between mammalian conspecifics rely heavily on molecular communication via the main and accessory olfactory systems. These two chemosensory systems show high similarity in the organization of information flow along their early stages: social chemical cues are detected

  19. Centrifugal innervation of the mammalian olfactory bulb.

    Matsutani, Shinji; Yamamoto, Noboru

    2008-12-01

    Although it has been known for decades that the mammalian olfactory bulb receives a substantial number of centrifugal inputs from other regions of the brain, relatively few data have been available on the function of the centrifugal olfactory system. Knowing the role of the centrifugal projection and how it works is of critical importance to fully understanding olfaction. The centrifugal fibers can be classified into two groups, a group that release neuromodulators, such as noradrenaline, serotonin, or acetylcholine, and a group originating in the olfactory cortex. Accumulating evidence suggests that centrifugal neuromodulatory inputs are associated with acquisition of odor memory. Because the distribution of the terminals on these fibers is diffuse and widespread, the neuromodulatory inputs must affect diverse subsets of bulbar neurons at the same time. In contrast, knowledge of the role of centrifugal fibers from the olfactory cortical areas is limited. Judging from recent morphological evidence, these fibers may modify the activity of neurons located in sparse and discrete loci in the olfactory bulb. Given the modular organization of the olfactory bulb, centrifugal fibers from the olfactory cortex may help coordinate the activities of restricted subsets of neurons belonging to distinct functional modules in an odor-specific manner. Because the olfactory cortex receives inputs from limbic and neocortical areas in addition to inputs from the bulb, the centrifugal inputs from the cortex can modulate odor processing in the bulb in response to non-olfactory as well as olfactory cues.

  20. Olfactory bulb as an alternative in neurotransplantation

    Руслан Романович Новиков

    2015-05-01

    Full Text Available The article examines the ethical and legal aspects of transplantation of embryonic neural tissue, structure of the rat olfactory bulb. It is given substantiation for its use as a possible alternative version of the embryonic neural tissue at damage in the cerebral hemispheres in the experiment.Materials and methods. Detailed description of the fault model of the cerebral hemispheres of the brain of rats, olfactory bulb biopsy procedure, cultivation of olfactory bulb suspension and fetal neural tissue, comparison of the functional aspects of transplantation of the olfactory bulb and the embryonic neural tissue.Results. The obtained data are similar to structure of olfactory bulb and fetal tissues during culturing. Recovery in the motor areas varies by the time factor and less intense in the group of the olfactory bulb and the group without tissue transplantation.Conclusions. Comparative analysis of the effectiveness of transplantation of embryonic neural tissue and olfactory bulb in the injured brain allows us to speak about the positive results of these groups to the difference in the duration of the recovery process

  1. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo

    2009-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pe...

  2. Neuronal organization of olfactory bulb circuits

    Shin eNagayama

    2014-09-01

    Full Text Available Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.

  3. 电生理法对豚鼠副嗅球功能分区的显示%Functional subdivisions of the guinea pig accessory olfactory bulb revealed by electrophysiology

    余青松; 须贝外喜夫

    2001-01-01

    目的:探讨豚鼠副嗅球(AOB)是否存在多个功能分区。方法:在豚鼠副嗅球矢状位切片上,将双钨电极插入副嗅球前部或后部的犁鼻神经纤维层(VNL),以单个方波刺激传入神经纤维,用玻璃微电极记录AOB前部或后部外橄状层(EPL)细胞外场电位。结果:电刺激VNL,可在EPL记录到典型的衰减性场电位,且后EPL记录到的场电位的持续时间较前部分明显延长。刺激前VNL仅在前EPL记录到场电位,而刺激后VNL只在后EPL记录到场电位。结论:豚鼠副嗅球可分为前后两个亚区,两区存在解剖学上的差异,说明在犁鼻系统中至少存在两个不同的传入-传出通路。%Objective:To elucidate possible functional subdivisions in the guinea pig accessory olfactory bulb.Method:The guinea pig accessory olfactory bulbs were cut in sagittal slice.Bipolar tungsten electrodes were inserted into anterior or posterior vomeronasal nerve layers and single square-pulses were delivered through the eletrodes to activate afferent fibres.Glass microelectrodes were used to record extracellular field potentials of anterior or posterior external plexiform layers.Result:A single shook of the VNL provoked a characteristic damped oscillatory field potential and the oscillation in the pAOB was more distinct in wave form and longer in duration than those in the aAOB.The stimulation of anterior VNL elicited field potentials exelusively in the anterior region of EPL,whereas shocks to the posterior VNL provoked oscillatory responses only within the posterior EPL.Conclusion:The accessory olfactory bulb in the guinea-pig is distinctly segregated into the anterior and posterior subdivisions and an anatomical boundary exists in both regions.The results suggested that there are at least two different input-output pathways in vomeronasal systems.

  4. Organisation and chemical neuroanatomy of the African elephant (Loxodonta africana) olfactory bulb.

    Ngwenya, Ayanda; Patzke, Nina; Ihunwo, Amadi O; Manger, Paul R

    2011-11-01

    The olfactory system of mammals can be divided into a main and accessory olfactory system with initial processing for each system occurring in the olfactory bulb. The main and accessory olfactory bulbs have similar structural features, even though they appear to be functionally independent. In mammals the main olfactory bulb (MOB) is also one of two established sites of lifelong generation of new cells. The present study describes the histological and immunohistochemical neuroanatomy of the olfactory bulb of the African elephant (Loxodonta africana). The morphology of MOB of the elephant does not differ significantly from that described in other mammals; however, it lacks the internal plexiform layer. In addition, the glomeruli of the glomerular layer are organised in 2-4 "honey-combed" layers, a feature not commonly observed. The cell types and structures revealed with immunohistochemical stains (parvalbumin, calbindin, calretinin, tyrosine hydroxylase, orexin-A, glial fibrillary acidic protein) were similar to other mammals. Neurogenesis was examined using the neurogenic marker doublecortin. Migration of newly generated cells was observed in most layers of the MOB. No accessory olfactory bulb (AOB) was observed. Based on the general anatomy and the immunohistochemical observations, it is evident that the morphology of the African elephant MOB is, for the most part, similar to that of all mammals, although very large in absolute size.

  5. Olfactory bulb encoding during learning under anesthesia

    Nicol, Alister U.; Sanchez-Andrade, Gabriela; Collado, Paloma; Segonds-Pichon, Anne; Kendrick, Keith M.

    2014-01-01

    Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA

  6. Olfactory bulb encoding during learning under anaesthesia

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  7. Neurogenesis in the adult olfactory bulb

    Angela Pignatelli; Cristina Gambardella; Ottorino Belluzzi

    2011-01-01

    Neurogenesis is the process by which cells divide, migrate, and subsequently differentiate into a neuronal phenotype. Significant rates of neurogenesis persist into adulthood in two brain regions, the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricles. Cells of the subventricular zone divide and migrate via the rostral migratory stream to the olfactory bulb where they differentiate into granule and periglomerular cells. With the discovery of large-scale neurogenesis in the adult brain, there have been significant efforts to identify the mechanisms that control this process as well as the role of these cells in neuronal functioning. Although many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. In this review we highlight the main studies investigating factors that regulate neurogenesis in the subventricular zone, neuronal migration to the olfactory bulb, neuronal integration into the existing bulbar network and shortly discuss the functional meaning of this process.

  8. A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity.

    Nahum Nolasco

    Full Text Available Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h or day (10:00 h, and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.

  9. [Blockade of the pheromonal effects in rat by central deafferentation of the accessory olfactory system].

    Sánchez-Criado, J E

    1979-06-01

    Female rats reared without sex odours from male rats have a five day stral cycle. With exposure to male odour the estral cycle is shortened from five to four days. This pheromonal effect is blocked on deafferenting the vomeronasal system by electrolytically damaging both accessory olfactory bulbs.

  10. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

    Mori, Kensaku; Manabe, Hiroyuki; Narikiyo, Kimiya; Onisawa, Naomi

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness may require neuronal circuit mechanisms for the "binding" of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron-olfactory bulb-olfactory cortex-orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  11. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex and orbitofrontal cortex

    Kensaku eMori

    2013-10-01

    Full Text Available The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron – olfactory bulbolfactory cortex – orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  12. Olfactory bulb and retrobulbar regions in the hedgehog tenrec: organization and interconnections.

    Radtke-Schuller, S; Künzle, H

    2000-08-01

    The Madagascan lesser hedgehog tenrec (Echinops telfairi) is a terrestrial, nocturnal insectivore with a low encephalization index and a huge olfactory bulb. To gain insight into the organization and evolution of olfactory regions in placental mammals, the cytoarchitecture (Nissl), neurochemical attributes [zinc and acetylcholinesterase stain, nicotinamide adenine dinucleotide phosphate (NADPh)-diaphorase, and calcium-binding proteins], and interconnections (injections of wheat germ agglutinin-horseradish peroxidase and biotinylated dextran amine) of tenrec bulbar and retrobulbar regions were examined. The tenrec has a well-laminated main olfactory bulb, and modified (atypical) glomeruli are found that, to date, have been demonstrated only in murine rodents. Compared with the main olfactory bulb, the accessory bulb is relatively small, with clearly different staining characteristics, particularly with respect to NADPh-diaphorase, anticalbindin, and anticalretinin. External and central anterior olfactory nuclei also show characteristic cytoarchitectural and chemoarchitectural features. The medial olfactory peduncle seems to differ considerably from that in rodents. A small taenial structure can be separated from the hippocampal continuation. This taenia tecti presumably corresponds to the superior part of the tenia tecti in rodents, but no homologue of the rodent's prominent inferior taenia tecti could be found. The connections of bulbar and retrobulbar regions are similar to those seen in other mammals. Interbulbar projection systems connect the two olfactory bulbs through an external (topographic) and central (nontopographic) anterior nucleus; however, the topographic arrangement of the intrabulbar association system seems to differ from that seen in rodents. A reciprocity of direct olfactory bulb connections with the frontal (sulcal/orbital) cortex was found in the tenrec that has not been reported so far in other species.

  13. MRI of the olfactory bulbs and sulci in human fetuses

    Azoulay, Robin; Grabar, Sophie; Kalifa, Gabriel; Adamsbaum, Catherine [Paris V, Faculte de Medecine, Department of Radiology, Hopital Saint Vincent de Paul, Paris Cedex 14 (France); Fallet-Bianco, Catherine [Hopital Sainte-Anne, Paris (France); Garel, Catherine [Hopital Robert Debre, Paris (France)

    2006-02-01

    There is limited knowledge of the MRI pattern of the development of fetal olfactory bulbs and sulci. To describe the MRI appearance of olfactory bulbs and sulci in normal in vivo fetuses according to gestational age. Olfactory bulbs and sulci were retrospectively assessed on brain MRI examinations of 88 normal fetuses between 24 and 39 weeks gestational age. Two reference centres were involved in the study and both used routine protocols that included axial and coronal T2- and T1-weighted sequences at 1.5 T. The results were compared both with the commonly used neuropathological data in the literature and with personal neuropathological data. Pearson's chi-squared test or Fisher's exact test were performed. One case of olfactory agenesis associated with CHARGE syndrome was identified. T2-weighted coronal sequences were the most sensitive for detecting olfactory bulbs and sulci. Olfactory sulci were significantly better detected from 30 weeks onwards (90.9-100%; P<0.001). MRI showed a posteroanterior development of these sulci. Olfactory bulbs were better detected from 30 to 34 weeks (80-90.9%; P<0.002). Comparison with neuropathological data confirmed the posteroanterior development of the sulci and showed an important delay in detection of the olfactory structures (bulbs and sulci). No difference was observed between the two centres involved. To date, fetal MRI can depict olfactory sulci from 30 weeks gestational age onwards and olfactory bulbs from 30 to 34 weeks gestational age. This preliminary reference standard is useful to assess the normality of the olfactory system and to diagnose olfactory agenesis. (orig.)

  14. Neural sensitivity to odorants in deprived and normal olfactory bulbs.

    Francisco B Rodríguez

    Full Text Available Early olfactory deprivation in rodents is accompanied by an homeostatic regulation of the synaptic connectivity in the olfactory bulb (OB. However, its consequences in the neural sensitivity and discrimination have not been elucidated. We compared the odorant sensitivity and discrimination in early sensory deprived and normal OBs in anesthetized rats. We show that the deprived OB exhibits an increased sensitivity to different odorants when compared to the normal OB. Our results indicate that early olfactory stimulation enhances discriminability of the olfactory stimuli. We found that deprived olfactory bulbs adjusts the overall excitatory and inhibitory mitral cells (MCs responses to odorants but the receptive fields become wider than in the normal olfactory bulbs. Taken together, these results suggest that an early natural sensory stimulation sharpens the receptor fields resulting in a larger discrimination capability. These results are consistent with previous evidence that a varied experience with odorants modulates the OB's synaptic connections and increases MCs selectivity.

  15. Local neurons play key roles in the mammalian olfactory bulb.

    Saghatelyan, Armen; Carleton, Alan; Lagier, Samuel; de Chevigny, Antoine; Lledo, Pierre-Marie

    2003-01-01

    Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in

  16. Synaptic clusters function as odor operators in the olfactory bulb

    Migliore, Michele; Cavarretta, Francesco; Marasco, Addolorata; Tulumello, Eleonora; Michael L Hines; Shepherd, Gordon M.

    2015-01-01

    How the olfactory bulb organizes and processes odor inputs through fundamental operations of its microcircuits is still controversial. To reveal these operations we hypothesize that one of the key mechanisms underlying odor coding is the interaction among spatially restricted and well-defined clusters of potentiated mitral–granule cell synapses. These experimentally observed clusters selectively gate the propagation of neuronal activity within the olfactory bulb and extensively contribute to ...

  17. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  18. Broadcasting of cortical activity to the olfactory bulb.

    Boyd, Alison M; Kato, Hiroyuki K; Komiyama, Takaki; Isaacson, Jeffry S

    2015-02-24

    Odor representations are initially formed in the olfactory bulb, which contains a topographic glomerular map of odor molecular features. The bulb transmits sensory information directly to piriform cortex, where it is encoded by distributed ensembles of pyramidal cells without spatial order. Intriguingly, piriform cortex pyramidal cells project back to the bulb, but the information contained in this feedback projection is unknown. Here, we use imaging in awake mice to directly monitor activity in the presynaptic boutons of cortical feedback fibers. We show that the cortex provides the bulb with a rich array of information for any individual odor and that cortical feedback is dependent on brain state. In contrast to the stereotyped, spatial arrangement of olfactory bulb glomeruli, cortical inputs tuned to different odors commingle and indiscriminately target individual glomerular channels. Thus, the cortex modulates early odor representations by broadcasting sensory information diffusely onto spatially ordered bulbar circuits.

  19. Analytical processing of binary mixture information by olfactory bulb glomeruli.

    Max L Fletcher

    Full Text Available Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved.

  20. Parvalbumin-expressing interneurons linearly control olfactory bulb output.

    Kato, Hiroyuki K; Gillet, Shea N; Peters, Andrew J; Isaacson, Jeffry S; Komiyama, Takaki

    2013-12-04

    In the olfactory bulb, odor representations by principal mitral cells are modulated by local inhibitory circuits. While dendrodendritic synapses between mitral and granule cells are typically thought to be a major source of this modulation, the contributions of other inhibitory neurons remain unclear. Here we demonstrate the functional properties of olfactory bulb parvalbumin-expressing interneurons (PV cells) and identify their important role in odor coding. Using paired recordings, we find that PV cells form reciprocal connections with the majority of nearby mitral cells, in contrast to the sparse connectivity between mitral and granule cells. In vivo calcium imaging in awake mice reveals that PV cells are broadly tuned to odors. Furthermore, selective PV cell inactivation enhances mitral cell responses in a linear fashion while maintaining mitral cell odor preferences. Thus, dense connections between mitral and PV cells underlie an inhibitory circuit poised to modulate the gain of olfactory bulb output.

  1. Construction of odor representations by olfactory bulb microcircuits.

    Cleland, Thomas A

    2014-01-01

    Like other sensory systems, the olfactory system transduces specific features of the external environment and must construct an organized sensory representation from these highly fragmented inputs. As with these other systems, this representation is not accurate per se, but is constructed for utility, and emphasizes certain, presumably useful, features over others. I here describe the cellular and circuit mechanisms of the peripheral olfactory system that underlie this process of sensory construction, emphasizing the distinct architectures and properties of the two prominent computational layers in the olfactory bulb. Notably, while the olfactory system solves essentially similar conceptual problems to other sensory systems, such as contrast enhancement, activity normalization, and extending dynamic range, its peculiarities often require qualitatively different computational algorithms than are deployed in other sensory modalities. In particular, the olfactory modality is intrinsically high dimensional, and lacks a simple, externally defined basis analogous to wavelength or pitch on which elemental odor stimuli can be quantitatively compared. Accordingly, the quantitative similarities of the receptive fields of different odorant receptors (ORs) vary according to the statistics of the odor environment. To resolve these unusual challenges, the olfactory bulb appears to utilize unique nontopographical computations and intrinsic learning mechanisms to perform the necessary high-dimensional, similarity-dependent computations. In sum, the early olfactory system implements a coordinated set of early sensory transformations directly analogous to those in other sensory systems, but accomplishes these with unique circuit architectures adapted to the properties of the olfactory modality.

  2. Neuronal circuits and computations: pattern decorrelation in the olfactory bulb.

    Friedrich, Rainer W; Wiechert, Martin T

    2014-08-01

    Neuronal circuits in the olfactory bulb transform odor-evoked activity patterns across the input channels, the olfactory glomeruli, into distributed activity patterns across the output neurons, the mitral cells. One computation associated with this transformation is a decorrelation of activity patterns representing similar odors. Such a decorrelation has various benefits for the classification and storage of information by associative networks in higher brain areas. Experimental results from adult zebrafish show that pattern decorrelation involves a redistribution of activity across the population of mitral cells. These observations imply that pattern decorrelation cannot be explained by a global scaling mechanism but that it depends on interactions between distinct subsets of neurons in the network. This article reviews insights into the network mechanism underlying pattern decorrelation and discusses recent results that link pattern decorrelation in the olfactory bulb to odor discrimination behavior.

  3. A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation.

    Chehrehasa, Fatemeh; Ekberg, Jenny A K; St John, James A

    2014-03-20

    Olfactory ensheathing cells (OECs) play an important role in the continuous regeneration of the primary olfactory nervous system throughout life and for regeneration of olfactory neurons after injury. While it is known that several individual OEC subpopulations with distinct properties exist in different anatomical locations, it remains unclear how these different subpopulations respond to a major injury. We have examined the proliferation of OECs from one distinct location, the peripheral accessory olfactory nervous system, following large-scale injury (bulbectomy) in mice. We used crosses of two transgenic reporter mouse lines, S100ß-DsRed and OMP-ZsGreen, to visualise OECs, and main/accessory olfactory neurons, respectively. We surgically removed one olfactory bulb including the accessory olfactory bulb to induce degeneration, and found that accessory OECs in the nerve bundles that terminate in the accessory olfactory bulb responded by increased proliferation with a peak occurring 2 days after the injury. To label proliferating cells we used the thymidine analogue ethynyl deoxyuridine (EdU) using intranasal delivery instead of intraperitoneal injection. We compared and quantified the number of proliferating cells at different regions at one and four days after EdU labelling by the two different methods and found that intranasal delivery method was as effective as intraperitoneal injection. We demonstrated that accessory OECs actively respond to widespread degeneration of accessory olfactory axons by proliferating. These results have important implications for selecting the source of OECs for neural regeneration therapies and show that intranasal delivery of EdU is an efficient and reliable method for assessing proliferation of olfactory glia.

  4. Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function.

    Mazal, Patricia Portillo; Haehner, Antje; Hummel, Thomas

    2016-01-01

    The aim of this review is to investigate whether changes in olfactory bulb volume relate to changes in specific olfactory functions. We studied currently available peer-reviewed articles on the volume of the human olfactory bulb that also included a psychophysical measure of olfactory function. In the present review, we observed a very clear and consistent correlation between general olfactory function and olfactory bulb (OB) volume. We were not able to find a clear relationship between a specific smell component and OB volume, even when analyzing pathologic conditions separately. In some cases, changes were observed for different subtests, but these changes did not significantly correlate with OB volume or had only a borderline correlation. In other cases, we found contradictory data. Several factors may contribute to the difficulties in finding correlations with the different components of smell: (1) the OB volume may be influenced by information from olfactory receptor neurons (bottom-up effect), information from central nervous system (top-down effect) and by direct damage; (2) most pathologic conditions affect more than one area of the olfactory pathway; (3) small sample sizes of hyposmic subjects were used. We believe that it is necessary to do further studies with larger numbers of subjects to answer the currently investigated question.

  5. Function of attention in learning process in the olfactory bulb

    马宝生; 王顺鹏; 李岩; 冯春华; 郭爱克

    2003-01-01

    It has been suggested that in the olfactory bulb, odor information is processed through parallel channels and learning depends on the cognitive environment. The synapse's spike effective time is defined as the effective time for a spike from pre-synapse to post-synapse, which varies with the type of synapse. A learning model of the olfactory bulb was constructed for synapses with varying spike effective times. The simulation results showed that such a model can realize the multi-channel processing of information in the bulb. Furthermore, the effect of the cognitive environment on the learning process was also studied. Different feedback frequencies were used to express different attention states. Considering the information's multi-channel processing requirement for learning, a learning rule considering both spike timing and average spike frequency is proposed. Simulation results showed that habituation and anti-habituation of an odor in the olfactory bulb might be the result of learning guided by a common local learning rule but at different attention states.

  6. Signal processing inspired from the olfactory bulb for electronic noses

    Jing, Ya-Qi; Meng, Qing-Hao; Qi, Pei-Feng; Zeng, Ming; Liu, Ying-Jie

    2017-01-01

    A bio-inspired signal processing method is proposed for electronic noses (e-noses). The proposed method contains an olfactory bulb model and a feature generation step. The structure of the olfactory bulb model is similar to the anatomical structure of mammals’ olfactory bulb. It consists of olfactory receptor neurons, mitral cells, granule cells, periglomerular cells, and short axon cells. This model uses gas sensors’ original response curves and transforms them to neuron spiking series no matter what kind the response curve is. This largely simplifies the follow-up feature generation step. Recurrence quantification analysis is employed to perform feature generation and the five most important features are selected. Finally, in order to verify the performance of the proposed method, seven kinds of Chinese liquors are tested and three classification methods are used to classify them. The experimental results demonstrate that the proposed method has a higher classification rate (99.05%) and also a steadier performance with the change of sensor number and types than the classic one.

  7. The neuroanatomical organization of projection neurons associated with different olfactory bulb pathways in the sea lamprey, Petromyzon marinus.

    Warren W Green

    Full Text Available Although there is abundant evidence for segregated processing in the olfactory system across vertebrate taxa, the spatial relationship between the second order projection neurons (PNs of olfactory subsystems connecting sensory input to higher brain structures is less clear. In the sea lamprey, there is tight coupling between olfaction and locomotion via PNs extending to the posterior tuberculum from the medial region of the olfactory bulb. This medial region receives peripheral input predominantly from the accessory olfactory organ. However, the axons from olfactory sensory neurons residing in the main olfactory epithelium extend to non-medial regions of the olfactory bulb, and the non-medial bulbar PNs extend their axons to the lateral pallium. It is not known if the receptive fields of the PNs in the two output pathways overlap; nor has the morphology of these PNs been investigated. In this study, retrograde labelling was utilized to investigate the PNs belonging to medial and non-medial projections. The dendrites and somata of the medial PNs were confined to medial glomerular neuropil, and dendrites of non-medial PNs did not enter this territory. The cell bodies and dendrites of the non-medial PNs were predominantly located below the glomeruli (frequently deeper in the olfactory bulb. While PNs in both locations contained single or multiple primary dendrites, the somal size was greater for medial than for non-medial PNs. When considered with the evidence-to-date, this study shows different neuroanatomical organization for medial olfactory bulb PNs extending to locomotor control centers and non-medial PNs extending to the lateral pallium in this vertebrate.

  8. The neuroanatomical organization of projection neurons associated with different olfactory bulb pathways in the sea lamprey, Petromyzon marinus.

    Green, Warren W; Basilious, Alfred; Dubuc, Réjean; Zielinski, Barbara S

    2013-01-01

    Although there is abundant evidence for segregated processing in the olfactory system across vertebrate taxa, the spatial relationship between the second order projection neurons (PNs) of olfactory subsystems connecting sensory input to higher brain structures is less clear. In the sea lamprey, there is tight coupling between olfaction and locomotion via PNs extending to the posterior tuberculum from the medial region of the olfactory bulb. This medial region receives peripheral input predominantly from the accessory olfactory organ. However, the axons from olfactory sensory neurons residing in the main olfactory epithelium extend to non-medial regions of the olfactory bulb, and the non-medial bulbar PNs extend their axons to the lateral pallium. It is not known if the receptive fields of the PNs in the two output pathways overlap; nor has the morphology of these PNs been investigated. In this study, retrograde labelling was utilized to investigate the PNs belonging to medial and non-medial projections. The dendrites and somata of the medial PNs were confined to medial glomerular neuropil, and dendrites of non-medial PNs did not enter this territory. The cell bodies and dendrites of the non-medial PNs were predominantly located below the glomeruli (frequently deeper in the olfactory bulb). While PNs in both locations contained single or multiple primary dendrites, the somal size was greater for medial than for non-medial PNs. When considered with the evidence-to-date, this study shows different neuroanatomical organization for medial olfactory bulb PNs extending to locomotor control centers and non-medial PNs extending to the lateral pallium in this vertebrate.

  9. The source of spontaneous activity in the main olfactory bulb of the rat.

    Josif Stakic

    Full Text Available INTRODUCTION: In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses. METHODS: Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb. RESULTS: Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration. CONCLUSIONS: Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb.

  10. Comprehensive connectivity of the mouse main olfactory bulb: analysis and online digital atlas

    Houri eHintiryan

    2012-08-01

    Full Text Available We introduce the first open resource for mouse olfactory connectivity data produced as part of the Mouse Connectome Project (MCP at UCLA. The MCP aims to assemble a whole-brain connectivity atlas for the C57Bl/6J mouse using a double coinjection tracing method. Each coinjection consists of one anterograde and one retrograde tracer, which affords the advantage of simultaneously identifying efferent and afferent pathways and directly identifying reciprocal connectivity of injection sites. The systematic application of double coinjections potentially reveals interaction stations between injections and allows for the study of connectivity at the network level. To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org. Systematic double coinjections were made into different regions of the main olfactory bulb (MOB and data from 18 MOB cases (~72 pathways; 36 efferent/36 afferent currently are available to view in iConnectome within their corresponding atlas level and their own bright-field cytoarchitectural background. Additional MOB injections and injections of the accessory olfactory bulb (AOB, anterior olfactory nucleus (AON, and other cortical olfactory areas gradually will be made available. Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area, and exposed some novel aspects of well-established cortical olfactory projections.

  11. Olfactory bulb size, odor discrimination and magnetic insensitivity in hummingbirds.

    Ioalé, P; Papi, F

    1989-05-01

    Relative olfactory bulb size with respect to telencephalic hemispheres (olfactory ratio) was measured in five species of hummingbirds. Trochiliformes were found to be next to last among 25 avian orders with respect to olfactory bulb development. One hummingbird species, the White-vented Violetear (Colibri serrirostris), was trained in a successive go/no-go discrimination task, and learned to feed or not to feed from a container dependent on the olfactory stimuli associated with it. Test birds learned to discriminate amyl acetate vs. turpentine essence, jasmine essence vs. lavender essence, eucalyptus essence vs. no odor, beta-ionone vs. no odor, carvone vs. eucalyptol. In contrast, 1-phenylethanol vs. beta-ionone discrimination, two odorants which appear similar to humans, was unsuccessful. Using a similar procedure, attempts were made to condition a White-vented Violetear and a Versicolored Emerald (Amazilia versicolor) to magnetic stimuli. The birds were unable to discriminate between a normal field and an oscillating field (square wave, 1 Hz, amplitude +/- 0.40 G).

  12. The main but not the accessory olfactory system is involved in the processing of socially relevant chemosignals in ungulates.

    Matthieu eKELLER

    2012-09-01

    Full Text Available Ungulates like sheep and goats have, like many other mammalian species, two complementary olfactory systems. The relative role played by these two systems has long been of interest regarding the sensory control of social behavior. The study of ungulate social behavior could represent a complimentary alternative to rodent studies because they live in a more natural environment and their social behaviors depend heavily on olfaction. In addition, the relative size of the main olfactory bulb (in comparison to the accessory olfactory bulb is more developped than in many other lissencephalic species like rodents. In this review, we present data showing a clear involvement of the main olfactory system in two well-characterized social situations under olfactory control in ungulates, namely maternal behavior and offspring recognition at birth and the reactivation of the gonadotropic axis of females exposed to males during the anestrous season. In conclusion, we discuss the apparent discrepancy between the absence of evidence for a role of the vomeronasal system in ungulate social behavior and the existence of a developed accessory olfactory system in these species.

  13. Volumetric study of the olfactory bulb in patients with chronic rhinonasal sinusitis using MRI

    Reda A. Alarabawy

    2016-06-01

    Conclusions: MRI with volumetric analysis is a useful tool in assessment of the olfactory bulb volume in patients with olfactory loss and appears to be of help in assessment of the degree of recovery in patients after sinus surgery.

  14. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    Takushi Kishida

    2015-04-01

    Full Text Available Although modern baleen whales (Mysticeti retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.

  15. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    Max L Fletcher

    2012-03-01

    Full Text Available The anatomical organization of receptor neuron input into the olfactory bulb (OB allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted cell glomerular activity at the upper level of the olfactory bulb. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within mitral/tufted cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2 in OB mitral/tufted cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the olfactory bulb by enhancing responses to the learned odor in some glomeruli.

  16. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  17. Odor Memory Stability after Reinnervation of the Olfactory Bulb

    Blanco-Hernández, Eduardo; Valle-Leija, Pablo; Zomosa-Signoret, Viviana; Drucker-Colín, René; Vidaltamayo, Román

    2012-01-01

    The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain. PMID:23071557

  18. Odor memory stability after reinnervation of the olfactory bulb.

    Eduardo Blanco-Hernández

    Full Text Available The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP. Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.

  19. Enhanced assymetrical noradrenergic transmission in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats.

    Abramoff, Tamara; Guil, María J; Morales, Vanina P; Hope, Sandra I; Soria, Celeste; Bianciotti, Liliana G; Vatta, Marcelo S

    2013-10-01

    The ablation of olfactory bulb induces critical changes in dopamine, and monoamine oxidase activity in the brain stem. Growing evidence supports the participation of this telencephalic region in the regulation blood pressure and cardiovascular activity but little is known about its contribution to hypertension. We have previously reported that in the olfactory bulb of normotensive rats endothelins enhance noradrenergic activity by increasing tyrosine hydroxylase activity and norepinephrine release. In the present study we sought to establish the status of noradrenergic activity in the olfactory bulb of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Different steps in norepinephrine transmission including tyrosine hydroxylase activity, neuronal norepinephrine release and uptake were assessed in the left and right olfactory bulb of DOCA-salt hypertensive rats. Increased tyrosine hydroxylase activity, and decreased neuronal norepinephrine uptake were observed in the olfactory bulb of DOCA-salt hypertensive rats. Furthermore the expression of tyrosine hydroxylase and its phosphorylated forms were also augmented. Intriguingly, asymmetrical responses between the right and left olfactory bulb of normotensive and hypertensive rats were observed. Neuronal norepinephrine release was increased in the right but not in the left olfactory bulb of DOCA-salt hypertensive rats, whereas non asymmetrical differences were observed in normotensive animals. Present findings indicate that the olfactory bulb of hypertensive rats show an asymmetrical increase in norepinephrine activity. The observed changes in noradrenergic transmission may likely contribute to the onset and/or progression of hypertension in this animal model.

  20. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus.

    James C Walton

    Full Text Available Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD and short day lengths (SD for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  1. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb.

    Kass, Marley D; Pottackal, Joseph; Turkel, Daniel J; McGann, John P

    2013-01-01

    Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.

  2. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex

    Kensaku eMori; Hiroyuki eManabe; Kimiya eNarikiyo; Naomi eOnisawa

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory senso...

  3. Diversity in olfactory bulb size in birds reflects allometry, ecology and phylogeny

    Jeremy Richard Corfield

    2015-07-01

    Full Text Available The relative size of olfactory bulbs is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species’ ecology. In birds, variations in the relative size of olfactory bulbs are correlated with some behaviors, however, the factors that have led to the high level of diversity seen in olfactory bulb sizes across birds are still not well understood. In this study, we use the relative size of olfactory bulbs as a neuroanatomical proxy for olfactory capabilities in 135 species of birds, representing 21 orders. We examine the scaling of olfactory bulbs with brain size across avian orders, determined likely ancestral states and test for correlations between OB sizes and habitat, ecology and behavior. The size of avian OBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large olfactory bulbs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi aquatic environment was the strongest variable driving the evolution of large olfactory bulbs in birds; olfaction may provide cues for navigation and foraging in this otherwise featureless environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and social structure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is a critically important sensory modality for all avian species.

  4. An arterially perfused nose-olfactory bulb preparation of the rat.

    Pérez de los Cobos Pallarés, Fernando; Stanić, Davor; Farmer, David; Dutschmann, Mathias; Egger, Veronica

    2015-09-01

    A main feature of the mammalian olfactory bulb network is the presence of various rhythmic activities, in particular, gamma, beta, and theta oscillations, with the latter coupled to the respiratory rhythm. Interactions between those oscillations as well as the spatial distribution of network activation are likely to determine olfactory coding. Here, we describe a novel semi-intact perfused nose-olfactory bulb-brain stem preparation in rats with both a preserved olfactory epithelium and brain stem, which could be particularly suitable for the study of oscillatory activity and spatial odor mapping within the olfactory bulb, in particular, in hitherto inaccessible locations. In the perfused olfactory bulb, we observed robust spontaneous oscillations, mostly in the theta range. Odor application resulted in an increase in oscillatory power in higher frequency ranges, stimulus-locked local field potentials, and excitation or inhibition of individual bulbar neurons, similar to odor responses reported from in vivo recordings. Thus our method constitutes the first viable in situ preparation of a mammalian system that uses airborne odor stimuli and preserves these characteristic features of odor processing. This preparation will allow the use of highly invasive experimental procedures and the application of techniques such as patch-clamp recording, high-resolution imaging, and optogenetics within the entire olfactory bulb.

  5. Culture and purification of human fetal olfactory bulb ensheathing cells

    2007-01-01

    Objective: To obtain high purity of human fetal olfactory bulb ensheathing cells (OB-hOECs) in vitro and to develop a simple and effective method for primary culture of OB-hOECs. Methods: OB-hOECs were cultured based on the differential rates of attachment of the various harvested cell types. Then the method was combined with arabinoside cytosine (Ara-C)inhibition, serum-free starvation or intermittent neurotrophin 3 (NT3) nutrition method to observe cell states in different cultural environments. The purity of OB-hOECs was assessed with immunocytochemical analysis. Results: OB-hOECs appeared bipolar and tripolar shape, with slender processes forming network. The purity of OECs reached 88% with the selective attachment method on day 6, and then fibroblast proliferated quickly and reduced the purity. When combined with the starvation method, the purity of OECs was 91% on day 6 and 86% on day 9, however, OECs were in a poor state. While combined with the NT3 method, the purity reached 95% on day 9 and 83% on day 12, respectively. The cells still remained in a good state. Conclusion: A combination of selective attachment and intermittent NT3 nutrition is an effective method to obtain OECs with higher purity and quality.

  6. Rapid odor perception in rat olfactory bulb by microelectrode array

    Jun ZHOU; Qi DONG; Liu-jing ZHUANG; Rong LI; Ping WANG

    2012-01-01

    Responses of 302 mitral/tufted (M/T) cells in the olfactory bulb were recorded from 42 anesthetized freely breathing rats using a 16-channel microwire electrode array.Saturated vapors of four pure chemicals,anisole,carvone,citral and isoamyl acetate were applied.After aligning spike trains to the iritial phase of the inhalation after odor onset,the responses of M/T cells showed transient temporal features including excitatory and inhibitory patterns.Both odor-evoked patterns indicated that mammals recognize odors within a short respiration cycle after odor stimulus.Due to the small amount of information received from a single cell,we pooled results from all responsive M/T cells to study the ensemble activity.The firing rates of the cell ensembles were computed over 100 ms bins and population vectors were constructed.The high dimension vectors were condensed into three dimensions for visualization using principal component analysis.The trajectories of both excitatory and inhibitory cell ensembles displayed strong dynamics during odor stimulation.The distances among cluster centers were enlarged compared to those of the resting state.Thus,we presumed that pictures of odor information sent to higher brain regions were depicted and odor discrimination was completed within the first breathing cycle.

  7. Topological reorganization of odor representations in the olfactory bulb.

    Emre Yaksi

    2007-07-01

    Full Text Available Odors are initially represented in the olfactory bulb (OB by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca(2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function.

  8. Lack of effect on sexual behaviour or the development of testicular function after removal of olfactory bulbs in prepubertal boars.

    Booth, W D; Baldwin, B A

    1980-01-01

    Bilateral olfactory bulb ablation was carried out surgically on 8 prepubertal Large White boars when they were 10-12 weeks of age. Between 26 weeks and slaughter at 47-49 weeks of age, androgen was determined in peripheral blood plasma of bulbectomized and unoperated control animals. The pigs were exposed to oestrous female pigs to observe mating behaviour, and to alien boars to observe aggressive behaviour. Saliva produced during behaviour tests was extracted with diethyl ether and levels of the pheromonal 16-androstene steroids in the extracts were determined by a colorimetric assay. After slaughter the testes, accessory organs and submaxillary glands were weighed, and pices of tissue together with olfactory epithelium were processed for light microscopy; fructose and zinc were determined in the seminal vesicles. The results showed that, contrary to findings in some rodents, prepubertal bilateral bulbectomy in the male pig had no significant effect on mating or aggressive behaviour, or testicular function in so far as complete spermatogenesis was present and normal levels of androgen and pheromone were maintained together with the integrity of the accessory organs. However, in keeping with findings in other species, the height of the olfactory epithelium was generally reduced in the bulbectomized pigs.

  9. The olfactory bulb and the number of its glomeruli in the common marmoset (Callithrix jacchus).

    Moriya-Ito, Keiko; Tanaka, Ikuko; Umitsu, Yoshitomo; Ichikawa, Masumi; Tokuno, Hironobu

    2015-04-01

    The olfactory system has been well studied in mammals such as mice and rats. However, few studies have focused on characterizing this system in diurnal primates that rely on their sense of smell to a lesser extent due to their ecological environment. In the present study, we determined the histological organization of the olfactory bulb in the common marmoset (Callithrix jacchus). We then constructed 3-dimensional models of the glomeruli of the olfactory bulb, and estimated the number of glomeruli. Olfactory glomeruli are the functional units of olfactory processing, and have been investigated in detail using mice. There are approximately 1800 glomeruli in a mouse hemibulb, and olfactory sensory neurons expressing one selected olfactory receptor converge onto one or two glomeruli. Because mice have about 1000 olfactory receptor genes, it is proposed that the number of glomeruli in mammals is nearly double that of olfactory receptor genes. The common marmoset carries only about 400 intact olfactory receptor genes. The present study revealed that the number of glomeruli in a marmoset hemibulb was approximately 1500-1800. This result suggests that the number of glomeruli is not positively correlated with the number of intact olfactory receptor genes in mammals.

  10. Histone acetylation in the olfactory bulb of young rats facilitates aversive olfactory learning and synaptic plasticity.

    Wang, Y-J; Okutani, F; Murata, Y; Taniguchi, M; Namba, T; Kaba, H

    2013-03-01

    Epigenetic mechanisms play an important role in memory formation and synaptic plasticity. Specifically, histone-associated heterochromatin undergoes changes in structure during the early stages of long-term memory formation. In keeping with the classical conditioning paradigm, young rats have been shown to exhibit aversion to an odor stimulus initially presented during foot shock. We previously showed that synaptic plasticity at the dendrodendritic synapses between mitral and granule cells in the olfactory bulb (OB) underlies this aversive olfactory learning. However, the epigenetic mechanisms involved are not well characterized. Therefore, we examined whether intrabulbar infusion of trichostatin A (TSA), a histone deacetylase inhibitor, facilitates olfactory learning in young rats. TSA infusion during odor-shock training enhanced a conditioned odor aversion in a dose-dependent manner and prolonged the learned aversion. Western blot and immunohistochemical analyses showed that the level of histone H4 acetylation significantly increased until 4 h after odor-shock training in both mitral and granule cells in the OB, whereas histone H3 acetylation returned to the control level at 2 h after the training. We also obtained evidence that TSA infusion elevated acetylation of histone H4 or H3. Furthermore, in vitro electrophysiological analysis using slices of the OB revealed that application of TSA significantly enhanced the long-term potentiation induced in synaptic transmission from mitral to granule cells at dendrodendritic synapses. Taken together, these results provide evidence that histone H4 and H3 acetylation in the OB is an epigenetic mechanism associated with aversive olfactory learning in young rats.

  11. Dendrodendritic Synapses in the Mouse Olfactory Bulb External Plexiform Layer

    Bartel, Dianna L.; Rela, Lorena; Hsieh, Lawrence; Greer, Charles A.

    2014-01-01

    Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and were equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites, were more prevalent in the outer EPL. In contrast, individual gephyrin-IR puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated with an increase in synaptic density. PMID:25420934

  12. Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning

    Matthew Valley

    2009-11-01

    Full Text Available Adult neurogenesis replenishes olfactory bulb (OB interneurons throughout the life of most mammals, yet during this constant fl ux it remains unclear how the OB maintains a constant structure and function. In the mouse OB, we investigated the dynamics of turnover and its impact on olfactory function by ablating adult neurogenesis with an x-ray lesion to the subventricular zone (SVZ. Regardless of the magnitude of the lesion to the SVZ, we found no change in the survival of young adult born granule cells (GCs born after the lesion, and a gradual decrease in the population of GCs born before the lesion. After a lesion producing a 96% reduction of incoming adult born GCs to the OB, we found a diminished behavioral fear response to conditioned odor cues but not to audio cues. Interestingly, despite this behavioral defi cit and gradual anatomical changes, we found no electrophysiological changes in the GC population assayed in vivo through dendro-dendritic synaptic plasticity and odor-evoked local fi eld potential oscillations. These data indicate that turnover in the granule cell layer is generally decoupled from the rate of adult neurogenesis, and that OB adult neurogenesis plays a role in a wide behavioral system extending beyond the OB.

  13. One nose, one brain: contribution of the main and accessory olfactory system to chemosensation

    Carla eMucignat

    2012-11-01

    Full Text Available The accessory olfactory system is present in most tetrapods. It is involved in the perception of chemical stimuli, being implicated also in the detection of pheromone. However, it is sensitive also to some common odorant molecules, which have no clear implication in intraspecific chemical communication. The accessory olfactory system may complement the main olfactory system, and may contribute different perceptual features to the construction of a unitary representation, which merges the different chemosensory qualities. Crosstalk between the main and accessory olfactory systems occurs at different levels of central processing, in brain areas where the inputs from the two systems converge. Interestingly, centrifugal projections from more caudal brain areas are deeply involved in modulating both main and accessory sensory processing. A high degree of interaction between the two systems may be conceived, and partial overlapping appears to occur in many functions. Therefore, the central chemosensory projections merge inputs from different organs to obtain a complex chemosensory picture.

  14. Functional neurology of a brain system: a 3D olfactory bulb model to process natural odorants.

    Migliore, Michele; Cavarretta, Francesco; Hines, Michael L; Shepherd, Gordon M

    2013-01-01

    The network of interactions between mitral and granule cells in the olfactory bulb is a critical step in the processing of odor information underlying the neural basis of smell perception. We are building the first computational model in 3 dimensions of this network in order to analyze the rules for connectivity and function within it. The initial results indicate that this network can be modeled to simulate experimental results on the activation of the olfactory bulb by natural odorants, providing a much more powerful approach for 3D simulation of brain neurons and microcircuits.

  15. Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing.

    Benjamin R Arenkiel

    Full Text Available The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits.

  16. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  17. Odor recognition and segmentation by coupled olfactory bulb and cortical networks

    Li, Z; Li, Zhaoping; Hertz, John

    1999-01-01

    We present a model of a coupled system of the olfactory bulb and cortex. Odor inputs to the epithelium are transformed to oscillatory bulbar activities. The cortex recognizes the odor by resonating to the bulbar oscillating pattern when the amplitude and phase patterns from the bulb match an odor memory stored in the intracortical synapses. We assume a cortical structure which transforms the odor information in the oscillatory pattern to a slow DC feedback signal to the bulb. This feedback suppresses the bulbar response to the pre-existing odor, allowing subsequent odor objects to be segmented out for recognition.

  18. Disruption of adult neurogenesis in the olfactory bulb affects social interaction but not maternal behavior

    Claudia E Feierstein

    2010-12-01

    Full Text Available Adult-born neurons arrive to the olfactory bulb and integrate into the existing circuit throughout life. Despite the prevalence of this phenomenon, its functional impact is still poorly understood. Recent studies point to the importance of newly generated neurons to olfactory learning and memory. Adult neurogenesis is regulated by a variety of factors, notably by instances related to reproductive behavior, such as exposure to mating partners, pregnancy and lactation, and exposure to offspring. To study the contribution of olfactory neurogenesis to maternal behavior and social recognition, here we selectively disrupted olfactory bulb neurogenesis using focal irradiation of the subventricular zone in adult female mice. We show that reduction of olfactory neurogenesis results in an abnormal social interaction pattern with male, but not female, conspecifics; we suggest that this effect could result from inability to detect or discriminate male odors and could therefore have implications for the recognition of potential mating partners. Disruption of olfactory bulb neurogenesis, however, neither impaired maternal-related behaviors, nor did it affect the ability of mothers to discriminate their own progeny from others.

  19. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury.

  20. Olfactory sensory deprivation increases the number of proBDNF-immunoreactive mitral cells in the olfactory bulb of mice.

    Biju, K C; Mast, Thomas Gerald; Fadool, Debra Ann

    2008-12-05

    In the olfactory bulb, apoptotic cell-death induced by sensory deprivation is restricted to interneurons in the glomerular and granule cell layers, and to a lesser extent in the external plexiform layer, whereas mitral cells do not typically undergo apoptosis. With the goal to understand whether brain-derived neurotrophic factor (BDNF) mediates mitral cell survival, we performed unilateral naris occlusion on mice at postnatal day one (P1) and examined the subsequent BDNF-immunoreactive (BDNF-ir) profile of the olfactory bulb at P20, P30, and P40. Ipsilateral to the naris occlusion, there was a significant increase in the number of BDNF-ir mitral cells per unit area that was independent of the duration of the sensory deprivation induced by occlusion. The number of BDNF-ir juxtaglomerular cells per unit area, however, was clearly diminished. Western blot analysis revealed the presence of primarily proBDNF in the olfactory bulb. These data provide evidence for a neurotrophic role of proBDNF in the olfactory system of mice and suggest that proBDNF may act to protect mitral cells from the effects of apoptotic changes induced by odor sensory deprivation.

  1. Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb.

    Matsutani, S

    2010-08-11

    The olfactory bulb receives a large number of centrifugal fibers whose functions remain unclear. To gain insight into the function of the bulbar centrifugal system, the morphology of individual centrifugal axons from olfactory cortical areas was examined in detail. An anterograde tracer, Phaseolus vulgaris leucoagglutinin, was injected into rat olfactory cortical areas, including the pars lateralis of the anterior olfactory nucleus (lAON) and the anterior part of the piriform cortex (aPC). Reconstruction from serial sections revealed that the extrabulbar segments of centrifugal axons from the lAON and those from the aPC had distinct trajectories: the former tended to innervate the pars externa of the AON before entering the olfactory bulb, while the latter had extrabulbar collaterals that extended to a variety of targets. In contrast to the extrabulbar segments, no clear differences were found between the intrabulbar segments of axons from the lAON and from the aPC. The intrabulbar segments of centrifugal axons were mainly found in the granule cell layer but a few axons extended into the external plexiform and glomerular layer. Approximately 40% of centrifugal axons innervated both the medial and lateral aspects of the olfactory bulb. The number of boutons found on single intrabulbar segments was typically less than 1000. Boutons tended to aggregate and form complex terminal tufts with short axonal branches. Terminal tufts, no more than 10 in single axons from ipsilateral cortical areas, were localized to the granule cell layer with varying intervals; some tufts formed patchy clusters and others were scattered over areas that extended for a few millimeters. The patchy, widespread distribution of terminals suggests that the centrifugal axons are able to couple the activity of specific subsets of bulbar neurons even when the subsets are spatially separated.

  2. Parallel odor processing by two anatomically distinct olfactory bulb target structures.

    Colleen A Payton

    Full Text Available The olfactory cortex encompasses several anatomically distinct regions each hypothesized to provide differential representation and processing of specific odors. Studies exploring whether or not the diversity of olfactory bulb input to olfactory cortices has functional meaning, however, are lacking. Here we tested whether two anatomically major olfactory cortical structures, the olfactory tubercle (OT and piriform cortex (PCX, differ in their neural representation and processing dynamics of a small set of diverse odors by performing in vivo extracellular recordings from the OT and PCX of anesthetized mice. We found a wealth of similarities between structures, including odor-evoked response magnitudes, breadth of odor tuning, and odor-evoked firing latencies. In contrast, only few differences between structures were found, including spontaneous activity rates and odor signal-to-noise ratios. These results suggest that despite major anatomical differences in innervation by olfactory bulb mitral/tufted cells, the basic features of odor representation and processing, at least within this limited odor set, are similar within the OT and PCX. We predict that the olfactory code follows a distributed processing stream in transmitting behaviorally and perceptually-relevant information from low-level stations.

  3. Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington's disease

    Kohl Zacharias

    2010-09-01

    Full Text Available Abstract Background Huntington's disease (HD is an autosomal dominant neurodegenerative disorder linked to expanded CAG-triplet nucleotide repeats within the huntingtin gene. Intracellular huntingtin aggregates are present in neurons of distinct brain areas, among them regions of adult neurogenesis including the hippocampus and the subventricular zone/olfactory bulb system. Previously, reduced hippocampal neurogenesis has been detected in transgenic rodent models of HD. Therefore, we hypothesized that mutant huntingtin also affects newly generated neurons derived from the subventricular zone of adult R6/2 HD mice. Results We observed a redirection of immature neuroblasts towards the striatum, however failed to detect new mature neurons. We further analyzed adult neurogenesis in the granular cell layer and the glomerular layer of the olfactory bulb, the physiological target region of subventricular zone-derived neuroblasts. Using bromodeoxyuridine to label proliferating cells, we observed in both neurogenic regions of the olfactory bulb a reduction in newly generated neurons. Conclusion These findings suggest that the striatal environment, severely affected in R6/2 mice, is capable of attracting neuroblasts, however this region fails to provide sufficient signals for neuronal maturation. Moreover, in transgenic R6/2 animals, the hostile huntingtin-associated microenvironment in the olfactory bulb interferes with the survival and integration of new mature neurons. Taken together, endogenous cell repair strategies in HD may require additional factors for the differentiation and survival of newly generated neurons both in neurogenic and non-neurogenic regions.

  4. Regulation of granule cell excitability by a low-threshold calcium spike in turtle olfactory bulb

    Pinato, Giulietta; Midtgaard, Jens

    2003-01-01

    Granule cells excitability in the turtle olfactory bulb was analyzed using whole cell recordings in current- and voltage-clamp mode. Low-threshold spikes (LTSs) were evoked at potentials that are subthreshold for Na spikes in normal medium. The LTSs were evoked from rest, but hyperpolarization...

  5. Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey

    Teresa eLiberia

    2015-03-01

    Full Text Available The olfactory bulb of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca. At present, the synaptic connectivity of the cholinergic axons on the circuits of the olfactory bulb has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey (Macaca fascicularis. Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the olfactory bulb of macrosmatic and microsmatic mammals.

  6. Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex.

    de Almeida, Licurgo; Reiner, Seungdo J; Ennis, Matthew; Linster, Christiane

    2015-01-01

    Noradrenergic modulation from the locus coerulus is often associated with the regulation of sensory signal-to-noise ratio. In the olfactory system, noradrenergic modulation affects both bulbar and cortical processing, and has been shown to modulate the detection of low concentration stimuli. We here implemented a computational model of the olfactory bulb and piriform cortex, based on known experimental results, to explore how noradrenergic modulation in the olfactory bulb and piriform cortex interact to regulate odor processing. We show that as predicted by behavioral experiments in our lab, norepinephrine can play a critical role in modulating the detection and associative learning of very low odor concentrations. Our simulations show that bulbar norepinephrine serves to pre-process odor representations to facilitate cortical learning, but not recall. We observe the typical non-uniform dose-response functions described for norepinephrine modulation and show that these are imposed mainly by bulbar, but not cortical processing.

  7. Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex

    Licurgo ede Almeida

    2015-06-01

    Full Text Available Noradrenergic modulation from the locus coerulus is often associated with the regulation of sensory signal-to-noise ratio. In the olfactory system, noradrenergic modulation affects both bulbar and cortical processing, and has been show to modulate the detection of low concentration stimuli. We here implemented a computational model of the olfactory bulb and piriform cortex, based on known experimental results, to explore how noradrenergic modulation in the olfactory bulb and piriform cortex interact to regulate odor processing. We show that as predicted by behavioral experiments in our lab, norepinephrine can play a critical role in modulating the detection and associative learning of very low odor concentrations. Our simulations show that bulbar norepinephrine serves to pre-process odor representations to facilitate cortical learning, but not recall. We observe the typical non-uniform dose – response functions described for norepinephrine modulation and show that these are imposed mainly by bulbar, but not cortical processing.

  8. Postnatal Developmental Expression of Calbindin, Calretinin and Parvalbumin in Mouse Main Olfactory Bulb

    Zhao-Ping QIN; Shu-Ming YE; Ji-Zeng DU; Gong-Yu SHEN

    2005-01-01

    The distribution of calbindin, calretinin and parvalbumin during the development of the mouse main olfactory bulb (MOB) was studied using immunohistochemistry techniques. The results are as follows:(1) caibindin-immunoreactive profiles were mainly located in the glomerular layer, and few large calbindinimmunoreactive cells were found in the subependymal layer of postnatal day 10 (P10) to postnatal day 40 (P40) mice; (2) no calbindin was detected in the mitral cell layer at any stage; (3) calretinin-immunoreactive profiles were present in all layers of the main olfactory bulb at all stages, especially in the olfactory nerve layer, glomerular layer and granule cell layer; (4) parvalbumin-immunoreactive profiles were mainly located in the external plexiform layer (except for P10 mice); (5) weakly stained parvalbumin-immunoreactive profiles were present in the glomerular layer at all stages; and (6) no parvalbumin was detected in the mitral cell layer at any stage.

  9. Cluster Analysis of the Rat Olfactory Bulb Activity in Response to Different Odorants

    Falasconi, M.; Gutierrez, A.; Auffarth, B.; Sberveglieri, G.; Marco, S.

    2009-05-01

    With the goal of deepen in the understanding of coding of chemical information in the olfactory system, a large data set consisting of rat's olfactory bulb activity values in response to several different volatile compounds has been analyzed by fuzzy c-means clustering methods. Clustering should help to discover groups of glomeruli that are similary activated according to their response profiles across the odorants. To investigate the significance of the achieved fuzzy partitions we developed and applied a novel validity approach based on cluster stability. Our results show certain level of glomerular clustering in the olfactory bulb and indicate that exist a main chemo-topic subdivision of the glomerular layer in few macro-area which are rather specific to particular functional groups of the volatile molecules.

  10. Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics.

    Huang, Yuahn-Sieh; Li, I-Hsun; Chueh, Sheau-Huei; Hueng, Dueng-Yuan; Tai, Ming-Cheng; Liang, Chang-Min; Lien, Shiu-Bii; Sytwu, Huey-Kang; Ma, Kuo-Hsing

    2015-12-01

    Mesenchymal stromal/stem cells (MSCs) are widely distributed in different tissues such as bone marrow, adipose tissues, peripheral blood, umbilical cord and amnionic fluid. Recently, MSC-like cells were also found to exist in rat olfactory bulb and are capable of inducing differentiation into mesenchymal lineages - osteocytes, chondrocytes and adipocytes. However, whether these cells can differentiate into myocardial cells is not known. In this study, we examined whether olfactory bulb-derived MSCs could differentiate into myocardial cells in vitro. Fibroblast-like cells isolated from the olfactory bulb of neonatal rats were grown under four conditions: no treatment; in the presence of growth factors (neuregulin-1, bFGF and forskolin); co-cultured with cardiomyocytes; and co-cultured with cardiomyocytes plus neuregulin-1, bFGF and forskolin. Cell differentiation into myocardial cells was monitored by RT-PCR, light microscopy immunofluorescence, western blot analysis and contractile response to pharmacological treatments. The isolated olfactory bulb-derived fibroblast-like cells expressed CD29, CD44, CD90, CD105, CD166 but not CD34 and CD45, consistent with the characteristics of MSCs. Long cylindical cells that spontaneously contracted were only observed following 7 days of co-culture of MSCs with rat cardiomyocytes plus neuregulin-1, bFGF and forskolin. RT-PCR and western blot analysis indicated that the cylindrical cells expressed myocardial markers, such as Nkx2.5, GATA4, sarcomeric α-actinin, cardiac troponin I, cardiac myosin heavy chain, atrial natriuretic peptide and connexin 43. They also contained sarcomeres and gap junction and were sensitive to pharmacological treatments (adrenal and cholinergic agonists and antagonists). These findings indicate that rat olfactory bulb-derived fibroblast-like cells with MSC characteristics can differentiate into myocardial-like cells.

  11. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1 interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2 interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3 AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4 ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.

  12. Efferent and afferent connections of the olfactory bulb and prepiriform cortex in the pigeon (Columba livia).

    Atoji, Yasuro; Wild, J Martin

    2014-06-01

    Although olfaction in birds is known to be involved in a variety of behaviors, there is comparatively little detailed information on the olfactory brain. In the pigeon brain, the olfactory bulb (OB) is known to project to the prepiriform cortex (CPP), piriform cortex (CPi), and dorsolateral corticoid area (CDL), which together are called the olfactory pallium, but centrifugal pathways to the OB have not been fully explored. Fiber connections of CPi and CDL have been reported, but those of other olfactory pallial nuclei remain unknown. The present study examines the fiber connections of OB and CPP in pigeons to provide a more detailed picture of their connections using tract-tracing methods. When anterograde and retrograde tracers were injected in OB, projections to a more extensive olfactory pallium were revealed, including the anterior olfactory nucleus, CPP, densocellular part of the hyperpallium, tenia tecta, hippocampal continuation, CPi, and CDL. OB projected commissural fibers to the contralateral OB but did not receive afferents from the contralateral olfactory pallium. When tracers were injected in CPP, reciprocal ipsilateral connections with OB and nuclei of the olfactory pallium were observed, and CPP projected to the caudolateral nidopallium and the limbic system, including the hippocampal formation, septum, lateral hypothalamic nucleus, and lateral mammillary nucleus. These results show that the connections of OB have a wider distribution throughout the olfactory pallium than previously thought and that CPP provides a centrifugal projection to the OB and acts as a relay station to the limbic system.

  13. Regulation of spike timing-dependent plasticity of olfactory inputs in mitral cells in the rat olfactory bulb.

    Teng-Fei Ma

    Full Text Available The recent history of activity input onto granule cells (GCs in the main olfactory bulb can affect the strength of lateral inhibition, which functions to generate contrast enhancement. However, at the plasticity level, it is unknown whether and how the prior modification of lateral inhibition modulates the subsequent induction of long-lasting changes of the excitatory olfactory nerve (ON inputs to mitral cells (MCs. Here we found that the repetitive stimulation of two distinct excitatory inputs to the GCs induced a persistent modification of lateral inhibition in MCs in opposing directions. This bidirectional modification of inhibitory inputs differentially regulated the subsequent synaptic plasticity of the excitatory ON inputs to the MCs, which was induced by the repetitive pairing of excitatory postsynaptic potentials (EPSPs with postsynaptic bursts. The regulation of spike timing-dependent plasticity (STDP was achieved by the regulation of the inter-spike-interval (ISI of the postsynaptic bursts. This novel form of inhibition-dependent regulation of plasticity may contribute to the encoding or processing of olfactory information in the olfactory bulb.

  14. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.

    Mouly, A-M; Di Scala, G

    2006-01-01

    The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the

  15. Continuous spatial representations in the olfactory bulb may reflect perceptual categories

    Benjamin eAuffarth

    2011-10-01

    Full Text Available In sensory processing of odors, the olfactory bulb is an important relay station, where odor representations are noise-filtered, sharpened, and possibly re-organized. An organization by perceptual qualities has been found previously in the piriform cortex, however several recent studies indicate that the olfactory bulb code reflects behaviorally relevant dimensions spatially as well as at the population level. We apply a statistical analysis on 2-deoxyglucose images, taken over the entire bulb of glomerular layer of the rat, in order to see how the recognition of odors in the nose is translated into a map of odor quality in the brain. We first confirm previous studies that the first principal component could be related to pleasantness, however the next higher principal components are not directly clear. We then find mostly continuous spatial representations for perceptual categories. We compare the space spanned by spatial and population codes to human reports of perceptual similarity between odors and our results suggest that perceptual categories could be already embedded in glomerular activations and that spatial representations give a better match than population codes. This suggests that human and rat perceptual dimensions of odorant coding are related and indicates that perceptual qualities could be represented as continuous spatial codes of the olfactory bulb glomerulus population.

  16. Timescale-dependent shaping of correlation by olfactory bulb lateral inhibition.

    Giridhar, Sonya; Doiron, Brent; Urban, Nathaniel N

    2011-04-05

    Neurons respond to sensory stimuli by altering the rate and temporal pattern of action potentials. These spike trains both encode and propagate information that guides behavior. Local inhibitory networks can affect the information encoded and propagated by neurons by altering correlations between different spike trains. Correlations introduce redundancy that can reduce encoding but also facilitate propagation of activity to downstream targets. Given this trade-off, how can networks maximize both encoding and propagation efficacy? Here, we examine this problem by measuring the effects of olfactory bulb inhibition on the pairwise statistics of mitral cell spiking. We evoked spiking activity in the olfactory bulb in vitro and measured how lateral inhibition shapes correlations across timescales. We show that inhibitory circuits simultaneously increase fast correlation (i.e., synchrony increases) and decrease slow correlation (i.e., firing rates become less similar). Further, we use computational models to show the benefits of fast correlation/slow decorrelation in the context of odor coding. Olfactory bulb inhibition enhances population-level discrimination of similar inputs, while improving propagation of mitral cell activity to cortex. Our findings represent a targeted strategy by which a network can optimize the correlation structure of its output in a dynamic, activity-dependent manner. This trade-off is not specific to the olfactory system, but rather our work highlights mechanisms by which neurons can simultaneously accomplish multiple, and sometimes competing, aspects of sensory processing.

  17. Subtype-specific reduction of olfactory bulb interneurons in Pax6 heterozygous mutant mice.

    Haba, Hasumi; Nomura, Tadashi; Suto, Fumikazu; Osumi, Noriko

    2009-09-01

    Interneurons in the olfactory bulb (OB) play essential roles in the processing of olfactory information. They are classified into several subpopulations by the expression of different neurochemical markers. Here we focused on a transcription factor Pax6, and examined its expression and function in distinct subtypes of OB interneurons. We identified Pax6 expression in specific subtypes of interneurons in the external plexiform layer (EPL). The number of these interneuron subtypes was dramatically decreased in Pax6 heterozygous mutant mice. These results indicate that Pax6 is required for differentiation and/or maintenance of EPL interneurons in the adult mouse OB.

  18. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys.

    Gonzales, Lauren A; Benefit, Brenda R; McCrossin, Monte L; Spoor, Fred

    2015-07-03

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently.

  19. Calretinin-Periglomerular Interneurons in Mice Olfactory Bulb: Cells of Few Words

    Alex Fogli Iseppe; Angela Pignatelli; Ottorino Belluzzi

    2016-01-01

    Within the olfactory bulb (OB), periglomerular (PG) cells consist of various types of interneurons, generally classified by their chemical properties such as neurotransmitter and calcium binding proteins.Calretinin (CR) characterizes morphologically and functionally the more numerous and one of the less known subpopulation of PG cells in the OB. Using of transgenic mice expressing eGFP under the CR promoter, we have tried to obtain the first functional characterization of these cells. Electro...

  20. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys

    Gonzales, L.; Benefit, B.; McCrossin, M.; Spoor, F.

    2015-01-01

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopi...

  1. Mature and Precursor Brain-Derived Neurotrophic Factor Have Individual Roles in the Mouse Olfactory Bulb

    Thomas Gerald Mast; Debra Ann Fadool

    2012-01-01

    BACKGROUND: Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB) that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF); here, we investigate its unknown function in the adult mouse OB. PRINCIPAL FINDINGS: As determined using brain-slice electrophysio...

  2. Sparse distributed representation of odors in a large-scale olfactory bulb circuit.

    Yuguo Yu

    Full Text Available In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and temporally. To address this critical step in the neural basis of odor recognition, we built a biophysical network model of mitral and granule cells, corresponding to 1/100th of the real system in the rat, and used direct experimental imaging data of glomeruli activated by various odors. The model allows the systematic investigation and generation of testable hypotheses of the functional mechanisms underlying odor representation in the olfactory bulb circuit. Specifically, we demonstrate that lateral inhibition emerges within the olfactory bulb network through recurrent dendrodendritic synapses when constrained by a range of balanced excitatory and inhibitory conductances. We find that the spatio-temporal dynamics of lateral inhibition plays a critical role in building the glomerular-related cell clusters observed in experiments, through the modulation of synaptic weights during odor training. Lateral inhibition also mediates the development of sparse and synchronized spiking patterns of mitral cells related to odor inputs within the network, with the frequency of these synchronized spiking patterns also modulated by the sniff cycle.

  3. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  4. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice

    Chelminski, Yan; Magnan, Christophe; Luquet, Serge H.; Everard, Amandine; Meunier, Nicolas; Gurden, Hirac; Martin, Claire

    2017-01-01

    Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning.

  5. Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction.

    Miller, Jae-Eun Kang; Granados-Fuentes, Daniel; Wang, Thomas; Marpegan, Luciano; Holy, Timothy E; Herzog, Erik D

    2014-04-23

    Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in olfactory performance. However, the cells and signals in the olfactory system that generate and coordinate these circadian rhythms are unknown. Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar, sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP) or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from the OB to maintain circadian rhythms in the mammalian olfactory system.

  6. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

    Baird, Bill

    1986-10-01

    A mathematical model of the process of pattern recognition in the first olfactory sensory cortex of the rabbit is presented. It explains the formation and alteration of spatial patterns in neural activity observed experimentally during classical Pavlovian conditioning. On each inspiration of the animal, a surge of receptor input enters the olfactory bulb. EEG activity recorded at the surface of the bulb undergoes a transition from a low amplitude background state of temporal disorder to coherent oscillation. There is a distinctive spatial pattern of rms amplitude in this oscillation which changes reliably to a second pattern during each successful recognition by the animal of a conditioned stimulus odor. When a new odor is paired as conditioned stimulus, these patterns are replaced by new patterns that stabilize as the animal adapts to the new environment. I will argue that a unification of the theories of pattern formation and associative memory is required to account for these observations. This is achieved in a model of the bulb as a discrete excitable medium with spatially inhomogeneous coupling expressed by a connection matrix. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of competing unstable oscillatory modes. These may be created in the system by proper coupling and selectively evoked by specific classes of inputs. This allows a view of limit cycle attractors as “stored” fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  7. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.

    Liu, Shaolin; Shipley, Michael T

    2008-10-08

    The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.

  8. Direction of Head Trauma and its Effect on Olfactory Bulb Volume in Post-Traumatic Anosmia

    S Farshchi

    2012-09-01

    Full Text Available Background: Anosmia is a physical sign in post-traumatic patients, which significantly reduces the quality of life. Anosmia occurs in up to 30% of cases with head trauma. In this study we aimed to compare the Olfactory Bulb Volume (OBV in patients with posttraumatic anosmia in different impact positions and also with healthy individuals to find the relation between the two variables. Methods: Thirty-eight patients with posttraumatic anosmia and 27 healthy individuals with normal olfactory function were recruited in this case-control study performed in Amir Alam Hospital in Tehran, Iran. Variables of age, sex, time of trauma, site of trauma (frontoparietal/occipital, side of trauma, OBV, the results of olfactory identification tests and olfactory threshold were extracted and evaluated. We used non-contrasted 1.5-Tesla coronal brain MRI for the measurement of OBV.Results: There were no significant differences between cases and controls regarding sex and age. Olfactory bulb volume was significantly smaller in cases compared to the controls (P=0.004. Among the case group, OBV was smaller in anterior versus posterior head traumas (P=0.02. OBV was also smaller in ipsilateral rather than the contralateral side of trauma (P=0.01.Conclusion: The direction of trauma had a significant effect on OBV and it was smaller in traumas to the anterior and also ipsilateral sides of the head. It seems that changes in OBV differ due to the direction of head trauma and it can be helpful in predicting the prognosis of posttraumatic anosmia. Further studies are required for more conclusive statements.

  9. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-01-01

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits. PMID:27782186

  10. A model of cholinergic modulation in olfactory bulb and piriform cortex.

    de Almeida, Licurgo; Idiart, Marco; Linster, Christiane

    2013-03-01

    In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity.

  11. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling

    Roberto Vincis

    2015-07-01

    Full Text Available Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.

  12. The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat

    Daniel eRojas-Líbano

    2014-06-01

    Full Text Available Sensory-motor relationships are part of the normal operation of sensory systems. Sensing occurs in the context of active sensor movement, which in turn influences sensory processing. We address such a process in the rat olfactory system. Through recordings of the diaphragm electromyogram (EMG, we monitored the motor output of the respiratory circuit involved in sniffing behavior, simultaneously with the local field potential (LFP of the olfactory bulb (OB in rats moving freely in a familiar environment, where they display a wide range of respiratory frequencies. We show that the OB LFP represents the sniff cycle with high reliability at every sniff frequency and can therefore be used to study the neural representation of motor drive in a sensory cortex.

  13. Coding Odorant Concentration through Activation Timing between the Medial and Lateral Olfactory Bulb

    Zhishang Zhou

    2012-11-01

    Full Text Available In mammals, each olfactory bulb (OB contains a pair of mirror-symmetric glomerular maps organized to reflect odorant receptor identity. The functional implication of maintaining these symmetric medial-lateral maps within each OB remains unclear. Here, using in vivo multielectrode recordings to simultaneously detect odorant-induced activity across the entire OB, we reveal a timing difference in the odorant-evoked onset latencies between the medial and lateral halves. Interestingly, the latencies in the medial and lateral OB decreased at different rates as odorant concentration increased, causing the timing difference between them to also diminish. As a result, output neurons in the medial and lateral OB fired with greater synchrony at higher odorant concentrations. Thus, we propose that temporal differences in activity between the medial and lateral OB can dynamically code odorant concentration, which is subsequently decoded in the olfactory cortex through the integration of synchronous action potentials.

  14. Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes.

    Yopak, Kara E; Lisney, Thomas J; Collin, Shaun P

    2015-03-01

    Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of

  15. BDNF promoter-mediated beta-galactosidase expression in the olfactory epithelium and bulb.

    Clevenger, Amy C; Salcedo, Ernesto; Jones, Kevin R; Restrepo, Diego

    2008-07-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.

  16. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output.

    Miyamichi, Kazunari; Shlomai-Fuchs, Yael; Shu, Marvin; Weissbourd, Brandon C; Luo, Liqun; Mizrahi, Adi

    2013-12-04

    In the mouse olfactory bulb, information from sensory neurons is extensively processed by local interneurons before being transmitted to the olfactory cortex by mitral and tufted (M/T) cells. The precise function of these local networks remains elusive because of the vast heterogeneity of interneurons, their diverse physiological properties, and their complex synaptic connectivity. Here we identified the parvalbumin interneurons (PVNs) as a prominent component of the M/T presynaptic landscape by using an improved rabies-based transsynaptic tracing method for local circuits. In vivo two-photon-targeted patch recording revealed that PVNs have exceptionally broad olfactory receptive fields and exhibit largely excitatory and persistent odor responses. Transsynaptic tracing indicated that PVNs receive direct input from widely distributed M/T cells. Both the anatomical and functional extent of this M/T→PVN→M/T circuit contrasts with the narrowly confined M/T→granule cell→M/T circuit, suggesting that olfactory information is processed by multiple local circuits operating at distinct spatial scales.

  17. Spontaneous firing in olfactory bulb neurons of Bufo bufo gargarizans in and after hibernation

    Chuancheng Liang; Shaokang Bian; Xia Peng; Liwen Wang

    2011-01-01

    Microelectrode technique was used to record the spontaneous electrical activities of the neurons in olfactory bulb of the Bufo bufo gargarizans, both in hibernation and after hibernation. This study investigated the electrophysiological characteristics of amphibian olfactory bulb in the period of hibernation and after hibernation and its effects on the start of hibernation and spontaneous awakening. The research showed four forms of spontaneous firings: single spontaneous firing, burst spontaneous firing, irregular spontaneous firing and consecutive single spontaneous firing. The single spontaneous firing includes slow depolarized spontaneous firing and fast depolarized spontaneous firing, and the slow depolarized spontaneous firing occurs only during the hibernation period. In hibernation, the low amplitude and low frequency firing with a longer duration may be relevant to maintaining the tonicity of the central nervous system in toads that are in hibernation, and this kind of firing may also provide an excited basis for their arousal from hibernation. After hibernation, the amplitude and frequency of firing increase, but the firing duration gets shorter. This form of short-term firing, which may be a phenomenon of sensory neurons fast adapting, is one of the neuronal mechanisms for the arousal of hibernating animals.

  18. A transient, RCK4-like K+ current in cultured Xenopus olfactory bulb neurons.

    Engel, J; Rabba, J; Schild, D

    1996-09-01

    A transient K+ current in cultured olfactory bulb neurons of Xenopus tadpoles was studied using the whole-cell patch-clamp technique. The current, which was resistant to 80 mM tetraethylammoniumchloride (TEA) and 10 nM charybdotoxin but blocked by 5 mM 4-aminopyridine (4-AP), activated between -60 and -40 mV and showed time- and voltage-dependent inactivation. Its peak amplitude was nearly independent of the extracellular K+ concentration ([K+]o) in the range of 0.05 to 10 mM, indicating that its conductance increased upon increasing [K+]o. The transient K+ current showed a slow recovery from inactivation with the time for half-maximum recovery from a conditioning pulse to 80 mV for 1 s varying from 100 ms to 500 ms. Complete recovery required as much as 5-10 s at -80 mV, but could be speeded up at hyperpolarized potentials. The current resembles the RCK4 (Kv1.4) current of rat neurons except that its recovery from inactivation was independent of [K+]o. High-frequency stimulation (20-67 Hz) of the neurons with short (5 ms) voltage pulses resulted in a frequency-dependent, progressive inactivation of the transient K+ current. This suggests that, during phasic responses of olfactory bulb neurons, inactivation of the transient K+ current occurs and may lead to lengthening of action potentials and facilitation of synaptic transmission.

  19. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

    Li, Guoshi; Linster, Christiane; Cleland, Thomas A

    2015-12-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

  20. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells

    Linster, Christiane

    2015-01-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function. PMID:26334007

  1. Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb

    Baird, Bill

    1986-08-01

    A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  2. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex.

    Mandairon, Nathalie; Kermen, Florence; Charpentier, Caroline; Sacquet, Joelle; Linster, Christiane; Didier, Anne

    2014-01-01

    Sensory neural activity is highly context dependent and shaped by experience and expectation. In the olfactory bulb (OB), the first cerebral relay of olfactory processing, responses to odorants are shaped by previous experiences including contextual information thanks to strong feedback connections. In the present experiment, mice were conditioned to associate an odorant with a visual context and were then exposed to the visual context alone. We found that the visual context alone elicited exploration of the odor port similar to that elicited by the stimulus when it was initially presented. In the OB, the visual context alone elicited a neural activation pattern, assessed by mapping the expression of the immediate early gene zif268 (egr-1) that was highly similar to that evoked by the conditioned odorant, but not other odorants. This OB activation was processed by olfactory network as it was transmitted to the piriform cortex. Interestingly, a novel context abolished neural and behavioral responses. In addition, the neural representation in response to the context was dependent on top-down inputs, suggesting that context-dependent representation is initiated in cortex. Modeling of the experimental data suggests that odor representations are stored in cortical networks, reactivated by the context and activate bulbar representations. Activation of the OB and the associated behavioral response in the absence of physical stimulus showed that mice are capable of internal representations of sensory stimuli. The similarity of activation patterns induced by imaged and the corresponding physical stimulus, triggered only by the relevant context provides evidence for an odor-specific internal representation.

  3. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson's disease and multiple system atrophy

    Chen, Shun, E-mail: shchen_2013@163.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Tan, Hong-yu, E-mail: honhyutan@21cn.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Wu, Zhuo-hua, E-mail: zhh88@126.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Sun, Chong-peng, E-mail: Suncp2002@gmail.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); He, Jian-xun, E-mail: xundog@163.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); Li, Xin-chun, E-mail: xinchunli@163.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); Shao, Ming, E-mail: yimshao@126.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China)

    2014-03-15

    We explored if magnetic resonance imaging sequences might aid in the clinical differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). We measured the volumes of the olfactory bulb, the olfactory tract, and olfaction-associated cortical gray matter in 20 IPD patients, 14 MSA patients, and 12 normal subjects, using high-resolution magnetic resonance imaging sequences in combination with voxel-based statistical analysis. We found that, compared to normal subjects and MSA patients, the volumes of the olfactory bulb and tract were significantly reduced in IPD patients. The gray matter volume of IPD patients decreased in the following order: the olfactory area to the right of the piriform cortex, the right amygdala, the left entorhinal cortex, and the left occipital lobe. Further, the total olfactory bulb volume of IPD patients was associated with the duration of disease. The entorhinal cortical gray matter volume was negatively associated with the UPDRS III score. Conclusion: Structural volumes measured by high-resolution magnetic resonance imaging may potentially be used for differential diagnosis of IPD from MSA.

  4. Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb.

    Dong, Hong-Wei; Davis, James C; Ding, ShengYuan; Nai, Qiang; Zhou, Fu-Ming; Ennis, Matthew

    2012-08-22

    Transient receptor potential (TRP) channels are a large family of cation channels. The 28 TRP channel subtypes in rodent are divided into 6 subfamilies: TRPC1-7, TRPV1-6, TRPM1-8, TRPP2/3/5, TRPML1-3 and TRPA1. TRP channels are involved in peripheral olfactory transduction. Several TRPC channels are expressed in unidentified neurons in the main olfactory bulb (OB), but the expression of most TRP channels in the OB has not been investigated. The present study employed RT-PCR as an initial survey of the expression of TRP channel mRNAs in the mouse OB and in 3 cell types: external tufted, mitral and granule cells. All TRP channel mRNAs except TRPV5 were detected in OB tissue. Single cell RT-PCR revealed that external tufted, mitral and granule cell populations expressed in aggregate 14 TRP channel mRNAs encompassing members of all 6 subfamilies. These different OB neuron populations expressed 7-12 channel mRNAs. Common channel expression was more similar among external tufted and mitral cells than among these cells and granule cells. These results indicate that a large number of TRP channel subtypes are expressed in OB neurons, providing the molecular bases for these channels to regulate OB neuron activity and central olfactory processing.

  5. Novel subdomains of the mouse olfactory bulb defined by molecular heterogeneity in the nascent external plexiform and glomerular layers

    Yona Golan

    2007-05-01

    Full Text Available Abstract Background In the mouse olfactory system, the role of the olfactory bulb in guiding olfactory sensory neuron (OSN axons to their targets is poorly understood. What cell types within the bulb are necessary for targeting is unknown. What genes are important for this process is also unknown. Although projection neurons are not required, other cell-types within the external plexiform and glomerular layers also form synapses with OSNs. We hypothesized that these cells are important for targeting, and express spatially differentially expressed guidance cues that act to guide OSN axons within the bulb. Results We used laser microdissection and microarray analysis to find genes that are differentially expressed along the dorsal-ventral, medial-lateral, and anterior-posterior axes of the bulb. The expression patterns of these genes divide the bulb into previously unrecognized subdomains. Interestingly, some genes are expressed in both the medial and lateral bulb, showing for the first time the existence of symmetric expression along this axis. We use a regeneration paradigm to show that several of these genes are altered in expression in response to deafferentation, consistent with the interpretation that they are expressed in cells that interact with OSNs. Conclusion We demonstrate that the nascent external plexiform and glomerular layers of the bulb can be divided into multiple domains based on the expression of these genes, several of which are known to function in axon guidance, synaptogenesis, and angiogenesis. These genes represent candidate guidance cues that may act to guide OSN axons within the bulb during targeting.

  6. Amyloid beta inhibits olfactory bulb activity and the ability to smell.

    Reynaldo Alvarado-Martínez

    Full Text Available Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.

  7. Spatio-temporal characteristics of inhibition mapped by optical stimulation in mouse olfactory bulb

    Alexander eLehmann

    2016-03-01

    Full Text Available Mitral and tufted cells (MTCs of the mammalian olfactory bulb (OB are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than 5 glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics.

  8. Retronasal odor concentration coding in glomeruli of the rat olfactory bulb

    ShreeHari eGautam

    2014-10-01

    Full Text Available The mammalian olfactory system processes odorants presented orthonasally (inhalation through the nose and also retronasally (exhalation, enabling identification of both external as well as internal objects during food consumption. There are distinct differences between ortho- and retronasal air flow patterns, psychophysics, multimodal integration and glomerular responses. Recent work indicates that rats can also detect odors retronasally, that rats can associate retronasal odors with tastes, and that their olfactory bulbs (OBs can respond to retronasal odorants but differently than to orthonasal odors. To further characterize retronasal OB input activity patterns, experiments here focus on determining the effects of odorant concentration on glomerular activity by monitoring calcium activity in the dorsal OB of rats using a dextran-conjugated calcium-sensitive dye in vivo. Results showed reliable concentration-response curves that differed between odorants, and recruitment of additional glomeruli, as odorant concentration increases. We found evidence of different concentration-response functions between glomeruli, that in turn depended on odor. Further, the relation between dynamics and concentration differed remarkably among retronasal odorants. These dynamics are suggested to reduce the odor map ambiguity based on response amplitude. Elucidating the coding of retronasal odor intensity is fundamental to the understanding of feeding behavior and the neural basis of flavor. These data further establish and refine the rodent model of flavor neuroscience.

  9. Retronasal odor concentration coding in glomeruli of the rat olfactory bulb

    Gautam, Shree Hari; Short, Shaina M.; Verhagen, Justus V.

    2014-01-01

    The mammalian olfactory system processes odorants presented orthonasally (inhalation through the nose) and also retronasally (exhalation), enabling identification of both external as well as internal objects during food consumption. There are distinct differences between ortho- and retronasal air flow patterns, psychophysics, multimodal integration, and glomerular responses. Recent work indicates that rats can also detect odors retronasally, that rats can associate retronasal odors with tastes, and that their olfactory bulbs (OBs) can respond to retronasal odorants but differently than to orthonasal odors. To further characterize retronasal OB input activity patterns, experiments here focus on determining the effects of odor concentration on glomerular activity by monitoring calcium activity in the dorsal OB of rats using a dextran-conjugated calcium-sensitive dye in vivo. Results showed reliable concentration-response curves that differed between odorants, and recruitment of additional glomeruli, as odor concentration increased. We found evidence of different concentration-response functions between glomeruli, that in turn depended on odor. Further, the relation between dynamics and concentration differed remarkably among retronasal odorants. These dynamics are suggested to reduce the odor map ambiguity based on response amplitude. Elucidating the coding of retronasal odor intensity is fundamental to the understanding of feeding behavior and the neural basis of flavor. These data further establish and refine the rodent model of flavor neuroscience. PMID:25386123

  10. Profound context-dependent plasticity of mitral cell responses in olfactory bulb.

    Wilder Doucette

    2008-10-01

    Full Text Available On the basis of its primary circuit it has been postulated that the olfactory bulb (OB is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go-no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active filter, shaping early odor representations in behaviorally meaningful ways.

  11. Diabetes Impairs Wnt3 Protein-induced Neurogenesis in Olfactory Bulbs via Glutamate Transporter 1 Inhibition.

    Wakabayashi, Tamami; Hidaka, Ryo; Fujimaki, Shin; Asashima, Makoto; Kuwabara, Tomoko

    2016-07-15

    Diabetes is associated with impaired cognitive function. Streptozotocin (STZ)-induced diabetic rats exhibit a loss of neurogenesis and deficits in behavioral tasks involving spatial learning and memory; thus, impaired adult hippocampal neurogenesis may contribute to diabetes-associated cognitive deficits. Recent studies have demonstrated that adult neurogenesis generally occurs in the dentate gyrus of the hippocampus, the subventricular zone, and the olfactory bulbs (OB) and is defective in patients with diabetes. We hypothesized that OB neurogenesis and associated behaviors would be affected in diabetes. In this study, we show that inhibition of Wnt3-induced neurogenesis in the OB causes several behavioral deficits in STZ-induced diabetic rats, including impaired odor discrimination, cognitive dysfunction, and increased anxiety. Notably, the sodium- and chloride-dependent GABA transporters and excitatory amino acid transporters that localize to GABAergic and glutamatergic terminals decreased in the OB of diabetic rats. Moreover, GAT1 inhibitor administration also hindered Wnt3-induced neurogenesis in vitro Collectively, these data suggest that STZ-induced diabetes adversely affects OB neurogenesis via GABA and glutamate transporter systems, leading to functional impairments in olfactory performance.

  12. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Fumiaki Imamura

    Full Text Available BACKGROUND: Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells. PRINCIPAL FINDINGS: With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells. SIGNIFICANCE: In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  13. Calretinin periglomerular interneurons in mice olfactory bulb: cells of few words

    Alex Fogli Iseppe

    2016-10-01

    Full Text Available Within the olfactory bulb (OB, periglomerular (PG cells consist of various types of interneurons, generally classified by their chemical properties such as neurotransmitter and calcium binding proteins.Calretinin (CR characterizes morphologically and functionally the more numerous and one of the less known subpopulation of PG cells in the OB. Using of transgenic mice expressing eGFP under the CR promoter, we have tried to obtain the first functional characterization of these cells. Electrophysiological recordings were made in these cells using the patch-clamp technique in thin slices. Using ion substitution methods and specific blockers, we dissected the main voltage-dependent conductances present, obtaining a complete kinetic description for each of them.The more peculiar property of these cells from the electrophysiological point of view is the presence only of a single K-current, the IA - there is no trace of delayed rectifier or of Ca-dependent K-current. Other currents identified, isolated and fully characterised are two inward currents, a fast sodium current and a small L-type calcium current, and an inward rectifier, h-type cationic current. As a consequence of the peculiar complement of voltage-dependent conductances present in these cells, and in particular the absence of delayed-rectifier potassium currents, under the functional point of view these cells present two interesting properties.First, in response to prolonged depolarisations, after the inactivation of the A-current, these cells behave as a purely ohmic elements, showing no outward rectification. Second, the CR cells studied can respond only with a single action potential to excitatory inputs; since they send inhibitory synapses to projection neurones, they seem to be designed to inhibit responses of the main neurones to isolated, random excitatory signals, losing their vetoing effect for more structured, repetitive excitatory signals, as result from odour detection

  14. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues (Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916). Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system.

  15. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study

    Duchamp, A.; Moyse, E.; Delaleu, J.-C.; Coronas, V.; Duchamp-Viret, P. [Laboratoire de Physiologie Neurosensorielle, Universite Claude Bernard and CNRS, F69622 Villeurbanne (France)

    1997-04-28

    Dopamine content in the amphibian olfactory bulb is supplied by interneurons scattered among mitral cells in the external plexiform/mitral cell layer. In mammals, dopamine has been found to be involved in various aspects of bulbar information processing by influencing mitral cell odour responsiveness. Dopamine action in the bulb depends directly on the localization of its receptor targets, found to be mainly of the D{sub 2} type in mammals. The present study assessed, in the frog, both the anatomical localization of D{sub 2}-like, radioligand-labelled receptors of dopamine and the in vivo action of dopamine on unitary mitral cell activity in response to odours delivered over a wide range of concentrations. The [{sup 125}I]iodosulpride-labelled D{sub 2} binding sites were visualized on frozen sagittal sections of frog brains by film radioautography. The sites were found to be restricted to the external plexiform/mitral cell layer; other layers of the olfactory bulb were devoid of specific labelling. Electrophysiological recordings of mitral unit activity revealed that dopamine or its agonist apomorphine induced a drastic reduction of spontaneous firing rate of mitral cells in most cases without altering odour intensity coding properties of these cells. Moreover, pre-treatment with the D{sub 2} antagonist eticlopride blocked the dopamine-induced reduction of mitral cell spontaneous activity.In the frog olfactory bulb, both anatomical localization of D{sub 2}-like receptors and functional data on dopamine involvement in information processing differ from those reported in mammals. This suggests a phylogenetic evolution of dopamine action in the olfactory bulb. In the frog, anatomical data perfectly corroborate electrophysiological results, together strongly suggesting a direct action of dopamine on mitral cells. In a physiologically operating system, such an action would result in a global improvement of signal-to-noise ratio. (Copyright (c) 1997 Elsevier Science B

  16. Reduction of Glucose Metabolism in Olfactory Bulb is an Earlier Alzheimer's Disease-related Biomarker in 5XFAD Mice

    Nai-An Xiao; Jing Zhang; Meng Zhou; Zhen Wei; Xi-Lin Wu; Xiao-Man Dai; Yuan-Gui Zhu

    2015-01-01

    Background:Early diagnosis assumes a vital role in an effective treatment of Alzheimer's disease (AD).Most of the current studies can only make anAD diagnosis after the manifestation of typical clinical symptoms.The present study aimed to investigate typical and other biomarkers of AD to find a possible early biomarker.Methods:A total of 14 5XFAD mice (at 3 and 6 months old),with 14 age-matched wild-type (WT) mice as control,were enrolled in this case-control study.Morris water maze test was performed to evaluate the cognitive function;buried food pellet test and olfactory maze test were employed to investigate the olfactory function;immunofluorescence to detect amyloid deposition and positron emission tomography to examine 2-deoxy-2-(18F) fluoro-D-glucose ([18F]-FDG) uptake in the hippocampus and cerebral cortex.Results:With the increasing age,cognitive performance (P =0.0262) and olfactory function were significantly deteriorated (day 1 P =0.0012,day 2 P =0.0031,day 3 P =0.0160,respectively) and the (18F)-FDG uptake was markedly decreased in multi-cerebral regions including the olfactory bulb (P < 0.0001),hippocampus (P =0.0121),and cerebral cortex (P < 0.0001).Of note,in 3-month-old 5XFAD mice,a significant decline of (18F)-FDG uptake in the olfactory bulb was found when compared with that of age-matched WT mice (P =0.023) while no significant difference was present when the uptakes in other cerebral regions were compared.Conclusions:The decline of (18F)-FDG uptake in the olfactory bulb occurs earlier than other incidents,serving as an earlier in vivo biological marker of AD in 5XFAD mice and making early diagnosis of AD possibly.

  17. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb.

    Dong, Qi; Du, Liping; Zhuang, Liujing; Li, Rong; Liu, Qingjun; Wang, Ping

    2013-11-15

    The mammalian olfactory system has merits of higher sensitivity, selectivity and faster response than current electronic nose system based on chemical sensor array. It is advanced and feasible to detect and discriminate odors by mammalian olfactory system. The purpose of this study is to develop a novel bioelectronic nose based on the brain-machine interface (BMI) technology for odor detection by in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted (M/T) cells in olfactory bulb (OB) were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns both in temporal features and rate features when stimulated by different small molecular odorants. The detection low limit is below 1 ppm for some specific odors. Odors were classified by an algorithm based on population vector similarity and support vector machine (SVM). The results suggested that the novel bioelectonic nose was sensitive to odorant stimuli. The best classifying accuracy was up to 95%. With the development of the BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.

  18. Inducible and targeted deletion of the ERK5 MAP kinase in adult neurogenic regions impairs adult neurogenesis in the olfactory bulb and several forms of olfactory behavior.

    Yung-Wei Pan

    Full Text Available Although adult-born neurons in the subventricular zone (SVZ and olfactory bulb (OB have been extensively characterized at the cellular level, their functional impact on olfactory behavior is still highly controversial with many conflicting results reported in the literature. Furthermore, signaling mechanisms regulating adult SVZ/OB neurogenesis are not well defined. Here we report that inducible and targeted deletion of erk5, a MAP kinase selectively expressed in the adult neurogenic regions of the adult brain, impairs adult neurogenesis in the SVZ and OB of transgenic mice. Although erk5 deletion had no effect on olfactory discrimination among discrete odorants in the habituation/dishabituation assay, it reduced short-term olfactory memory as well as detection sensitivity to odorants and pheromones including those evoking aggression and fear. Furthermore, these mice show impaired acquisition of odor-cued associative olfactory learning, a novel phenotype that had not been previously linked to adult neurogenesis. These data suggest that ERK5 MAP kinase is a critical kinase signaling pathway regulating adult neurogenesis in the SVZ/OB, and provide strong evidence supporting a functional role for adult neurogenesis in several distinct forms of olfactory behavior.

  19. Multiple conductances cooperatively regulate spontaneous bursting in mouse olfactory bulb external tufted cells.

    Liu, Shaolin; Shipley, Michael T

    2008-02-13

    External tufted (ET) cells are juxtaglomerular neurons that spontaneously generate bursts of action potentials, which persist when fast synaptic transmission is blocked. The intrinsic mechanism of this autonomous bursting is unknown. We identified a set of voltage-dependent conductances that cooperatively regulate spontaneous bursting: hyperpolarization-activated inward current (I(h)), persistent Na+ current (I(NaP)), low-voltage-activated calcium current (I(L/T)) mediated by T- and/or L-type Ca2+ channels, and large-conductance Ca2+-dependent K+ current (I(BK)). I(h) is important in setting membrane potential and depolarizes the cell toward the threshold of I(NaP) and I(T/L), which are essential to generate the depolarizing envelope that is crowned by a burst of action potentials. Action potentials depolarize the membrane and induce Ca2+ influx via high-voltage-activated Ca2+ channels (I(HVA)). The combined depolarization and increased intracellular Ca2+ activates I(BK), which terminates the burst by hyperpolarizing the membrane. Hyperpolarization activates I(h) and the cycle is regenerated. A novel finding is the role of L-type Ca2+ channels in autonomous ET cells bursting. A second novel feature is the role of BK channels, which regulate burst duration. I(L) and I(BK) may go hand-in-hand, the slow inactivation of I(L) requiring I(BK)-dependent hyperpolarization to deactivate inward conductances and terminate the burst. ET cells receive monosynaptic olfactory nerve input and drive the major inhibitory interneurons of the glomerular circuit. Modulation of the conductances identified here can regulate burst frequency, duration, and spikes per burst in ET cells and thus significantly shape the impact of glomerular circuits on mitral and tufted cells, the output channels of the olfactory bulb.

  20. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis.

    Lim, Daniel A; Alvarez-Buylla, Arturo

    2016-05-02

    A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.

  1. Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb.

    Sailor, Kurt A; Valley, Matthew T; Wiechert, Martin T; Riecke, Hermann; Sun, Gerald J; Adams, Wayne; Dennis, James C; Sharafi, Shirin; Ming, Guo-Li; Song, Hongjun; Lledo, Pierre-Marie

    2016-07-20

    In the mammalian brain, the anatomical structure of neural circuits changes little during adulthood. As a result, adult learning and memory are thought to result from specific changes in synaptic strength. A possible exception is the olfactory bulb (OB), where activity guides interneuron turnover throughout adulthood. These adult-born granule cell (GC) interneurons form new GABAergic synapses that have little synaptic strength plasticity. In the face of persistent neuronal and synaptic turnover, how does the OB balance flexibility, as is required for adapting to changing sensory environments, with perceptual stability? Here we show that high dendritic spine turnover is a universal feature of GCs, regardless of their developmental origin and age. We find matching dynamics among postsynaptic sites on the principal neurons receiving the new synaptic inputs. We further demonstrate in silico that this coordinated structural plasticity is consistent with stable, yet flexible, decorrelated sensory representations. Together, our study reveals that persistent, coordinated synaptic structural plasticity between interneurons and principal neurons is a major mode of functional plasticity in the OB.

  2. Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum

    Weingarten, Jens; Laßek, Melanie; Mueller, Benjamin F.; Rohmer, Marion; Baeumlisberger, Dominic; Beckert, Benedikt; Ade, Jens; Gogesch, Patricia; Acker-Palmer, Amparo; Karas, Michael; Volknandt, Walter

    2015-01-01

    Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements.

  3. Age-Dependent Neurogenesis and Neuron Numbers within the Olfactory Bulb and Hippocampus of Homing Pigeons

    Meskenaite, Virginia; Krackow, Sven; Lipp, Hans-Peter

    2016-01-01

    Many birds are supreme long-distance navigators that develop their navigational ability in the first months after fledgling but update the memorized environmental information needed for navigation also later in life. We studied the extent of juvenile and adult neurogenesis that could provide such age-related plasticity in brain regions known to mediate different mechanisms of pigeon homing: the olfactory bulb (OB), and the triangular area of the hippocampal formation (HP tr). Newly generated neurons (visualized by doublecortin, DCX) and mature neurons were counted stereologically in 35 pigeon brains ranging from 1 to 168 months of age. At the age of 1 month, both areas showed maximal proportions of DCX positive neurons, which rapidly declined during the first year of life. In the OB, the number of DCX-positive periglomerular neurons declined further over time, but the number of mature periglomerular cells appeared unchanged. In the hippocampus, the proportion of DCX-positive neurons showed a similar decline yet to a lesser extent. Remarkably, in the triangular area of the hippocampus, the oldest birds showed nearly twice the number of neurons as compared to young adult pigeons, suggesting that adult born neurons in these regions expanded the local circuitry even in aged birds. This increase might reflect navigational experience and, possibly, expanded spatial memory. On the other hand, the decrease of juvenile neurons in the aging OB without adding new circuitry might be related to the improved attachment to the loft characterizing adult and old pigeons. PMID:27445724

  4. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb

    Jeffrey E Dahlen

    2011-05-01

    Full Text Available Adult born neurons are added to the olfactory bulb (OB throughout life in rodents. While many factors have been identified as regulating the survival and integration of adult-born neurons (ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic (siRNA knock down of voltage gated sodium channels NaV1.1-1.3 and circuit level (naris occlusion reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock down or naris occlusion. In siRNA knock down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of NaV1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.

  5. Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum

    Jens Weingarten

    2015-05-01

    Full Text Available Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements.

  6. Chronic Spinal Injury Repair by Olfactory Bulb Ensheathing Glia and Feasibility for Autologous Therapy

    Muñoz-Quiles, Cintia; Santos-Benito, Fernando F.; Llamusí, M. Beatriz; Ramón-Cueto, Almudena

    2009-01-01

    Olfactory bulb ensheathing glia (OB-OEG) promote repair of spinal cord injury (SCI) in rats after transplantation at acute or subacute (up to 45 days) stages. The most relevant clinical scenario in humans, however, is chronic SCI, in which no more major cellular or molecular changes occur at the injury site; this occurs after the third month in rodents. Whether adult OB-OEG grafts promote repair of severe chronic SCI has not been previously addressed. Rats with complete SCI that were transplanted with OB-OEG 4 months after injury exhibited progressive improvement in motor function and axonal regeneration from different brainstem nuclei across and beyond the SCI site. A positive correlation between motor outcome and axonal regeneration suggested a role for brainstem neurons in the recovery. Functional and histological outcomes did not differ at subacute or chronic stages. Thus, autologous transplantation is a feasible approach as there is time for patient stabilization and OEG preparation in human chronic SCI; the healing effects of OB-OEG on established injuries may offer new therapeutic opportunities for chronic SCI patients. PMID:19915486

  7. Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells

    Brill Monika S

    2011-04-01

    Full Text Available Abstract Background While the diversity and spatio-temporal origin of olfactory bulb (OB GABAergic interneurons has been studied in detail, much less is known about the subtypes of glutamatergic OB interneurons. Results We studied the temporal generation and diversity of Neurog2-positive precursor progeny using an inducible genetic fate mapping approach. We show that all subtypes of glutamatergic neurons derive from Neurog2 positive progenitors during development of the OB. Projection neurons, that is, mitral and tufted cells, are produced at early embryonic stages, while a heterogeneous population of glutamatergic juxtaglomerular neurons are generated at later embryonic as well as at perinatal stages. While most juxtaglomerular neurons express the T-Box protein Tbr2, those generated later also express Tbr1. Based on morphological features, these juxtaglomerular cells can be identified as tufted interneurons and short axon cells, respectively. Finally, targeted electroporation experiments provide evidence that while the majority of OB glutamatergic neurons are generated from intrabulbar progenitors, a small portion of them originate from extrabulbar regions at perinatal ages. Conclusions We provide the first comprehensive analysis of the temporal and spatial generation of OB glutamatergic neurons and identify distinct populations of juxtaglomerular interneurons that differ in their antigenic properties and time of origin.

  8. Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb.

    Thomas Gerald Mast

    Full Text Available BACKGROUND: Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF; here, we investigate its unknown function in the adult mouse OB. PRINCIPAL FINDINGS: As determined using brain-slice electrophysiology in a whole-cell configuration, brain-derived neurotrophic factor (BDNF, but not proBDNF, increased mitral cell excitability. BDNF increased mitral cell action potential firing frequency and decreased interspike interval in response to current injection. In a separate set of experiments, intranasal delivery of neurotrophic factors to awake, adult mice was performed to induce sustained interneuron neurochemical changes. ProBDNF, but not BDNF, increased activated-caspase 3 and reduced tyrosine hydroxylase immunoreactivity in OB glomerular interneurons. In a parallel set of experiments, short-term sensory deprivation produced by unilateral naris occlusion generated an identical phenotype. CONCLUSIONS: Our results indicate that only mature BDNF increases mitral cell excitability whereas proBDNF remains ineffective. Our demonstration that proBDNF activates an apoptotic marker in vivo is the first for any proneurotrophin and establishes a role for proBDNF in a model of neuronal plasticity.

  9. Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle.

    Buonviso, Nathalie; Amat, Corine; Litaudon, Philippe; Roux, Stephane; Royet, Jean-Pierre; Farget, Vincent; Sicard, Gilles

    2003-05-01

    The mammalian olfactory bulb is characterized by prominent oscillatory activity of its local field potentials. Breathing imposes the most important rhythm. Other rhythms have been described in the beta- and gamma-frequency ranges. We recorded unitary activities in different bulbar layers simultaneously with local field potentials in order to examine the different relationships existing between (i) breathing and field potential oscillations, and (ii) breathing and spiking activity of different cell types. We show that, whatever the layer, odour-induced gamma oscillations always occur around the transition point between inhalation and exhalation while beta oscillations appear during early exhalation and may extend up to the end of inhalation. By contrast, unitary activities exhibit different characteristics according to the layer. They vary in (i) their temporal relationship with respect to the respiratory cycle; (ii) their spike rates; (iii) their temporal patterns defined according to the respiratory cycle. The time window of a respiratory cycle might thus be split into three main epochs based on the deceleration of field potential rhythms (from gamma to beta oscillations) and a simultaneous gradient of spike discharge frequencies ranging from 180 to 30 Hz. We discuss the possibility that each rhythm could serve different functions as priming, gating or tuning for the bulbar network.

  10. Early in vivo Effects of the Human Mutant Amyloid-β Protein Precursor (hAβPPSwInd) on the Mouse Olfactory Bulb.

    Rusznák, Zoltán; Kim, Woojin Scott; Hsiao, Jen-Hsiang T; Halliday, Glenda M; Paxinos, George; Fu, YuHong

    2016-01-01

    The amyloid-β protein precursor (AβPP) has long been linked to Alzheimer's disease (AD). Using J20 mice, which express human AβPP with Swedish and Indiana mutations, we studied early pathological changes in the olfactory bulb. The presence of AβPP/amyloid-β (Aβ) was examined in mice aged 3 months (before the onset of hippocampal Aβ deposition) and over 5 months (when hippocampal Aβ deposits are present). The number of neurons, non-neurons, and proliferating cells was assessed using the isotropic fractionator method. Our results demonstrate that although AβPP is overexpressed in some of the mitral cells, widespread Aβ deposition and microglia aggregates are not prevalent in the olfactory bulb. The olfactory bulbs of the younger J20 group harbored significantly fewer neurons than those of the age-matched wild-type mice (5.57±0.13 million versus 6.59±0.36 million neurons; p = 0.011). In contrast, the number of proliferating cells was higher in the young J20 than in the wild-type group (i.e., 6617±425 versus 4455±623 cells; p = 0.011). A significant increase in neurogenic activity was also observed in the younger J20 olfactory bulb. In conclusion, our results indicate that (1) neurons participating in the mouse olfactory function overexpress AβPP; (2) the cellular composition of the young J20 olfactory bulb is different from that of wild-type littermates; (3) these differences may reflect altered neurogenic activity and/or delayed development of the J20 olfactory system; and (4) AβPP/Aβ-associated pathological changes that take place in the J20 hippocampus and olfactory bulb are not identical.

  11. The olfactory bulb in newborn piglet is a reservoir of neural stem and progenitor cells.

    Martin, Lee J; Katzenelson, Alyssa; Koehler, Raymond C; Chang, Qing

    2013-01-01

    The olfactory bulb (OB) periventricular zone is an extension of the forebrain subventricular zone (SVZ) and thus is a source of neuroprogenitor cells and neural stem cells. While considerable information is available on the SVZ-OB neural stem cell (NSC)/neuroprogenitor cell (NPC) niche in rodents, less work has been done on this system in large animals. The newborn piglet is used as a preclinical translational model of neonatal hypoxic-ischemic brain damage, but information about the endogenous sources of NSCs/NPCs in piglet is needed to implement endogenous or autologous cell-based therapies in this model. We characterized NSC/NPC niches in piglet forebrain and OB-SVZ using western blotting, histological, and cell culture methods. Immunoblotting revealed nestin, a NSC/NPC marker, in forebrain-SVZ and OB-SVZ in newborn piglet. Several progenitor or newborn neuron markers, including Dlx2, musashi, doublecortin, and polysialated neural cell adhesion molecule were also detected in OB-SVZ by immunoblotting. Immunohistochemistry confirmed the presence of nestin, musashi, and doublecortin in forebrain-SVZ and OB-SVZ. Bromodeoxyuridine (BrdU) labeling showed that the forebrain-SVZ and OB-SVZ accumulate newly replicated cells. BrdU-positive cells were immunolabeled for astroglial, oligodendroglial, and neuronal markers. A lateral migratory pathway for newly born neuron migration to primary olfactory cortex was revealed by BrdU labeling and co-labeling for doublecortin and class III β tubulin. Isolated and cultured forebrain-SVZ and OB-SVZ cells from newborn piglet had the capacity to generate numerous neurospheres. Single cell clonal analysis of neurospheres revealed the capacity for self-renewal and multipotency. Neurosphere-derived cells differentiated into neurons, astrocytes, and oligodendrocytes and were amenable to permanent genetic tagging with lentivirus encoding green fluorescent protein. We conclude that the piglet OB-SVZ is a reservoir of NSCs and NPCs suitable

  12. Calretinin-Periglomerular Interneurons in Mice Olfactory Bulb: Cells of Few Words.

    Fogli Iseppe, Alex; Pignatelli, Angela; Belluzzi, Ottorino

    2016-01-01

    Within the olfactory bulb (OB), periglomerular (PG) cells consist of various types of interneurons, generally classified by their chemical properties such as neurotransmitter and calcium binding proteins. Calretinin (CR) characterizes morphologically and functionally the more numerous and one of the less known subpopulation of PG cells in the OB. Using of transgenic mice expressing eGFP under the CR promoter, we have tried to obtain the first functional characterization of these cells. Electrophysiological recordings were made in these cells using the patch-clamp technique in thin slices. Using ion substitution methods and specific blockers, we dissected the main voltage-dependent conductances present, obtaining a complete kinetic description for each of them. The more peculiar property of these cells from the electrophysiological point of view is the presence only of a single K-current, A-type - there is no trace of delayed rectifier or of Ca-dependent K-current. Other currents identified, isolated and fully characterized are a fast sodium current, a small L-type calcium current, and an inward rectifier, h-type cationic current. As a consequence of the peculiar complement of voltage-dependent conductances present in these cells, and in particular the absence of delayed-rectifier potassium currents, under the functional point of view these cells present two interesting properties. First, in response to prolonged depolarisations, after the inactivation of the A-current these cells behave as a purely ohmic elements, showing no outward rectification. Second, the CR cells studied can respond only with a single action potential to excitatory inputs; since they send inhibitory synapses to projection neurones, they seem to be designed to inhibit responses of the main neurones to isolated, random excitatory signals, rapidly losing their vetoing effect in response to more structured, repetitive excitatory signals. We propose that a possible role for these rather untalkative

  13. The olfactory bulb in newborn piglet is a reservoir of neural stem and progenitor cells.

    Lee J Martin

    Full Text Available The olfactory bulb (OB periventricular zone is an extension of the forebrain subventricular zone (SVZ and thus is a source of neuroprogenitor cells and neural stem cells. While considerable information is available on the SVZ-OB neural stem cell (NSC/neuroprogenitor cell (NPC niche in rodents, less work has been done on this system in large animals. The newborn piglet is used as a preclinical translational model of neonatal hypoxic-ischemic brain damage, but information about the endogenous sources of NSCs/NPCs in piglet is needed to implement endogenous or autologous cell-based therapies in this model. We characterized NSC/NPC niches in piglet forebrain and OB-SVZ using western blotting, histological, and cell culture methods. Immunoblotting revealed nestin, a NSC/NPC marker, in forebrain-SVZ and OB-SVZ in newborn piglet. Several progenitor or newborn neuron markers, including Dlx2, musashi, doublecortin, and polysialated neural cell adhesion molecule were also detected in OB-SVZ by immunoblotting. Immunohistochemistry confirmed the presence of nestin, musashi, and doublecortin in forebrain-SVZ and OB-SVZ. Bromodeoxyuridine (BrdU labeling showed that the forebrain-SVZ and OB-SVZ accumulate newly replicated cells. BrdU-positive cells were immunolabeled for astroglial, oligodendroglial, and neuronal markers. A lateral migratory pathway for newly born neuron migration to primary olfactory cortex was revealed by BrdU labeling and co-labeling for doublecortin and class III β tubulin. Isolated and cultured forebrain-SVZ and OB-SVZ cells from newborn piglet had the capacity to generate numerous neurospheres. Single cell clonal analysis of neurospheres revealed the capacity for self-renewal and multipotency. Neurosphere-derived cells differentiated into neurons, astrocytes, and oligodendrocytes and were amenable to permanent genetic tagging with lentivirus encoding green fluorescent protein. We conclude that the piglet OB-SVZ is a reservoir of NSCs

  14. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  15. Specific entrainment of mitral cells during gamma oscillation in the rat olfactory bulb.

    David, François O; Hugues, Etienne; Cenier, Tristan; Fourcaud-Trocmé, Nicolas; Buonviso, Nathalie

    2009-10-01

    Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain, under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences derived from this mechanism.

  16. Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis.

    Kronenberg, Golo; Gertz, Karen; Baldinger, Tina; Kirste, Imke; Eckart, Sarah; Yildirim, Ferah; Ji, Shengbo; Heuser, Isabella; Schröck, Helmut; Hörtnagl, Heide; Sohr, Reinhard; Djoufack, Pierre Chryso; Jüttner, René; Glass, Rainer; Przesdzing, Ingo; Kumar, Jitender; Freyer, Dorette; Hellweg, Rainer; Kettenmann, Helmut; Fink, Klaus Benno; Endres, Matthias

    2010-03-03

    Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis.

  17. Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells.

    Vergaño-Vera, Eva; Yusta-Boyo, María J; de Castro, Fernando; Bernad, Antonio; de Pablo, Flora; Vicario-Abejón, Carlos

    2006-11-01

    During the embryonic period, many olfactory bulb (OB) interneurons arise in the lateral ganglionic eminence (LGE) from precursor cells expressing Dlx2, Gsh2 and Er81 transcription factors. Whether GABAergic and dopaminergic interneurons are also generated within the embryonic OB has not been studied thoroughly. In contrast to abundant Dlx2 and Gsh2 expression in ganglionic eminences (GE), Dlx2 and Gsh2 proteins are not expressed in the E12.5-13.5 mouse OB, whereas the telencephalic pallial domain marker Pax6 is abundant. We found GABAergic and dopaminergic neurons originating from dividing precursor cells in E13.5 OB and in short-term dissociated cultures prepared from the rostral half of E13.5 OB. In OB cultures, 22% of neurons were GAD+, of which 53% were Dlx2+, whereas none expressed Gsh2. By contrast, 70% of GAD+ cells in GE cultures were Dlx2+ and 16% expressed Gsh2. In E13.5 OB slices transplanted with EGFP-labeled E13.5 OB precursor cells, 31.7% of EGFP+ cells differentiated to GABAergic neurons. OB and LGE precursors transplanted into early postnatal OB migrated and differentiated in distinct patterns. Transplanted OB precursors gave rise to interneurons with dendritic spines in close proximity to synaptophysin-positive boutons. Interneurons were also abundant in differentiating OB neural stem cell cultures; the neurons responded to the neurotrophin Bdnf and expressed presynaptic proteins. In vivo, the Bdnf receptor TrkB colocalized with synaptic proteins at the glomeruli. These findings suggest that, in addition to receiving interneurons from the LGE, the embryonic OB contains molecularly distinct local precursor cells that generate mature GABAergic and dopaminergic neurons.

  18. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica

    2017-01-01

    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  19. The Origin, Development and Molecular Diversity of Rodent Olfactory Bulb Glutamatergic Neurons Distinguished by Expression of Transcription Factor NeuroD1.

    Laurent Roybon

    Full Text Available Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1 is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.

  20. Afterhyperpolarization (AHP) regulates the frequency and timing of action potentials in the mitral cells of the olfactory bulb: role of olfactory experience.

    Duménieu, Maël; Fourcaud-Trocmé, Nicolas; Garcia, Samuel; Kuczewski, Nicola

    2015-05-01

    Afterhyperpolarization (AHP) is a principal feedback mechanism in the control of the frequency and patterning of neuronal firing. In principal projection neurons of the olfactory bulb, the mitral cells (MCs), the AHP is produced by three separate components: classical potassium-mediated hyperpolarization, and the excitatory and inhibitory components, which are generated by the recurrent dendrodendritic synaptic transmission. Precise spike timing is involved in olfactory coding and learning, as well as in the appearance of population oscillatory activity. However, the contribution of the AHP and its components to these processes remains unknown. In this study, we demonstrate that the AHP is developed with the MC firing frequency and is dominated by the potassium component. We also show that recurrent synaptic transmission significantly modifies MC AHP and that the strength of the hyperpolarization produced by the AHP in the few milliseconds preceding the action potential (AP) emission determines MC firing frequency and AP timing. Moreover, we show that the AHP area is larger in younger animals, possibly owing to increased Ca(2+) influx during MC firing. Finally, we show that olfactory experience selectively reduces the early component of the MC AHP (under 25 msec), thus producing a modification of the AP timing limited to the higher firing frequency. On the basis of these results, we propose that the AHP, and its susceptibility to be selectively modulated by the recurrent synaptic transmission and olfactory experience, participate in odor coding and learning by modifying the frequency and pattern of MC firing.

  1. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer's disease rat model.

    Marei, Hany E S; Farag, Amany; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Lashen, Samah; Rezk, Shaymaa; Pallini, Roberto; Casalbore, Patrizia; Cenciarelli, Carlo

    2015-01-01

    In this study, we aim to demonstrate the fate of allogenic adult human olfactory bulb neural stem/progenitor cells (OBNSC/NPCs) transplanted into the rat hippocampus treated with ibotenic acid (IBO), a neurotoxicant specific to hippocampal cholinergic neurons that are lost in Alzheimer's disease. We assessed their possible ability to survive, integrate, proliferate, and differentiate into different neuronal and glial elements: we also evaluate their possible therapeutic potential, and the mechanism(s) relevant to neuroprotection following their engraftment into the CNS milieu. OBNSC/NPCs were isolated from adult human olfactory bulb patients, genetically engineered to express GFP and human nerve growth factor (hNGF) by lentivirus-mediated infection, and stereotaxically transplanted into the hippocampus of IBO-treated animals and controls. Stereological analysis of engrafted OBNSCs eight weeks post transplantation revealed a 1.89 fold increase with respect to the initial cell population, indicating a marked ability for survival and proliferation. In addition, 54.71 ± 11.38%, 30.18 ± 6.00%, and 15.09 ± 5.38% of engrafted OBNSCs were identified by morphological criteria suggestive of mature neurons, oligodendrocytes and astrocytes respectively. Taken together, this work demonstrated that human OBNSCs expressing NGF ameliorate the cognitive deficiencies associated with IBO-induced lesions in AD model rats, and the improvement can probably be attributed primarily to neuronal and glial cell replacement as well as the trophic influence exerted by the secreted NGF.

  2. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb.

    Cho, Jin H; Kam, Joseph W K; Cloutier, Jean-François

    2012-11-15

    Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.

  3. Linear correlation between the number of olfactory sensory neurons expressing a given mouse odorant receptor gene and the total volume of the corresponding glomeruli in the olfactory bulb

    Bressel, Olaf Christian; Khan, Mona

    2015-01-01

    ABSTRACT Chemosensory specificity in the main olfactory system of the mouse relies on the expression of ∼1,100 odorant receptor (OR) genes across millions of olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE), and on the coalescence of OSN axons into ∼3,600 glomeruli in the olfactory bulb. A traditional approach for visualizing OSNs and their axons consists of tagging an OR gene genetically with an axonal marker that is cotranslated with the OR by virtue of an internal ribosome entry site (IRES). Here we report full cell counts for 15 gene‐targeted strains of the OR‐IRES‐marker design coexpressing a fluorescent protein. These strains represent 11 targeted OR genes, a 1% sample of the OR gene repertoire. We took an empirical, “count every cell” strategy: we counted all fluorescent cell profiles with a nuclear profile within the cytoplasm, on all serial coronal sections under a confocal microscope, a total of 685,673 cells in 56 mice at postnatal day 21. We then applied a strain‐specific Abercrombie correction to these OSN counts in order to obtain a closer approximation of the true OSN numbers. We found a 17‐fold range in the average (corrected) OSN number across these 11 OR genes. In the same series of coronal sections, we then determined the total volume of the glomeruli (TGV) formed by coalescence of the fluorescent axons. We found a strong linear correlation between OSN number and TGV, suggesting that TGV can be used as a surrogate measurement for estimating OSN numbers in these gene‐targeted strains. J. Comp. Neurol. 524:199–209, 2016. © 2015 Wiley Periodicals, Inc. PMID:26100963

  4. Neonatal citalopram exposure decreases serotonergic fiber density in the olfactory bulb of male but not female adult rats

    Junlin eZhang

    2013-05-01

    Full Text Available Manipulation of serotonin (5HT during early development has been shown to induce long-lasting morphological changes within the raphe nuclear complex and serotonergic circuitry throughout the brain. Recent studies have demonstrated altered raphe-derived 5HT transporter (SERT immunoreactive axonal expression in several cortical target sites after brief perinatal exposure to selective 5HT reuptake inhibitors such as citalopram (CTM. Since the serotonergic raphe nuclear complex projects to the olfactory bulb (OB and perinatal 5HT disruption has been shown to disrupt olfactory behaviors, the goal of this study was to further investigate such developmental effects in the OB of CTM exposed animals. Male and female rat pups were exposed to CTM from postnatal day 8-21. After animals reach adulthood (>90 days, OB tissue sections were processed immunohistochemically for SERT antiserum. Our data revealed that the density of the SERT immunoreactive fibers decreased ~40% in the OB of CTM exposed male rats, but not female rats. Our findings support a broad and long-lasting change throughout most of the 5HT system, including the OB, after early manipulation of 5HT. Because dysfunction of the early 5HT system has been implicated in the etiology of neurodevelopmental disorders such as autism spectrum disorders (ASDs, these new findings may offer insight into the abnormal olfactory perception often noted in patients with ASD.

  5. Mitral and tufted cells are potential cellular targets of nitration in the olfactory bulb of aged mice.

    Myung Jae Yang

    Full Text Available Olfactory sensory function declines with age; though, the underlying molecular changes that occur in the olfactory bulb (OB are relatively unknown. An important cellular signaling molecule involved in the processing, modulation, and formation of olfactory memories is nitric oxide (NO. However, excess NO can result in the production of peroxynitrite to cause oxidative and nitrosative stress. In this study, we assessed whether changes in the expression of 3-nitrotyrosine (3-NT, a neurochemical marker of peroxynitrite and thus oxidative damage, exists in the OB of young, adult, middle-aged, and aged mice. Our results demonstrate that OB 3-NT levels increase with age in normal C57BL/6 mice. Moreover, in aged mice, 3-NT immunoreactivity was found in some blood vessels and microglia throughout the OB. Notably, large and strongly immunoreactive puncta were found in mitral and tufted cells, and these were identified as lipofuscin granules. Additionally, we found many small-labeled puncta within the glomeruli of the glomerular layer and in the external plexiform layer, and these were localized to mitochondria and discrete segments of mitral and tufted dendritic plasma membranes. These results suggest that mitral and tufted cells are potential cellular targets of nitration, along with microglia and blood vessels, in the OB during aging.

  6. Neuroanatomical relationships between FMRFamide-immunoreactive components of the nervus terminalis and the topology of olfactory bulbs in teleost fish.

    D'Aniello, Biagio; Polese, Gianluca; Luongo, Luciano; Scandurra, Anna; Magliozzi, Laura; Aria, Massimo; Pinelli, Claudia

    2016-04-01

    The nervus terminalis (NT) is the most anterior of the vertebrate cranial nerves. In teleost fish, the NT runs across all olfactory components and shows high morphological variability within this taxon. We compare the anatomical distribution, average number and size of the FMRFamide-immunoreactive (ir) NT cells of fourteen teleost species with different positions of olfactory bulbs (OBs) with respect to the ventral telencephalic area. Based on the topology of the OBs, three different neuroanatomical organizations of the telencephalon can be defined, viz., fish having sessile (Type I), pseudosessile (short stalked; Type II) or stalked (Type III) OBs. Type III topology of OBs appears to be a feature associated with more basal species, whereas Types I and II occur in derived and in basal species. The displacement of the OBs is positively correlated with the peripheral distribution of the FMRFamide-ir NT cells. The number of cells is negatively correlated with the size of the cells. A dependence analysis related to the type of OB topology revealed a positive relationship with the number of cells and with the size of the cells, with Type I and II topologies of OBs showing significantly fewer cells and larger cells than Type III. A dendrogram based on similarities obtained by taking into account all variables under study, i.e., the number and size of the FMRFamide-ir NT cells and the topology of OBs, does not agree with the phylogenetic relationships amongst species, suggesting that divergent or convergent evolutionary phenomena produced the olfactory components studied.

  7. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation

    H.E.S. Marei (Hany); A. Althani (Asmaa); N. Afifi (Nahla); A. Abd-Elmaksoud (Ahmed); C. Bernardini (Camilla); F. Michetti (Fabrizio); M. Barba (Marta); M. Pescatori (Mario); G. Maira (Giulio); E. Paldino (Emanuela); L. Manni (Luigi); P. Casalbore (Patrizia); C. Cenciarelli (Carlo)

    2013-01-01

    textabstractThe adult human olfactory bulb neural stem/progenitor cells (OBNC/PC) are promising candidate for cell-based therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising therapeutic strategy for traumatic and neurodegenerative diseases, h

  8. Gene expression changes in the olfactory bulb of mice induced by exposure to diesel exhaust are dependent on animal rearing environment.

    Satoshi Yokota

    Full Text Available There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 µg/m(3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust.

  9. 嗅球结构及其对生物节律的调控%Structure and regulation of biological rhythms of olfactory bulb

    徐兴远; 王毅群

    2011-01-01

    Olfactory bulb is a key component of olfaction. Recent researches have found that olfactory bulb regulates the biological rhythms, and it expresses regulatory genes relatively independent of suprachiasmatic nucleus. Based on the research of the structure and regulation of biological rhythms of olfactory bulb, it has become a new focus in basic and clinical medicineto study some nervous system diseases and biological rhythms such as sleep. This article summarizes the structure and the effect on regulating biological rhythms of olfactory bulb.%嗅球是人体控制嗅觉的关键部位.近年来研究发现,嗅球还参与了生物节律的调控,其相对独立于视交叉上核表达节律调控基因.基于嗅球与脑内的神经联系以及其对生物节律调控的作用,深入研究一些神经系统疾病和睡眠等人体自身节律可能会成为基础和临床医学研究的新热点.本文将介绍嗅球的结构,并对其参与调控生物节律的功能进行分析总结.

  10. Functional imaging of olfaction by CBV fMRI in monkeys: insight into the role of olfactory bulb in habituation.

    Zhao, Fuqiang; Holahan, Marie A; Houghton, Andrea K; Hargreaves, Richard; Evelhoch, Jeffrey L; Winkelmann, Christopher T; Williams, Donald S

    2015-02-01

    Cerebral blood volume (CBV) fMRI with superparamagnetic iron oxide nanoparticles (USPIO) as contrast agent was used to investigate the odorant-induced olfaction in anesthetized rhesus monkeys. fMRI data were acquired in 24 axial slices covering the entire brain, with isoamyl-acetate as the odor stimulant. For each experiment, multiple fMRI measurements were made during a 1- or 2-h period, with each measurement consisting of a baseline period, a stimulation period, and a recovery period. Three different stimulation paradigms with a stimulation period of 1 min, 2 min, or 8 min, respectively, were used to study the olfactory responses in the olfactory bulb (OB). Odorant-induced CBV increases were observed in the OB of each individual monkey. The spatial and temporal activation patterns were reproducible within and between animals. The sensitivity of CBV fMRI in OB was comparable with the sensitivities reported in previous animal fMRI studies. The CBV responses during the 1-min, 2-min, or 8-min odor stimulation period were relatively stable, and did not show attenuation. The amplitudes of CBV response to the repeated stimuli during the 1- or 2-h period were also stable. The stable CBV response in the OB to both continuous and repeated odor stimuli suggests that the OB may not play a major role in olfactory habituation. The technical approach described in this report can enable more extensive fMRI studies of olfactory processing in OB of both humans and non-human primates.

  11. Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex.

    Osmanski, B F; Martin, C; Montaldo, G; Lanièce, P; Pain, F; Tanter, M; Gurden, H

    2014-07-15

    Topographic representation of the outside world is a key feature of sensory systems, but so far it has been difficult to define how the activity pattern of the olfactory information is distributed at successive stages in the olfactory system. We studied odor-evoked activation patterns in the main olfactory bulb and the anterior piriform cortex of rats using functional ultrasound (fUS) imaging. fUS imaging is based on the use of ultrafast ultrasound scanners and detects variations in the local blood volume during brain activation. It makes deep brain imaging of ventral structures, such as the piriform cortex, possible. Stimulation with two different odors (hexanal and pentylacetate) induced the activation of odor-specific zones that were spatially segregated in the main olfactory bulb. Interestingly, the same odorants triggered the activation of the entire anterior piriform cortex, in all layers, with no distinguishable odor-specific areas detected in the power Doppler images. These fUS imaging results confirm the spatial distribution of odor-evoked activity in the main olfactory bulb, and furthermore, they reveal the absence of such a distribution in the anterior piriform cortex at the macroscopic scale in vivo.

  12. Automatic segmentation of odor maps in the mouse olfactory bulb using regularized non-negative matrix factorization.

    Soelter, Jan; Schumacher, Jan; Spors, Hartwig; Schmuker, Michael

    2014-09-01

    Segmentation of functional parts in image series of functional activity is a common problem in neuroscience. Here we apply regularized non-negative matrix factorization (rNMF) to extract glomeruli in intrinsic optical signal (IOS) images of the olfactory bulb. Regularization allows us to incorporate prior knowledge about the spatio-temporal characteristics of glomerular signals. We demonstrate how to identify suitable regularization parameters on a surrogate dataset. With appropriate regularization segmentation by rNMF is more resilient to noise and requires fewer observations than conventional spatial independent component analysis (sICA). We validate our approach in experimental data using anatomical outlines of glomeruli obtained by 2-photon imaging of resting synapto-pHluorin fluorescence. Taken together, we show that rNMF provides a straightforward method for problem tailored source separation that enables reliable automatic segmentation of functional neural images, with particular benefit in situations with low signal-to-noise ratio as in IOS imaging.

  13. Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats.

    González-Reyes, Susana; Santillán-Cigales, Juan Jair; Jiménez-Osorio, Angélica Saraí; Pedraza-Chaverri, José; Guevara-Guzmán, Rosalinda

    2016-10-01

    Glycyrrhizin (GL) is a triterpene present in the roots and rhizomes of Glycyrrhiza glabra that has anti-inflammatory, hepatoprotective and neuroprotective effects. Recently, it was demonstrated that GL produced neuroprotective effects on the postischemic brain as well as on the kainic acid injury model in rats. In addition to this, GL also prevented excitotoxic effects on primary cultures. The aims of the present study were to evaluate GL scavenging properties and to investigate GL's effect on oxidative stress and inflammation in the lithium/pilocarpine-induced seizure model in two cerebral regions, hippocampus and olfactory bulb, at acute time intervals (3 or 24h) after status epilepticus (SE). Fluorometric methods showed that GL scavenged three reactive oxygen species: hydrogen peroxide, peroxyl radicals and superoxide anions. In contrast, GL was unable to scavenge peroxynitrite, hydroxyl radicals, singlet oxygen and 2,2-diphenil-1-picrylhydrazyl (DPPH) radicals suggesting that GL is a weak scavenger. Additionally, administration of GL (50mg/kg, i.p.) 30min before pilocarpine administration significantly suppressed oxidative stress. Moreover, malondialdehyde levels were diminished and glutathione levels were maintained at control values in both cerebral regions at 3 and 24 after SE. At 24h after SE, glutathione S-transferase and superoxide dismutase activity increased in the hippocampus, while both glutathione reductase and glutathione peroxidase activity were unchanged in the olfactory bulb at that time. In addition, GL suppressed the induction of the proinflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in both cerebral regions evaluated. These results suggest that GL confers protection against pilocarpine damage via antioxidant and anti-inflammatory effects.

  14. Altered morphologies and functions of the olfactory bulb and hippocampus induced by miR-30c

    Tingting eSun

    2016-05-01

    Full Text Available Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ and dentate gyrus (DG by stereotaxic injection with their respective up-and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for three months, we detected significant morphological changes in the olfactory bulb (OB and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain.

  15. Selenomethionine Ameliorates Neuropathology in the Olfactory Bulb of a Triple Transgenic Mouse Model of Alzheimer’s Disease

    Zhang, Zhong-Hao; Chen, Chen; Wu, Qiu-Yan; Zheng, Rui; Chen, Yao; Liu, Qiong; Ni, Jia-Zuan; Song, Guo-Li

    2016-01-01

    Olfactory dysfunction is an early and common symptom in Alzheimer′s disease (AD) and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met), the major form of selenium in animals and humans, may be a promising therapeutic option for AD as it decreases the deposition of Aβ and tau hyperphosphorylation in a triple transgenic mouse model of AD (3× Tg-AD). In this study, 4-month-old AD mice were treated with 6 µg/mL Se-Met in drinking water for 12 weeks and the effect of Se-Met on neuropathological deficits in olfactory bulb (OB) of 3× Tg-AD mice was investigated. The administration of Se-Met effectively decreased the production and deposition of Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1)-regulated amyloid precursor protein (APP) processing and reduced the level of total tau and phosphorylated tau, which depended on depressing the activity and expression of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (CDK5). Meanwhile, Se-Met reduced glial activation, relieved neuroinflammation and attenuated neuronal cell death in the OB of AD mice. So Se-Met could improve pathologic changes of AD in the OB, which further demonstrated the potential therapeutic effect of Se-Met in AD. PMID:27689994

  16. Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb

    Michele Migliore

    2010-09-01

    Full Text Available Odors are encoded in spatio-temporal patterns within the olfactory bulb, but the mechanisms of odor recognition and discrimination are poorly understood. It is reasonable to postulate that the olfactory code is sculpted by lateral and feedforward inhibition mediated by granule cells onto the mitral cells. Recent viral tracing and physiological studies revealed patterns of distributed granule cell synaptic clusters that provided additional clues to the possible mechanisms at the network level. The emerging properties and functional roles of these patterns, however, are unknown. Here, using a realistic model of 5 mitral and 100 granule cells we show how their synaptic network can dynamically self-organize and interact through an activity-dependent dendrodendritic mechanism. The results suggest that the patterns of distributed mitral-granule cell connectivity may represent the most recent history of odor inputs, and may contribute to the basic processes underlying mixture perception and odor qualities. The model predicts how and why the dynamical interactions between the active mitral cells through the granule cell synaptic clusters can account for a variety of puzzling behavioral results on odor mixtures and on the emergence of synthetic or analytic perception.

  17. Selenomethionine Ameliorates Neuropathology in the Olfactory Bulb of a Triple Transgenic Mouse Model of Alzheimer’s Disease

    Zhong-Hao Zhang

    2016-09-01

    Full Text Available Olfactory dysfunction is an early and common symptom in Alzheimer′s disease (AD and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met, the major form of selenium in animals and humans, may be a promising therapeutic option for AD as it decreases the deposition of Aβ and tau hyperphosphorylation in a triple transgenic mouse model of AD (3× Tg-AD. In this study, 4-month-old AD mice were treated with 6 µg/mL Se-Met in drinking water for 12 weeks and the effect of Se-Met on neuropathological deficits in olfactory bulb (OB of 3× Tg-AD mice was investigated. The administration of Se-Met effectively decreased the production and deposition of Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1-regulated amyloid precursor protein (APP processing and reduced the level of total tau and phosphorylated tau, which depended on depressing the activity and expression of glycogen synthase kinase-3β (GSK-3β and cyclin-dependent kinase 5 (CDK5. Meanwhile, Se-Met reduced glial activation, relieved neuroinflammation and attenuated neuronal cell death in the OB of AD mice. So Se-Met could improve pathologic changes of AD in the OB, which further demonstrated the potential therapeutic effect of Se-Met in AD.

  18. Long-term plasticity in the regulation of olfactory bulb activity by centrifugal fibers from piriform cortex.

    Cauthron, Joy L; Stripling, Jeffrey S

    2014-07-16

    Olfactory bulb granule cells are activated synaptically via two main pathways. Mitral/tufted (M/T) cells form dendrodendritic synapses on granule cells that can be activated by antidromic stimulation of the lateral olfactory tract (LOT). Centrifugal fibers originating from the association fiber (AF) system in piriform cortex (PC) make axodendritic synapses on granule cells within the granule cell layer (GCL) that can be activated by orthodromic stimulation of AF axons in the PC. We explored functional plasticity in the AF pathway by recording extracellularly from individual M/T cells and presumed granule cells in male Long-Evans rats under urethane anesthesia while testing their response to LOT and AF stimulation. Presumed granule cells driven synaptically by LOT stimulation (type L cells) were concentrated in the superficial half of the GCL and were activated at short latencies, whereas those driven synaptically by AF stimulation (type A cells) were concentrated in the deep half of the GCL and were activated at longer latencies. Type A cells were readily detected only in animals in which the AF input to the GCL had been previously potentiated by repeated high-frequency stimulation. An additional bout of high-frequency stimulation administered under urethane caused an immediate increase in the number of action potentials evoked in type A cells by AF test stimulation and a concomitant increase in inhibition of M/T cells. These results underscore the importance of the role played in olfactory processing by PC regulation of OB activity and document the long-lasting potentiation of that regulation by repeated high-frequency AF activation.

  19. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb.

    Luo, Jie; Chen, Xuanmao; Pan, Yung-Wei; Lu, Song; Xia, Zhengui; Storm, Daniel R

    2015-01-01

    The type 3 adenylyl cyclase (AC3) is localized to olfactory cilia in the main olfactory epithelium (MOE) and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN) targeting, its role in granule cells (GCs), the most abundant interneurons in the main olfactory bulb (MOB), remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ), however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.

  20. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb.

    Jie Luo

    Full Text Available The type 3 adenylyl cyclase (AC3 is localized to olfactory cilia in the main olfactory epithelium (MOE and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN targeting, its role in granule cells (GCs, the most abundant interneurons in the main olfactory bulb (MOB, remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ, however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.

  1. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Rajapaksha Tharinda W

    2011-12-01

    Full Text Available Abstract Background The β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, is a prime therapeutic target for lowering cerebral β-amyloid (Aβ levels in Alzheimer's disease (AD. Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs, a well-studied model of axon targeting in vivo. Results We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs, MOR23 and M72, and olfactory marker protein (OMP to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. Conclusions Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in

  2. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.

    Carey, Ryan M; Sherwood, William Erik; Shipley, Michael T; Borisyuk, Alla; Wachowiak, Matt

    2015-05-01

    Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.

  3. Organization of the main olfactory bulbs of some mammals: musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats.

    Kosaka, Katsuko; Kosaka, Toshio

    2004-04-19

    We immunohistochemically examined the organization of the main olfactory bulbs (MOBs) in seven mammalian species, including moles, hedgehogs, tree shrews, bats, and mice as well as laboratory musk shrews and rats. We focused our investigation on two points: 1) whether nidi, particular spheroidal synaptic regions subjacent to glomeruli, which we previously reported for the laboratory musk shrew MOBs, are also present in other animals and 2) whether the compartmental organization of glomeruli and two types of periglomerular cells we proposed for the rat MOBs are general in other animals. The general laminar pattern was similar among these seven species, but discrete nidi and the nidal layer were recognized only in two insectivores, namely, the mole and laboratory musk shrew. Olfactory marker protein-immunoreactive (OMP-IR) axons extended beyond the limits of the glomerular layer (GL) into the superficial region of the external plexiform layer (EPL) or the nidal layer in the laboratory musk shrew, mole, hedgehog, and tree shrew but not in bat, mouse, and rat. We observed, in nidi and the nidal layer in the mole and laboratory musk shrew MOBs, only a few OMP-IR axons. In the hedgehog, another insectivore, OMP-IR processes extending from the glomeruli were scattered and intermingled with calbindin D28k-IR cells at the border between the GL and the EPL. In the superficial region of the EPL of the tree shrew MOBs, there were a small number of tiny glomerulus-like spheroidal structures where OMP-IR axons protruding from glomeruli were intermingled with dendritic branches of surrounding calbindin D28k-IR cells. Furthermore, we recognized the compartmental organization of glomeruli and two types of periglomerular cells in the MOBs of all of the mammals we examined. These structural features are therefore considered to be common and important organizational principles of the MOBs.

  4. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion

    Xu He

    2015-01-01

    Full Text Available The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood flow, improve neurological behavior, decrease infarct volume and promote proliferation and differentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginseng have potential benefits on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total saponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of doublecortin (DCX + neural progenitor cells and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX + neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These findings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote differentiation of DCX + cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.

  5. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion

    Xu He; Feng-jun Deng; Jin-wen Ge; Xiao-xin Yan; Ai-hua Pan; Zhi-yuan Li

    2015-01-01

    The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood lfow, improve neurological behavior, decrease infarct volume and promote proliferation and differentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginseng have potential benefits on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total sa-ponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of dou-blecortin (DCX)+ neural progenitor cells and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX+ neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These ifndings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote differentiation of DCX+ cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.

  6. The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb.

    Li, Xiaosu; Sun, Chifei; Lin, Chao; Ma, Tong; Madhavan, Mayur C; Campbell, Kenneth; Yang, Zhengang

    2011-06-08

    Interneurons in the olfactory bulb (OB) represent a heterogeneous population, which are first produced at embryonic stages and persisting into adulthood. Using the BrdU birthdating method combined with immunostaining for several different neuronal markers, we provide the integrated temporal patterns of distinct mouse OB interneuron production from embryonic day 14 to postnatal day 365. We show that although the majority of OB interneuron subtypes continue to be generated throughout life, most subtypes show a similar "bell-like" temporal production pattern with a peak around birth. Tyrosine hydroxylase and calretinin-expressing interneurons are produced at a relatively low rate in the adult OB, while parvalbumin-expressing (PV+) interneuron production is confined to later embryonic and early postnatal stages. We also show that Dlx5/6-expressing progenitors contribute to PV+ interneurons in the OB. Interestingly, all PV+ interneurons in the external plexiform layer (EPL) express the transcription factor Sp8. Genetic ablation of Sp8 by cre/loxP-based recombination severely reduces the number of PV+ interneurons in the EPL of the OB. Our results suggest that Sp8 is required for the normal production of PV+ interneurons in the EPL of the OB. These data expand our understanding of the temporal and molecular regulation of OB interneuron neurogenesis.

  7. Reduction of rat hippocampal calcium-binding protein following commissural, amygdala, septal, perforant path, and olfactory bulb kindling.

    Baimbridge, K G; Mody, I; Miller, J J

    1985-01-01

    The calcium-binding protein (CaBP) content of the hippocampal formation was determined by radioimmunoassay in control and kindled rats. Kindling of a number of different sites resulted in a reduction in the CaBP content of the hippocampal formation, which was shown immunohistochemically to be restricted to the dentate granule cells and their processes. The maximum decline in CaBP varied with the different kindling sites: perforant path, 33%; commissural path, 32%; septum, 30%; amygdala, 18%; and olfactory bulbs, 15%. There were no changes in the CaBP content of the stimulated areas themselves. In cases where the kindling stimulus was delivered unilaterally (perforant path and amygdala), the maximum decrease in hippocampal CaBP was observed ipsilateral to the site of stimulation when the criterion for full kindling was established (six consecutive stage 5 motor seizures). Further kindling trials were required to produce a similar magnitude decrease in the CaBP content of the contralateral hippocampus. These observations are discussed both in relation to the possible role of CaBP in the establishment of a seizure response to kindling and also as a potential compensatory mechanism that may serve to overcome the epileptogenic effects of kindling.

  8. The production of somatostatin interneurons in the olfactory bulb is regulated by the transcription factor sp8.

    Xuhua Jiang

    Full Text Available Somatostatin (Som, one of the most concentrated neuropeptides in the brain, is highly expressed in the olfactory bulb (OB. However, the temporal profile by which OB somatostatin-expressing (Som+ interneurons are produced and the molecular mechanisms controlling this profile are totally unknown. In the present study, we found that all the Som+ interneurons in the mouse external plexiform layer (EPL and the rat glomerular layer (GL express the transcription factor Sp8.Using the 5-bromo-2'-deoxyuridine (BrdU birth dating method, combined with immunostaining, we showed that the generation of Som+ interneurons in the mouse and rat OB is confined to the later embryonic and earlier postnatal stages. Within the mouse OB, the production of Som+ interneurons is maximal during late embryogenesis and decreases after birth, whereas the generation of Som+ interneurons is low during embryogenesis and increases gradually after birth in the rat OB. Interestingly, genetic ablation of Sp8 by cre/loxP-based recombination severely reduces the number of Som+ interneurons in the EPL of the mouse OB. Taken together, these results suggest that Sp8 is required for the normal production of Som+ interneurons in the EPL of the mouse OB.

  9. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  10. Olfactory bulb transplantation in complete spinal cord injury: axonal regeneration and locomotor recovery

    Carlos Abraham Arellanes-Chávez

    2015-03-01

    Full Text Available OBJECTIVES: To determine whether the intervention in rats is effective in terms of spinal cord regeneration and locomotor recovery, in order to obtain sufficient evidence to apply the therapy in humans. METHODS: a randomized, controlled, experimental, prospective, randomized trial was conducted, with a sample of 15 adult female Sprague-Dawley rats weighing 250 gr. They were divided into three equal groups, and trained for 2 weeks based on Pavlov's classical conditioning method, to strengthen the muscles of the 4 legs, stimulate the rats mentally, and keep them healthy for the surgery. RESULTS: It was observed that implantation of these cells into the site of injury may be beneficial to the process of spinal cord regeneration after spinal trauma, to mediate secretion of neurotrophic and neuroprotective chemokines, and that the OECs have the ability to bridge the repair site and decrease the formation of gliosis, creating a favorable environment for axonal regeneration. CONCLUSION: It is emphasized that the olfactory ensheathing glial cells possess unique regenerative properties; however, it was not until recently that the activity of promoting central nervous system regeneration was recognized.

  11. Dynamic development of the first synapse impinging on adult-born neurons in the olfactory bulb circuit.

    Katagiri, Hiroyuki; Pallotto, Marta; Nissant, Antoine; Murray, Kerren; Sassoè-Pognetto, Marco; Lledo, Pierre-Marie

    2011-02-01

    The olfactory bulb (OB) receives and integrates newborn interneurons throughout life. This process is important for the proper functioning of the OB circuit and consequently, for the sense of smell. Although we know how these new interneurons are produced, the way in which they integrate into the pre-existing ongoing circuits remains poorly documented. Bearing in mind that glutamatergic inputs onto local OB interneurons are crucial for adjusting the level of bulbar inhibition, it is important to characterize when and how these inputs from excitatory synapses develop on newborn OB interneurons. We studied early synaptic events that lead to the formation and maturation of the first glutamatergic synapses on adult-born granule cells (GCs), the most abundant subtype of OB interneuron. Patch-clamp recordings and electron microscopy (EM) analysis were performed on adult-born interneurons shortly after their arrival in the adult OB circuits. We found that both the ratio of N-methyl-D-aspartate receptor (NMDAR) to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and the number of functional release sites at proximal inputs reached a maximum during the critical period for the sensory-dependent survival of newborn cells, well before the completion of dendritic arborization. EM analysis showed an accompanying change in postsynaptic density shape during the same period of time. Interestingly, the latter morphological changes disappeared in more mature newly-formed neurons, when the NMDAR to AMPAR ratio had decreased and functional presynaptic terminals expressed only single release sites. Together, these findings show that the first glutamatergic inputs to adult-generated OB interneurons undergo a unique sequence of maturation stages.

  12. A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine

    Dieris, Milan; Ahuja, Gaurav; Krishna, Venkatesh; Korsching, Sigrun I.

    2017-01-01

    The death-associated odor cadaverine, generated by bacteria-mediated decarboxylation of lysine, has been described as the principal activator of a particular olfactory receptor in zebrafish, TAAR13c. Low concentrations of cadaverine activated mainly TAAR13c-expressing olfactory sensory neurons, suggesting TAAR13c as an important element of the neuronal processing pathway linking cadaverine stimulation to a strongly aversive innate behavioral response. Here, we characterized the initial steps of this neuronal pathway. First we identified TAAR13c-expressing cells as ciliated neurons, equivalent to the situation for mammalian taar genes, which shows a high degree of conservation despite the large evolutionary distance between teleost fishes and mammals. Next we identified the target area of cadaverine-responsive OSNs in the olfactory bulb. We report that cadaverine dose-dependently activates a group of dorsolateral glomeruli, at the lowest concentration down to a single invariant glomerulus, situated at the medial border of the dorsolateral cluster. This is the first demonstration of a single stereotyped target glomerulus in the fish olfactory system for a non-pheromone odor. A mix of different amines activates many glomeruli within the same dorsolateral cluster, suggesting this area to function as a general amine response region. PMID:28102357

  13. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals

    Micheal J. Baum

    2012-06-01

    Full Text Available Until recently it was widely believed that the ability of female mammals (with the likely exception of women to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female’s vomeronasal organ and their subsequent processing by a neural circuit that includes the accessory olfactory bulb, vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB. Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the accessory olfactory bulb of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition.

  14. Olfactory disturbance in aged rats in association with mitochondrial changes in the olfactory bulb neurons%衰老大鼠嗅觉障碍与嗅球神经元内线粒体的变化

    丁志敏; 赵淑敏

    2005-01-01

    BACKGROUND: Mutation of the mitochondrial DNA may occur during the aging process of organisms, which is especially likely in the central nervous system. Evidences have been obtained that mitochondrial dysfunction may ensue from genetic impairment involved in oxidative phosphorylation, which is accompanied by corresponding morphological changes.OBJECTIVE: To investigate the association between olfactory disturbance and ultrastructural mitochondrial changes in olfactory bulb neurons of aged rats in comparison with young rats.DESIGN: Randomized controlled experiment.SETTING: Department of Internal Medicine, Affiliated Hospital of Chende Medical College and Department of Electron Microscopy of Chende Medical College.MATERIALS: This experiment was conducted in the Department of Electron Microscopy of Chende Medical College between April and December 2002. Sixteen male Wistar rats were divided equally into aged group (> 24 months) with body mass of 300-350 g and young group (6 months) with body mass of 180-220 g.METHODS: The rats in the two groups were anaesthetized by intraperitoneal injection of 10 g/L urethane (1 g/kg) and the chest was opened to insert a tube into the ascending aorta for perfusion with 200 mL of the mixture containing glutaric dialdehyde and paraformaldehyde for fixation.The olfactory bulb was then obtained and sliced, fixed in perosmic acid and embedded. Each layer of the olfactory bulb was observed under optical microscope and ultra-thin sections were prepared for observation under transmission electron microscope.MAIN OUTCOME MEASURES: The stratification of rat olfactory bulb and ultrastructural changes of the mitochondria in the major neurons in the olfactory bulb.REULSTS: No obvious changes were found in the stratification of the olfactory bulb in the two groups. From the exterior to the interior of the olfactory bulb, the olfactory nerve fiber layer, glomerular layer, external plexiform layer, mitral cell lalyer, internal plexiform layer and

  15. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.

    Bhalla, U S; Bower, J M

    1993-06-01

    1. Detailed compartmental computer simulations of single mitral and granule cells of the vertebrate olfactory bulb were constructed using previously published geometric data. Electrophysiological properties were determined by comparing model output to previously published experimental data, mainly current-clamp recordings. 2. The passive electrical properties of each model were explored by comparing model output with intracellular potential data from hyperpolarizing current injection experiments. The results suggest that membrane resistivity in both cells is nonuniform, with somatas having a substantially lower resistivity than the dendrites. 3. The active properties of these cells were explored by incorporating active ion channels into modeled compartments. On the basis of evidence from the literature, the mitral cell model included six channel types: fast sodium, fast delayed rectifier (Kfast), slow delayed rectifier (K), transient outward potassium current (KA), voltage- and calcium-dependent potassium current (KCa), and L-type calcium current. The granule cell model included four channel types: rat brain sodium, K, KA, and the non-inactivating muscarinic potassium current (KM). Modeled channels were based on the Hodgkin-Huxley formalism. 4. Representative kinetics for each of the channel classes above were obtained from the literature. The experimentally unknown spatial distributions of each included channel were obtained by systematic parameter searches. These were conducted in two ways: large-scale simulation series, in which each parameter was varied in turn, and an adaptation of a multidimensional conjugate gradient method. In each case, the simulated results were compared wtih experimental data using a curve-matching function evaluating mean squared differences of several aspects of the simulated and experimental voltage waveforms. 5. Systematic parameter variations revealed a single distinct region of parameter space in which the mitral cell model best

  16. Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCgamma pathway.

    Berghuis, Paul; Agerman, Karin; Dobszay, Marton B; Minichiello, Liliana; Harkany, Tibor; Ernfors, Patrik

    2006-11-01

    Molecular mechanisms of neurotrophin signaling on dendrite development and dynamics are only partly understood. To address the role of brain-derived neurotrophic factor (BDNF) in the morphogenesis of GABAergic neurons of the main olfactory bulb, we analyzed mice lacking BDNF, mice carrying neurotrophin-3 (NT3) in the place of BDNF, and TrkB signaling mutant mice with a receptor that can activate phospholipase Cgamma (PLCgamma) but is unable to recruit the adaptors Shc/Frs2. BDNF deletion yielded a compressed olfactory bulb with a significant loss of parvalbumin (PV) immunoreactivity in GABAergic interneurons of the external plexiform layer. Dendrite development of PV-positive interneurons was selectively attenuated by BDNF since other Ca2+ -binding protein-containing neuron populations appeared unaffected. The deficit in PV-positive neurons could be rescued by the NT3/NT3 alleles. The degree of PV immunoreactivity was dependent on BDNF and TrkB recruitment of the adaptor proteins Shc/Frs2. In contrast, PLCgamma signaling from the TrkB receptor was sufficient for dendrite growth in vivo and consistently, blocking PLCgamma prevented BDNF-dependent dendrite development in vitro. Collectively, our results provide genetic evidence that BDNF and TrkB signaling selectively regulate PV expression and dendrite growth in a subset of neurochemically-defined GABAergic interneurons via activation of the PLCgamma pathway.

  17. Expression of estrogen receptor (ER) -α and -β transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb

    2001-01-01

    In the present study expression of estrogen receptor subtype -α (ERα) and -β (ERβ) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1~ 3-days-old) and adult (250~350g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERα transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERα was present in the adult cerebral cortex. No significant difference in ERβ transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERα expression was significantly weaker than ERβ. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERα transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERα/ERβ transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.

  18. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    Alejandra Delgado

    2011-01-01

    Full Text Available We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ.

  19. Hypothalamus-Olfactory System Crosstalk: Orexin as a Connecting Track in Mice.

    Jean eGascuel

    2012-11-01

    Full Text Available It is well known that olfaction influences food intake, and almost vice versa, the nutritional status of individuals modulates olfactory sensitivity. However, the neuronal correlate of this relationship and the connections between the olfactory bulb and the hypothalamus is still poorly understood. The goal of this report is to analyze the type of connections between the olfactory bulb and hypothalamus focusing on the expression pattern of orexin A, a hypothalamic neuropeptide that is thought to play a role in sleep/wakefulness states. Interestingly, orexin A has also been described as a stimulator of food intake. Such an effect may be due in part to the stimulation of the olfactory bulbar pathway. In rats, orexin positive cells are strictly concentrated in the lateral hypothalamus while their projections invade nearly the entire brain including the olfactory system. Therefore, orexin appears to be a good candidate to play a pivotal role in connecting olfactory and hypothalamic pathways. So far, orexin expression has been described in rats but there is still a lack of information concerning its expression in the adult and developing mouse brain. In this context we revisited the orexin A expression pattern in adult and developing mice using immunohistological methods and confocal microscopy. Besides minor differences, we found that the expression pattern of orexin A in mice shares many features with that in rats. In the olfactory bulb, even though there are few orexin projections, they reach all the different layers of the olfactory bulb. In contrast with the presence of orexin projections in the Main Olfactory Bulb almost none have been found in the Accessory Olfactory Bulb. The developmental expression of orexin A supports the hypothesis that orexin expression only appears post-natally.

  20. 成年大鼠嗅球嗅鞘细胞的纯化实验%Purifying olfactory ensheathing cells from the olfactory bulb of adult rats

    朱仲庚; 吴小涛; 蒋赞利

    2007-01-01

    BACKGROUND: The diversity of purification procedures resulting in various purities of olfactory ensheathing cells (OECs) used for grafting is considered to be relevant in the effectiveness of OECs transplant. It is important to develop a well-defined method which produces OECs of great purity and is easy to unify for the future standardization of research involving OECs.OBJECTIVE: To establish a method being easy to unify for purifying OECs to acquire highly and uniformly enriched population of OECs for standardized studies on cell transplantation.DESIGN: Randomized and controlled experiment.SETTING: Department of Orthopaedics, Affiliated Zhongda Hospital of Southeast University School of Clinical Medicine;Central Laboratory of Southeast University School of Clinical Medicine; Experimental Animal Center of Southeast University School of Clinical Medicine.MATERIALS: This experiment was carried out in the Central Laboratory of Southeast University School of Clinical Medicine from February to August 2006. Twenty-eight adult female SD rats weighing 200-250 g were selected in this study. The main reagents were detailed as follows: DMEM/F-12 (GIBCO); 2.5 g/L trypsin (GIBCO); poly-L-lysine (SIGMA); bovine pituitary extract (BPE, SIGMA); fetal bovine serum (FBS, Sijiqing Biological Agent Co., Ltd., Hangzhou);rabbit anti-low-affinity nerve growth factor receptor (anti-P75, SIGMA); biotinylated goat anti-rabbit IgG (Boster Bioengineering Co., Ltd., Wuhan); methyl thiazolyl tetrazolium (MTT) kit (SIGMA).METHODS: Primary cultures of OECs were separated from adult SD rats olfactory bulbs. At day 8 in vitro, the primary cultures were divided randomly into 4 groups, namely differential adhesion method group, immunoadsorption method group,the modified method group,and control group.①The cell suspension in the modified method group was seeded into uncoated flasks and incubated at 37 ℃ in 0.05 volume fraction of CO2 for 1 hours. The supematants were seeded into flasks that had

  1. Targeted deletion of the ERK5 MAP kinase impairs neuronal differentiation, migration, and survival during adult neurogenesis in the olfactory bulb.

    Tan Li

    Full Text Available Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.

  2. Differential effect of functional olfactory bulb deafferentation on tyrosine hydroxylase and glutamic acid decarboxylase messenger RNA levels in rodent juxtaglomerular neurons.

    Stone, D M; Grillo, M; Margolis, F L; Joh, T H; Baker, H

    1991-09-08

    Expression of the dopaminergic phenotype in olfactory bulb (OB) juxtaglomerular neurons (constituting a population of periglomerular and external tufted cells) is dependent upon functional innervation by peripheral olfactory receptors. Loss of functional input in rodents, by either peripheral deafferentation or deprivation of odorant access, results in a profound decrease in the expression of juxtaglomerular tyrosine hydroxylase (TH). We have examined the effects of such treatments on the expression of the neurotransmitter biosynthetic enzyme glutamic acid decarboxylase (GAD), which is colocalized with TH in the majority of TH-containing juxtaglomerular neurons. Following either chemically induced OB deafferentation in adult mice or unilateral odor deprivation in neonatal rats, steady-state OB GAD messenger RNA levels remained essentially unchanged as assessed by Northern blot analysis 20-40 days after treatment. These results were confirmed by in situ hybridization analysis, which demonstrated a profound loss of juxtaglomerular TH messenger RNA but no accompanying decrease in regionally colocalized GAD message. Since GAD is found in nearly all dopaminergic OB cells, the preservation of juxtaglomerular GAD message implies that olfactory receptor neurons exert a differential transneuronal regulation of TH and GAD gene transcription.

  3. Afferent and efferent connections of the nucleus sphericus in the snake Thamnophis sirtalis: convergence of olfactory and vomeronasal information in the lateral cortex and the amygdala.

    Lanuza, E; Halpern, M

    1997-09-08

    This paper is an account of the afferent and efferent projections of the nucleus sphericus (NS), which is the major secondary vomeronasal structure in the brain of the snake Thamnophis sirtalis. There are four major efferent pathways from the NS: 1) a bilateral projection that courses, surrounding the accessory olfactory tract, and innervates several amygdaloid nuclei (nucleus of the accessory olfactory tract, dorsolateral amygdala, external amygdala, and ventral anterior amygdala), the rostral parts of the dorsal and lateral cortices, and the accessory olfactory bulb; 2) a bilateral projection that courses through the medial forebrain bundle and innervates the olfactostriatum (rostral and ventral striatum); 3) a commissural projection that courses through the anterior commissure and innervates mainly the contralateral NS; and 4) a meager bilateral projection to the lateral hypothalamus. On the other hand, important afferent projections to the NS arise solely in the accessory olfactory bulb, the nucleus of the accessory olfactory tract, and the contralateral NS. This pattern of connections has three important implications: first, the lateral cortex probably integrates olfactory and vomeronasal information. Second, because the NS projection to the hypothalamus is meager and does not reach the ventromedial hypothalamic nucleus, vomeronasal information from the NS is not relayed directly to that nucleus, as previously reported. Finally, a structure located in the rostral and ventral telencephalon, the olfactostriatum, stands as the major tertiary vomeronasal center in the snake brain. These three conclusions change to an important extent our previous picture of how vomeronasal information is processed in the brain of reptiles.

  4. A comparative study of prenatal development in the olfactory bulb, neocortex and hippocampal region of the precocial mouse Acomys cahirinus and rat.

    Brunjes, P C

    1989-09-01

    Unlike the remainder of the rodent subfamily Muridae, Acomys cahirinus (the 'spiny' mouse) is born in a precocial state after a long (39 day) gestation. In this paper, the development of the olfactory bulb, neocortex and hippocampal formation of Acomys from prenatal days 14-34 was examined and the rate of maturation compared with that of its cousin, the laboratory rat (Rattus norvegicus). At the earliest stages examined, Acomys was approximately 2 days less mature than the same post-conception aged rat. The difference between the two species increased: Acomys at 28 days postconception resembled the 22-day rat. By the end of gestation, Acomys and the rat were in a relatively similar developmental state. Therefore, Acomys exhibits a quite different timetable of early maturation which includes a protracted period of relatively slow growth during mid-gestation. As such, it offers many benefits as a subject for studies of both early ontogenesis and the mechanisms which result in species differences.

  5. Identification of G protein α subunits in the main olfactory system and vomeronasal system of the Japanese Striped snake, Elaphe quadrivirgata.

    Kondoh, Daisuke; Koshi, Katsuo; Ono, Hisaya K; Sasaki, Kuniaki; Nakamuta, Nobuaki; Taniguchi, Kazuyuki

    2013-01-01

    In the olfactory system, G proteins couple to the olfactory receptors, and G proteins expressed in the main olfactory system and vomeronasal system vary according to animal species. In this study, G protein α subunits expressed in the main olfactory system and vomeronasal system of the snake were identified by immunohistochemistry. In the olfactory epithelium, only anti-Gαolf/s antibody labeled the cilia of the receptor cells. In the vomeronasal epithelium, only anti-Gαo antibody labeled the microvilli of the receptor cells. In the accessory olfactory bulb, anti-Gαo antibody stained the whole glomerular layer. These results suggest that the main olfactory system and the vomeronasal system of the snake express Gαolf and Gαo as G proteins coupling to the olfactory receptors, respectively.

  6. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Perez de los Cobos Pallares, Fernando; Loebel, Alex; Lukas, Michael

    2016-01-01

    During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm”) can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse. PMID:27747107

  7. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Mahua Chatterjee

    2016-01-01

    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  8. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis.

    Reshef, Ronen; Kreisel, Tirzah; Beroukhim Kay, Dorsa; Yirmiya, Raz

    2014-10-01

    Recent studies demonstrate that microglia play an important role in cognitive and neuroplasticity processes, at least partly via microglial CX3C receptor 1 (CX3CR1) signaling. Furthermore, microglia are responsive to environmental enrichment (EE), which modulates learning, memory and neurogenesis. In the present study we examined the role of microglial CX3CR1 signaling in hippocampal- and olfactory-bulb (OB)-related memory and neurogenesis in homozygous mice with microglia-specific transgenic expression of GFP under the CX3CR1 promoter (CX3CR1(-/-) mice), in which the CX3CR1 gene is functionally deleted, as well as heterozygous CX3CR1(+/-) and WT controls. We report that the CX3CR1-deficient mice displayed better hippocampal-dependent memory functioning and olfactory recognition, along with increased number and soma size of hippocampal microglia, suggestive of mild activation status, but no changes in OB microglia. A similar increase in hippocampal-dependent memory functioning and microglia number was also induced by pharmacological inhibition of CX3CR1 signaling, using chronic (2weeks) i.c.v. administration of CX3CR1 blocking antibody. In control mice, EE improved hippocampal-dependent memory and neurogenesis, and increased hippocampal microglia number and soma size, whereas odor enrichment (OE) improved olfactory recognition and OB neurogenesis without changing OB microglia status. In CX3CR1-deficient mice, EE and OE did not produce any further improvement in memory functioning or neurogenesis and had no effect on microglial status. These results support the notion that in the hippocampus microglia and their interactions with neurons via the CX3CR1 play an important role in memory functioning and neurogenesis, whereas in the OB microglia do not seem to be involved in these processes.

  9. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  10. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb.

    Wachowiak, Matt; Economo, Michael N; Díaz-Quesada, Marta; Brunert, Daniela; Wesson, Daniel W; White, John A; Rothermel, Markus

    2013-03-20

    Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.

  11. A comparison between the human sense of smell and neural activity in the olfactory bulb of rats.

    Soh, Zu; Saito, Maki; Kurita, Yuichi; Takiguchi, Noboru; Ohtake, Hisao; Tsuji, Toshio

    2014-02-01

    Generally, odor qualities are evaluated via sensory tests in which predefined criteria are assessed by panelists and stochastically analyzed to reduce human inconsistencies. Because this method requires multiple, well-trained human subjects, a more convenient approach is required to enable predictions of odor qualities. In this article, we propose an approach involving linking internal states of the olfactory system with perceptual characteristics. In the study, the glomerular responses of rats were taken to represent internal olfactory system states. Similarities between the glomerular responses of rats were quantified by correlations between glomerular activity patterns, overlap rate of strongly activated part across glomerular activity patterns, and the similarity between histograms of the strength of activity. These indices were then compared with perceptual similarities measured from human subjects in sensory tests. The results of experiments involving 22 odorants showed medium strength correlations between each index and perceptual similarity. In addition, when the 3 indices were combined using their Euclidean distance, we observed middle to high correlations (r = 0.65-0.79) to human perceptual similarity. We also report the results of our use of a machine learning technique to classify the odorants into a similar and dissimilar category. Although the correct rate of classification varied from 33.3% to 92.9%, these results support the feasibility of linking the glomerular responses of rats to human perception.

  12. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb.

    Angelika Hoffmann

    Full Text Available Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.

  13. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb.

    Hoffmann, Angelika; Kunze, Reiner; Helluy, Xavier; Milford, David; Heiland, Sabine; Bendszus, Martin; Pham, Mirko; Marti, Hugo H

    2016-01-01

    Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.

  14. Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb.

    Petridis, Athanasios K; El Maarouf, Abderrahman

    2011-02-01

    New progenitor cells in the subventricular zone (SVZ) migrate rostrally and differentiate into interneurons in the olfactory bulb (OB) throughout life. Brain-derived neurotrophic factor (BDNF) may influence the normal progression of this migration. In the present study, mouse SVZ explant cultures were used to investigate how BDNF modulates the behavior of these migrating progenitors. Concentrations of BDNF in the physiological range (e.g. 1ng/mL) stimulated migration, whereas doses of 10 ng/mL or higher induced SVZ cell differentiation and reduced migration. Pharmacological inhibition of the mitogen-activated protein kinase (MAPK) pathway blocked the BDNF-induced differentiation of SVZ progenitors, indicating that differentiation of SVZ progenitors in response to high-dose BDNF is initiated through MAPK. Physiological concentrations of BDNF, like the presence of polysialic acid in the tissue, stimulated migration of cells from the explant without affecting the speed at which this occurs. Interestingly, in vivo immunohistochemical and molecular analysis showed similar levels of BDNF in both the SVZ and OB; that is, there was no positive gradient attracting SVZ cells towards the OB. Our data show that SVZ cells respond differently to different concentrations of BDNF.

  15. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells.

  16. Isolation, culture and purification of offactory ensheathing cells from human fetal olfactory mucosa and from human fetal offactory bulb%人胚嗅球嗅鞘细胞及人胚鼻粘膜嗅鞘细胞的分离培养与纯化

    郑遵成; 陶宗玉; 魏开斌; 张文正; 任玉水

    2012-01-01

    [目的]采用差速贴壁法及免疫组化对人胚嗅粘膜OECs及人胚嗅球OECs进行体外纯化培养,探讨建立嗅粘膜OECs及嗅球OECs体外培养的方法.[方法]对差速贴壁后的人胚嗅粘膜OECs及嗅球OECs分别交替应用含13%胎牛血清DMEM - F12培养基进行原代培养.观察嗅鞘细胞的形态学变化,采用p75NTR和GFAP免疫细胞化学染色进行鉴定和纯度检测.[结果]人胚嗅粘膜及人胚嗅球均可培养出嗅鞘细胞,嗅粘膜嗅鞘细胞形态多呈双极、三极,伴有细长的突起.p75NTR和GFAP染色均呈阳性反应,体外培养时人胚嗅球嗅鞘细胞纯度比人胚嗅粘膜嗅鞘细胞高.[结论]差速贴壁法可以分离培养出人胚嗅粘膜嗅鞘细胞及人胚嗅球嗅鞘细胞.%[Objective]To investigate differential adhesion method and immunohistochemistry in human embryo and human embryonic olfactory mucosa olfactory mucosal OECs OECs purified in vitro culture,explore the establishment of olfactory mucosa and olfactory bulb OECs OECs in vitro methods. [ Method] The differential adhesion of human fetal olfactory mucosa after olfactory bulb OECs and OECs were alternatively contained DMEM - F12 13% FBS medium in primary culture. The morphological changes of olfactory ensheathing cells were observed,p75NTR and GFAP immunocytochemistry for identification and purity testing was used. [Result] The human embryo and human embryonic olfactory mucosa olfactory bulb could be cultivated olfactory ensheathing cells,olfactory mucosa olfactory ensheathing cells form mostly bipolar,tripolar,with slender processes. p75NTR and GFAP staining were positive reaction. In vitro the purity of human fetal olfactory ensheathing cells cultured from human fetal olfactory ensheathing cells was higher than from olfactory mucosa. [ Conclusion ] The differential adhesion method can be isolated and cultured human embryonic cells and human fetal olfactory mucosa olfactory ensheathing cells, olfactory bulb.

  17. Olfactory ensheathing cell tumor

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  18. Histogenesis of olfactory bulb and rostral migration stream in mice%小鼠嗅球以及吻侧迁移流的发生

    高文静; 王志新; 徐高磊; 邓锦波; 高晓群

    2012-01-01

    目的:探讨嗅球结构和吻侧迁移流(RMS)的发生及其中神经干细胞的变化趋势.方法:利用H-E染色、Nissl染色标记嗅球形态结构,BrdU免疫荧光技术观察吻侧迁移流中增殖的神经干细胞.结果:嗅球组织结构的发生:胚胎期,嗅球各层的结构轮廓尚未发育完全;生后3d时,各层结构虽然发育完善,但层与层之间的交界处模糊不清,生后5d时,整个嗅球结构发育已经完善,也就意味着嗅觉系统发育成熟.迁移流的发生:胚胎初期,侧脑室是一个很大的空腔,管腔膜上布满了增殖的神经于细胞,脑室下区延伸入中空的嗅球中,之后管腔闭合,形成了原始的吻侧迁移流;出生时,吻侧迁移流中的细胞密度达到最大值,之后逐渐降低,直至消失.结论:嗅球片层化结构是从无到有,从不成熟到成熟的过程.吻侧迁移流的发生是侧脑室腔的闭合和室管下层上神经干细胞遗留的痕迹.%Objective:To discuss the structure of the olfactory bulb (OB), the occurrence of the rostral migration streams (RMS) and the change trend of neural stem cells in RMS. Methods: The histological structure of the OB was marked by the methods of HE staining and Nissl staining. Using bromodeoxyuridine (BrdU)-immunofluorescence to observe the proliferation of neural stem cells in RMS. Results: (1)In the embryonic period, the outline of the structure of the OB layers was not fully developed yet. On the third day after birth the structure developed well, but the junctions between layers were blurred. In P5, the development of the entire olfactory bulb was improved. (2)In the early embryo, the lateral ventricle was a large cavity. The lumen membrance was full of the proliferation of neural stem cells. The subventricular zone extended into the hollow of OB, and then closed the lumen, forming the original rostral migration stream. In P0, the cell density in RMS reached its maximum value, then gradually reduced until it

  19. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  20. Reduction in subventricular zone-derived olfactory bulb neurogenesis in a rat model of Huntington's disease is accompanied by striatal invasion of neuroblasts.

    Mahesh Kandasamy

    Full Text Available Huntington's disease (HD is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT. The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies.

  1. Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice.

    Keller, Matthieu; Douhard, Quentin; Baum, Michael J; Bakker, Julie

    2006-05-01

    We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexually experienced male was significantly reduced in ZnSO4-treated female mice. Vomeronasal function did not seem to be affected by ZnSO4 treatment: nasal application of male urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of ZnSO4 as well as SAL-treated female mice. Likewise, soybean agglutinin staining, which stains the axons of vomeronasal neurons projecting to the glomerular layer of the AOB was similar in ZnSO4-treated female mice compared to SAL-treated female mice. By contrast, a significant reduction of Fos in the main olfactory bulb was observed in ZnSO4-treated females in comparison to SAL-treated animals, confirming a substantial destruction of the MOE. These results show that the MOE is primarily involved in the detection and processing of odors that are used to localize and identify the sex and endocrine status of conspecifics. By contrast, both the main and accessory olfactory systems contribute to female sexual receptivity in female mice.

  2. Cladistic analysis of olfactory and vomeronasal systems

    Alino eMartinez-Marcos

    2011-01-01

    Full Text Available Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical cortex. We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis, short-tailed opossums (Monodelphis domestica and rats (Rattus norvegicus by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines. In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  3. Cladistic analysis of olfactory and vomeronasal systems.

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  4. Cladistic Analysis of Olfactory and Vomeronasal Systems

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  5. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats.

    Dhungel, S; Masaoka, M; Rai, D; Kondo, Y; Sakuma, Y

    2011-12-29

    Chemosensory inputs signaling volatile and nonvolatile molecules play a pivotal role in sexual and social behavior in rodents. We have demonstrated that olfactory preference in male rats, that is, attraction to receptive female odors, is regulated by the medial amygdala (MeA), the cortical amygdala (CoA), and the preoptic area (POA). In this paper, we investigated the involvement of two chemosensory organs, the olfactory epithelium (OE) and the vomeronasal organ (VNO), in olfactory preference and copulatory behavior in male rats. We found that olfactory preferences were impaired by zinc sulfate lesion of the OE but not surgical removal of the VNO. Copulatory behaviors, especially intromission frequency and ejaculation, were also suppressed by zinc sulfate treatment. Neuronal activation in the accessory olfactory bulb (AOB), the MeA, the CoA, and the POA was analyzed after stimulation by airborne odors or soiled bedding of estrous females using cFos immunohistochemistry. Although the OE and VNO belong to different neural systems, the main and accessory olfactory systems, respectively, both OE lesion and VNO removal almost equally suppressed the number of cFos-immunoreactive cells in those areas that regulate olfactory preference. These results suggest that signals received by the OE and VNO interact and converge in the early stage of olfactory processing, in the AOB and its targets, although they have distinct roles in the regulation of social behaviors.

  6. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation.

    Hany E S Marei

    Full Text Available The adult human olfactory bulb neural stem/progenitor cells (OBNC/PC are promising candidate for cell-based therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising therapeutic strategy for traumatic and neurodegenerative diseases, however effective delivery of NGF into the CNS parenchyma is still challenging due mainly to its limited ability to cross the blood-brain barrier, and intolerable side effects if administered into the brain ventricular system. An effective method to ensure delivery of NGF into the parenchyma of CNS is the genetic modification of NSC to overexpress NGF gene. Overexpression of NGF in adult human OBNSC is expected to alter their proliferation and differentiation nature, and thus might enhance their therapeutic potential. In this study, we genetically modified adult human OBNS/PC to overexpress human NGF (hNGF and green fluorescent protein (GFP genes to provide insight about the effects of hNGF and GFP genes overexpression in adult human OBNS/PC on their in vitro multipotentiality using DNA microarray, immunophenotyping, and Western blot (WB protocols. Our analysis revealed that OBNS/PC-GFP and OBNS/PC-GFP-hNGF differentiation is a multifaceted process involving changes in major biological processes as reflected in alteration of the gene expression levels of crucial markers such as cell cycle and survival markers, stemness markers, and differentiation markers. The differentiation of both cell classes was also associated with modulations of key signaling pathways such MAPK signaling pathway, ErbB signaling pathway, and neuroactive ligand-receptor interaction pathway for OBNS/PC-GFP, and axon guidance, calcium channel, voltage-dependent, gamma subunit 7 for OBNS/PC-GFP-hNGF as revealed by GO and KEGG. Differentiated OBNS/PC-GFP-hNGF displayed extensively branched cytoplasmic processes, a significant faster growth rate and up modulated the expression of oligodendroglia

  7. Acetylcholine and Olfactory Perceptual Learning

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  8. Effects of Human Alpha-Synuclein A53T-A30P Mutations on SVZ and Local Olfactory Bulb Cell Proliferation in a Transgenic Rat Model of Parkinson Disease

    Faustine Lelan

    2011-01-01

    Full Text Available A transgenic Sprague Dawley rat bearing the A30P and A53T α-synuclein (α-syn human mutations under the control of the tyrosine hydroxylase promoter was generated in order to get a better understanding of the role of the human α-syn mutations on the neuropathological events involved in the progression of the Parkinson’s disease (PD. This rat displayed olfactory deficits in the absence of motor impairments as observed in most early PD cases. In order to investigate the role of the mutated α-syn on cell proliferation, we focused on the subventricular zone (SVZ and the olfactory bulbs (OB as a change of the proliferation could affect OB function. The effect on OB dopaminergic innervation was investigated. The human α-syn co-localized in TH-positive OB neurons. No human α-syn was visualized in the SVZ. A significant increase in resident cell proliferation in the glomerular but not in the granular layers of the OB and in the SVZ was observed. TH innervation was significantly increased within the glomerular layer without an increase in the size of the glomeruli. Our rat could be a good model to investigate the role of human mutated α-syn on the development of olfactory deficits.

  9. Olfactory system and demyelination.

    Garcia-Gonzalez, D; Murcia-Belmonte, V; Clemente, D; De Castro, F

    2013-09-01

    Within the central nervous system, the olfactory system represents one of the most exciting scenarios since it presents relevant examples of long-life sustained neurogenesis and continuous axonal outgrowth from the olfactory epithelium with the subsequent plasticity phenomena in the olfactory bulb. The olfactory nerve is composed of nonmyelinated axons with interesting ontogenetic interpretations. However, the centripetal projections from the olfactory bulb are myelinated axons which project to more caudal areas along the lateral olfactory tract. In consequence, demyelination has not been considered as a possible cause of the olfactory symptoms in those diseases in which this sense is impaired. One prototypical example of an olfactory disease is Kallmann syndrome, in which different mutations give rise to combined anosmia and hypogonadotropic hypogonadism, together with different satellite symptoms. Anosmin-1 is the extracellular matrix glycoprotein altered in the X-linked form of this disease, which participates in cell adhesion and migration, and axonal outgrowth in the olfactory system and in other regions of the central nervous system. Recently, we have described a new patho-physiological role of this protein in the absence of spontaneous remyelination in multiple sclerosis. In the present review, we hypothesize about how both main and satellite neurological symptoms of Kallmann syndrome may be explained by alterations in the myelination. We revisit the relationship between the olfactory system and myelin highlighting that minor histological changes should not be forgotten as putative causes of olfactory malfunction.

  10. Bulb Miser

    1978-01-01

    The Bulb-Miser was developed during NASA's Apollo program to protect the Saturn launch vehicle from electrical current surge. It is now being produced for the commercial market by Bulb-Miser, Inc., Houston, Texas. Technically known as a "temperature compensating thermistor," the Bulb-Miser is a simple, inexpensive device which looks like a washer about the size of a quarter. It is slipped between bulb and socket and can be used with any incandescent bulb that screws into a standard socket. In addition to delaying burnout, the Bulb-Miser also offers some reduction of electrical energy. But the economy of the device goes beyond energy use or bulb cost; to big users of bulbs, it makes possible substantially lower maintenance labor costs. One field test involving an apartment complex showed that it took two men 30 man hours monthly to replace light bulbs; after Bulb-Miser installation only nine man hours a month were needed. Bulb-Misers are used not only in private homes but also by hospitals, schools, hotels and motels, restaurants, banks and firms providing contract maintenance for large outdoor electric signs. The broadest use is in industrial facilities; the list of big companies which have purchased the Bulb-Miser reads like a Who's Who of American industry.

  11. Anterior olfactory organ removal produces anxiety-like behavior and increases spontaneous neuronal firing rate in basal amygdala.

    Contreras, Carlos M; Gutiérrez-García, Ana G; Molina-Jiménez, Tania

    2013-09-01

    Some chemical cues may produce signs of anxiety and fear mediated by amygdala nuclei, but unknown is the role of two anterior olfactory epithelial organs, the septal and vomeronasal organs (SO-VNOs). The effects of SO-VNO removal were explored in different groups of Wistar rats using two complementary approaches: (i) the assessment of neuronal firing rate in basal and medial amygdala nuclei and (ii) behavioral testing. Fourteen days after SO-VNO removal, spontaneous activity in basal and medial amygdala nuclei in one group was determined using single-unit extracellular recordings. A separate group of rats was tested in the elevated plus maze, social interaction test, and open field test. Compared with sham-operated and intact control rats, SO-VNO removal produced a higher neuronal firing rate in the basal amygdala but not medial amygdala. In the behavioral tests, SO-VNO removal increased signs of anxiety in the elevated plus maze, did not alter locomotion, and increased self-directed behavior, reflecting anxiety-like behavior. Histological analysis showed neuronal destruction in the accessory olfactory bulb but not anterior olfactory nucleus in the SO-VNO group. The present results suggest the participation of SO-VNO/accessory olfactory bulb/basal amygdala relationships in the regulation of anxiety through a process of disinhibition.

  12. Interaction between different cells in an olfactory bulb and synchronous kinematic analysis%嗅球中神经元间的相互作用及同步运动分析

    徐爱蕾; 杜莹; 王如彬

    2013-01-01

    Olfactory bulb plays an important part in signal encoding of an olfactory system. The interaction between excitatory mitral cells and inhibitory granule cells is particularly crucial. Here, the current situation of synchronous oscillation in the network of an olfactory system was firstly introduced. Then, the dynamic models of a mitral cell and a granular cell in the olfactory bulb were built. The simulation figures showed the firing patterns of a single mitral cell, a single granular cell, and these two kinds of cells having a coupling relationship. The results indicated that mitral cells have an excitatory effect on granular cells, and granular cells have an inhibitory effect on mitral cells; the firing pattern varies with different synaptic strength. In addition, simple olfactory network models were built, the influence of ring-like and grid-like neuronal network of granular cells on the synchronization of two mitral cells was analyzed. Different types of firing synchronization were diagnosed by means of ISI-distance method. The numerical analysis indicated that grid-like neuronal network of granular cells can make mitral cells synchronize better.%嗅球对嗅觉信息的处理是嗅觉系统信号编码的一个重要环节,其中兴奋性的僧帽细胞(Mitral Cell,MC)与抑制性的颗粒细胞(Granular Cell,GC)的相互作用尤为关键.本文首先介绍了嗅觉系统网络中关于同步振荡的研究现状,然后建立嗅球中僧帽细胞及颗粒细胞的动力学模型,仿真得到了单个僧帽细胞、颗粒细胞以及僧帽细胞与颗粒细胞在耦合条件下神经元的发放模式.结果表明,僧帽细胞对颗粒细胞有兴奋性作用,而颗粒细胞对僧帽细胞有抑制性作用,细胞放电序列随着突触连接强度的改变而改变.此外,建立简单的嗅觉网络模型,分析了当颗粒细胞分别构成环形和网格状两种拓扑结构时,不同网络对两个僧帽细胞同步性的影响,用同步性指标ISI

  13. 基于微电极阵列的嗅球细胞网络传感器的研究%Study on Olfactory Bulb Cell Network Biosensor Based on Microelectrode Array

    陈庆梅; 肖丽丹; 李蓉; 张威; 刘清君; 王平

    2011-01-01

    嗅球(OB)是嗅觉系统的第一中转站,在嗅觉信息的识别和处理中具有重要的作用.嗅球中具有多种类型的神经元,分别具有不同的生理特点和功能.本研究利用细胞培养技术,将嗅球神经元与微电极阵列(MEA)芯片耦合,构建一种细胞网络传感器,用于对多点的嗅球神经元电活动进行同步观察与分析.结果显示,MEA上培养的嗅球细胞生长良好,能够检测多个通道的嗅球神经元的自发电位以及谷氨酸作用下的诱发响应.研究表明,该嗅球细胞网络传感器能够实现信号的多通道同步检测及有效分辨神经元的自发信号和诱发响应,并且能够很好地捕捉不同通道神经元响应的特点.该研究对于进一步分析嗅觉信息在嗅球内的传导和编码具有重要的意义.%Olfactory bulb ( OB ) is the first relay site of the olfactory system, which is important for identifying and processing the olfactory information. There are multi-type neurons in OB, respectively with different physiological characteristics and functions. In the present study, OB neurons were coupled onto MEA chip by cell culture technique to develop a cell network-based biosensor, which was used to synchronously observe and analyze the electrical activities of OB neurons with multi-sites. Experiment results showed that OB cells grew well on MEA, and multi-channel spontaneous signals can be measured. In addition, this biosensor can detect the induced spike potentials and oscillation signals by the OB neurons under the action of glutamic acid ( Clu). All results suggest that OB cell network-based biosensor can realize multi-channel synchronous measurement and effectively differentiate the spontaneous signals from the induced responses, and can also catch the characteristics of neuronal responses of different channels commendably. This research is significant for further investigating the conduction and coding functions of olfactory information in the OB.

  14. The Beneficial Impact of Antidepressant Drugs on Prenatal Stress-Evoked Malfunction of the Insulin-Like Growth Factor-1 (IGF-1) Protein Family in the Olfactory Bulbs of Adult Rats.

    Trojan, Ewa; Głombik, Katarzyna; Ślusarczyk, Joanna; Budziszewska, Bogusława; Kubera, Marta; Roman, Adam; Lasoń, Władysław; Basta-Kaim, Agnieszka

    2016-02-01

    Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation, and survival of both neurons and glial cells, and it is believed to exert antidepressant-like activity. Thus, disturbances in the IGF-1 system could be responsible for the course of depression. To date, there have been no papers showing the impact of chronic antidepressant treatment on the IGF-1 network in the olfactory bulb (OB) in an animal model of depression. Prenatal stress was used as model of depression. Twenty-four 3-month-old male offspring of control and stressed mothers were subjected to behavioral testing (forced swim test). The mRNA expression of IGF-1 and IGF-1 receptor (IGF-1R) and the protein level of IGF-1 and its phosphorylation, as well as the concentrations of IGF-binding proteins (IGFBP-2, -4, -3, and -6), were measured in OBs before and after chronic imipramine, fluoxetine, or tianeptine administration. Adult rats exposed prenatally to stressful stimuli displayed not only depression-like behavior but also decreased IGF-1 expression, dysregulation in the IGFBP network, and diminished mRNA expression, as well as IGF-1R phosphorylation, in the OB. The administration of antidepressants normalized most of the changes in the IGF-1 system of the OB evoked by prenatal stress. These results suggested a beneficial effect of chronic antidepressant drug treatment in the alleviation of IGF-1 family malfunction in OBs in an animal model of depression.

  15. The progress of olfactory transduction and biomimetic olfactory-based biosensors

    WU ChunSheng; WANG LiJiang; ZHOU Jun; ZHAO LuHang; WANG Ping

    2007-01-01

    Olfaction is a very important sensation for all animals. Recently great progress has been made in the research of olfactory transduction. Especially the novel finding of the gene superfamily encoding olfactory receptors has led to rapid advances in olfactory transduction. These advances also promoted the research of biomimetic olfactory-based biosensors and some obvious achievements have been obtained due to their potential commercial prospects and promising industrial applications. This paper briefly introduces the biological basis of olfaction, summarizes the progress of olfactory signal transduction in the olfactory neuron, the olfactory bulb and the olfactory cortex, outlines the latest developments and applications of biomimetic olfactory-based biosensors. Finally, the olfactory biosensor based on light addressable potentiometric sensor (LAPS) is addressed in detail based on our recent work and the research trends of olfactory biosensors in future are discussed.

  16. Sexual experience does not compensate for the disruptive effects of zinc sulfate--lesioning of the main olfactory epithelium on sexual behavior in male mice.

    Keller, Matthieu; Douhard, Quentin; Baum, Michael J; Bakker, Julie

    2006-10-01

    Recent studies point to an important role for the main olfactory epithelium (MOE) in regulating sexual behavior in male mice. We asked whether sexual experience could compensate for the disruptive effects of lesioning the MOE on sexual behavior in male mice. Male mice, which were either sexually naive or experienced, received an intranasal irrigation of either a zinc sulfate solution to destroy the MOE or saline. Sexual behavior in mating tests with an estrous female was completely abolished in zinc sulfate-treated male mice regardless of whether subjects were sexually experienced or not before the treatment. Furthermore, zinc sulfate treatment clearly disrupted olfactory investigation of both volatile and nonvolatile odors. Destruction of the MOE by zinc sulfate treatment was confirmed by a significant reduction in the expression of Fos protein in the main olfactory bulb following exposure to estrous female urine. By contrast, vomeronasal function did not seem to be affected by zinc sulfate treatment: nasal application of estrous female urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of zinc sulfate- and saline-treated males. Likewise, the expression of soybean agglutinin, which stains the axons of vomeronasal organ neurons projecting to the glomerular layer of the AOB, was similar in zinc sulfate- and saline-treated male mice. These results show that the main olfactory system is essential for the expression of sexual behavior in male mice and that sexual experience does not overcome the disruptive effects of MOE lesioning on this behavior.

  17. Imaging the olfactory tract (Cranial Nerve no.1)

    Duprez, Thierry P. [Department of Radiology and Medical Imaging, Universite catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200-Brussels (Belgium)], E-mail: Thierry.Duprez@uclouvain.be; Rombaux, Philippe [Department of Otorhinolaryngology, Universite catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200-Brussels (Belgium)], E-mail: Philippe.Rombaux@uclouvain.be

    2010-05-15

    This review paper browses pros and cons of the different radiological modalities for imaging the olfactory tract and highlights the potential benefits and limitation of more recent advances in MR and CT technology. A systematic pictorial overview of pathological conditions affecting olfactory sense is given. Techniques for collecting quantitative data on olfactory bulb volume and on olfactory sulcus depth are described. At last, insights into functional imaging of olfactory sense are shown.

  18. Activity of the principal cells of the olfactory bulb promotes a structural dynamic on the distal dendrites of immature adult-born granule cells via activation of NMDA receptors.

    Breton-Provencher, Vincent; Coté, Daniel; Saghatelyan, Armen

    2014-01-29

    The adult olfactory bulb is continuously supplied with neuronal precursors that differentiate into granule and periglomerular cells. Little is known about the structural dynamic of adult-born granule cells (GCs) at their different maturational stages, the mechanisms controlling the integration of new neurons into the pre-existing neuronal circuitry, or the role of principal cell activity in these processes. We used two-photon time-lapse imaging to reveal a high level of filopodia formation and retraction on the distal dendrites of adult-born GCs at their early maturational stages. This dynamic decreased as the adult-born interneurons matured. Filopodia formation/retraction on the dendrites of adult-born GCs at the early maturational stages depended on the activation of NMDA receptors (NMDARs). The stimulation of mitral cells using a pattern that mimics activity of these principal neurons to odor presentation promotes the NMDAR-dependent filopodia dynamic of adult-born GCs during their early but not late maturational stages. Moreover, NMDA iontophoresis was sufficient to induce the formation of new filopodia on the distal dendrites of immature adult-born GCs. The maturation of adult-born interneurons was accompanied by a progressive hyperpolarization of the membrane potential and an increased Mg(2+) block of NMDARs. Decreasing the extracellular Mg(2+) concentration led to filopodia formation on the dendrites of mature adult-born GCs following NMDA iontophoresis. Our findings reveal an increased structural dynamic of adult-born GCs during the early stages of their integration into the mouse bulbar circuitry and highlight a critical period during which the principal cells' activity influences filopodia formation/retraction on the dendrites of interneurons.

  19. Changes in maternal gene expression in olfactory circuits in the immediate postpartum period.

    Sofija V Canavan

    2011-07-01

    Full Text Available Regulation of maternal behavior in the immediate postpartum period involves neural circuits in reward and homeostasis systems responding to cues from the newborn. Our aim was to assess one specific regulatory mechanism: the role that olfaction plays in the onset and modulation of parenting behavior. We focused on changes in gene expression in olfactory brain regions, examining nine genes found in previous knockout studies to be necessary for maternal behavior. Using a qPCR-based approach, we assessed changes in gene expression in response to exposure to pups in eleven microdissected olfactory brain regions. Over the first postpartum days, all nine genes were detected in all eleven regions (at differing levels and their expression changed in response to pup exposure. As a general trend, five genes (Dbh, Esr1, FosB, Foxb1 and Oxtr were found to decrease their expression in most of the olfactory regions examined, while two genes (Mest and Prlr were found to increase expression. Nos1 and Peg3 levels remained relatively stable except in the accessory olfactory bulb (AOB, where greater than 4 fold increases in expression were observed. The largest magnitude expression changes in this study were found in the AOB, which mediates a variety of olfactory cues that elicit stereotypic behaviors such as mating and aggression as well as some non-pheromone odors. Previous analyses of null mice for the nine genes assessed here have rarely examined olfactory function. Our data suggest that there may be olfactory effects in these null mice which contribute to the observed maternal behavioral phenotypes. Collectively, these data support the hypothesis that olfactory processing is an important sensory regulator of maternal behavior.

  20. Effect of rosebud extracts on piriform cortical neuronal damage and repair in olfactory bulb damaged rats and its mechanism%玫瑰花蕾萃取物对嗅球毁损大鼠梨形皮质神经元损伤修复的影响及机制

    卞林翠; 王敏; 贺利敏; 徐金勇; 李光武

    2016-01-01

    目的:观察玫瑰花蕾萃取物对嗅球毁损大鼠梨形皮质神经元损伤修复的影响,探讨其作用机制。方法将60只成年健康雄性SD大鼠随机分为对照组(10只)、模型组(40只)及玫瑰花蕾组(10只)。对照组不做任何处理。模型组及玫瑰花蕾组采用探针破坏嗅球。嗅球毁损后1天,玫瑰花蕾组行玫瑰花蕾萃取物吸嗅,每次持续吸嗅1 h、2次/d,连续14天。分别取对照组、模型组嗅球毁损后24 h、72 h、7 d、14 d(每个时间10只)及玫瑰花蕾组吸嗅14天后脑组织,常规切片,采用尼氏染色法检测各组梨形皮质神经元损伤修复情况,采用免疫组化法检测梨形皮质谷氨酸(Glu)、γ-氨基丁酸(GABA)表达。结果对照组梨形皮质神经元尼式小体灰度值为87.32±3.14,模型组毁损24 h、72 h、7 d、14 d时灰度值分别为101.76±4.52、110.76±2.78、98.35±2.69、94.26±3.01,玫瑰花蕾组为88.47±4.33;模型组毁损72 h时尼式小体灰度值大于对照组和玫瑰花蕾组(P均<0.05)。与对照组比较,模型组毁损72 h、7 d时梨形皮质Glu表达减少、GABA表达增加;与模型组毁损72 h、7 d 比较,玫瑰花蕾组Glu表达增加、GABA表达减少;两组比较P均<0.05。结论玫瑰花蕾萃取物吸嗅对嗅球毁损大鼠梨形皮质神经元损伤修复具有促进作用,抑制Glu释放、促进GABA释放可能是其作用机制。%Objective To investigate the effect of rosebud extracts on piriform cortical neuronal damage and repair in olfactory bulb damaged rats and its mechanism.Methods Healthy adult male SD rats were randomly divided into three groups, namely the control group (n=10), model group (n=40) and rosebud group (n=10).Rats in the control group were not treated.Using probes agitation to damage the olfactory bulb of rats in the model group and rosebud group.One day after the damage of the olfactory

  1. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  2. ACCESSORY SPLEEN

    Radhika

    2016-05-01

    Full Text Available Accessory spleen is a small nodule of splenic tissue found apart from main body of spleen. Other name for accessory spleen is supernumerary spleen, splenule or splenunculus. It is usually congenital failure of fusion of splenunculus found close to hilum of spleen, greater omentum, tail of pancreas. Accessory spleen is found approximately in 10% population. MATERIALS AND METHODS The present study 100 cadaveric spleens obtained from routine dissection, specimens present in Department of Anatomy, Andhra Medical College, Vishakhapatnam in 3 years span, out of which 25 are foetal spleens, 75 are adult spleens. RESULTS We got 4 accessory spleens in adult and 1 in foetal spleen. CONCLUSION The knowledge of accessory spleen is medically significant. That they may result in interpretation errors in diagnostic imaging and symptoms may be continued after splenectomy.

  3. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  4. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli.

    Corfield, Jeremy R; Eisthen, Heather L; Iwaniuk, Andrew N; Parsons, Stuart

    2014-01-01

    The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.

  5. 1-甲基-4-苯基-1,2,3,6-四氢吡啶对食蟹猴嗅球多巴胺能神经元的影响%Impact on the dopaminergic neurons of olfactory bulb in cynomolgus monkeys damaged by MPTP

    程炜; 任振华; 关云谦; 吴迪; 岳峰; 李光武

    2014-01-01

    Objective To explore the localization and expression of dopaminergic neurons in olfactory bulb of cynomolgus monkeys damaged by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Methods Three adult cynomolgus monkeys were injected with MPTP to induce the damage of dopamine neurons ( MPTP group ) and three adult cynomolgus monkeys were as a control group .Immunohistochemical staining was performed to examine the localization and expression of dopaminergic neurons in the olfactory bulb in normal and MPTP group monkeys .The numbers of DA-positive and DARPP32-positive cells were counted and the average absorbance was measured in normal and MPTP group .Results DA and DARPP32 positive neurons were concentrated in the glomerular layer ( GL) of olfactory bulb.DA positive nerve fibers were distributed in the GL while DARPP 32 positive nerve fibers appeared in all layers , and most nerve fibers were in GL and external plexiform layers (EPL).After MPTP injury, compared with the normal control group , DA and DARPP32 positive neurons and nerve fibers decreased in MPTP group and DA neurons and nerve fibers decreased significantly . Conclusions DA neurons and nerve fibers are in the GL of cynomolgus monkey olfactory bulb .DA neurons and fibers are significantly reduced in the olfactory bulb of cynomolgus monkeys damaged by MPTP , which may be associated with the dysosmia in Parkinson ’ s disease .%目的:建立食蟹猴1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)帕金森病系统性模型,探讨嗅球中多巴胺(DA)及多巴胺/cAMP调节磷蛋白(DARPP32)的表达情况。方法3只成年健康食蟹猴,静脉注射MPTP,建立帕金森病系统性模型,取出嗅球,切片,免疫组织化学染色DA和DARPP32,摄片并观察DA和DARPP32在食蟹猴嗅球中的分布及表达情况,采用Image Pro-Plus软件,半定量分析模型组和正常组之间DA和DARPP32的表达差异。结果食蟹猴嗅球中DA和DARPP32神经元集

  6. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  7. 成年小鼠嗅球神经干细胞的培养和鉴定%In vitro culture and identification of neural stem cells derived from the olfactory bulb of adult mice

    胡继良; 姜晓丹; 邹雨汐; 薛杉; 郭燕舞; 周德祥; 徐如祥

    2008-01-01

    目的 建立完善的成年小鼠嗅球神经千细胞分离培养和鉴定方法,探索新的成年神经干细胞种子来源. 方法 用无血清方法 分离培养成年小鼠嗅球来源的神经干细胞;用克隆培养、5-溴2-脱氧尿嘧啶核昔(BrdU)整合的方法 检验培养细胞的干细胞特性;用免疫荧光细胞化学的方法 检测BrdU、神经干细胞标记物巢蛋白(nestin)和SOX2、分化的细胞标记物Tuj1、胶质纤维酸性蛋白(GFAP)、04的表达. 结果 从成年小鼠嗅球能够分离、培养出具有自我更新、增殖能力的神经球.构成神经球的细胞呈nestin和SOX2阳性,它们分化后产生TuJ1阳性的神经元、GFAP阳性的星形胶质细胞、04阳性的少突胶质细胞. 结论 成年小鼠嗅球存在神经干细胞,其能够在体外进行培养、增殖、分化.是神经干细胞的新的种子来源.%Objecfive To establish a method for in vitro culture and identification of neural stem cells(NSCs)derived from the olfactory bulb(OB)of adult mice and test the possibility of the OB as a new source of seed cells of adult NSCs. Methads NSCs were isolated from the OB of adult mice and cultured in serum-free medium.Clonal culture and BrdU incorporation assay were performed to assess the self-renewal and proliferative activities of the NSCs.Fluorescence immunocytochemistry was carried out to examine the expression of the NSC markers nestin and SOX2,neuronal marker Tujl,astrocyte marker GFAP and oligodendroeyte marker 04. Results NSCs possessing self-renewal and proliferative capacities were obtained from the OB of adult mice,and the cells grew in the form of floating neurospheres in the medium.The neurospheres consisted of cells were positive for NSC markers nestin and SOX2,which Were able to differentiate into Tuj1-positive neurons,GFAP-positive astrocytes and 04-positive oligodendrocytes. Conclusion NSCs are present in the OB of adult mice,and the NSCs isolated from the OB can proliferate and

  8. CNPase Expression in Olfactory Ensheathing Cells

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  9. A subtype-specific critical period for neurogenesis in the postnatal development of mouse olfactory glomeruli.

    Yasuko Kato

    Full Text Available Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training.

  10. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

    Persson, Laura; Witt, Rochelle M; Galligan, Meghan; Greer, Paul L; Eisner, Adriana; Pazyra-Murphy, Maria F; Datta, Sandeep R; Segal, Rosalind A

    2014-12-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.

  11. Harmful effects of cadmium on olfactory system in mice.

    Bondier, Jean-Robert; Michel, Germaine; Propper, Alain; Badot, Pierre-Marie

    2008-10-01

    The inhalation of certain metals can result in olfactory epithelial injury, an altered sense of smell, and direct delivery of the metal from the olfactory epithelium to the olfactory bulbs and other parts of the central nervous system. The purpose of this study was to examine whether mice given an intranasal instillation of cadmium would develop altered olfactory function and to assess whether cadmium may be transported directly from the olfactory epithelium to the central nervous system. To evaluate cadmium's ability to induce anosmia and on the basis of olfactory epithelium sensitivity to metals, the aim of this study was first to study cadmium effects on the olfactory function and secondly to check whether cadmium may be transported from the nasal area to the central nervous system. After an intranasal instillation of a solution containing CdCl2 at 136 mM, we observed in treated mice: (1) a partial destruction of the olfactory epithelium, which is reduced to three or four basal cell layers followed by a progressive regeneration; (2) a loss of odor discrimination with a subsequent recovery; and (3) a cadmium uptake by olfactory bulbs demonstrated using atomic absorption spectrophotometry, but not by other parts of the central nervous system. Cadmium was delivered to the olfactory bulbs, most likely along the olfactory nerve, thereby bypassing the intact blood-brain barrier. We consider that cadmium can penetrate olfactory epithelium and hence be transported to olfactory bulbs. The olfactory route could therefore be a likely way to reach the brain and should be taken into account for occupational risk assessments for this metal.

  12. Compared the abilities of repairing nerve defect between glial cells in lamina propria and in olfactory bulb%嗅黏膜与嗅球神经层胶质细胞修复神经缺损能力的比较

    刘夫海; 陈统一

    2009-01-01

    目的 比较嗅黏膜胶质细胞与嗅球神经层胶质细胞修复周围神经缺损的能力.方法 体外培养异体嗅黏膜胶质细胞及嗅球神经层胶质细胞2周后纯化浓缩待用.将60只成年Wistar鼠随机分为对照组(A组,n=20)、嗅球神经层胶质细胞组(B组,n=20)及嗅黏膜胶质细胞组(C组,n=20).左侧坐骨神经切除25mm长轴突,保留神经外膜吻合于近端,将细胞培养液、嗅球神经层胶质细胞、嗅黏膜胶质细胞分别注入A、B、C各组神经外膜腔内.术后3个月,通过大体形态、光学显微镜及透射电镜观察、逆行标记荧光金运输距离、免疫荧光检测胶质纤维酸性蛋白(glial fibre acid protein,GFAP)浓度及神经生长因子(nerve growth factors,NGF)浓度,酶联免疫方法检测髓鞘碱性蛋白(myelin basic protein,MBP)浓度及神经丝蛋白(neurofilament,NF)浓度,伤肢功能评分评估神经缺损的修复效果.结果 大体观察、光学显微镜及透射电镜观察,神经缺损再生C组最完全,A组最差;荧光金在神经中的运行距离,C组最长,A组最短;NGF、GFAP、MBP及NF浓度、伤肢功能评分均为C组最高,A组最低.结论 嗅黏膜胶质细胞及嗅球神经层胶质细胞均能促进坐骨神经缺损再生,嗅黏膜胶质细胞促进神经再生效果优于嗅球神经层胶质细胞.%Objective To compare their competence to repair peripheral nerve defect between lami-na propria glial cells and olfactory bulb glial cells. Methods Glial cells in nasal lamina propria and olfac-tory bulb had been cultured in vitro for 2 weeks, then purified and condensed for later transplantation. 60 adult wistar rats were randomized into three groups of 20 rats each: A (control), B (glial cells in olfactory bulb were transplanted into epineuria lumen) and C (glial cells in lamina propria were transplanted into epineuria lumen). Rats' left sciatic nerves were excised 25 mm long axons and retained epineuria lumen anastomosed to proximal

  13. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  14. Olfactory system oscillations across phyla.

    Kay, Leslie M

    2015-04-01

    Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. Neurophysiological and computational investigations point to common mechanisms for gamma or odor associated oscillations across phyla (40-100Hz in mammals, 20-30Hz in insects, 0.5-1.5Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle neurons and inhibitory interneurons in the olfactory bulb (OB), antennal lobe (AL), or procerebrum (PrC). Recent studies suggest important mechanisms that may modulate gamma oscillations, including neuromodulators and centrifugal input to the OB and AL. Beta (20Hz) and theta (2-12Hz) oscillations coordinate activity within and across brain regions. Olfactory beta oscillations are associated with odor learning and depend on centrifugal OB input, while theta oscillations are strongly associated with respiration.

  15. Correlation of olfactory dysfunction of different etiologies in MRI and comparison with subjective and objective olfactometry

    Goektas, Oender [Department of Otolaryngology - Head and Neck Surgery, University of Berlin, Charite Campus Mitte, Smell and Taste Consultation Service, Berlin (Germany)], E-mail: oender.goektas@charite.de; Fleiner, Franca; Sedlmaier, Benedikt [Department of Otolaryngology - Head and Neck Surgery, University of Berlin, Charite Campus Mitte, Smell and Taste Consultation Service, Berlin (Germany); Bauknecht, Christian [Department of Radiology, University of Berlin, Charite Campus Mitte, Berlin (Germany)

    2009-09-15

    Background: The clinical diagnosis of olfactory dysfunction of different etiologies has been standardized by the German Working Group of Olfactology and Gustology, but there is no agreement about the most suitable imaging modality for diagnosing this disorder. Material and methods: A total of 24 patients (13 women, 11 men; mean age 52 years) with different types of olfactory dysfunction (anosmia, hyposmia) were examined by objective and subjective olfactometry and magnetic resonance imaging (MRI) of the olfactory bulb. Results: There was a positive correlation between objective olfactometry and volumetry of the olfactory bulb but no correlation between subjective olfactometry and MRI. Conclusion: MRI allows an evaluation of the olfactory bulb and appears to be superior to other modalities such as computed tomography (CT). Objective olfactometry remains the gold standard for reliable diagnosis of olfactory dysfunction.

  16. Interactions with the young down-regulate adult olfactory neurogenesis and enhance the maturation of olfactory neuroblasts in sheep mothers.

    Maïna eBRUS

    2014-02-01

    Full Text Available New neurons are continuously added in the dentate gyrus and the olfactory bulb of mammalian brain. While numerous environmental factors controlling survival of newborn neurons have been extensively studied, regulation by social interactions is less documented. We addressed this question by investigating the influence of parturition and interactions with the young on neurogenesis in sheep mothers. Using Bromodeoxyuridine, a marker of cell division, in combination with markers of neuronal maturation, the percentage of neuroblasts and new mature neurons in the olfactory bulb and the dentate gyrus was compared between groups of parturient ewes which could interact or not with their lamb, and virgins. In addition, a morphological analysis was performed by measuring the dendritic arbor of neuroblasts in both structures. We showed that the post-partum period was associated with a decrease in olfactory and hippocampal adult neurogenesis. In the olfactory bulb, the suppressive effect on neuroblasts was dependent on interactions with the young whereas in the dentate gyrus the decrease in new mature neurons was associated with parturition. In addition, dendritic length and number of nodes of neuroblasts were significantly enhanced by interactions with the lamb in the olfactory bulb but not in the dentate gyrus. Because interactions with the young involved learning of the olfactory signature of the lamb, we hypothesize that this learning is associated with a down-regulation in olfactory neurogenesis and an enhancement of olfactory neuroblast maturation. Our assumption is that fewer new neurons decrease cell competition in the olfactory bulb and enhance maturation of those new neurons selected to participate in the learning of the young odor.

  17. 菜花原矛头蝮嗅觉系统和犁鼻系统的显微结构%The microstructure of olfactory and vomeronasal systems in snake, Protobothrops jerdonii

    王宏元; 柴丽红; 王晓雯; 李忻怡

    2011-01-01

    采用组织学方法观察了菜花原矛头蝮(Protobothrops jerdonii)的嗅觉系统和犁鼻系统.结果表明,嗅器位于嗅囊的背侧,犁鼻器则位于嗅器的腹内侧.嗅器的上皮分化为嗅上皮和呼吸上皮,嗅上皮的基底层有Bowman's腺,呼吸上皮中具有大量的杯状细胞.犁鼻器基底层未发现犁鼻腺.嗅球和副嗅球呈典型的板层构筑结构.推测菜花原矛头蝮嗅器内嗅上皮和呼吸上皮完全分开有利于背侧嗅上皮俘获气味信号,腹侧呼吸上皮参与呼吸作用.虽然菜花原矛头蝮等蛇类的犁鼻器缺少犁鼻腺,但是其眼眶周围的哈氏腺和口腔内的唾液腺可以代偿犁鼻腺机能.%The olfactory organ and vomeronasal system in snake, Protobothrops jerdonii, were investigated under the microscope. The results showed that the olfactory organ lies in the dorsal and the vomeronasal organ is in the ventral portion of the nose cavity. The epithelium of the olfactory cavity is divided into the two segments: olfactory epithelium and respiratory epithelium.Bowman's gland in the olfactory epithelium is present and goblets cells occur in the respiratory epithelium. Vomeronasal gland is not found in the vomeronasal organ. The olfactory bulb and accessory olfactory bulb are typical laminar pattern. Subdivision of dorsal olfactory epithelium and ventral respiratory epithelium in snake may be beneficial to that the olfactory epithelium capture odour and respiratory epithelium take party into the respiratory. In addition, the vomeronasal organ in snake lacks vomeronasal glands, but the harderian gland and the salivary glands compensate lack of the vomeronasal gland.

  18. Environmental toxicants-induced immune responses in the olfactory mucosa

    Fumiaki Imamura

    2016-11-01

    Full Text Available Olfactory sensory neurons (OSNs are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa of the nasal cavity, OSN axons directly project to the olfactory bulb that is a component of the central nervous system (CNS. Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the olfactory bulb via the olfactory mucosa, and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the olfactory mucosa, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the olfactory bulb after inflammation has subsided. It is now known that immune cells and cytokines in the olfactory mucosa play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the olfactory mucosa affects the pathophysiology of OSNs.

  19. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis.

    Frontera, Jimena Laura; Cervino, Ailen Soledad; Jungblut, Lucas David; Paz, Dante Agustín

    2015-03-01

    Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.

  20. Microanatomy and surgical relevance of the olfactory cistern.

    Wang, Shou-Sen; Zheng, He-Ping; Zhang, Xiang; Zhang, Fa-Hui; Jing, Jun-Jie; Wang, Ru-Mi

    2008-01-01

    All surgical approaches to the anterior skull base involve the olfactory cistern and have the risk of damaging the olfactory nerve. The purpose of this study was to describe the microanatomical features of the olfactory cistern and discuss its surgical relevance. In this study, the olfactory cisterns of 15 formalin-fixed adult cadaveric heads were dissected using a surgical microscope. The results showed that the olfactory cistern was situated in the superficial part of the olfactory sulcus, which separated the gyrus retus from the orbital gyrus. In coronal section, the cistern was triangular in shape; its anterior part enveloped the olfactory bulbs and was high and broad; its posterior part was medial-superior to internal carotid artery and was also much broader. There were one or several openings in the inferior wall of the posterior part in 53.4% of the cisterns. The olfactory cistern communicated with the surrounding subarachnoind cisterns through these openings. The middle part of the olfactory cistern gradually narrowed down posteriorly. Most cisterns were spacious with a few fibrous trabeculas and bands between the olfactory nerves and cistern walls. However 23% of the cisterns were narrow with the cistern walls tightly encasing the olfactory nerve. There were two or three of arterial loops in each olfactory sulcus, from which long, fine olfactory arteries originated. The olfactory arteries coursed along the olfactory nerve and gave off many terminal branches to provide the main blood supply to the olfactory nerve in most cisterns, but the blood supply was in segmental style in a few cisterns. Moreover, the veins of the cistern appeared to be more segmental than the olfactory arteries in most cisterns. These results suggested that most olfactory cisterns are spacious with relatively independent blood supply, and it is reasonable to separate the olfactory tract with its independent blood supply from the frontal lobe by 1-2 cm in the subfrontal approach, the

  1. 新生小鼠海马、嗅球及皮质神经干细胞的分离培养及鉴定%Isolation and identification of neural stem cells from newborn mouse hippocampus, olfactory bulb and cortex

    马浚宁; 高俊玮; 侯博儒; 任海军; 陈四化; 刘吉星; 严贵忠

    2014-01-01

    背景:从体外分离培养出高纯度、生物学性能均一的神经干细胞,建立起一套完整的神经干细胞培养体系,是进行神经干细胞研究的基础。  目的:建立新生小鼠海马、嗅球、皮质组织神经干细胞的分离培养体系,并对其生物学特性进行分析。  方法:分离新生昆明小鼠海马、嗅球、皮质组织,采用机械分离和胰酶消化法提取原代神经干细胞。采用无血清培养技术、机械吹打和酶消化法进行传代培养神经干细胞。以体积分数为10%的胎牛血清诱导分化神经干细胞。对神经干细胞及其分化产物行CD133、巢蛋白、β-微管蛋白Ⅲ、胶质纤维酸性蛋白免疫荧光染色鉴定。  结果与结论:从新生小鼠海马、嗅球、皮质可提取出具有自我更新和多向分化能力的神经干细胞,经巢蛋白、CD133免疫荧光染色检测呈阳性;神经干细胞经胎牛血清诱导后可分化为β-微管蛋白Ⅲ、胶质纤维酸性蛋白阳性细胞,并证实染色阳性细胞为神经元和星形胶质细胞。该实验建立了一套神经干细胞体外分离培养、纯化、鉴定、诱导分化方案,为后续神经干细胞研究的顺利进行奠定了实验基础。%BACKGROUND:To in vitro isolate neural stem cel s with high purity and uniform biological properties and to establish a complete set of neural stem cel culture system is the basis for neural stem cel research. OBJECTIVE:To establish an isolation and culture system for neural stem cel s from newborn mouse hippocampus, olfactory bulb and cortex and to analyze the biological properties of cel s. METHODS:Neural stem cel s were isolated from the hippocampus, olfactory bulb and cortex tissue of newborn Kunming mice by mechanical separation and trypsin digestion. Serum-free culture technology, mechanical pipetting and trypsin digestion were used for subculture of neural stem cel s. 10%fetal bovine serum was used

  2. Making scent of the presence and local translation of odorant receptor mRNAs in olfactory axons.

    Dubacq, Caroline; Fouquet, Coralie; Trembleau, Alain

    2014-03-01

    Rodents contain in their genome more than 1000 functional odorant receptor genes, which are specifically expressed by the olfactory sensory neurons projecting from the olfactory epithelium to the olfactory bulb. Strong evidence for the presence and local translation of odorant receptor mRNAs in the axon of olfactory sensory neurons was obtained, but no function has been assigned to these axonal mRNAs yet. The aim of this review is to discuss the evidence for the presence and local translation of odorant receptor mRNAs in olfactory sensory axons, and to speculate on their possible function in the wiring of the mouse olfactory sensory projections.

  3. Olfactory Decoding Method Using Neural Spike Signals

    Kyung-jin YOU; Hyun-chool SHIN

    2010-01-01

    This paper presents a travel method for inferring the odor based on naval activities observed from rats'main olfactory bulbs.Mufti-channel extmcellular single unit recordings are done by microwire electrodes(Tungsten,50μm,32 channels)innplanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor irderenoe,a decoding method is developed based on the ML estimation.The results show that the average decoding acauacy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This wait has profound implications for a novel brain-madune interface system far odor inference.

  4. Nogo-A expression in injured spinal cord following human olfactory mucosa-derived olfactory ensheathing cells transplantation

    Bin Wang; Qiang Li; Xijing He; Weixiong Wang

    2011-01-01

    Transplantation of olfactory bulb-derived olfactory ensheathing cells (OECs) promotes motor functional recovery in rats with acute spinal cord injury, possibly by Nogo-A expression changes at the injury site. The present study transplanted OECs derived from the olfactory mucosa (OM) of rats. OM-derived OEC (OM-OEC) transplantation significantly reduced the increase of Nogo-A protein and mRNA expression caused by spinal cord injury, supporting the hypothesis that OM-OECs improve spinal cord regeneration by reducing Nogo-A expression.

  5. Neural circuits mediating olfactory-driven behavior in fish

    Florence eKermen

    2013-04-01

    Full Text Available The fish olfactory system processes odor signals and mediates behaviors that are crucial for survival such as foraging, courtship and alarm response. Although the upstream olfactory brain areas (olfactory epithelium and olfactory bulb are well studied, less is known about their target brain areas and the role they play in generating odor-driven behaviors. Here we review a broad range of literature on the anatomy, physiology and behavioral output of the olfactory system and its target areas in a wide range of teleost fish. Additionally, we discuss how applying recent technological advancements to the zebrafish (Danio rerio could help in understanding the function of these target areas. We hope to provide a framework for elucidating the neural circuit computations underlying the odor-driven behaviors in this small, transparent and genetically amenable vertebrate.

  6. Linking adult olfactory neurogenesis to social behavior

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  7. Small Engine & Accessory Test Area

    Federal Laboratory Consortium — The Small Engine and Accessories Test Area (SEATA) facilitates testaircraft starting and auxiliary power systems, small engines and accessories. The SEATA consists...

  8. Luminescence of carbon nanotube bulbs

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  9. The rostral migratory stream and olfactory system: smell, disease and slippery cells.

    Curtis, Maurice A; Monzo, Hector J; Faull, Richard L M

    2009-01-01

    In the mammalian brain, olfaction is an important sense that is used to detect odors of different kinds that can warn of off food, to produce a mothering instinct in a flock or group of animals, and to warn of danger such as fire or poison. The olfactory system is made up of a long-distance rostral migratory stream that arises from the subventricular zone in the wall of the lateral ventricle, mainly comprises neuroblasts, and stretches all the way through the basal forebrain to terminate in the olfactory bulb. The olfactory bulb receives a constant supply of new neurons that allow ongoing integration of new and different smells, and these are integrated into either the granule cell layer or the periglomerular layer. The continuous turnover of neurons in the olfactory bulb allows us to study the proliferation, migration, and differentiation of neurons and their application in therapies for neurodegenerative diseases. In this chapter, we will examine the notion that the olfactory system might be the route of entry for factors that cause or contribute to neurodegeneration in the central nervous system. We will also discuss the enzymes that may be involved in the addition of polysialic acid to neural cell adhesion molecule, which is vital for allowing the neuroblasts to move through the rostral migratory stream. Finally, we will discuss a possible role of endosialidases for removing polysialic acid from neural cell adhesion molecules, which causes neuroblasts to stop migrating and terminally differentiate into olfactory bulb interneurons.

  10. The experimental observation on the repairing spinal cord injury by olfactory ensheathing cells allograft of different sources

    2007-01-01

    Objecttive To observe the repaired effect of distinct source olfactory ensheathing cells (OECs) on spinal cord injury (SCI) rats. Methods These OECs were dissociated from olfactory bulb and olfactory mucosa of SD rats and transplanted to the injuried region of spinal cord injury rats. The function of nerve, motor evoked potential of hind legs and the histopathlogical diversities of injuried spinal cord were observed. Results The OECs grafts into the SCI area could survive longer time. The BBB scale, incubat...

  11. Microvasculature of the Olfactory Organ in the Japanese Monkey (Macaca fuscata fuscata)

    Okada, Shigenori; Schraufnagel, Dean E.

    2002-06-01

    Olfaction is an important and primitive sense. As its importance has changed with evolution, anatomic adjustments have occurred in its structure and vasculature. Primates are a family of vertebrates that have had to develop their visual system to adapt to the arboreal environment and have evolved from a macrosmatic to a microsmatic species as the optic system has enlarged. This has resulted in anatomic changes of a small but critical area at the base of the brain. This paper describes the three-dimensional vascular anatomy of the olfactory organ of the Japanese monkey (Macaca fuscata fuscata). This is best understood by dividing the organ into three parts: the olfactory tract, olfactory bulb, and olfactory nerves in the nasal mucosa. The bulb can be partitioned into an outer or cortical part and inner or medullary part. The vasculature and tissue were examined grossly and with light microscopy and scanning electron microscopy of vascular corrosion casts. The olfactory tract and bulb were supplied by an arteriole from the anterior cerebral artery on each side. The tract was supplied by capillaries running spirally with a coarse network. At the olfactory bulb, the arteriole ramified into the intracortical and medullary branches that formed capillary networks. The bulbar intracortical capillaries were divided into two layers with different densities and vascular patterns. The capillaries of the superficial layer had a ladder-like pattern. The branches that ran into the medulla of the olfactory bulb were more widely spaced. Twigs from the posterior ethmoidal artery ran along the nerve fiber and formed intra- and extrafascicular networks. Each region of the olfactory organ had characteristic three-dimensional vascular patterns that were related to their cellular architecture.

  12. Kappe neurons, a novel population of olfactory sensory neurons

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  13. Olfactory signaling in insects.

    Wicher, Dieter

    2015-01-01

    The detection of volatile chemical information in insects is performed by three types of olfactory receptors, odorant receptors (ORs), specific gustatory receptor (GR) proteins for carbon dioxide perception, and ionotropic receptors (IRs) which are related to ionotropic glutamate receptors. All receptors form heteromeric assemblies; an OR complex is composed of an odor-specific OrX protein and a coreceptor (Orco). ORs and GRs have a 7-transmembrane topology as for G protein-coupled receptors, but they are inversely inserted into the membrane. Ligand-gated ion channels (ionotropic receptors) and ORs operate as IRs activated by volatile chemical cues. ORs are evolutionarily young receptors, and they first appear in winged insects and seem to be evolved to allow an insect to follow sparse odor tracks during flight. In contrast to IRs, the ORs can be sensitized by repeated subthreshold odor stimulation. This process involves metabotropic signaling. Pheromone receptors are especially sensitive and require an accessory protein to detect the lipid-derived pheromone molecules. Signaling cascades involved in pheromone detection depend on intensity and duration of stimuli and underlie a circadian control. Taken together, detection and processing of volatile information in insects involve ionotropic as well as metabotropic mechanisms. Here, I review the cellular signaling events associated with detection of cognate ligands by the different types of odorant receptors.

  14. 白芍提取物对嗅球损毁抑郁模型大鼠行为学及下丘脑-垂体-肾上腺轴的影响%Influences of Extract of Peony Radix Alba on Behavior and Hypothalamic-pituitary-adrenocortical Axis in Depressive Rats Model with Damaged Olfactory Bulb

    王景霞; 张建军; 苗春平; 刘妍; 林清; 陈振振

    2011-01-01

    Objective: To investigate the influences of extract from Peony Radix Alba on the behavioral and hypothalamic-pituitary-adrenocortical (HPA) axis changes in rats with damaged olfactory bulb (DOB). Method: The tests of open-field and step-down passive avoidance were used to observe the behaviors of rats.Radioimmunoassay (RIA) was used to analyze the level of corticotropin releasing hormone (CRH) in hypothalamus, adrenocorticotropic hormone (ACTH) in pituitary gland and cortisol (CORT) in serum of rats with DOB. Result: The rats had a characteristic hyperactivity in the test of "open-field" and learning deficits in stepdown passive avoidance ( P < 0. 05 ), and their levels of CRH, ACTH and CORT increased significantly ( P < 0. 05). The extract of Peony Radix Alba at the dose of 70,35 mg·kg-1 corrected the behavioral changes (P < 0. 05 ) and decreased the levels of CRH, ACTH and CORT ( P < 0. 05). Conclusion: The extract of Peony Radix Alba can correct behavioral changes in rats with DOB, and its regulating effect on HPA axis is one of the mechanisms for treating depression.%目的:研究白芍提取物对嗅球损毁抑郁模型大鼠行为学及下丘脑一垂体.肾上腺(HPA)轴的影响.方法:将嗅球损毁大鼠随机分为对照组、模型组、阳性药氟西汀2.5 mg·kg-1组以及白芍提取物70,35,17.5 mg·kg-1组,采用敞箱法、跳台法观察嗅球损毁大鼠的行为变化,间时用放免法分析白芍提取物对嗅球损毁大鼠下丘脑促肾上腺皮质激素释放素(CRH)、垂体促肾上腺皮质激素(ACTH)和血清皮质酮(CORT)含量的影响.结果:大鼠嗅球损毁后敞箱行为出现明显变化,水平运动和垂直运动显著增加,白芍提取物中、高剂量组可显著降低大鼠水平运动和垂直运动的得分;跳台试验中,造模后大鼠训练期和测试期的错误次数显著增加,自芍提取物中、高剂量组能显著降低嗅球损毁大鼠训练期和测试期的触电次数;嗅球损毁大

  15. Quality Coding by Neural Populations in the Early Olfactory Pathway: Analysis Using Information Theory and Lessons for Artificial Olfactory Systems

    Fonollosa, Jordi; Gutierrez-Galvez, Agustin; Marco, Santiago

    2012-01-01

    In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble’s performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic. PMID:22719851

  16. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.

    Sebastian R Schreglmann

    Full Text Available Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS under the murine Thy1 (mThy1 promoter, a model known to have a particularly high tg expression associated with impaired olfaction.Survival of newly generated neurons (NeuN-positive in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.

  17. Functional MRI of the olfactory system in conscious dogs.

    Hao Jia

    Full Text Available We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology.

  18. Effects of Manganese Exposure on Olfactory Functions in Teenagers: A Pilot Study.

    Emilia Iannilli

    Full Text Available Long-term exposure to environmental manganese (Mn affects not only attention and neuromotor functions but also olfactory functions of a pre-adolescent local population who have spent their whole life span in contaminated areas. In order to investigate the effect of such exposure at the level of the central nervous system we set up a pilot fMRI experiment pointing at differences of brain activities between a non-exposed population (nine subjects and an exposed one (three subjects. We also measured the volume of the olfactory bulb as well as the identification of standard olfactory stimuli. Our results suggest that young subjects exposed to Mn exhibit a reduction of BOLD signal, subjective odor sensitivity and olfactory bulb volume. Moreover a region of interest SPM analysis showed a specifically reduced response of the limbic system in relation to Mn exposure, suggesting an alteration of the brain network dealing with emotional responses.

  19. Development and Organization of the Evolutionarily Conserved Three-Layered Olfactory Cortex

    2017-01-01

    Abstract The olfactory cortex is part of the mammalian cerebral cortex together with the neocortex and the hippocampus. It receives direct input from the olfactory bulbs and participates in odor discrimination, association, and learning (Bekkers and Suzuki, 2013). It is thought to be an evolutionarily conserved paleocortex, which shares common characteristics with the three-layered general cortex of reptiles (Aboitiz et al., 2002). The olfactory cortex has been studied as a “simple model” to address sensory processing, though little is known about its precise cell origin, diversity, and identity. While the development and the cellular diversity of the six-layered neocortex are increasingly understood, the olfactory cortex remains poorly documented in these aspects. Here is a review of current knowledge of the development and organization of the olfactory cortex, keeping the analogy with those of the neocortex. The comparison of olfactory cortex and neocortex will allow the opening of evolutionary perspectives on cortical development.

  20. Properties and mechanisms of olfactory learning and memory.

    Tong, Michelle T; Peace, Shane T; Cleland, Thomas A

    2014-01-01

    Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system-particularly olfactory bulb-comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  1. Properties and mechanisms of olfactory learning and memory

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  2. Functional Specialization of Olfactory Glomeruli in a Moth

    Hansson, Bill S.; Ljungberg, Hakan; Hallberg, Eric; Lofstedt, Christer

    1992-05-01

    The specific function of the glomerular structures present in the antennal lobes or olfactory bulbs of organisms ranging from insects to humans has been obscure because of limitations in neuronal marking methods. By tracing individual neurons in the moth Agrotis segetum, it was determined that physiologically distinct types of pheromone receptor neurons project axons to different regions of the macroglomerular complex (MGC). Each glomerulus making up the MGC has a specific functional identity, initially processing information about one specific pheromone component. This indicates that, at least through the first stage of synapses, olfactory information moves through labeled lines.

  3. Closed suction drain with bulb

    ... page: //medlineplus.gov/ency/patientinstructions/000039.htm Closed suction drain with bulb To use the sharing features on this page, please enable JavaScript. A closed suction drain is used to remove fluids that build up ...

  4. A computational framework for temporal sharpening of stimulus input in the olfactory system.

    Zak, Joseph D

    2016-04-01

    The olfactory bulb glomerulus is a dense amalgamation of many unique and interconnected cell types. The mechanisms by which these neurons transform incoming information from the sensory periphery have been extensively studied but often with conflicting findings. A recent study by Carey et al. (J Neurophysiol 113: 3 112-3129, 2015) details the computational framework for parallel modes of temporal refinement of stimulus input to the olfactory system mediated by local neurons within individual glomeruli.

  5. Bilateral accessory thoracodorsal artery.

    Natsis, Konstantinos; Totlis, Trifon; Tsikaras, Prokopios; Skandalakis, Panagiotis

    2006-09-01

    The subscapular artery arises from the third part of the axillary artery and gives off the circumflex scapular and the thoracodorsal arteries. Although anatomical variations of the axillary artery are very common, the existence of a unilateral accessory thoracodorsal artery has been described in the literature only once. There are no reports of bilateral accessory thoracodorsal artery, in the literature. In the present study, a bilateral accessory thoracodorsal artery, originating on either side of the third part of the axillary artery, is described in a 68-year-old female cadaver. All the other branches of the axillary artery had a typical origin, course, distribution and termination. This extremely rare anatomical variation apart from the anatomical importance also has clinical significance for surgeons in this area. Especially, during the dissection or mobilization of the latissimus dorsi that is partly used for coverage problems in many regions of the body and also in dynamic cardiomyoplasty, any iatrogenic injury of this accessory artery may result in ischemia and functional loss of the graft.

  6. Olfactory Neuroblastoma: Diagnostic Difficulty

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  7. The olfactory system as a puzzle: playing with its pieces.

    Díaz, D; Gómez, C; Muñoz-Castañeda, R; Baltanás, F; Alonso, J R; Weruaga, E

    2013-09-01

    The mammalian olfactory bulb (OB) has all the features of a whole mammalian brain but in a more reduced space: neuronal lamination, sensory inputs, afferences, or efferences to other centers of the central nervous system, or a contribution of new neural elements. Therefore, it is widely considered as "a brain inside the brain." Although this rostral region has the same origin and general layering as the other cerebral cortices, some distinctive features make it very profitable in experimentation in neurobiology: the sensory inputs are driven directly on its surface, the main output can be accessed anatomically, and new elements appear in it throughout adult life. These three morphological characteristics have been manipulated to analyze further the response of the whole OB. The present review offers a general outlook into the consequences of such experimentation in the anatomy, connectivity and neurochemistry of the OB after (a) sensory deprivation, mainly by naris occlusion; (b) olfactory deinnervation by means of olfactory epithelium damage, olfactory nerve interruption, or even olfactory tract disruption; (c) the removal of the principal neurons of the OB; and (d) management of the arrival of newborn interneurons from the rostral migratory stream. These experiments were performed using surgical or chemical methods, but also by means of the analysis of genetic models, some of whose olfactory components are missing, colorless or mismatching within the wild-type scenario of odor processing.

  8. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation.

    Zhao, Fuqiang; Wang, Xiaohai; Zariwala, Hatim A; Uslaner, Jason M; Houghton, Andrea K; Evelhoch, Jeffrey L; Hostetler, Eric; Winkelmann, Christopher T; Hines, Catherine D G

    2017-02-03

    Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic

  9. Botrytis species on bulb crops

    Lorbeer, J.W.; Seyb, A.M.; Boer, de M.; Ende, van den J.E.

    2007-01-01

    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph= Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rot are two of the most important fungal diseases of onion. The taxonomics of several of the n

  10. Beta and gamma oscillatory activities associated with olfactory memory tasks: Different rhythms for different functional networks?

    Claire eMartin

    2014-06-01

    Full Text Available Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform and entorhinal cortices and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to ‘bind’ distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz and gamma (60-100 Hz. While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  11. Olfactory deficits in Niemann-Pick type C1 (NPC1 disease.

    Marina Hovakimyan

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a rare autosomal recessive lipid storage disease characterized by progressive neurodegeneration. As only a few studies have been conducted on the impact of NPC on sensory systems, we used a mutant mouse model (NPC1(-/- to examine the effects of this disorder to morphologically distinct regions of the olfactory system, namely the olfactory epithelium (OE and olfactory bulb (OB. METHODOLOGY/PRINCIPAL FINDINGS: For structural and functional analysis immunohistochemistry, electron microscopy, western blotting, and electrophysiology have been applied. For histochemistry and western blotting, we used antibodies against a series of neuronal and glia marker proteins, as well as macrophage markers. NPC1(-/- animals present myelin-like lysosomal deposits in virtually all types of cells of the peripheral and central olfactory system. Especially supporting cells of the OE and central glia cells are affected, resulting in pronounced astrocytosis and microgliosis in the OB and other olfactory cortices. Up-regulation of Galectin-3, Cathepsin D and GFAP in the cortical layers of the OB underlines the critical role and location of the OB as a possible entrance gate for noxious substances. Unmyelinated olfactory afferents of the lamina propria seem less affected than ensheathing cells. Supporting the structural findings, electro-olfactometry of the olfactory mucosa suggests that NPC1(-/- animals exhibit olfactory and trigeminal deficits. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a pronounced neurodegeneration and glia activation in the olfactory system of NPC1(-/-, which is accompanied by sensory deficits.

  12. Glucuronidation of odorant molecules in the rat olfactory system: activity, expression and age-linked modifications of UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT2A1, and relation to mitral cell activity.

    Leclerc, Séverine; Heydel, Jean-Marie; Amossé, Valérie; Gradinaru, Daniela; Cattarelli, Martine; Artur, Yves; Goudonnet, Hervé; Magdalou, Jacques; Netter, Patrick; Pelczar, Hélène; Minn, Alain

    2002-11-15

    The aim of the present study was to examine the glucuronidation of a series of odorant molecules by homogenates prepared either with rat olfactory mucosa, olfactory bulb or brain. Most of the odorant molecules tested were efficiently conjugated by olfactory mucosa, whereas olfactory bulb and brain homogenates displayed lower activities and glucuronidated only a few molecules. Important age-related changes in glucuronidation efficiency were observed in olfactory mucosa and bulb. Therefore, we studied changes in expression of two UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT2A1, in 1-day, 1- and 2-week-, 3-, 12- and 24-month-old rats. UGT1A6 was expressed at the same transcriptional level in the olfactory mucosa, bulb and brain, throughout the life period studied. UGT2A1 mRNA was expressed in both olfactory mucosa and olfactory bulb, in accordance with previous results [Mol. Brain Res. 90 (2001) 83], but UGT2A1 transcriptional level was 400-4000 times higher than that of UGT1A6. Moreover, age-dependent variations in UGT2A1 mRNA expression were observed. As it has been suggested that drug metabolizing enzymes could participate in olfactory function, mitral cell electrical activity was recorded during exposure to different odorant molecules in young, adult and old animals. Age-related changes in the amplitude of response after stimulation with several odorant molecules were observed, and the highest responses were obtained with molecules that were not efficiently glucuronidated by olfactory mucosa. In conclusion, the present work presents new evidence of the involvement of UGT activity in some steps of the olfactory process.

  13. Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep.

    Narikiyo, Kimiya; Manabe, Hiroyuki; Mori, Kensaku

    2014-01-01

    During slow-wave sleep, anterior piriform cortex neurons show highly synchronized discharges that accompany olfactory cortex sharp waves (OC-SPWs). The OC-SPW-related synchronized activity of anterior piriform cortex neurons travel down to the olfactory bulb and is thought to be involved in the reorganization of bulbar neuronal circuitry. However, influences of the OC-SPW-related activity on other regions of the central olfactory system are still unknown. Olfactory tubercle is an area of OC and part of ventral striatum that plays a key role in reward-directed motivational behaviors. In this study, we show that in freely behaving rats, olfactory tubercle receives OC-SPW-associated synchronized inputs during slow-wave sleep. Local field potentials in the olfactory tubercle showed SPW-like activities that were in synchrony with OC-SPWs. Single-unit recordings showed that a subpopulation of olfactory tubercle neurons discharged in synchrony with OC-SPWs. Furthermore, correlation analysis of spike activity of anterior piriform cortex and olfactory tubercle neurons revealed that the discharges of anterior piriform cortex neurons tended to precede those of olfactory tubercle neurons. Current source density analysis in urethane-anesthetized rats indicated that the current sink of the OC-SPW-associated input was located in layer III of the olfactory tubercle. These results indicate that OC-SPW-associated synchronized discharges of piriform cortex neurons travel to the deep layer of the olfactory tubercle and drive discharges of olfactory tubercle neurons. The entrainment of olfactory tubercle neurons in the OC-SPWs suggests that OC-SPWs coordinate reorganization of neuronal circuitry across wide areas of the central olfactory system including olfactory tubercle during slow-wave sleep.

  14. Deep sequencing of the murine olfactory receptor neuron transcriptome.

    Ninthujah Kanageswaran

    Full Text Available The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR and a multitude of accessory proteins within the olfactory epithelium (OE. ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS-sorted olfactory receptor neurons (ORNs obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

  15. How does long-term odor deprivation affect the olfactory capacity of adult mice?

    Coppola David M

    2010-05-01

    Full Text Available Abstract Background Unilateral naris occlusion (UNO has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity. However, despite the large corpus on the effects of this manipulation, dating back to the 19th century, little is known about its behavioral sequela. Here we report the results of standard olfactory habituation and discrimination studies on adult mice that had undergone perinatal UNO followed by adult contralateral olfactory bulbectomy (bulb-x. Methods The olfactory performance of UNO mice was compared to matched controls that had unilateral bulb-x but open nares. Both habituation and discrimination (operant experiments employed a protocol in which after successful dishabituation or discrimination to dilute individual odors (A = 0.01% isoamyl acetate; B = 0.01% ethyl butyrate; each v/v in mineral oil, mice were challenged with a single odor versus a mixture comparison (A vs. A + B. In a series of tests the volume portion of Odor B in the mixture was systematically decreased until dishabituation or discrimination thresholds were reached. Results For the habituation experiment, UNOs (n = 10 and controls (n = 9 dishabituated to a 10% mixture of Odor B in Odor A after being habituated to A alone, while both groups failed to show differential responding to a 2% mixture of B in A. However, the UNO group's increased investigation durations for the 2% mixture approached significance (p Conclusions Adult mice relying on an olfactory system deprived of odor by naris occlusion from near the time of birth display enhanced olfactory capacity compared to control mice. This counterintuitive result suggests that UNO is neither an absolute method of deprivation nor does it diminish olfactory capabilities. Enhanced olfactory capacity, as observed in the current study, that is a consequence of deprivation, is consistent with recent molecular and physiological evidence that stimulus deprivation triggers

  16. From chemical neuroanatomy to an understanding of the olfactory system.

    Oboti, L; Peretto, P; Marchis, S De; Fasolo, A

    2011-10-19

    The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  17. From chemical neuroanatomy to an understanding of the olfactory system

    L. Oboti

    2011-10-01

    Full Text Available The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB. Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  18. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    Laís Soares Rodrigues

    2014-12-01

    Full Text Available Olfactory and rapid eye movement (REM sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD. Besides different studies reported declines in olfactory performances during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood although the impairment in the dopamine (DA neurotransmission in the olfactory bulb and in the nigrostriatal pathway may have important roles in olfactory as well as in REM sleep disturbances. Therefore, we have led to the hypothesis that a modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and after a short period of REM sleep deprivation (REMSD. We decided to investigate the olfactory, neurochemical and histological alterations generated by the administration of piribedil (a selective D2 agonist or raclopride (a selective D2 antagonist, within the glomerular layer of the olfactory bulb, in rats submitted to intranigral rotenone and REMSD. Our findings provided a remarkable evidence of the occurrence of a negative correlation (r = - 0.52, P = 0.04 between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham groups. A significant positive correlation (r = 0.34, P = 0.03 was observed between nigral DA and olfactory discrimination index (DI, for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc are associated to enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA induced by piribedil in the rotenone control and rotenone REMSD groups were consistent with reduced amounts of DI. The present evidence reinforce that DA produced by periglomerular neurons, and particularly the bulbar dopaminergic D2 receptors, are essential participants in the olfactory discrimination processes, as well as SNpc

  19. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Derjean, Dominique; Moussaddy, Aimen; Atallah, Elias; St-Pierre, Melissa; Auclair, François; Chang, Steven; Ren, Xiang; Zielinski, Barbara; Dubuc, Réjean

    2010-01-01

    It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  20. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Dominique Derjean

    Full Text Available It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  1. Descriptive epidemiology of selected olfactory tumors.

    Villano, J Lee; Bressler, Linda; Propp, Jennifer M; Valyi-Nagy, Tibor; Martin, Iman K; Dolecek, Therese A; McCarthy, Bridget J

    2010-10-01

    Olfactory tumors, especially olfactory neuroblastomas (ON) and carcinomas with neuroendocrine differentiation (CND), are extremely rare, and little descriptive epidemiologic information is available. The objective of this study was to more fully describe selected olfactory tumors using a large population-based cancer incidence database. The Surveillance, Epidemiology and End Results (SEER) 9 registries limited-use data were reviewed from 1973 to 2006 for selected nasal cavity (C30.0) and accessory sinus (C31.0-31.9) tumors. Frequencies, incidence rates, and relative survival rates were estimated using SEER*Stat, v6.5.2. The majority of cases were squamous cell carcinoma (SCC), while the incidence of ON was greater than CND. For ON, the incidence was highest in the 60-79 year age group, while for SCC, the incidence was highest in the 80+ year age group. For CND, the incidence leveled off in the oldest age groups. Survival rates were highest for ON (>70% alive at 5 years after diagnosis) and poorest for CND (44% alive at 5 years). Adjuvant radiation therapy did not improve survival over surgery alone in ON. In SCC, survival was worse in patients who received adjuvant radiation compared to patients who had surgery alone. Our analysis confirms some previously published information, and adds new information about the incidence and demographics of ON and CND. In addition, our analysis documents the lack of benefit of adjuvant radiation in ON. It is not feasible to conduct prospective trials in patients with these rare diseases, and the importance of registry data in learning about olfactory tumors is emphasized.

  2. 中华乌塘鳢嗅觉系统孕酮受体的免疫细胞化学研究%Progesterone receptor immunoreactivities in Bostrichthys sinensis (Lacépède) olfactory system

    赖晓健; 洪万树; 王桂忠; 马细兰; 张其永; 王琼

    2011-01-01

    We evaluated the morphology and structure of the olfactory system in the Chinese black sleeper, Bostrichthys sinensis (Lacepede) using histology. The olfactory system consisted of the olfactory sac, olfactory nerve, and olfactory bulb. The olfactory sac (the rosette) was fusiform in shape and located inside the olfactory chamber, which had two openings that allow water to flow through the rosette as the fish moves. There were 10-16 primary olfactory lamellae radiating from the wall of the olfactory chamber. These lamellae were longitudinally arranged and parallel to each other. The primary olfactory lamellae differed in their height and some possessed secondary olfactory lamellae. Olfactory lamellae were composed of the olfactory epithelium and central core. The olfactory epithelium consisted primarily of ciliated receptor cells, ciliated non-receptor cells, supporting cells, and basal cells. The axons of the primary olfactory receptor neurons in each rosette converged to form a pair olfactory nerves that exceeded 1 cm in length in a 17 cm fish. The paired olfactory nerves extended from the posterior ventral base of each rosette to the ipsilateral olfactory bulb. The two olfactory bulbs, in close contact with the telencephalon, were slightly oval and sessile. Each olfactory bulb consisted of three, roughly distinguishable layers, in order from the surface: (1) the olfactory nerve layer, containing the axons of the olfactory receptor neurons, (2) the glomerular and mitral cell layer, where the axons of the olfactory receptor neurons arborized into glomeruli and the secondary neurons (mitral cells) were scattered around glomeruli, and (3) the granule cell layer, consisting of densely-packed small size cells. Afferent fibers of nerve bundles reached the anterior bulb, spread along the periphery of the bulb and terminated on the dendrites of mitral cells in the glomerular and mitral cell layer. The olfactory nerve layer extended more caudally in the ventral lateral

  3. How to handle and care for bulbs in ophthalmic equipment

    Ismael Cordero

    2013-08-01

    Full Text Available Many devices used in eye care rely on light bulbs or lamps for their operation. All light bulbs have a limited lifespan and when the bulb fails the device becomes unusable. Therefore, knowing how to handle, how to inspect and how to replace bulbs is important. Just as important is keeping spare bulbs to hand!

  4. Temporal processing in the olfactory system: can we see a smell?

    Gire, David H; Restrepo, Diego; Sejnowski, Terrence J; Greer, Charles; De Carlos, Juan A; Lopez-Mascaraque, Laura

    2013-05-01

    Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing.

  5. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors.

    Shirasu, Mika; Yoshikawa, Keiichi; Takai, Yoshiki; Nakashima, Ai; Takeuchi, Haruki; Sakano, Hitoshi; Touhara, Kazushige

    2014-01-01

    Musk odorants are used widely in cosmetic industries because of their fascinating animalic scent. However, how this aroma is perceived in the mammalian olfactory system remains a great mystery. Here, we show that muscone, one musk odor secreted by various animals from stink glands, activates a few glomeruli clustered in a neuroanatomically unique anteromedial olfactory bulb. The muscone-responsive glomeruli are highly specific to macrocyclic ketones; interestingly, other synthetic musk odorants with nitro or polycyclic moieties or ester bonds activate distinct but nearby glomeruli. Anterodorsal bulbar lesions cause muscone anosmia, suggesting that this region is involved in muscone perception. Finally, we identified the mouse olfactory receptor, MOR215-1, that was a specific muscone receptor expressed by neurons innervating the muscone-responsive anteromedial glomeruli and also the human muscone receptor, OR5AN1. The current study documents the olfactory neural pathway in mice that senses and transmits musk signals from receptor to brain.

  6. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep.

    Yamaguchi, Masahiro; Manabe, Hiroyuki; Murata, Koshi; Mori, Kensaku

    2013-01-01

    Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals' life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB) throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep), a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC) along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal circuits in the brain.

  7. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep

    Masahiro eYamaguchi

    2013-08-01

    Full Text Available Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals’ life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep, a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal

  8. Critical role of GFRα1 in the development and function of the main olfactory system.

    Marks, Carolyn; Belluscio, Leonardo; Ibáñez, Carlos F

    2012-11-28

    Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are prominently expressed in the olfactory epithelium (OE) and olfactory bulb (OB), but their importance for olfactory system development is completely unknown. We have investigated the consequences of GFRα1 deficiency for mouse olfactory system development and function. In the OE, GFRα1 was expressed in basal precursors, immature olfactory sensory neurons (OSNs), and olfactory ensheathing cells (OECs), but was excluded from mature OSNs. The OE of newborn Gfra1 knock-out mice was thinner and contained fewer OSNs, but more dividing precursors, suggesting deficient neurogenesis. Immature OSN axon bundles were enlarged and associated OECs increased, indicating impaired migration of OECs and OSN axons. In the OB, GFRα1 was expressed in immature OSN axons and OECs of the nerve layer, as well as mitral and tufted cells, but was excluded from GABAergic interneurons. In newborn knock-outs, the nerve layer was dramatically reduced, exhibiting fewer axons and OECs. Bulbs were smaller and presented fewer and disorganized glomeruli and a significant reduction in mitral cells. Numbers of tyrosine hydroxylase-, calbindin-, and calretinin-expressing interneurons were also reduced in newborn mice lacking Gfra1. At birth, the OE and OB of Gdnf knock-out mice displayed comparable phenotypes. Similar deficits were also found in adult heterozygous Gfra1(+/-) mutants, which in addition displayed diminished responses in behavioral tests of olfactory function. We conclude that GFRα1 is critical for the development and function of the main olfactory system, contributing to the development and allocation of all major classes of neurons and glial cells.

  9. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.

    Gliem, Sebastian; Syed, Adnan S; Sansone, Alfredo; Kludt, Eugen; Tantalaki, Evangelia; Hassenklöver, Thomas; Korsching, Sigrun I; Manzini, Ivan

    2013-06-01

    In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.

  10. Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    Rodrigues, Lais S.; Targa, Adriano D. S.; Noseda, Ana Carolina D.; Aurich, Mariana F.; Da Cunha, Cláudio; Lima, Marcelo M. S.

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson’s disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = −0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum. PMID:25520618

  11. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation.

    Rodrigues, Lais S; Targa, Adriano D S; Noseda, Ana Carolina D; Aurich, Mariana F; Da Cunha, Cláudio; Lima, Marcelo M S

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = -0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum.

  12. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  13. Immunohistochemical and histochemical characteristics of the olfactory system of the guppy, Poecilia reticulata (Teleostei, Poecilidae).

    Bettini, Simone; Lazzari, Maurizio; Ciani, Franco; Franceschini, Valeria

    2009-10-01

    Olfaction in fish has been studied using preferentially macrosmatic species as models. In the present research, the labelling patterns of different neuronal markers and lectins were analyzed in the olfactory neurons and in their bulbar axonal endings in the guppy Poecilia reticulata, belonging to the group of microsmatic fish. We observed that calretinin immunostaining was confined to a population of olfactory receptor cells localized in the upper layers of the sensory mucosa, probably microvillous neurons innervating the lateral glomerular layer. Immunoreactivity for S100 proteins was mainly evident in crypt cells, but also in other olfactory cells belonging to subtypes projecting in distinct regions of the bulbs. Protein gene product 9.5 (PGP 9.5) was not detected in the olfactory system of the guppy. Lectin binding revealed the presence of N-acetylglucosamine and alpha-N-acetylgalactosamine residues in the glycoconjugates of numerous olfactory neurons ubiquitously distributed in the mucosa. The low number of sugar types detected suggested a reduced glycosidic variability that could be an index of restricted odorant discrimination, in concordance with guppy visual-based behaviors. Finally, we counted few crypt cells which were immunoreactive for S100 and calretinin. Crypt cells were more abundant in guppy females. This difference is in accordance with guppy gender-specific responses to pheromones. Cells immunoreactive to calretinin showed no evidence of ventral projections in the bulbs. We assumed the hypothesis that their odorant sensitivity is not strictly limited to pheromones or sexual signals in general.

  14. Ionotropic crustacean olfactory receptors.

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  15. Selective gene expression by postnatal electroporation during olfactory interneuron neurogenesis.

    Alexander T Chesler

    Full Text Available Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis.

  16. The therapeutic potential of human olfactory-derived stem cells.

    Marshall, C T; Lu, C; Winstead, W; Zhang, X; Xiao, M; Harding, G; Klueber, K M; Roisen, F J

    2006-06-01

    Stem cells from fetal and adult central nervous system have been isolated and characterized, providing populations for potential replacement therapy for traumatic injury repair and neurodegenerative diseases. The regenerative capacity of the olfactory system has attracted scientific interest. Studies focusing on animal and human olfactory bulb ensheathing cells (OECs) have heightened the expectations that OECs can enhance axonal regeneration and repair demyelinating diseases. Harvest of OECs from the olfactory bulb requires highly invasive surgery, which is a major obstacle. In contrast, olfactory epithelium (OE) has a unique regenerative capacity and is readily accessible from its location in the nasal cavity, allowing for harvest without lasting damage to the donor. Adult OE contains progenitors responsible for the normal life-long continuous replacement of neurons and supporting cells. Culture techniques have been established for human OE that generate populations of mitotically active neural progenitors that form neurospheres (Roisen et al., 2001; Winstead et al., 2005). The potential application of this technology includes autologous transplantation where minimal donor material can be isolated, expanded ex vivo, and lineage restricted to a desired phenotype prior to/or after re-implantation. Furthermore, these strategies circumvent the ethical issues that arise with embryonic or fetal tissues. The long term goal is to develop procedures through which a victim of a spinal cord injury or neurodegenerative condition would serve as a source of progenitors for his/her own regenerative grafts, avoiding the need for immunosuppression and ethical controversy. In addition, these cells can provide populations for pharmacological and/or diagnostic evaluation.

  17. Odorant-dependent generation of nitric oxide in Mammalian olfactory sensory neurons.

    Daniela Brunert

    Full Text Available The gaseous signalling molecule nitric oxide (NO is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB, NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS in mature olfactory sensory neurons (OSNs of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis.

  18. Odorant-dependent generation of nitric oxide in Mammalian olfactory sensory neurons.

    Brunert, Daniela; Kurtenbach, Stefan; Isik, Sonnur; Benecke, Heike; Gisselmann, Günter; Schuhmann, Wolfgang; Hatt, Hanns; Wetzel, Christian H

    2009-01-01

    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis.

  19. Penguins reduced olfactory receptor genes common to other waterbirds.

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-08-16

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins.

  20. Automobile accessories: Assessment and improvement

    Jackson, M. [Univ. of Nevada, Las Vegas, NV (United States)

    1995-11-01

    With mandates and regulatory policies to meet both the California Air Resources Board (CARB) and the Partnership for a New Generation of Vehicles (PNGV), designing vehicles of the future will become a difficult task. As we look into the use of electric and hybrid vehicles, reduction of the required power demand by influential automobile components is necessary in order to obtain performance and range goals. Among those automobile components are accessories. Accessories have a profound impact on the range and mileage of future vehicles with limited amounts of energy or without power generating capabilities such as conventional vehicles. Careful assessment of major power consuming accessories helps us focus on those that need improvement and contributes to attainment of mileage and range goals for electric and hybrid vehicles.

  1. Fabricating a hollow bulb obturator

    Fatih Sari

    2012-01-01

    Full Text Available

    Obturators are generally used in the rehabilitation of the maxillectomy defects. Ideally, obturators should be light, properly fit and construction should be made easily. By decreasing the weight of the prosthesis, the retention and stability may be optimized to allow the obturator for function comfortably during mastication, phonation, and deglutition. In this case, a 65-year-old male patient underwent surgical removal of left part of the maxilla due to the squamous cell carcinoma. In this technique fabrication of a hollow bulb obturator prosthesis as a single unit in heat-cured acrylic resin using a single-step flasking procedure was described. The patient’s functional and esthetic expectations were satisfied.

  2. 21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual operating table and accessories and manual... Surgical Devices § 878.4950 Manual operating table and accessories and manual operating chair and accessories. (a) Identification. A manual operating table and accessories and a manual operating chair...

  3. A Method to Measure Humidity Based on Dry-Bulb and Wet-Bulb Temperatures

    Yongping Huang

    2013-09-01

    Full Text Available This study tries to analyze the theory of measuring humidity based on dry-bulb and wet-bulb temperatures. And a theoretical formula is deduced for the calculation of relative humidity from dry-bulb and wet-bulb temperatures. Through analysis of the theoretical formula, a two-dimensional conversion table is produced to transform dry-bulb and wet-bulb temperatures into relative humidity. A method is proposed to obtain humidity by combining searching table and linear smoothing algorithm, which is suitable for rapid control. Error analysis and experimental data indicate that the relative error is less than 4%. The proposed method has certain value for humidity control in industrial control process.

  4. 21 CFR 890.3910 - Wheelchair accessory.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair accessory. 890.3910 Section 890.3910...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910 Wheelchair accessory. (a) Identification. A wheelchair accessory is a device intended for medical purposes that is...

  5. The regeneration of P2 olfactory sensory neurons is selectively impaired following methyl bromide lesion.

    Holbrook, Eric H; Iwema, Carrie L; Peluso, Carolyn E; Schwob, James E

    2014-09-01

    The capacity of the peripheral olfactory system to recover after injury has not been thoroughly explored. P2-IRES-tauLacZ mice were exposed to methyl bromide, which causes epithelial damage and kills 90% of the P2 neurons. With subsequent neuronal regeneration, P2 neurons recover within their usual territory to equal control numbers by 1 month but then decline sharply to roughly 40% of control by 3 months. At this time, the P2 projection onto the olfactory bulb is erroneous in several respects. Instead of converging onto 1 or 2 glomeruli per surface, small collections of P2 axons innervate multiple glomeruli at roughly the same position in the bulb as in controls. Within these glomeruli, the P2 axons are aggregated near the edge, whereas the remainder of the glomerulus contains olfactory marker protein (+), non-P2 axons, violating the one receptor-one glomerulus rule normally observed. The aggregates are denser than found in control P2-innervated glomeruli, suggesting that the P2 axons may not be synaptically connected. Based on published literature and other data, we hypothesize that P2 neurons lose out in an activity-based competition for synaptic territory within the glomeruli and are not maintained at control numbers due to a lack of trophic support from the bulb.

  6. Jugular bulb diverticulum combined with high jugular bulb: a case report with CT and MRA findings

    Ko, Seog Wan [College of Medicine, Chonbuk National Univ., Jeonju (Korea, Republic of)

    2004-12-01

    Jugular bulb diverticulum is a rare condition that is characterized by the outpouching of the jugular bulb, and this can lead to hearing loss, tinnitus and vertigo. A few reports have revealed the radiologic findings about jugular bulb diverticulum, but none of them have described the MRA findings concerning this lesion. We present here the CT and MR venography findings in regards to a large high jugular blub and diverticulum we observed in a 47-year-old woman.

  7. Light On the Behavior of Light Bulbs.

    Armstrong, H. L.

    1985-01-01

    Discusses a problem (on page 523 of "College Physics," by Sears, Zemansky, and Young, published by Addison-Wesley, 1980) concerning light bulbs and resistance. Shows why the assumption of constant resistance is unrealistic and provides guidelines for revision. (DH)

  8. Fuzzy linear programming for bulb production

    Siregar, I.; Suantio, H.; Hanifiah, Y.; Muchtar, M. A.; Nasution, T. H.

    2017-01-01

    The research was conducted at a bulb company. This company has a high market demand. The increasing of the market demand has caused the company’s production could not fulfill the demand due to production planning is not optimal. Bulb production planning is researched with the aim to enable the company to fulfill the market demand in accordance with the limited resources available. From the data, it is known that the company cannot reach the market demand in the production of the Type A and Type B bulb. In other hands, the Type C bulb is produced exceeds market demand. By using fuzzy linear programming, then obtained the optimal production plans and to reach market demand. Completion of the simple method is done by using software LINGO 13. Application of fuzzy linear programming is being able to increase profits amounted to 7.39% of the ordinary concept of linear programming.

  9. On the olfactory anatomy in an archaic whale (Protocetidae, Cetacea) and the minke whale Balaenoptera acutorostrata (Balaenopteridae, Cetacea).

    Godfrey, Stephen J; Geisler, Jonathan; Fitzgerald, Erich M G

    2013-02-01

    The structure of the olfactory apparatus is not well known in both archaic and extant whales; the result of poor preservation in most fossils and locational isolation deep within the skulls in both fossil and Recent taxa. Several specimens now shed additional light on the subject. A partial skull of an archaic cetacean is reported from the Pamunkey River, Virginia, USA. The specimen probably derives from the upper middle Eocene (Piney Point Formation) and is tentatively assigned to the Protocetidae. Uncrushed cranial cavities associated with the olfactory apparatus were devoid of sediment. CT scans clearly reveal the dorsal nasal meatus, ethmoturbinates within the olfactory recess, the cribriform plate, the area occupied by the olfactory bulbs, and the olfactory nerve tract. Several sectioned skulls of the minke whale (Balaenoptera acutorostrata) were also examined, and olfactory structures are remarkably similar to those observed in the fossil skull from the Pamunkey River. One important difference between the two is that the fossil specimen has an elongate olfactory nerve tract. The more forward position of the external nares in extant balaenopterids when compared with those of extant odontocetes is interpreted to be the result of the need to retain a functional olfactory apparatus and the forward position of the supraoccipital/cranial vertex. An increase in the distance between the occipital condyles and the vertex in balaenopterids enhances the mechanical advantage of the epaxial musculature that inserts on the occiput, a specialization that likely stabilizes the head of these enormous mammals during lunge feeding.

  10. Building iPhone OS Accessories

    Maskrey, Ken

    2010-01-01

    This book provides a serious, in-depth look at Apple's External Accessory Framework and the iPhone Accessories API. You'll learn how to create new, integrated solutions that combine iPhone apps with dedicated hardware. The iPhone OS Accessories API expands the opportunities for innovative iPhone developers, allowing you to control and monitor external devices, whether you've built them yourself or obtained them from a third party. What you'll learn * Develop accessories and apps for the iPhone and iPod touch. * Use Apple's External Accessory Framework to create hardware/software interaction. *

  11. An olfactory neuronal network for vapor recognition in an artificial nose.

    White, J; Dickinson, T A; Walt, D R; Kauer, J S

    1998-04-01

    Odorant sensitivity and discrimination in the olfactory system appear to involve extensive neural processing of the primary sensory inputs from the olfactory epithelium. To test formally the functional consequences of such processing, we implemented in an artificial chemosensing system a new analytical approach that is based directly on neural circuits of the vertebrate olfactory system. An array of fiber-optic chemosensors, constructed with response properties similar to those of olfactory sensory neurons, provide time-varying inputs to a computer simulation of the olfactory bulb (OB). The OB simulation produces spatiotemporal patterns of neuronal firing that vary with vapor type. These patterns are then recognized by a delay line neural network (DLNN). In the final output of these two processing steps, vapor identity is encoded by the spatial patterning of activity across units in the DLNN, and vapor intensity is encoded by response latency. The OB-DLNN combination thus separates identity and intensity information into two distinct codes carried by the same output units, enabling discrimination among organic vapors over a range of input signal intensities. In addition to providing a well-defined system for investigating olfactory information processing, this biologically based neuronal network performs better than standard feed-forward neural networks in discriminating vapors when small amounts of training data are used.

  12. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-11-18

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  13. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Hong Sjölinder

    Full Text Available Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  14. Antennular projections to the midbrain of the spiny lobster. II. Sensory innervation of the olfactory lobe.

    Schmidt, M; Ache, B W

    1992-04-15

    The projection pattern of antennular sensory afferents in the olfactory lobe (OL) of the spiny lobster, Panulirus argus, was examined by backfilling axons in the antennular nerve (AN) with biocytin. Thin, presumptive olfactory afferents from the lateral division of the AN form a tract in the brain that diverges into a dense plexus that completely envelops the glomerular cortex of the OL. Most of the thin (diameter less than or equal to 0.3-1 microns) afferents project to single glomeruli. About 10% of the thin afferents, however, branch in the plexus and project to multiple glomeruli. A smaller number of medium-sized to thick (diameter 2-10 microns), presumably mechanosensory, afferents also innervate the OL and co-project to multiple glomeruli with the thin afferents. Afferents arborize profusely within the columnar glomeruli into very fine processes that penetrate to the base of the columns, but selectively terminate in either the cap/subcap region or in the innermost part of the base of the columns, often with conspicuous terminal boutons, forming two distinct regions of presumptive synaptic output. These results suggest that 1) The majority of the OL innervation is provided by olfactory sensilla (aesthetascs), but that other types of sensilla provide additional, likely mechanosensory, input to the OL. 2) The projection of olfactory afferents is not strictly uniglomerular. 3) The columnar organization of crustacean olfactory glomeruli is functionally significant and may provide an evolutionary correlate of the recently proposed subdivision of the vertebrate olfactory bulb into "functional columns."

  15. Locally vascularized pelvic accessory spleen.

    Iorio, F; Frantellizzi, V; Drudi, Francesco M; Maghella, F; Liberatore, M

    2016-01-01

    Polysplenism and accessory spleen are congenital, usually asymptomatic anomalies. A rare case of polysplenism with ectopic spleen in pelvis of a 67-year-old, Caucasian female is reported here. A transvaginal ultrasound found a soft well-defined homogeneous and vascularized mass in the left pelvis. Patient underwent MRI evaluation and contrast-CT abdominal scan: images with parenchymal aspect, similar to spleen were obtained. Abdominal scintigraphy with 99mTc-albumin nanocolloid was performed and pelvic region was studied with planar scans and SPECT. The results showed the presence of an uptake area of the radiopharmaceutical in the pelvis, while the spleen was normally visualized. These findings confirmed the presence of an accessory spleen with an artery originated from the aorta and a vein that joined with the superior mesenteric vein. To our knowledge, in the literature, there is just only one case of a true ectopic, locally vascularized spleen in the pelvis.

  16. Animal experiments and clinical application of olfactory ensheathing cell transplantation for treatment of spinal cord injury

    Nan Liu; Wei Liu; Baiyu Zhou; Jing Wang; Bing Li

    2008-01-01

    BACKGROUND: The olfactory epithelium can still generate new neurons after arresting its growth and development in the human body. Axons can still be generated and pass through peripheral tissue to reach the olfactory bulb. Thus, olfactory cells have been widely used in the repair of spinal cord injury.OBJECTIVE: Using animal experiments in conjunction with a clinical study of olfactory ensheathing cells, this paper was designed to clarify the function and application prospects of olfactory ensheathing cells, as well as the existing problems with their application. RETRIEVAL STRATEGY: Using the terms "olfactory ensheathing cells, spinal cord injury", we retrieved manuscripts published from January 1990 to June 2007. The languages were limited to English and Chinese. Inclusion criteria: studies addressing the characteristics, basic study, clinical application and prospects of olfactory ensheathing cells; studies that were recently published or were published in high-impact journals. Exclusion criteria: repetitive studies.LITERATURE EVALUATION: The included 29 manuscripts were primarily clinical or basic experimental studies. DATA SYNTHESIS: Following spinal cord injury, spinal neurons die, neurotrophic factors are lacking, and the existing glial scar and cavities hinder axonal growth. One method to repair spinal cord injury is to interfere with the above-mentioned factors based on animal experiments. Myelination and axonal regeneration are the keys to spinal cord injury therapy. Olfactory ensheathing cells can secrete several neurotrophic factors, inhibit horizontal cell reactions, have noticeable neuroprotective effects, and possess a very strong reproductive activity, so they have many advantages in the fields of cell transplantation and gene therapy. However, there still exist many questions and uncertainties, such as the best time window and dose, as well as complications of olfactory ensheathing cell transplantation; precise mechanism of action after olfactory

  17. Diversity of neural signals mediated by multiple, burst-firing mechanisms in rat olfactory tubercle neurons.

    Chiang, Elizabeth; Strowbridge, Ben W

    2007-11-01

    Olfactory information is processed by a diverse group of interconnected forebrain regions. Most efforts to define the cellular mechanisms involved in processing olfactory information have been focused on understanding the function of the olfactory bulb, the primary second-order olfactory region, and its principal target, the piriform cortex. However, the olfactory bulb also projects to other targets, including the rarely studied olfactory tubercle, a ventral brain region recently implicated in regulating cocaine-related reward behavior. We used whole cell patch-clamp recordings from rat tubercle slices to define the intrinsic properties of neurons in the dense and multiform cell layers. We find three common firing modes of tubercle neurons: regular-spiking, intermittent-discharging, and bursting. Regular-spiking neurons are typically spiny-dense-cell-layer cells with pyramidal-shaped, dendritic arborizations. Intermittently discharging and bursting neurons comprise the majority of the deeper multiform layer and share a common morphology: multipolar, sparsely spiny cells. Rather than generating all-or-none stereotyped discharges, as observed in many brain areas, bursting cells in the tubercle generate depolarizing plateau potentials that trigger graded but time-limited discharges. We find two distinct subclasses of bursting cells that respond similarly to step stimuli but differ in the role transmembrane Ca currents play in their intrinsic behavior. Calcium currents amplify depolarizing inputs and enhance excitability in regenerative bursting cells, whereas the primary action of Ca in nonregenerative bursting tubercle neurons appears to be to decrease excitability by triggering Ca-activated K currents. Nonregenerative bursting cells exhibit a prolonged refractory period after even short discharges suggesting that they may function to detect transient events.

  18. Attention and Olfactory Consciousness

    Andreas eKeller

    2011-12-01

    Full Text Available Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness.

  19. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans.

    Springer, Mark S; Gatesy, John

    2017-04-01

    Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common

  20. Olfactory projections in the white sturgeon, Acipenser transmontanus: an experimental study.

    Northcutt, R Glenn

    2011-07-01

    Telencephalic evolution in ray-finned fishes shows increasing complexity from polypteriform fishes through sturgeons to teleosts. Telencephalic organization in sturgeons is thus critical to our understanding of ray-finned fish evolution, but it is poorly understood, particularly as regards the roof or pallium. Two major hypotheses exist regarding the medial part of area dorsalis (Dm): that Dm is extended; and that Dm is restricted. The extent and topography of secondary olfactory projections to the pallium are critical in evaluating these hypotheses, but there is little agreement regarding these projections. Olfactory projections in the white sturgeon were therefore examined by using the carbocyanine probe DiI, biocytin, and biotinylated dextrin amine (BDA). Both DiI and BDA revealed primary olfactory projections to the olfactory bulb and primary extrabulbar projections widely in the telencephalon and to more restricted regions of the diencephalon. Myelinated secondary olfactory fibers caused DiI to be less effective in labeling secondary olfactory projections, which terminate in all subpallial nuclei and in the pallium: sparsely in the medial pallial division (Dm); heavily in the posterior pallial division (Dp); and more lightly in the lateral pallial division (Dl). In the diencephalon, substantial secondary olfactory projections were seen to the habenular nuclei, the rostral pole of the inferior lobe, and several nuclei of the posterior tubercle. All secondary olfactory projections were bilateral but heavier ipsilaterally. Bulbopetal neurons were located in both pallial and subpallial centers and were more numerous ipsilaterally. These results corroborate an earlier experimental study on the shovelnose sturgeon and indicate a restricted Dm in sturgeons.

  1. Modulation of olfactory sensitivity and glucose sensing by the feeding state in obese Zucker rats.

    Pascaline eAimé

    2014-09-01

    Full Text Available The Zucker fa/fa rat has been widely used as an animal model to study obesity, since it recapitulates most of its behavioral and metabolic dysfunctions, such as hyperphagia, hyperglycemia and insulin resistance. Although it is well established that olfaction is under nutritional and hormonal influences, little is known about the impact of metabolic dysfunctions on olfactory performances and glucose-sensing in the olfactory system of the obese Zucker rat. In the present study, using a behavioral paradigm based on a conditioned olfactory aversion, we have shown that both obese and lean Zucker rats have a better olfactory sensitivity when they are fasted than when they are satiated. Interestingly, the obese Zucker rats displayed a higher olfactory sensitivity than their lean controls. By investigating the molecular mechanisms involved in glucose-sensing in the olfactory system, we demonstrated that sodium-coupled glucose transporters 1 (SGLT1 and insulin dependent glucose transporters 4 (GLUT4 are both expressed in the olfactory bulb (OB. By comparing the expression of GLUT4 and SGLT1 in OB of obese and lean Zucker rats, we found that only SGLT1 is regulated in genotype-dependent manner. Next, we used glucose oxidase biosensors to simultaneously measure in vivo the extracellular fluid glucose concentrations ([Gluc]ECF in the OB and the cortex. Under metabolic steady state, we have determined that the OB contained twice the amount of glucose found in the cortex. In both regions, the [Gluc]ECF was 2 fold higher in obese rats compared to their lean controls. Under induced dynamic glycemia conditions, insulin injection produced a greater decrease of [Gluc]ECF in the OB than in the cortex. Glucose injection did not affect OB [Gluc]ECF in Zucker fa/fa rats. In conclusion, these results emphasize the importance of glucose for the OB network function and provide strong arguments towards establishing the OB glucose-sensing as a key factor for sensory

  2. Olfactory toxicity in fishes.

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  3. Ship's stern bulb

    Allan, R.G.; Diepen, P.J.

    1988-06-07

    This invention relates to the propulsion of self-propelled vessels, and in particular to the form of a ship's stern. The invention describes a new and distinctive form of bulbous-shaped stern from which, unlike other stern bulbs developed to date, does not fair into the hull, instead intersecting it to create a sharp discontinuity between surfaces. This discontinuity creates a turbulent zone along the said intersection, allowing the wake to reorganize and to follow in a desired pattern the bulb's shape in the proximity of the propeller. Thus a more uniform wake field is formed within the propeller disc, consequently improving propeller efficiency and reducing propeller induced vibration. These effects, which result in improved quietness and overall efficiency of a running propeller, along with other improved characteristics, have been confirmed by a preliminary series of model tests. The form of the bulb, and its attendant benefits, are described.

  4. Recent Trend in Development of Olfactory Displays

    Yanagida, Yasuyuki

    An olfactory display is a device that generates scented air with desired concentration of aroma, and delivers it to the user's olfactory organ. In this article, the nature of olfaction is briefly described from the view point of how to configure olfactory displays. Next, component technologies to compose olfactory displays, i.e., making scents and delivering scents, are categorized. Several existing olfactory display systems are introduced to show the current status of research and development of olfactory displays.

  5. Advanced Accessory Power Supply Topologies

    Marlino, L.D.

    2010-06-15

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power

  6. Mechanical accessories for mobile teleoperators

    Feldman, M.J.; Herndon, J.N.

    1985-01-01

    The choice of optimum mechanical accessories for mobile teleoperators involves matching the criteria for emergency response with the available technology. This paper presents a general background to teleoperations, a potpourri of the manipulator systems available, and an argument for force reflecting manipulation. The theme presented is that the accomplishment of humanlike endeavors in hostile environments will be most successful when man model capabilities are utilized. The application of recent electronic technology to manipulator development has made new tools available to be applied to emergency response activities. The development activities described are products of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 13 refs., 7 figs.

  7. The recombination activation gene 1 (Rag1 is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection

    Friedrich Rainer W

    2005-07-01

    Full Text Available Abstract Background Rag1 (Recombination activation gene-1 mediates genomic rearrangement and is essential for adaptive immunity in vertebrates. This gene is also expressed in the olfactory epithelium, but its function there is unknown. Results Using a transgenic zebrafish line and immunofluorescence, we show that Rag1 is expressed and translated in a subset of olfactory sensory neurons (OSNs. Neurons expressing GFP under the Rag1 promoter project their axons to the lateral region of the olfactory bulb only, and axons with the highest levels of GFP terminate in a single glomerular structure. A subset of GFP-expressing neurons contain Gαo, a marker for microvillous neurons. None of the GFP-positive neurons express Gαolf, Gαq or the olfactory marker protein OMP. Depletion of RAG1, by morpholino-mediated knockdown or mutation, did not affect axon targeting. Calcium imaging indicates that amino acids evoke chemotopically organized glomerular activity patterns in a Rag1 mutant. Conclusion Rag1 expression is restricted to a subpopulation of zebrafish olfactory neurons projecting to the lateral olfactory bulb. RAG1 catalytic activity is not essential for axon targeting, nor is it likely to be required for regulation of odorant receptor expression or the response of OSNs to amino acids.

  8. Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex.

    Gómez-Climent, M Á; Hernández-González, S; Shionoya, K; Belles, M; Alonso-Llosa, G; Datiche, F; Nacher, J

    2011-05-05

    The piriform cortex layer II of young-adult rats presents a population of prenatally generated cells, which express immature neuronal markers, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX), and display structural characteristics of immature neurons. The number of PSA-NCAM/DCX expressing cells in this region decreases markedly as age progresses, suggesting that these cells differentiate or die. Since the piriform cortex receives a major input from the olfactory bulb and participates in olfactory information processing, it is possible that the immature neurons in layer II are affected by manipulations of the olfactory bulb or olfactory learning. It is not known whether these cells can be induced to differentiate and, if so, what would be their fate. In order to address these questions, we have performed unilateral olfactory bulbectomy (OBX) and an olfactory learning paradigm (taste-potentiated odor aversion, TPOA), in young-adult rats and have studied the expression of different mature and immature neuronal markers, as well as the presence of cell death. We have found that 14 h after OBX there was a dramatic decrease in the number of both PSA-NCAM and DCX expressing cells in piriform cortex layer II, whereas that of cells expressing NeuN, a mature neuronal marker, increased. By contrast, the number of cells expressing glutamate decarboxylase, isoform 67 (GAD67), a marker for interneurons, decreased slightly. Additionally, we have not found evidence of numbers of dying cells high enough to justify the disappearance of immature neurons. Analysis of animals subjected to TPOA revealed that this paradigm does not affect PSA-NCAM expressing cells. Our results strongly suggest that OBX can induce the maturation of immature neurons in the piriform cortex layer II and that these cells do not become interneurons. By contrast, these cells do not seem to play a crucial role in olfactory memory.

  9. Organic Flower Bulbs From Holland - Outlook for the French Market

    Kamphuis, Elise

    2002-01-01

    The Netherlands is a major exporter of flower bulbs in the world. France is amongst the top10 of the biggest importers of Dutch flower bulbs. However, the growing of bulbs is very damaging to the environment. With the use of 1,5 million kilograms of pesticide and 16 million kilograms of artificial f

  10. Cerebral Cortex Expression of Gli3 Is Required for Normal Development of the Lateral Olfactory Tract.

    Eleni-Maria Amaniti

    Full Text Available Formation of the lateral olfactory tract (LOT and innervation of the piriform cortex represent fundamental steps to allow the transmission of olfactory information to the cerebral cortex. Several transcription factors, including the zinc finger transcription factor Gli3, influence LOT formation by controlling the development of mitral cells from which LOT axons emanate and/or by specifying the environment through which these axons navigate. Gli3 null and hypomorphic mutants display severe defects throughout the territory covered by the developing lateral olfactory tract, making it difficult to identify specific roles for Gli3 in its development. Here, we used Emx1Cre;Gli3fl/fl conditional mutants to investigate LOT formation and colonization of the olfactory cortex in embryos in which loss of Gli3 function is restricted to the dorsal telencephalon. These mutants form an olfactory bulb like structure which does not protrude from the telencephalic surface. Nevertheless, mitral cells are formed and their axons enter the piriform cortex though the LOT is shifted medially. Mitral axons also innervate a larger target area consistent with an enlargement of the piriform cortex and form aberrant projections into the deeper layers of the piriform cortex. No obvious differences were found in the expression patterns of key guidance cues. However, we found that an expansion of the piriform cortex temporally coincides with the arrival of LOT axons, suggesting that Gli3 affects LOT positioning and target area innervation through controlling the development of the piriform cortex.

  11. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma

    Jörn Lötsch

    2016-01-01

    Full Text Available The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81, or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50, or phantosmia, i.e., olfactory hallucinations (n = 22. A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time.

  12. The structural organization and immunohistochemistry of G-protein alpha subunits in the olfactory system of the air-breathing mudskipper, Periophthalmus barbarus (Linnaeus, 1766) (Gobiidae, Oxudercinae).

    Kuciel, Michał; Rita Lauriano, Eugenia; Silvestri, Giuseppa; Zuwała, Krystyna; Pergolizzi, Simona; Zaccone, Daniele

    2014-01-01

    The study provides the first comprehensive information on the immunohistochemistry and ultrastructure of the olfactory receptor neurons (ORNs) in the mudskipper, Periophthalmus barbarus. The olfactory sensory epithelium is in the form of islets which cover part of the olfactory canal running from the upper lip toward the eye, where large single accessory nasal sacs occur. Within the islets, microvillous, ciliated and crypt ORNs were observed as well as giant cells and sparse non-sensory ciliated cells. Around the islets and in the walls of accessory nasal sacs, there are epidermal cells with microridges typical of fish epidermis. Close to the entrance to the accessory nasal sac, in the non-sensory epithelium of the nasal cavity and the skin epithelium covering the olfactory organ, areas of solitary chemosensory cells (SCCs) are reported for the first time. The distribution of the various ORN cell types is assessed through the immunohistochemistry against olfactory receptor coupled G-proteins. The ciliated ORNs were labeled by G alpha olf/s antibody. The ORNs with microvilli and crypt cells were G alpha i-3 immunoreactive.

  13. Are olfactory receptors really olfactive?

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  14. Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System

    Jaafar, Carine; Omais, Saad; Al Lafi, Sawsan; El Jamal, Nadim; Noubani, Mohammad; Skaf, Larissa; Ghanem, Noël

    2016-01-01

    The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development. PMID:27667971

  15. The accessory fallopian tube: A rare anomaly

    Kusum R Gandhi

    2012-01-01

    Full Text Available This paper presents a rare anatomical variation in the form of accessory fallopian tube on right side. The duplication of fallopian tube was observed in a 34-year-old female during routine undergraduate dissection in our department. Fallopian tube is the part of uterus that carries the ovum from the ovary to the uterus. Accessory fallopian tube is the congenital anomaly attached to the ampullary part of main tube. This accessory tube is common site of pyosalpinx, hydrosalpinx, cystic swelling and torsion. The ovum released by the ovary may also be captured by the blind accessory tube leading to infertility or ectopic pregnancy. Hence, all patients of infertility or pelvic inflammatory disease should be screened to rule out the presence of accessory fallopian tube and if encountered should be removed.

  16. A case report: accessory right renal artery

    Patasi B

    2009-10-01

    Full Text Available Anatomical variations in the origin of the arteries in the abdominal area are very common. The arteries that show frequent variations include the celiac trunk, renal and gonadal arteries. During a routine dissection of a male cadaver, one main and one inferior accessory renal artery were found in the abdominal region. We discovered that the inferior accessory renal artery that originated from the right anterolateral aspect of abdominal aorta was running into the lower pole of the right kidney. The origin of the main right renal artery and the inferior accessory right renal artery were 19.8 mm and 53 mm below the superior mesenteric artery, respectively. The inferior accessory right renal artery ran directly into the inferior pole of the right kidney, in the area where the accessory right renal vein was leaving the right kidney. These anatomical variations and anomalies are important to know before any therapeutic or diagnostic procedures are performed in the abdominal area.

  17. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

    Lykas, C.; Vegalas, I.; Gougaulias, N.

    2014-06-01

    The effect of olive mill wastewater (OMW) on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH), fresh mass (FM) and dry mass (DM) of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs. (Author)

  18. Supernumerary Formation of Olfactory Glomeruli Induced by Chronic Odorant Exposure: A Constructivist Expression of Neural Plasticity

    Valle-Leija, Pablo; Blanco-Hernández, Eduardo; Drucker-Colín, Rene; Gutiérrez-Ospina, Gabriel; Vidaltamayo, Roman

    2012-01-01

    It is accepted that sensory experience instructs the remodelling of neuronal circuits during postnatal development, after their specification has occurred. The story is less clear with regard to the role of experience during the initial formation of neuronal circuits, whether prenatal or postnatal, since this process is now supposed to be primarily influenced by genetic determinants and spontaneous neuronal firing. Here we evaluated this last issue by examining the effect that postnatal chronic exposure to cognate odorants has on the formation of I7 and M72 glomeruli, iterated olfactory circuits that are formed before and after birth, respectively. We took advantage of double knock-in mice whose I7 and M72 primary afferents express green fluorescent protein and β-galactosidase, correspondingly. Our results revealed that postnatal odorant chronic exposure led to the formation of permanent supernumerary I7 and M72 glomeruli in a dose and time dependent manner. Glomeruli in exposed mice were formed within the same regions of olfactory bulb and occupy small space volumes compared to the corresponding single circuits in non-exposed mice. We suggest that local reorganization of the primary afferents could participate in the process of formation of supernumerary glomeruli. Overall, our results support that sensory experience indeed instructs the permanent formation of specific glomeruli in the mouse olfactory bulb by means of constructivist processes. PMID:22511987

  19. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  20. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Hao Zhao; Qing Li; Bao-lin Yang; Zeng-xu Liu; Qing Yu; Wen-jun Zhang; Keng Yuan; Hui-hong Zeng; Gao-chun Zhu; De-ming Liu

    2015-01-01

    Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of puriifed transplanted olfactory ensheathing cells (OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microen-capsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L4–5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencap-sulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results conifrm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L4–5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  1. Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding.

    Bao, Guobin; de Jong, Daniëlle; Alevra, Mihai; Schild, Detlev

    2015-12-01

    Olfactory receptor neurons (ORNs) have high-voltage-gated Ca(2+) channels whose physiological impact has remained enigmatic since the voltage-gated conductances in this cell type were first described in the 1980s. Here we show that in ORN somata of Xenopus laevis tadpoles these channels are clustered and co-expressed with large-conductance potassium (BK) channels. We found approximately five clusters per ORN and twelve Ca(2+) channels per cluster. The action potential-triggered activation of BK channels accelerates the repolarization of action potentials and shortens interspike intervals during odour responses. This increases the sensitivity of individual ORNs to odorants. At the level of mitral cells of the olfactory bulb, odour qualities have been shown to be coded by first-spike-latency patterns. The system of Ca(2+) and BK channels in ORNs appears to be important for correct odour coding because the blockage of BK channels not only affects ORN spiking patterns but also changes the latency pattern representation of odours in the olfactory bulb.

  2. Olfactory ensheathing cells of hamsters, rabbits, monkeys, and mice express α-smooth muscle actin.

    Rawji, Khalil S; Zhang, Shannon X; Tsai, Ying-Yu; Smithson, Laura J; Kawaja, Michael D

    2013-07-12

    Olfactory ensheathing cells (OECs) are the chief glial population of the mammalian olfactory nervous system, residing in the olfactory mucosa and at the surface of the olfactory bulb. We investigated the neurochemical features of OECs in a variety of mammalian species (including adult hamsters, rabbits, monkeys, and mice, as well as fetal pigs) using three biomarkers: α-smooth muscle actin (αSMA), S100β, and glial fibrillary acidic protein (GFAP). Mucosal and bulbar OECs from all five mammalian species express S100β. Both mucosal and bulbar OECs of monkeys express αSMA, yet only bulbar OECs of hamsters and only mucosal OECs of rabbits express αSMA as well. Mucosal OECs, but not bulbar OECs, also express GFAP in hamsters and monkeys; mice, by comparison, have only a sparse population of OECs expressing GFAP. Though αSMA immunostaining is not detected in OECs of adult mice, GFAP-expressing mucosal OECs isolated from adult mice do coexpress αSMA in vitro. Moreover, mucosal OECs from adult mutant mice lacking αSMA expression display perturbed cellular morphology (i.e., fewer cytoplasmic processes extending among the hundreds of olfactory axons in the olfactory nerve fascicles and nuclei having degenerative features). In sum, these findings highlight the efficacy of αSMA and S100β as biomarkers of OECs from a variety of mammalian species. These observations provide definitive evidence that mammalian OECs express the structural protein αSMA (at various levels of detection), which appears to play a pivotal role in their ensheathment of olfactory axons.

  3. Transplantation of olfactory ensheathing cells for promoting regeneration following spinal cord injury

    Kaijun Liu

    2007-01-01

    OBJECTIVE: To investigate the status of olfactory ensheathing cells (OECs) transplantation in facilitating the regeneration of spinal cord injury.DATA SOURCES: Articles about OECs transplantation in treating spinal cord injury were searched in Pubmed database published in English from January 1981 to December 2005 by using the keywords of "olfactory ensheathing cells, transplantation, spinal cord injury".STUDY SELECTION: The data were checked primarily, literatures related to OECs transplantation and the regeneration of spinal cord injury were selected, whereas the repetitive studies and reviews were excluded.DATA EXTRACTION: Totally 43 articles about OECs transplantation and the regeneration and repair of spinal cord injury were collected, and the repetitive ones were excluded.DATA SYNTHESIS: There were 35 articles accorded with the criteria. OECs are the olfactory ensheathing glias isolated from olfactory bulb and olfactory nerve tissue. OECs have the characters of both Schwann cells in central nervous system and peripheral astrocytes. The transplanted OECs can migrate in the damaged spinal cord of host, can induce and support the regeneration, growth and extension of damaged neuritis.Besides, transgenic technique can enable it to carry some exogenous genes that promote neuronal regeneration, and express some molecules that can facilitate neural regeneration, so as to ameliorate the internal environment of nerve injury, induce the regeneration of damaged spinal cord neurons, which can stimulate the regeneration potential of the damaged spinal cord to reach the purpose of spinal cord regeneration and functional recovery.CONCLUSION: OECs are the glial cells with the energy for growth at mature phase, they can myelinize axons, secrete various biological nutrition factors, and then protect and support neurons, also facilitate neural regeneration. OECs have been successfully isolated from nasal olfactory mucosa and olfactory nerve.Therefore, autologous transplantation

  4. Sensory deprivation disrupts homeostatic regeneration of newly generated olfactory sensory neurons after injury in adult mice.

    Kikuta, Shu; Sakamoto, Takashi; Nagayama, Shin; Kanaya, Kaori; Kinoshita, Makoto; Kondo, Kenji; Tsunoda, Koichi; Mori, Kensaku; Yamasoba, Tatsuya

    2015-02-11

    Although it is well known that injury induces the generation of a substantial number of new olfactory sensory neurons (OSNs) in the adult olfactory epithelium (OE), it is not well understood whether olfactory sensory input influences the survival and maturation of these injury-induced OSNs in adults. Here, we investigated whether olfactory sensory deprivation affected the dynamic incorporation of newly generated OSNs 3, 7, 14, and 28 d after injury in adult mice. Mice were unilaterally deprived of olfactory sensory input by inserting a silicone tube into their nostrils. Methimazole, an olfactotoxic drug, was also injected intraperitoneally to bilaterally ablate OSNs. The OE was restored to its preinjury condition with new OSNs by day 28. No significant differences in the numbers of olfactory marker protein-positive mature OSNs or apoptotic OSNs were observed between the deprived and nondeprived sides 0-7 d after injury. However, between days 7 and 28, the sensory-deprived side showed markedly fewer OSNs and mature OSNs, but more apoptotic OSNs, than the nondeprived side. Intrinsic functional imaging of the dorsal surface of the olfactory bulb at day 28 revealed that responses to odor stimulation were weaker in the deprived side compared with those in the nondeprived side. Furthermore, prevention of cell death in new neurons 7-14 d after injury promoted the recovery of the OE. These results indicate that, in the adult OE, sensory deprivation disrupts compensatory OSN regeneration after injury and that newly generated OSNs have a critical time window for sensory-input-dependent survival 7-14 d after injury.

  5. Research Progresses in Fish Olfactory System and Sex Pheromonal Receptors%鱼类嗅觉系统和性信息素受体的研究进展

    赖晓健; 洪万树; 张其永

    2013-01-01

    鱼类嗅觉系统包括外部嗅觉器官、嗅神经和嗅球三个部分.嗅觉器官也称为嗅囊,由嗅上皮和髓质组成.气味物质的化学信息主要由嗅上皮上随机分布的嗅觉感受神经元感知,通过嗅神经将嗅觉信息传递到嗅球,嗅球在空间上有不同的功能分区,嗅觉信息经过嗅球各分区整合后分别传入端脑,发挥其生理功能.性信息素在鱼类生殖过程中的作用是通过嗅觉系统来完成的,其中嗅觉感受神经元上的性信息素受体起着重要作用.鱼类性信息素受体的研究主要从两个方面入手,一是从低浓度特异的性信息素引起嗅觉器官电生理反应或行为反应入手,寻找特异的性信息素受体;二是参照哺乳动物嗅觉受体的研究结果,从嗅觉受体基因遗传保守性入手,研究鱼类性信息素受体的结构与功能.%Fish olfactory system is composed of olfactory sac, olfactory nerve and olfactory bulb. Olfactory sac, also called olfactory organ, is composed of olfactory epithelium and central core. Chemical signals are first detected by the olfactory receptor neurons that randomly distribute in the entire olfactory epithelium, and then transferred to the olfactory bulb through the olfactory nerve. There exist different functional regions in the olfactory bulb, where the chemical signals are integrated and transferred to the telencephalon to play physiological functions. The sex pheromones play their functions through the olfactory system in fish reproduction, and the sex pheromonal receptors of the olfactory neurons play an important role. Usually, two approaches are used to investigate the sex pheromonal receptors in fishes: the first is based on species-specific electrophysiological or behavioral responses to sex pheromones at very low concentrations, and the second is based on the conservative structures of receptors genes taking reference of the mammalian counterparts.

  6. Epifascial accessory palmaris longus muscle.

    Tiengo, Cesare; Macchi, Veronica; Stecco, Carla; Bassetto, Franco; De Caro, Raffaele

    2006-09-01

    In hand reconstructive surgery the palmaris longus muscle is one of the most utilized donor site for tendon reconstruction procedures. However, its anatomic position is variable and anatomic variations may be responsible for median nerve compression. We report the case of a 40-year-old, right-handed woman, who presented with numbness and paresthesias in the palm and in the flexor aspect of the first, second, and third fingers of her right hand for the preceding 5 months, coinciding with increase of office work (typing). The clinical examination and radiological investigations (ultrasound and magnetic resonance) revealed a subcutaneous mass (15 mm x 2.3 mm x 6 cm), with a lenticular shape and definite edges at the level of the volar aspect of the distal third of the forearm. The fine-needle aspiration biopsy revealed the presence of striated muscle fibers. During surgery, a muscle belly was found in the epifascial plane. This muscle originated from subcutaneous septa in the middle forearm and inserted on to the superficial palmar aponeurosis with fine short tendon fibers. Exposure of the antebrachial fascia did not reveal any area of weakness or muscle herniation. The palmaris longus tendon, flexor digitorum superficialis tendons, and flexor carpi radialis tendon showed usual topography under the antebrachial fascia. The accessory muscle was excised and histology revealed unremarkable striated muscle fibers, limited by a thin connective sheath. The presence of an accessory palmaris longus (APL) located in the epifascial plane could be ascribed to an unusual migration of myoblasts during the morphogenesis. Although extremely rare, APL is worth bearing in mind as a possible cause of median nerve compression and etiology of a volar mass in the distal forearm.

  7. 2,6-二异丙基苯酚逆转嗅球切除抑郁模型大鼠电休克后的Tau蛋白过度磷酸化和认知障碍%2,6-Diisopropylphenol Protects Against The Impairment of Learning-memory and Reduces The Hyperphosphorylation of Protein Tau Induced by Electroconvulsive Shock in The Depression Model Rats Whose Olfactory Bulbs Were Removed

    刘超; 闵苏; 魏柯; 刘东; 董军; 罗洁; 刘小滨

    2012-01-01

    Protein Tau is a very unequal phosphoric microtubule associated protein, which affect the transport of substances in the axons of the neurons, whose phosphorylation is one of the key methods to regulate neuronal function. The hyperphosphorylation of protein Tau can damage the learning and memory of rats. The impairment of learning-memory induced by electroconvulsive shock in depressed rats is relevant to the function failure of glutamic acid signal system. The phosphorylation of protein Tau can be up-regulated by the individual stress level through the excitatory neurotransmission system. The mechanisms of 2, 6-diisopropylphenol effect on the central nerve system relate to inhibiting the release of glutamic acid and the activity of NMDAR. And the 2, 6-diisopropylphenol can protects against the impairment of learning-memory induced by electroconvulsive shock in depressed rats though inhibiting the excitotoxicty of glutamate. The rise of glutamic acid which induced by electroconvulsive shock in depressed rats can lead to the impairment of learning-memory through up-regulating the hyperphosphorylation of protein Tau? The 2, 6-diisopropylphenol can protect against this process? This study explore the reversion of the 2, 6-diisopropylphenol against the impairment of learning-memory and the hyperphosphorylation of protein Tau induced by electroconvulsive shock in depressed rats, in order to provide experimental evidence for neuropsychological mechanisms on improving learning and memory and the clinical intervention treatment. According to the design of factorial analysis, two intervention factors were set up: the electroconvulsive shock (two levels: no disposition; a course of electroconvulsive shock) and the 2, 6-diisopropylphenol (two levels: 5 ml Saline was injected peritoneally; 5 ml 2, 6-diisopropylphenol was injected peritoneally by dosage of 100 mg/kg). Thirty-two adult depression model rats whose olfactory bulbs were removed were randomly divided into four

  8. Development of the main olfactory system and main olfactory epithelium-dependent male mating behavior are altered in Go-deficient mice

    Choi, Jung-Mi; Kim, Sung-Soo; Choi, Chan-Il; Cha, Hye Lim; Oh, Huy-Hyen; Ghil, Sungho; Lee, Young-Don; Birnbaumer, Lutz; Suh-Kim, Haeyoung

    2016-01-01

    In mammals, initial detection of olfactory stimuli is mediated by sensory neurons in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). The heterotrimeric GTP-binding protein Go is widely expressed in the MOE and VNO of mice. Early studies indicated that Go expression in VNO sensory neurons is critical for directing social and sexual behaviors in female mice [Oboti L, et al. (2014) BMC Biol 12:31]. However, the physiological functions of Go in the MOE have remained poorly defined. Here, we examined the role of Go in the MOE using mice lacking the α subunit of Go. Development of the olfactory bulb (OB) was perturbed in mutant mice as a result of reduced neurogenesis and increased cell death. The balance between cell types of OB interneurons was altered in mutant mice, with an increase in the number of tyrosine hydroxylase-positive interneurons at the expense of calbindin-positive interneurons. Sexual behavior toward female mice and preference for female urine odors by olfactory sensory neurons in the MOE were abolished in mutant male mice. Our data suggest that Go signaling is essential for the structural and functional integrity of the MOE and for specification of OB interneurons, which in turn are required for the transmission of pheromone signals and the initiation of mating behavior with the opposite sex. PMID:27625425

  9. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  10. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction.

    Baum, Michael J; Cherry, James A

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.

  11. [The 2004 Nobel Prize for Physiology or Medicine for research into smell receptors and the organization of the olfactory system].

    Burbach, J P H

    2004-12-25

    The 2004 Nobel Prize for Physiology or Medicine has been awarded to Richard Axel and Linda B. Buck, for their discovery of smell receptors and the organisation of the olfactory system. Their original discovery concerned the identification of some 1000 genes that code for smell receptors in the olfactory epithelium of the rat. They also demonstrated that each receptor can only be activated by a limited number of odourants and that there is some overlap in specificity with other smell receptors. Odourants in inhaled air are specifically recognized and bound by the smell receptors on the olfactory neurones in the nasal epithelium. The activated neurones send an electrical signal to the mitral cells, the dendrites of which lie in the glomeruli of the olfactory bulb. In each olfactory neuron only one smell receptor gene is expressed. Neurones with the same type of receptor are spread throughout the epithelium but converge in the same glomerulus. An olfactory map is formed by means of mitral-cell projections which run to the cerebral cortex as well as to other parts of the brain. Possibly the information gained about odourants will be applied in the areas of physiology and pathophysiology; in the field of pharmacology for example where odourants may be used in the treatment of disorders of fertility, behaviour or mood.

  12. Hearing light from an incandescent bulb

    Zhu, Zheyuan; Du, Li; Zhang, Youtian; Wang, Sihui; Zhou, Huijun; Gao, Wenli

    2015-01-01

    In this paper, we present an interesting experiment to turn the vibratory light from an incandescent light bulb into audible sound. Inspired by research on the photoacoustic effect (PAE) using lasers, we construct a similar device in an undergraduate physics laboratory with everyday articles including light bulbs, glass beakers and soot. Using our device, a distinct sound is detected and analysed experimentally. Particular attention is paid to the attenuation effect of the acoustic signal, which can be explained by modifying the existing theory and using the adiabatic boundary condition according to the incident light source we use. This demonstration is a comprehensive experiment with the combination of sound, light and heat. The modification on the model can help undergraduate students gain an intuitive understanding of different boundary conditions.

  13. Synaptic degeneration and remodelling after fast kindling of the olfactory bulb

    Woldbye, D P; Bolwig, T G; Kragh, J

    1996-01-01

    in the basolateral amygdala and dentate gyrus, suggesting that these regions may be functionally altered during the kindling process. In the piriform cortex and dentate gyrus increased NCAM/D3(SNAP-25) ratios found ipsilaterally at seven days after kindling probably reflect an elevated rate of synaptic remodelling....... At this time, however, an overall pattern of ipsilateral decreases in the synaptic marker proteins NCAM and D3(SNAP-25) indicated that this remodelling occurred on a background of synaptic degeneration. These results confirm previous studies showing that kindling is associated with synaptic remodelling...

  14. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    K.G. Akers (Katherine); S.A. Kushner (Steven); A.T. Leslie (Ana); L. Clarke (Laura); D. van der Kooy (Derek); J.P. Lerch (Jason); P.W. Frankland (Paul)

    2011-01-01

    textabstractBackground: Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavior

  15. Developmental Markers Expressed in Neocortical Layers Are Differentially Exhibited in Olfactory Cortex.

    Peter C Brunjes

    Full Text Available Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3 levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC. Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory

  16. Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus

    Andrea eBader

    2012-11-01

    Full Text Available Olfactory sensory neurons which express a member from the OR37 subfamily of odorant receptor genes are wired to the main olfactory bulb in a unique monoglomerular fashion; from these glomeruli an untypical connectivity into higher brain centers exists. In the present study we have investigated by DiI and transsynaptic tracing approaches how the connection pattern from these glomeruli into distinct hypothalamic nuclei is organized. The application of DiI onto the ventral domain of the bulb which harbors the OR37 glomeruli resulted in the labeling of fibers within the paraventricular and supraoptic nucleus of the hypothalamus; some of these fibers were covered with varicose-like structures. No DiI-labeled cell somata were detectable in these nuclei. The data indicate that projection neurons which originate in the OR37 region of the main olfactory bulb form direct connections into these nuclei. The cells that were labeled by the transsynaptic tracer WGA in these nuclei were further characterized. Their distribution pattern in the paraventricular nucleus was reminiscent of cells which produce distinct neuropeptides. Double labeling experiments confirmed that they contained vasopressin, but not the related neuropeptide oxytocin. Morphological analysis revealed that they comprise of magno- and parvocellular cells. A comparative investigation of the WGA-positive cells in the supraoptic nucleus demonstrated that these were vasopressin-positive, as well, whereas oxytocin-producing cells of this nucleus also contained no transsynaptic tracer. Together, the data demonstrate a connectivity from OR37 expressing sensory neurons to distinct hypothalamic neurons with the same neuropeptide content.

  17. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression.

    Puneet Rinwa

    Full Text Available OBJECTIVES: Bilateral destruction of the olfactory bulbs is known to cause behavioral changes analogous to symptoms of depression. Curcumin, a traditional Indian spice is currently being investigated in different psychiatric problems including depression. Dietary phytochemicals are currently used as an adjuvant therapy to accelerate their therapeutic efficacy. Therefore, the present study is an attempt to elucidate the neuroprotective mechanism of curcumin and its co-administration with piperine against olfactory bulbectomy induced depression in rats. METHODS: Rats undergone olfactory bulbs ablations were analyzed after post-surgical rehabilitation period of 2 weeks. Animals were then treated with different doses of curcumin (100, 200 and 400 mg/kg; p.o., piperine (20 mg/kg; p.o. and their combination daily for another 2 weeks. Imipramine (10 mg/kg; i.p. served as a standard control. Various behavioral tests like forced swim test (FST, open field behaviour and sucrose preference test (SPT were performed, followed by estimation of biochemical, mitochondrial, molecular and histopathological parameters in rat brain. RESULTS: Ablation of olfactory bulbs caused depression-like symptoms as evidenced by increased immobility time in FST, hyperactivity in open field arena, and anhedonic like response in SPT along with alterations in mitochondrial enzyme complexes, increased serum corticosterone levels and oxidative damage. These deficits were integrated with increased inflammatory cytokines (TNF-α and apoptotic factor (caspase-3 levels along with a marked reduction in neurogenesis factor (BDNF in the brain of olfactory bulbectomized (OBX rats. Curcumin treatment significantly and dose-dependently restored all these behavioral, biochemical, mitochondrial, molecular and histopathological alterations associated with OBX induced depression. Further, co-administration of piperine with curcumin significantly potentiated their neuroprotective effects as

  18. Orientation in birds. Olfactory navigation.

    Papi, F

    1991-01-01

    Research work on the olfactory navigation of birds, which has only recently attracted attention, has shown that many wild species rely on an osmotactic mechanism to find food sources, even at a considerable distance. The homing pigeon, the only bird to have been thoroughly investigated with respect to olfactory navigation, has been found to rely on local odours for homeward orientation, and to integrate olfactory cues perceived during passive transportation with those picked up at the release site. It is possible to design experiments in which birds are given false olfactory information, and predictions about the effects of this can be made and tested. Pigeons are able to home from unfamiliar sites because they acquire an olfactory map extending beyond the area they have flown over. The olfactory map is built up by associating wind-borne odours with the direction from which they come; this was shown by experiments which aimed to prevent, limit or alter this association. One aim of the research work has been to test whether pigeons flying over unfamiliar areas also rely or can learn to rely on non-olfactory cues, depending on their local availability, and/or on the methods of rearing and training applied to them. Various evaluations have been made of the results; the most recent experiments, however, confirm that pigeons do derive directional information from atmospheric odours. A neurobiological approach is also in progress; its results show that some telencephalic areas are involved in orientation and olfactory navigation. The lack of any knowledge about the distribution and chemical nature of the odorants which allow pigeons to navigate hinders progress in this area of research.

  19. [New data on olfactory control of estral receptivity of female rats].

    Satli, M A; Aron, C

    1976-03-01

    Olfactory bulb deprivation increased sexual receptivity in 4-day cyclic female rats on the late afternoon of prooestrus (6-7, p.m.). The proportion of receptive females was higher in bulbectomized (B) than in sham operated (SH) animals. On the contrary the same proportion of B and SH females mated in the evening of prooestrus (10. 30-11. 30 p.m.). An increased lordosis quotient was observed in the B females at either of these two stages of the cycle.

  20. Perception of odors linked to precise timing in the olfactory system.

    Michelle R Rebello

    2014-12-01

    Full Text Available While the timing of neuronal activity in the olfactory bulb (OB relative to sniffing has been the object of many studies, the behavioral relevance of timing information generated by patterned activation within the bulbar response has not been explored. Here we show, using sniff-triggered, dynamic, 2-D, optogenetic stimulation of mitral/tufted cells, that virtual odors that differ by as little as 13 ms are distinguishable by mice. Further, mice are capable of discriminating a virtual odor movie based on an optically imaged OB odor response versus the same virtual odor devoid of temporal dynamics-independently of the sniff-phase. Together with studies showing the behavioral relevance of graded glomerular responses and the response timing relative to odor sampling, these results imply that the mammalian olfactory system is capable of very high transient information transmission rates.

  1. Electrophysiological characterization of male goldfish (Carassius auratus ventral preoptic area neurons receiving olfactory inputs

    Wudu E. Lado

    2014-06-01

    Full Text Available Chemical communication via sex pheromones is critical for successful reproduction but the underlying neural mechanisms are not well-understood. The goldfish is a tractable model because sex pheromones have been well-characterized in this species. We used male goldfish forebrain explants in vitro and performed whole-cell current clamp recordings from single neurons in the ventral preoptic area (vPOA to characterize their membrane properties and synaptic inputs from the olfactory bulbs (OB. Principle component and cluster analyses based on intrinsic membrane properties of vPOA neurons (N = 107 revealed five (I-V distinct cell groups. These cells displayed differences in their input resistance (Rinput: I II = IV > III = V. Evidence from electrical stimulation of the OB and application of receptor antagonists suggests that vPOA neurons receive monosynaptic glutamatergic inputs via the medial olfactory tract, with connectivity varying among neuronal groups [I (24%, II (40%, III (0%, IV (34% and V (2%].

  2. [Spinal accessory nerve and lymphatic neck dissection].

    Pinsolle, V; Michelet, V; Majoufre, C; Caix, P; Siberchicot, F; Pinsolle, J

    1997-09-01

    Radical neck dissection was the golden standard of treatment for cervical nodes in head and neck tumors. From the seventies, the preservation of the spinal accessory nerve has become increasingly popular in order to improve the functional result of the neck dissections. The aim of this study was to assess the degree of functional disability associated with each type of neck dissection and the value of anatomical references for dissection of the spinal accessory nerve. One hundred twenty seven patients were evaluated 1 month and 1 year after radical, functional or supraomohyoid neck dissection with a questionnaire and a physical examination. Anatomical measurements of the spinal accessory nerve were performed in 20 patients. We found considerable or severe shoulder dysfunction in 7%, 34% and 51% respectively of patients in whom supraomohyoid, functional and radical neck dissections were performed. Furthermore 49% of patients having undergone a radical neck dissection had little or no symptoms. Sacrifice of the spinal accessory nerve in radical neck dissection may lead to shoulder dysfunction. A functional disability may also be associated, although in a less extent, with any neck dissection in which the spinal accessory nerve is dissected and placed in traction. There is a large variation in the degree of functional disability and pain in patients with similar neck dissections. The course of the spinal accessory nerve in the neck makes it particularly vulnerable to injury during the dissection near the sternocleidomastoid muscle and in the posterior cervical triangle.

  3. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection

    GUAN Jing; NI Dao-feng; WANG Jian; GAO Zhi-qiang

    2009-01-01

    Background Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). Methods We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. Results An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. Conclusions We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrephysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  4. Origin and endpoint of the olfactory nerve fibers: as described by Santiago Ramón y Cajal.

    Levine, Catherine; Marcillo, Alexander

    2008-07-01

    In the late Nineteenth Century, Santiago Ramón y Cajal was able to reproduce an exceptional illustration of the Olfactory Nerve pathway and its myriad of cells, by using the Golgi Method. Dr. Cajal focused intense study on the histology of the nervous system and published a treatise on the olfactory nerve fibers and the distinct peripheral origin and central nervous system endpoint of this unique pathway. The original title of this work is "Origen y terminación de las fibras nerviosas olfatorias" published in 1890. As the original publication is in Spanish, here we provide an English translation allowing present-day English speakers to read these writings. Cajal followed the trajectory of the olfactory nerve fibers as they transitioned between the peripheral and central nervous system and was able to assert that these fibers were not continuous from the olfactory bulb to the bipolar cells that relinquish into the olfactory epithelium, but that the olfactory system was made up of various cell types each having distinct morphologies and functions. This may very well be the first definitive description of the olfactory receptor neurons and the first illustrations of the continuity of these cells throughout the olfactory pathway. These meticulous histological preparations were created by first using Camillo Golgi's potassium dichromate and silver nitrate impregnation method known as "reazione nera" or "black reaction," where nerve cells, nerve fibers, and neuroglia could be visualized. This study exhibits the structural and functional organization of the mammalian fila olfactoria as it was investigated in centuries past.

  5. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium.

    Krolewski, Richard C; Packard, Adam; Schwob, James E

    2013-03-01

    Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion.

  6. Defining sale ethylene for long term storage of tulip bulbs

    Wild, de, H.P.J.; Peppelenbos, H.W.; Dijkstra, M.H.G.E.; Gude, H.

    2002-01-01

    The maximum ethylene level that can be permitted in storage rooms, without causing damage to tulip bulbs, is not exactly known. Therefore, a zero-tolerance for the presence of ethylene during storage of tulip bulbs is common practice. This results in excessive ventilation and coherent large energy costs. It is questioned whether this is always necessary. In different phases of the storage period the critical levels of ethylene were determined. Bulbs of eight economically important cultivars (...

  7. The mouse olfactory peduncle. 3. Development of neurons, glia and centrifugal afferents

    Peter eBrunjes

    2014-06-01

    Full Text Available The present series of studies was designed to provide a general overview of the development of the region connecting the olfactory bulb to the forebrain. The olfactory peduncle contains several structures involved in processing odor information with the anterior olfactory nucleus (cortex being the largest and most studied. Results indicate that considerable growth occurs in the peduncle from postnatal day (P10-P20, with reduced expansion from P20-P30. No evidence was found for the addition of new projection or interneurons during the postnatal period. GABAergic cells decreased in both number and density after P10. Glial populations exhibited different patterns of development, with astrocytes declining in density from P10-P30, and both oligodendrocytes and microglia increasing through the interval. Myelination in the anterior commissure emerged between P11-14. Dense cholinergic innervation was observed at P10 and remained relatively stable through P30, while considerable maturation of serotonergic innervation occurred through the period. Unilateral naris occlusion from P1-P30 resulted in about a 30% reduction in the size of the ipsilateral peduncle but few changes were observed on the contralateral side. The ipsilateral peduncle also exhibited higher densities of GAD67- containing interneurons and cholinergic fibers suggesting a delay in normal developmental pruning. Lower densities of interneurons expressing CCK, somatostatin and NPY and in myelin basic protein staining were also observed. Understanding variations in developmental trajectories within the olfactory peduncle may be an important tool for unravelling the functions of the region.

  8. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  9. Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative disorders and MPTP-treated monkeys.

    Mundiñano, Iñaki-Carril; Hernandez, Maria; Dicaudo, Carla; Ordoñez, Cristina; Marcilla, Irene; Tuñon, Maria-Teresa; Luquin, Maria-Rosario

    2013-09-01

    Olfactory impairment is a common feature of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Olfactory bulb (OB) pathology in these diseases shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. Since cholinergic denervation might be a common underlying pathophysiological feature, the objective of this study was to determine cholinergic innervation of the OB in 27 patients with histological diagnosis of PD (n = 5), AD (n = 14), DLB (n = 8) and 8 healthy control subjects. Cholinergic centrifugal inputs to the OB were clearly reduced in all patients, the most significant decrease being in the DLB group. We also studied cholinergic innervation of the OB in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (n = 7) and 7 intact animals. In MPTP-monkeys, we found that cholinergic innervation of the OB was reduced compared to control animals (n = 7). Interestingly, in MPTP-monkeys, we also detected a loss of cholinergic neurons and decreased dopaminergic innervation in the horizontal limb of the diagonal band, which is the origin of the centrifugal cholinergic input to the OB. All these data suggest that cholinergic damage in the OB might contribute, at least in part, to the olfactory dysfunction usually exhibited by these patients. Moreover, decreased cholinergic input to the OB found in MPTP-monkeys suggests that dopamine depletion in itself might reduce the cholinergic tone of basal forebrain cholinergic neurons.

  10. Which solvent for olfactory testing?

    Philpott, C M; Goodenough, P C; Wolstenholme, C R; Murty, G E

    2004-12-01

    The physical properties of any carrier can deteriorate over time and thus alter the results in any olfactory test. The aim of this study was to evaluate clinically potential solvents as a clean odourless carrier for olfactory testing. Sweet almond oil, pure coconut oil, pure peach kernel oil, dipropylene glycol, monopropylene glycol, mineral oil and silicone oil were studied. The experimentation was conducted in two parts. First, an olfactory device was used to conduct air through the solvents on a weekly basis using a cohort of six volunteers to assess the perceived odour of each solvent at weekly intervals. Secondly a cross-reference test was performed using small bottled solutions of phenylethyl-alcohol and 1-butanol in 10-fold dilutions to compare any perceived difference in concentrations over a period of 8 weeks. We concluded that mineral oil is the most suitable carrier for the purpose of olfactory testing, possessing many desirable characteristics of an olfactory solvent, and that silicone oil may provide a suitable alternative for odorants with which it is miscible.

  11. Olfactory systems and neural circuits that modulate predator odor fear.

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  12. Somatic Embryogenesis in Lily Bulb Scale Cultures

    WANG Shasha; WANG Jingang; FAN Jinping; CHE Daidi

    2008-01-01

    Somatic embryogenesis from lily bulb scales has not been studied in details, although tissue culture methods have been applied to the propagation for decades. The effects of different kinds and concentration of auxins for oriental lily somatic embryogenesis were investigated (Lilium hybrida car. Sorbonne).2,4-dichlorophenoxyacetic acid (2,4-D), thidiazuron (TDZ) and α-naphthaleneacetic acid (NAA) media with benzyladenine(6-BA) and lactalbumin hydrolysate (LH) were used for embryogenic callus in the darkness. The best response onembryogenic callus formation was obtained on MS media supplemented 2, 4-D 2.0 mg·L-1,6-BA 0.5 mg·L-1 and LH 300 mg·L-1. Transfer embryogenic callus to the media with TDZ, 6-BA, kinetin (KT) supplemented 2, 4-D. The highest number of somatic embryos has been produced on medium with 0.5 mg.L-1 2, 4-D and 0.3 mg·L-1 KT. Germinated embryos with shoot axes were changed to MS media with 6-BA 0.5 mg· L-1. The results suggest that in vitro culture of somatic embryogenesis from lily bulb scales can be used for plant regeneration.

  13. Olfactory dysfunction in Down's Syndrome.

    Murphy, C; Jinich, S

    1996-01-01

    Down's Syndrome subjects over 40 years old show neuropathology similar to that of Alzheimer's disease. The olfactory system is particularly vulnerable in Alzheimer's disease, both anatomically and functionally. Several measures of sensory and cognitive functioning were studied in the older Down's Syndrome patient, with the hypothesis of significant olfactory dysfunction. Participants were 23 Down's subjects, and 23 controls. The Dementia Rating Scale showed mean scores of 103 for Down's subjects and 141 for controls. Down's subjects showed significant deficits in odor detection threshold, odor identification, and odor recognition memory. Normal performance in a taste threshold task, similar to the olfactory threshold task in subject demands, suggested that the Down's syndrome subjects' poor performance was not due to task demands. Deficits in olfaction may provide a sensitive and early indicator of the deterioration and progression of the brain in older subjects with Down's Syndrome.

  14. Aging in the olfactory system.

    Mobley, Arie S; Rodriguez-Gil, Diego J; Imamura, Fumiaki; Greer, Charles A

    2014-02-01

    With advancing age, the ability of humans to detect and discriminate odors declines. In light of the rapid progress in analyzing molecular and structural correlates of developing and adult olfactory systems, the paucity of information available on the aged olfactory system is startling. A rich literature documents the decline of olfactory acuity in aged humans, but the underlying cellular and molecular mechanisms are largely unknown. Using animal models, preliminary work is beginning to uncover differences between young and aged rodents that may help address the deficits seen in humans, but many questions remain unanswered. Recent studies of odorant receptor (OR) expression, synaptic organization, adult neurogenesis, and the contribution of cortical representation during aging suggest possible underlying mechanisms and new research directions.

  15. Conservation of garlic bulbs (Allium sativum L. ) by gamma irradiation

    Fernandez, J.; Arranz, T.

    1979-01-01

    The effect of different doses of gamma radiation (from 5 to 30 krad) on the conservation of garlic bulbs during a 12 months period is studied. Irradiations were made at three different times and the best results were obtained with the treatment given during the two months following harvest. During this period, 5 krad are enough to inhibit garlic bulbs sprouting.

  16. Defining sale ethylene for long term storage of tulip bulbs

    Wild, de H.P.J.; Peppelenbos, H.W.; Dijkstra, M.H.G.E.; Gude, H.

    2002-01-01

    The maximum ethylene level that can be permitted in storage rooms, without causing damage to tulip bulbs, is not exactly known. Therefore, a zero-tolerance for the presence of ethylene during storage of tulip bulbs is common practice. This results in excessive ventilation and coherent large energy c

  17. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  18. Cast functional accessories for heat treatment furnaces

    A. Drotlew

    2010-10-01

    Full Text Available The study gives examples of the cast functional accessories operating in furnaces for the heat treatment of metals and alloys. The describeddesign solutions of castings and their respective assemblies are used for charge preparation and handling. They were put in systematicorder depending on furnace design and the technological purpose of heat treatment. Basic grades of austenitic cast steel, used for castings of this type, were enumerated, and examples of general guidelines formulated for their use were stated. The functional accessories described in this study were designed and made by the Foundry Research Laboratory of West Pomeranian University of Technology.

  19. Effects of diethyldithiocarbamate on myelin basic protein expression in the rat lateral olfactory tract

    Kun Xiong; He Huang; Hui Wang; Yan Cai; Jing Yang; Jufang Huang; Xuegang Luo

    2009-01-01

    BACKGROUND: Dithiocarbamates can cause demyelination of axons in the peripheral nervous system. Its derivate, diethyldithiocarbamate, is cytotoxic, and causes olfactory mucosal damage and atrophy of the olfactory bulb. However, it is still unclear whether the myelin sheath of the lateral olfactory tract is affected by diethyldithiocarbamate.OBJECTIVE: To investigate the effects of diethyldithiocarbamate on the myelin sheath of the rat lateral olfactory tract. This was done by examining changes in myelin basic protein expression after diethyldithiocarbamate treatment.DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Laboratory of the Department of Human Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, China from July to November 2007.MATERIALS: A total of 72 Sprague Dawley rats were randomly assigned into a diethyldithiocarbamate group (n=32), a solvent control group (n=32), and a blank control group (n=8). The diethyldithiocarbamate and solvent control groups were separately divided into 3-d, 7-d, 14-d and 28-d survival subgroups, with eight rats in each. Diethyldithiocarbamate (Sigma, USA) and goat anti-myelin basic protein polyclonal antibody (Santa Cruz, USA) were used in this study.METHODS: Rats in the diethyldithiocarbamate and solvent control groups were subcutaneously injected with diethyldithiocarbamate (600 mg/kg) and 0.01 mol/L phosphate buffered saline (600 mg/kg) at the posterior neck, respectively. Rats in the blank control group received no treatment.MAIN OUTCOME MEASURES: Immunohistochemical staining and Western blot assay were used to measure myelin basic protein expression in the rat lateral olfactory tract.RESULTS: Following immunohistochemical staining, myelin basic protein was uniformly distributed in the rat lateral olfactory tract in the blank control and solvent control groups. Western blot assay showed 21.5, 18, 17 and 14 ku positive bands. No significant difference was found

  20. Olfactory dysfunction in Alzheimer’s disease

    Zou YM

    2016-04-01

    Full Text Available Yong-ming Zou, Da Lu, Li-ping Liu, Hui-hong Zhang, Yu-ying Zhou Department of Neurology, Tianjin Huanhu Hospital, Tianjin, People’s Republic of China Abstract: Alzheimer’s disease (AD is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. Keywords: olfactory dysfunction, Alzheimer’s disease, olfactory testing, progress

  1. [Accessory symptomatology and therapy of Gilles de la Tourette's disease].

    Achkova, M; Terziev, D

    1987-01-01

    Eight patients with Gilles de la Tourette's syndrome were examined. They had typical multiple tics and accessory disturbances--impulsive and reactive symptoms. The authors described the classification of accessory symptoms and the therapeutic approaches.

  2. Prevalence of olfactory and other developmental anomalies in patients with central hypogonadotropic hypogonadism

    Elisa eDella Valle

    2013-06-01

    Full Text Available Introduction: Hypogonadotropic hypogonadism (HH is a heterogenous disease caused by mutations in several genes. Based on the presence of hyposmia/anosmia it is distinguished into Kallmann syndrome and isolated HH. The prevalence of other developmental anomalies is not well established. Methods: We studied 36 patients with HH (31 males, 5 females, mean age 41.5, 9 with familial and 27 with sporadic HH (33 congenital, 3 adult-onset, by physical examination, smell test (BSIT Sensonics, audiometry, renal ultrasound, and magnetic resonance imaging of the olfactory structures. Results: Based on the smell test, patients were classified as normosmic (n=21, 58.3% and hypo/anosmic (n=15, 41.6%. Hypoplasy/agenesis of olfactory bulbs was found in 40% of patients (10/25, (75% hypo/anosmic, 7.6% normosmic, p<0.01, Fisher’s-test. Remarkably, olfactory structures were normal in 2 anosmic patients, while 1 normosmic patient presented a monolateral hypoplastic bulb. Fourteen of 33 patients (42.4% presented neurosensorial hearing loss of various degrees (28.5% hypo/anosmic, 52.6% normosmic, p=NS. Renal ultrasound revealed 27.7% of cases with renal anomalies (26.6% hypo/anosmic, 28.5% normosmic, p=NS. At least one midline defects was found in 50% of the patients (53.3% hypo/anosmic, 47.6% normosmic, p=NS, including abnormal palate, dental anomalies, pectus excavatum, bimanual synkinesis, iris coloboma and absent nasal cartilage. Anamnestically 4/31 patients reported cryptorchidism (25% hypo/anosmic, 5.2% normosmic, p=NS. Conclusions: Hypo-anosmia is significantly related to anatomical anomalies of the olfactory bulbs/tracts but the prevalence of other developmental anomalies, especially midline defects and neurosensorial hearing loss, is high both in HH and Kallmann syndrome and independent of the presence of anosmia/hyposmia. From the clinical standpoint Kallmann syndrome and normosmic HH should be considered as the same complex, developmental disease.

  3. An Olfactory Cinema: Smelling Perfume

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  4. Olfactory Sensitivity for Six Predator Odorants in CD-1 Mice, Human Subjects, and Spider Monkeys

    Sarrafchi, Amir; Odhammer, Anna M. E.; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2013-01-01

    Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species’ olfactory sensitivity. Analysis of odor structure–activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity. PMID:24278296

  5. Olfactory training in patients with Parkinson's disease.

    Antje Haehner

    Full Text Available OBJECTIVE: Decrease of olfactory function in Parkinson's disease (PD is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from "training" with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function. METHODS: We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training. Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves. Olfactory testing was performed before and after training using the "Sniffin' Sticks" (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification in addition to threshold tests for the odors used in the training process. RESULTS: Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training. CONCLUSION: The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.

  6. 21 CFR 878.4700 - Surgical microscope and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered...

  7. 21 CFR 872.6300 - Rubber dam and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  8. 21 CFR 876.5820 - Hemodialysis system and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemodialysis system and accessories. 876.5820... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5820 Hemodialysis system and accessories. (a) Identification. A hemodialysis system and accessories is a device that...

  9. 21 CFR 872.3980 - Endosseous dental implant accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices...

  10. 21 CFR 878.3925 - Plastic surgery kit and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended...

  11. HRCT evaluation of the accessory fissures of the lung

    Yildiz, Altan E-mail: ayildiz@mersin.edu.tr; Goelpinar, Fulya; Calikoglu, Mukadder; Duce, Meltem Nass; Oezer, Caner; Apaydin, F. Demir

    2004-03-01

    Introduction: The purpose of this study was to classify the accessory fissures of the lung and to assess their frequency by using high-resolution CT. Methods and patients: HRCT scans of 115 patients were prospectively reviewed. 1 mm thin sections were obtained at 10 mm intervals with a scan time of 1.9 s. The fissure and its relationship to the segmental bronchovascular structures were then evaluated on transverse sections. Results: Forty-four accessory fissures were detected in 35 of 115 patients. The most common accessory fissure was the inferior accessory fissure (12%). The second most common accessory fissure was the left minor fissure (8%). The right superior accessory fissure (5%), the accessory fissure between the medial and lateral segments of the right middle lobe (5%), and the accessory fissure between the superior and inferior segments of the lingula (5%) were seen in equal frequencies. Also, intersegmental accessory fissures, namely the fissure between the anterobasal and laterobasal of both the right (1%) and the left (2%) lower lobes were detected. We found only one subsegmental accessory fissure. Discussion and conclusion: The inferior accessory fissure and the left minor fissure were the most common accessory fissures in our study.

  12. 21 CFR 878.4160 - Surgical camera and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical camera and accessories. 878.4160 Section... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4160 Surgical camera and accessories. (a) Identification. A surgical camera and accessories is a device intended to be...

  13. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  14. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material.

    Shrestha, Bidhan; Hughes, E Richard; Kumar Singh, Raj; Suwal, Pramita; Parajuli, Prakash Kumar; Shrestha, Pragya; Sharma, Arati; Adhikari, Galav

    2015-01-01

    Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  15. Distinct modifications of convergent excitatory and inhibitory inputs in developing olfactory circuits.

    Ma, T-F; Chen, P-H; Hu, X-Q; Zhao, X-L; Tian, T; Lu, W

    2014-06-06

    The interaction between excitatory and inhibitory inputs is critical to neuronal signal processing. However, little is known about this fundamental property, largely due to the inability to clearly isolate the respective inputs. Here we took advantage of the characteristic stereotypical architecture of synaptic connections in the main olfactory bulb, which enabled us to entirely separate excitatory and inhibitory inputs. Using paired stimulation of two glomeruli located apart at different intensities, we separately elicited excitatory and inhibitory inputs and mimicked stimulation of competing mitral cells (MCs) with different odorants. We performed dual whole-cell patch recording of evoked excitatory postsynaptic responses (EPSPs) and inhibitory postsynaptic responses (IPSPs) in current-clamp mode from two competitive MCs that are connected to the two stimulated glomeruli in slices of the main olfactory bulb in 2-3-week-old rats. We deliberately held the recorded cells at a relative hyperpolarized potential. This manipulation not only suppressed action potential generation but also excluded the possible contamination of inhibitory components in excitatory inputs. We found that in weakly activated MCs repetitive EPSP-IPSP interactions (5 Hz, 180 times) induced long-term potentiation (LTP) and long-term depression (LTD) in convergent excitatory and inhibitory inputs, respectively. Unexpectedly, these forms of plasticity depend on activity of somatic (mainly non-synaptic) NMDA receptors (NMDARs). In contrast, the same repetitive stimulation induced the LTP of excitatory inputs in strongly activated MCs (MC2) that require activity of synaptic NMDARs. These distinct forms of plasticity in the developing olfactory circuit may represent a novel rule of modification in convergent inputs that leads to decorrelation of inputs and facilitates odor discrimination.

  16. Distribution of centrifugal neurons targeting the soma clusters of the olfactory midbrain among decapod crustaceans.

    Schmidt, M

    1997-03-28

    To determine the distribution of two systems of centrifugal neurons innervating the soma clusters of the olfactory midbrain across decapod crustaceans, brains of the following nine species comprising most infraorders were immunostained with antibodies against dopamine and the neuropeptides substance P and FMRFamide: Macrobrachium rosenbergii, Homarus americanus, Cherax destructor, Orconectes limosus, Procambarus clarkii, Astacus leptodactylus, Carcinus maenas, Eriocheir sinensis and Pagurus bernhardus. One system consisting of several neurons with dopamine-like immunoreactivity that originate in the eyestalk ganglia was present in the four crayfish but not in any other species. These neurons project mainly into the lateral soma clusters (cluster 10) comprising the somata of ascending olfactory projection neurons and innervate very sparsely the medial soma clusters (clusters 9 and 11) containing the somata of local interneurons. In the innervation pattern of the lateral cluster, the dopamine-immunoreactive neurons showed large species-specific differences. The other system comprises a pair of giant neurons with substance P-like immunoreactivity. These neurons have somata in the median protocerebrum of the central brain and major projections into the lateral clusters and the core of the olfactory lobes, the neuropils that are the first synaptic relay in the central olfactory pathway of decapods; minor arborizations are present in the medial clusters. The system of substance P-immunoreactive giant neurons was present and of great morphological similarity in all studied species. Only in one species, the shrimp Macrobrachium rosenbergii, evidence for co-localization of FMRFamide-like with substance P-like immunoreactivity in these neurons was obtained. These and previously collected data indicate that the centrifugal neurons with dopamine-like immunoreactivity may be associated with the presence of an accessory lobe, a second-order neuropil that receives input from the

  17. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain.

    Islam, Zahidul; Harkema, Jack R; Pestka, James J

    2006-07-01

    Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, the "black mold" suggested to contribute etiologically to illnesses associated with water-damaged buildings. Using an intranasal instillation model in mice, we found that acute SG exposure specifically induced apoptosis of olfactory sensory neurons (OSNs) in the olfactory epithelium. Dose-response analysis revealed that the no-effect and lowest-effect levels at 24 hr postinstillation (PI) were 5 and 25 microg/kg body weight (bw) SG, respectively, with severity increasing with dose. Apoptosis of OSNs was identified using immunohistochemistry for caspase-3 expression, electron microscopy for ultrastructural cellular morphology, and real-time polymerase chain reaction for elevated expression of the proapoptotic genes Fas, FasL, p75NGFR, p53, Bax, caspase-3, and CAD. Time-course studies with a single instillation of SG (500 microg/kg bw) indicated that maximum atrophy of the olfactory epithelium occurred at 3 days PI. Exposure to lower doses (100 microg/kg bw) for 5 consecutive days resulted in similar atrophy and apoptosis, suggesting that in the short term, these effects are cumulative. SG also induced an acute, neutrophilic rhinitis as early as 24 hr PI. Elevated mRNA expression for the proinflammatory cytokines tumor necrosis factor-alpha, interleukin-6 (IL-6) , and IL-1 and the chemokine macrophage-inflammatory protein-2 (MIP-2) were detected at 24 hr PI in both the ethmoid turbinates of the nasal airways and the adjacent olfactory bulb of the brain. Marked atrophy of the olfactory nerve and glomerular layers of the olfactory bulb was also detectable by 7 days PI along with mild neutrophilic encephalitis. These findings suggest that neurotoxicity and inflammation within the nose and brain are potential adverse health effects of exposure to satratoxins and Stachybotrys in the indoor air of water-damaged buildings.

  18. Effect of Atmospheric Press on Wet Bulb Depression

    Wheeler, Raymond M.; Stasiak, Michael A.; Lawson, Jamie; Wehkamp, Cara Ann P.; Dixon, Michael A.

    2008-01-01

    Our measurements of wet bulb depression at different pressures matched the modeled adiabatic saturation temps reasonably well. At a dry bulb temp of 25 C, the normal wet bulb temp for 30% RH and 100 kPa is approx.15 C, but this dropped to approx.8 C at 10 kPa. The results suggest that psychrometers need direct calibration at the target pressures or that pressure corrected charts are required. For a given vapour pressure deficit, any moist surfaces, including transpiring plant leaves, will be cooler at lower pressures due to the increased evaporation rates.

  19. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons.

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki

    2016-08-01

    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation.

  20. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons.

    Rodriguez-Gil, Diego J; Bartel, Dianna L; Jaspers, Austin W; Mobley, Arie S; Imamura, Fumiaki; Greer, Charles A

    2015-05-05

    Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli.

  1. Olfactory Assessment of Competitors to the Nest Site: An Experiment on a Passerine Species

    Fracasso, Gerardo; Mahr, Katharina; Hoi, Herbert

    2016-01-01

    Since most avian species have been considered anosmic or microsmatic, olfaction and associated behavioural patterns have hardly been investigated. Most importantly, empirical data on avian olfaction is not equally distributed among species. Initial investigations focused on species with relatively big olfactory bulbs because they were thought to have better olfactory capabilities. Hence, in this study we tested the ability of house sparrows (Passer domesticus) to use chemical cues as parameters to estimate nest features. House sparrows are a commonly used model species, but their olfactory capabilities have not been studied so far. We offered two different odours to males and females, namely the scent of mouse urine (Mus musculus domesticus), representing a possible competitor and a threat to eggs and hatchlings, and the odour of hay, representing a familiar and innocuous odour. The experiment was performed at the sunset to simulate a first inspection to new possible roosting or nesting sites. Interestingly, males but not females preferred to spend significantly more time in front of the hay odour, than in front of the scent of mouse urine. Our results strengthen the hypothesis that oscines can not only perceive odours but also use olfaction to assess the environment and estimate nest site quality. PMID:27936093

  2. The mechanism of olfactory organ ventilation in Periophthalmus barbarus (Gobiidae, Oxudercinae).

    Kuciel, Michał

    2013-03-01

    Periophthalmus barbarus Linnaeus, 1766 has many adaptations for amphibious life as a consequence of tidal zone occupation. One of them is the ability to keep a little amount of water and air in mouth while on land or in hypoxic water, correlated with closing a gill lid for gas exchange improvement. It causes that mechanisms of olfactory organ ventilation described in other species of actinopterygians (compression of accessory nasal sac(s) by the skull and jaw elements while mouth and gill lid moving) are not in operation. There is a specific mechanism of olfactory organ ventilation independent on jaw and skull elements movements. Compression of accessory nasal sacs is possible by a0 contraction and it is a movement effect on bones combined by ligaments. This process can be observed on P. barbarus as lifting the rostral part of the head. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00435-012-0167-y) contains supplementary material, which is available to authorized users.

  3. Olfactory neuroblastoma: A case report

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  4. Endovascular treatment of jugular bulb diverticula causing debilitating pulsatile tinnitus.

    Mortimer, Alex M; Harrington, Tim; Steinfort, Brendan; Faulder, Ken

    2016-03-01

    We describe the case of a patient who presented with debilitating pulsatile tinnitus in association with two jugular bulb diverticula. The diverticula were treated with stenting of the jugular bulb and coil embolization of the diverticula over two procedures. This resulted in successful resolution of symptoms and at 10 months follow-up the patient is asymptomatic. The technique is discussed with regard to similar published cases and surrogate measures of safety taken from the literature pertaining to idiopathic intracranial hypertension.

  5. A new genus of Theraphosid spider from Mexico, with a particular palpal bulb structure (Araneae, Theraphosidae, Theraphosinae

    Jorge I. Mendoza

    2016-09-01

    Full Text Available Magnacarina gen. nov. from Mexico is described. Hapalopus aldanus West, 2000 from Nayarit, is transferred to the new genus with an emended diagnosis creating the new combination Magnacarina aldana comb. nov. Three new species are described: Magnacarina moderata Locht, Mendoza & Medina sp. nov. from Nayarit and Sinaloa; Magnacarina primaverensis Mendoza & Locht sp. nov. and Magnacarina cancer Mendoza & Locht sp. nov., both from Jalisco. Magnacarina gen. nov. is characterized by an unusual bifid palpal bulb, and has a primary projection located in the central area of the palpal bulb and directed retrolaterally; this projection possesses the prolateral superior and retrolateral keels. Next to the primary projection is a secondary projection, which may be short or long, ending in the prolateral inferior and apical keel surrounding the sperm pore. This secondary projection may have prolateral accessory keels and is diagnosed by possessing a nodule of inwardly curled megaspines, located in the basal ventro-retrolateral region of metatarsi I in adult males. Additionally, male tibiae I possess three apophyses. Females of Magnacarina gen. nov. have a single reduced and strongly sclerotized spermatheca, with an apical lobe projecting ventrally, and with a uterus externus that is longer and wider than the spermatheca.

  6. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  7. Bilateral accessory cleidohyoid in a human cadaver

    Stark ME; Wu B; Bluth BE; Wisco JJ

    2009-01-01

    During routine anatomical dissection of the infrahyoid region, a muscle was found bilaterally originating from the sternal end of clavicle and inserting into the hyoid bone. The muscle coursed parallel and lateral to the sternohyoid muscle. The muscle was found in the presence of an intact omohyoid, thus being classified as an accessory cleidohyoid (cleidohyoideus accessorius) muscle. While other authors have reported the presence of a unilateral cleidohyoideus accessorius muscle, to our know...

  8. Instruments and accessories for neutron scattering research

    Ishii, Yoshinobu; Morii, Yukio [eds.] [Advanced Science Research Center (Tokai Site), Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  9. Sendai Virus Induces Persistent Olfactory Dysfunction in a Murine Model of PVOD via Effects on Apoptosis, Cell Proliferation, and Response to Odorants.

    Jun Tian

    Full Text Available Viral infection is a common cause of olfactory dysfunction. The complexities of studying post-viral olfactory loss in humans have impaired further progress in understanding the underlying mechanism. Recently, evidence from clinical studies has implicated Parainfluenza virus 3 as a causal agent. An animal model of post viral olfactory disorders (PVOD would allow better understanding of disease pathogenesis and represent a major advance in the field.To develop a mouse model of PVOD by evaluating the effects of Sendai virus (SeV, the murine counterpart of Parainfluenza virus, on olfactory function and regenerative ability of the olfactory epithelium.C57BL/6 mice (6-8 months old were inoculated intranasally with SeV or ultraviolet (UV-inactivated virus (UV-SeV. On days 3, 10, 15, 30 and 60 post-infection, olfactory epithelium was harvested and analyzed by histopathology and immunohistochemical detection of S-phase nuclei. We also measured apoptosis by TUNEL assay and viral load by real-time PCR. The buried food test (BFT was used to measure olfactory function of mice at day 60. In parallel, cultured murine olfactory sensory neurons (OSNs infected with SeV or UV-SeV were tested for odorant-mixture response by measuring changes in intracellular calcium concentrations indicated by fura-4 AM assay.Mice infected with SeV suffered from olfactory dysfunction, peaking on day 15, with no loss observed with UV-SeV. At 60 days, four out of 12 mice infected with SeV still had not recovered, with continued normal function in controls. Viral copies of SeV persisted in both the olfactory epithelium (OE and the olfactory bulb (OB for at least 60 days. At day 10 and after, both unit length labeling index (ULLI of apoptosis and ULLI of proliferation in the SeV group was markedly less than the UV-SeV group. In primary cultured OSNs infected by SeV, the percentage of cells responding to mixed odors was markedly lower in the SeV group compared to UV-SeV (P = 0.007.We

  10. Roles of olfactory system dysfunction in depression.

    Yuan, Ti-Fei; Slotnick, Burton M

    2014-10-01

    The olfactory system is involved in sensory functions, emotional regulation and memory formation. Olfactory bulbectomy in rat has been employed as an animal model of depression for antidepressant discovery studies for many years. Olfaction is impaired in animals suffering from chronic stress, and patients with clinical depression were reported to have decreased olfactory function. It is believed that the neurobiological bases of depression might include dysfunction in the olfactory system. Further, brain stimulation, including nasal based drug delivery could provide novel therapies for management of depression.

  11. Isolation, culture, and purification of olfactory mucosa-derived olfactory ensheathing cells using modified differential attachment with low concentration serum

    Huaqing Yang; Qiang Li; Kunzheng Wang; Bin Wang; Hui Qiang; Wei Wang; Jianxiang Yao

    2008-01-01

    BACKGROUND: Studies have demonstrated that olfactory mucosa can promote the regeneration and formation of axonal medullary sheath of injured neurons. To date, olfactory ensheathing cells (OECs) utilized in basic and clinical research arise primarily from the olfactory bulb mucosa. However, little is known regarding culture, purification, and biological properties of OECs.OBJECTIVE: To isolate and culture OECs utilized modified, differential attachment in combination with neurotrophic factor 3 (NT3) and low concentration serum to explore an optimal in vitro culture method for OECs.DESIGN, TIME AND SETFING: Single-sample observation was performed at the Medical Experimental Center of Stomatology College, Xi'an Jiaotong University between March 2006 and December 2007.MATERIALS: Twelve samples from aborted embryos, 4-6 months, were used to isolate OECs;rabbit-anti-human p75NIR and glial fibrillary acidic protein (GFAP) antibody were provided by Sigma, USA. METHODS: The differential time was six hours. This was repeated twice, based on Nash's differential attachment. Attached OECs were cultured in DMEM-F12 culture medium containing 10% fetal bovine serum (FBS) or 2.5% FBS and NT3.MAIN OUTCOME MEASURES: OEC morphology was observed, and p75NTR and GFAP immunocytochcmistry was used for identification and purity detection. RESULTS: Some cells attached after three days in culture. Several cells possessed short neurites with good refractivity. Some shuttle-shaped fibroblasts could be seen. On day six, more cells attached, exhibiting a three-dimensional appearance. Many cells appeared dipolar or tripolar, with slender neurites, and fibroblasts were clustered. On day nine, the number of dipolar or tripolar cell bodies with slender neurites was increased,and fibroblasts were clustered. On day 15, fibroblasts occupied the majority of the bottom of the culture bottle, with several OECs surviving at the upper layer. OECs were positive for P75NTR and GFAP expression,as identified by

  12. Isolated spinal accessory neuropathy and intracisternal schwannomas of the spinal accessory nerve

    Abdullah M. Al-Ajmi

    2015-03-01

    Full Text Available We report a 40-year-old female patient presenting with isolated left spinal accessory neuropathy that developed insidiously over 6 years. She complained of ill-defined deep neck and shoulder pain. On examination, prominent sternocleidomastoid and trapezoid muscle weakness and atrophy, shoulder instability, and lateral scapular winging were observed. MRI identified a small mass of the cisternal portion of the spinal accessory nerve. Its appearance was typical of schwannoma. Surgical treatment was not offered because of the small tumor size, lack of mass effect and the questionable functional recovery in the presence of muscular atrophy.

  13. Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons

    Black Joel A

    2011-05-01

    Full Text Available Abstract Background Voltage-gated sodium channel Nav1.7 is preferentially expressed in dorsal root ganglion (DRG and sympathetic neurons within the peripheral nervous system. Homozygous or compound heterozygous loss-of-function mutations in SCN9A, the gene which encodes Nav1.7, cause congenital insensitivity to pain (CIP accompanied by anosmia. Global knock-out of Nav1.7 in mice is neonatal lethal reportedly from starvation, suggesting anosmia. These findings led us to hypothesize that Nav1.7 is the main sodium channel in the peripheral olfactory sensory neurons (OSN, also known as olfactory receptor neurons. Methods We used multiplex PCR-restriction enzyme polymorphism, in situ hybridization and immunohistochemistry to determine the identity of sodium channels in rodent OSNs. Results We show here that Nav1.7 is the predominant sodium channel transcript, with low abundance of other sodium channel transcripts, in olfactory epithelium from rat and mouse. Our in situ hybridization data show that Nav1.7 transcripts are present in rat OSNs. Immunostaining of Nav1.7 and Nav1.6 channels in rat shows a complementary accumulation pattern with Nav1.7 in peripheral presynaptic OSN axons, and Nav1.6 primarily in postsynaptic cells and their dendrites in the glomeruli of the olfactory bulb within the central nervous system. Conclusions Our data show that Nav1.7 is the dominant sodium channel in rat and mouse OSN, and may explain anosmia in Nav1.7 null mouse and patients with Nav1.7-related CIP.

  14. Houseflies : Effects of age on olfactory responses

    Kelling, FJ; den Otter, CJ; Sommeijer, MJ; Francke, PJ

    1998-01-01

    The olfactory system of sexually immature 1-day-old flies is already functional. No clear differences exist between the responses of their olfactory cells and those of sexually mature flies to amylacetate, S-methylphenol, 2-pentanone and R(+)-limonene. However, the sensitivity to 1-octen-3-ol is low

  15. Study on reduction of accessory horsepower requirements. Program summary report

    Lefferts, C.H.

    1977-06-15

    The objective of this program was to define, evaluate and develop automotive accessory systems to minimize engine power consumption and significantly improve fuel economy. All tasks have been completed and the program objectives have been accomplished. Information is presented on each phase of the program which involved: conceptual design to recommended component improvement and accessory drive systems; performance and sizing analyses; detail design and specifications; fabrication, and performance testing; evaluation of integrated hybrid drive, improved accessories; and an advanced air conditioning concept.

  16. Calcium signals in olfactory neurons.

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  17. ACCESSORY RENAL ARTERYAND ITS CLINICAL IMPLICATIONS

    Rachna Magotra

    2013-12-01

    Full Text Available Origin of the Testicular Artery variations were found during routine dissection of abdomen of the middle aged cadaver in the Dept of Anatomy, Govt. Medical College Jammu. On the left side there were two renal arteries, One of them was the main Renal artery which was originating from the anterolateral aspect of abdominal aorta and running to the hilum of the kidney in front of the renal vein The other was the Accessory Renal artery which was originating from anterolateral aspect of aorta 5mm above origin of main renal artery and going to the upper pole of the kidney. The origin of accessory renal artery and main renal artery was 4.2 and 9.2mm below the level of origin of superior mesentric artery. The left testicular artery was originating from the accessory renal artery and crossing the renal artery and the renal vein anteriorly before following its usual course in the posterior abdominal wall. Only one renal artery was seen on the right side arising from the anterolateral aspect of aorta. The right testicular artery originated 52mm below the origin of right renal artery and followed its normal course This anomaly is explained by embryological development of both kidneys and gonads from intermediate mesoderm of mesonephric crest. Further the vasculature of kidneys and gonads is derived from lateral mesonephric branches of dorsal aorta .Even though the condition presents as a silent renal anomaly (Undiagnosed throughout life and revealed only on autopsy the surgical implications are noteworthy, which too have been highlighted in this report.

  18. Radioinhibition process in Argentinian garlic and onion bulbs

    Curzio, O. A.; Croci, C. A.

    Technological aspects of garlic and onion bulbs subjected to the radioinhibition process and extended storage under warehouse conditions were studied. Garlic and onion of the "Colorado" and "Valenciana sintética 14" varieties respectively, were irradiated in dormancy period with an average dose of 50.0 Gy of 60Co gamma rays and kept in storage up to ten months post-harvest. Throughout the control period (180-300 days post-harvest) obvious benefits were attained as to reducing the weight loss and increasing the percentage of marketable bulbs. In general, the irradiated bulbs were superior to the non-irradiated ones with regard to the external aspect, firmness and internal aspect, while the odor of the bulbs was not affected by the process. The radioinhibition process does not seem to affect adversely the levels of dry matter, carbohydrates and ascorbic acid as well as the acidity in onion bulbs. In two marketing trials a very favourable reception was perceived in the consumer public regarding the quality of the products. These studies have promoted the construction of a multipurpose irradiation facility in the Universidad Nacional del Sur for the development of the radiation processing technology.

  19. Accessory sperm: a biomonitor of boar sperm fertilization capacity.

    Ardón, Florencia; Evert, Meike; Beyerbach, Martin; Weitze, Karl-Fritz; Waberski, Dagmar

    2005-04-15

    The number of accessory sperm found in the zona pellucida of porcine embryos was correlated to their individual quality and to the embryo quality range found within a single sow. Our goal was to determine whether accessory sperm counts provide semen evaluation with additional, useful information. Accessory sperm count was highest when only normal embryos were found in a given sow and diminished if oocytes or degenerated embryos were present (P<0.01). Within a given sow, normal embryos had higher (P<0.05) accessory sperm counts than degenerated embryos, although not when oocytes were also present. Fertilization capacity of sperm is optimal when only normal embryos are found in a given sow; this capacity is indicated by high accessory sperm counts. A decrease in fertilization capacity is reflected in diminishing accessory sperm counts. The boar had a significant effect (P<0.01) on accessory sperm count, but not on the percentage of normal embryos; this suggests that accessory sperm may be more sensitive indicators of the fertilization capacity of sperm than the percentage of normal embryos. We conclude that accessory sperm count can be used for the detection of compensable defects in sperm and is a valid parameter for assessing sperm fertilization capacity.

  20. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  1. HIV-1 accessory proteins: Vpu and Vif.

    Andrew, Amy; Strebel, Klaus

    2014-01-01

    HIV-1 Vif and Vpu are accessory factors involved in late stages of viral replication. Vif regulates viral infectivity by preventing virion incorporation of APOBEC3G and other members of the family of cytidine deaminases, while Vpu causes degradation of CD4 and promotes virus release by functionally inactivating the host factor BST-2. This chapter described techniques used for the characterization of Vif and Vpu and their functional interaction with host factors. Many of the techniques are, however, applicable to the functional analysis of other viral proteins.

  2. Bilateral accessory cleidohyoid in a human cadaver

    Stark ME

    2009-10-01

    Full Text Available During routine anatomical dissection of the infrahyoid region, a muscle was found bilaterally originating from the sternal end of clavicle and inserting into the hyoid bone. The muscle coursed parallel and lateral to the sternohyoid muscle. The muscle was found in the presence of an intact omohyoid, thus being classified as an accessory cleidohyoid (cleidohyoideus accessorius muscle. While other authors have reported the presence of a unilateral cleidohyoideus accessorius muscle, to our knowledge this is the first case of a bilateral cleidohyoideus accessorius muscle in the medical literature. Anatomical variations of the infrahyoid muscles may have functional, diagnostic, surgical and pathological implications.

  3. Non‑Azygos Accessory Fissure in Right Upper Lobe Associated with Superior and Inferior Accessory Fissures in Right Lower Lobe

    Thomas Jose Eluvathingal Muttikkal

    2012-01-01

    Full Text Available Accessory fissures in the lungs are common congenital variations, usually detected as incidental findings in radiographs or CT scan. Accessory fissures can act as an anatomic barrier to the spread of inflammatory or neoplastic disease, as well as due to the variant anatomy, mimic lesions. It is important to recognize the presence of accessory fissures, as they affect surgical planning of pulmonary lobectomy and segmentectomy. Accessory fissure in the right upper lobe other than due to the anomalous course of azygos vein is very rare. We report a case of non-azygos accessory fissure, between the apical and the anterior segments of right upper lobe, along with superior and inferior accessory fissures in the right lower lobe.

  4. A Closer Look at Acid-Base Olfactory Titrations

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  5. Detection of Olfactory Dysfunction Using Olfactory Event Related Potentials in Young Patients with Multiple Sclerosis

    Caminiti, Fabrizia; De Salvo, Simona; De Cola, Maria Cristina; Russo, Margherita; Bramanti, Placido; Marino, Silvia; Ciurleo, Rosella

    2014-01-01

    Background Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features. Aims To evaluate objectively the olfactory function using Olfactory Event Related Potentials. Materials and Methods We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated. Results Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479). Conclusion Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease. PMID:25047369

  6. Detection of olfactory dysfunction using olfactory event related potentials in young patients with multiple sclerosis.

    Fabrizia Caminiti

    Full Text Available Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features.To evaluate objectively the olfactory function using Olfactory Event Related Potentials.We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years and of 30 age, sex and smoking-habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated.Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01. The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433, as well as inversely correlated with the disease duration (r = -0.3641, p = 0.0479.Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease.

  7. Molecular clock regulates daily α1-2-fucosylation of the neural cell adhesion molecule (NCAM) within mouse secondary olfactory neurons.

    Kondoh, Daisuke; Tateno, Hiroaki; Hirabayashi, Jun; Yasumoto, Yuki; Nakao, Reiko; Oishi, Katsutaka

    2014-12-26

    The circadian clock regulates various behavioral and physiological rhythms in mammals. Circadian changes in olfactory functions such as neuronal firing in the olfactory bulb (OB) and olfactory sensitivity have recently been identified, although the underlying molecular mechanisms remain unknown. We analyzed the temporal profiles of glycan structures in the mouse OB using a high-density microarray that includes 96 lectins, because glycoconjugates play important roles in the nervous system such as neurite outgrowth and synaptogenesis. Sixteen lectin signals significantly fluctuated in the OB, and the intensity of all three that had high affinity for α1-2-fucose (α1-2Fuc) glycan in the microarray was higher during the nighttime. Histochemical analysis revealed that α1-2Fuc glycan is located in a diurnal manner in the lateral olfactory tract that comprises axon bundles of secondary olfactory neurons. The amount of α1-2Fuc glycan associated with the major target glycoprotein neural cell adhesion molecule (NCAM) varied in a diurnal fashion, although the mRNA and protein expression of Ncam1 did not. The mRNA and protein expression of Fut1, a α1-2-specific fucosyltransferase gene, was diurnal in the OB. Daily fluctuation of the α1-2Fuc glycan was obviously damped in homozygous Clock mutant mice with disrupted diurnal Fut1 expression, suggesting that the molecular clock governs rhythmic α1-2-fucosylation in secondary olfactory neurons. These findings suggest the possibility that the molecular clock is involved in the diurnal regulation of olfaction via α1-2-fucosylation in the olfactory system.

  8. IN VITRO BULB PRODUCTION IN HIPPEASTRUM (HIPPEASTRUM HYBRIDUM

    J Sutlana

    2011-01-01

    Full Text Available An in vitro experiment was conducted to find out the optimum hormonal supplement and sucrose level for the bulb production of Hippeastrum. Murashige and Skoog medium supplemented with different hormone concentrations of BAP (0.0, 2.0, 4.0, 6.0 and 8.0 mg/L and CCC (0.0, 125, 250 and 500 mg/L and sucrose levels (30, 60, 80, 90 and 110 g/L were used in this study. Sucrose level at 90 g/L produced the maximum average weight as well as the highest regeneration percentage. The increasing rate of CCC increased the number and average weight of bulb. The maximum bulb formation observed in media supplement with 6.0 mg/L BAP and 500 mg/L CCC fortified with 90 g/L sucrose.

  9. Radiation Dose–Volume Effects and the Penile Bulb

    Roach, Mack; Nam, Jiho; Gagliardi, Giovanna; Naqa, Issam El; Deasy, Joseph O.; Marks, Lawrence B.

    2016-01-01

    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulb may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques. PMID:20171507

  10. Reviewing prescription spending and accessory usage.

    Oxenham, Julie

    This article aims to explore the role of the stoma nurse specialist in the community and how recent initiatives within the NHS have impacted on the roles in stoma care to react to the rising prescription costs in the specialty. The article will explore how the stoma care nurse conducted her prescription reviews within her own clinical commissioning group (CCG). The findings of the reviews will be highlighted by a small case history and a mini audit that reveals that some stoma patients may be using their stoma care accessories inappropriately, which may contribute to the rise in stoma prescription spending. To prevent the incorrect use of stoma appliances it may necessitate an annual review of ostomates (individuals who have a stoma), as the author's reviews revealed that inappropriate usage was particularly commonplace when a patient may have not been reviewed by a stoma care specialist for some considerable amount of time. Initial education of the ostomate and ongoing education of how stoma products work is essential to prevent the misuse of stoma appliances, particularly accessories, as the reviews revealed that often patients were not always aware of how their products worked in practice.

  11. [Odor sensing system and olfactory display].

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.

  12. Manganese uptake and distribution in the brain after methyl bromide-induced lesions in the olfactory epithelia.

    Thompson, Khristy J; Molina, Ramon M; Donaghey, Thomas; Savaliya, Sandeep; Schwob, James E; Brain, Joseph D

    2011-03-01

    Manganese (Mn) is an essential nutrient with potential neurotoxic effects. Mn deposited in the nose is apparently transported to the brain through anterograde axonal transport, bypassing the blood-brain barrier. However, the role of the olfactory epithelial cells in Mn transport from the nasal cavity to the blood and brain is not well understood. We utilized the methyl bromide (MeBr) lesion model wherein the olfactory epithelium fully regenerates in a time-dependent and cell type-specific manner over the course of 6-8 weeks postinjury. We instilled (54)MnCl(2) intranasally at different recovery periods to study the role of specific olfactory epithelial cell types in Mn transport. (54)MnCl(2) was instilled at 2, 4, 7, 21, and 56 days post-MeBr treatment. (54)Mn concentrations in the blood were measured over the first 4-h period and in the brain and other tissues at 7 days postinstillation. Age-matched control rats were similarly studied at 2 and 56 days. Blood and tissue (54)Mn levels were reduced initially but returned to control values by day 7 post-MeBr exposure, coinciding with the reestablishment of sustentacular cells. Brain (54)Mn levels also decreased but returned to control levels only by 21 days, the period near the completion of neuronal regeneration/bulbar reinnervation. Our data show that Mn transport to the blood and brain temporally correlated with olfactory epithelial regeneration post-MeBr injury. We conclude that (1) sustentacular cells are necessary for Mn transport to the blood and (2) intact axonal projections are required for Mn transport from the nasal cavity to the olfactory bulb and brain.

  13. [Graphic method of recording olfactory disorders].

    Bariliak, R A; Kitsera, A E

    1976-01-01

    The authors present a method of recording results of threshold olfactometry for substances of different neuroreceptive response (olfactory, olfactive-trigeminal and olfactive-glossopharyngeal) in the form of olfactograms. The use of a unit for comparative evaluation of the olfactory function (deciodor) made it possible to get a unit horizontal zero line on the olfactogram. The authors demonstrate olfactograms of patients with various olfactory disorders. They consider that the method of graphic recording results of comparative threshold olfactometry is a valuable differential-diagnostic test.

  14. [An accessory muscle and additional variants of the forearm].

    Arnold, G; Zech, M

    1977-01-01

    A report is given on an accessory muscle of the forearm. The muscle originates from the medial epicondyle and the fascia of the forearm and inserts into the pisiform bone and retinaculum. The accessory muscle has a great similarity with the flexor carpi ulnaris muscle.

  15. Brugada syndrome in a patient with accessory pathway.

    Bodegas, A I; Arana, J I; Vitoria, Y; Arriandiaga, J R; Barrenetxea, J I

    2002-01-01

    Brugada syndrome in a patient with Wolff-Parkinson-White syndrome. We report a 32-year-old man with orthodromic atrioventricular (AV) reciprocating tachycardia using a right posterior accessory pathway. However, his ECG showed ST segment elevation in leads V1 to V3. After successful radiofrequency ablation of his accessory pathway a cardioverter defibrillator was implanted.

  16. 21 CFR 876.5630 - Peritoneal dialysis system and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Peritoneal dialysis system and accessories. 876... Peritoneal dialysis system and accessories. (a) Identification. (1) A peritoneal dialysis system and... peritoneal dialysis, a source of dialysate, and, in some cases, a water purification mechanism. After...

  17. 21 CFR 884.5350 - Contraceptive diaphragm and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Contraceptive diaphragm and accessories. 884.5350 Section 884.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Devices § 884.5350 Contraceptive diaphragm and accessories. (a) Identification. A contraceptive...

  18. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Valves, fittings, and accessories. 98.25-40 Section 98... Anhydrous Ammonia in Bulk § 98.25-40 Valves, fittings, and accessories. (a) All valves, flanges, fittings... Engineering) of this chapter. Valves shall be fitted with noncorrosive material suitable for ammonia...

  19. 21 CFR 884.2740 - Perinatal monitoring system and accessories.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Perinatal monitoring system and accessories. 884.2740 Section 884.2740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Monitoring Devices § 884.2740 Perinatal monitoring system and accessories. (a) Identification. A...

  20. Depletion of biogenic amines and enhancement of cholinergic activity in the olfactory bulb and central olfactory connections with chronic methedrine intoxication

    O. Duarte-Escalante

    1970-06-01

    Full Text Available Em seqüência a estudos anteriores os autores visam, neste relato, a apresentar as alterações histoquímicas que ocorrem no sistema olfatório de gatos nos quais se desenvolveu nítida estereotipia de fungação (sniffing após administração prolongada de metedrina. Foram intoxicados 12 gatos mediante injeções diárias, durante 10 dias, de doses progressivas de metedrina. Os tecidos a examinar (bulbos olfatórios e suas conexões centrais foram preparados histoquimicamente para demonstrar a fluorescência das aminas biogênicas e reações colinérgicas. Mediante algumas modificações à metodologia recomendada por outros pesquisadores, os autores puderam demonstrar a presença de monoaminas e de acetilcolina no bulbo olfatório e de grupos de fibras adrenérgicas curtas e multi-ramificadas que parecem ser conectadas com os neurônios fluorescentes do bulbo olfatório, a partir de onde estabelecem conexões, pelo tracto olfatório medial, com os neurônios do septum e, pelo tracto olfatório lateral, com os neurônios do complexo amigdalóide.

  1. [Occurrence and structure of accessory adrenal glands in Wistar rats].

    Schwabedal, P E; Partenheimer, U

    1983-01-01

    In complete series of histological sections through the entire abdomen of one normal Wistar-rat, one untreated and two bilaterally adrenalectomized, spontaneously hypertensive Wistar-rats accessory suprarenal glands were found in each case. The detailed findings in the various groups of animals investigated were as follows: (1) In the normal animal 10 accessory suprarenal glands were present. They consisted of tiny aggregates of cortical cells and were surrounded by a thin layer of collageneous fibers. The diameters of the accessory suprarenal complexes were in the order of 0.3 mm. (2) In the untreated, spontaneously hypertensive rat three accessory suprarenal glands were found. However, in contrast to what was seen in the normal rat, these complexes were larger and had diameters of up to 1 mm. Some of these accessory suprarenal glands consisted almost exclusively of small, chromophobe cells, whereas in others a rim of such cells was seen to surround a central core of larger and more acidophile cortical cells. There were few and collapsed capillaries. (3) In the bilaterally adrenalectomized, spontaneously hypertensive rats three, respectively four, accessory suprarenal glands were found. They were situated in the retroperitoneum and partly within the adipose capsule of the kidney but never in the place of the exstirpated main suprarenal glands. In one case an accessory gland was found within the fibrous capsule of the kidney and seen to compress the renal parenchyma. In the bilaterally adrenalectomized animals the average diameters of the accessory glands were larger than in the other groups reaching values of up to 5 mm. At least in both animals one of the accessory glands had a diameter comparable to that of the normal suprarenal gland of an untreated animal. The capillaries were dilated and their number was increased in comparison to what was seen in the other groups. In certain regions the cortical tissue of the accessory glands had an appearance resembling

  2. Biomimetic Olfactory Sensing System Based on Brain-Machine Interface and Olfactory Decoding%基于脑-机接口和嗅觉解码的仿生气味识别系统

    董琪; 秦臻; 胡靓; 庄柳静; 张斌; 王平

    2015-01-01

    Mammalian olfactory systems have merits of higher sensitivity, selectivity and faster response than current electronic nose systems based on chemical sensor array in odor recognition. The purpose of this study is to develop a biomimetic olfactory sensing system based on brain-machine interface technology for odor detection in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted cells in olfactory bulb were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns in both temporal features and rate features when stimulated by different small molecular odorants. Odors were classified by an algorithm based on population vector similarity and support vector machine. The results suggest that the novel bioelectonic nose is sensitive to odorant stimuli. With the development of BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.%为了探讨利用生物嗅觉传感系统进行气味识别的可行性,提出了一种基于脑-机接口的仿生气味识别系统。该系统利用大鼠嗅觉感受细胞作为气味敏感传感单元,使用16通道植入式微丝电极记录和分析具有气味刺激特征的嗅球僧帽细胞电位响应信号。实验结果显示,该系统对气味具有高度敏感性,通过一定模式识别处理算法,不同的气味刺激具有较好的区分性,证明了该系统有望应用于气味的检测和识别。

  3. A Fan-tastic Alternative to Bulbs: Learning Circuits with Fans

    Ekey, Robert; Edwards, Andrea; McCullough, Roy; Reitz, William; Mitchell, Brandon

    2017-01-01

    The incandescent bulb has been a useful tool for teaching basic electrical circuits, as brightness is related to the current or power flowing through a bulb. This has led to the development of qualitative pedagogical treatments for examining resistive combinations in simple circuits using bulbs and batteries, which were first introduced by James…

  4. Special branches: organic greenhouse production, bulbs, ornamentals and aquaculture

    Sukkel, W.; Hommes, M.; Meijer, R.J.M.

    2009-01-01

    Organic production methods are gaining ground in Dutch specialised production branches. Interest is growing among greenhouse horticulturalists and growers of flower bulbs, ornamentals and mushrooms. In organic horticulture Dutch research is unique in the world in thinking up innovative concepts and

  5. Genetic Analyses of Soluble Carbohydrate Concentrations in Onion Bulbs

    Fructans are the primary soluble carbohydrate in onion (Allium cepa L.) bulbs and show significant correlations with dry weights and pungency. In this research, we estimated the genetic effects and interactions between two chromosome regions associated with higher amounts of soluble carbohydrates i...

  6. The "Green Lab": Power Consumption by Commercial Light Bulbs

    Einsporn, James A.; Zhou, Andrew F.

    2011-01-01

    Going "green" is a slogan that is very contemporary, both with industry and in the political arena. Choosing more energy-efficient devices is one way homeowners can "go green." A simple method is to change home lighting from hot incandescent bulbs to compact fluorescent lights (CFLs). But do they really save energy? How do their illuminations…

  7. Groeimetingen bij de tulpebol = Growth measurements on the tulip bulb

    Kraaijenga, D.A.

    1960-01-01

    Tulips did not require a specific soil, if pH was not below 6.5 and water supply was sufficient. Influence of weather conditions was studied by comparing bulb production in different years and areas. Low temperatures after planting and during winter, a gradual increase in spring, sunshine in April a

  8. Role of oxidative damage in tulip bulb scale micropropagation.

    Rossum, van M.W.P.C.; Plas, van der L.H.W.

    1997-01-01

    The activation of oxygen stress-related enzymes was compared in regenerating and non-regenerating tulip bulb scale explants and regenerating stalk explants. The phospholipid composition of scale explants showed an increase of linolenic acid (1-15%) and a decrease in linoleic acid (70-55%). After inc

  9. Cladistic Analysis of Olfactory and Vomeronasal Systems

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  10. Cladistic analysis of olfactory and vomeronasal systems

    Alino eMartinez-Marcos

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  11. Dimorphic olfactory lobes in the arthropoda.

    Strausfeld, Nicholas; Reisenman, Carolina E

    2009-07-01

    Specialized olfactory lobe glomeruli relating to sexual or caste differences have been observed in at least five orders of insects, suggesting an early appearance of this trait in insect evolution. Dimorphism is not limited to nocturnal species, but occurs even in insects that are known to use vision for courtship. Other than a single description, there is no evidence for similar structures occurring in the Crustacea, suggesting that the evolution of dimorphic olfactory systems may typify terrestrial arthropods.

  12. A cytological and experimental study of the neuropil and primary olfactory afferences to the piriform cortex.

    Vargas-Barroso, Víctor; Larriva-Sahd, Jorge

    2013-09-01

    The microscopic organization of the piriform cortex (PC) was studied in normal and experimental material from adult albino rats. In rapid-Golgi specimens a set of collaterals from the lateral olfactory tract (i.e., sublayer Ia) to the neuropil of the Layer II (LII) was identified. Specimens from experimental animals that received electrolytic lesion of the main olfactory bulb three days before sacrificing, were further processed for pre-embedding immunocytochemistry to the enzyme glutamic acid decarboxylase 67 (GAD 67). This novel approach permitted a simultaneous visualization at electron microscopy of both synaptic degeneration and GAD67-immunoreactive (GAD-I) sites. Degenerating and GAD-I synapses were separately found in the neuropil of Layers I and II of the PC. Previously overlooked patches of neuropil were featured in sublayer Ia. These areas consisted of dendritic and axonal processes including four synaptic types. Tridimensional reconstructions from serial thin sections from LI revealed the external appearance of the varicose and tubular dendrites as well as the synaptic terminals therein. The putative source(s) of processes to the neuropil of sublayer Ia is discussed in the context of the internal circuitry of the PC and an alternative model is introduced.

  13. A neuroimaging study of pleasant and unpleasant olfactory perceptions of virgin olive oil

    J. Vivancos

    2016-12-01

    Full Text Available Functional magnetic resonance imaging (fMRI has been used to collect information from neurons that receive direct input from olfactory bulbs when subjects smell virgin olive oil. The pleasant aroma of three extra virgin olive oils (var. Royal, Arbequina and Picual and three virgin olive oils with sensory defects (rancid, fusty and winey/vinegary were presented to 14 subjects while a fMRI scan acquired data from the brain activity. Data were subjected to a two-sample t test analysis, which allows a better interpretation of results particularly when data are studied across different subjects. Most of the activations, which were located in the frontal lobe, are related to the olfactory task regardless of the hedonic component of perception (e.g. Brodmann areas 10, 11. Comparing the samples with pleasant and unpleasant aromas, differences were found at the anterior cingulate gyrus (Brodmann area 32, at the temporal lobe (Brodmann area 38, and inferior frontal gyrus (Brodmann area 47, while intense aromas activated Brodmann area 6. The actual perceptions described by the subjects and the concentration of the odorant compounds in the samples were considered in the interpretation of the results.

  14. Constitutively expressed Protocadherin-α regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region

    Sonoko eHasegawa

    2012-10-01

    Full Text Available Olfactory sensory neuron (OSN axons coalesce into specific glomeruli in the olfactory bulb (OB according to their odorant receptor (OR expression. Several guidance molecules enhance the coalescence of homotypic OSN projections, in an OR-specific- and neural-activity-dependent manner. However, the mechanism by which homotypic OSN axons are organized into glomeruli is unsolved. We previously reported that the clustered protocadherin-α (Pcdh-α family of diverse cadherin-related molecules plays roles in the coalescence and elimination of homotypic OSN axons throughout development. Here we showed that the elimination of small ectopic homotypic glomeruli required the constitutive expression of a Pcdh-α isoform and Pcdh-α’s cytoplasmic region, but not OR specificity or neural activity. These results suggest that Pcdh-α proteins provide a cytoplasmic signal to regulate repulsive activity for homotypic OSN axons independently of OR expression and neural activity. The counterbalancing effect of Pcdh-α proteins for the axonal coalescence mechanisms mediated by other olfactory guidance molecules indicate a possible mechanism for the organization of homotypic OSN axons into glomeruli during development.

  15. State-dependent sculp