WorldWideScience

Sample records for acceptable toxicant concentrations

  1. Toxic chemical risk acceptance criteria

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.; Lee, L.; Lein, P.; Omberg, S.

    1992-01-01

    This paper presents recommendations of a subcommittee of the Westinghouse M ampersand 0 Nuclear Facility Safety Committee concerning toxic chemical risk acceptance criteria. Two sets of criteria have been developed, one for use in the hazard classification of facilities, and the second for use in comparing risks in DOE non-reactor nuclear facility Safety Analysis Reports. The Emergency Response Planning Guideline (ERPG) values are intended to provide estimates of concentration ranges for specific chemicals above which exposure would be expected to lead to adverse heath effects of increasing severity for ERPG-1, -2, and -3s. The subcommittee recommends that criteria for hazard class or risk range be based on ERPGs for all chemicals. Probability-based Incremental Cancer Risk (ICR) criteria are recommended for additional analyses of risks from all known or suspected human carcinogens. Criteria are given for both on-site and off-site exposure. The subcommittee also recommends that the 5-minute peak concentration be compared with the relevant criterion with no adjustment for exposure time. Since ERPGs are available for only a limited number of chemicals, the subcommittee has developed a proposed hierarchy of concentration limit parameters for the different criteria

  2. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  3. STUDIES OF CHOSEN TOXIC ELEMENTS CONCENTRATION IN MULTIFLOWER BEE HONEY

    Directory of Open Access Journals (Sweden)

    Ewa Popiela

    2011-04-01

    Full Text Available 72 544x376 Normal 0 21 false false false  The aim of the study was to determine the bioaccumulation level of chosen toxic elements (Zn, Cu, Pb, As and Cd in multiflower honey collected from Brzeg area. Biological material (honey was mineralized using the microwave technique at an elevated pressure in the microprocessor station of pressure in the type Mars 5. Quantitative analysis of elements (As, Cd, Cu, Pb and Zn was performed by plasma spectrometry method using a Varian ICP-AES apparatus. The presence of toxic elements was determined in examined biological materials. The elements fallowed the fallowing decreasing order with respect to their content of honey: Zn>Cu>Pb>As>Cd. The average concentrations of studied elements observed in multi-flower honey were as follows: 6.24 mg.kg-1 of zinc, 2.75 mg.kg-1 of copper, 0.53, 0.071, 0.042 mg.kg-1of lead, arsenic and cadmium, respectively. Lead was the most problematic in bee honey because its average content exceeded the maximum acceptable concentration. Additionally, this metal concentration was 60% higher in studied samples than allowable standard of lead content.doi:10.5219/134 

  4. Ability of Cu2+-montmorillonite to accept an toxic pollutants

    International Nuclear Information System (INIS)

    Janikova, V.; Jona, E.; Janik, R.; Pavlik, V.

    2015-01-01

    It is global problem that toxic pollutants are in the permanent contact to people through soil and water. Nowadays, it is important to eliminate these pollutants for future generations and to keep environment in the health condition. In relation to this article, aromatic organic compounds like benzene, phenol and aniline were chosen. These are used in various branches of industry, mainly in rubber industry or for production of dyes and in addition, phenol is commonly used in cosmetics or in food industry. Montmorillonite is clay mineral consisting of 2:1 sheets (tetrahedral:octahedral) and interlayer space where exchangeable cations and water molecules are present. Due to its structure, montmorillonite is able to accept some compounds or pollutants. This is the reason why it is mainly used as the covering material of radioactive waste in order to remove toxic pollutants. For investigation of toxic pollutants removing, XRD powder diffraction, infrared spectroscopy and thermal analysis were used. Our results show that Cu 2+ -montmorillonite is able to accept toxic benzene ring-based pollutants into interlayer. This mentioned ability can be proven on the basis of the investigation results relating to difference of interlayer distance, typical frequencies of -OH group or -NH 2 group, while these results were supplemented by thermal properties. (authors)

  5. Estimation of Toxicity Equivalent Concentration (TEQ) of ...

    African Journals Online (AJOL)

    Estimation of Toxicity Equivalent Concentration (TEQ) of carcinogenic polycyclic aromatic hydrocarbons in soils from Idu Ekpeye playground and University of Port ... Effective soil remediation and detoxification method like Dispersion by chemical reaction technology should be deployed to clean-up sites to avoid soil toxicity ...

  6. Design Criteria for Achieving Acceptable Indoor Radon Concentration

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization...... in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating...... from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision...

  7. Group Waterpipe Tobacco Smoking Increases Smoke Toxicant Concentration.

    Science.gov (United States)

    Ramôa, Carolina P; Shihadeh, Alan; Salman, Rola; Eissenberg, Thomas

    2016-05-01

    Waterpipe tobacco smoking is a global health concern. Laboratory research has focused on individual waterpipe users while group use is common. This study examined user toxicant exposure and smoke toxicant yield associated with individual and group waterpipe smoking. Twenty-two pairs of waterpipe smokers used a waterpipe individually and as a dyad. Before and after smoking, blood was sampled and expired carbon monoxide (CO) measured; puff topography was recorded throughout. One participant from each pair was selected randomly and their plasma nicotine and expired air CO concentrations were compared when smoking alone to when smoking as part of a dyad. Recorded puff topography was used to machine-produce smoke that was analyzed for toxicant content. There was no difference in mean plasma nicotine concentration when an individual smoked as part of a dyad (mean = 14.9 ng/ml; standard error of the mean [SEM] = 3.0) compared to when smoking alone (mean = 10.0 ng/ml; SEM = 1.5). An individual smoking as part of as a dyad had, on average, lower CO (mean = 15.8 ppm; SEM = 2.0) compared to when smoking alone (mean= 21.3 ppm; SEM = 2.7). When two participants smoked as a dyad they took, on average, more puffs (mean = 109.8; SEM = 7.6) than a singleton smoker (mean = 77.7; SEM = 8.1) and a shorter interpuff interval (IPI; dyad mean = 23.8 seconds; SEM = 1.9; singleton mean = 40.8 seconds; SEM = 4.8). Higher concentrations of several toxicants were observed in dyad-produced smoke. Dyad smoking may increase smoke toxicant content, likely due to the dyad's shorter IPIs and greater puff number. More work is needed to understand if group waterpipe smoking alters the health risks of waterpipe tobacco smoking. This study is the first to measure toxicants in smoke generated from a waterpipe when used by a dyad. Relative to smoke generated by a singleton, dyad smoke had higher concentration of some toxicants. These differences may be attributed to differences in puffing behavior

  8. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada.

    Science.gov (United States)

    Bari, Md Aynul; Kindzierski, Warren B

    2017-04-01

    With concern about levels of air pollutants in recent years in the Capital Region of Alberta, an investigation of ambient concentrations, sources and potential human health risk of hazardous air pollutants (HAPs) or air toxics was undertaken in the City of Edmonton over a 5-year period (2009-2013). Mean concentrations of individual HAPs in ambient air including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and trace metals ranged from 0.04 to 1.73 μg/m 3 , 0.01-0.54 ng/m 3 , and 0.05-3.58 ng/m 3 , respectively. Concentrations of benzene, naphthalene, benzo(a)pyrene (BaP), arsenic, manganese and nickel were far below respective annual Alberta Ambient Air Quality Objectives. Carcinogenic and non-carcinogenic risk of air toxics were also compared with risk levels recommended by regulatory agencies. Positive matrix factorization identified six air toxics sources with traffic as the dominant contributor to total HAPs (4.33 μg/m 3 , 42%), followed by background/secondary organic aerosol (SOA) (1.92 μg/m 3 , 25%), fossil fuel combustion (0.92 μg/m 3 , 11%). On high particulate air pollution event days, local traffic was identified as the major contributor to total HAPs compared to background/SOA and fossil fuel combustion. Carcinogenic risk values of traffic, background/SOA and metals industry emissions were above the USEPA acceptable level (1 × 10 -6 ), but below a tolerable risk (1 × 10 -4 ) and Alberta benchmark (1 × 10 -5 ). These findings offer useful preliminary information about current ambient air toxics levels, dominant sources and their potential risk to public health; and this information can support policy makers in the development of appropriate control strategies if required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example.

    Science.gov (United States)

    Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling

    2017-10-01

    The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.

  10. Honeybee (Apis cerana) foraging responses to the toxic honey of Tripterygium hypoglaucum (Celastraceae): changing threshold of nectar acceptability.

    Science.gov (United States)

    Tan, K; Guo, Y H; Nicolson, S W; Radloff, S E; Song, Q S; Hepburn, H R

    2007-12-01

    To investigate honeybee foraging responses to toxic nectar, honey was collected from Apis cerana colonies in the Yaoan county of Yunnan Province, China, during June, when flowers of Tripterygium hypoglaucum were the main nectar source available. Pollen analysis confirmed the origin of the honey, and high-performance liquid chromatography showed the prominent component triptolide to be present at a concentration of 0.61 mug/g +/- 0.11 SD. In cage tests that used young adult worker bees, significantly more of those provided with a diet of T. hypoglaucum honey mixed with sugar powder (1:1) died within 6 d (68.3%) compared to control groups provided with normal honey mixed with sugar powder (15.8%). Honeybees were trained to visit feeders that contained honey of T. hypoglaucum (toxic honey) as the test group and honey of Vicia sativa or Elsholtzia ciliata as control groups (all honeys diluted 1:3 with water). Bees preferred the feeders with normal honey to those with toxic honey, as shown by significantly higher visiting frequencies and longer imbibition times. However, when the feeder of normal honey was removed, leaving only honey of T. hypoglaucum, the foraging bees returned to the toxic honey after a few seconds of hesitation, and both visiting frequency and imbibition time increased to values previously recorded for normal honey. Toxic honey thus became acceptable to the bees in the absence of other nectar sources.

  11. Prediction of toxic metals concentration using artificial intelligence techniques

    Science.gov (United States)

    Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.

    2011-12-01

    Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.

  12. Assessing toxicity of varying major ion concentrations to marine organisms

    International Nuclear Information System (INIS)

    Mount, D.R.; Quast, W.

    1993-01-01

    Recent regulatory developments have required that produced waters discharged in the Gulf of Mexico be monitored for toxicity to marine organisms. While produced water may contain a variety of indigenous and introduced chemicals, virtually all have moderate to high concentrations of major ions. Although seawater is also rich in these ions, excessive salinity can cause toxicity to marine organisms. Perhaps more importantly, toxicity to marine organisms can be caused by deviations from normal ion ratios even if the total salinity is within organism tolerances. To provide a better understanding of marine organism responses to variations in major ion concentrations, the authors conducted a series of laboratory experiments to quantify the responses of mysid shrimp (Mysidopsis bahia) and sheepshead minnows (Cyprinodon variegatus) to modifications of normal seawater chemistry. Acute testing included both increasing and decreasing the concentrations of individual ions relative to seawater, as well as altering total salinity. Results show these organisms can be adversely affected by this altered chemistry and their sensitivity is dependent upon the individual ions that are manipulated. Results from these studies are being incorporated into an overall strategy for evaluating the influence of major ion chemistry on produced water toxicity tests

  13. Confidence Limits for Hazardous Concentrations Based on Logistically Distributed NOEC Toxicity Data

    NARCIS (Netherlands)

    Aldenberg T; Slob W

    1991-01-01

    This paper deals with the calculation of Hazardous Concentrations of toxic substances from small sets of laboratory toxicity data, e.g. NOECs. A procedure due to Van Straalen and Denneman, as adapted from Kooijman (case n=1), in which one seeks a concentration that protects 95% of the biological

  14. Toxicity Data to Determine Refrigerant Concentration Limits

    Energy Technology Data Exchange (ETDEWEB)

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  15. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  16. Determination of toxic and essential element concentrations in foodstuffs from local market

    International Nuclear Information System (INIS)

    Surtipanti; Suwirma; Yumiarti; June, M.; Syaifudin, S.

    1989-01-01

    Determination of toxic and essential elements concentrations in foodstuffs from local market in Jakarta. Concentration of toxic essential elements, such as, As, Hg, Cr, Pb, Cu, and Zn, in rice, corn bean, small green peas, wheat, vegetables, fruits, tea and coffee, have been determined. As, Hg, Sb, Cr, Se, and Zn, were determined using neutron activation analysis, after being irradiated at TRIGA-MARK II reactor, while Pb and Cu were determined using atomic absorption spectrophotometer. The results obtained were lower than the maximum permissible concentration allowed. (author). 8 refs

  17. Biological treatment of concentrated hazardous, toxic, and radionuclide mixed wastes without dilution

    International Nuclear Information System (INIS)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-01-01

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel

  18. Potentially Toxic Elements and Health Risk Assessment in Farmland Systems around High-Concentrated Arsenic Coal Mining in Xingren, China

    Directory of Open Access Journals (Sweden)

    Ying-ju Li

    2018-01-01

    Full Text Available The health risk of potentially toxic elements (PTEs via contamination of the food chain has attracted widespread concern. The aim of this study is to evaluate the effects of PTEs in environment and human body (fingernail, hair, and blood of people living in agricultural soil near arsenic coal mining areas in Xingren County (Guizhou, southwest China. 89 crop samples which included vegetables, rice, maize, and coix seed and their corresponding soils and 17 local surface water and biological tissue samples (41 × 3 in near arsenic coal mining areas were collected, and the concentrations of potentially toxic elements (As, Cd, Cu, Cr, and Pb in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential health hazards of PTEs in soils growing crops. Results showed that 4 toxic elements, Cd, Cu, As, and Cr, were found to have different degrees of contamination in soils in the studied area. The total concentration of toxic elements (As, Cr, Cu, and Pb in fingernail, hair, and blood samples were 90.50, 69.31, and 6.90 mg·kg−1, respectively. Fingernail samples from females were more likely to show exposure to trace metals compared to males. As the age of the subject increased, the concentration of As also increased in all three biological samples. The risk assessment for the mean hazard index value from the consumption of local food crops was 14.81, indicating that consumers may experience adverse, noncarcinogenic health effects. The estimated mean total cancer risk value of was 5.3 × 10−3, which was approximately 10 to 1000 times higher than the acceptable range of 10−6–10−4, indicating serious carcinogenic risks for local people consuming crops from the area. This study provides evidence that local residents in this study area may be at a high risk of disease caused from toxic element exposure.

  19. The potentiation effect makes the difference: Non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingxiangyu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Fernández-Cruz, María Luisa; Connolly, Mona [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040 (Spain); Conde, Estefanía; Fernández, Marta [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040 (Spain); Schuster, Michael [Department of Chemistry, Technische Universität München, Garching 85747 (Germany); Navas, José María, E-mail: jmnavas@inia.es [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040 (Spain)

    2015-02-01

    Here we examined whether the addition of a non-toxic concentration (6.25 μg/mL) of zinc oxide nanoparticles (ZnONPs: 19, 35 and 57 nm, respectively) modulates the cytotoxicity of copper nanoparticles (CuNPs, 63 nm in size) in the human hepatoma cell line HepG2. The cytotoxic effect of CuNPs on HepG2 cells was markedly enhanced by the ZnONPs, the largest ZnONPs causing the highest increase in toxicity. However, CuNPs cytotoxicity was not affected by co-incubation with medium containing only zinc ions, indicating the increase in toxicity might be attributed to the particle form of ZnONPs. Transmission electron microscopy (TEM) revealed the presence of CuNPs and ZnONPs inside the cells co-exposed to both types of NP and outflow of cytoplasm through the damaged cell membrane. Inductively coupled plasma mass spectrometry (ICP-MS) determined an increase in the concentration of zinc and a decrease in that of copper in co-exposed cells. On the basis of these results, we propose that accumulation of large numbers of ZnONPs in the cells alters cellular membranes and the cytotoxicity of CuNPs is increased. - Highlights: • ZnONPs at non-toxic concentrations increased the toxicity of CuNPs in vitro. • ZnONPs of larger size provoked a stronger synergistic effect with CuNPs. • The synergistic effect was attributed to the particle fraction of ZnONPs.

  20. Assessment of concentrations of trace and toxic heavy metals in soil ...

    African Journals Online (AJOL)

    This study reports on determination of concentrations of trace and toxic heavy metals in soil and vegetables grown near of Manyoni uranium deposit. Soil and vegetable samples were collected from five sites namely Mitoo Mbuga, farming area, Miyomboni, Tambukareli and near water pump. The concentrations of heavy ...

  1. Potentially toxic concentrations of synthetic pyrethroids associated with low density residential land use

    Directory of Open Access Journals (Sweden)

    Stephen Marshall

    2016-11-01

    Full Text Available Trace organic compounds associated with human activity are now ubiquitous in the environment. As the population becomes more urbanised and the use of pesticides and person care products continues to increase, urban waterways are likely to receive higher loads of trace organic contaminants with unknown ecological consequences. To establish the extent of trace organic contamination in urban runoff, concentrations of emerging chemicals of concern were determined in sediments from 99 urban wetlands in and around Melbourne, Australia between February and April, 2015. As a preliminary estimation of potential risks to aquatic biota, we compared measured concentrations with thresholds for acute and chronic toxicity, and modelled toxic units as a function of demographic and land use trends. The synthetic pyrethroid insecticide bifenthrin was common and widespread, and frequently occurred at concentrations likely to cause toxicity to aquatic life. Personal care products DEET and triclosan were common and widely distributed, while the herbicides diuron and prometryn, and the fungicides pyrimethanil and trifloxystrobin occurred less frequently. Toxic unit modelling using random forests found complex and unexpected associations between urban land uses and trace organic concentrations. Synthetic pyrethroid insecticides were identified as emerging compounds of concern, particularly bifenthrin. In contrast with previous surveys, the highest bifenthrin concentrations were associated with lower housing and population density, implicating low-density residential land use in bifenthrin contamination. We discuss the implications for pesticide regulation and urban wetland management in a global context.

  2. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    Science.gov (United States)

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Self-tracking solar concentrator with an acceptance angle of 32°.

    Science.gov (United States)

    Zagolla, Volker; Dominé, Didier; Tremblay, Eric; Moser, Christophe

    2014-12-15

    Solar concentration has the potential to decrease the cost associated with solar cells by replacing the receiving surface aperture with cheaper optics that concentrate light onto a smaller cell aperture. However a mechanical tracker has to be added to the system to keep the concentrated light on the size reduced solar cell at all times. The tracking device itself uses energy to follow the sun's position during the day. We have previously shown a mechanism for self-tracking that works by making use of the infrared energy of the solar spectrum, to activate a phase change material. In this paper, we show an implementation of a working 53 x 53 mm(2) self-tracking system with an acceptance angle of 32° ( ± 16°). This paper describes the design optimizations and upscaling process to extend the proof-of-principle self-tracking mechanism to a working demonstration device including the incorporation of custom photodiodes for system characterization. The current version demonstrates an effective concentration of 3.5x (compared to 8x theoretical) over 80% of the desired acceptance angle. Further improvements are expected to increase the efficiency of the system and open the possibility to expand the device to concentrations as high as 200x (C(geo) = 400x, η = 50%, for a solar cell matched spectrum).

  4. Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships.

    Science.gov (United States)

    Imani, Sahand; Buscher, Hergen; Marriott, Debbie; Gentili, Sheridan; Sandaradura, Indy

    2017-10-01

    To determine the existence of concentration-toxicity relationships for common β-lactam antibiotic adverse effects and define thresholds above which toxicity is more likely. Retrospective review of consecutive patients treated with piperacillin, meropenem or flucloxacillin who underwent therapeutic drug monitoring (TDM) at St Vincent's Hospital (Sydney, Australia) between January 2013 and December 2015. Adverse events investigated included neurotoxicity, nephrotoxicity, hepatotoxicity and opportunistic Clostridium difficile infection. Toxicity was measured using observational grading criteria, clinical assessment and relevant serum biomarkers. These findings were correlated with trough TDM measurements at the time of toxicity presentation. TDM results from 378 patients (piperacillin = 223, meropenem = 94 and flucloxacillin = 61) were investigated. There was no difference in baseline patient characteristics across antibiotic groups. A statistically significant elevation in mean serum trough concentrations (Cmin) was found in patients diagnosed with neurotoxicity (piperacillin, P 361.4 mg/L; meropenem, Cmin >64.2 mg/L; flucloxacillin, Cmin >125.1 mg/L) or nephrotoxicity (piperacillin, Cmin >452.65 mg/L; meropenem, Cmin >44.45 mg/L) varied across antibiotics. Our data reveal an association between toxic concentrations for a number of β-lactam agents and neurotoxic/nephrotoxic effects. We have defined threshold concentrations above which these toxicities become more likely. Clinicians should balance concerns for therapeutic efficacy with potential toxicity when considering aggressive therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates?

    International Nuclear Information System (INIS)

    Carmen Casado-Martinez, M.; Smith, Brian D.; Luoma, Samuel N.; Rainbow, Philip S.

    2010-01-01

    We followed the net accumulation of As, Cu and Zn in the deposit-feeding polychaete Arenicola marina exposed in the laboratory to natural metal-contaminated sediments, one exposure leading to mass mortality between day 10 and 20, and the other not causing lethality over a period of 60 days of exposure. The worms showed lower total accumulated metal concentrations just before mortality occurred (<20 days) at the lethal exposure, than after 30 days of exposure to sediments not causing mortality. Moreover rates of accumulation of As, Cu and Zn were significantly higher in the lethal exposure than in the sublethal exposure. Our results show that it is not possible to link mortality to a critical total body concentration, and we add to a growing body of literature indicating that metal toxicity occurs when organisms cannot cope with overwhelming influx and subsequent accumulation rates. - Laboratory exposures with the deposit-feeding polychaete Arenicola marina suggest that toxicity is not caused by the accumulated concentration of toxic metals in the body of the animal, but by the rate at which the toxic metal is accumulated.

  6. assessment of concentrations of trace and toxic heavy metals in soil

    African Journals Online (AJOL)

    Windows User

    pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy ... Keywords: Soil, Vegetables, Manyoni Uranium Deposit, Toxic Elements, EDXRF. ... fine radioactive particles prone to wind and.

  7. Hair Toxic Metal Concentrations and Autism Spectrum Disorder Severity in Young Children

    Directory of Open Access Journals (Sweden)

    Lisa K. Sykes

    2012-12-01

    Full Text Available Previous studies have found a higher body-burden of toxic metals, particularly mercury (Hg, among subjects diagnosed with an autism spectrum disorder (ASD in comparison to neurotypical controls. Moreover, Hg body-burden was associated with ASD severity. This cross-sectional study examined the potential correlation between hair toxic metal concentrations and ASD severity in a prospective cohort of participants diagnosed with moderate to severe ASD. The Institutional Review Board at the University of Texas Southwestern Medical Center at Dallas (Dallas, TX approved the present study. Qualifying study participants (n = 18 were evaluated for ASD severity using the Childhood Autism Rating Scale (CARS and quantitatively for arsenic, Hg, cadmium, lead, chromium, cobalt, nickel, aluminum, tin, uranium, and manganese using hair toxic element testing by Doctor’s Data (a CLIA-approved laboratory. CARS scoring and hair toxic element testing were blinded to one another. Increasing hair Hg concentrations significantly correlated with increased ASD severity. In contrast, no significant correlations were observed between any other of the hair toxic metals examined and ASD severity. This study helps to provide additional mechanistic support for Hg in the etiology of ASD severity, and is supported by an increasing number of recent critical reviews that provide biological plausibility for the role of Hg exposure in the pathogenesis of ASDs.

  8. An empirical comparison of effective concentration estimators for evaluating aquatic toxicity test responses

    Energy Technology Data Exchange (ETDEWEB)

    Bailer, A.J.; Hughes, M.R.; Denton, D.L.; Oris, J.T.

    2000-01-01

    Aquatic toxicity tests are statistically evaluated by either hypothesis testing procedures to derive a no-observed-effect concentration or by inverting regression models to calculate the concentration associated with a specific reduction from the control response. These latter methods can be described as potency estimation methods. Standard US Environmental Protection Agency (USEPA) potency estimation methods are based on two different techniques. For continuous or count response data, a nominally nonparametric method that assumes monotonic decreasing responses and piecewise linear patterns between successive concentration groups is used. For quantal responses, a probit regression model with a linear dose term is fit. These techniques were compared with a recently developed parametric regression-based estimator, the relative inhibition estimator, RIp. This method is based on fitting generalized linear models, followed by estimation of the concentration associated with a particular decrement relative to control responses. These estimators, with levels of inhibition (p) of 25 and 50%, were applied to a series of chronic toxicity tests in a US EPA region 9 database of reference toxicity tests. Biological responses evaluated in these toxicity tests included the number of young produced in three broods by the water flea (Ceriodaphnia dubia) and germination success and tube length data from the giant kelp (Macrocystis pyrifera). The greatest discrepancy between the RIp and standard US EPA estimators was observed for C. dubia. The concentration-response pattern for this biological endpoint exhibited nonmonotonicity more frequently than for any of the other endpoint. Future work should consider optimal experimental designs to estimate these quantities, methods for constructing confidence intervals, and simulation studies to explore the behavior of these estimators under known conditions.

  9. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  10. Concentration and toxicity of sea-surface contaminants in Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.T.; Crecelius, E.A.; Kocan, R.

    1986-04-01

    The Marine Research Laboratory conducted studies during CY 1985 to evaluate the effects of sea-surface contamination on the reproductive success of a valued marine species. Microlayer and bulk water samples were collected from a rural bay, central Puget Sound, and three urban bays and analyzed for a number of metal and organic contaminants as well as for densities of neuston and plankton organisms. Fertilized neustonic eggs of sand sole (Psettichthys melanostictus) were exposed to the same microlayer samples during their first week of embryonic and larval development. Also, we evaluated the effects of microlayer extracts on the growth of trout cell cultures. Compared to rural sites, urban bays generally contained lower densities of neustonic flatfish eggs during the spawning season. Also, in contrast to the rural sites or the one central Puget Sound site, approximately half of the urban bay microlayer samples resulted in significant increases in embryo mortality (up to 100%), kyphosis (bent spine abnormalities) in hatched larvae, increased anaphase aberrations in developing embryos, and decreased trout cell growth. The toxic samples generally contained high concentrations of polycyclic aromatic and/or chlorinated hydrocarbons and/or potentially toxic metals. In some cases, concentrations of contaminants on the sea surface exceeded water-quality criteria by several orders of magnitude. Several samples of subsurface bulk water collected below highly contaminated surfaces showed no detectable contamination or toxicity.

  11. The molecular basis of simple relationships between exposure concentration and toxic effects with time.

    Science.gov (United States)

    Tennekes, Henk A; Sánchez-Bayo, Francisco

    2013-07-05

    Understanding the toxicity of chemicals to organisms requires considering the molecular mechanisms involved as well as the relationships between exposure concentration and toxic effects with time. Our current knowledge about such relationships is mainly explained from a toxicodynamic and toxicokinetic perspective. This paper re-introduces an old approach that takes into account the biochemical mode of action and their resulting biological effects over time of exposure. Empirical evidence demonstrates that the Druckrey-Küpfmüller toxicity model, which was validated for chemical carcinogens in the early 1960s, is also applicable to a wide range of toxic compounds in ecotoxicology. According to this model, the character of a poison is primarily determined by the reversibility of critical receptor binding. Chemicals showing irreversible or slowly reversible binding to specific receptors will produce cumulative effects with time of exposure, and whenever the effects are also irreversible (e.g. death) they are reinforced over time; these chemicals have time-cumulative toxicity. Compounds having non-specific receptor binding, or involving slowly reversible binding to some receptors that do not contribute to toxicity, may also be time-dependent; however, their effects depend primarily on the exposure concentration, with time playing a minor role. Consequently, the mechanism of toxic action has important implications for risk assessment. Traditional risk approaches cannot predict the impacts of toxicants with time-cumulative toxicity in the environment. New assessment procedures are needed to evaluate the risk that the latter chemicals pose on humans and the environment. An example is shown to explain how the risk of time-dependent toxicants is underestimated when using current risk assessment protocols. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Low-level toxicity of chemicals: No acceptable levels?

    Directory of Open Access Journals (Sweden)

    Bruce P Lanphear

    2017-12-01

    Full Text Available Over the past 3 decades, in a series of studies on some of the most extensively studied toxic chemicals and pollutants, scientists have found that the amount of toxic chemical linked with the development of a disease or death-which is central to determining "safe" or "hazardous" levels-is proportionately greater at the lowest dose or levels of exposure. These results, which are contrary to the way the United States Environmental Protection Agency (EPA and other regulatory agencies assess the risk of chemicals, indicate that we have underestimated the impact of toxic chemicals on death and disease. If widely disseminated chemicals and pollutants-like radon, lead, airborne particles, asbestos, tobacco, and benzene-do not exhibit a threshold and are proportionately more toxic at the lowest levels of exposure, we will need to achieve near-zero exposures to protect public health.

  13. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.

    Science.gov (United States)

    Haest, P J; Springael, D; Smolders, E

    2010-01-01

    The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.

  14. Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater)

    Energy Technology Data Exchange (ETDEWEB)

    Stamper, D.M. [NAVSEA Carderrock Div., West Bethesda, MD (United States). Biological Sciences Group; Montgomery, M.T. [Naval Research Laboratory, Washington, DC (United States). Marine Biochemistry Section

    2008-08-15

    Oily waste water from ships occurs when materials leak, spill, or are washed off the decks and drain into the bilge compartments of ships. The wastes include diesel fuel, coolants, and engine, transmission, and hydraulic oils. Treatments for oily waste water in the United States Navy are based on a combination of density separation and ceramic membrane ultrafiltration techniques, which may not meet planned regulations that will require lower levels of oil pollutants. This study tested the biodegradability and toxicity of low concentrations of oily waste water in order to establish the feasibility of using a combined shipboard oily and sanitary waste water treatment system. The toxic effects of diesel fuel and other components of the waste water were also tested. The study showed that diluting the oily effluent with the sanitary waste stream resulted in waste water with low enough oil content to meet the anticipated changes in waste water regulations. The study also showed that the low concentrations of waste water were catabolized in the presence of the sanitary waste stream. A modified PolyTox assay was used to test the waste water samples. Results of the study showed that heterotrophic bacterial production rates did not show any toxic effects. The addition of detergent in the samples had no impact on toxicity levels. It was concluded that combining oil and sanitary waste water in a single biological treatment system is a feasible option for ensuring the future regulations are met. 37 refs., 2 tabs., 4 figs.

  15. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    Science.gov (United States)

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  16. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  17. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units

    DEFF Research Database (Denmark)

    Schmidt, Stine Nørgaard; Holmstrup, Martin; Smith, Kilian E. C.

    2013-01-01

    treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑Clipid eq.), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments...... could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LClipid eq...

  18. Effects of biochar addition on toxic element concentrations in plants

    DEFF Research Database (Denmark)

    Peng, Xin; Deng, Yinger; Peng, Yan

    2018-01-01

    Consuming food contaminated by toxic elements (TEs) could pose a substantial risk to human health. Recently, biochar has been extensively studied as an effective soil ameliorant in situ because of its ability to suppress the phytoavailability of TEs. However, despite the research interest......, the effects of biochar applications to soil on different TE concentrations in different plant parts remain unclear. Here, we synthesize 1813 individual observations data collected from 97 articles to evaluate the effects of biochar addition on TE concentrations in plant parts. We found that (1) the experiment...... type, biochar feedstock and pyrolysis temperature all significantly decreased the TE concentration in plant parts; (2) the responses of Cd and Pb concentrations in edible and indirectly edible plant parts were significantly more sensitive to the effect of biochar than the Zn, Ni, Mn, Cr, Co and Cu...

  19. Intensity modulated radiotherapy for localized prostate cancer: rigid compliance to dose-volume constraints as a warranty of acceptable toxicity?

    International Nuclear Information System (INIS)

    Chen, Michael J; Nadalin, Wladmir; Weltman, Eduardo; Hanriot, Rodrigo M; Luz, Fábio P; Cecílio, Paulo J; Cruz, José C da; Moreira, Frederico R; Santos, Adriana S; Martins, Lidiane C

    2007-01-01

    To report the toxicity after intensity modulated radiotherapy (IMRT) for patients with localized prostate cancer, as a sole treatment or after radical prostatectomy. Between August 2001 and December 2003, 132 patients with prostate cancer were treated with IMRT and 125 were evaluable to acute and late toxicity analysis, after a minimum follow-up time of one year. Clinical and treatment data, including normal tissue dose-volume histogram (DVH) constraints, were reviewed. Gastro-intestinal (GI) and genito-urinary (GU) signs and symptoms were evaluated according to the Radiation Therapy Oncology Group (RTOG) toxicity scales. Median prescribed dose was 76 Gy. Median follow-up time was of 26.1 months. From the 125 patients, 73 (58.4%) presented acute Grade 1 or Grade 2 GI and 97 (77.2%) presented acute Grade 1 or Grade 2 GU toxicity. Grade 3 GI acute toxicity occurred in only 2 patients (1.6%) and Grade 3 GU acute toxicity in only 3 patients (2.4%). Regarding Grade 1 and 2 late toxicity, 26 patients (20.8%) and 21 patients (16.8%) presented GI and GU toxicity, respectively. Grade 2 GI late toxicity occurred in 6 patients (4.8%) and Grade 2 GU late toxicity in 4 patients (3.2%). None patient presented any Grade 3 or higher late toxicity. Non-conformity to DVH constraints occurred in only 11.2% of treatment plans. On univariate analysis, no significant risk factor was identified for Grade 2 GI late toxicity, but mean dose delivered to the PTV was associated to higher Grade 2 GU late toxicity (p = 0.042). IMRT is a well tolerable technique for routine treatment of localized prostate cancer, with short and medium-term acceptable toxicity profiles. According to the data presented here, rigid compliance to DHV constraints might prevent higher incidences of normal tissue complication

  20. Concentrations and Toxic Equivalency of Polychlorinated Biphenyls in Polish Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Urbaniak, Magdalena; Kiedrzyńska, Edyta

    2015-10-01

    Wastewater treatment plants (WWTPs) are widely recognized as important sources of toxic contaminants such as polychlorinated biphenyls (PCBs). An example is given in the present paper, where concentrations of 12 dioxin-like PCBs (dl-PCBs) congeners were investigated in effluents from 14 WWTPs of different sizes, using gas chromatography tandem-mass spectrometry. The results obtained demonstrate that the smallest WWTPs are characterized by the highest total dl-PCB concentration of 102.69 pg/L, roughly twice those of medium-size and large WWTPs, i.e. 41.14 and 48.29 pg/L, respectively. In all cases, the concentrations obtained were generated mostly by increased contributions of PCB-77, PCB-105 and PCB-118 which constituted 48 %-59 % of the mean dl-PCB concentration. The results also reveal a predominance of mono-ortho over non-ortho PCBs. All three types of WWTP effluent were found to have similar toxic equivalency (TEQ) values, ranging from 0.31 for large to 0.37 pg TEQ/L for medium WWTPs.

  1. Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Crommentuijn, T.; Doodeman, C.J.A.M.; Doornekamp, A.; Pol, J.J.C. van der; Bedaux, J.J.M.; Gestel, C.A.M. van (Vrije Univ., Amsterdam (Netherlands))

    1994-11-01

    Time-dependent toxicity in bioassays is usually explained in terms of uptake and elimination kinetics of the toxicant. By comparing different species with essentially different accumulation kinetics, a firm test of this concept may be made. This article compares the sensitivity of six soil arthropods, the collembolans Orchesella cincta and Tomocerus minor, the oribatid mite Platynothrus peltifer, the isopods Porcellio scaber and Oniscus asellus, and the diplopod Cylindroiulus britannicus, when exposed to cadmium in the food. Survival was determined at various time intervals; accumulation of cadmium in the animals was measured at one time interval. Kinetic-based toxicity models were fitted to the data, and estimates were obtained for lethal body concentration, uptake rate constant, elimination rate constant, and ultimate LC50. Two different accumulation patterns could be discerned; these were correlated with time-survival relationships. One, species that have the possibility to eliminate cadmium will reach an equilibrium for the internal concentration and also an ultimate LC50. Two, species that are unable to eliminate cadmium but store it in the body will have an ultimate LC50 equal to zero. For these species the time in which the lethal body concentration is reached is more important. Taxonomically related species appeared to have comparable accumulation patterns, but lethal body concentrations differed. It is concluded that knowledge of the accumulation pattern is indispensable for the evaluation of species' sensitivities to toxicants.

  2. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Giuseppe Vecchio

    Full Text Available The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs of different sizes (5, 15, 40, and 80 nm in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES, while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN. We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size.

  3. Toxic effects of zinc from trout farm sediments on ATP, protein, and hemoglobin concentrations of Limnodrilus hoffmeisteri.

    Science.gov (United States)

    Martinez-Tabche, L; Gutiérrez Cabrera, I; Gómez Oliván, L; Galar Martinez, M; Germán Faz, C

    2000-04-14

    Zinc (Zn) is a nutritionally essential metal, and deficiency results in severe health consequences to aquatic organisms. In this study toxicity data for Limnodrilus hoffmeisteri produced by Zn in systems using three natural sediments (trout farms: El Oyamel, El Truchón, and El Potrero) are presented. Hemoglobin, adenosine triphosphate (ATP), and protein concentrations were measured in L. hoffmeisteri exposed to spiked sediments, as indicators of exposure. Physicochemical characteristics of water and sediments were also considered. Zn concentrations were measured in water and sediment. El Oyamel, El Truchón, and El Potrero pond sediments did not have similar physicochemical characteristics. Zn concentrations of water obtained from the rustic ponds were near 0.4575 mg/L; however, this metal was always found to be higher in the sediments (0.0271-0.9754 mg/kg). The bioassay with worms demonstrated that pond sediments from El Oyamel, El Potrero, and El Truchón produced toxicity since ATP and protein concentrations were low compared to controls (organisms without metal). All spiked sediments had a significant reduction effect on ATP, protein, and hemoglobin concentrations. This investigation clearly shows that sediments of El Truchón, El Oyamel, and El Potrero possess toxicity potential. These results suggest the usefulness of these bioassays to evaluate the toxicity of sediments polluted with heavy metals.

  4. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  5. Study on the Effect of Heavy metals toxicity according to changing Hardness concentration using D.magna

    Science.gov (United States)

    Chun Sang, H.

    2016-12-01

    n order to determine and prevent the number of ecological effects of heavy metals in the materials, we have to accurately measure the heavy metals present in the water-based protection ecosystems and may determine the effects to humans. Heavy metals occurred in the industrial effluent which is a state in which the monitor, based on the emission standards are made by the Ministry of Environment and managed and waste water contained Copper, Zinc, lead, etc. These heavy metals are able to express the toxic effects only when present in the free-ions in the aqueous condition, which appears differently affected by the degree to hardness change in accordance with the season, precipitation. Generally changing hardness concentration can not precisely evaluate toxic effects of heavy metals in the water system. Anderson announced a study on bioassay for heavy metals from industrial waste water using Daphnia magna(Anderson, 1944, 1948). Breukelman published study the resitivity difference for the mercury Chloride(HgCl2). Braudouin(1974) compared the zooplankton(Daphnia sp.) acute toxicity of the different heavy metals and confirmed the sensitivity. Shcherban(1979) presented for toxicity evaluation results for the heavy metal of the Daphnia magna according to different temperature conditions. In the United States Environmental Protection Agency(EPA) established a standard test method for water fleas, managed and supervised water ecosystems, and announced the adoption of a bioassay standard method. This study was performed to evaluate acute inhibition using the Daphnia magna for the biological effect of heavy metal ions in water-based toxicity in the hardness change. Evaluation methods were conducted in EPA Water Quality process test criteria. TU(Toxic Unit), NOEC (No Observable Effect Concentration), LOEC (Lowest Observable Effect Concentration), EC50 (Median Effective Concentration) was calculated by Toxcalc 5.0 Program. Keywords : D. magna, Hardness, Toxic Unit, Heavy metal

  6. Is the Factor-of-2 Rule Broadly Applicable for Evaluating the Prediction Accuracy of Metal-Toxicity Models?

    Science.gov (United States)

    Meyer, Joseph S; Traudt, Elizabeth M; Ranville, James F

    2018-01-01

    In aquatic toxicology, a toxicity-prediction model is generally deemed acceptable if its predicted median lethal concentrations (LC50 values) or median effect concentrations (EC50 values) are within a factor of 2 of their paired, observed LC50 or EC50 values. However, that rule of thumb is based on results from only two studies: multiple LC50 values for the fathead minnow (Pimephales promelas) exposed to Cu in one type of exposure water, and multiple EC50 values for Daphnia magna exposed to Zn in another type of exposure water. We tested whether the factor-of-2 rule of thumb also is supported in a different dataset in which D. magna were exposed separately to Cd, Cu, Ni, or Zn. Overall, the factor-of-2 rule of thumb appeared to be a good guide to evaluating the acceptability of a toxicity model's underprediction or overprediction of observed LC50 or EC50 values in these acute toxicity tests.

  7. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  8. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO 2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO 2 , since the root FW reduction caused by excess B was less marked at the high CO 2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO 2 concentration, and from 38 to 51% at elevated CO 2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO 2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO 2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO 2 .

  9. Toxic plasma concentration of ropivacaine after a paravertebral block in a patient suffering from severe hypoalbuminemia.

    Science.gov (United States)

    Calenda, Emile; Baste, Jean Marc; Hajjej, Ridha; Danielou, Eric; Peillon, Christophe

    2014-03-01

    A case of systemic ropivacaine toxicity from a continuous thoracic paravertebral block in an adult patient who received a lobectomy is presented. The catheter was placed by the surgeon. Eleven hours after the start of the infusion, the patient experienced an arrhythmia leading to death. The total venous plasma concentration of ropivacaine was high (3.2 μg/mL). Furthermore, the patient had severe hypoalbuminemia (albumin 24 g/L), which resulted in the increase of the unbound ropivacaine plasma concentration that was responsible for the toxic side effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Single Oral Dose Toxicity Test of Blue Honeysuckle Concentrate in Mice

    Science.gov (United States)

    Park, Sang-In; Choi, Seung-Hoon; Song, Chang-Hyun; Park, Soo-Jin; Shin, Yong-Kook; Han, Chang-Hyun; Lee, Young Joon; Ku, Sae-Kwang

    2015-01-01

    The objective of this study was to obtain single oral dose toxicity information for concentrated and lyophilized powder of blue honeysuckle (Lonicera caerulea L., Caprifoliaceae; BHcL) in female and male ICR mice to aid in the process of developing natural origin medicinal ingredients or foods following proximate analysis and phytochemical profile measurement. The proximate analysis revealed that BHcL had an energy value of 3.80 kcal/g and contained 0.93 g/g of carbohydrate, 0.41 g/g of sugar, 0.02 g/g of protein, and 0.20 mg/g of sodium. BHcL did not contain lipids, including saturated lipids, trans fats, or cholesterols. Further, BHcL contained 4.54% of betaine, 210.63 mg/g of total phenols, 159.30 mg/g of total flavonoids, and 133.57 mg/g of total anthocyanins. Following administration of a single oral BHcL treatment, there were no treatment-related mortalities, changes in body weight (bw) or organ weight, clinical signs, necropsy or histopathological findings up to 2,000 mg/kg bw, the limited dosage for rodents of both sexes. We concluded that BHcL is a practically non-toxic material in toxicity potency. PMID:25874034

  11. Maryland air toxics regulation applicable to a natural gas compressor station

    International Nuclear Information System (INIS)

    Weidemann, H.A.; Hoffman, P.M.

    1992-01-01

    Columbia Gas Transmission Corporation submitted an air permit application to the Maryland Department of the Environment to construct a natural gas compressor station near Rutledge, Maryland. The station consists of three natural gas-fueled internal combustion reciprocating engines, each rated at 3200 horsepower. Maximum potential pollutant emissions associated with the station operation did not trigger Prevention of Significant Deterioration review or nonattainment area New Source review. However, a minor source air permit cannot be issued without addressing Maryland's toxic air regulations. Columbia initiated a detailed investigation of toxic air pollutants, including a stack test of an identical engine. Based on this information, the proposed station was subject to the toxic air regulation for acetaldehyde, acrolein, benzene, crotonaldehyde, and formaldehyde. Compliance with the toxic air regulation for crotonaldehyde was demonstrated by having an emission rate less than the threshold emission rate, specified in the regulation. The ambient air quality impact of the other four pollutants was determined using the Industrial Source Complex dispersion model and resulted in predicted concentrations below the pollutant-specific acceptable ambient level. A carcinogenic impact analysis was performed for acetaldehyde, benzene, and formaldehyde to demonstrate compliance with the accepted risk of one in one hundred thousand

  12. Chemical concentrations, exposures, health risks by census tract from National Scale Air Toxics Assessment (NATA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical concentrations, exposures, health risks by census tract for the United States from National Scale Air Toxics Assessment (NATA). This dataset is associated...

  13. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals

    International Nuclear Information System (INIS)

    Guelden, Michael; Seibert, Hasso

    2005-01-01

    The lower sensitivity of in vitro cytotoxicity assays currently restricts their use as alternative to the fish acute toxicity assays for hazard assessment of chemicals in the aquatic environment. In vitro cytotoxic potencies mostly refer to nominal concentrations. The main objective of the present study was to investigate, whether a reduced availability of chemicals in vitro can account for the lower sensitivity of in vitro toxicity test systems. For this purpose, the bioavailable free fractions of the nominal cytotoxic concentrations (EC 50 ) of chemicals determined with a cytotoxicity test system using Balb/c 3T3 cells and the corresponding free cytotoxic concentrations (ECu 50 ) were calculated. The algorithm applied is based on a previously developed simple equilibrium distribution model for chemicals in cell cultures with serum-supplemented culture media. This model considers the distribution of chemicals between water, lipids and serum albumin. The algorithm requires the relative lipid volume of the test system, the octanol-water partition coefficient (K ow ) and the in vitro albumin-bound fraction of the chemicals. The latter was determined from EC 50 -measurements in the presence of different albumin concentrations with the Balb/c 3T3 test system. Organic chemicals covering a wide range of cytotoxic potency (EC 50 : 0.16-527000 μM) and lipophilicity (log K ow : -5.0-6.96) were selected, for which fish acute toxicity data (LC 50 -values) from at least one of the three fish species, medaka, rainbow trout and fathead minnow, respectively, were available. The availability of several chemicals was shown to be extensively reduced either by partitioning into lipids or by serum albumin binding, or due to both mechanisms. Reduction of bioavailability became more important with increasing cytotoxic potency. The sensitivity of the Balb/c 3T3 cytotoxicity assay and the correspondence between in vivo and in vitro toxic potencies were increased when the free cytotoxic

  14. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks

    OpenAIRE

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian N. L.; Revitt, D. Mike

    2010-01-01

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelin...

  15. Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis.

    Science.gov (United States)

    Song, Taeksun; Lee, Myungsun; Jeon, Han-Seung; Park, Yumi; Dodd, Lori E; Dartois, Véronique; Follman, Dean; Wang, Jing; Cai, Ying; Goldfeder, Lisa C; Olivier, Kenneth N; Xie, Yingda; Via, Laura E; Cho, Sang Nae; Barry, Clifton E; Chen, Ray Y

    2015-11-01

    Long-term linezolid use is limited by mitochondrial toxicity-associated adverse events (AEs). Within a prospective, randomized controlled trial of linezolid to treat chronic extensively drug-resistant tuberculosis, we serially monitored the translational competence of mitochondria isolated from peripheral blood of participants by determining the cytochrome c oxidase/citrate synthase activity ratio. We compared this ratio with AEs associated with mitochondrial dysfunction. Linezolid trough concentrations were determined for 38 participants at both 600 mg and 300 mg doses. Those on 600 mg had a significantly higher risk of AE than those on 300 mg (HR 3·10, 95% CI 1·23-7 · 86). Mean mitochondrial function levels were significantly higher in patients before starting linezolid compared to their concentrations on 300 mg (P = 0·004) or 600 mg (P linezolid trough concentrations were associated with lower mitochondrial function levels (Spearman's ρ = - 0.48; P = 0.005). Mitochondrial toxicity risk increased with increasing linezolid trough concentrations, with all patients with mean linezolid trough > 2 μg/ml developing an AE related to mitochondrial toxicity, whether on 300 mg or 600 mg. Therapeutic drug monitoring may be useful to prevent the development of mitochondrial toxicity associated with long-term linezolid use.

  16. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations

    Science.gov (United States)

    Taylor, Nadine S.; Merrifield, Ruth; Williams, Tim D.; Chipman, J. Kevin; Lead, Jamie R.; Viant, Mark R.

    2016-01-01

    Abstract Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level. PMID:25740379

  17. Soil metal concentrations and toxicity: Associations with distances to industrial facilities and implications for human health

    International Nuclear Information System (INIS)

    Aelion, C. Marjorie; Davis, Harley T.; McDermott, Suzanne; Lawson, Andrew B.

    2009-01-01

    Urban and rural areas may have different levels of environmental contamination and different potential sources of exposure. Many metals, i.e., arsenic (As), lead (Pb), and mercury (Hg), have well-documented negative neurological effects, and the developing fetus and young children are particularly at risk. Using a database of mother and child pairs, three areas were identified: a rural area with no increased prevalence of mental retardation and developmental delay (MR/DD) (Area A), and a rural area (Area B) and an urban area (Area C) with significantly higher prevalence of MR/DD in children as compared to the state-wide average. Areas were mapped and surface soil samples were collected from nodes of a uniform grid. Samples were analyzed for As, barium (Ba), beryllium (Be), chromium (Cr), copper (Cu), Pb, manganese (Mn), nickel (Ni), and Hg concentrations and for soil toxicity, and correlated to identify potential common sources. ArcGIS was used to determine distances between sample locations and industrial facilities, which were correlated with both metal concentrations and soil toxicity. Results indicated that all metal concentrations (except Be and Hg) in Area C were significantly greater than those in Areas A and B (p ≤ 0.0001) and that Area C had fewer correlations between metals suggesting more varied sources of metals than in rural areas. Area C also had a large number of facilities whose distances were significantly correlated with metals, particularly Cr (maximum r = 0.33; p = 0.0002), and with soil toxicity (maximum r = 0.25; p = 0.007) over a large spatial scale. Arsenic was not associated with distance to any facility and may have a different anthropogenic, or natural source. In contrast to Area C, both rural areas had lower concentrations of metals, lower soil toxicity, and a small number of facilities with significant associations between distance and soil metals

  18. Modeling the effects of reformulated gasoline usages on ambient concentrations of ozone and five air toxics

    International Nuclear Information System (INIS)

    Ligocki, M.P.; Schulhof, R.R.; Jackson, R.E.; Jimenez, M.M.; Atkinson, D.

    1993-01-01

    The use of reformulated gasolines to reduce motor-vehicle-related hydrocarbon emissions has been mandated by the 1990 Clean Air Act Amendments for nine severely polluted urban areas. Using a version of the Urban Airshed Model that includes explicit representation of five motor-vehicle-related air toxics, the effects of reformulated gasoline usage on ambient ozone and toxics concentrations were simulated. Simulations were conducted for two urban areas. Baltimore-Washington and Houston, for the year 1995. Additional simulation were conducted for Baltimore-Washington including winter and 1999 scenarios. In the Baltimore-Washington areas, the 1995 Federal reformulated gasoline scenario produce reductions of 1.1 percent in simulated peak ozone and 2.7 percent in the areal extent of simulated ozone exceedances. Simulated ozone reductions were much smaller in Houston. In the reformulated gasoline simulations, secondary formulation of formaldehyde and acetaldehyde was reduced, and decreases in ambient benzene and polycyclic organic matter (POM) concentrations were simulated. Larger reductions in ozone and toxics concentrations were simulated for reformulated gasolines meeting California Phase II standards than for those meeting Federal standards. The effects of reductions in motor-vehicle-related nitrogen oxides (NO x ) emissions, alone and in combination with hydrocarbon reductions, were also examined

  19. Assessment of sediment quality based on toxic equivalent benzo[a]Pyrene concentration

    International Nuclear Information System (INIS)

    King, T.L.; Lee, K.

    2004-01-01

    This study examined benzo[a]pyrene (B[a]P) as an indicator and its thresholds for polycyclic aromatic hydrocarbons (PAH) in sediments. The indicator, based on toxicity and carcinogenic effects, was selected to assess the marine environment and changes in marine environmental quality (MEQ) in Sydney Harbour, Nova Scotia. It was shown that the bioavailability of B[a]P and other PAHs is greatly affected by the quality and quantity of dissolved organic matter and organic carbon content. Two coal coke facilities were constructed on the shore of Sydney Harbour in the 19th century. For many years, the coke-ovens discharged toxic liquid effluent through the Tar Ponds into the harbour, contaminating the ground and surface water with arsenic, lead and other toxins. It also led to the accumulation of PAHs and polychlorinated biphenyls. A recent assessment of PAH contamination of Sydney Harbour has focused on the exposure of organisms to contaminants as well as the biological effects on the organisms. All samples collected from the South Arm of Sydney Harbour exceeded the upper threshold of established regulatory guidelines. Samples from the Northwest Arm were within regulatory limits, suggesting that industrial and municipal sources were the primary sources of pollution. PAH concentrations were used to identify sediments that exceed effects thresholds based on MEQ guidelines. The results were compared to actual observations of biological effects. Toxic equivalency factors were established for B[a]P and other PAHs in order to estimate cumulative exposure levels. The concentrations can be compared to regulatory sediment quality guidelines established in Canada and the United States for the protection of marine life. 34 refs., 6 tabs., 2 figs

  20. Shelf Life Extension of Tomato Paste Through Organoleptically Acceptable Concentration of Betel Leaf Essential Oil Under Accelerated Storage Environment.

    Science.gov (United States)

    Basak, Suradeep

    2018-05-01

    This study was attempted with two objectives: (1) to find an acceptable concentration of betel leaf essential oil (BLEO) based on sensory evaluation that can be employed in tomato paste; (2) to evaluate the effect of the acceptable concentration of BLEO in the paste during accelerated storage under 89 ± 1.2% RH at 39 ± 1 °C. Linguistic data obtained from sensory evaluation of tomato paste treated with 4 different concentrations of BLEO were analyzed using fuzzy logic approach. The organoleptically acceptable concentration was determined to be 0.25 mg/g of BLEO in tomato paste. The effect of the selected concentration of BLEO on different physicochemical and microbial attributes of tomato paste during accelerated storage was studied. Untreated tomato paste was found to have 12% less total antioxidant capacity than treated paste at the end of storage. Based on a * /b * value in CIELAB color space, the BLEO treated paste efficiently extended the shelf life by 14 days with respect to untreated paste samples under accelerated storage conditions. BLEO comes with a tag contributing to green consumerism, and its application as food preservative is no less than a value addition to the product. Essential oil is considered to have promising potential as an alternative food preservative, and its use is practically possible if they could overcome the sensory barrier, while retaining the preservative potency. The importance of identifying the sensory attributes for commercial success of essential oil treated food product was considered in this study. It contributes to the potency of organoleptically acceptable concentration of BLEO in shelf life extension of tomato paste under accelerated storage conditions. At industrial level, the estimated shelf life of treated tomato paste can be increased by incorporating more hurdles alongside BLEO. © 2018 Institute of Food Technologists®.

  1. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    International Nuclear Information System (INIS)

    Johnson, Andrew C.; Keller, Virginie; Dumont, Egon; Sumpter, John P.

    2015-01-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  2. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Andrew C., E-mail: ajo@ceh.ac.uk [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Keller, Virginie; Dumont, Egon [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Sumpter, John P. [Institute for the Environment, Brunel University, Uxbridge UB8 (United Kingdom)

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  3. Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests

    Directory of Open Access Journals (Sweden)

    Débora Rebechi

    2014-09-01

    Full Text Available Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE, alpha (EST-α and beta (EST-β esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.

  4. Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams.

    Science.gov (United States)

    Gardner, Kristin M; Royer, Todd V

    2010-01-01

    Contemporary information on road salt runoff is needed for management of water resources in regions experiencing urbanization and increased road density. We investigated seasonal Cl(-) concentrations among five streams in south-central Indiana that drained watersheds varying in degree of urbanization and ranging in size from 9.3 to 27 km(2). We also conducted acute toxicity tests with Daphnia pulex to assess the potential effects of the observed Cl(-) concentrations on aquatic life. Periods of elevated Cl(-) concentrations were observed during the winters of 2007-08 and 2008-09 at all sites except the reference site. The highest Cl(-) concentration observed during the study was 2100 mg L(-1) and occurred at the most urbanized site. The Cl(-) concentration at the reference site never exceeded 22 mg L(-1). The application of road salt caused large increases in stream Cl(-) concentrations, but the elevated Cl(-) levels did not appear to be a significant threat to aquatic life based on our toxicity testing. Only the most urbanized site showed evidence of salt retention within the watershed, whereas the other sites exported the road salt relatively quickly after its application, suggesting storm drains and impervious surfaces minimized interaction between soils and salt-laden runoff. During winter at these sites, the response in stream Cl(-) concentrations appeared to be controlled by the timing and intensity of road salt application, the magnitude of precipitation, and the occurrence of air temperatures that caused snowmelt and generated runoff.

  5. Early change of thyroid hormone concentration after 131I treatment in patients with solitary toxic adenoma

    International Nuclear Information System (INIS)

    Pirnat, E.; Fidler, V.; Zaletel, K.; Gaberscek, S.; Hojker, S.

    2002-01-01

    Aim: In spite of extensive use of 131 I for treatment of hyperthyroidism, the results of early outcome are variable. In our prospective clinical study we tested whether 131 I induced necrosis causing clinical aggravation of hyperthyroidism and increasing the free thyroid hormone concentration in the serum of patients with solitary toxic adenoma not pretreated with antithyroid drugs. Patients and methods: 30 consecutive patients were treated with 925 MBq 131 I. Serum concentration of thyrotropin (TSH), free thyroxine (fT 4 ), free triiodothyronine (fT 3 ), thyroglobulin (Tg), and interleukin-6 (IL-6) were measured before and after application of 131 I. Results: After application of 131 I no clinical worsening was observed. FT 4 and fT 3 concentration did not change significantly within the first five days, whereas both of them significantly decreased after 12 days (p 131 I induced necrosis of thyroid cells was found. Therefore, the application of 131 I may be considered as a safe and effective treatment for patients with hyperthyroidism due to toxic adenoma. (orig.)

  6. Absence of a relation between efavirenz plasma concentrations and toxicity-driven efavirenz discontinuations in the EuroSIDA study

    DEFF Research Database (Denmark)

    van Luin, Matthijs; Bannister, Wendy P; Mocroft, Amanda

    2009-01-01

    plasma concentrations were measured from patients in the EuroSIDA study starting EFV after 1 January 1999. Patients with a plasma concentration available were divided into those that discontinued EFV because of any toxicity or by the choice of the patient or physician within 2 years (TOXPC group...

  7. Analysis of toxic elements and macro-micro nutrients in food stuff by using neutron activation analysis

    International Nuclear Information System (INIS)

    Rina Mulyaningsih, Th.; Istanto; Saeful Yusuf; Siti Suprapti

    2010-01-01

    Determination of toxic elements and macro-micro nutrient in food stuff by neutron activation analysis (NAA) has been done. The kinds of samples are vegetables, legume, mace and flavor, flour, fish and flesh. Samples had been collected from market in Serpong. Analysis of the samples show macro nutrients with concentration >1000 mg/kg, as K, Ca, Mg, Na, and Cl; micronutrients with concentration 10 - 100 mg/kg: Fe, Mn, Zn, Se, Br, Rb, and La; and toxic elements with concentration below 5 mg/kg as Co, Sb, Hg, As and Cr. As concentration in fish and rice and Hg concentration in fish and red chili is exceed from government permission value. Zinc concentration in some kind of samples is more than permission value, but it should be considered because of its average daily intake is lower then recommended value 15 mg/day. The Zn deficiencies can disturb growth and metabolism. Al concentration in samples is high enough 10 – 500 mg/kg; it must be take into account serious attention because of its toxicity. Evaluation of these elements is compared to sufficiency value of daily requirement RDA (Recommended Daily Acceptable). In this study was discussed potential hazards for human while its deficiencies or excessive intake. (author)

  8. Influence of potentially confounding factors on sea urchin porewater toxicity tests

    Science.gov (United States)

    Carr, R.S.; Biedenbach, J.M.; Nipper, M.

    2006-01-01

    The influence of potentially confounding factors has been identified as a concern for interpreting sea urchin porewater toxicity test data. The results from >40 sediment-quality assessment surveys using early-life stages of the sea urchin Arbacia punctulata were compiled and examined to determine acceptable ranges of natural variables such as pH, ammonia, and dissolved organic carbon on the fertilization and embryological development endpoints. In addition, laboratory experiments were also conducted with A. punctulata and compared with information from the literature. Pore water with pH as low as 6.9 is an unlikely contributor to toxicity for the fertilization and embryological development tests with A. punctulata. Other species of sea urchin have narrower pH tolerance ranges. Ammonia is rarely a contributing factor in pore water toxicity tests using the fertilization endpoint, but the embryological development endpoint may be influenced by ammonia concentrations commonly found in porewater samples. Therefore, ammonia needs to be considered when interpreting results for the embryological development test. Humic acid does not affect sea urchin fertilization at saturation concentrations, but it could have an effect on the embryological development endpoint at near-saturation concentrations. There was no correlation between sediment total organic carbon concentrations and porewater dissolved organic carbon concentrations. Because of the potential for many varying substances to activate parthenogenesis in sea urchin eggs, it is recommended that a no-sperm control be included with every fertilization test treatment. ?? 2006 Springer Science+Business Media, Inc.

  9. Mixture toxicity of wood preservative products in the fish embryo toxicity test.

    Science.gov (United States)

    Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja

    2012-06-01

    Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.

  10. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae.

    Science.gov (United States)

    Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin

    2018-01-01

    The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. OPTIMIZATION OF ETHANOL CONCENTRATION, GLYCEROL CONCENTRATION AND TEMPERATURE CONDITIONS OF GRAPE-MAHUA WINE TO MAXIMIZE THE QUALITY AND OVERALL ACCEPTABILITY

    Directory of Open Access Journals (Sweden)

    Mandeep Kaur

    2013-06-01

    Full Text Available Black grapes (Vitis vinifera and mahua (Madhuca longfolia extract was used in 90:10 grape-mahua ratio for fermentation for 15 days and subjected to clarification using bentonite and gelatin as fining agents. Ageing was allowed for three months and studies were conducted using response surface methodology to assess the effect of ethanol, glycerol and temperature on viscosity, color, specific gravity, pH and overall acceptability. Experimental designs were conducted and 20 samples were prepared containing varying concentration of ethanol (7.55%-13.44%, glycerol (6.19-18.8g/l and temperature (5.6-22.4oC respectively. The maximum desirability of 93% was obtained for wine under the optimized conditions 13.44% ethanol, 6.19g/l glycerol and 14oC temperature, having viscosity (efflux time, 12.9 s; color absorbance, 4.61; SG, 1.0012; pH, 3.34 and overall acceptability, 8.47.

  12. Toxic trace elements in Chilean seafoods

    International Nuclear Information System (INIS)

    De Gregori, I.; Delgado, D.; Pinochet, H.; Gras, N.; Thieck, M.; Munoz, L.; Bruhn, C.; Navarrete, G.

    1992-01-01

    Chile is a well known producer and exporter of shell fish. These seafoods, like other specimens of marine origin, are susceptible to environmental and other contaminations like trace elements, including toxicants. Therefore adequate analytical quality assurance is mandatory before accepting analytical results. In this context, use of at least 2 independent methods of determination and validation with certified reference materials (CRM) provides acceptable criteria for judging the reliability of the data. This paper describes sample treatments and analytical procedures for Cd, Cu and Hg determinations in mollusc samples. Three independent analytical techniques, namely differential pulse anodic stripping voltammetry, neutron activation analysis and atomic absorption spectrometry, were used. CRM standards of the IAEA, NIST and BCR were analyzed to evaluate quality assurance. Following the quality control phase, the concentrations of cadmium, copper, and mercury in fresh and canned mollusc samples Tagelus dombeii and Semelle solida (Navajuelas and Almejas chilenas respectively) from different locations were determined. (author). 32 refs.; 4 figs.; 7 tabs

  13. Sediment nickel bioavailability and toxicity to estuarine crustaceans of contrasting bioturbative behaviors--an evaluation of the SEM-AVS paradigm.

    Science.gov (United States)

    Chandler, G Thomas; Schlekat, Christian E; Garman, Emily R; He, Lijian; Washburn, Katherine M; Stewart, Emily R; Ferry, John L

    2014-11-04

    Robust sediment quality criteria require chemistry and toxicity data predictive of concentrations where population/community response should occur under known geochemical conditions. Understanding kinetic and geochemical effects on toxicant bioavailability is key, and these are influenced by infaunal sediment bioturbation. This study used fine-scale sediment and porewater measurement of contrasting infaunal effects on carbon-normalized SEM-AVS to evaluate safe or potentially toxic nickel concentrations in a high-binding Spartina saltmarsh sediment (4%TOC; 35-45 μmol-S2-·g(-1)). Two crustaceans producing sharply contrasting bioturbation--the copepod Amphiascus tenuiremis and amphipod Leptocheirus plumulosus--were cultured in oxic to anoxic sediments with SEM[Ni]-AVS, TOC, porewater [Ni], and porewater DOC measured weekly. From 180 to 750 μg-Ni·g(-1) sediment, amphipod bioturbation reduced [AVS] and enhanced porewater [Ni]. Significant amphipod uptake, mortality, and growth-depression occurred at the higher sediment [Ni] even when [SEM-AVS]/foc suggested acceptable risk. Less bioturbative copepods produced higher AVS and porewater DOC but exhibited net population growth despite porewater [Ni] 1.3-1.7× their aqueous [Ni] LOEC. Copepod aqueous tests with/without dissolved organic matter showed significant aqueous DOC protection, which suggests porewater DOC attenuates sediment Ni toxicity. The SEM[Ni]-AVS relationship was predictive of acceptable risk for copepods at the important population-growth level.

  14. Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad

    2015-07-01

    Full Text Available The radon activity concentration and toxic elements have been assessed in drinking and irrigated water samples collected from different locations of Sungai Petani, Kedah, Malaysia. The water samples were collected from wells, streams and taps. A calibrated alpha spectrometer RAD-7 (Model 2890 and Atomic Absorption Spectrometers (Perkin–Elmer, Model AAnalyst 200, Shimadzu, Model AA-700 were used to estimate radon activity concentration and toxic elements, respectively. Maximum average value of radon concentration among the various types of water sources was found 14.7 ± 1.44 Bq/l in well water used for drinking and irrigation and minimum was found 5.37 ± 0.58 Bq/l in tap water used for drinking. Contribution of radon in drinking water to indoor air and age dependent associated annual effective doses were calculated from the measured radon concentration and were found less than lower limit of recommended action level. The activity concentrations of Ni > Pb > Cd > As > Cr were found higher for streams water as compared to wells and tap water. Values of radon concentration in well water were found higher than EPA recommended level and lower than WHO action level while the annual effective doses and level of toxic elements in water reported in this study were found lower than recommended level.

  15. Early change of thyroid hormone concentration after {sup 131}I treatment in patients with solitary toxic adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Pirnat, E.; Fidler, V.; Zaletel, K.; Gaberscek, S.; Hojker, S. [Univ. Medical Centre Ljubljana, Dept. of Nuclear Medicine (Slovenia)

    2002-08-01

    Aim: In spite of extensive use of {sup 131}I for treatment of hyperthyroidism, the results of early outcome are variable. In our prospective clinical study we tested whether {sup 131}I induced necrosis causing clinical aggravation of hyperthyroidism and increasing the free thyroid hormone concentration in the serum of patients with solitary toxic adenoma not pretreated with antithyroid drugs. Patients and methods: 30 consecutive patients were treated with 925 MBq {sup 131}I. Serum concentration of thyrotropin (TSH), free thyroxine (fT{sub 4}), free triiodothyronine (fT{sub 3}), thyroglobulin (Tg), and interleukin-6 (IL-6) were measured before and after application of {sup 131}I. Results: After application of {sup 131}I no clinical worsening was observed. FT{sub 4} and fT{sub 3} concentration did not change significantly within the first five days, whereas both of them significantly decreased after 12 days (p<0.0001). Slight and clinically irrelevant increase in the level of the two thyroid hormones was observed in 9 patients. Furthermore, we observed a prolonged increase in Tg concentration and a transient increase in IL-6 concentration. Conclusion: Neither evidence of any clinical aggravation of hyperthyroidism nor any significant increase in thyroid hormone concentration by {sup 131}I induced necrosis of thyroid cells was found. Therefore, the application of {sup 131}I may be considered as a safe and effective treatment for patients with hyperthyroidism due to toxic adenoma. (orig.)

  16. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter

    Directory of Open Access Journals (Sweden)

    Yong Jiang

    2016-08-01

    Full Text Available In the monitoring of pollutants in an aquatic environment, it is important to preserve water quality safety. Among the available analysis methods, the microbial fuel cell (MFC sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD and toxicity, respectively. However, the effect of the background organic matter concentration on toxicity monitoring when using an MFC sensor is not clear and there is no effective strategy available to avoid the signal interference by the combined shock of BOD and toxicity. Thus, the signal interference by the combined shock of BOD and toxicity was systematically studied in this experiment. The background organic matter concentration was optimized in this study and it should be fixed at a high level of oversaturation for maximizing the signal output when the current change (ΔI is selected to correlate with the concentration of a toxic agent. When the inhibition ratio (IR is selected, on the other hand, it should be fixed as low as possible near the detection limit for maximizing the signal output. At least two MFC sensors operated with high and low organic matter concentrations and a response chart generated from pre-experiment data were both required to make qualitative distinctions of the four types of combined shock caused by a sudden change in BOD and toxicity.

  17. Polyphenol Concentrate from Kazakhstan Cabernet Sauvignon Collection of Grapes

    Directory of Open Access Journals (Sweden)

    Zarina Shulgau

    2014-12-01

    Full Text Available Introduction. Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the beneficial properties of polyphenols. Standard operating procedures were developed in our laboratories to collect alcohol free concentrate of polyphenols from the Kazakhstan Cabernet Sauvignon collection of grapes. The purpose of the study was to investigate the composition, biological safety, and potential therapeutic effects of the polyphenol concentrate.Methods. The total polyphenol amount was determined using the Enology Analyzer Y15 (BioSystems, Spain. HPLC analysis of the polyphenol composition was performed using Agilent 1290 chromatograph. The polyphenol concentrate was analyzed for the microbiological purity and the presence of the toxic elements. The cytoprotective effect of the polyphenol concentrate was studied in experimental models of diabetes, toxic hepatitis, doxorubicin cardiomyopathy, and acute radiation sickness.Results. The total polyphenol amount in one sample was 12,819 mg/l. Polyphenol composition analysis showed presence of the following polyphenols: catechin, epicatechin, gallic acid, quercetin, miricetin, 3-glucosylkaempferol, epicatechin gallate, 3-(3,4-Dihydroxyphenyl-2-propenoic acid, catechin gallate, pitseid, kaempferol, n-hydroxy-cinnamic acid, resveratrol and chlorogenic acid. The concentrate was proven to be biologically safe and acceptable for use as a dietary supplement. The polyphenol concentrate demonstrated high antioxidant activity against ABTS and DPPH radicals in vitro. It also showed the following impacts on the various

  18. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    Science.gov (United States)

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data

  19. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation.

    Science.gov (United States)

    Weng, Jingxia; Jia, Huichao; Wu, Bing; Pan, Bingcai

    2018-01-01

    Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV 254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV 254 ) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, S.P., E-mail: steve.mcgrath@bbsrc.ac.u [Soil Science Department, Centre for Soils and Ecosystems Function, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Mico, C.; Zhao, F.J.; Stroud, J.L. [Soil Science Department, Centre for Soils and Ecosystems Function, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Zhang, H.; Fozard, S. [Division of Environmental Science, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2010-10-15

    Four plant species (oilseed rape, Brassica napus L.; red clover, Trifolium pratense L.; ryegrass, Lolium perenne L.; and tomato, Lycopersicon esculentum L.) were tested on ten soils varying widely in soil properties to assess molybdenum (Mo) toxicity. A larger range (66-fold-609-fold) of added Mo concentrations resulting in 50% inhibition of yield (ED{sub 50}) was found among soils than among plant species (2-fold-38-fold), which illustrated that the soils differed widely in the expression of Mo toxicity. Toxicity thresholds based on soil solution Mo narrowed the variation among soils compared to thresholds based on added Mo concentrations. We conclude that plant bioavailability of Mo in soil depends on Mo solubility, but this alone did not decrease the variability in observed toxicity enough to be used in risk assessment and that other soil properties influencing Mo toxicity to plants need to be considered. - Mo toxicity thresholds varied widely in different soils and therefore soil properties need to be taken into account in order to assess the risk of Mo exposure.

  1. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  2. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinsheng, E-mail: yinshengli@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China); Tang, Hao; Hu, Yingxiu; Wang, Xiuhong; Ai, Xiaojie; Tang, Li [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China); Matthew, Cory [Institute of Agriculture & Environment, Massey University, Private Bag 11-222, Palmerston North 4442 (New Zealand); Cavanagh, Jo [Landcare Research, PO Box 40, Lincoln 7640 (New Zealand); Qiu, Jiangping [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-05

    Highlights: • Enrofloxacin (EF) and cadmium (Cd) were independently adsorbed in soils. • EF accelerated and increased Cd bioaccumulation in earthworms. • At high concentration EF (10 mg kg{sup −1}) was toxic to earthworms. • EF enhanced Cd induced oxidative stress, and increased burrowing and respiration. • EF did not affect the Cd induced increase in metallothionein in earthworms. - Abstract: Individual and combined effects of enrofloxacin (EF) and cadmium (Cd) on the earthworm Eisenia fetida at environmentally relevant concentrations were investigated. EF is a veterinary antibiotic; Cd is an impurity in phosphatic fertiliser. For both, residues may accumulate in farm soils. In laboratory tests, over 98% of spiked EF was adsorbed by farm soils, with a half-life >8 weeks. However, earthworms absorbed less than 20% of spiked EF. Earthworms in soil with EF concentration 10 mg kg{sup −1} soil experienced transient oxidative stress and exhibited reduced burrowing activity and respiration after an 8-week exposure; EF at 0.1 and 1.0 mg kg{sup −1} soil did not elicit toxicity symptoms. When both were added, Cd did not affect EF uptake, but each increment of spiked EF increased Cd bioaccumulation and associated oxidative stress of earthworms, and also caused decreased burrow length and CO{sub 2} production. However, metallothionein induction was not affected. The enhanced toxicity of Cd to earthworms in the presence of EF at low environmental concentrations may have implications for the health and reproductive success of earthworm populations and highlights the importance of understanding effects of antibiotic contamination of farm soils, and of awareness of environmental effects from interaction between multiple contaminants.

  3. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils

    International Nuclear Information System (INIS)

    Li, Yinsheng; Tang, Hao; Hu, Yingxiu; Wang, Xiuhong; Ai, Xiaojie; Tang, Li; Matthew, Cory; Cavanagh, Jo; Qiu, Jiangping

    2016-01-01

    Highlights: • Enrofloxacin (EF) and cadmium (Cd) were independently adsorbed in soils. • EF accelerated and increased Cd bioaccumulation in earthworms. • At high concentration EF (10 mg kg"−"1) was toxic to earthworms. • EF enhanced Cd induced oxidative stress, and increased burrowing and respiration. • EF did not affect the Cd induced increase in metallothionein in earthworms. - Abstract: Individual and combined effects of enrofloxacin (EF) and cadmium (Cd) on the earthworm Eisenia fetida at environmentally relevant concentrations were investigated. EF is a veterinary antibiotic; Cd is an impurity in phosphatic fertiliser. For both, residues may accumulate in farm soils. In laboratory tests, over 98% of spiked EF was adsorbed by farm soils, with a half-life >8 weeks. However, earthworms absorbed less than 20% of spiked EF. Earthworms in soil with EF concentration 10 mg kg"−"1 soil experienced transient oxidative stress and exhibited reduced burrowing activity and respiration after an 8-week exposure; EF at 0.1 and 1.0 mg kg"−"1 soil did not elicit toxicity symptoms. When both were added, Cd did not affect EF uptake, but each increment of spiked EF increased Cd bioaccumulation and associated oxidative stress of earthworms, and also caused decreased burrow length and CO_2 production. However, metallothionein induction was not affected. The enhanced toxicity of Cd to earthworms in the presence of EF at low environmental concentrations may have implications for the health and reproductive success of earthworm populations and highlights the importance of understanding effects of antibiotic contamination of farm soils, and of awareness of environmental effects from interaction between multiple contaminants.

  4. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers.

    Science.gov (United States)

    Johnson, Andrew C; Keller, Virginie; Dumont, Egon; Sumpter, John P

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6×9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2-3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1-1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  6. Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.S.; Prowse, J.; Hoffman, P.W.

    1995-01-01

    The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee's evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable

  7. CORRELATIONS BETWEEN HOMOLOGUE CONCENTRATIONS OF PCDD/FS AND TOXIC EQUIVALENCY VALUES IN LABORATORY-, PACKAGE BOILER-, AND FIELD-SCALE INCINERATORS

    Science.gov (United States)

    The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and ...

  8. Assessment of concentrations of trace and toxic heavy metals in soil and vegetables grown in the vicinity of Manyoni uranium deposit in Tanzania

    International Nuclear Information System (INIS)

    Kapile, F.A.; Makundi, I.N.

    2016-01-01

    This study reports on determination of concentrations of trace and toxic heavy metals in soil and vegetables grown near of Manyoni uranium deposit. Soil and vegetable samples were collected from five sites namely Mitoo Mbuga, farming area, Miyomboni, Tambukareli and near water pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF).All vegetable samples were found to have higher concentrations (in μg/g) of trace elements such as Ni (67.3) in pea leaves, Cu (14.9) in pumpkin leaves, Fe (478.6), (200.5) and (337.1) in pea, pumpkin and spinach leaves respectively, than the maximum tolerable limits recommended by WHO/FAO. Mean concentration of Pb (1.6 μg/g) in pumpkin leaves collected from Miyomboni (area D) were observed to be higher than the safe limit of (0.3μg/g) set by Codex 2006. Toxic elements concentrations (in μg/g) such as Cd (10.4), Pb (23.2),Hg (4.1), Th (31.5) and U (23.9) were observed to be high in soil collected from Mitoo Mbuga and farming area. Therefore, vegetables in the vicinity of Manyoni uranium deposit can expose people to toxic elements which are detrimental to their health.A more detailed study involving other foodstuffs is needed to establish conclusive results.

  9. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius

    Science.gov (United States)

    Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.

    1996-01-01

    calculated using sediment concentrations normalized to total organic carbon (TOC) concentrations did not improve the reliability compared to SECs calculated using dry-weight concentrations. The range of TOC concentrations in our database was relatively narrow compared to the ranges of contaminant concentrations. Therefore, normalizing dry-weight concentrations to a relatively narrow range of TOC concentrations had little influence on relative concentra of contaminants among samples. When SECs are used to conduct a preliminary screening to predict the potential for toxicity in the absence of actual toxicity testing, a low number of SEC exceedances should be used to minimize the potential for false negatives; however, the risk of accepting higher false positives is increased.

  10. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations.

    Science.gov (United States)

    Burgess, R M; Perron, M M; Cantwell, M G; Ho, K T; Serbst, J R; Pelletier, M C

    2004-11-01

    Ammonia occurs in marine waters including effluents, receiving waters, and sediment interstitial waters. At sufficiently high concentrations, ammonia can be toxic to aquatic species. Toxicity identification evaluation (TIE) methods provide researchers with tools for identifying aquatic toxicants. For identifying ammonia toxicity, there are several possible methods including pH alteration and volatilization, Ulva lactuca addition, microbial degradation, and zeolite addition. Zeolite addition has been used successfully in freshwater systems to decrease ammonia concentrations and toxicity for several decades. However, zeolite in marine systems has been used less because ions in the seawater interfere with zeolite's ability to adsorb ammonia. The objective of this study was to develop a zeolite method for removing ammonia from marine waters. To accomplish this objective, we performed a series of zeolite slurry and column chromatography studies to determine uptake rate and capacity and to evaluate the effects of salinity and pH on ammonia removal. We also assessed the interaction of zeolite with several toxic metals. Success of the methods was also evaluated by measuring toxicity to two marine species: the mysid Americamysis bahia and the amphipod Ampelisca abdita. Column chromatography proved to be effective at removing a wide range of ammonia concentrations under several experimental conditions. Conversely, the slurry method was inconsistent and variable in its overall performance in removing ammonia and cannot be recommended. The metals copper, lead, and zinc were removed by zeolite in both the slurry and column treatments. The zeolite column was successful in removing ammonia toxicity for both the mysid and the amphipod, whereas the slurry was less effective. This study demonstrated that zeolite column chromatography is a useful tool for conducting marine water TIEs to decrease ammonia concentrations and characterize toxicity.

  11. Optimization of the half-acceptance angle for a non-imaging refractive concentrator using an insolation model; Nissha model wo riyoshita kussetsugata hikessho shukoki no kyoyo nyusha kakudo no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, K; Suzuki, A; Saito, T [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The application of concentrating optical systems to PV modules is under investigation because of anxious supply of materials for crystalline PV cells and cost limitation. However, since the height of the conventional CPC (compound parabolic concentrator) is considerably larger than the width of a concentration part, its application to PV cells is unsuitable. A non-imaging refractive lens was thus devised. Since the portion from a refractive surface to a concentration part of this lens is made of transparent resin with the same refractive index, the lens can reduce interface transmission, reflection loss and the height of concentrators. The half-acceptance angle for maximizing yearly optical concentration was selected using an insolation model for titled concentrators. In the case of a tilt angle equal to the latitude (35deg) of Tokyo, a maximum yearly optical concentration ratio of 1.71 was obtained at a half- acceptance angle of 23deg in calculation. The optimum half-acceptance angle increased linearly with the tilt angle in a range of 20-35deg. 4 refs., 6 figs.

  12. Plume residence and toxic material accumulation

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Holpuch, R.

    1975-01-01

    Increased growth rates and 137 Cs concentrations in plume resident trout are thought to be the result of increased metabolism, food consumption, and activity caused by exposure to increased water temperature and flow in thermal discharges. These exposure conditions could contribute to increased accumulation of biologically active, toxic substances by primary forage and predator fish species in the Great Lakes. Uptake and retention of various toxic substances by predators depend on concentrations in forage species (trophic transfer), ambient water, and point source effluents (direct uptake). Contaminants of immediate concern in Great Lakes systems (e.g., chlorinated hydrocarbons) accumulate in adipose tissue, and body concentrations have been correlated with total lipid content in fish. In addition to direct toxic effects on fish, many lipophilic contaminants are known to cause severe human health problems when ingested at concentrations commonly found in Lake Michigan salmonids. Although power plants may or may not be the direct source of a toxic substance, the thermal discharge environment may contribute to the accumulation of toxic substances in fish and the transfer of these materials to man

  13. Toxicity of the sulfhydryl-containing radioprotector dithiothreitol

    International Nuclear Information System (INIS)

    Held, K.D.; Biaglow, J.E.

    1987-01-01

    The toxicity of the sulfhydryl-containing radioprotector dithiothreitol (DTT) has been studied in Chinese hamster V79 cells growing in monolayer. Under the conditions used here DTT causes a biphasic toxic response in which low concentrations of the drug (0.5 to 1.0 mM) are more toxic than are lower (0.2 mM) or higher (10 mM) concentrations. This response is similar to that seen by others with other sulfhydryl compounds. This DTT-induced toxicity is prevented by catalase, glutathione, and lowered temperatures. The toxicity is enhanced by some metal chelators (EDTA) but prevented by others (desferal). Metals (copper and iron) can either enhance or decrease the toxicity depending on their concentration and whether the exposure is in medium or in buffered salt solution. The results suggest a complex chain of chemical reactions and interactions with a role of H/sub 2/O/sub 2/ and perhaps . OH in this DTT toxicity. This is discussed

  14. Borocaptate sodium (BSH) toxicity issues

    International Nuclear Information System (INIS)

    LaHann, T.

    1995-01-01

    ISU's Center for Toxicology Research has been conducting toxicity testing of borocaptate sodium (BSH) to aid in assessing if proposed human studies of BSH are likely to be acceptably safe. This report describes BSH interactions with other biological agents

  15. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

    Science.gov (United States)

    Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing

    2014-09-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

  16. Polyurethane and alginate immobilized algal biomass for the removal of aqueous toxic metals

    International Nuclear Information System (INIS)

    Fry, I.V.; Mehlhorn, R.J.

    1992-12-01

    We describe the development of immobilized, processed algal biomass for use as an adsorptive filter in the removal of toxic metals from waste water. To fabricate an adsorptive filter from precessed biomass several crucial criteria must be met, including: (1) high metal binding capacity, (2) long term stability (both mechanical and chemical), (3) selectivity for metals of concern (with regard to ionic competition), (4) acceptable flow capacity (to handle large volumes in short time frames), (5) stripping/regeneration (to recycle the adsorptive filter and concentrate the toxic metals to manageable volumes). This report documents experiments with processed algal biomass (Spirulina platensis and Spirulina maxima) immobilized in either alginate gel or preformed polyurethane foam. The adsorptive characteristics of these filters were assessed with regard to the criteria listed above

  17. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: implications for regulatory study designs and ecological risk assessments for GM crops.

    Science.gov (United States)

    Raybould, Alan; Burns, Andrea; Hamer, Mick

    2014-01-01

    Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed.

  18. Sub-chronic toxicity of low concentrations of industrial volatile organic pollutants in vitro

    International Nuclear Information System (INIS)

    McDermott, Catherine; Allshire, Ashley; Pelt, Frank N.A.M. van; Heffron, James J.A.

    2007-01-01

    Organic solvents form an important class of pollutants in the ambient air and have been associated with neurotoxicity and immunotoxicity in humans. Here we investigated the biological effects of sub-chronic exposure to industrially important volatile organic solvents in vitro. Jurkat T cells were exposed to toluene, n-hexane and methyl ethyl ketone (MEK) individually for 5 days and solvent exposure levels were confirmed by headspace gas chromatography. A neuroblastoma cell line (SH-SY5Y) was exposed to toluene for the same period. Following exposure, cells were harvested and toxicity measured in terms of the following endpoints: membrane damage (LDH leakage), perturbations in intracellular free Ca 2+ , changes in glutathione redox status and dual-phosphorylation of MAP kinases ERK1/2, JNK and p38. The results show that sub-chronic exposure to the volatile organic solvents causes membrane damage, increased intracellular free calcium and altered glutathione redox status in both cell lines. However, acute and sub-chronic solvent exposure did not result in MAP kinase phosphorylation. Toxicity of the solvents tested increased with hydrophobicity. The lowest-observed-adverse-effect-levels (LOAELs) measured in vitro were close to blood solvent concentrations reported for individuals exposed to the agents at levels at or below their individual threshold limit values (TLVs)

  19. Determination of leachate toxicity through acute toxicity using Daphnia pulex and anaerobic toxicity assays

    OpenAIRE

    Carabalí-Rivera, Y. S; Barba-Ho, L. E; Torres-Lozada, P

    2017-01-01

    ABSTRACT The municipal solid waste (MSW) of large cities, in particular the ones of developing countries, is mainly disposed in landfills (LFs), whose inadequate management generates the emission of greenhouse gases and the production of leachates with high concentrations of organic and inorganic matter and, occasionally heavy metals. In this study, the toxicity of the leachates from an intermediate-age municipal landfill was evaluated by ecotoxicity and anaerobic toxicity tests. The acute to...

  20. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    Science.gov (United States)

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  1. Gaining acceptance for the use of in vitro toxicity assays and QIVIVE in regulatory risk assessment.

    Science.gov (United States)

    Meek, M E Bette; Lipscomb, John C

    2015-06-05

    Testing strategies are anticipated to increasingly rely on in vitro data as a basis to characterize early steps or key events in toxicity at relevant dose levels in human tissues. Such strategies require quantitative in vitro to in vivo extrapolation to characterize dose-response as a basis for comparison with exposure to estimate risk. Current experience in the incorporation of mechanistic and in vitro data in risk assessment is considered here in the context of identified principles to increase the potential for timely acceptance of more progressive and tailored testing strategies by the regulatory community. These principles are outlined as transitioning in a familiar context, tiering to acquire experience and increase confidence, contextual knowledge transfer to facilitate interpretation and communication, coordination and development of expertise and continuing challenge. A proposed pragmatic tiered data driven framework which includes increasing reliance on in vitro data and quantitative in vitro to in vivo extrapolation is considered in the context of these principles. Based on this analysis, possible additional steps that might facilitate timely evolution and potentially, uptake are identified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    2014-01-01

    Full Text Available Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3. Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone.

  3. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Science.gov (United States)

    Spiroux de Vendômois, Joël; Séralini, Gilles-Eric

    2014-01-01

    Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3). Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone. PMID:24719846

  4. SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL

    International Nuclear Information System (INIS)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-01-01

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Five (SB5) for processing in the Defense Waste Processing Facility (DWPF). Part of this SB5 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40 to complete the formation of SB5. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB4. The radionuclide concentrations were measured or estimated in the Tank 51 SB5 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry taken on March 21, 2008. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under direction of the Liquid Waste Organization it was then modified by five washes, six decants, an addition of Pu/Be from Canyon Tank 16.4, and an addition of NaNO2. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Ta Determining the radionuclide concentrations in this Tank 51 SB5 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2008-0010. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task 2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task 5) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB5 will be taken and

  5. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    Science.gov (United States)

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a “Central Dogma” for Toxic Mechanisms?

    Science.gov (United States)

    Lee, Sundong; Cho, Myung-Haing

    2014-01-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011

  7. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  8. A data base and a standard material for use in acceptance testing of low-activity waste products

    International Nuclear Information System (INIS)

    Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

    1998-04-01

    The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material

  9. Fumonisin concentrations and in vivo toxicity of nixtamalized Fusarium verticillioides culture material: evidence for fumonisin-matrix interactions.

    Science.gov (United States)

    Burns, T D; Snook, M E; Riley, R T; Voss, K A

    2008-08-01

    The toxic potential of nixtamalized foods can be underestimated if, during cooking, reversible fumonisin-food matrix interactions reduce the amount of mycotoxin that is detected but not the amount that is bioavailable. Fusarium verticillioides culture material (CM) was nixtamalized as is (NCM) or after mixing with ground corn (NCMC). Additional portions were sham nixtamalized without (SCM) or with corn (SCMC). Nixtamalization and sham nixtamalization reduced FB(1); CM, NCM, and SCM diets contained 9.08, 2.08, and 1.19 ppm, respectively. FB(1) was further reduced in the NCMC (0.49 ppm) but not the SCMC (1.01 ppm) diets compared to their NCM and SCM counterparts. Equivalent weights of the cooked products, uncooked CM, corn (UC) or nixtamalized UC (NUC) were fed to rats for up to three weeks. Kidney lesions in the NCM-fed group were less severe than in the CM-fed, positive control group and no lesions were found in the NCMC and other groups. Group kidney sphinganine (biomarker of fumonisin exposure) concentrations decreased in the order: CM (absolute concentration (nmol/g)=600-800)>NCM (400-600)>SCM and SCMC (30-90)>NCMC, UC and NUC (<8). Together, these results suggest that mycotoxin-corn matrix interactions during nixtamalization reduce the bioavailability and toxicity of FB(1).

  10. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    Radioecology aims at assessing the effect of radionuclides and radiation on the environment. Since we cannot test every possible environmental situation in the laboratory, we need modeling approaches to extrapolate the results of toxicity assays to environmentally relevant scenarios. Therefore, it is of crucial importance to understand the effect of relevant environmental factors, such as nutrients, temperature and light on the toxicity of the test. Radionuclides are often found to induce the production of reactive oxygen species (ROS). In plants, an overload of ROS can lead to disturbances of the photosynthetic system. Since the light intensity determines the efficiency of the photo-systems in plants, it can be expected to interact with the effect of radionuclides. The nutrient concentration of the test medium determines the physiological state of the plant, affecting in turn the plant's capability of dealing with stress and hence influences the toxicity of the contaminant. To study the interaction of stressors with environmental conditions, mechanistic effect modeling is promoted widely in ecotoxicology. In principle, the modelling aims at a mechanistic understanding of the different processes causing the stress individually, and integrating them in one framework to study their joint effect and possible interaction. We here present a mechanistic effect model for Lemna minor (common duckweed), which is based on Dynamic Energy Budget (DEB) theory. Models based on DEB have been used widely to study the effects of compounds on animals. Due to its general applicability to all types of organisms, it holds potential to be used for comparison of species and compounds in a broad context. Energy uptake from the environment is modeled explicitly, and metabolic rates are set to depend on temperature in DEB models. Therefore, they can be used to extrapolate effects to a wide range of environmentally relevant scenarios. Until now, the DEB research in ecotoxicology has

  11. Effect of concentration, exposure time, temperature, and relative humidity on the toxicity of sulfur dioxide to the spores of Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.; Uota, M.

    1961-12-01

    When spores of Botrytis cinerea are exposed to SO/sub 2/ gas, the subsequent reduction in spore germination is quantitatively proportional to the SO/sub 2/ concentration and the exposure time. The toxicity of SO/sub 2/ increases with increasing relative humidity. In an atmosphere of 96% RH, SO/sub 2/ is more than 20 times as effective as at 75% RH. The toxicity also increases about 1.5 times for each 10/sup 0/C rise in temperature between 0/sup 0/ and 30/sup 0/C. 8 references, 4 figures, 1 table.

  12. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  13. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2015-08-01

    Full Text Available This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory

  14. Concentrations and geographical variations of selected toxic elements in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in mid- and northern Norway: evaluation of risk assessment.

    Science.gov (United States)

    Hassan, Ammar Ali; Brustad, Magritt; Sandanger, Torkjel M

    2012-05-01

    Meat samples (n = 100) from semi-domesticated reindeer (Rangifer tarandus tarandus L.) were randomly collected from 10 grazing districts distributed over four Norwegian counties in 2008 and 2009. The main aim was to study concentrations and geographical variations in selected toxic elements; cadmium (Cd), lead (Pb), arsenic (As), copper (Cu), nickel (Ni) and vanadium (V) in order to assess the risk associated with reindeer meat consumption. Sample solutions were analysed using an inductively coupled plasma high resolution mass spectrometer (ICP-HRMS), whereas analysis of variance (ANOVA) was used for statistical analyses. Geographical variations in element concentrations were revealed, with As and Cd demonstrating the largest geographical differences. No clear geographical gradient was observed except for the east-west downward gradient for As. The As concentrations were highest in the vicinity of the Russian border, and only Cd was shown to increase with age (p < 0.05). Sex had no significant effect on the concentration of the studied elements. The concentrations of all the studied elements in reindeer meat were generally low and considerably below the maximum levels (ML) available for toxic elements set by the European Commission (EC). Thus, reindeer meat is not likely to be a significant contributor to the human body burden of toxic elements.

  15. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An

  16. Anaerobic toxicity of cationic silver nanoparticles

    International Nuclear Information System (INIS)

    Gitipour, Alireza; Thiel, Stephen W.; Scheckel, Kirk G.; Tolaymat, Thabet

    2016-01-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag"+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L"−"1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L"−"1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag"+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L"−"1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L"−"1), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  17. VORICONAZOLE TOXICITY IN MULTIPLE PENGUIN SPECIES.

    Science.gov (United States)

    Hyatt, Michael W; Georoff, Timothy A; Nollens, Hendrik H; Wells, Rebecca L; Clauss, Tonya M; Ialeggio, Donna M; Harms, Craig A; Wack, Allison N

    2015-12-01

    Aspergillosis is a common respiratory fungal disease in penguins managed under human care. Triazole antifungal drugs, including itraconazole, are most commonly used for treatment; however, itraconazole treatment failures from drug resistance are becoming more common, requiring newer treatment options. Voriconazole, a newer triazole, is being used more often. Until recently, no voriconazole pharmacokinetic studies had been performed in penguins, leading to empiric dosing based on other avian studies. This has led to increased anecdotal reporting of apparent voriconazole toxicity in penguins. This report describes 18 probable and 6 suspected cases of voriconazole toxicity in six penguin species from nine institutions: 12 African penguins (Spheniscus demersus), 5 Humboldt penguins (Spheniscus humboldti), 3 Magellanic penguins (Spheniscus magellanicus), 2 gentoo penguins (Pygoscelis papua papua), 1 macaroni penguin (Eudyptes chrysolophus), and 1 emperor penguin (Aptenodytes forsteri). Observed clinical signs of toxicity included anorexia, lethargy, weakness, ataxia, paresis, apparent vision changes, seizure-like activity, and generalized seizures. Similar signs of toxicity have also been reported in humans, in whom voriconazole therapeutic plasma concentration for Aspergillus spp. infections is 2-6 μg/ml. Plasma voriconazole concentrations were measured in 18 samples from penguins showing clinical signs suggestive of voriconazole toxicity. The concentrations ranged from 8.12 to 64.17 μg/ml, with penguins having plasma concentrations above 30 μg/ml exhibiting moderate to severe neurologic signs, including ataxia, paresis, and seizures. These concentrations were well above those known to result in central nervous system toxicity, including encephalopathy, in humans. This case series highlights the importance of species-specific dosing of voriconazole in penguins and plasma therapeutic drug monitoring. Further investigation, including pharmacokinetic studies, is

  18. From the Cover: Selective Enhancement of Domoic Acid Toxicity in Primary Cultures of Cerebellar Granule Cells by Lowering Extracellular Na+ Concentration.

    Science.gov (United States)

    Pérez-Gómez, Anabel; Cabrera-García, David; Warm, Davide; Marini, Ann M; Salas Puig, Javier; Fernández-Sánchez, Maria Teresa; Novelli, Antonello

    2018-01-01

    Domoic acid (DOM) is an excitatory amino acid analog of kainic acid (KA) that acts through glutamic acid (GLU) receptors, inducing a fast and potent neurotoxic response. Here, we present evidence for an enhancement of excitotoxicity following exposure of cultured cerebellar granule cells to DOM in the presence of lower than physiological Na+ concentrations. The concentration of DOM that reduced by 50% neuronal survival was approximately 3 µM in Na+-free conditions and 16 µM in presence of a physiological concentration of extracellular Na+. The enhanced neurotoxic effect of DOM was fully prevented by AMPA/KA receptor antagonist, while N-methyl-D-aspartate-receptor-mediated neurotoxicity did not seem to be involved, as the absence of extracellular Na+ failed to potentiate GLU excitotoxicity under the same experimental conditions. Lowering of extracellular Na+ concentration to 60 mM eliminated extracellular recording of spontaneous electrophysiological activity from cultured neurons grown on a multi electrode array and prevented DOM stimulation of the electrical activity. Although changes in the extracellular Na+ concentration did not alter the magnitude of the rapid increase in intracellular Ca2+ levels associated to DOM exposure, they did change significantly the contribution of voltage-sensitive calcium channels (VScaCs) and the recovery time to baseline. The prevention of Ca2+ influx via VSCaCs by nifedipine failed to prevent DOM toxicity at any extracellular Na+ concentration, while the reduction of extracellular Ca2+ concentration ameliorated DOM toxicity only in the absence of extracellular Na+, enhancing it in physiological conditions. Our data suggest a crucial role for extracellular Na+ concentration in determining excitotoxicity by DOM. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Ultra flat ideal concentrators of high concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio [IST, Physics Dept., Lisboa (Portugal); INETI-DER, Lisboa (Portugal); Collares-Pereira, Manuel [INETI-DER, Lisboa (Portugal)

    2000-07-01

    A new method for the design of nonimaging devices is presented. Its application to the design of ultra flat compact concentrators is analysed. These new concentrators are based on a combination of two stages: the first one is composed of a large number of small structures placed side by side and the second one is a very compact single device concentrating the radiation to the limit. These devices are ideal for 2D. These compact designs are much more compact than the traditional ones like lens-mirror combinations or parabolic primaries with nonimaging secondaries. Besides, they can be designed for any acceptance angle, while the traditional ones are limited to small acceptance angles. (Author)

  20. Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity

    International Nuclear Information System (INIS)

    Davies, N.A.Nicola A.; Hodson, M.E.Mark E.; Black, S.Stuart

    2003-01-01

    The current OECD acute worm toxicity test does not relate well to ambient conditions. - In a series of experiments the toxicity of lead to worms in soil was determined following the draft OECD earthworm reproduction toxicity protocol except that lead was added as solid lead nitrate, carbonate and sulphide rather than as lead nitrate solution as would normally be the case. The compounds were added to the test soil to give lead concentrations of 625-12500 μg Pb g -1 of soil. Calculated toxicities of the lead decreased in the order nitrate>carbonate>sulphide, the same order as the decrease in the solubility of the metal compounds used. The 7-day LC 50 (lethal concentration when 50% of the population is killed) for the nitrate was 5321±275 μg Pb g -1 of soil and this did not change with time. The LC 50 values for carbonate and sulphide could not be determined at the concentration ranges used. The only parameter sensitive enough to distinguish the toxicities of the three compounds was cocoon (egg) production. The EC 50 s for cocoon production (the concentration to produce a 50% reduction in cocoon production) were 993, 8604 and 10246 μg Pb g -1 of soil for lead nitrate, carbonate and sulphide, respectively. Standard toxicity tests need to take into account the form in which the contaminant is present in the soil to be of environmental relevance

  1. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    Science.gov (United States)

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  2. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors.

    Science.gov (United States)

    Cavallaro, Michael C; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-02-01

    Nontarget aquatic insects are susceptible to chronic neonicotinoid insecticide exposure during the early stages of development from repeated runoff events and prolonged persistence of these chemicals. Investigations on the chronic toxicity of neonicotinoids to aquatic invertebrates have been limited to a few species and under different laboratory conditions that often preclude direct comparisons of the relative toxicity of different compounds. In the present study, full life-cycle toxicity tests using Chironomus dilutus were performed to compare the toxicity of 3 commonly used neonicotinoids: imidacloprid, clothianidin, and thiamethoxam. Test conditions followed a static-renewal exposure protocol in which lethal and sublethal endpoints were assessed on days 14 and 40. Reduced emergence success, advanced emergence timing, and male-biased sex ratios were sensitive responses to low-level neonicotinoid exposure. The 14-d median lethal concentrations for imidacloprid, clothianidin, and thiamethoxam were 1.52 μg/L, 2.41 μg/L, and 23.60 μg/L, respectively. The 40-d median effect concentrations (emergence) for imidacloprid, clothianidin, and thiamethoxam were 0.39 μg/L, 0.28 μg/L, and 4.13 μg/L, respectively. Toxic equivalence relative to imidacloprid was estimated through a 3-point response average of equivalencies calculated at 20%, 50%, and 90% lethal and effect concentrations. Relative to imidacloprid (toxic equivalency factor [TEF] = 1.0), chronic (lethality) 14-d TEFs for clothianidin and thiamethoxam were 1.05 and 0.14, respectively, and chronic (emergence inhibition) 40-d TEFs were 1.62 and 0.11, respectively. These population-relevant endpoints and TEFs suggest that imidacloprid and clothianidin exert comparable chronic toxicity to C. dilutus, whereas thiamethoxam induced comparable effects only at concentrations an order of magnitude higher. However, the authors caution that under field conditions, thiamethoxam readily degrades to

  3. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  4. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing

    NARCIS (Netherlands)

    Busquet, F.; Strecker, R.; Rawlings, J.M.; Belanger, S.E.; Braunbeck, T.; Carr, G.J.; Cenijn, P.H.; Fochtman, P.; Gourmelon, A.; Hübler, N.; Kleensang, A.; Knöbel, M.; Kussatz, C.; Legler, J.; Lillicrap, A.; Martínez-Jerónimo, F.; Polleichtner, C.; Rzodeczko, H.; Salinas, E.; Schneider, K.E.; Scholz, S.; van den Brandhof, E.J.; van der Ven, L.T.; Walter-Rohde, S.; Weigt, S.; Witters, H.; Halder, M.

    2014-01-01

    A The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were

  5. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    Directory of Open Access Journals (Sweden)

    Gérard Valérie A

    2010-03-01

    Full Text Available Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA capped have been investigated with pheochromocytoma 12 (PC12 cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA stabilised CdTe QDs (gel and non - gel were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly

  6. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2010-03-25

    Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA) capped) have been investigated with pheochromocytoma 12 (PC12) cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours) co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA) stabilised CdTe QDs (gel and non - gel) were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation) were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly susceptible to

  7. Toxicity of Single and Mixed Contaminants in Seawater Measured with Acute Toxicity Bioassays

    Directory of Open Access Journals (Sweden)

    A.R. Fernandez-Alba

    2002-01-01

    Full Text Available Different types of organic pollutants commonly detected in seawater have been evaluated by acute toxicity bioassays. Vibrio fischeri, Daphnia magna, and Selenastrum capricornotum were selected to test toxic effects of individual compounds and mixtures of these compounds, obtaining EC50 values in the range of 0.001 to 28.9 mg/l. In the case of mixtures, synergistic toxic responses were seen for a clear majority of the cases (>60%. Mixtures containing methyl-tertiary-butyl ether (MTBE exhibit accelerated processes that result in a change in concentration required to produce a toxic effect; for example, in the case of mixtures containing MTBE and Diuron and Dichlofluanid.

  8. HIV vaccine acceptability in seronaive patients in a resource limited ...

    African Journals Online (AJOL)

    Background: Current lifetime antiretroviral regimes are associated with clinically important toxicities, and have several limitations (eg. cost, development of resistance, complications). There is need for an alternative regime that must be acceptable, easy to administer and permanent for the eradication of HIV/AIDS.

  9. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    Science.gov (United States)

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Fluoroacetate-mediated toxicity of fluorinated ethanes.

    Science.gov (United States)

    Keller, D A; Roe, D C; Lieder, P H

    1996-04-01

    A series of 1-(di)halo-2-fluoroethanes reported in the literature to be nontoxic or of low toxicity were found to be highly toxic by the inhalation route. Experiments were performed that showed the compounds, 1,2-difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane to be highly toxic to rats upon inhalation for 4 hr. All four compounds had 4-hr approximate lethal concentrations of difluoroethane (commonly referred to as HFC-152a) has very low acute toxicity with a 4-hr LC50 of > 400,000 ppm in rats. Rats exposed to the selected toxic fluoroethanes showed clinical signs of fluoroacetate toxicity (lethargy, hunched posture, convulsions). 1,2-Difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane were shown to increase concentrations of citrate in serum and heart tissue, a hallmark of fluoroacetate intoxication. 19F NMR analysis confirmed that fluoroacetate was present in the urine of rats exposed to each toxic compound. Fluorocitrate, a condensation product of fluoroacetate and oxaloacetate, was identified in the kidney of rats exposed to 1,2-difluoroethane. There was a concentration-related elevation of serum and heart citrate in rats exposed to 0-1000 ppm 1,2-fluoroethane. Serum citrate was increased up to 5-fold and heart citrate was increased up to 11-fold over control citrate levels. Metabolism of 1,2-difluoroethane by cytochrome P450 (most likely CYP2E1) is suspected because pretreatment of rats or mice with SKF-525F, disulfiram, or dimethyl sulfoxide prevented or delayed the toxicity observed in rats not pretreated. Experimental evidence indicates that the metabolism of the toxic fluoroethanes is initiated at the carbon-hydrogen bond, with metabolism to fluoroacetate via an aldehyde or an acyl fluoride. The results of these studies show that 1-(di)halo-2-fluoroethanes are highly toxic to rats and should be considered a hazard to humans unless demonstrated otherwise.

  11. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  12. Acceptance of sugar reduction in flavored yogurt.

    Science.gov (United States)

    Chollet, M; Gille, D; Schmid, A; Walther, B; Piccinali, P

    2013-09-01

    To investigate what level of sugar reduction is accepted in flavored yogurt, we conducted a hedonic test focusing on the degree of liking of the products and on optimal sweetness and aroma levels. For both flavorings (strawberry and coffee), consumers preferred yogurt containing 10% added sugar. However, yogurt containing 7% added sugar was also acceptable. On the just-about-right scale, yogurt containing 10% sugar was more often described as too sweet compared with yogurt containing 7% sugar. On the other hand, the sweetness and aroma intensity for yogurt containing 5% sugar was judged as too low. A second test was conducted to determine the effect of flavoring concentration on the acceptance of yogurt containing 7% sugar. Yogurts containing the highest concentrations of flavoring (11% strawberry, 0.75% coffee) were less appreciated. Additionally, the largest percentage of consumers perceived these yogurts as "not sweet enough." These results indicate that consumers would accept flavored yogurts with 7% added sugar instead of 10%, but 5% sugar would be too low. Additionally, an increase in flavor concentration is undesirable for yogurt containing 7% added sugar. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Airborne concentrations of toxic metals resulting from the use of low melting point lead alloys to construct radiotherapy shielding

    International Nuclear Information System (INIS)

    McCullough, E.C.; Senjem, D.H.

    1981-01-01

    Determinations of airborne concentrations of lead, cadmium, bismuth, and tin were made above vessels containing a fusible lead alloy (158 0 F melting point) commonly used for construction of radiotherapy blocks. Fume concentrations were determined by collection on a membrane filter and analysis by atomic absorption spectrophotometry. Samples were obtained for alloy temperatures of 200 0 , 400 0 , and 600 0 F. In all instances, concentrations were much lower than the applicable occupational limits for continuous exposure. The results of this study indicate that the use of a vented hood as a means of reducing air concentrations of toxic metals above and near vessels containing low temperature melting point lead allows commonly used in construction of radiotherapy shields appears unjustifiable. However, proper handling procedures should be observed to avoid entry into the body via alternate pathways (e.g., ingestion or skin absorption). Transmission data of a non-cadmium containing lead alloy with a melting point of 203 0 F was ascertained and is reported on

  14. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  15. Safety Evaluation of Potential Toxic Metals Exposure from Street Foods Consumed in Mid-West Nigeria

    Directory of Open Access Journals (Sweden)

    O. C. Ekhator

    2017-01-01

    Full Text Available Objective. Street-vended foods offer numerous advantages to food security; nevertheless, the safety of street food should be considered. This study has investigated the level of potential toxic metal (Pb, Cd, Hg, Sb, Mn, and Al contamination among street-vended foods in Benin City and Umunede. Methods. Twenty street food samples were purchased from vendors at bus stops. Metals were analyzed with atomic absorption spectrophotometry. The methods developed by the US EPA were employed to evaluate the potential health risk of toxic metals. Results. The concentrations of the toxic metals in mg/kg were in the range of Pb (0.014–1.37, Cd (0.00–0.00017, Hg (0.00–0.00014, Sb (0.00–0.021, Mn (0.00–0.012, and Al (0.00–0.22. All the toxic metals except Pb were below permissible limit set by WHO, EU, and USEPA. The daily intake, hazard quotient, and hazard index of all toxic metals except for Pb in some street foods were below the tolerable daily intake and threshold value of 1, indicating an insignificant health risk. Total cancer risk was within the priority risk level of 1.0E-04 but higher than the acceptable risk level of 1E-06. Conclusion. Consumption of some of these street foods is of public health concern.

  16. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    International Nuclear Information System (INIS)

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M.; Kleinsasser, N.

    2010-01-01

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO 2 ) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO 2 in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO 2 , 0.1 ppm NO 2 , 1 ppm NO 2 , 10 ppm NO 2 and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO 2 in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO 2 in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  17. The Impact of a Nickel-Copper Smelter on Concentrations of Toxic Elements in Local Wild Food from the Norwegian, Finnish, and Russian Border Regions.

    Science.gov (United States)

    Hansen, Martine D; Nøst, Therese H; Heimstad, Eldbjørg S; Evenset, Anita; Dudarev, Alexey A; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V; Jagodic, Marta; Christensen, Guttorm N; Anda, Erik E; Brustad, Magritt; Sandanger, Torkjel M

    2017-06-28

    Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013-2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study.

  18. Bioprocessing of concentrated mixed hazardous industrial waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Silver, G.; Attalla, A.; Prisc, M.

    1994-01-01

    The use of selected microorganisms for the degradation and/or the detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. This work describes the unique capabilities of an isolated strain of Pseudomonas for metabolizing methylated aromatic compounds. This strain of Pseudomonas putida Idaho is unique in that it can tolerate and grow under a layer of neat p-xylene. A bioprocess has been developed to degrade LLW and mixed wastes containing methylated aromatic compounds, i.e., pseudocumene, toluene and p-xylene. The process is now in the demonstration phase at a DOE facility and has been running for one year. Feed concentrations of 21200 ppm of the toxic organic substrate have been fed to the bioreactor. This report describes the results obtained thus far

  19. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    International Nuclear Information System (INIS)

    Diaz, Dolores; Ford, Kevin A.; Hartley, Dylan P.; Harstad, Eric B.; Cain, Gary R.; Achilles-Poon, Kirsten; Nguyen, Trung; Peng, Jing; Zheng, Zhong; Merchant, Mark; Sutherlin, Daniel P.; Gaudino, John J.; Kaus, Robert; Lewin-Koh, Sock C.; Choo, Edna F.; Liederer, Bianca M.; Dambach, Donna M.

    2013-01-01

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.

  20. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  1. Acute toxicity of pyraclostrobin and trifloxystrobin to Hyalella azteca.

    Science.gov (United States)

    Morrison, Shane A; McMurry, Scott T; Smith, Loren M; Belden, Jason B

    2013-07-01

    Fungicide application rates on row crop agriculture have increased across the United States, and subsequently, contamination of adjacent wetlands can occur through spray drift or field runoff. To investigate fungicide toxicity, Hyalella azteca amphipods were exposed to 2 fungicide formulations, Headline and Stratego, and their active strobilurin ingredients, pyraclostrobin and trifloxystrobin. Water-only exposures resulted in similar median lethal concentration (LC50; 20-25 µg/L) values for formulations and strobilurin ingredients, suggesting that toxicity is due to strobilurin ingredients. These values were below concentrations that could occur following spray drift over embedded cropland wetlands. When fungicides were added to overlying water of sediment-water microcosms, toxicity was reduced by 500% for Headline and 160% for Stratego, compared with water-only exposures, based on the total amount of fungicide added to the systems. In addition, when fungicides were added to sediment prior to the addition of water, the reduction in toxicity was even greater, with no toxicity occurring at environmentally relevant levels. Differences in toxicity among exposure groups were explained by dissipation from water as toxicity values based on measured water concentrations were within 20% between all systems. The present study reinforces previous studies that Headline and Stratego are toxic to nontarget aquatic organisms. However, the presence of sediment is likely to ameliorate some toxicity of fungicide formulations, especially if spraying occurs prior to wetland inundation. Copyright © 2013 SETAC.

  2. Comparison and avoidance of toxicity of penetrating cryoprotectants.

    Directory of Open Access Journals (Sweden)

    Edyta A Szurek

    Full Text Available The objective of this study was to elucidate the toxicity of widely used penetrating cryoprotective agents (CPAs to mammalian oocytes. To this end, mouse metaphase II (M II oocytes were exposed to 1.5 M solutions of dimethylsulfoxide (DMSO, ethylene glycol (EG, or propanediol (PROH prepared in phosphate buffered saline (PBS containing 10% fetal bovine serum. To address the time- and temperature-dependence of the CPA toxicity, M II oocytes were exposed to the aforementioned CPAs at room temperature (RT, ∼23°C and 37°C for 15 or 30 minutes. Subsequently, the toxicity of each CPA was evaluated by examining post-exposure survival, fertilization, embryonic development, chromosomal abnormalities, and parthenogenetic activation of treated oocytes. Untreated oocytes served as controls. Exposure of MII oocytes to 1.5 M DMSO or 1.5 M EG at RT for 15 min did not adversely affect any of the evaluated criteria. In contrast, 1.5 M PROH induced a significant increase in oocyte degeneration (54.2% and parthenogenetic activation (16% under same conditions. When the CPA exposure was performed at 37°C, the toxic effect of PROH further increased, resulting in lower survival (15% and no fertilization while the toxicity of DMSO and EG was still insignificant. Nevertheless, it was possible to completely avoid the toxicity of PROH by decreasing its concentration to 0.75 M and combining it with 0.75 M DMSO to bring the total CPA concentration to a cryoprotective level. Moreover, combining lower concentrations (i.e., 0.75 M of PROH and DMSO significantly improved the cryosurvival of MII oocytes compared to the equivalent concentration of DMSO alone. Taken together, our results suggest that from the perspective of CPA toxicity, DMSO and EG are safer to use in slow cooling protocols while a lower concentration of PROH can be combined with another CPA to avoid its toxicity and to improve the cryosurvival as well.

  3. Evaluation of toxic action of fluorides on agricultural plants

    Directory of Open Access Journals (Sweden)

    V. N. Grishko

    2007-03-01

    Full Text Available The toxicity of potassium fluoride, sodium fluoride and ammonium fluoride for pea, maize, oat and onion was studied. It was found that the level of the toxic influence had grown with increase of fluoride concentration in the media of growth (from 5 to 100 mg of F–/l. By increase of the toxic influence the agricultural crops are disposed in the following row: oat < onion < maize < pea. Ammonium fluoride demonstrates lesser toxicity, than potassium and sodium fluorides. Under low concentrations of fluoride compounds (5 and 10 mg of F–/l stimulation of roots growth is noted only for the oat.

  4. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  5. Structural studies on a non-toxic homologue of type II RIPs from ...

    Indian Academy of Sciences (India)

    Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. MS accepted http://www.ias.ac.in/jbiosci. THYAGESHWAR CHANDRAN, ALOK SHARMA and M VIJAYAN. J. Biosci. 40(5), October 2015, 929–941, © Indian Academy of ...

  6. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    Energy Technology Data Exchange (ETDEWEB)

    Agusdinata, Datu Buyung, E-mail: bagusdinata@niu.edu; Amouie, Mahbod [Northern Illinois University, Department of Industrial & Systems Engineering and Environment, Sustainability, & Energy Institute (United States); Xu, Tao [Northern Illinois University, Department of Chemistry and Biochemistry (United States)

    2015-01-15

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd{sup 2+} ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd{sup 2+} ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd{sup 2+} ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd{sup 2+} ions and complexity of tracking of individual atoms of Cd at the same time.

  7. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    International Nuclear Information System (INIS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd 2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd 2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd 2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd 2+ ions and complexity of tracking of individual atoms of Cd at the same time

  8. Specific toxicity of 5-thio-D-glucose to hypoxic cells

    International Nuclear Information System (INIS)

    Schulz, R.J.; Bongiorni, P.

    1984-01-01

    The toxicity of 5-thio-D-glucose (5TG) to mammalian cells in culture has been studied with respect to oxygen tension, concentration, and temperature. At 37 0 C and at 5 mM concentration of the drug in normal growth medium, survival is 10 -3 for 4-hr exposure to 5 ppm O 2 ; this increases to 0.5 for 24-hr exposure to 200 ppm O 2 . The relationship between survival and oxygen tension is nonlinear with the greatest change occurring between 50 and 100 ppm. The drug is essentially nontoxic to aerated cells. Drug toxicity increases with concentration up to about 5 mM at which point a plateau is reached. The effect of elevated temperature is to reduce the time required to obtain a specific level of survival, but temperatures as high as 42 0 C had only a slight effect on drug toxicity for oxygen tensions higher than 100 ppm. The effect of D-glucose on the toxicity of 5TG was studied, and an inverse relationship was established. At D-glucose concentrations greater than 20 mM the toxicity of 5TG was nullified regardless of oxygen tension or 5TG concentration

  9. Bioavailability and toxicity of pyrene in soils upon biochar and compost addition.

    Science.gov (United States)

    Bielská, Lucie; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo; Höss, Sebastian

    2017-10-01

    The study investigates the role of biochar and/or compost in mitigating the toxic effects of pyrene in soils using reproduction of nematodes and porewater concentration as measures of pyrene toxicity and bioavailability, respectively. Two soils were spiked with increasing levels of pyrene to achieve a concentration-response relationship for the reproduction of Caenorhabditis elegans. The observed EC50 values (pyrene concentration causing 50% inhibition of reproduction) were 14mg/kg and 31mg/kg (dry mass) for these soils, corresponding to equilibrium porewater concentrations of 37μg/L and 47μg/L, respectively. Differences in organic carbon content were not sufficient to explain the variability in toxicity between the different soils. Soils causing a significant inhibition of reproduction were further amended with 10%-compost, 5%-biochar, or both, and the effects on reproduction and porewater concentration determined. Combined addition of compost and biochar was identified as the most effective strategy in reducing pyrene concentration in soil porewater, which was also partly reflected in soil toxicity. However, porewater concentrations predicted only 52% of pyrene toxicity to nematodes, pointing to particle-bound or dietary exposure pathways. Capsule: Amending pyrene-spiked soil with biochar and compost effectively reduced pyrene porewater concentrations and toxicity to nematodes, which were significantly related. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evaluation of the toxicity of sediments from the Anniston PCB Site to the mussel Lampsilis siliquoidea

    Science.gov (United States)

    Schein, Allison; Sinclair, Jesse A.; MacDonald, Donald D.; Ingersoll, Christopher G.; Kemble, Nile E.; Kunz, James L.

    2015-01-01

    concentrations of PCBs were associated with the highest concentrations of PAHs, PCDDs/PCDFs, and organochlorine pesticides. Specifically, sediments 08, 18, and 19 exceeded probable effect concentration quotients (PEC-Qs) of 1.0 for all organic classes of contaminants. These three sediment samples also had high concentrations of mercury and lead, which were the only metals found at elevated concentrations (i.e., above the probable effect concentration [PEC]) in the samples collected. Many sediment samples were highly contaminated with mercury, based on comparisons to samples collected from reference locations. The whole-sediment laboratory toxicity tests conducted with L. siliquoidea met the test acceptability criteria (e.g., control survival was greater than or equal to 80%). Survival of mussels was high in most samples, with 4 of 23 samples (17%) classified as toxic based on the survival endpoint. Biomass and weight were more sensitive endpoints for the L. siliquoidea toxicity tests, with both endpoints classifying 52% of the samples as toxic. Samples 19 and 30 were most toxic to L. siliquoidea, as they were classified as toxic according to all four endpoints (survival, biomass, weight, and length). Mussels were less sensitive in toxicity tests conducted with sediments from the Anniston PCB Site than Hyalella azteca and Chironomus dilutus. Biomass of L. siliquoidea was less sensitive compared to biomass of H. azteca or biomass of larval C. dilutus. Based on the most sensitive endpoint for each species, 52% of the samples were toxic to L. siliquoidea, whereas 67% of sediments were toxic to H. azteca (based on reproduction) and 65% were toxic to C. dilutus (based on adult biomass). The low-risk toxicity threshold (TTLR) was higher for L. siliquoidea biomass (e.g., 20,400 µg/kg dry weight [DW]) compared to that for H. azteca reproduction (e.g., 499 µg/kg DW) or C. dilutus adult biomass (e.g., 1,140 µg/kg DW; MacDonald et al. 2014). While mussels such as L. sili

  11. The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test

    International Nuclear Information System (INIS)

    Davies, N.A.Nicola A.; Hodson, M.E.Mark E.; Black, S.Stuart

    2003-01-01

    Timing of lead addition and worms to soil affects the response of the worms to soil affects the response of the worms to lead. - Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC 50 s for 14 and 28 days were 5311 and 5395 μg Pb g -1 soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 μg Pb g -1 soil . The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 μg g -1 soil accumulated lead at a faster rate (3.16 μg Pb g -1 tissue day -1 ) than those in the 3000 μg g -1 soil (2.21 μg Pb g -1 tissue day -1 ). The third experiment was a timed experiment with worms cultivated in soil containing 7000 μg Pb g -1 soil . Soil and lead nitrate solution were mixed and stored at 20 deg. C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration

  12. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing.

    Science.gov (United States)

    Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies

    2014-08-01

    The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Toxicity of tritium

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1979-01-01

    Among radionuclides of importance in atomic energy, 3 H has relatively low toxicity. The main health and environmental worry is the possibility that significant biological effects may follow from protracted exposure to low concentrations in water. To examine this possible hazard and measure toxicity at low tritium concentrations, chronic exposure studies were done on mice and monkeys. During vulnerable developmental periods animals were exposed to 3 HOH, and mice were exposed also to 60 Co gamma irradiation and energy-related chemical agents. The biological endpoint measured was the irreversible loss of female germ cells. Effects from tritium were observed at surprisingly low concentrations where 3 H was found more damaging than previously thought. Comparisons between tritium and gamma radiation showed the relative biological effectiveness (RBE) to be greater than 1 and to reach approximately 3 at very low exposures. For perspective, other comparisons were made: between radiation and chemical agents, which revealed parallels in action on germ cells, and between pre- and postnatal exposure, which warn of possible special hazard to the fetus from both classes of energy-related byproducts

  14. Determination of toxic and essential elements in seafood

    International Nuclear Information System (INIS)

    Surtipanti, S.; Suwirma, S.; Yumiarti, S.; Yune Mellawati, T.

    1990-01-01

    Indonesia has only a list of the maximum permissible concentration of toxic elements in water stated in a national legislation. Therefore, it is important to study the toxic elements content in fish and shellfish, because these marine organisms are good biological indicators. The interesting elements to be analyzed are toxic elements, i.e. As, Cd, Cr, Hg, Pb, Sb and Se, and essential elements, i.e., Zn and Cu. As, Cr, Hg, Sb, Se and Zn can be determined by Neutron Activation Analysis (NAA), while Cd, Cu and Pb by Atomic Absorption Spectrometry (AAS). The determination of such elements in foodstuff i.e. rice, corn, green pea, wheat, vegetables, fruits, tea and coffee have been done previously. The major purpose of this work is to know whether the concentration of toxic elements in marine organisms is approaching or exceeding the maximum permissible concentration as stated by International legislation. 7 refs, 5 tabs

  15. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part 2. Variability of measurement parameters under toxicant-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Grillitsch, B.; Vogl, C.; Wytek, R.

    1999-12-01

    Spontaneous locomotor behavior of semiadult zebra fish (Brachydanio rerio) was recorded under sublethal short-term exposure to the anionic technical surfactant, linear alkylbenzene sulfonate (C{sub 10-13}-LAS) and cadmium in single compound tests using an automated video-monitoring and object-tracing system. Vertical position and swimming velocity in the horizontal and vertical directions were used as behavioral measurement parameters. Data were analyzed by different statistical methods. In pairwise comparisons, consistent, statistically significant, and toxicant-induced alterations of locomotor behavior were observed only for test concentrations, which also caused aspectoric symptoms of intoxication. This comparatively low sensitivity of the behavioral indication criteria was related to high variation in the measurement parameters and corresponding high, minimum detectable, statistically significant, and toxicant-induced deviations. In contrast, results obtained by regression analysis showed significant trends in locomotor activity over the range of toxicant concentrations tested. Thus, the findings support the inappropriateness of no observed effect concentrations and the lowest observed effect concentrations as summary measures of toxicity and indicate that the regression analysis approach is superior to the analysis of variance approach.

  16. How to accurately assay the algal toxicity of pesticides with low water solubility

    International Nuclear Information System (INIS)

    Ma Jianyi; Chen Jianmeng

    2005-01-01

    A novel method for assaying and calculating the toxicity of water-insoluble pesticides to green algae has been put forward in this work. First, a solvent is selected for use in bioassays; there should be a detailed screening to identify a solvent with inherently low toxicity to the test organism. Second, the EC 50 is determined for selected pesticides by measuring the toxicity of various concentrations of each of the selected pesticides in a fixed concentration of selected solvent. Third, concentrations of the selected solvent are varied and the EC 50 of each pesticide tested is assayed at a fixed concentration. Fourth, several suitable groups of solvent concentrations are selected and the corresponding EC 50 values of tested pesticides are considered to establish the linear regression equation. Letting the solvent concentration be zero, one calculates the corresponding EC 50 value, which corresponds to the inherent toxicity of the tested pesticide. - A new method is described for assaying the toxicity of water insoluble pesticides

  17. Acute toxicity of ingested fluoride.

    Science.gov (United States)

    Whitford, Gary Milton

    2011-01-01

    This chapter discusses the characteristics and treatment of acute fluoride toxicity as well as the most common sources of overexposure, the doses that cause acute toxicity, and factors that can influence the clinical outcome. Cases of serious systemic toxicity and fatalities due to acute exposures are now rare, but overexposures causing toxic signs and symptoms are not. The clinical course of systemic toxicity from ingested fluoride begins with gastric signs and symptoms, and can develop with alarming rapidity. Treatment involves minimizing absorption by administering a solution containing calcium, monitoring and managing plasma calcium and potassium concentrations, acid-base status, and supporting vital functions. Approximately 30,000 calls to US poison control centers concerning acute exposures in children are made each year, most of which involve temporary gastrointestinal effects, but others require medical treatment. The most common sources of acute overexposures today are dental products - particularly dentifrices because of their relatively high fluoride concentrations, pleasant flavors, and their presence in non-secure locations in most homes. For example, ingestion of only 1.8 ounces of a standard fluoridated dentifrice (900-1,100 mg/kg) by a 10-kg child delivers enough fluoride to reach the 'probably toxic dose' (5 mg/kg body weight). Factors that may influence the clinical course of an overexposure include the chemical compound (e.g. NaF, MFP, etc.), the age and acid-base status of the individual, and the elapsed time between exposure and the initiation of treatment. While fluoride has well-established beneficial dental effects and cases of serious toxicity are now rare, the potential for toxicity requires that fluoride-containing materials be handled and stored with the respect they deserve. Copyright © 2011 S. Karger AG, Basel.

  18. Influence of the method of fluoride administration on toxicity and fluoride concentrations in Japanese quail

    Science.gov (United States)

    Fleming, W.J.; Schuler, C.A.

    1988-01-01

    Young Japanese quail (Coturnix japonica) were administered NaF for 16 d either in their diet or by esophageal intubation. Based on the total fluoride ion (Emg F-) intake over the l6-d experimental period, fluoride administered by intubation was at least six times more toxic than that fed in the diet. Dietary concentrations of 1,000 ppm F- (Emg F- for 16 d = approx. 144) produced no mortality, whereas intubated doses produced 73% or greater mortality in all groups administered 54 mg F- /kg/d or more (Emg F- for 16 d _ approx. 23 mg). GraphIc companson of the regression of log F- ppm in femurs/mg F- intake showed that fluoride levels in the femurs of quail administered fluoride by intubation were higher than in those administered fluoride in the diet.

  19. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-03-01

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs

  20. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    Science.gov (United States)

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  1. Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds

    International Nuclear Information System (INIS)

    Siegler, Katie; Phillips, Bryn M.; Anderson, Brian S.; Voorhees, Jennifer P.; Tjeerdema, Ron S.

    2015-01-01

    California's Stream Pollution Trends program (SPoT) assesses long-term water quality trends, using 100 base-of-the-watershed sampling sites. Annual statewide sediment surveys from 2008 to 2012 identified consistent levels of statewide toxicity (19%), using the freshwater amphipod Hyalella azteca. Significant contaminant trends included a decrease in PCBs, stable concentrations of metals and PAHs, and a statewide increase in detections and concentrations of pyrethroid pesticides. The pyrethroid pesticide bifenthrin was detected in 69% of samples (n = 410). Detection of toxicity increased in a subset of samples tested at a more environmentally relevant test temperature (15 °C), and the magnitude of toxicity was much greater, indicating pyrethroid pesticides as a probable cause. Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. Principal components analysis related pyrethroids, metals and total organic carbon to urban land use. - Highlights: • Toxicity and contaminant concentrations were higher in urban dominated watersheds. • Average and range of total pyrethroid concentrations increased between 2008 and 2012. • Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. - Detections and concentrations of current use pesticides are increasing in California urban watersheds, while legacy organochlorine contaminants are decreasing statewide.

  2. Low concentrations of metal mixture exposures have adverse effects on selected biomarkers of Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Yologlu, Ertan, E-mail: ertanyologlu82@gmail.com [Adiyaman University, Faculty of Education, Department of Science Education, 02040 Adiyaman (Turkey); Ozmen, Murat [Inonu University, Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts & Science, 44280 Malatya (Turkey)

    2015-11-15

    Highlights: • Selected metal mixtures were evaluated for toxicity of safety limit concentrations. • Xenopus laevis tadpoles were used as model test organism. • Combinations of LC{sub 50} and LC{sub 50}/2 caused 100% lethality for some metals. • Metals did not change metallothionein levels in low concentrations. • Selected enzyme activities showed induction after low concentration exposures. - Abstract: Polluted ecosystems may contain mixtures of metals, such that the combinations of metals, even in low concentrations, may cause adverse effects. In the present study, we focused on toxic effects of mixtures of selected metals, the LC{sub 50} values, and also their safety limit in aquatic systems imposed by the European legislation using a model organism. Xenopus laevis tadpoles were used as test organisms. They were exposed to metals or their combinations due to 96-h LC{sub 50} values. Glutathione S-transferase (GST), glutathione reductase (GR), acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione peroxidase (GPx), and catalase (CAT) levels were evaluated. Metallothionein concentrations were also determined. The LC{sub 50}s for Cd, Pb, and Cu were calculated as 5.81 mg AI/L, 123.05 mg AI/L, and 0.85 mg AI/L, respectively. Low lethality ratios were observed with unary exposure of each metal in lower concentrations. Double or triple combinations of LC{sub 50} and LC{sub 50}/2 concentrations caused 100% lethality with Cd + Cu and Pb + Cd + Cu mixtures, while the Pb + Cu mixture also caused high lethal ratios. The selected enzyme activities were significantly affected by metals or mixtures, and dose-related effects were determined. The metallothionein levels generally increased as related to concentration in unary metals and mixtures. Acceptable limit values of unary metals and mixtures did not significantly change metallothionein levels. The results suggest that oxidative stress-related mechanisms are involved in the toxicity induced by selected

  3. Using equilibrium passive dosing to maintain stable exposure concentrations of triclosan in a 6-week toxicity test

    DEFF Research Database (Denmark)

    Sobek, A.; Ribbenstedt, A.; Mustajärvi, L.

    2015-01-01

    toxicity tests. Yet, the European Commission’s criteria for chemicals’ risk assessments aim at protecting higher levels in the environment. To achieve protection of populations and ecosystems, reliable long-term ecotoxicologial tests are needed. In this study, we used equilibrium passive dosing to maintain...... stable exposure concentrations of triclosan (log Kow 4.8) in a 6-week multigeneration test with the benthic copepod Nitocra spinipes. The tests were performed in 10 mL vials casted with 1000 mg of silicone (DC 1-2577). Based on a previous pilot study, three triclosan concentrations were selected...... and tested (15 μg L-1; 30 μg L-1; 60 μg L-1) as well as a control (no triclosan). At test beginning, each vial contained 12 individuals consisting of 3 individuals from four different life stages. The test includes feeding with phytoplankton three times a week, which can lead to declining freely dissolved...

  4. Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests.

    Science.gov (United States)

    Kungolos, A; Emmanouil, C; Tsiridis, V; Tsiropoulos, N

    2009-08-01

    Three commonly used test organisms of different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) were exposed to selected agrochemicals (fosthiazate, metalaxyl-M, imidacloprid) and copper, in single doses or in binary mixtures. The toxicity of each single compound varied up to two orders of magnitude, depending on the test species examined. V. fischeri was the most sensitive test organism regarding fosthiazate and metalaxyl-M, indicating an IC(50) value of 0.20 mg/L (0.17-0.25 mg/L) and 0.88 mg/L (0.35-1.57 mg/L), respectively. Imidacloprid was the least toxic compound, indicating an EC(50) value on D. magna of 64.6 mg/L (43.3-122.5 mg/L) and an IC(50) value on V. fischeri of 226 mg/L (159-322 mg/L), while for imidacloprid at a concentration of 1000 mg/L the effect on P. subcapitata was lower than 50%. Copper was the most toxic compound towards all test organisms exhibiting the highest toxic effect on P. subcapitata, with an IC(50) value of 0.05 mg/L (0.003-0.008 mg/L). The toxic effects of the binary mixtures have been compared to the theoretically expected effect, resulting from a simple mathematical model based on the theory of probabilities. The independent action model was used in order to predict the theoretically expected effect. The interactive effects were mostly antagonistic or additive, while in few cases (interactive effects of metalaxyl-M and copper on V. fischeri) a synergistic mode of action was observed for some concentration combinations. Experiments showed that interactive effects of chemicals may vary depending on the test species used as well as on the chemicals and their respective concentrations. Although most of the concentrations of chemicals tested in this study are higher than the ones usually found in natural environment, the evaluation of their interactive toxic effects using a battery of bioassays may comprise a useful tool for the estimation of the environmental hazard of chemicals.

  5. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    Science.gov (United States)

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Gossypol Toxicity from Cottonseed Products

    Directory of Open Access Journals (Sweden)

    Ivana Cristina N. Gadelha

    2014-01-01

    Full Text Available Gossypol is a phenolic compound produced by pigment glands in cotton stems, leaves, seeds, and flower buds (Gossypium spp.. Cottonseed meal is a by-product of cotton that is used for animal feeding because it is rich in oil and proteins. However, gossypol toxicity limits cottonseed use in animal feed. High concentrations of free gossypol may be responsible for acute clinical signs of gossypol poisoning which include respiratory distress, impaired body weight gain, anorexia, weakness, apathy, and death after several days. However, the most common toxic effects is the impairment of male and female reproduction. Another important toxic effect of gossypol is its interference with immune function, reducing an animal’s resistance to infections and impairing the efficiency of vaccines. Preventive procedures to limit gossypol toxicity involve treatment of the cottonseed product to reduce the concentration of free gossypol with the most common treatment being exposure to heat. However, free gossypol can be released from the bound form during digestion. Agronomic selection has produced cotton varieties devoid of glands producing gossypol, but these varieties are not normally grown because they are less productive and are more vulnerable to attacks by insects.

  7. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Systemic toxicity of ropivacaine during ovine pregnancy.

    Science.gov (United States)

    Santos, A C; Arthur, G R; Pedersen, H; Morishima, H O; Finster, M; Covino, B G

    1991-07-01

    Ropivacaine is a new amide local anesthetic structurally related to bupivacaine and mepivacaine. Its potency and duration of action are similar to those of bupivacaine but its therapeutic index may be greater. Since pregnancy enhances the cardiotoxicity of bupivacaine, the current study was devised to compare the toxicity of ropivacaine in chronically instrumented nonpregnant and pregnant ewes during continuous intravenous infusion of the drug at the rate of 0.5 mg.kg-1.min-1. In all animals, symptoms of local anesthetic toxicity occurred in the usual order--convulsions, hypotension, apnea, and circulatory collapse. There were no significant differences between the two groups of animals in the doses and plasma concentrations of ropivacaine associated with each toxic manifestations. For example, circulatory collapse occurred at a mean dose of 11.3 +/- 1.1 mg.kg-1 in nonpregnant and 12.4 +/- 0.9 mg.kg-1 in pregnant animals, with corresponding plasma concentrations of 7.3 +/- 0.3 and 9.6 +/- 2.1 micrograms.ml-1 (P = not significant). Protein binding of ropivacaine in the concentration range associated with toxic manifestations was similar in sera obtained from nonpregnant and pregnant ewes. In conclusion, ovine pregnancy does not enhance the systemic toxicity of ropivacaine, possibly because of an absence of gestation-related increase in the availability of free drug.

  9. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shulin, E-mail: shulin@zju.edu.cn [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Zhang, Zhisheng [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Wenjing; Bao, Lingling [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang, Hu [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 210021 (China)

    2015-02-15

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  11. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zhuang, Shulin; Zhang, Zhisheng; Zhang, Wenjing; Bao, Lingling; Xu, Chao; Zhang, Hu

    2015-01-01

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  12. Controlling corrosion of carbon steel in cooling water applications -- A novel environmentally acceptable approach

    International Nuclear Information System (INIS)

    Banerjee, G.; Miller, A.E.

    1998-01-01

    Cr(VI) containing salts have been in use for a long time as one of the best inhibitors for minimizing corrosion of carbon steel in cooling water applications. Irrespective of the type of system, i.e., once through, open recirculating, pressurized water reactor power plants, etc. and irrespective of the conductivity of water, i.e., low or high, Cr(VI) salts always have proven to be very effective inhibitors. However, the toxicity of chromate compounds and the consequential disposal difficulties have made it essential to look for an alternate treatment. It is however, imperative that the alternate system must provide the matching efficiency as that provided by Cr(VI) salts and that it should also be easy to maintain and be economical. While many researchers have been trying to find a suitable chromate free inhibitor system, the present authors have explored the possibility of formulating an inhibitor system containing Cr(VI) at a concentration below the safety limit for drinking water as suggested by EPA/OSHA. This is based on the assumption that EPA (Environmental Protection Agency) and OSHA (Occupational Safety and Health Administration) only regulate the discharge and exposure limits of chromium above which it is found harmful. Therefore, any new formulation containing Cr(VI) well below these safety limits should be acceptable environmentally. If such a formulation can perform similar to ones with high concentration of Cr(VI), it will also be commercially acceptable. The authors will discuss the preliminary results of such a strategy

  13. Dose-Escalated Hypofractionated Intensity-Modulated Radiotherapy in High-Risk Carcinoma of the Prostate: Outcome and Late Toxicity

    Directory of Open Access Journals (Sweden)

    David Thomson

    2012-01-01

    Results. Median followup was 84 months. Five-year overall survival (OS was 83% and biochemical progression-free survival (bPFS was 50% for 57 Gy. Five-year OS was 75% and bPFS 58% for 60 Gy. At 7 years, toxicity by RTOG criteria was acceptable with no grade 3 or above toxicity. Compared with baseline, there was no significant change in urinary symptoms at 2 or 7 years. Bowel symptoms were stable between 2 and 7 years. All patients continued to have significant sexual dysfunction. Conclusion. In high-risk prostate cancer, dose-escalated hypofractionated radiotherapy using IMRT results in encouraging outcomes and acceptable late toxicity.

  14. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    Science.gov (United States)

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.

  15. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  16. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  17. Toxic metals' concentration in water of Kriveljska Reka and its tributaries and influence of water there

    International Nuclear Information System (INIS)

    Lukic, D.; Zlatkovic, S.; Vuckovic, M.; Jovanovic, R.

    2002-01-01

    Kriveljska reka is near Bor, a big mining basin in East Serbia. This river is formed from two not so big rivers: Cerova reka and Valja Mare. Kriveljska reka flow past village Veliki Krivelj. Veliki Krivelj is one of the most important mining strip in Bor area. Therefore, Kriveljska reka is the reception for waste waters of some sections of Mining Basin Bor, situated on its banks. We will present to you concentrations of 7 toxic metals, pH-value and chemical oxygen demand in 8 points at Kriveljska reka and waste waters' influence on quality of this river's water. Based on our results, we can conclude that waste waters from Mining Basin Bor contaminate Kriveljska reka and at last we have a dead river. (author)

  18. Gene expression change in human dental pulp cells exposed to a low-level toxic concentration of triethylene glycol dimethacrylate: an RNA-seq analysis.

    Science.gov (United States)

    Cho, Sung-Geun; Lee, Jin-Woo; Heo, Jung Sun; Kim, Sun-Young

    2014-09-01

    Dental composite resin restoration for defective tooth may lead unpolymerized resin monomers to be leached into dental pulp tissue. The aim of this study was to investigate the early gene expression change over time of human dental pulp cells (HDPCs) treated with a low-level toxic concentration of Triethylene Glycol Dimethacrylate (TEGDMA), a common dental resin monomer, by adopting the novel high-throughput transcriptome analysis of RNA-seq. The low-level toxic concentration of TEGDMA was determined through MTT assays with serially diluted concentrations. After the HDPCs were exposed to TEGDMA for 6, 12, 24 or 48 hr, the total RNA of the samples was prepared for RNA-seq. qRT-PCR for several genes was performed for validation of RNA-seq results. In the treated group, 1280 genes were differentially expressed compared with the control group. Five patterns of time-series gene expression profiles were identified through k-means clustering analysis. Angiogenesis, cell adhesion and migration, extracellular matrix organization, response to extracellular stimulus, inflammatory response and mineralization-related process were major gene ontology terms in functional annotation clustering. HMOX1, OSGIN1, SMN2, SRXN1 AKR1C1, SPP1 and TOMM40L were highly up-regulated genes, and WRAP53 and CCL2 were highly down-regulated genes over time. qRT-PCR for several genes exhibited a high level of agreement with RNA-seq. TEGDMA induced the HDPCs to show massive and dynamic gene expression changes over time. The previously suggested toxic mechanism of TEGDMA was not only verified, but new genes whose functions have yet to be determined were also found. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  19. Variability of LD50 Values from Rat Oral Acute Toxicity Studies: Implications for Alternative Model Development

    Science.gov (United States)

    Alternative models developed for estimating acute systemic toxicity are generally evaluated using in vivo LD50 values. However, in vivo acute systemic toxicity studies can produce variable results, even when conducted according to accepted test guidelines. This variability can ma...

  20. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation.

    Science.gov (United States)

    Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz; Woźniak-Karczewska, Marta; Piotrowska-Cyplik, Agnieszka; Ławniczak, Łukasz; Szulc, Alicja; Zgoła-Grześkowiak, Agnieszka; Heipieper, Hermann J; Chrzanowski, Łukasz

    2018-01-01

    Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P 66614 ][Br] and [P 66614 ][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Non-animal Replacements for Acute Toxicity Testing.

    Science.gov (United States)

    Barker-Treasure, Carol; Coll, Kevin; Belot, Nathalie; Longmore, Chris; Bygrave, Karl; Avey, Suzanne; Clothier, Richard

    2015-07-01

    Current approaches to predicting adverse effects in humans from acute toxic exposure to cosmetic ingredients still heavily necessitate the use of animals under EU legislation, particularly in the context of the REACH system, when cosmetic ingredients are also destined for use in other industries. These include the LD50 test, the Up-and-Down Procedure and the Fixed Dose Procedure, which are regarded as having notable scientific deficiencies and low transferability to humans. By expanding on previous in vitro tests, such as the animal cell-based 3T3 Neutral Red Uptake (NRU) assay, this project aims to develop a truly animal-free predictive test for the acute toxicity of cosmetic ingredients in humans, by using human-derived cells and a prediction model that does not rely on animal data. The project, funded by Innovate UK, will incorporate the NRU assay with human dermal fibroblasts in animal product-free culture, to generate an in vitro protocol that can be validated as an accepted replacement for the currently available in vivo tests. To date, the project has successfully completed an assessment of the robustness and reproducibility of the method, by using sodium lauryl sulphate (SLS) as a positive control, and displaying analogous results to those of the original studies with mouse 3T3 cells. Currently, the testing of five known ingredients from key groups (a surfactant, a preservative, a fragrance, a colour and an emulsifier) is under way. The testing consists of initial range-finding runs followed by three valid runs of a main experiment with the appropriate concentration ranges, to generate IC50 values. Expanded blind trials of 20 ingredients will follow. Early results indicate that this human cell-based test holds the potential to replace aspects of in vivo animal acute toxicity testing, particularly with reference to cosmetic ingredients. 2015 FRAME.

  2. Internal Concentration and Time Are Important Modifiers of Toxicity: The Case of Chlorpyrifos on Caenorhabditis elegans.

    Science.gov (United States)

    Roh, Ji-Yeon; Lee, Hyun-Jeoung; Kwon, Jung-Hwan

    2016-09-06

    The internal concentration of chemicals in exposed organisms changes over time due to absorption, distribution, metabolism, and excretion processes since chemicals are taken up from the environment. Internal concentration and time are very important modifiers of toxicity when biomarkers are used to evaluate the potential hazards and risks of environmental pollutants. In this study, the responses of molecular biomarkers, and the fate of chemicals in the body, were comprehensively investigated to determine cause-and-effect relationships over time. Chlorpyrifos (CP) was selected as a model chemical, and Caenorhabditis elegans was exposed to CP for 4 h using the passive dosing method. Worms were then monitored in fresh medium during a 48-h recovery regime. The mRNA expression of genes related to CYP metabolism (cyp35a2 and cyp35a3) increased during the constant exposure phase. The body residue of CP decreased once it reached a peak level during the early stage of exposure, indicating that the initial uptake of CP rapidly induced biotransformation with the synthesis of new CYP metabolic proteins. The residual chlorpyrifos-oxon concentration, an acetylcholinesterase (AChE) inhibitor, continuously increased even after the recovery regime started. These delayed toxicokinetics seem to be important for the extension of AChE inhibition for up to 9 h after the start of the recovery regime. Comprehensive investigation into the molecular initiation events and changes in the internal concentrations of chemical species provide insight into response causality within the framework of an adverse outcome pathway.

  3. Albendazole Induced Recurrent Acute Toxic Hepatitis: A Case Report.

    Science.gov (United States)

    Bilgic, Yilmaz; Yilmaz, Cengiz; Cagin, Yasir Furkan; Atayan, Yahya; Karadag, Nese; Harputluoglu, Murat Muhsin Muhip

    2017-01-01

    Drug induced acute toxic hepatitis can be idiosyncratic. Albendazole, a widely used broad spectrum antiparasitic drug is generally accepted as a safe drug. It may cause asymptomatic transient liver enzyme abnormalities but acute toxic hepatitis is very rare. Case Report : Herein, we present the case of 47 year old woman with recurrent acute toxic hepatitis after a single intake of albendazole in 2010 and 2014. The patient was presented with symptoms and findings of anorexia, vomiting and jaundice. For diagnosis, other acute hepatitis etiologies were excluded. Roussel Uclaf Causality Assessment Method (RUCAM) score was calculated and found to be 10, which meant highly probable drug hepatotoxicity. Within 2 months, all pathological findings came to normal. There are a few reported cases of albendazole induced toxic hepatitis, but at adults, there is no known recurrent acute toxic hepatitis due to albendazole at this certainty according to RUCAM score. Physicians should be aware of this rare and potentially fatal adverse effect of albendazole. © Acta Gastro-Enterologica Belgica.

  4. Acute Toxicity Tests Of Brewery Effluent on the Ostracoda ...

    African Journals Online (AJOL)

    Mortality also varied with the concentrations. The toxic effect of brewery effluent on ostracoda, which plays an important role in the aquatic food chain and the possibility that they may be accumulating some of these toxic components, is a matter for concern. Keywords: Toxicity, rewery effluent, Ostracoda, Strandesia, ...

  5. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz

    2018-01-01

    on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs...... ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria....

  6. Trabectedin Followed by Irinotecan Can Stabilize Disease in Advanced Translocation-Positive Sarcomas with Acceptable Toxicity

    Directory of Open Access Journals (Sweden)

    J. Herzog

    2016-01-01

    Full Text Available Background. Preclinical data indicate that trabectedin followed by irinotecan has strong synergistic effects on Ewing sarcoma. This is presumably due to hypersensitization of the tumor cells to the camptothecin as an effect of trabectedin in addition to synergistic suppression of EWS-FLI1 downstream targets. A strong effect was also reported in a human rhabdomyosarcoma xenograft. Procedure. Twelve patients with end-stage refractory translocation-positive sarcomas were treated with trabectedin followed by irinotecan within a compassionate use program. Eight patients had Ewing sarcoma and four patients had other translocation-positive sarcomas. Results. Three-month survival rate was 0.75 after the start of this therapy. One patient achieved a partial response according to RECIST criteria, five had stable disease, and the remaining six progressed through therapy. The majority of patients experienced significant hematological toxicity (grades 3 and 4. Reversible liver toxicity and diarrhea also occurred. Conclusions. Our experience with the combination of trabectedin followed with irinotecan in patients with advanced sarcomas showed promising results in controlling refractory solid tumors. While the hematological toxicity was significant, it was reversible. Quality of life during therapy was maintained. These observations encourage a larger clinical trial.

  7. Oxaliplatin-Related Ocular Toxicity

    Directory of Open Access Journals (Sweden)

    Marina Mesquida

    2010-11-01

    Full Text Available We report the case of a 52-year-old woman with advanced colorectal cancer who was treated with oxaliplatin on a FOLFOX schedule. After 3 cycles of chemotherapy, she started to complain of visual loss, altered color vision and neurological symptoms. Due to the suspicion of ocular and neurological toxicity, antineoplastic treatment was stopped. Her visual field showed a concentric bilateral scotoma and the electrooculogram test revealed severe impairment of the retinal pigment epithelium. Visual acuity, color vision and visual field recovered completely 8 months later, although electrooculogram remained abnormal. Ocular toxicity has been reported as an infrequent adverse event of oxaliplatin. Findings in this case indicate toxicity of this chemotherapeutic agent on the retinal pigment epithelium, which has not been reported before. This damage could be permanent, and it thus differs from previously described oxaliplatin-induced ocular toxicities, which are usually transient and reversible. With increasing use of oxaliplatin as first-line treatment in advanced colorectal cancer, we have to be aware of this possible toxicity.

  8. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    International Nuclear Information System (INIS)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions

  9. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  10. Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game.

    Science.gov (United States)

    Birgisdottir, B E; Knutsen, H K; Haugen, M; Gjelstad, I M; Jenssen, M T S; Ellingsen, D G; Thomassen, Y; Alexander, J; Meltzer, H M; Brantsæter, A L

    2013-10-01

    The first aim of the study was to evaluate calculated dietary intake and concentrations measured in blood or urine of essential and toxic elements in relation to nutritional and toxicological reference values. The second aim was to identify patterns of the element concentrations in blood and urine and to identify possible dietary determinants of the concentrations of these elements. Adults with a known high consumption of environmental contaminants (n=111), and a random sample of controls (n=76) answered a validated food frequency questionnaire (FFQ). Complete data on biological measures were available for 179 individuals. Blood and urine samples were analyzed for selenium, iodine, arsenic, mercury, cadmium and lead. Principal component analysis was used to identify underlying patterns of correlated blood and urine concentrations. The calculated intakes of selenium, iodine, inorganic arsenic and mercury were within guideline levels. For cadmium 24% of the high consumer group and 8% of the control group had intakes above the tolerable weekly intake. Concentrations of lead in blood exceeded the bench-mark dose lower confidence limits for some participants. However, overall, the examined exposures did not give rise to nutritional or toxicological concerns. Game consumption was associated with lead in blood (B(ln) 0.021; 95%CI:0.010, 0.031) and wine consumption. Seafood consumption was associated with urinary cadmium in non-smokers (B(ln) 0.009; 95%CI:0.003, 0.015). A novel finding was a distinct pattern of positively associated biological markers, comprising iodine, selenium, arsenic and mercury (eigenvalue 3.8), reflecting seafood intake (B 0.007; 95%CI:0.004, 0.010). The study clearly demonstrates the significance of seafood as a source of both essential nutrients and toxic elements simultaneously and shows that exposure to various essential and toxic elements can be intertwined. © 2013 Elsevier B.V. All rights reserved.

  11. Ecotoxicogenomic assessment of diclofenac toxicity in soil

    International Nuclear Information System (INIS)

    Chen, Guangquan; Braver, Michiel W. den; Gestel, Cornelis A.M. van; Straalen, Nico M. van; Roelofs, Dick

    2015-01-01

    Diclofenac is widely used as nonsteroidal anti-inflammatory drug leaving residues in the environment. To investigate effects on terrestrial ecosystems, we measured dissipation rate in soil and investigated ecotoxicological and transcriptome-wide responses in Folsomia candida. Exposure for 4 weeks to diclofenac reduced both survival and reproduction of F. candida in a dose-dependent manner. At concentrations ≥200 mg/kg soil diclofenac remained stable in the soil during a 21-day incubation period. Microarrays examined transcriptional changes at low and high diclofenac exposure concentrations. The results indicated that development and growth were severely hampered and immunity-related genes, mainly directed against bacteria and fungi, were significantly up-regulated. Furthermore, neural metabolic processes were significantly affected only at the high concentration. We conclude that diclofenac is toxic to non-target soil invertebrates, although its mode of action is different from the mammalian toxicity. The genetic markers proposed in this study may be promising early markers for diclofenac ecotoxicity. - Highlights: • Diclofenac is toxic to the non-target soil invertebrate Folsomia candida. • Diclofenac mainly caused mortality and thus only indirectly affected reproduction. • Diclofenac mode of action in F. candida was checked with gene expression profiling. • Diclofenac significantly affected development, growth and immune related processes. • Diclofenac nervous system activity in F. candida was different from that in mammals. - Diclofenac is toxic to non-target soil invertebrates with a mode of action clearly different from mammalian toxicity

  12. Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem; Kotek, Ayse; Arslan, Gungor; Topkan, Erkan (Dept. of Radiation Oncology, Baskent Univ. Faculty of Medicine, Adana (Turkey)), E-mail: hcemonal@hotmail.com; Unal, Birsel (Dept. of Biochemistry, Baskent Univ. Faculty of Medicine, Ankara (Turkey)); Yavuz, Aydin; Yavuz, Melek (Dept. of Radiation Oncology, Akdeniz Univ. Faculty of Medicine, Antalya (Turkey))

    2011-11-15

    Background. Radiotherapy (RT) for abdominal and pelvic malignancies often causes severe small bowel toxicity. Citrulline concentrations are known to decrease with intestinal failure. We thus evaluated the feasibility of plasma citrulline levels in predicting radiation-induced intestinal toxicity. Material and methods. Fifty-three patients (36 prostate cancer, 17 endometrial cancer) who received 45 Gy pelvic RT using conventional fractionation were prospectively evaluated. Patients with prostate cancer received an additional 25-30.6 Gy conformal boost. Plasma citrulline levels were assessed on day 0, mid- (week 3) and post-RT (week 8), and four months post-RT. Dose-volume histogram, citrulline concentration changes, and weekly intestinal toxicity scores were analyzed. Results. Mean age was 63 years (range: 43-81 years) and mean baseline citrulline concentration was 38.0 +- 10.1 mumol/l. Citrulline concentrations were significantly reduced at week 3 (27.4 +- 5.9 mumol/l; p < 0.0001), treatment end (29.9 +- 8.8 mumol/l; p < 0.0001), and four months post-treatment (34.3 +- 12.1; p 0.01). The following factor pairs were significantly positively correlated: Citrulline concentration/mean bowel dose during, end of treatment, and four months post-RT; dose-volume parameters/citrulline change groups; cumulative mean radiation dose/intestinal toxicity at end and four months post-RT; citrulline changes/intestinal toxicity during and end of RT. Citrulline concentration changes significantly differed during treatment according to RTOG intestinal toxicity grades (p < 0.0001). Although the citrulline changes differed significantly within RTOG intestinal toxicity grades (p = 0.003), the difference between Grade 0 and Grade 1 did not differ significantly at the end of the treatment. At four months after RT, no significant differences were apparent. Conclusion. Citrulline-based assessment scores are objective and should be considered in measuring radiation-induced intestinal toxicity

  13. Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy

    International Nuclear Information System (INIS)

    Onal, Cem; Kotek, Ayse; Arslan, Gungor; Topkan, Erkan; Unal, Birsel; Yavuz, Aydin; Yavuz, Melek

    2011-01-01

    Background. Radiotherapy (RT) for abdominal and pelvic malignancies often causes severe small bowel toxicity. Citrulline concentrations are known to decrease with intestinal failure. We thus evaluated the feasibility of plasma citrulline levels in predicting radiation-induced intestinal toxicity. Material and methods. Fifty-three patients (36 prostate cancer, 17 endometrial cancer) who received 45 Gy pelvic RT using conventional fractionation were prospectively evaluated. Patients with prostate cancer received an additional 25-30.6 Gy conformal boost. Plasma citrulline levels were assessed on day 0, mid- (week 3) and post-RT (week 8), and four months post-RT. Dose-volume histogram, citrulline concentration changes, and weekly intestinal toxicity scores were analyzed. Results. Mean age was 63 years (range: 43-81 years) and mean baseline citrulline concentration was 38.0 ± 10.1 μmol/l. Citrulline concentrations were significantly reduced at week 3 (27.4 ± 5.9 μmol/l; p < 0.0001), treatment end (29.9 ± 8.8 μmol/l; p < 0.0001), and four months post-treatment (34.3 ± 12.1; p 0.01). The following factor pairs were significantly positively correlated: Citrulline concentration/mean bowel dose during, end of treatment, and four months post-RT; dose-volume parameters/citrulline change groups; cumulative mean radiation dose/intestinal toxicity at end and four months post-RT; citrulline changes/intestinal toxicity during and end of RT. Citrulline concentration changes significantly differed during treatment according to RTOG intestinal toxicity grades (p < 0.0001). Although the citrulline changes differed significantly within RTOG intestinal toxicity grades (p = 0.003), the difference between Grade 0 and Grade 1 did not differ significantly at the end of the treatment. At four months after RT, no significant differences were apparent. Conclusion. Citrulline-based assessment scores are objective and should be considered in measuring radiation-induced intestinal toxicity

  14. Comparison of the radiological and chemical toxicity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose.

  15. Comparison of the radiological and chemical toxicity of lead

    International Nuclear Information System (INIS)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose

  16. 2011 NATA - Air Toxics Monitors

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes annual (2005 - 2013) statistics of measured ambient air toxics concentrations (in micrograms per cubic meter) and associated risk estimates for...

  17. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sook [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Brown, Murray T. [School of Marine Science and Engineering, University of Plymouth, Plymouth, Devon PL4 8AA (United Kingdom); Han, Taejun, E-mail: hanalgae@hanmail.net [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Institute of Green Environmental Research, University of Incheon, Incheon 406-840 (Korea, Republic of)

    2012-01-15

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 {mu}M phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC{sub 50} value of 2.70 {mu}M. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F{sub v}/F{sub m}) significantly declined with increasing phenol concentrations with resultant EC{sub 50} of 1.91 {mu}M and coefficients of variation (CVs) generated for the EC{sub 50} values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 {mu}M was found but declined markedly at higher concentrations. The significant correlation between the F{sub v}/F{sub m} and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  18. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    International Nuclear Information System (INIS)

    Park, Ji-Sook; Brown, Murray T.; Han, Taejun

    2012-01-01

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 μM phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC 50 value of 2.70 μM. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F v /F m ) significantly declined with increasing phenol concentrations with resultant EC 50 of 1.91 μM and coefficients of variation (CVs) generated for the EC 50 values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 μM was found but declined markedly at higher concentrations. The significant correlation between the F v /F m and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  19. Impacts of waste from concentrated animal feeding operations on water quality

    Science.gov (United States)

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  20. Toxicity and repellency to rats of actidione

    Science.gov (United States)

    Traub, R.; DeWitt, J.B.; Welch, J.F.; Newman, D.

    1950-01-01

    The antibiotic actidione was found to be highly repellent to laboratory rats and to significantly reduce gnawing attacks upon treated paperboards. Rats refused to accept food or water containing this material even under conditions of acute starvation and died of starvation and thirst,rather than accept water containing l.0 mg. of actidione per liter. The compound is highly toxic to .rats with the minimum .lethal dose by oral administration being approximately l.0 mg./Kg body weight. Paperboard treated with the compound resisted gnawing attacks by specially trained and motivated rats for periods of two hundred hours, although similar .untreated boards were pierced within thirty-to sixty minutes.

  1. Toxicity of road salt to Nova Scotia amphibians

    International Nuclear Information System (INIS)

    Collins, Sara J.; Russell, Ronald W.

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC 50 ) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. - Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands

  2. [Source identification of toxic wastewaters in a petrochemical industrial park].

    Science.gov (United States)

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  3. Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test.

    Science.gov (United States)

    Hallare, Arnold V; Ruiz, Paulo Lorenzo S; Cariño, J C Earl D

    2014-05-01

    Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.

  4. Toxicity of common ions to marine organisms

    International Nuclear Information System (INIS)

    Pillard, D.A.; DuFresne, D.L.; Evans, J.

    1995-01-01

    Produced waters from oil and gas drilling operations are typically very saline, and these may cause acute toxicity to marine organisms due to osmotic imbalances as well as to an excess or deficiency of specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Organisms were exposed for 48 hours. Individual ions (sodium, potassium, calcium, magnetsium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that the salinity of the test solution may play an important role in the responses of the organisms to the produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in a produced water is a result of common ions, salinity, or some other unknown toxicant

  5. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats.

    Directory of Open Access Journals (Sweden)

    Xiaoxi B Lin

    Full Text Available CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1 with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the

  6. The chronic toxicity of molybdate to marine organisms. I. Generating reliable effects data

    International Nuclear Information System (INIS)

    Heijerick, D.G.; Regoli, L.; Stubblefield, W.

    2012-01-01

    A scientific research program was initiated by the International Molybdenum Association (IMOA) which addressed identified gaps in the environmental toxicity data for the molybdate ion (MoO 4 2− ). These gaps were previously identified during the preparation of EU-REACH-dossiers for different molybdenum compounds (European Union regulation on Registration, Evaluation, Authorization and Restriction of Chemical substances; EC, 2006). Evaluation of the open literature identified few reliable marine ecotoxicological data that could be used for deriving a Predicted No-Effect Concentration (PNEC) for the marine environment. Rather than calculating a PNEC marine using the assessment factor methodology on a combined freshwater/marine dataset, IMOA decided to generate sufficient reliable marine chronic data to permit derivation of a PNEC by means of the more scientifically robust species sensitivity distribution (SSD) approach (also called the statistical extrapolation approach). Nine test species were chronically exposed to molybdate (added as sodium molybdate dihydrate, Na 2 MoO 4 ·2H 2 O) according to published standard testing guidelines that are acceptable for a broad range of regulatory purposes. The selected test organisms were representative for typical marine trophic levels: micro-algae/diatom (Phaeodactylum tricornutum, Dunaliella tertiolecta), macro-alga (Ceramium tenuicorne), mysids (Americamysis bahia), copepod (Acartia tonsa), fish (Cyprinodon variegatus), echinoderms (Dendraster exentricus, Strongylocentrotus purpuratus) and molluscs (Mytilus edulis, Crassostrea gigas). Available NOEC/EC 10 levels ranged between 4.4 mg Mo/L (blue mussel M. edulis) and 1174 mg Mo/L (oyster C. gigas). Using all available reliable marine chronic effects data that are currently available, a HC 5,50% (median hazardous concentration affecting 5% of the species) of 5.74 (mg Mo)/L was derived with the statistical extrapolation approach, a value that can be used for national and

  7. Toxic metals in the atmosphere in Lahore, Pakistan

    International Nuclear Information System (INIS)

    Schneidemesser, Erika von; Stone, Elizabeth A.; Quraishi, Tauseef A.; Shafer, Martin M.; Schauer, James J.

    2010-01-01

    Aerosol mass (PM 10 and PM 2.5 ) and detailed elemental composition were measured in monthly composites during the calendar year of 2007 at a site in Lahore, Pakistan. Elemental analysis revealed extremely high concentrations of Pb (4.4 μg m -3 ), Zn (12 μg m -3 ), Cd (0.077 μg m -3 ), and several other toxic metals. A significant fraction of the concentration of Pb (84%), Zn (98%), and Cd (90%) was contained in the fine particulate fraction (PM 2.5 and smaller); in addition, Zn and Cd were largely (≥ 60%) water soluble. The 2007 annual average PM 10 mass concentration was 340 μg m -3 , which is well above the WHO guideline of 20 μg m -3 . Dust sources were found to contribute on average (maximum) 41% (70%) of PM 10 mass and 14% (29%) of PM 2.5 mass on a monthly basis. Seasonally, concentrations were found to be lowest during the monsoon season (July-September). Principle component analysis identified seven factors, which combined explained 91% of the variance of the measured components of PM 10 . These factors included three industrial sources, re-suspended soil, mobile sources, and two regional secondary aerosol sources likely from coal and/or biomass burning. The majority of the Pb was found to be associated with one industrial source, along with a number of other toxic metals including As and Cr. Cadmium, another toxic metal, was found at concentrations 16 times higher than the maximum exposure level recommended by the World Health Organization, and was concentrated in one industrial source that was also associated with Zn. These results highlight the importance of focusing control strategies not only on reducing PM mass concentration, but also on the reduction of toxic components of the PM as well, to most effectively protect human health and the environment.

  8. Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.

    Science.gov (United States)

    Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J

    2011-07-01

    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the

  9. Oxidative degradation of tetramethylammonium hydroxide (TMAH) by UV/persulfate and associated acute toxicity assessment.

    Science.gov (United States)

    Huang, Jingting; Wang, Kai-Sung; Liang, Chenju

    2017-07-29

    Tetramethylammonium hydroxide (TMAH) is widely used in high-tech industries as a developing agent. Ultraviolet (UV) light-activated persulfate (PS, S 2 O 8 2- ) can be used to generate strongly oxidative sulfate radicals, and it also exhibits the potential to treat TMAH-containing wastewater. This study initially investigated the effect of S 2 O 8 2- concentration and UV strength on the UV/S 2 O 8 2- process for the degradation of TMAH in a batch reactor. The results suggested that 15 watts (W) of UV-activated S 2 O 8 2- at concentrations of 10 or 50 mM resulted in pseudo-first-order TMAH degradation rate constants of 3.1-4.2 × 10 -2 min -1 , which was adopted for determining the hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR). The operating conditions (15 W UV/10 mM S 2 O 8 2- ) with a HRT of 129 min resulted in stable residual concentrations of S 2 O 8 2- and TMAH at approximately 2.6 mM and 20 mg L -1 in effluent, respectively. Several TMAH degradation intermediates including trimethylamine, dimethylamine, and methylamine were also detected. The effluent was adjusted to a neutral pH and evaluated for its biological acute toxicity using Cyprinus carpio as a bioassay organism. The "bio-acute toxicity unit" (TU a ) was determined to be 1.41, which indicated that the effluent was acceptable for being discharged into an aquatic ecosystem.

  10. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    Science.gov (United States)

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  11. Radioactivity level and toxic elemental concentration in groundwater at Dei-Dei and Kubwa areas of Abuja, north-central Nigeria

    Science.gov (United States)

    Maxwell, O.; Wagiran, H.; Lee, S. K.; Embong, Z.; Ugwuoke, P. E.

    2015-02-01

    The activity concentrations of uranium and toxic elements in Dei-Dei borehole, Kubwa borehole, Water Board and hand-dug well water samples in Abuja area were measured using inductively coupled plasma mass spectrometry (ICP-MS) system. The results obtained were used to calculate human radiological risk over lifetime consumption by the inhabitants in the area. The activity concentrations of 238U in all the water supplies for drinking ranges from 0.849 mBq L-1 to 2.699 mBq L-1 with the highest value of 2.699 mBq L-1 noted at Dei-Dei borehole whereas the lowest value of 0.849 mBq L-1 was noted in Kubwa borehole. The highest annual effective dose from natural 238U in all the water samples was found in Dei-Dei borehole with a value of 8.9×10-5 mSv y-1 whereas the lowest value was noted in Kubwa borehole with a value of 2.8×10-5 mSv y-1. The radiological risks for cancer mortality were found distinctly low, with the highest value of 1.01×10-7 reported at Dei-Dei borehole compared to Kubwa borehole with a value of 3.01×10-8. The cancer morbidity risk was noted higher in Dei-Dei borehole with a value of 1.55×10-7 whereas lower value of 4.88×10-9 was reported in Kubwa borehole. The chemical toxicity risk of 238U in drinking water over a lifetime consumption has a value of 0.006 μg kg-1 day-1 in Dei-Dei borehole whereas lower value of 0.002 μg kg-1 day-1 was found in Kubwa borehole. Measured lead (Pb) and chromium (Cr) concentrations reported higher in Water Board compared to Dei-Dei and Kubwa borehole samples. Significantly, this study inferred that the 238U concentrations originate from granitic strata of the tectonic events in the area; thus, there was a trend of diffusion towards north to south and re-deposition towards Dei-Dei area.

  12. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  13. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, Ralf, E-mail: ralf.leutz@leopil.com [Leutz Optics and Illumination UG (haftungsbeschränkt), Marburg (Germany)

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  14. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Science.gov (United States)

    Leutz, Ralf

    2014-09-01

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  15. Modelling acceptance of sunlight in high and low photovoltaic concentration

    International Nuclear Information System (INIS)

    Leutz, Ralf

    2014-01-01

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV

  16. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  17. Minerals Concentration and Textural Properties of Romanian Beef Row and Cooked Meat and Offal

    Directory of Open Access Journals (Sweden)

    Liliana Tudoreanu

    2013-11-01

    Full Text Available Introduction: Consumers preferences for solid food are, for the majority of foods groups, influenced by their textural properties. Romanian traditional cuisine is rich in meat foods and therefore this food group has an important contribution to the total mineral intake as well as the ingestion of potentially toxic metals such as Cd and Pb. Although beef liver is an important source of minerals for human consumption, its concentrations in Cd and Pb and heterogeneous textural properties may hinder its acceptability. Aims: The purpose of the work was to estimate raw and cooked beef meat and offal mineral quality including Cd and Pb concentrations and their contribution to a balanced human diet and health  as well as the influenced of thermal preparation on their mineral and textural properties. Materials and methods:  Beef liver, kidney and longissimus dorsi muscle were bought from local markets. Thermal preparation was conducted by microwave and boiling with no water contact. Texture profile analyses was conducted for quantifying textural properties such as  Hardness, Cohesiveness, Springiness, Springiness Index, Chewiness, Adhesiveness and Stiffness. The mineral concentrations of the raw and cooked samples were analyzed by ICP-MS. Conclusion: The offal textural parameters variability was very large within the same organ and compared to the muscle textural parameters variability too. Muscle and offal thermal preparation strongly influenced their minerals’ concentrations as well as their textural properties. Thermal preparation significantly decreased beef liver and kidney samples’ total K and Na concentrations. It is suggested that for improving beef liver acceptability, the consumer has to be advised on the influence of the thermal preparation on beef liver parts’ textural properties as well as minerals concentrations.

  18. Assessment of the health risks and odor concentration of volatile compounds from a municipal solid waste landfill in China.

    Science.gov (United States)

    Wu, Chuandong; Liu, Jiemin; Liu, Shihua; Li, Wenhui; Yan, Luchun; Shu, Mushui; Zhao, Peng; Zhou, Peng; Cao, Wenbin

    2018-07-01

    Municipal solid waste (MSW) landfills are a source of odorous and toxic compounds. In this work, we present an integrated assessment of the odor concentration and human health risks of volatile compounds to evaluate the environmental quality at a MSW landfill. Air samples were collected seasonally from six areas of the landfill with different functions. The total concentrations of the compounds ranged from 204.0 to 7426.7 μg m -3 , and the concentrations in temporarily and permanently capped areas were 50.3 and 83.4% lower than those in the tipping area, respectively. The odor concentration was greatest at the leachate collection tank (1732-6254 ou E m -3 ) and tipping area (1573-4113 ou E m -3 ) and was mainly caused by hydrogen sulfide (57.9 and 49.1%, respectively). Moreover, the odor concentration was positively correlated with the temperature (r = 0.500, p waste areas exceeded acceptable levels. Moreover, the cumulative HI (2.5-5.7) and R (1.0E-04 to 3.4E-04) in the waste areas should receive special attention since they were above acceptable levels during all of the seasons. Aromatic and halogenated compounds dominated the cumulative R, accounting for 79 and 21% of the total, on average, while for the cumulative HI, sulfur compounds contributed the most (67%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Intolerable toxicity of simultaneous 5-fluorouracil-radiotherapy in the treatment of advanced gastrointestinal tumours

    International Nuclear Information System (INIS)

    Higi, M.; Arndt, D.; Schmidt, C.; Schmitt, G.

    1983-01-01

    Simultaneous application of 5-fluorouracil and radiotherapy is generally accepted in the treatment of gastrointestinal tumours. However, in 10 patients with metastatic gastrointestinal tumours we oberseved intolerable toxicity during this combined treatment regimen. Because of gastrointestinal and haematological toxicity the combined modality was interrupted in all patients. Given sequentially, this regimen was tolerated. Our experience indicates that an intolerable high rate of toxicity has to be taken into consideration in case of the simultaneous combination of 5-fluorouracil and radiotherapy. (orig.) [de

  20. Marine toxicity and persistence of surfactants used in the petroleum producing industry

    International Nuclear Information System (INIS)

    Maddin, C.M.

    1991-01-01

    This paper presents a survey of marine toxicity and biodegradability data for surfactants used in the petroleum industry. Surfactants are key chemicals in the formulation of products such as emulsifiers, demulsifiers, dispersants and inhibitors. They are also used directly as foaming and defoaming agents. Because they function at low concentrations, below 1%, and have a tendency to adsorb on solid surfaces, their long-term environmental effects are minimal. In applications such as cementing, surfactants cannot migrate into the environment and, thus, have no bioavailability. The possibility of environmental contamination has caused well operators and regulatory agencies to require fish toxicity and persistence data for products used in servicing wells. This data has been organized for nonionic, anionic, cationic and amphoteric surfactants. Nonionic surfactants are toxic to fish at concentrations below 10 mg/L to over 2500 mg/L depending on their chemical compositions. Anionic surfactants are toxic to fish at concentrations under 1 mg/L to several hundred mg/L depending on their chemical compositions. cationic and amphoteric surfactants are generally toxic to fish at concentrations below 50 mg/L. Overall efforts are aimed at low toxicity and high biodegradability with the least compromise in product efficiency. This requires the continual testing and environmental evaluation of surfactants summarized herein

  1. The toxic effects of chlorophenols and associated mechanisms in fish

    International Nuclear Information System (INIS)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun

    2017-01-01

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  2. The toxic effects of chlorophenols and associated mechanisms in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun, E-mail: huangdj@lzu.edu.cn

    2017-03-15

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  3. Steroid hormone concentrations and physiological toxicity of water ...

    African Journals Online (AJOL)

    Seven bioassays were used to determine oestradiol (E2), oestrone (E1) and testosterone (T) concentrations, as well as neurotoxicity, cytotoxicity and immunotoxicity, in water sampled during 2010 and 2011. Oestradiol and E1 concentrations of up to 7.2 pg ml–1 and 7.6 pg ml–1, respectively, were recorded. Testosterone ...

  4. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca; Wood, Chris M.

    2013-09-15

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na{sup +} loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC{sub 50}, one third of the LC{sub 01}) to all copper treatments decreased the copper 96 h LC{sub 50} by 58%, while sublethal copper exposure (6% of the copper LC{sub 50}, 13% of the LC{sub 01}) decreased the cadmium 96 h LC{sub 50} by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na{sup +} followed by K{sup +} (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na{sup +} and K{sup +}. Overall, whole body Na{sup +} loss showed the greatest correlation with mortality across a

  5. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    International Nuclear Information System (INIS)

    Alsop, Derek; Wood, Chris M.

    2013-01-01

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na + loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC 50 , one third of the LC 01 ) to all copper treatments decreased the copper 96 h LC 50 by 58%, while sublethal copper exposure (6% of the copper LC 50 , 13% of the LC 01 ) decreased the cadmium 96 h LC 50 by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na + followed by K + (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na + and K + . Overall, whole body Na + loss showed the greatest correlation with mortality across a variety of toxicants. We theorize that a disruption of

  6. Precipitation of metals in produced water : influence on contaminant transport and toxicity

    International Nuclear Information System (INIS)

    Azetsu-Scott, K.; Wohlgeschaffen, G.; Yeats, P.; Dalziel, J.; Niven, S.; Lee, K.

    2006-01-01

    Produced water contains a number of compounds of environmental concern and is the largest volume waste stream from oil and gas production activities. Recent studies have shown that chemicals dissolved in waste water from oil platforms stunted the growth of North Sea cod and affected their breeding patterns. Scientific research is needed to identify the impact of produced water discharges on the environment as well as to identify acceptable disposal limits for produced water. This presentation provided details of a study to characterize produced water discharged within the Atlantic regions of Canada. The study included dose response biological effect studies; research on processes controlling the transport and transformation of contaminants associated with produced water discharges and the development of risk assessment models. The sample location for the study was a site near Sable Island off the coast of Nova Scotia. Chemical analysis of the produced water was conducted as well as toxicity tests. Other tests included a time-series particulate matter sedimentation test; time-series metal and toxicity analysis; time-series change in metal precipitates tests and a produced water/seawater layering experiment. Dissolved and particulate fractions were presented, and the relationship between toxicity and particulate concentrations was examined. Results of the study suggested that produced water contaminants are variable over spatial and temporal scales due to source variations and changes in discharge rates. Chemical changes occur within 24 hours of produced water being mixed with seawater and facilitate contaminant partitioning between the surface micro layer, water column and sediments. Changes in the toxicity of the produced water are correlated with the partitioning of chemical components. The impact zone may be influenced by chemical kinetics that control the distribution of potential toxic metals. Further research is needed to investigate the effects of low level

  7. Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba.

    Directory of Open Access Journals (Sweden)

    Dennis Pérez

    2018-01-01

    Full Text Available Within the context of a field trial conducted by the Cuban vector control program (AaCP, we assessed acceptability of insecticide-treated curtains (ITCs and residual insecticide treatment (RIT with deltamethrin by the community. We also assessed the potential influence of interviewees' risk perceptions for getting dengue and disease severity.We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38 were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT.Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement.

  8. Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba.

    Science.gov (United States)

    Pérez, Dennis; Van der Stuyft, Patrick; Toledo, María Eugenia; Ceballos, Enrique; Fabré, Francisco; Lefèvre, Pierre

    2018-01-01

    Within the context of a field trial conducted by the Cuban vector control program (AaCP), we assessed acceptability of insecticide-treated curtains (ITCs) and residual insecticide treatment (RIT) with deltamethrin by the community. We also assessed the potential influence of interviewees' risk perceptions for getting dengue and disease severity. We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT) testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38) were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT. Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement.

  9. Determination of toxic elements in tobacco products by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmad, S.; Chaudhry, M.S.; Qureshi, I.H.

    1979-01-01

    The concentration of 15 elements in various brands of cigarette tobacco and cigarette wrapping paper were determined using instrumental neutron activation analysis. The paper of some of the brands contains higher concentrations of toxic elements than the tobacco. The cigarette filter and the ash were also analyzed to determine the adsorption of toxic elements on the filter and their transference in smoke. The toxic effects of some of the elements have been briefly discussed. (author)

  10. [Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina].

    Science.gov (United States)

    Jaramillo Jaramillo, Carmita; Jaramillo Espinoza, Anyi; D'Armas, Haydelba; Troccoli, Luis; Rojas de Astudillo, Luisa

    2016-09-01

    Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (pplants cytotoxicity decreased significantly (pplant extracts

  11. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  12. Petroleum hydrocarbon toxicity to corals: A review.

    Science.gov (United States)

    Turner, Nicholas R; Renegar, D Abigail

    2017-06-30

    The proximity of coral reefs to coastal urban areas and shipping lanes predisposes corals to petroleum pollution from multiple sources. Previous research has evaluated petroleum toxicity to coral using a variety of methodology, including monitoring effects of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and larval stage corals. Variability in toxicant, bioassay conditions, species and other methodological disparities between studies prevents comprehensive conclusions regarding the toxicity of hydrocarbons to corals. Following standardized protocols and quantifying the concentration and composition of toxicant will aid in comparison of results between studies and extrapolation to actual spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Waste Load Allocation for Whole Effluent Toxicity to Protect Aquatic Organisms

    Science.gov (United States)

    Hutcheson, M. R.

    1992-11-01

    A process is developed to determine a waste load allocation that will implement the narrative criteria for fish and wildlife propagation found in states' water quality standards. The waste load allocation to implement the narrative chronic criterion is determined to be percent effluent at a location in the receiving stream, as opposed to an effluent concentration derived from the numerical waste load allocation process. A typical narrative chronic criterion is "receiving streams shall not exhibit chronic toxicity outside the mixing zone," while a typical numerical chronic criterion is "receiving stream concentration shall not exceed 0.005 μg/L of chlordane outside the mixing zone." Toxicity tests are used to implement narrative criteria, while compliance with numerical criteria involves concentration measurements. It is shown that the appropriate percent effluent is inversely proportional to the dilution factor for chronic toxicity. An appropriate waste load allocation to implement the narrative acute criterion is 100% effluent. Waste load allocation for whole effluent toxicity is feasible. The required independent variables are available to regulatory agencies, and toxicity testing has become routine.

  14. Optical properties of nonimaging concentrators with corrugated reflectors

    Science.gov (United States)

    Roennelid, Mats; Perers, Bengt; Karlsson, Bjorn

    1994-09-01

    A ray tracing study has been performed on the optical properties of cylindrical nonimaging concentrators with linear corrugated reflectors. The corrugations are assumed to be V-formed and to have an extension parallel to the meridian plane of the concentrators. It is shown that the acceptance angle for radiation incident in the meridian plane can be increased for moderate corrugations. This increased acceptance is balanced by a decreased acceptance of radiation from other directions. Calculations of angular acceptance for a 2X compound parabolic concentrator is presented. It is shown that the annual irradiation on a solar collector with booster reflector can be increased if corrugated reflectors are used instead of smooth reflectors.

  15. Toxicity and toxicokinetics of binary combinations of petroleum hydrocarbon distillates with the earthworm Eisenia andrei.

    Science.gov (United States)

    Cermak, Janet; Stephenson, Gladys; Birkholz, Detlef; Dixon, D George

    2013-04-01

    Petroleum hydrocarbons (PHCs) act via narcosis and are expected to have additive toxicity. However, previous work has demonstrated less-than-additive toxicity with PHC distillates and earthworms. A study was initiated to investigate this through toxicity and toxicokinetic studies with the earthworm Eisenia andrei. Three petroleum distillate fractions, F2 (>C10-C16), F3a (>C16-C23), and F3b (>C23-C34), were used in two binary combinations, F2F3a and F3aF3b. In the toxicity study, clean soil was spiked with equitoxic combinations of the two distillates ranging from 0.5 to 2.5 toxic units. In the toxicokinetic study, a binary combination consisting of one concentration of each distillate was used. On a soil concentration basis, the toxicity of the binary combinations of distillates was less than additive. Accumulation of the individual distillates, however, was generally reduced when a second distillate was present, resulting in lower body burden. This is thought to be due to the presence of a nonaqueous-phase liquid at the soil concentrations used. On a tissue concentration basis, toxicity was closer to additive. The results demonstrate that tissue concentrations are the preferred metric for toxicity for earthworms. They also demonstrate that the Canada-wide soil standards based on individual distillates are likely protective. Copyright © 2013 SETAC.

  16. Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition

    DEFF Research Database (Denmark)

    Sørli, Jorid Birkelund; Huang, Yishi; Da Silva, Emilie

    2018-01-01

    impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if they inhibited LS function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e. the in vitro method predicted...... the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large...... numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21...

  17. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.

  18. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells.

    Science.gov (United States)

    Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B; Amorini, Angela M; Lazzarino, Giacomo; Lazzarino, Giuseppe; Tavazzi, Barbara; Lunte, Susan M; Caraci, Filippo; Dhar, Prajnaparamita; Caruso, Giuseppe

    2018-02-14

    Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.

  19. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  20. Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch

    NARCIS (Netherlands)

    Boom, van den C.E.M.; Beek, van T.A.; Dicke, M.

    2003-01-01

    The spider mite Tetranychus urticae Koch has a broad range of host plants. However, the spider mite does not accept all plants to the same degree because of differences in nutritive and toxic constituents. Other factors, such as the induction of secondary metabolites, the morphology of a leaf

  1. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    International Nuclear Information System (INIS)

    Hofstetter, J.; Lelievre, J.F.; Canizo, C.; Luque, A. del

    2009-01-01

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10 -3 ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10 -4 ppma and the allowed concentration of 2.2x10 -2 ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  2. Determination of toxic elements in foodstuffs in Vietnam

    International Nuclear Information System (INIS)

    Nguyen Van Minh; Le Thi Ngoc Trinh; Nguyen Giang; Le Tat Mua; Nguyen Mong Sinh

    2006-01-01

    The studying samples of this work have been collected from different areas of Vietnam including industrial areas in HCM city, Dongnai, Vungtau and non-industrial area, Dalat city. The concentrations of the toxic elements as: As, Hg, Cr, Co, Fe, Cu, Cd, Se, As, Zn, Pb in many foodstuff samples together with intercomparison sample which have been distributed by National Food Administration (Sweden) were analyzed by Instrumental Neutron Activation Analysis (INAA), Radiochemical Neutron Activation Analysis (RNAA); Atomic Absorption Spectrophotometer (AAS) and Anodic Stripping Voltammeter (ASV). The obtained results shown that the concentration of toxic elements in the collected samples from selected industrial areas of Vietnam are lower than the maximum permissible concentrations. (author)

  3. Do thyroid-stimulating immunoglobulins cause non-toxic and toxic multinodular goitre

    International Nuclear Information System (INIS)

    Brown, R.S.; Jackson, I.M.D.; Pohl, S.L.; Reichlin, S.

    1978-01-01

    The prevalence of serum thyroid-stimulating immunoglobulins, (T.S.I.) in a variety of thyroid diseases was determined in 96 patients and 35 normal controls. Significantly elevated levels of T.S.I. were found not only in patients with Graves' disease and Hashimoto's thyroiditis but also in those with non-toxic and multinodular goitre, whereas patients with a single autonomously functioning thyroid nodule, with subacute thyroiditis, and with 'hyperthyroiditis' had levels which did not differ from those in the controls. it is postulated that non-toxic multinodular goitre, like Graves' disease, may result from increased circulating T.S.I. which in some cases may be present in sufficient concentration to cause thyrotoxicosis. (author)

  4. Major ion toxicity in effluents: A review with permitting recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, W.L.; Ausley, L.W.; Burton, D.T.; Denton, D.L.; Dorn, P.B.; Grothe, D.R.; Heber, M.A.; Norberg-King, T.J.; Rodgers, J.H. Jr.

    2000-01-01

    Effluent toxicity testing methods have been well defined, but for the most part, these methods do not attempt to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role of various total dissolved solids in effluents on regulatory compliance has emerged during the last few years and has caused confusion in technical assessment and in permitting and compliance issues. This paper assesses the issue of ionic strength and ion imbalance, provides a brief summary of applicable data, presents several case studies demonstrating successful tools to address toxicity resulting from salinity and ion imbalance, and provides recommendations for regulatory and compliance options to manage discharges with salinity/ion imbalance issues. Effluent toxicity resulting from inorganic ion imbalance and the ion concentration of the effluent is pervasive in permitted discharge from many industrial process and municipal discharges where process streams are concentrated, adjusted, or modified. This paper discusses procedures that use weight-of-evidence approaches to identify ion imbalance toxicity, including direct measurement, predictive toxicity models for freshwater, exchange resins, mock effluents, and ion imbalance toxicity with tolerant/susceptible test species. Cost-effective waste treatment control options for a facility whose effluent is toxic because of total dissolved solids (TDS) or because of specific ion(s) are scarce at best. Depending on the discharge situation, TDS toxicity may not be viewed with the same level of concern as other, more traditional, toxicants. These discharge situations often do not require the conservative safety factors required by other toxicants. Selection of the alternative regulatory solutions discussed in this paper may be beneficial, especially because they do not require potentially expensive or high-energy-using treatment options that may be ineffective control options. The information

  5. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  6. The toxicity of uranyl nitrate on primary brain cell culture of L. Hoevenii

    International Nuclear Information System (INIS)

    Ismail Bahari; Fauziah Mohd Noor

    1995-01-01

    In Malaysia, uranium is indirectly being concentrated by mining and petroleum industries that have no relevance to its use. Concentration of uranium and the production of TENORM may give rise to radiological risk to workers and the environment. A study was conducted to determine the toxicity of a uranium compound, uranyl nitrate. For this purpose a primary brain cell culture derived from L. hoevenii was used. The nature of uranil nitrate toxicity was determined by comparing with the effects induced by mitomycin C and gamma radiation. The toxicity of these agents were measured by observing changes in Unschedule DNA Synthesis (UDS) and the induction of micronucleus. Result from the study showed that UO sub 2 sup 2+ is UDS positive and is toxic to the primary brain cells of L. hoevenii. It gives a response profile that is almost similar to that induced by gamma radiation and mitomycin C. We believed that a low concentration, UO sub 2 sup 2+ acts as a chemo toxic agent rather than as an ionising radiation. At higher concentration the toxicity of UO sub 2 sup 2+ comes from both its chemo toxic and radiation effects. Results of this study also show the ability of the primary culture to carry out repair on its DNA damaged by the UDS positive agents

  7. Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, John [Department of Environmental Toxicology, University of California, Davis, CA (United States); Department of Environmental Studies, University of California, Santa Cruz, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: jwhunt@ucdavis.edu; Anderson, Brian [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: anderson@ucdavis.edu; Phillips, Bryn [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: bmphillips@ucdavis.edu; Tjeerdema, Ron [Department of Environmental Toxicology, University of California, Davis, CA (United States); Marine Pollution Studies Laboratory, Granite Canyon, 34500 Highway 1, Monterey, CA 93940 (United States)], E-mail: rstjeerdema@ucdavis.edu; Largay, Bryan [Largay Hydrologic Sciences, LLC, 160 Farmer Street Felton, CA 95018-9416 (United States)], E-mail: bryan.largay@sbcglobal.net; Beretti, Melanie [Resources Conservation District of Monterey County, 744-A La Guardia Street, Salinas, CA 93905 (United States)], E-mail: beretti.melanie@rcdmonterey.org; Bern, Amanda [California Regional Water Quality Control Board, Central Coast Region, 895 Aerovista Place, Suite 101, San Luis Obispo, CA 93401 (United States)], E-mail: abern@waterboards.ca.gov

    2008-11-15

    Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations. - Toxicity identification evaluations identified key pesticides in agricultural runoff, and their concentrations were reduced by farmer-installed vegetated treatment systems.

  8. Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems

    International Nuclear Information System (INIS)

    Hunt, John; Anderson, Brian; Phillips, Bryn; Tjeerdema, Ron; Largay, Bryan; Beretti, Melanie; Bern, Amanda

    2008-01-01

    Evidence of ecological impacts from pesticide runoff has prompted installation of vegetated treatment systems (VTS) along the central coast of California, USA. During five surveys of two on-farm VTS ponds, 88% of inlet and outlet water samples were toxic to Ceriodaphnia dubia. Toxicity identification evaluations (TIEs) indicated water toxicity was caused by diazinon at VTS-1, and chlorpyrifos at VTS-2. Diazinon levels in VTS-1 were variable, but high pulse inflow concentrations were reduced through dilution. At VTS-2, chlorpyrifos concentrations averaged 52% lower at the VTS outlet than at the inlet. Water concentrations of most other pesticides averaged 20-90% lower at VTS outlets. All VTS sediment samples were toxic to amphipods (Hyalella azteca). Sediment TIEs indicated toxicity was caused by cypermethrin and lambda-cyhalothrin at VTS-1, and chlorpyrifos and permethrin at VTS-2. As with water, sediment concentrations were lower at VTS outlets, indicating substantial reductions in farm runoff pesticide concentrations. - Toxicity identification evaluations identified key pesticides in agricultural runoff, and their concentrations were reduced by farmer-installed vegetated treatment systems

  9. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose-response relationships.

    Science.gov (United States)

    Simonin, Marie; Martins, Jean M F; Le Roux, Xavier; Uzu, Gaëlle; Calas, Aude; Richaume, Agnès

    2017-03-01

    Titanium-dioxide nanoparticles (TiO 2 -NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO 2 -NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO 2 -NPs at concentrations ranging from 0.05 to 500 mg kg -1  dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO 2 -NPs were measured in the spiking suspensions, as they can be important drivers of TiO 2 -NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO 2 -NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg -1 ) and the highest (100 and 500 mg kg -1 ) TiO 2 -NPs concentrations. Path analyses indicated that TiO 2 -NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO 2 -NPs impact on soil microorganisms.

  10. Nitrite toxicity assessment in Danio rerio and Poecilia reticulata

    Directory of Open Access Journals (Sweden)

    Petra Doleželová

    2011-01-01

    Full Text Available Nitrite is a natural component of the nitrogen cycle in the environment. Although it usually occurs in low concentrations, elevated concentrations caused by effluents or affected nitrification process can lead to serious health deterioration of fish. Two aquarium fish zebrafish (Danio rerio and guppy (Poecilia reticulata are recommended to use as model organisms in toxicity tests. However, their sensitivity to nitrite can differ. The aim of this study was to define acute toxicity of nitrite by the semistatic method according to OECD No. 203 (Fish, Acute toxicity test. The series of 4 acute toxicity tests was performed, with 10 fish of both species used for each concentration and for the control. The 96hLC50 NO2- value for D. rerio and P. reticulata was 242.55 ± 15.79 mg·l-1 and 30.2 ± 8.74 mg·l-1, respectively. We have proved significant difference (p D. rerio and P. reticulata. The results showed different sensitivities to nitrites in tested fish species, which could be related to species-specific branchial chloride uptake mechanism. This is the first study on this fish species.

  11. Physiological and Nutritional Responses of Two Distinctive Quince (cydonia oblonga mill.) Rootstocks to Boron Toxicity

    International Nuclear Information System (INIS)

    Eraslan, F.; Kucukyumuk, Z.; Polat, M.; Yildirim, A.

    2016-01-01

    The effects of excess boron (B) on some physiological and nutritional parameters of two distinctive quince (Cydonia oblonga Mill.) rootstocks were investigated. Throughout the world, B toxicity is a widely faced problem of soil in arid and semi-arid environments. In a greenhouse study, boron was applied at the rates of 0 and 40 mg kg/sup -1/ soil to quince A and quince C rootstocks. Toxicity of B differentially affected studied parameters and rootstocks. Boron toxicity increased B concentrations of both rootstocks however the increase was more pronounced in quince A rootstock. SPAD readings, (SPAD-meter, Minolta 502 Co Ltd., Japan) as a measure of chlorophyll decreased under B toxicity. Boron toxicity increased membrane permeability and anthocyanin in both rootstocks. Al though, there is rootstocks difference, lipid peroxidation (MDA) and proline and TAA (non-enzymatic total antioxidant activity) increased in response to B toxicity. In general, quince C had lower MDA (Malondialdehyde) and TAA but lower level of proline as compared to quince A. Boron toxicity did not affect the concentrations of P, Ca, Zn and Cu however increased B and Mn concentrations. Magnesium (Mg), Mn and Fe concentrations of quince were found higher than that of quince C. Indicating a genotypic effect, quince A and quince C responded to B toxicity differentially. (author)

  12. Toxicity of carbon nanotubes: A review.

    Science.gov (United States)

    Francis, Arul Prakash; Devasena, Thiyagarajan

    2018-03-01

    Carbon nanotubes (CNTs) are widely used in the aerospace, automotive, and electronics industries because of their stability, enhanced metallic, and electrical properties. CNTs are also being investigated for biomedical applications such as drug delivery systems and biosensors. However, the toxic potential of CNTs was reported in various cell lines and animal models. The toxicity depends on diverse properties of the CNTs, such as length, aspect ratio, surface area, degree of aggregation, purity, concentration, and dose. In addition, CNTs and/or associated contaminants were well known for oxidative stress, inflammation, apoptosis, pulmonary inflammation, fibrosis, and granuloma in lungs. The increased production of CNTs likely enhanced the possibility of its exposure in people. Studies on the toxicity of CNTs are mainly focused on the pulmonary effects after intratracheal administration, and only a few studies are reported about the toxicity of CNTs via other routes of exposure. So, it is essential to consider the chronic toxicity of CNTs before using them for various biomedical applications. This review focuses on the potential toxicities of CNTs.

  13. Vanadium bioavailability and toxicity to soil microorganisms and plants.

    Science.gov (United States)

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-10-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. © 2013 SETAC.

  14. Gas characterization system software acceptance test procedure

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the Software Acceptance Testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  15. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms.

    Science.gov (United States)

    Mercurio, Philip; Eaglesham, Geoff; Parks, Stephen; Kenway, Matt; Beltran, Victor; Flores, Florita; Mueller, Jochen F; Negri, Andrew P

    2018-03-19

    The toxicity of herbicide degradation (transformation) products is rarely taken into account, even though these are commonly detected in the marine environment, sometimes at concentrations higher than the parent compounds. Here we assessed the potential contribution of toxicity by transformation products of five photosystem II herbicides to coral symbionts (Symbiodinium sp.), the green algae Dunaliella sp., and prawn (Penaeus monodon) larvae. Concentration-dependent inhibition of photosynthetic efficiency (∆F/F m ') was observed for all herbicides in both microalgal species. The toxicity of solutions of aged diuron solutions containing transformation products to Symbiodinium sp. and Dunaliella sp. was greater than could be explained by the concentrations of diuron measured, indicating transformation products contributed to the inhibition of ∆F/F m '. However, the toxicity of aged atrazine, simazine, hexazinone, and ametryn solutions could be explained by the concentration of parent herbicide, indicating no contribution by transformation products. Prawn larval metamorphosis was not sensitive to the herbicides, but preliminary results indicated some toxicity of the transformation products of atrazine and diuron. Risk assessments should take into account the contribution of herbicide transformation products; however, further studies are clearly needed to test the toxicity of a far wider range of transformation products to a representative diversity of relevant taxa.

  16. Histopathological effects of lethal and sub-lethal concentrations of ...

    African Journals Online (AJOL)

    The histopathological effects of lethal and sub-lethal concentrations of glyphosate on African catfish Clarias gariepinus were investigated. C. gariepinus juveniles were assessed in a static renewal bioassay for 96 hours (acute toxicity) and 28 days (chronic toxicity) using varying concentrations (0.0 mg/l 20.0 mg/l, 30.0 mg/l, ...

  17. Modelling interactions of toxicants and density dependence in wildlife populations

    Science.gov (United States)

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  18. Correlation of BTEX levels and toxicity of condensate contaminated groundwater

    International Nuclear Information System (INIS)

    Headley, J.; Goudey, S.; Birkholz, D.; Hardisty, P.

    1995-01-01

    The concentration of BTEX was determined for 60 groundwater samples collected from 6 gas plants in Western Canada, using conventional purge-and-trap GC/MS procedures. The gas plants were selected to cover different types of operations with different amine process chemicals employed for the sweetening of the raw sour-gas condensates. Aliquots of the ground water samples were subjected to toxicity screening tests, specifically, (a) bacterial luminescence (microtox); (b) daphnia mortality and (c) fathead minnow mortality. For the toxicity tests, sample handling procedures were developed to minimize the loss of volatile organics during the experiments. To account for possible losses, the levels of BTEX were monitored at the start and upon completion of these tests. The results indicated that the toxicity of the groundwater was in general, well correlated to the concentration of BTEX (primarily xylene). Approximately 5% of the samples, however, were observed to be toxic although the concentration of BTEX were below the method detection limit (1 microg/1). Thiophenic volatile organics were implicated for the latter. Based on the laboratory results, the remediation of BTEX is expected to correlate with the removal of the toxicity of the groundwater. These findings are of direct relevance to present technologies employed for remediation of ground water at the Sourgas plants

  19. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects.

    Science.gov (United States)

    Kristanc, Luka; Kreft, Samo

    2016-06-01

    In recent decades, the use of herbal medicines and food products has been widely embraced in many developed countries. These products are generally highly accepted by consumers who often believe that "natural" equals "safe". This is, however, an oversimplification because several botanicals have been found to contain toxic compounds in concentrations harmful to human health. Acutely toxic plants are in most cases already recognised as dangerous as a result of their traditional use, but plants with subacute and chronic toxicity are difficult or even impossible to detect by traditional use or by clinical research studies. In this review, we systematically address major issues including the carcinogenicity, teratogenicity and endocrine-disrupting effects associated with the use of herbal preparations with a strong focus on plant species that either grow natively or are cultivated in Europe. The basic information regarding the molecular mechanisms of the individual subtypes of plant-induced non-acute toxicity is given, which is followed by a discussion of the pathophysiological and clinical characteristics. We describe the genotoxic and carcinogenic effects of alkenylbenzenes, pyrrolizidine alkaloids and bracken fern ptaquiloside, the teratogenicity issues regarding anthraquinone glycosides and specific alkaloids, and discuss the human health concerns regarding the phytoestrogens and licorice consumption in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mechanisms behind pH changes by plant roots and shoots caused by elevated concentration of toxic elements

    OpenAIRE

    Javed, Muhammad Tariq

    2011-01-01

    Toxic elements are present in polluted water from mines, industrial outlets, storm water etc. Wetland plants take up toxic elements and increase the pH of the medium. In this thesis was investigated how the shoots of submerged plants and roots of emergent plants affected the pH of the surrounding water in the presence of free toxic ions. The aim was to clarify the mechanisms by which these plants change the surrounding water pH in the presence of toxic ions. The influence of Elodea canadensis...

  1. Portable, accurate toxicity testing

    International Nuclear Information System (INIS)

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L.; Hinds, A.A.; Vieaux, G.J.

    1994-01-01

    Ever tightening environmental regulations, severe penalties for non-compliance, and expensive remediation costs have stimulated development of methods to detect and measure toxins. Most of these methods are bioassays that must be performed in the laboratory; none previously devised has been truly portable. The US Army, through the Small Business Innovative Research program, has developed a hand-held, field deployable unit for testing toxicity of battlefield water supplies. This patented system employs the measurable quenching, in the presence of toxins, of the natural bioluminescence produced by the marine dinoflagellate alga Pyrocystis lunula. The procedure's inventor used it for years to measure toxicity concentrations of chemical warfare agents actually, their simulants, primarily in the form of pesticides and herbicides plus assorted toxic reagents, waterbottom samples, drilling fluids, even blood. While the procedure is more precise, cheaper, and faster than most bioassays, until recently it was immobile. Now it is deployable in the field. The laboratory apparatus has been proven to be sensitive to toxins in concentrations as low as a few parts per billion, repeatable within a variation of 10% or less, and unlike some other bioassays effective in turbid or colored media. The laboratory apparatus and the hand-held tester have been calibrated with the EPA protocol that uses the shrimplike Mysidopsis bahia. The test organism tolerates transportation well, but must be rested a few hours at the test site for regeneration of its light-producing powers. Toxicity now can be measured confidently in soils, water columns, discharge points, and many other media in situ. Most significant to the oil industry is that drilling fluids can be monitored continuously on the rig

  2. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (paluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Radioactivity level and toxic elemental concentration in groundwater at Dei-Dei and Kubwa areas of Abuja, north-central Nigeria

    International Nuclear Information System (INIS)

    Maxwell, O.; Wagiran, H.; Lee, S.K.; Embong, Z.; Ugwuoke, P.E

    2015-01-01

    The activity concentrations of uranium and toxic elements in Dei-Dei borehole, Kubwa borehole, Water Board and hand-dug well water samples in Abuja area were measured using inductively coupled plasma mass spectrometry (ICP-MS) system. The results obtained were used to calculate human radiological risk over lifetime consumption by the inhabitants in the area. The activity concentrations of 238 U in all the water supplies for drinking ranges from 0.849 mBq L −1 to 2.699 mBq L −1 with the highest value of 2.699 mBq L −1 noted at Dei-Dei borehole whereas the lowest value of 0.849 mBq L −1 was noted in Kubwa borehole. The highest annual effective dose from natural 238 U in all the water samples was found in Dei-Dei borehole with a value of 8.9×10 −5 mSv y −1 whereas the lowest value was noted in Kubwa borehole with a value of 2.8×10 −5 mSv y −1 . The radiological risks for cancer mortality were found distinctly low, with the highest value of 1.01×10 −7 reported at Dei-Dei borehole compared to Kubwa borehole with a value of 3.01×10 −8 . The cancer morbidity risk was noted higher in Dei-Dei borehole with a value of 1.55×10 −7 whereas lower value of 4.88×10 −9 was reported in Kubwa borehole. The chemical toxicity risk of 238 U in drinking water over a lifetime consumption has a value of 0.006 μg kg −1 day −1 in Dei-Dei borehole whereas lower value of 0.002 μg kg −1 day −1 was found in Kubwa borehole. Measured lead (Pb) and chromium (Cr) concentrations reported higher in Water Board compared to Dei-Dei and Kubwa borehole samples. Significantly, this study inferred that the 238 U concentrations originate from granitic strata of the tectonic events in the area; thus, there was a trend of diffusion towards north to south and re-deposition towards Dei-Dei area. - Highlights: • The estimation of human radiological risk over lifetime consumption. • Determination of radiological risks. • The annual effective dose of 238 U in drinking

  4. Determination of toxic elements in Malaysian foodstuffs

    International Nuclear Information System (INIS)

    Hamzah, Z.; Wood, A.K.H.; Mahmood, C.S.; Hamzah, S.

    1988-01-01

    This project is concentrating on the analysis of toxic elements content in seafoods including fishes, mussel, squid and prawn. Samples were collected from various places throughout Malay Peninsular. Samples were prepared according to RCA research protocol - nuclear techniques for toxic element in foodstuffs. Techniques used for elemental analysis were neutron activation analysis (instrumental and radiochemical) and anodic stripping voltametry. (author). 9 refs, 9 tabs

  5. Comparative toxicity of chemicals to earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, C.A.; Shirazi, M.A. (Environmental Protection Agency, Corvallis, OR (United States)); Neuhauser, E.F. (Niagara Mohawk Power Corp., Syracuse, NY (United States))

    1994-02-01

    The concentration-response (mortality) relationships of four species of earthworms, Eisenia fetida (Savigny), Allolobophora tuberculata (Eisen), Eudrilus eugeniae (Kinberg), and Perionyx excavatus (Perrier) are summarized for 62 chemicals and two test protocols. A Weibull function is used to summarize these data for each chemical in terms of sensitivity and toxicity, in addition to the LC50. The estimation of the Weibull parameters a and k summarize the entire concentration-response relationship. This technique should be applicable to a variety of testing protocols with different species whenever the goal is summarizing the shape of the concentration-response curves to fully evaluate chemical impact on organisms. In some cases for these data four orders of magnitude separate LC50s of the soil test and the contact test for the same chemical and species. All four species appear to be similar in range of toxicity and tolerance to these chemicals, suggesting that Eisenia fetida and may be representative of these four species and these chemicals.

  6. Gas characterization system software acceptance test report

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the results of software acceptance testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  7. Concentration limits from a technical standpoint

    International Nuclear Information System (INIS)

    Rennerfelt, Jan

    1987-01-01

    The discharge of hazardous substances in an industrial waste water can cause a number of negative effects in the sewers and in the treatment plants. The most important of these effects are: - Corrosion of sewers, pumping stations and treatment plants. Risk for explosion and fire. - Disturbances in the physical, biological and chemical treatment processes. - Disturbances in the stabilization and dewatering of sludge and increase of toxic components of the sludge leading to reduced usability in agriculture. - Detrimental impact on the ecosystem of the receiving streams and lakes. - Disturbances of the working environment for the operation staff, health risks, nuisance and inconvenience. Swedish requirements governing the discharge of hazardous substances from industries into municipal sewerage systems have been put together in a list of limit values published by the Swedish Water and Sewage Works Association, VAV. The list specifies the maximum concentrations that can be accepted at the connection point between the industrial plant and municipal network with regard to the effect on the sewers, and at the inlet to the treatment plant with regard to the treatment processes

  8. Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea.

    Science.gov (United States)

    Park, Jinhee; Ra, Jin-Sung; Rho, Hojung; Cho, Jaeweon; Kim, Sang Don

    2018-03-01

    The objective of this study was to determine whether the water effect ratio (WER) or biotic ligand model (BLM) could be applied to efficiently develop water quality criteria (WQC) in Korea. Samples were collected from 12 specific sites along the Yeongsan River (YSR), Korea, including two sewage treatment plants and one estuary lake. A copper toxicity test using Daphnia magna was performed to determine the WER and to compare to the BLM prediction. The results of the WER from YSR samples also indicated significantly different copper toxicities in all sites. The model-based predictions showed that effluent and estuary waters had significantly different properties in regard to their ability to be used to investigate water characteristics and copper toxicity. It was supposed that the slight water characteristics changes, such as pH, DOC, hardness, conductivity, among others, influence copper toxicity, and these variable effects on copper toxicity interacted with the water composition. The 38% prediction was outside of the validation range by a factor of two in all sites, showing a poor predictive ability, especially in STPs and streams adjacent to the estuary, while the measured toxicity was more stable. The samples that ranged from pH 7.3-7.7 generated stable predictions, while other samples, including those with lower and the higher pH values, led to more unstable predictions. The results also showed that the toxicity of Cu in sample waters to D. magna was closely proportional to the amounts of acidity, including the carboxylic and phenolic groups, as well as the DOC concentrations. Consequently, the acceptable prediction of metal toxicity in various water samples needs the site-specific results considering the water characteristics such as pH and DOC properties particularly in STPs and estuary regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Sensory acceptance of mixed nectar of papaya, passion fruit and acerola

    Directory of Open Access Journals (Sweden)

    Matsuura Fernando César Akira Urbano

    2004-01-01

    Full Text Available Nectars are beverages formulated with the juice or pulp of one or more fruits, plus water and sugar in concentrations resulting in a "ready-to-drink" product. Recently, the market for such products has greatly expanded. Fruit mixtures present a series of advantages, such as the combination of different aromas and flavors and the sum of their nutritional components. The objective of this work was to develop a nectar based on papaya pulp and passion fruit juice, enriched with the vitamin C present in acerola pulp, optimizing the formulation using sensory consumer tests and a response surface statistical methodology. Eleven formulations were prepared using different concentrations of papaya pulp and passion fruit juice and sucrose, and maintaining the concentration of acerola pulp constant. The sensory tests were carried out with 22 non-trained panelists using a structured 9-point hedonic scale to evaluate overall acceptance. The acceptance means were submitted to regression analysis, by first calculating a polynomial quadratic equation. A predictive model was adjusted considering only those parameters where P < 0.05, and a response surface was generated. The overall acceptance of nectars of different formulations varied from 5 ("neither liked nor disliked" to more than 7 ("liked moderately", showing that some products can be considered adequate to consumers, like the nectar produced with 37.5% papaya pulp, 7.5% passion fruit juice, and 5.0% acerola pulp, added of 15% sucrose. A quadratic predictive overall acceptance model, with a regression coefficient of 0.97 was obtained. The sensory acceptance of nectars was positively affected by increases in the concentrations of papaya pulp and of sucrose. Thus, some products presented good sensory acceptance suggesting commercial potential.

  10. Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN

    Science.gov (United States)

    Jia, Chunrong; Foran, Jeffery

    2013-12-01

    Southwest Memphis is a residential region surrounded by fossil fuel burning, steel, refining, and food processing industries, and considerable mobile sources whose emissions may pose adverse health risks to local residents. This study characterizes cancer and non-cancer risks resulting from exposure to ambient air toxics in southwest Memphis. Air toxics samples were collected at a central location every 6 days from June 5, 2008 to January 8, 2010. Volatile organic compounds (VOCs) were collected in evacuated stainless-steel canisters and aldehydes by DNPH cartridges, and samples were analyzed for 73 target compounds. A total of 60 compounds were detected and 39 were found in over 86% of the samples. Mean concentrations of many compounds were higher than those measured in many industrial communities throughout the U.S. The cumulative cancer risk associated with exposure to 13 carcinogens found in southwest Memphis air was 2.3 × 10-4, four times higher than the national average of 5.0 × 10-5. Three risk drivers were identified: benzene, formaldehyde, and acrylonitrile, which contributed 43%, 19%, and 14% to the cumulative risk, respectively. This is the first field study to confirm acrylonitrile as a potential risk driver. Mobile, secondary, industrial, and background sources contributed 57%, 24%, 14%, and 5% of the risk, respectively. The results of this study indicate that southwest Memphis, a region of significant income, racial, and social disparities, is also a region under significant environmental stress compared with surrounding areas and communities.

  11. Acute and subacute toxicities of defatted ethanolic extract of Moringa ...

    African Journals Online (AJOL)

    Moringa oleifera seeds are widely accepted as a nutritional supplement. The seeds are consumed and are sold on the shelf of nature, herbal shops, pharmacy and supermarkets. They are consumed as herbal remedy for various diseases. This study was designed to evaluate the acute and sub-acute toxicity of defatted ...

  12. Dermal and inhalation acute toxic class methods: test procedures and biometric evaluations for the Globally Harmonized Classification System.

    Science.gov (United States)

    Holzhütter, H G; Genschow, E; Diener, W; Schlede, E

    2003-05-01

    (50) methods. In order to cope with rather narrow dose/concentration classes of the GHS we have, as in our previous publications, combined the outcome of all results that can be obtained during testing for the allocation to one of the defined toxicity classes of the GHS. Our results strongly recommend the deletion of the dermal LD(50) and the inhalation LC(50) test as regulatory tests and the adoption of the dermal and inhalation ATC methods as internationally accepted alternatives.

  13. Toxicity of Neatex (industrial detergent) and Norust CR 486 ...

    African Journals Online (AJOL)

    Populations of indigenous epigeic adult earthworms, Aporrectodea longa, were exposed to varying concentrations of two chemicals (industrial detergent and corrosion inhibitor) in natural soil to determine the acute toxicity of the chemicals. Earthworm acute toxicity test (OECD) 207 method was employed. After two weeks of ...

  14. Concentration of pineapple juice by reverse osmosis: physicochemical characteristics and consumer acceptance

    Directory of Open Access Journals (Sweden)

    Daniel Simões Couto

    2011-12-01

    Full Text Available Reverse osmosis has been used for the concentration of fruit juices with promising considering the quality of the obtained products. The objective of this study was to concentrate single strength pineapple juice by reverse osmosis. The concentration was carried out with polyamide composite membranes in a 0.65 m² plate and frame module at 60 bar transmembrane pressure at 20 °C. The permeate flux was 17 L.hm-2. The total soluble solid content of the juice increased from 11 to 31 °Brix corresponding to a Volumetric Concentration Factor (VCF of 2.9. The concentration of soluble solids, total solids, and total acidity increased proportionally to FCV. The concentrated juice and three commercial concentrated pineapple juices were evaluated regarding preference and purchase intention by 79 pineapple juice consumers. The concentrated juice by reverse osmosis was the preferred among consumers. It can be concluded that this process may be considered an alternative to the pre-concentration of fruit juices.

  15. Environmentally safe management of radioactive and toxic sludges

    International Nuclear Information System (INIS)

    Shingarev, N.E.; Mukhin, I.V.; Polyakov, A.S.; Raginsky, L.S.; Semenov, B.A.

    2000-01-01

    Toxic industrial wastes constitute a significant part of Russian natural environment. The most reliable route to provide the long-term ecologic safety involves removal of toxicants or radioactive substances from polluted sites. With a view of processing toxic and radioactive sludges available in reservoirs, a process flowsheet is suggested that comprises the operations of sludge concentration, dehydration and granulation.Flocculation is an operation required to concentrate a solid phase. Polyacrylamide (PAA) and hydrolyzed PAA (HPAA) are standard flocculating agents used in the processing of sludges coming from storage facilities of radioactive wastes. HPAA is less efficient and it is shown that the optimized concentration of PAA is 4 mg/g solid. Flotation agents are used to extract the solid phase of sludges, it is shown that the process of extraction has to be carried out in 2 stages, the first flotation cycle with a Ph value between 7.5 and 9.5 and the second with a Ph adjustment to 3.5-6.0.The cake resulting from the sludge filtration has poor technological properties, it is advisable to produce a granular material. Hydro-granulation using hydrophobic flocculating agents may be implemented immediately after sludge concentration. The other granulation technique involves the sol-gel process used to incorporate sludge into a ceramic (aluminium oxide) matrix

  16. Pollution Assessment of Toxic and Potentially Toxic Elements in Agricultural Soils of the City Addis Ababa, Ethiopia.

    Science.gov (United States)

    Aschale, Minbale; Sileshi, Yilma; Kelly-Quinn, Mary; Hailu, Dereje

    2017-02-01

    Due to the significantly fast urban expansion and increased industrial activities, the soils in the farms in Addis Ababa are contaminated by some toxic and potentially toxic elements (As, V, Cr, Fe, Co, Ni, Cu, B, Ba, Sr, Zn, Mn, Pb and Cd) in varying degrees. The mean concentrations of Cr, Ni, As and B in most of the soil farms were found to be higher than the maximum recommended limits. The mean concentrations of Cd, Cu, Pb, Co, Ni and Mn were found to be higher than the background soil concentrations given for uncontaminated soils. Multivariate analyses coupled with correlation analysis were used to identify possible sources. The geo-accumulation index values for Cr, Mn and Pb indicated that the farm soils were unpolluted to moderately polluted as a result of anthropogenic activities. A comprehensive environmental management strategy should be formulated by the government to measure further pollution of the farmland soil.

  17. Evaluation of levels of select toxic metals in commonly used herbal ...

    African Journals Online (AJOL)

    Even at low concentrations or levels of exposure, toxic metals have also been reported to pose health risks to man. Aim: To ... Materials/Methods :Herbal medicines (n=8) were purchased from on-the-street vendors and evaluated for levels of five toxic metals (Lead, Nickel, Mercury, Cadmium and Arsenic).Analysis of toxic ...

  18. 2011 NATA - Risks and Annual Ambient Concentrations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes the modeled annual ambient concentrations and risks at the census tract level for the 2011 National Air Toxics Assessment. All concentrations...

  19. Toxicity formation and distribution in activated sludge during treatment of N,N-dimethylformamide (DMF) wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Chen, Xiurong, E-mail: xrchen@ecust.edu.cn; Lin, Fengkai; Ding, Yi; Zhao, Jianguo; Chen, Shanjia

    2014-01-15

    Highlights: • We studied mechanism of sludge organic toxicity formation in wastewater treatment. • The organic toxicity distributed mainly in the inner section of sludge flocs. • The organic toxicity of sludge increased with DMF initial concentrations increments. • The property of bacteria community correlates significantly with sludge toxicity. -- Abstract: The organic toxicity of sludge in land applications is a critical issue; however, minimal attention has been given to the mechanism of toxicity formation during high-strength wastewater treatment. To investigate the relevant factors that contribute to sludge toxicity, synthetic wastewater with N,N-dimethylformamide (DMF) was treated in a sequential aerobic activated sludge reactor. The acute toxicity of sludge, which is characterised by the inhibition rate of luminous bacteria T3, is the focus of this study. Using an operational time of 28 days and a hydraulic retention time of 12 h, the study demonstrated a positive relationship between the acute toxicity of sludge and the influent DMF concentration; the toxicity centralised in the intracellular and inner sections of extracellular polymeric substances (EPS) in sludge flocs. Due to increased concentrations of DMF, which ranged from 40 to 200 mg L{sup −1}, the sludge toxicity increased from 25 to 45%. The organic toxicity in sludge flocs was primarily contributed by the biodegradation of DMF rather than adsorption of DMF. Additional investigation revealed a significant correlation between the properties of the bacterial community and sludge toxicity.

  20. Transient toxicity of 2-Deoxy-2-[18F] fluoro-D-Glucose in mammalian cells: concise communication

    International Nuclear Information System (INIS)

    Kassis, A.I.; Adelstein, S.J.; Wolf, A.P.; Fowler, J.G.; Shiue, C.Y.

    1983-01-01

    The kinetics of uptake and toxicity of the positron emitter F-18 have been examined in a cultured cell line. 2-Deoxy-2[ 18 F]fluoro-D-glucose ( 18 FDG) concentrated rapidly within Chinese hamster V79 cells, and the uptake was linear with the extracellular radioactive concentrations. Whereas 18 FDG sythesized 2 hr before the incubation did not appear to be toxic, that synthesized 5 hr previously was highly toxic. Toxicity was transient and independent of both the extracellular/intracellular radioactive concentration and the energy released from the decay of fluorine-18. Similarly synthesized nonradioactive FDG and Na 18 F were not toxic under comparable experimental conditions. The authors conclude that this transient toxicity is due to an unidentified chemical species that is cytocidal following intracellular localization. These toxic levels are not likely to be achieved in the clinical use of 18 FDG due to dilution factors that are orders of magnitude greater than those used in these in vitro studies

  1. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    Science.gov (United States)

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  2. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    International Nuclear Information System (INIS)

    Emery, R.; Klopfer, D.C.; Skalski, J.R.

    1981-07-01

    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters

  3. Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae.

    Science.gov (United States)

    Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven

    2011-11-01

    Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms. Copyright © 2011 SETAC.

  4. Toxicities of triclosan, phenol, and copper sulfate in activated sludge.

    Science.gov (United States)

    Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf

    2005-04-01

    The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.

  5. Acceptable Toxicity After Stereotactic Body Radiation Therapy for Liver Tumors Adjacent to the Central Biliary System

    Energy Technology Data Exchange (ETDEWEB)

    Eriguchi, Takahisa; Takeda, Atsuya; Sanuki, Naoko; Oku, Yohei; Aoki, Yousuke [Radiation Oncology Center, Ofuna Chuo Hospital, Kanagawa (Japan); Shigematsu, Naoyuki [Department of Radiology, Keio University School of Medicine, Tokyo (Japan); Kunieda, Etsuo, E-mail: kunieda-mi@umin.ac.jp [Department of Radiation Oncology, Tokai University, Kanagawa (Japan)

    2013-03-15

    Purpose: To evaluate biliary toxicity after stereotactic body radiation therapy (SBRT) for liver tumors. Methods and Materials: Among 297 consecutive patients with liver tumors treated with SBRT of 35 to 50 Gy in 5 fractions, patients who were irradiated with >20 Gy to the central biliary system (CBS), including the gallbladder, and had follow-up times >6 months were retrospectively analyzed. Toxicity profiles, such as clinical symptoms and laboratory and radiologic data especially for obstructive jaundice and biliary infection, were investigated in relation to the dose volume and length relationship for each biliary organ. Results: Fifty patients with 55 tumors were irradiated with >20 Gy to the CBS. The median follow-up period was 18.2 months (range, 6.0-80.5 months). In the dose length analysis, 39, 34, 14, and 2 patients were irradiated with >20 Gy, >30 Gy, >40 Gy, and >50 Gy, respectively, to >1 cm of the biliary tract. Seven patients were irradiated with >20 Gy to >20% of the gallbladder. Only 2 patients experienced asymptomatic bile duct stenosis. One patient, metachronously treated twice with SBRT for tumors adjacent to each other, had a transient increase in hepatic and biliary enzymes 12 months after the second treatment. The high-dose area >80 Gy corresponded to the biliary stenosis region. The other patient experienced biliary stenosis 5 months after SBRT and had no laboratory changes. The biliary tract irradiated with >20 Gy was 7 mm and did not correspond to the bile duct stenosis region. No obstructive jaundice or biliary infection was found in any patient. Conclusions: SBRT for liver tumors adjacent to the CBS was feasible with minimal biliary toxicity. Only 1 patient had exceptional radiation-induced bile duct stenosis. For liver tumors adjacent to the CBS without other effective treatment options, SBRT at a dose of 40 Gy in 5 fractions is a safe treatment with regard to biliary toxicity.

  6. The toxicity of plutonium

    International Nuclear Information System (INIS)

    Crouse, P.L.

    1994-01-01

    Shipments of plutonium occasionally pass around the Cape coastal waters on its way to Japan from Europe. This invariably leads to a great deal of speculation of the dangers involved and of the extreme toxicity of plutonium, with the media and environmental groups claiming that (a) plutonium is the most toxic substance known to man, and that (b) a few kilograms of plutonium ground finely and dispersed in the atmosphere could kill every human being on earth. Comparisons with other poisons are drawn, e.g. common inorganic chemicals and biological agents. The original scare around the extraordinary toxicity of Pu seems to have started in 1974 with the claims of Tamplin and Cochran's hot particle theory about plutonium lodging in the sensitive portions of the lungs in small concentrated aggregates where they are much more effective in producing cancers. This theory, however, is regarded as thoroughly discredited by the experts in the field of radiotoxicity. 8 refs

  7. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    Science.gov (United States)

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  8. Toxicity of acid mine pit lake water remediated with limestone and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Neil, L.L.; McCullough, C.D.; Lund, M.A.; Evans, L.H.; Tsvetnenko, Y. [Edith Cowan University, Joondalup, WA (Australia)

    2009-11-15

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH similar to 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  9. Toxicity of acid mine pit lake water remediated with limestone and phosphorus.

    Science.gov (United States)

    Neil, Luke L; McCullough, Clint D; Lund, Mark A; Evans, Louis H; Tsvetnenko, Yuri

    2009-11-01

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH approximately 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and (c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  10. The chronic toxicity of molybdate to marine organisms. I. Generating reliable effects data

    Energy Technology Data Exchange (ETDEWEB)

    Heijerick, D.G., E-mail: Dagobert.heijerick@arche-consulting.be [ARCHE - Assessing Risks of Chemicals, Stapelplein 70 Bus 104, Gent (Belgium); Regoli, L. [International Molybdenum Association, 4 Heathfield Terrace, London, W4 4JE (United Kingdom); Stubblefield, W. [Oregon State University, Department of Environmental and Molecular Toxicology, 421 Weniger Hall, Corvallis, OR 97331 (United States)

    2012-07-15

    A scientific research program was initiated by the International Molybdenum Association (IMOA) which addressed identified gaps in the environmental toxicity data for the molybdate ion (MoO{sub 4}{sup 2-}). These gaps were previously identified during the preparation of EU-REACH-dossiers for different molybdenum compounds (European Union regulation on Registration, Evaluation, Authorization and Restriction of Chemical substances; EC, 2006). Evaluation of the open literature identified few reliable marine ecotoxicological data that could be used for deriving a Predicted No-Effect Concentration (PNEC) for the marine environment. Rather than calculating a PNEC{sub marine} using the assessment factor methodology on a combined freshwater/marine dataset, IMOA decided to generate sufficient reliable marine chronic data to permit derivation of a PNEC by means of the more scientifically robust species sensitivity distribution (SSD) approach (also called the statistical extrapolation approach). Nine test species were chronically exposed to molybdate (added as sodium molybdate dihydrate, Na{sub 2}MoO{sub 4}{center_dot}2H{sub 2}O) according to published standard testing guidelines that are acceptable for a broad range of regulatory purposes. The selected test organisms were representative for typical marine trophic levels: micro-algae/diatom (Phaeodactylum tricornutum, Dunaliella tertiolecta), macro-alga (Ceramium tenuicorne), mysids (Americamysis bahia), copepod (Acartia tonsa), fish (Cyprinodon variegatus), echinoderms (Dendraster exentricus, Strongylocentrotus purpuratus) and molluscs (Mytilus edulis, Crassostrea gigas). Available NOEC/EC{sub 10} levels ranged between 4.4 mg Mo/L (blue mussel M. edulis) and 1174 mg Mo/L (oyster C. gigas). Using all available reliable marine chronic effects data that are currently available, a HC{sub 5,50%} (median hazardous concentration affecting 5% of the species) of 5.74 (mg Mo)/L was derived with the statistical extrapolation approach, a

  11. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris.

    Science.gov (United States)

    Schwab, Fabienne; Bucheli, Thomas D; Camenzuli, Louise; Magrez, Arnaud; Knauer, Katja; Sigg, Laura; Nowack, Bernd

    2013-07-02

    Carbon nanotubes (CNT) are more and more likely to be present in the environment, where they will associate with organic micropollutants due to strong sorption. The toxic effects of these CNT-micropollutant mixtures on aquatic organisms are poorly characterized. Here, we systematically quantified the effects of the herbicide diuron on the photosynthetic activity of the green alga Chlorella vulgaris in presence of different multiwalled CNT (industrial, purified, pristine, and oxidized) or soot. The presence of carbonaceous nanoparticles reduced the adverse effect of diuron maximally by diuron concentrations in the range 0.73-2990 μg/L. However, taking into account the measured dissolved instead of the nominal diuron concentration, the toxic effect of diuron was equal to or stronger in the presence of CNT by a factor of up to 5. Sorbed diuron consequently remained partially bioavailable. The most pronounced increase in toxicity occurred after a 24 h exposure of algae and CNT. All results point to locally elevated exposure concentration (LEEC) in the proximity of algal cells associated with CNT as the cause for the increase in diuron toxicity.

  12. Essential and toxic element concentrations in blood and urine and their associations with diet: Results from a Norwegian population study including high-consumers of seafood and game

    Energy Technology Data Exchange (ETDEWEB)

    Birgisdottir, B.E.; Knutsen, H.K.; Haugen, M.; Gjelstad, I.M. [Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo (Norway); Jenssen, M.T.S. [Norwegian Institute for Water Research, Oslo (Norway); Ellingsen, D.G.; Thomassen, Y. [National Institute of Occupational Health, Oslo (Norway); Alexander, J. [Office of the Director-General, Norwegian Institute of Public Health, Oslo (Norway); Meltzer, H.M. [Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo (Norway); Brantsæter, A.L., E-mail: Anne.Lise.Brantsaeter@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo (Norway)

    2013-10-01

    The first aim of the study was to evaluate calculated dietary intake and concentrations measured in blood or urine of essential and toxic elements in relation to nutritional and toxicological reference values. The second aim was to identify patterns of the element concentrations in blood and urine and to identify possible dietary determinants of the concentrations of these elements. Adults with a known high consumption of environmental contaminants (n = 111), and a random sample of controls (n = 76) answered a validated food frequency questionnaire (FFQ). Complete data on biological measures were available for 179 individuals. Blood and urine samples were analyzed for selenium, iodine, arsenic, mercury, cadmium and lead. Principal component analysis was used to identify underlying patterns of correlated blood and urine concentrations. The calculated intakes of selenium, iodine, inorganic arsenic and mercury were within guideline levels. For cadmium 24% of the high consumer group and 8% of the control group had intakes above the tolerable weekly intake. Concentrations of lead in blood exceeded the bench-mark dose lower confidence limits for some participants. However, overall, the examined exposures did not give rise to nutritional or toxicological concerns. Game consumption was associated with lead in blood (B{sub ln} 0.021; 95%CI:0.010, 0.031) and wine consumption. Seafood consumption was associated with urinary cadmium in non-smokers (B{sub ln} 0.009; 95%CI:0.003, 0.015). A novel finding was a distinct pattern of positively associated biological markers, comprising iodine, selenium, arsenic and mercury (eigenvalue 3.8), reflecting seafood intake (B 0.007; 95%CI:0.004, 0.010). The study clearly demonstrates the significance of seafood as a source of both essential nutrients and toxic elements simultaneously and shows that exposure to various essential and toxic elements can be intertwined. - Highlights: • A study on interplay and sources of six different

  13. Essential and toxic element concentrations in blood and urine and their associations with diet: Results from a Norwegian population study including high-consumers of seafood and game

    International Nuclear Information System (INIS)

    Birgisdottir, B.E.; Knutsen, H.K.; Haugen, M.; Gjelstad, I.M.; Jenssen, M.T.S.; Ellingsen, D.G.; Thomassen, Y.; Alexander, J.; Meltzer, H.M.; Brantsæter, A.L.

    2013-01-01

    The first aim of the study was to evaluate calculated dietary intake and concentrations measured in blood or urine of essential and toxic elements in relation to nutritional and toxicological reference values. The second aim was to identify patterns of the element concentrations in blood and urine and to identify possible dietary determinants of the concentrations of these elements. Adults with a known high consumption of environmental contaminants (n = 111), and a random sample of controls (n = 76) answered a validated food frequency questionnaire (FFQ). Complete data on biological measures were available for 179 individuals. Blood and urine samples were analyzed for selenium, iodine, arsenic, mercury, cadmium and lead. Principal component analysis was used to identify underlying patterns of correlated blood and urine concentrations. The calculated intakes of selenium, iodine, inorganic arsenic and mercury were within guideline levels. For cadmium 24% of the high consumer group and 8% of the control group had intakes above the tolerable weekly intake. Concentrations of lead in blood exceeded the bench-mark dose lower confidence limits for some participants. However, overall, the examined exposures did not give rise to nutritional or toxicological concerns. Game consumption was associated with lead in blood (B ln 0.021; 95%CI:0.010, 0.031) and wine consumption. Seafood consumption was associated with urinary cadmium in non-smokers (B ln 0.009; 95%CI:0.003, 0.015). A novel finding was a distinct pattern of positively associated biological markers, comprising iodine, selenium, arsenic and mercury (eigenvalue 3.8), reflecting seafood intake (B 0.007; 95%CI:0.004, 0.010). The study clearly demonstrates the significance of seafood as a source of both essential nutrients and toxic elements simultaneously and shows that exposure to various essential and toxic elements can be intertwined. - Highlights: • A study on interplay and sources of six different elements • The

  14. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level

    Science.gov (United States)

    Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.

    2016-01-01

    Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR toxicity and MOAs. PMID:26901437

  15. Comparative toxicity of petrol and kerosene to periwinkle ...

    African Journals Online (AJOL)

    The comparative toxicities of two petroleum products, petrol and kerosene were examined by exposing Tympanotonus fuscatus to acute concentrations (60, 90, 120 and 150ml/L) of these toxicants for 96 hours. The 48th hour LC50 for petrol was 177.36 ml/L, while that of kerosene was 306.16 ml/L. The 96th hour LC50 was ...

  16. Photonuclear experiments using large acceptance detectors

    International Nuclear Information System (INIS)

    Mecking, B.A.

    1984-08-01

    Experimental programs in photonuclear physics are discussed. In experiments concentrate on the combined use of low intensity (real and virtual) photon beams and large acceptance detectors for the detection of multiple particle final states. Count rate estimates and the consequences for the operation of a high intensity accelerator are given. (orig.)

  17. Toxicity of Kalanchoe spp to chicks.

    Science.gov (United States)

    Williams, M C; Smith, M C

    1984-03-01

    Leaves of Kalanchoe daigremontiana, K tubiflora, K fedtschenkoi, K tomentosa, K tomentosa X K beharensis, and 4 cultivars of K blossfeldiana were tested for toxicity to 2-week-old Leghorn chicks. These species were analyzed for percentage of alkaloids, aliphatic nitro compounds, soluble oxalates, and nitrates and were examined qualitatively for cyanogenic glycosides. The solubility of the toxic principle in K daigremontiana was determined. Leaves of K daigremontiana, K tubiflora, and K fedtschenkoi were toxic to chicks at dosage levels of 8 to 12 mg/g of body weight. Toxic signs included depression, muscular incoordination, twitching and spiraling of the neck, tremors, convulsions, paralysis, and death. Kalanchoe tomentosa, K tomentosa X K beharensis, and 4 cultivars of K blossfeldiana were nontoxic at the highest dosage levels tested. Aliphatic nitro compounds and cyanogenic glycosides were not detected in any species. Alkaloids, nitrates, and soluble oxalates were present only in nontoxic concentrations. The toxic principle in K daigremontiana was soluble in 50%, 80%, and 100% ethanol, slightly soluble in water and acetone, and insoluble in benzene, chloroform, and ether.

  18. Redistribution of boron in leaves reduces boron toxicity.

    Science.gov (United States)

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  19. Dietary zinc and its toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lantzsch, H J

    1973-01-01

    First signs of Zn-toxicity in rats appeared at 1000 to 2000 ppm Zn in food. They were characterized by growth inhibition by the appearance of a microcytic hypochromic anemia by a reversible impairment of the ability to reproduce by disturbances in fat metabolism and by Zn-accumulation especially in the liver and the skeleton. Available results in the literature concerning alimentary Zn-toxicity in horses are few. At a daily doses of 8000 mg Zn during gestation there were no noticeable adverse effects either in the mare or the foal. While with young lambs addition of Zn of up to 1000 ppm enhanced growth, food intake and feed efficiency, with older lambs it gave rise to depressions. Available results of experiments with milk cows are equally insufficient. At Zn-concentration of 40 to 80 ppm, which may be reached in normal foodstuff, there appears to be a disturbance in the metabolism of cellulose in the rumen. In spite of this fact and notwithstanding the insufficiently examined influence of high Zn-concentrations in food on the Cu-metabolism, the limit of Zn-tolerance can be given at 1000 mg per kg of food. If dissolved, Zn is far more toxic. With calves there wre no signs of clinical toxicity up to Zn-concentrations in the food of 3000 ppm. Above 900 ppm there appeared depression in growth and deterioration in the feed efficiency. Ae 1700 ppm there was a decrease infood intake. Increased Zn-intake lead to a growing Zn-accumulation in several organs and tissues, with the accumulation in the liver, bones, kidneys, pancreas and the gastrointestinal tract being of special significance. With cessation of Zn-intake in food, Zn-accumulation slowly disappeared. As a result of high Zn-intake there appears to be synergistic and antagonistic interdependent effects with the metabolism of other trace elements (Cu, Fe) and minerals (Ca, Na, P).

  20. Toxicity of three selected pesticides (Alachlor, Atrazine and Diuron ...

    African Journals Online (AJOL)

    Lazhar Mhadhbi

    2012-06-26

    Jun 26, 2012 ... The present study aimed to evaluate acute toxicity tests for three selected ... Median lethal concentrations of the selected pesticides during a 48 h and 96 h exposure for .... Dunnett's post-hoc test, using the SPSS application, version 19.0. ..... to define the primary mode of toxic action for diverse industrial.

  1. Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values

    Directory of Open Access Journals (Sweden)

    Hana R. Alzahrani

    2017-11-01

    Full Text Available The concentrations of essential elements (Mg, Ca, Na, K, Fe, Zn, Se, Al, Ni, and Cu and toxic heavy metals (Pb, As, Cr, Cd, and Cr from Saudi Arabian fruits and vegetables were determined by inductively coupled plasma optical emission spectrophotometry (ICP/OES. Two types of butters, Caralluma munbayana and Caralluma hesperidum, Vigna (Vigna unguiculata, common fig (Ficus carica, Annona seeds (Annonaceae seeds, Annona fruits (Annonaceae fruits, Fennel (Foeniculum vulgare, and Fennel flowers (Nigella sativa were investigated, because they are used by indigenous groups as traditional medicines with Soxhlet-extraction and dry-ashing protocol. The estimated daily dietary element intake in food samples was further calculated in order to evaluate the element dietary intake and fruit and vegetable consumption pattern of the indigenes of Saudi Arabia. The crude oil and ash compositions varied widely, but suggested that most of the foods were good sources of oils and minerals. The figures-of-merit of the ICP-OES calibration curves were excellent with good linearity (R2 > 0.9921. The use of ICP-OES in this study allowed the accurate analysis and the detection of the elements at low levels. Essential elements (K, Ca, Na, and Mg had the highest concentrations while toxic heavy metals (As, Pb, and Cd had the lowest in the foods. Essential element pairs (Mg-Na, Mg-Ca, Fe-Al were highly correlated, suggesting that these foods are sources of multiple nutrients. Toxic element pairs (Pb-Cd, Pb-As, and Cd-As, however, were poorly correlated in the foods, suggesting that these elements do not have a common source in these foods. Average consumption of these foods should provide the recommended daily allowances of essential elements, but will not expose consumers to toxic heavy metals. The ICP-OES method was validated by determining method detection limits and percent recoveries of laboratory-fortified blanks, which were generally 90–100%.

  2. Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil

    Energy Technology Data Exchange (ETDEWEB)

    van Gestel, C.A.; Ma, W.C.

    1988-06-01

    The acute toxicity of five chlorophenols for two earthworm species was determined in two sandy soils differing in organic matter content and the results were compared with adsorption data. Adsorption increased with increasing organic matter content of the soils, but for tetra- and pentachlorophenol was also influenced by soil pH. Earthworm toxicity was significantly higher in the soil with a low level of organic matter. This difference disappeared when LC50 values were recalculated to concentrations in soil solution using adsorption data. Eisenia fetida andrei showed LC50 values lower than those of Lumbricus rubellus although bioaccumulation was generally higher in the latter species. Toxicity and bioaccumulation based on soil solution concentrations increased with increasing lipophilicity of the chlorophenols. The present results indicate that the toxicity and bioaccumulation and therefore the bioavailability of chlorophenols in soil to earthworms are dependent on the concentration in soil solution and can be predicted on the basis of adsorption data. Both the toxicity of and bioaccumulation data on chlorophenols in earthworms demonstrated surprisingly good agreement with those on chlorophenols in fish.

  3. Evaluation of iodate toxicity (KIO3 on growth, morpho-physiological characteristics and mineral nutrients concentrations of potato (Solanum tuberosum L. cv. Agria

    Directory of Open Access Journals (Sweden)

    Ezatollah Esfandiari

    2015-08-01

    Full Text Available The current study was aimed to assess the effects of different iodate concentrations on morpho-physiological characteristics of potato. In this regard, a pot experiment was carried out during the spring and summer 2013. Five concentrations of KIO3 including control beside 10, 20, 40, and 80 mg/Kgsoil were applied through irrigation system. The results showed that all selected agronomical and morphological characteristics of potato except dry weight of stem (SDW and root (RDW were negatively affected by high iodate concentrations. The results showed that applying 80 mg KIO3/Kgsoil compared to control resulted in around 15, 86, 84, 41, 16, 25, 20, and 87% reductions in harvest index (HI, leaf dry weight (LDW, tuber dry weight (TDW, plant dry weight (PDW, stem length (SL, root length (RL, plant height (PH, and number of tuber per plant (NT, respectively. Iodate application (80 mg KIO3/Kgsoil vs. control also affected potato’s physiological characteristics including chlorophyll content (SPAD, relative water content (RWC, water use efficiency (WUE, evapo-transpiration efficiency (ETE, cell membrane stability index (CMSI and tolerance index (TI showing around 27, 12, 87, 39, 40, and 77% reductions for each one, respectively. Increasing iodate concentrations, although, showed no effect of Zn concentration of root and Fe and Mn concentrations of leaf, gradually decreased Zn concentration of leaf and increased Fe and Mn concentrations of root and Cu concentrations of root and leaf. Plants also showed several visible symptoms including stunting, chlorosis, browning of leaf tip and reduction in growth due to iodate toxicity.

  4. Toxicity to rainbow trout of spent still liquors from the distillation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, D W.M.

    1962-01-01

    From a survey of the literature on the toxicity of ammonium salts, phenol, cyanide, and sulphide to rainbow trout, and from determinations of the toxicity of sodium thiocyanate and sodium thiosulphate, it is postulated that the toxicity of spent still liquors from the distillation of coal should be due mainly to their content of ammonia and monohydric phenols. This is confirmed by experiments showing that the toxicity of an equivalent mixture of ammonium chloride and phenol is nearly as great as that of a spent liquor from a gas works, and that phenol is almost as toxic as mixtures of the monohydric phenols known to be present in such liquors. Experiments on the effect of pH value, hardness, dissolved-oxygen concentration and temperature on the threshold concentration of monohydric phenols are described and compared with similar data for ammonia. Experiments with ammonia and phenols suggest that a mixture of these substances is at its threshold concentration when AS/AT/+PS/PT=I,AS and PS being the concentrations of un-ionized ammonia and monohydric phenols in solution and AT and PT being the threshold concentrations of these substances when tested individually in the same dilution water. A method based on these experiments for predicting the toxicity of ammonia-phenol mixtures from the chemical composition of their solutions is described, and evaluated against laboratory determinations of the toxicity of spent liquors from a coke oven, and against the death or survival of trout held captive in a stream polluted with spent liquor from a gas works. It is concluded that the correspondence between the predicted and observed toxicities is good enough for the method to be used as a basis for assessing whether trout could live in a stream to which a particular spent still liquor was discharged, or when deciding what treatment the effluent should receive to make it safe for such fish after discharge.

  5. A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, Katherine A., E-mail: k.rothwell@ncl.ac.uk; Cooke, Martin P., E-mail: martin.cooke@ncl.ac.uk

    2015-11-01

    To meet the requirements of regulation and to provide realistic remedial targets there is a need for the background concentration of potentially toxic elements (PTEs) in soils to be considered when assessing contaminated land. In England, normal background concentrations (NBCs) have been published for several priority contaminants for a number of spatial domains however updated regulatory guidance places the responsibility on Local Authorities to set NBCs for their jurisdiction. Due to the unique geochemical nature of urban areas, Local Authorities need to define NBC values specific to their area, which the national data is unable to provide. This study aims to calculate NBC levels for Gateshead, an urban Metropolitan Borough in the North East of England, using freely available data. The ‘median + 2MAD’, boxplot upper whisker and English NBC (according to the method adopted by the British Geological Survey) methods were compared for test PTEs lead, arsenic and cadmium. Due to the lack of systematically collected data for Gateshead in the national soil chemistry database, the use of site investigation (SI) data collected during the planning process was investigated. 12,087 SI soil chemistry data points were incorporated into a database and 27 comparison samples were taken from undisturbed locations across Gateshead. The SI data gave high resolution coverage of the area and Mann–Whitney tests confirmed statistical similarity for the undisturbed comparison samples and the SI data. SI data was successfully used to calculate NBCs for Gateshead and the median + 2MAD method was selected as most appropriate by the Local Authority according to the precautionary principle as it consistently provided the most conservative NBC values. The use of this data set provides a freely available, high resolution source of data that can be used for a range of environmental applications. - Highlights: • The use of site investigation data is proposed for land contamination studies

  6. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  7. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  8. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Leão, Bruna A; Tótola, Marcos R; Borges, Arnaldo C

    2011-02-01

    The acute toxicity of bacterial surfactants LBBMA111A, LBBMA155, LBBMA168, LBBMA191 and LBBMA201 and the synthetic surfactant sodium dodecyl sulfate (SDS) on the bioluminescent bacterium Vibrio fischeri was evaluated by measuring the reduction of light emission (EC(20)) by this microorganism when exposed to different surfactant concentrations. Moreover, the toxic effects of different concentrations of biological and synthetic surfactants on the growth of pure cultures of isolates Acinetobacter baumannii LBBMA04, Acinetobacter junni LBBMA36, Pseudomonas sp. LBBMA101B and Acinetobacter baumanni LBBMAES11 were evaluated in mineral medium supplemented with glucose. The EC(20) values obtained confirmed that the biosurfactants have a significantly lower toxicity to V. fischeri than the SDS. After 30 min of exposure, bacterial luminescence was almost completely inhibited by SDS at a concentration of 4710 mg L(-1). Growth reduction of pure bacterial cultures caused by the addition of biosurfactants to the growth medium was lower than that caused by SDS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Levels of toxic elements in soils of abandoned waste dump site ...

    African Journals Online (AJOL)

    Of all the five toxic elements studied, the highest mean concentration (mg/kg) of 133.74±10.60 was recorded for Pb followed by Cr (22.27±3.03), Ni (8.14±0.33) and As (5.97±0.32) in the soils while the least mean concentration of 1.64±0.11 was recorded for Cd. The toxic elements were examined for dependency upon some ...

  10. Toxicity of road salt to Nova Scotia amphibians.

    Science.gov (United States)

    Collins, Sara J; Russell, Ronald W

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC(50)) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species.

  11. Experimental characterization of Fresnel-Köhler concentrators

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Mohedano, Rubén; Cvetković, Aleksandra; Vilaplana, Juan; Li, Yang; Hernández, Maikel; Chaves, Julio; Miñano, Juan C.

    2012-01-01

    Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f-numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.

  12. Local toxicity of benzalkonium chloride in ophthalmic solutions following repeated applications.

    Science.gov (United States)

    Okahara, Akihiko; Kawazu, Kouichi

    2013-01-01

    We performed repeated toxicity studies of benzalkonium chloride (BAK)-containing vehicles of ophthalmic solutions in monkeys and rabbits to assess the local toxicity of BAK after repeated applications on the ocular surface. Local toxicity of BAK was evaluated by toxicity studies in which a 0.01% BAK-containing vehicle was applied twice/day for 52 weeks, 4 times/day for 39 weeks, or 6 times/day for 13 weeks, or in which a 0.005% BAK-containing vehicle was applied 6 times/day for 52 weeks or twice/day for 4 weeks in monkeys. Local toxicity of BAK was also evaluated where a 0.01% BAK-containing vehicle was applied 6 times/day for 6 weeks, or a 0.005% BAK-containing vehicle was applied twice/day for 39 weeks or 8 times/day for 4 weeks in rabbits. These doses were chosen because BAK is generally used at concentrations up to 0.01% in ophthalmic solutions. The BAK-containing vehicle did not cause ophthalmological changes suggestive of irritation, allergy, or corneal damage. We also did not observe any histopathological changes in the eyeball, eyelid, lacrimal gland, and nasal cavity, with repeated applications of BAK for up to 52 weeks, up to 8 times/day, or at concentrations up to 0.01%, in monkeys and rabbits. Our results suggest that BAK in concentrations up to 0.01% in ophthalmic solution is non-toxic to the eyeball, its accessory organs, and the nasal cavity after long repeated applications.

  13. Temperature determines toxicity: Bisphenol A reduces thermal tolerance in fish

    International Nuclear Information System (INIS)

    Little, Alexander G.; Seebacher, Frank

    2015-01-01

    Bisphenol A (BPA) is a ubiquitous pollutant around the globe, but whether environmental concentrations have toxic effects remains controversial. BPA interferes with a number of nuclear receptor pathways, including several that mediate animal responses to environmental input. Because thermal acclimation is regulated by these pathways in fish, we hypothesized that the toxicity of BPA would change with ambient temperature. We exposed zebrafish (Danio rerio) to ecologically relevant and artificially high concentrations of BPA at two acclimation temperatures, and tested physiological responses at two test temperatures that corresponded to acclimation temperatures. We found ecologically relevant concentrations of BPA (20 μg l −1 ) impair swimming performance, heart rate, muscle and cardiac SERCA activity and gene expression. We show many of these responses are temperature-specific and non-monotonic. Our results suggest that BPA pollution can compound the effects of climate change, and that its effects are more dynamic than toxicological assessments currently account for. - Highlights: • Whether environmental levels of BPA have toxic effects on local ecology remains controversial. • We show that ecological concentrations of BPA impair physiological performance in fish. • We also show that the toxic effects of BPA are temperature-specific and non-monotonic with dose. • BPA pollution will likely compound the effects of climate change, and vice-versa. • The toxic effects of BPA appear to be more dynamic than toxicological assessments account for. - BPA pollution is likely to compound the effects of climate change, and climate change may worsen the effects of BPA exposure. Its effects are likely to be more dynamic than toxicological assessments currently account for

  14. Recovery of anaerobic digestion after exposure to toxicants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Parkin, G.F.; Speece, R.E.

    1979-12-01

    The concept that methane fermentation cannot tolerate chronic or slug doses of toxicants has almost totally precluded methane fermentation as a viable contender for the treatment of industrial wastewaters. This study assayed a wide variety of toxicants, heavy metals, inorganic salts, organic chemicals, solvents, and antibiotics which are used in industrial processes and, therefore, appear in the industrial wastewaters therefrom. Toxicity was related to the reduction in methane production of a control containing no toxicant. The response of methane fermentation after exposure to a toxicant was assayed with unacclimated cultures as well as cultures which had been acclimated to increasing concentrations of the toxicant over long periods of time. The reversible nature of the toxicants was assayed by adding slug doses to plug flow anaerobic filters and recording gas production prior to, during, and after toxicant addition.

  15. Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Sanin, F. Dilek

    2014-01-01

    Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties....... Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge.In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol...

  16. Removal of soluble toxic metals from water

    International Nuclear Information System (INIS)

    Buckley, L.P.; Vijayan, S.; McConeghy, G.J.; Maves, S.R.; Martin, J.F.

    1990-05-01

    The removal of selected, soluble toxic metals from aqueous solutions has been accomplished using a combination of chemical treatment and ultrafiltration. The process has been evaluated at the bench-scale and is undergoing pilot-scale testing. Removal efficiencies in excess of 95-99% have been realized. The test program at the bench-scale investigated the limitations and established the optimum range of operating parameters for the process, while the tests conducted with the pilot-scale process equipment are providing information on longer-term process efficiencies, effective processing rates, and fouling potential of the membranes. With the typically found average concentrations of the toxic metals in groundwaters at Superfund sites used as the feed solution, the process has decreased levels up to 100-fold or more. Experiments were also conducted with concentrated solutions to determine their release from silica-based matrices. The solidified wastes were subjected to EP Toxicity test procedures and met the criteria successfully. The final phase of the program involving a field demonstration at a uranium tailings site will be outlined

  17. Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition.

    Science.gov (United States)

    Sørli, Jorid B; Huang, Yishi; Da Silva, Emilie; Hansen, Jitka S; Zuo, Yi Y; Frederiksen, Marie; Nørgaard, Asger W; Ebbehøj, Niels E; Larsen, Søren T; Hougaard, Karin S

    2018-01-01

    Private consumers and professionals may experience acute inhalation toxicity after inhaling aerosolized impregnation products. The distinction between toxic and non-toxic products is difficult to make for producers and product users alike, as there is no clearly described relationship between the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21 impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if the products inhibited surfactant function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e., the in vitro method predicted all the products that were toxic for mice to inhale. The specificity of the in vitro test was 63%, i.e., the in vitro method found three false positives in the 21 tested products. Six of the products had been involved in accidental human inhalation where they caused acute inhalation toxicity. All of these six products inhibited lung surfactant function in vitro and were toxic to mice.

  18. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    Directory of Open Access Journals (Sweden)

    Richard Sauerheber

    2013-01-01

    Full Text Available The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  19. Physiologic conditions affect toxicity of ingested industrial fluoride.

    Science.gov (United States)

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  20. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects of Se and Cu on planarians.

  1. Cysteine as a non toxic corrosion inhibitor for copper alloys in conservation

    DEFF Research Database (Denmark)

    Gravgaard, Mari; van Lanschot, Jettie

    2012-01-01

    studies of colour changes in the corrosion products. The results obtained in this article demonstrate that cysteine could be a non-toxic alternative to BTA. Cysteine performed as well as BTA on pre-corroded coupons with bronze disease in high humidity and showed acceptable results during testing...

  2. Ecotoxicogenomic assessment of diclofenac toxicity in soil.

    Science.gov (United States)

    Chen, Guangquan; den Braver, Michiel W; van Gestel, Cornelis A M; van Straalen, Nico M; Roelofs, Dick

    2015-04-01

    Diclofenac is widely used as nonsteroidal anti-inflammatory drug leaving residues in the environment. To investigate effects on terrestrial ecosystems, we measured dissipation rate in soil and investigated ecotoxicological and transcriptome-wide responses in Folsomia candida. Exposure for 4 weeks to diclofenac reduced both survival and reproduction of F. candida in a dose-dependent manner. At concentrations ≥ 200 mg/kg soil diclofenac remained stable in the soil during a 21-day incubation period. Microarrays examined transcriptional changes at low and high diclofenac exposure concentrations. The results indicated that development and growth were severely hampered and immunity-related genes, mainly directed against bacteria and fungi, were significantly up-regulated. Furthermore, neural metabolic processes were significantly affected only at the high concentration. We conclude that diclofenac is toxic to non-target soil invertebrates, although its mode of action is different from the mammalian toxicity. The genetic markers proposed in this study may be promising early markers for diclofenac ecotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Environmental toxicity and radioactivity assessment of a titanium-processing residue with potential for environmental use.

    Science.gov (United States)

    Wendling, Laura A; Binet, Monique T; Yuan, Zheng; Gissi, Francesca; Koppel, Darren J; Adams, Merrin S

    2013-07-01

    Thorough examination of the physicochemical characteristics of a Ti-processing residue was undertaken, including mineralogical, geochemical, and radiochemical characterization, and an investigation of the environmental toxicity of soft-water leachate generated from the residue. Concentrations of most metals measured in the leachate were low; thus, the residue is unlikely to leach high levels of potentially toxic elements on exposure to low-ionic strength natural waters. Relative to stringent ecosystem health-based guidelines, only chromium concentrations in the leachate exceeded guideline concentrations for 95% species protection; however, sulfate was present at concentrations known to cause toxicity. It is likely that the high concentration of calcium and extreme water hardness of the leachate reduced the bioavailability of some elements. Geochemical modeling of the leachate indicated that calcium and sulfate concentrations were largely controlled by gypsum mineral dissolution. The leachate was not toxic to the microalga Chlorella sp., the cladoceran Ceriodaphnia dubia, or the estuarine bacterium Vibrio fischeri. The Ti-processing residue exhibited an absorbed dose rate of 186 nGy/h, equivalent to an annual dose of 1.63 mGy and an annual effective dose of 0.326 mGy. In summary, the results indicate that the Ti-processing residue examined is suitable for productive use as an environmental amendment following 10 to 100 times dilution to ameliorate potential toxic effects due to chromium or sulfate. Copyright © 2013 SETAC.

  4. A Study on the D. magna and V. fischeri Toxicity Relationship of Industrial Wastewater from Korea

    Science.gov (United States)

    Pyo, S.; Lee, S.; Chun Sang, H.; Park, T. J.; Kim, M. S.

    2015-12-01

    It is well known that high concentration of TDS (total dissolved solid) in industrial effluent gives rise to the toxicity to the Daphnia magna toxicity test. D. magna is vulnerable to relatively low TDS concentration showing the 24-hr EC50 of Salinity 0.6% (as the sea salt concentration). Recently, standard mandatory toxicity testing using Daphnia magna has been used to monitor industrial effluent toxicity according to Korea standard method (Acute Toxicity Test Method of the Daphnia magna Straus (Cladocera, Crustacea), ES 04704. 1a) under regulation. Since only one acute toxicity testing is applied in the present, we are trying to introduce microbial battery for more complete toxicity assessment. In this study, the acute toxicities between daphnids and microbes were compared. The results of D. magna and Vibrio fischeri toxicity test from 165 industrial wastewater effluents showed high positive correlation. In addition, the possibility of predicting daphnia toxicity from the bacterial toxicity data amounts to 92.6% if we consider salinity effect (>5ppt) together. From this study, we found that the V. fischeri toxicity test is a powerful battery tool to assess the industrial wastewater toxicity. Here, we suggest that luminescent bacteria toxicity test be useful not only for complete toxicity assessment which can't be obtained by daphnia toxicity testing only but also for the reduction cost, time, and labor in the Korean society. Keywords : D. magna, V. fischeri, Industrial waste water, battery test Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  5. Acute toxicity tests and meta-analysis identify gaps in tropical ecotoxicology for amphibians.

    Science.gov (United States)

    Ghose, Sonia L; Donnelly, Maureen A; Kerby, Jacob; Whitfield, Steven M

    2014-09-01

    Amphibian populations are declining worldwide, particularly in tropical regions where amphibian diversity is highest. Pollutants, including agricultural pesticides, have been identified as a potential contributor to decline, yet toxicological studies of tropical amphibians are very rare. The present study assesses toxic effects on amphibians of 10 commonly used commercial pesticides in tropical agriculture using 2 approaches. First, the authors conducted 8-d toxicity assays with formulations of each pesticide using individually reared red-eyed tree frog (Agalychnis callidryas) tadpoles. Second, they conducted a review of available data for the lethal concentration to kill 50% of test animals from the US Environmental Protection Agency's ECOTOX database to allow comparison with their findings. Lethal concentration estimates from the assays ranged over several orders of magnitude. The nematicides terbufos and ethoprophos and the fungicide chlorothalonil were very highly toxic, with evident effects within an order of magnitude of environmental concentrations. Acute toxicity assays and meta-analysis show that nematicides and fungicides are generally more toxic than herbicides yet receive far less research attention than less toxic herbicides. Given that the tropics have a high diversity of amphibians, the findings emphasize the need for research into the effects of commonly used pesticides in tropical countries and should help guide future ecotoxicological research in tropical regions. © 2014 SETAC.

  6. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. - Highlights: ► Appropriate management of toxic metals contained in WEEE is important during recycling and treatment of WEEE. ► CRT TVs contain large amount of toxic metals with high concentration and thus appropriate management is highly important. ► Mid-sized equipment is a future target for

  7. The pH dependent toxicity and bioaccumulation of chloroquine tested on S. viminalis (basket willow)

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Trapp, Stefan; Legind, Charlotte Nielsen

    2010-01-01

    (hydroxymethyl) – aminomethane (pH 8 and 9). Concentrations were determined with spectrophotometer. Toxicity was derived from calculations of normalized transpiration over time, and RCF (root concentration factor) values were calculated. Increasing BCF values were found for increasing pH levels, and the toxicity...

  8. Acute toxicity of Headline® fungicide to Blanchard's cricket frogs (Acris blanchardi).

    Science.gov (United States)

    Cusaac, J Patrick W; Morrison, Shane A; Belden, Jason B; Smith, Loren M; McMurry, Scott T

    2016-04-01

    Previous laboratory studies have suggested that pyraclostrobin-containing fungicide formulations are toxic to amphibians at environmentally relevant concentrations. However, it is unknown if all pyraclostrobin formulations have similar toxicity and if toxicity occurs in different amphibian species. We investigated the acute toxicity of two formulations, Headline(®) fungicide and Headline AMP(®) fungicide, to Blanchard's cricket frogs (Acris blanchardi) based on a direct overspray scenario. In addition, we examined body residues of fungicide active ingredients in A. blanchardi following direct exposure to Headline AMP fungicide. Headline fungicide and Headline AMP fungicide had similar toxicity to A. blanchardi with calculated median lethal doses of 2.1 and 1.7 µg pyraclostrobin/cm(2), respectively, which are similar to the suggested maximum label rate in North American corn (2.2 and 1.52 µg pyraclostrobin/cm(2), respectively). Tissue concentrations of pyraclostrobin were lower than predicted based on full uptake of a direct dose, and did not drop during the first 24 h after exposure. Headline fungicides at corn application rates are acutely toxic to cricket frogs, but acute toxicity in the field will depend on worst-case exposure.

  9. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking)

    Science.gov (United States)

    Fumonisins are found in corn. They are toxic to animals, cause cancer in rodents, and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction pro...

  10. Waste-acceptance criteria for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1987-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that disposal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straight-forward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 references, 7 figures

  11. Waste-acceptance criteria for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1986-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste-disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that dispsoal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straightforward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is the introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste-acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste-acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 refs

  12. A confirmed case of toxic shock syndrome associated with the use of a menstrual cup.

    Science.gov (United States)

    Mitchell, Michael A; Bisch, Steve; Arntfield, Shannon; Hosseini-Moghaddam, Seyed M

    2015-01-01

    Menstrual cups have been reported to be an acceptable substitute for tampons. These flexible cups have also been reported to provide a sustainable solution to menstrual management, with modest cost savings and no significant health risk. The present article documents the first case of toxic shock syndrome associated with the use of a menstrual cup in a woman 37 years of age, using a menstrual cup for the first time. Toxic shock syndrome and the literature on menstrual cups is reviewed and a possible mechanism for the development of toxic shock syndrome in the patient is described.

  13. Impact of Indocyanine Green Concentration, Exposure Time, and Degree of Dissolution in Creating Toxic Anterior Segment Syndrome: Evaluation in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Tamer Tandogan

    2016-01-01

    Full Text Available Purpose. To investigate the role of indocyanine green (ICG dye as a causative material of toxic anterior segment syndrome (TASS in an experimental rabbit model. Method. Eight eyes of four rabbits were allocated to this study. Capsular staining was performed using ICG dye, after which the anterior chamber was irrigated with a balanced salt solution. The effects of different concentrations (control, 0.25, 0.5, and 1.0%, exposure times (10 and 60 seconds, and the degree of dissolution (differently vortexed were investigated. The analysis involved anterior segment photography, ultrasound pachymetry, prostaglandin assay (PGE2 Parameter Assay, R&D systems, Inc., and scanning electron microscopy of each iris. Result. There was no reaction in the control eye. A higher aqueous level of PGE2 and more severe inflammatory reaction were observed in cases of eyes with higher concentration, longer exposure time, and poorly dissolved dye. Additionally, scanning electron microscopy revealed larger and coarser ICG particles. Conclusion. TASS occurrence may be associated with the concentration, exposure time, and degree of dissolution of ICG dye during cataract surgery.

  14. Test of the acute lethal toxicity of pollutants to marine fish and invertebrates

    International Nuclear Information System (INIS)

    1989-01-01

    This reference method describes the measurement of the acute lethal toxicity of pollutants to marine animals (fish and invertebrates) by a static (non-continuous flow) method. Procedures are given for the determination of the toxicity curve (survival time-concentration relationship) and for the estimation of median lethal concentrations (LC50). The method is suitable for use with fish and macro-invertebrate species. It is not suitable for planktonic organisms nor for determining the toxicity of oil, oil dispersants or other petroleum products. Those methods are described in Reference Methods Nos. 44 and 45, respectively. The test animals are exposed, in groups of approximately ten, to each of several concentrations of the pollutant. The animals are observed, at intervals, for several days, the test solutions being renewed regularly. A record is maintained of the survival times of individual animals exposed to each concentration of pollutant. The medial survival time of each group of animals is determined from a graphical plot of the raw data after a log-probability transformation. Median survival times and their confidence limits are plotted against concentrations of test substance to give a toxicity curve. Additionally, the same experimental data can be used to estimate the median lethal concentration (LC50) of the test substance to the animals after different periods of exposure. 3 refs, 5 figs, 3 tabs

  15. Guanicid and PHMG Toxicity Tests on Aquatic Organisms

    Directory of Open Access Journals (Sweden)

    Eva Poštulková

    2016-01-01

    Full Text Available The emergence and development of new algicidal products is caused by the ever increasing popularity of garden ponds as well as the use of these products in the fisheries sector, especially for disposal of cyanobacteria and algae. Most frequent means of combating cyanobacteria and algae are applications of algicidal substances. Newly developed algaecides include Guanicid and polyhexamethylene guanidine hydrochloride (PHMG. The aim of the study was to identify toxic effects of Guanicid and PHMG on zebrafish (Danio rerio and green algae (Desmodesmus communis. We determined the acute toxicity in fish according to ČSN EN ISO 7346-1, and conducted the freshwater algae growth inhibition test according to ČSN ISO 8692 methodology. For inhibition tests with green algae we chose Guanicid and PHMG concentrations of 0.001, 0.005, and 0.010 ml/L. For fish short-term acute toxicity tests we chose Guanicid concentrations of 0.010, 0.050, 0.150, 0.200, 0.250, and 0.300 ml/L and PHMG concentrations of 0.010, 0.025, 0.050, 0.075, 0.100, and 0.125 ml/L. In case of zebrafish (Danio rerio, the LC50 value for Guanicid is 0.086 ml/L, while the LC50 value for PHMG is 0.043 ml/L. Effects of Guanicid on inhibition of green algae (Desmodesmus communis appear highly significant (p < 0.010 at a concentration of 0.010 ml/L. For PHMG, these effects are highly significant (p < 0.001 at concentrations of 0.005 and 0.010 ml/L in 48 hours.

  16. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Nowell, Lisa H., E-mail: lhnowell@usgs.gov [U.S. Geological Survey, California Water Science Center, Placer Hall, 6000 J Street, Sacramento, CA 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5" t" h Avenue, Portland, OR 97201 (United States); Ingersoll, Christopher G., E-mail: cingersoll@usgs.gov [U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65021 (United States); Moran, Patrick W., E-mail: pwmoran@usgs.gov [U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402 (United States)

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  17. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    International Nuclear Information System (INIS)

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  18. Treatment of Acute Tacrolimus Toxicity with Phenytoin in Solid Organ Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Arin S. Jantz

    2013-01-01

    Full Text Available The pharmacokinetics of tacrolimus are influenced by many factors, including genetic variability, acute infections, liver dysfunction, and interacting medications, which can result in elevated concentrations. The most appropriate management of acute tacrolimus toxicity has not been defined though case reports exist describing the therapeutic use of enzyme inducers to increase tacrolimus metabolism and decrease concentrations. We are reporting on the utilization of phenytoin to assist in decreasing tacrolimus concentrations in a case series of four solid organ transplant recipients with acute, symptomatic tacrolimus toxicity presenting with elevated serum creatinine, potassium, and tacrolimus trough concentrations greater than 30 ng/mL. All four patients had the potential causative agents stopped or temporarily held and were given 300 to 400 mg/day of phenytoin for two to three days. Within three days of beginning phenytoin, all four patients had a decrease in tacrolimus concentration to less than 15 ng/mL, a return to or near baseline creatinine concentration, and lack of phenytoin-related side effects. Therefore, phenytoin appears to be a safe and potentially beneficial treatment option in patients with symptomatic tacrolimus toxicity.

  19. Response of nitrogen metabolism to boron toxicity in tomato plants.

    Science.gov (United States)

    Cervilla, L M; Blasco, B; Ríos, J J; Rosales, M A; Rubio-Wilhelmi, M M; Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2009-09-01

    Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 mM and 2.0 mM B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGR(L)), concentration of B, nitrate (NO(3) (-)), ammonium (NH(4) (+)), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGR(L), organic N, soluble proteins, and NR and NiR activities. The lowest NO(3) (-) and NH(4) (+) concentration in leaves was recorded when plants were supplied with 2.0 mM B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO(3) (-) reduction and increases NH(4) (+) assimilation in tomato plants.

  20. UV-photodegradation of desipramine: Impact of concentration, pH and temperature on formation of products including their biodegradability and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Nareman D.H.; Mahmoud, Waleed M.M. [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Scharnhorststraße 1 C13, DE 21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Olsson, Oliver [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Scharnhorststraße 1 C13, DE 21335 Lüneburg (Germany); Kümmerer, Klaus, E-mail: klaus.kuemmerer@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Scharnhorststraße 1 C13, DE 21335 Lüneburg (Germany)

    2016-10-01

    Desipramine (DMI) is a widely used tricyclic antidepressant, and it is the major metabolite of imipramine (IMI) and lofepramine (LMI); IMI and LMI are two of the most commonly used tricyclic antidepressants. If DMI enters the aquatic environment, it can be transformed by the environmental bacteria or UV radiation. Therefore, photolysis of DMI in water was performed using a simulated sunlight Xenon-lamp and a UV-lamp. Subsequently, the biodegradability of DMI and its photo-transformation products (PTPs) formed during its UV photolysis was studied. The influence of variable conditions, such as initial DMI concentration, solution pH, and temperature, on DMI UV photolysis behavior was also studied. The degree of mineralization of DMI and its PTPs was monitored. A Shimadzu HPLC-UV apparatus was used to follow the kinetic profile of DMI during UV-irradiation; after that, ion-trap and high-resolution mass spectrometry coupled with chromatography were used to monitor and identify the possible PTPs. The environmentally relevant properties and selected toxicity properties of DMI and the non-biodegradable PTPs were predicted using different QSAR models. DMI underwent UV photolysis with first-order kinetics. Quantum yields were very low. DOC values indicated that DMI formed new PTPs and was not completely mineralized. Analysis by means of high-resolution mass spectrometry revealed that the photolysis of DMI followed three main photolysis pathways: isomerization, hydroxylation, and ring opening. The photolysis rate was inversely proportional to initial DMI concentration. The pH showed a significant impact on the photolysis rate of DMI, and on the PTPs in terms of both formation kinetics and mechanisms. Although temperature was expected to increase the photolysis rate, it showed a non-significant impact in this study. Results from biodegradation tests and QSAR analysis revealed that DMI and its PTPs are not readily biodegradable and that some PTPs may be human and/or eco-toxic

  1. Toxicity of coal-tar and asphalt sealants to eastern newts, Notophthalmus viridescens

    Energy Technology Data Exchange (ETDEWEB)

    Bommarito, T.; Sparling, D.W.; Halbrook, R.S. [South Illinois University, Carbondale, IL (United States). Cooperative Wildlife Research Laboratory

    2010-09-15

    Between 1970 and 2000 the concentration of total polycyclic aromatic hydrocarbons (TPAH) in several lakes across the country increased whereas those of other persistent organic pollutants (POPs) tended to remain stable or declined. Urbanized watersheds experienced greater rises in TPAH concentration compared to non-urban lakes. Sources for urban PAHs include industrial wastes, vehicular exhausts and oil leaks and sealants from pavement surfaces. Both coal-tar and asphalt sealants are used to protect surfaces but runoff from surfaces coated with coal-tar can have mean concentrations of 3500 mg TPAHs kg{sup -1}, much higher than runoff from asphalt-sealed or cement surfaces. Unaltered parent compounds of PAHs can have many lethal and sublethal toxic effects, but oxidation and UV radiation can alter the toxicity of these compounds, sometimes creating degradates that are many times more toxic than parent compounds. The purposes of this study were to determine if coal-tar sealants can be toxic to adult eastern newts (Notophthalmus viridescens) and to compare the toxicity of coal-tar sealant to that of asphalt sealant. Newts were exposed to sediments containing dried sealants ranging from 0 mg kg{sup -1} to 1500 mg kg{sup -1} under simultaneous exposure to UV radiation and visible light to determine concentration/response relationships. No significant mortality occurred with any treatment. Significant effects due to sealants included decreased righting ability and diminished liver enzyme activities. Coal-tar sealant was more effective in inducing these changes than was asphalt sealant.

  2. Compatibility of hydroxypropyl-β-cyclodextrin with algal toxicity bioassays

    International Nuclear Information System (INIS)

    Fai, Patricia Bi; Grant, Alastair; Reid, Brian J.

    2009-01-01

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-β-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO 4 ), with IC50 values of 0.82 μM and 0.85 μM, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides

  3. Compatibility of hydroxypropyl-{beta}-cyclodextrin with algal toxicity bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Fai, Patricia Bi; Grant, Alastair [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)], E-mail: b.reid@uea.ac.uk

    2009-01-15

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO{sub 4}), with IC50 values of 0.82 {mu}M and 0.85 {mu}M, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides.

  4. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings.

    Science.gov (United States)

    Wang, Bao-Lan; Shi, Lei; Li, Yin-Xing; Zhang, Wen-Hao

    2010-05-01

    Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H(2)S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H(2)S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H(2)S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H(2)S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H(2)S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins.

  5. Comparison of metal toxic impacts between aquatic and terrestrial organisms: is the free ion concentration a sufficient descriptor?

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Larsen, Henrik Fred

    2011-01-01

    Characterization of metal toxic impacts in comparative risk assessment and life cycle impact assessment (LCIA) should take into account metal speciation and interactions with soil/water organic constituents, because these mechanisms control metal bioavailability and may influence their toxic...... that the free metal ion is an appropriate “general”descriptor of metal toxicity. Results for 128 laboratory tests on Daphnia magna exposed to copper ions (Cu2+) in water show that variation of several orders of magnitude are observed between the toxicity tests. These variations may be a result of the inability...... of magnitude difference occur for the extreme case of barley (Hordeum vulgare). Given the scarcity of terrestrial effect data compared to aquatic data, reliable and transparent, mechanistic-based predictions of terrestrial toxic impacts from aquatic effect data would be an important step ahead in the context...

  6. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Hughes, S. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Simon, B.M. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Stevens, P.A. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Stidson, R.T. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: et@ceh.ac.uk; Vincent, C.D. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2005-07-15

    Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al{sup 3+}, Ni{sup 2+}, etc.) were estimated by applying a chemical speciation model. Both total and HNO{sub 3}-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO{sub 3}-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Pb{sup 2+}) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al{sup 3+} were near to toxic levels at two locations. - P eat metal contents depend upon proximity to industrial and mining areas; the metals may be exerting toxic effects in some places.

  7. Test systems to identify reproductive toxicants.

    Science.gov (United States)

    Riecke, K; Stahlmann, R

    2000-09-01

    Experience with drugs and other xenobiotics indicates that both animal testing and epidemiological studies are necessary to provide adequate data for an estimation of risks that might be associated with exposure to a chemical substance. In this review, the pros and cons of test systems for reproductive toxicity are discussed. Usually, several studies are performed to cover the different phases of the reproductive cycle. In the preclinical development of drugs, the three so-called 'segment testing protocols' have been used for several decades now. More recently, new testing concepts have been accepted internationally which include more flexibility in implementation. Several examples of compounds with the potential for reproductive toxicity are presented in more detail in a discussion of some pitfalls of the tests for fertility (phthalates and fluoroquinolones), teratogenicity (acyclovir and protease inhibitors) and postnatal developmental toxicity (fluoroquinolones). In addition, important aspects of kinetics and metabolism as a prerequisite for a rational interpretation of results from toxicological studies are briefly discussed. In vitro assays are useful for supplementing the routinely used in vivo approaches or for studying an expected or defined effect, but they are not suitable for revealing an unknown effect of a chemical on the complex reproductive process.

  8. Biochar application to hardrock mine tailings: Soil quality, microbial activity, and toxic element sorption

    Science.gov (United States)

    Kelly, Charlene N.; Peltz, Christopher D.; Stanton, Mark R.; Rutherford, David W.; Rostad, Colleen E.

    2014-01-01

    Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific

  9. Comparative effects of fumonisins on sphingolipid metabolism and toxicity in ducks and turkeys.

    Science.gov (United States)

    Benlasher, Emad; Geng, Xiuyu; Nguyen, Ngoc Thanh Xuan; Tardieu, Didier; Bailly, Jean-Denis; Auvergne, Alain; Guerre, Philippe

    2012-03-01

    Fumonisins (FBs) are mycotoxins that are found worldwide in maize and maize products. Their main toxic effects have been well characterized in poultry, but differences between species have been demonstrated. Ducks appeared very sensitive to toxicity, whereas turkeys are more resistant. At the same time, alterations of sphingolipid metabolism, with an increase of the concentration of the free sphinganine (Sa) in serum and liver, have been demonstrated in the two species, but the link between the toxicity of FBs and Sa accumulation remains difficult to interpret. The aim of the present work was to compare the effects of FBs (10 mg FB1 + FB2/kg body weight) on sphingolipid metabolism in ducks and turkeys. Growth, feed consumption, and serum biochemistry were also investigated to evaluate toxicity. The main results showed that FBs increased Sa concentrations in liver and serum in ducks and turkeys, but these accumulations were not directly correlated with toxicity. Sa accumulation was higher in the livers of turkeys than in ducks, whereas Sa levels were higher in the sera of ducks than in turkeys. Hepatic toxicity was more pronounced in ducks than in turkeys and accompanied a decrease of body weight and an increase of serum biochemistry in ducks but not in turkeys. So, although FBs increase Sa concentration in the livers of both species, this effect is not directly proportional to toxicity. The mechanisms of FB toxicity and/or the mechanisms of protection of ducks and turkeys to the Sa accumulation within the liver remain to be established.

  10. Cadmium toxicity to two marine phytoplankton under different nutrient conditions

    International Nuclear Information System (INIS)

    Miao, A.-J.; Wang, W.-X.

    2006-01-01

    Cd accumulation and toxicity in two marine phytoplankton (diatom Thalassiosira weissflogii and dinoflagellate Prorocentrum minimum) under different nutrient conditions (nutrient-enriched, N- and P-starved conditions) were examined in this study. Strong interactions between the nutrients and Cd uptake by the two algal species were found. Cd accumulation as well as N and P starvation themselves inhibited the assimilation of N, P, and Si by the phytoplankton. Conversely, N starvation strongly inhibited Cd accumulation but no influence was observed under P starvation. However, the Cd accumulation difference between nutrient-enriched and N-starved cells was smaller when [Cd 2+ ] was increased in the medium, indicating that net Cd accumulation was less dependent on the N-containing ligands at high-Cd levels. As for the subcellular distribution of the accumulated Cd, most was distributed in the insoluble fraction of T. weissflogii while it was evenly distributed in the soluble and insoluble fractions of P. minimum at low-Cd levels. A small percentage of cellular Cd ( 2+ ], which increased when the [Cd 2+ ] increased. Cd toxicity in phytoplankton was quantified as depression of growth and maximal photosynthetic system II quantum yield, and was correlated with the [Cd 2+ ], intracellular Cd concentration, and Cd concentrations in the cell-surface-adsorbed, soluble, and insoluble fractions. According to the estimated median inhibition concentration (IC50) based on the different types of Cd concentration, the toxicity difference among the different nutrient-conditioned cells was the smallest when the Cd concentration in the soluble fraction was used, suggesting that it may be the best predictor of Cd toxicity under different nutrient conditions

  11. A high-gain, compact, nonimaging concentrator: RXI.

    Science.gov (United States)

    Miñano, J C; Gonźlez, J C; Benítez, P

    1995-12-01

    The design procedure of a new nonimaging concentrator (called an RXI) is explained. Rays that impinge on the concentrator aperture, within the acceptance angle, are directed to the receiver by means of one refraction, one reflection, and one total internal reflection. The concentrator can be made as a single dielectric piece (in which the receiver is immersed) whose aspect ratio (thickness/aperture diameter) is close to 1/3. Ray-tracing analysis of a rotational symmetric RXI shows total transmissions of greater than 94.5% (no absorption or reflection losses are considered) when the acceptance angle of the incoming rays is small (<3°) and when the receiver area is the smallest possible (maximal concentration.).

  12. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond

    International Nuclear Information System (INIS)

    Mayer, T.; Rochfort, Q.; Borgmann, U.; Snodgrass, W.

    2008-01-01

    A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride. - Effects of chlorides on metal chemistry and toxicity of sediment porewater in a stormwater detention pond impacted by road salts

  13. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  14. Distribution and optical purity of methamphetamine found in toxic concentration in a civil aviation accident pilot fatality.

    Science.gov (United States)

    Chaturvedi, Arvind K; Cardona, Patrick S; Soper, John W; Canfield, Dennis V

    2004-07-01

    Toxicological evaluation of postmortem samples collected from a pilot involved in a unique fatal civil aircraft accident is described in this paper. A one-occupant airplane was substantially damaged upon colliding with terrain in poor visibility. Remains of the pilot were found outside the aircraft. Pathological examination revealed multiple blunt force injuries and vascular congestion. The fluorescence polarization immunoassay disclosed 8.0 microg/mL amphetamines in urine. Gas chromatographic/mass spectrometric analyses determined the presence of methamphetamine (1.13 microg/mL in blood and 59.2 microg/mL in urine) and amphetamine (0.022 microg/mL in blood and 1.50 microg/mL in urine). Methamphetamine was distributed throughout the body, including the brain. The amount of methamphetamine in gastric contents was 575-fold higher than that of amphetamine. The (+)- and (-)-forms of methamphetamine were present in equal proportions in gastric contents. The methamphetamine concentration found in blood was in the range sufficient to produce toxic effects, causing performance impairment.

  15. Determination of Anti-nutrients and Toxic Substances of Selected ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: Determination of antinutrients and toxic substances in leafy vegetables is an imperative facet in nutritional studies as it establishes the baseline concentrations index for phytotoxins in the vegetables. Concentrations of cyanide, nitrate, soluble and total oxalates were quantitatively determined in the common ...

  16. Demonstration of a Non-Toxic Reaction Control Engine

    Science.gov (United States)

    Robinson, Philip J.; Turpin, Alicia A.; Veith, Eric M.

    2007-01-01

    T:hree non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE's were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing.

  17. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  18. Evaluation of the concentration of toxic metals and rare ground elements in samples of sediments of the Billings and Guarapiranga systems reservoirs

    International Nuclear Information System (INIS)

    Silva, Larissa de Souza

    2017-01-01

    The excessive urbanization process of the Sao Paulo Metropolitan Region resulted in the loss of the natural characteristics of its water courses causing serious changes in flow and quality regimes. The objective of this study was evaluate the concentration of toxic metals, semi metals As, Sb and Se, and rare earth elements present in surface sediment samples collected at the Billings, Guarapiranga and Rio Grande Reservoirs. The Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se and Zn elements were analyzed using Optical Emission Spectrometry With Inductively Coupled Plasma (ICP OES). Some major, trace and rare earth elements (Ce, Eu, La, Lu, Nd, Sm, Tb and Yb) were analyzed by the Instrumental Neutron Activation Analysis (INAA) technique. The total Hg concentration was determined by Cold Vapor Atomic Absorption Spectrometry technique (CVAAS). The validation of the methodologies was performed by means of the certified reference material analyses. To assess the sources of anthropogenic contamination, the enrichment factor (EF) and the geoaccumulation index (IGeo) were calculated. The results obtained for both techniques were compared with TEL and PEL oriented values established by CCME (Canadian Council of Ministers of the Environment) and adopted by CETESB (Environmental Company of the Sao Paulo State). All sampling points showed concentration values for toxic metals >TEL and 2 points at Billings Reservoir (BILL02030 and 02100), values > PEL for As, Cr, Cu, Hg, Ni, Pb and Zn, probably due to the entrance of the Pinheiros River waters and drainage basins of the Cocaia and Borore streams. The calculated EF and IGeo values indicated possible anthropogenic contamination for Sb and Se for the elements determined by ICP OES and As, Cr, Sb and Zn, obtained by INAA. The Billings reservoir presented, in general, the highest concentrations for the analyzed elements, indicating a poor quality of its sediments. This study confirms the need of a frequent

  19. Nonimaging optical concentrators using graded-index dielectric.

    Science.gov (United States)

    Zitelli, M

    2014-04-01

    A new generation of inhomogeneous nonimaging optical concentrators is proposed, able to achieve simultaneously high optical efficiency and acceptance solid angle at a given geometrical concentration factor. General design methods are given, and concentrators are numerically investigated and optimized.

  20. Addition of contaminant bioavailability and species susceptibility to a sediment toxicity assessment: Application in an urban stream in China

    International Nuclear Information System (INIS)

    Li, Huizhen; Sun, Baoquan; Chen, Xin; Lydy, Michael J.; You, Jing

    2013-01-01

    Sediments collected from an urban creek in China exhibited high acute toxicity to Hyalella azteca with 81.3% of sediments being toxic. A toxic unit (TU) estimation demonstrated that the pyrethroid, cypermethrin, was the major contributor to toxicity. The traditional TU approach, however, overestimated the toxicity. Reduced bioavailability of sediment-associated cypermethrin due to sequestration explained the overestimation. Additionally, antagonism among multiple contaminants and species susceptibility to various contaminants also contributed to the unexpectedly low toxicity to H. azteca. Bioavailable TUs derived from the bioavailability-based approaches, Tenax extraction and matrix-solid phase microextraction (matrix-SPME), showed better correlations with the noted toxicity compared to traditional TUs. As the first successful attempt to use matrix-SPME for estimating toxicity caused by emerging insecticides in field sediment, the present study found freely dissolved cypermethrin concentrations significantly improved the prediction of sediment toxicity to H. azteca compared to organic carbon normalized and Tenax extractable concentrations. Highlights: •Over 80% sediments from an urban stream in China were acutely toxic to H. azteca. •Toxic unit analysis showed cypermethrin was the major contributor to toxicity. •The traditional toxic unit approach overestimated sediment toxicity. •Reduced bioavailability was the reason for overestimating sediment toxicity. •Freely dissolved cypermethrin concentrations greatly improved toxicity prediction. -- Field sediment toxicity caused by current-use pesticides could be more accurately evaluated by incorporating bioavailability measurements into the toxic unit analysis

  1. Tracking pyrethroid toxicity in surface water samples: Exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda).

    Science.gov (United States)

    Deanovic, Linda A; Stillway, Marie; Hammock, Bruce G; Fong, Stephanie; Werner, Inge

    2018-02-01

    Pyrethroid insecticides are commonly used in pest control and are present at toxic concentrations in surface waters of agricultural and urban areas worldwide. Monitoring is challenging as a result of their high hydrophobicity and low toxicity thresholds, which often fall below the analytical methods detection limits (MDLs). Standard daphnid bioassays used in surface water monitoring are not sensitive enough to protect more susceptible invertebrate species such as the amphipod Hyalella azteca and chemical loss during toxicity testing is of concern. In the present study, we quantified toxicity loss during storage and testing, using both natural and synthetic water, and presented a tool to enhance toxic signal strength for improved sensitivity of H. azteca toxicity tests. The average half-life during storage in low-density polyethylene (LDPE) cubitainers (Fisher Scientific) at 4 °C of 5 pyrethroids (permethrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, and esfenvalerate) and one organophosphate (chlorpyrifos; used as reference) was 1.4 d, and piperonyl butoxide (PBO) proved an effective tool to potentiate toxicity. We conclude that toxicity tests on ambient water samples containing these hydrophobic insecticides are likely to underestimate toxicity present in the field, and mimic short pulse rather than continuous exposures. Where these chemicals are of concern, the addition of PBO during testing can yield valuable information on their presence or absence. Environ Toxicol Chem 2018;37:462-472. © 2017 SETAC. © 2017 SETAC.

  2. Acute Toxicity of Tributyltins and Tributyltin Leachates from Marine Antibiofouling Paints.

    Science.gov (United States)

    1982-09-10

    RO-0184 224 ACUTE TOXICITY OF TRIBUTYLTINS AND TRIBUTYLTIN i/I LEACHATES FROM MARINE ANTIBIOFOULING PAINTS(U) CALIFORNIA UNIV OAKLAND NAVAL...Classification) (U) ACUTE TOXICITY OF TRIBUTYLTINS AND TRIBUTYLTIN LEACHATES FROM MARINE ANTIBIOFOULING PAINTS 12, PERSO A UHR Laugin, Koy"., Linden, Olof and...xins causing acute toxicity or two amphipou species at concentrations as low as 10 g/L . Orchestia traskiana was exposed to bis ( tributyltin ) oxide

  3. Scientific opinion on the evaluation of substances as acceptable previous cargoes for edible fats and oils

    DEFF Research Database (Denmark)

    Petersen, Annette

    Shipping of edible fats and oils into Europe is permitted in bulk tanks, provided that the previous cargo is included in a positive list. The European Commission requested EFSA to evaluate the acceptability as previous cargoes for fats and oils the substances calcium lignosulphonate, methyl acetate...... the criteria for acceptability as previous cargoes. Due to uncertainties, mainly with regard to the composition and toxicity of the low molecular mass fraction, and the fact that the toxicological database is limited to the 40–65 grade and does not cover all grades of calcium lignosulphonate shipped...... as previous cargoes, the EFSA Panel on Contaminants in the Food Chain (CONTAM Panel) concluded that calcium lignosulphonate does not meet the criteria for acceptability as a previous cargo. Only food-grade ammonium sulphate meets the criteria for acceptability as a previous cargo due to uncertainties about...

  4. Flame retardant tris(1,3-dichloro-2-propylphosphate (TDCPP toxicity is attenuated by N-acetylcysteine in human kidney cells

    Directory of Open Access Journals (Sweden)

    David W. Killilea

    Full Text Available Prolonged exposure to the flame retardants found in many household products and building materials is associated with adverse developmental, reproductive, and carcinogenic consequences. While these compounds have been studied in numerous epidemiological and animal models, less is known about the effects of flame retardant exposure on cell function. This study evaluated the toxicity of the commonly used fire retardant tris(1,3-dichloro-2-propylphosphate (TDCPP in cell line derived from the kidney, a major tissue target of organohalogen toxicity. TDCPP inhibited cell growth at lower concentrations (IC50 27 μM, while cell viability and toxicity were affected at higher concentrations (IC50 171 μM and 168 μM, respectively. TDCPP inhibited protein synthesis and caused cell cycle arrest, but only at higher concentrations. Additionally, the antioxidant N-acetylcysteine (NAC reduced cell toxicity in cells treated with TDCPP, suggesting that exposure to TDCPP increased oxidative stress in the cells. In summary, these data show that low concentrations of TDCPP result in cytostasis in a kidney cell line, whereas higher concentrations induce cell toxicity. Furthermore, TDCPP toxicity can be attenuated by NAC, suggesting that antioxidants may be effective countermeasures to some organohalogen exposures. Keywords: flame retardant, cytostasis, cell toxicity, antioxidant, cell cycle

  5. US EPA - A*Star Partnership - Accelerating the Acceptance of ...

    Science.gov (United States)

    The path for incorporating new alternative methods and technologies into quantitative chemical risk assessment poses a diverse set of scientific challenges. Some of these challenges include development of relevant and predictive test systems and computational models to integrate and extrapolate experimental data, and rapid characterization and acceptance of these systems and models. The series of presentations will highlight a collaborative effort between the U.S. Environmental Protection Agency (EPA) and the Agency for Science, Technology and Research (A*STAR) that is focused on developing and applying experimental and computational models for predicting chemical-induced liver and kidney toxicity, brain angiogenesis, and blood-brain-barrier formation. In addressing some of these challenges, the U.S. EPA and A*STAR collaboration will provide a glimpse of what chemical risk assessments could look like in the 21st century. Presentation on US EPA – A*STAR Partnership at international symposium on Accelerating the acceptance of next-generation sciences and their application to regulatory risk assessment in Singapore.

  6. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line.

    Science.gov (United States)

    Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George

    2007-10-01

    To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.

  7. Characteristic vibrational frequencies of toxic polychlorinated dibenzo-dioxins and -furans

    International Nuclear Information System (INIS)

    Patrizi, Barbara; Cumis, Mario Siciliani de; Viciani, Silvia; D’Amato, Francesco; Foggi, Paolo

    2014-01-01

    Highlights: • Database reporting FT-IR spectra for 13 of the 17 toxic PCDDs and PCDFs congeners. • Use of FT-IR database for quantification of toxic PCDD/Fs in complex matrix. • Monitoring of dioxin emissions from waste incinerators. - Abstract: The possibility to monitor in real-time the emission of dioxins produced by incineration of waste or by industrial processes is nowadays a necessity considering the high toxicity of these compounds, their persistence in the environment and their ability to bio-accumulate in the food chain. Recently it has been demonstrated the potentiality of detecting dioxins in carbon tetrachloride via MIR Quantum Cascade Lasers. A fundamental step in real time monitoring of dioxins emission is the possibility to recognize the most toxic congeners within complex mixtures and at low concentrations. Taking into account the lack of spectroscopic data about these very toxic environmental pollutants and the necessity to monitor their emissions we have recorded infrared spectra of 13 of the 17 most toxic congeners of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) dissolved in carbon tetrachloride. In this way we have obtained a small database that we have used to test the ability of a linear regression algorithm to recognize each congener and its relative concentration in complex mixtures of these compounds

  8. Characteristic vibrational frequencies of toxic polychlorinated dibenzo-dioxins and -furans

    Energy Technology Data Exchange (ETDEWEB)

    Patrizi, Barbara, E-mail: patrizi@lens.unifi.it [LENS, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); CNR, Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze (Italy); Cumis, Mario Siciliani de; Viciani, Silvia; D’Amato, Francesco [CNR, Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze (Italy); Foggi, Paolo [LENS, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); CNR, Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze (Italy); Università degli Studi di Perugia, Dipartimento di Chimica, Via Elce di Sotto 8, 06123 Perugia (Italy)

    2014-06-01

    Highlights: • Database reporting FT-IR spectra for 13 of the 17 toxic PCDDs and PCDFs congeners. • Use of FT-IR database for quantification of toxic PCDD/Fs in complex matrix. • Monitoring of dioxin emissions from waste incinerators. - Abstract: The possibility to monitor in real-time the emission of dioxins produced by incineration of waste or by industrial processes is nowadays a necessity considering the high toxicity of these compounds, their persistence in the environment and their ability to bio-accumulate in the food chain. Recently it has been demonstrated the potentiality of detecting dioxins in carbon tetrachloride via MIR Quantum Cascade Lasers. A fundamental step in real time monitoring of dioxins emission is the possibility to recognize the most toxic congeners within complex mixtures and at low concentrations. Taking into account the lack of spectroscopic data about these very toxic environmental pollutants and the necessity to monitor their emissions we have recorded infrared spectra of 13 of the 17 most toxic congeners of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) dissolved in carbon tetrachloride. In this way we have obtained a small database that we have used to test the ability of a linear regression algorithm to recognize each congener and its relative concentration in complex mixtures of these compounds.

  9. Toxicity of contaminants in lagoons and pannes of the Indiana Dunes National Lakeshore

    International Nuclear Information System (INIS)

    Gillespie, R.; Speelman, J.; Stewart, P.M.

    1995-01-01

    Contaminants in water and sediments of lagoons and pannes were 2--90 times greater at sites adjacent to slag and coal piles than those at reference sites. One site (Lagoon-US5) had sediments with very high concentrations of toxic organics (e.g. naphthalene, phenanthrene, dibenzofuran). Although analyses indicated a gradient of contaminant concentration with distance from their sources, toxicity assays were somewhat equivocal. With the exception of less reproduction in Ceriodaphnia at one lagoon site (US3 = 0.55 of reference), survival of fathead minnows and reproduction in Ceriodaphnia in lagoon and panne waters varied independently of the contaminant concentration. In fact, there was better Ceriodaphnia reproduction in water from two contaminated sites (Lagoon-US5, Panne-WP1) than in water from reference sites. Fathead minnow survival, Ceriodaphnia survival, Ceriodaphnia reproduction, amphipod survival, and amphipod growth varied among sites in toxicity assays with sediments, 100% mortality of fatheads at Lagoon-US5, 100% mortality of Ceriodaphnia at Lagoon-US3, and less survival of fathead minnows at Lagoon-US3 indicate possible toxicity from contaminants in sediments at these sites. Of all organisms and end-points tested, Ceriodaphnia survival seemed to be most closely associated with concentrations of contaminants in lagoon water and sediments. Amphipod survival also varied with contaminants in sediments, however, survival in sediments of contaminated sites ranged only from 0.90--0.93 of reference sites. Although the results are not consistent among organisms, toxicity assays indicate that sediments from the lagoon site with the highest contaminants (Lagoon-US5) and possibly those from another contaminated lagoon site (Lagoon-US3) could be toxic to aquatic organisms. Water and sediments from contaminated panne sites do not appear to be toxic to aquatic test organisms

  10. Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios.

    Science.gov (United States)

    Maloney, Erin M; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-11-01

    Extensive agricultural use of neonicotinoid insecticide products has resulted in the presence of neonicotinoid mixtures in surface waters worldwide. Although many aquatic insect species are known to be sensitive to neonicotinoids, the impact of neonicotinoid mixtures is poorly understood. In the present study, the cumulative toxicities of binary and ternary mixtures of select neonicotinoids (imidacloprid, clothianidin, and thiamethoxam) were characterized under acute (96-h) exposure scenarios using the larval midge Chironomus dilutus as a representative aquatic insect species. Using the MIXTOX approach, predictive parametric models were fitted and statistically compared with observed toxicity in subsequent mixture tests. Single-compound toxicity tests yielded median lethal concentration (LC50) values of 4.63, 5.93, and 55.34 μg/L for imidacloprid, clothianidin, and thiamethoxam, respectively. Because of the similar modes of action of neonicotinoids, concentration-additive cumulative mixture toxicity was the predicted model. However, we found that imidacloprid-clothianidin mixtures demonstrated response-additive dose-level-dependent synergism, clothianidin-thiamethoxam mixtures demonstrated concentration-additive synergism, and imidacloprid-thiamethoxam mixtures demonstrated response-additive dose-ratio-dependent synergism, with toxicity shifting from antagonism to synergism as the relative concentration of thiamethoxam increased. Imidacloprid-clothianidin-thiamethoxam ternary mixtures demonstrated response-additive synergism. These results indicate that, under acute exposure scenarios, the toxicity of neonicotinoid mixtures to C. dilutus cannot be predicted using the common assumption of additive joint activity. Indeed, the overarching trend of synergistic deviation emphasizes the need for further research into the ecotoxicological effects of neonicotinoid insecticide mixtures in field settings, the development of better toxicity models for neonicotinoid mixture

  11. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  12. Toxicity studies of drugs and chemicals in animals: An overview

    Directory of Open Access Journals (Sweden)

    S. Saganuwan

    2017-12-01

    Full Text Available Toxicity study is the investigation of either short or long-term toxic effects of a drug or chemical on animals. The toxicity is dose-dependent as asserted by Paracelsus over 500 years ago. However, short-term toxic effect is determined using median lethal dose (LD50 first introduced by Trevan in 1927 and revised many times. Presently there is a growing preponderance of rejection of scientific papers on acute toxicity study, simply because of the belief that in the current hazard and safety as-sessment of drugs and chemicals, LD50 values are no longer used. In view of this, literature search was carried out with a view to investigating the relevance of LD50 in development and assessment of drugs and chemicals. The findings revealed that in the past, many animals had been used for LD50 determination. OECD has reduced the number of test animals to 5–15 and presently it is further re-duced to 2–6. Acute toxicity study is being carried out in medicinal plants research and in the study of patent medicine. Although the application of LD50 has been drastically reduced, it is still applied and accepted in some parts of the world. Moreover, animals on which LD50 tests are conducted, should be allowed to die to see the end effect of the test drug or chemical because euthanisia of test animals may mask some toxicity signs of the test agents. Therefore, toxicity study of drugs and chemicals is a sci-entific process necessary for discovery and development of drugs as well as identification of potential toxicants.

  13. Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity.

    Science.gov (United States)

    Mazur, Radosław; Sadowska, Monika; Kowalewska, Łucja; Abratowska, Agnieszka; Kalaji, Hazem M; Mostowska, Agnieszka; Garstka, Maciej; Krasnodębska-Ostręga, Beata

    2016-09-02

    Heavy metal exposure affect plant productivity by interfering, directly and indirectly, with photosynthetic reactions. The toxic effect of heavy metals on photosynthetic reactions has been reported in wide-ranging studies, however there is paucity of data in the literature concerning thallium (Tl) toxicity. Thallium is ubiquitous natural trace element and is considered the most toxic of heavy metals; however, some plant species, such as white mustard (Sinapis alba L.) are able to accumulate thallium at very high concentrations. In this study we identified the main sites of the photosynthetic process inhibited either directly or indirectly by thallium, and elucidated possible detoxification mechanisms in S. alba. We studied the toxicity of thallium in white mustard (S. alba) growing plants and demonstrated that tolerance of plants to thallium (the root test) decreased with the increasing Tl(I) ions concentration in culture media. The root growth of plants exposed to Tl at 100 μg L(-1) for 4 weeks was similar to that in control plants, while in plants grown with Tl at 1,000 μg L(-1) root growth was strongly inhibited. In leaves, toxic effect became gradually visible in response to increasing concentration of Tl (100 - 1,000 μg L(-1)) with discoloration spreading around main vascular bundles of the leaf blade; whereas leaf margins remained green. Subsequent structural analyses using chlorophyll fluorescence, microscopy, and pigment and protein analysis have revealed different effects of varying Tl concentrations on leaf tissue. At lower concentration partial rearrangement of the photosynthetic complexes was observed without significant changes in the chloroplast structure and the pigment and protein levels. At higher concentrations, the decrease of PSI and PSII quantum yields and massive oxidation of pigments was observed in discolored leaf areas, which contained high amount of Tl. Substantial decline of the photosystem core proteins and disorder of the

  14. Phytoremediation of soils contaminated with toxic elements and radionuclides

    International Nuclear Information System (INIS)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.; Benemann, J.R.

    1995-01-01

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE's Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass. Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE

  15. The toxicity of different lead salts to Enchytraeus crypticus in relation to bioavailability in soil.

    Science.gov (United States)

    Zhang, Lulu; Van Gestel, Cornelis A M

    2017-08-01

    The present study aimed to assess the bioavailability and toxicity of lead nitrate and lead chloride to Enchytraeus crypticus in a natural standard soil. Worms were exposed to Pb-spiked soil for 21 d, and survival and reproduction were related to total, 0.01 M CaCl 2 -extractable, and porewater Pb concentrations in the soil and internal concentrations in the surviving animals. The Pb availability for Pb(NO 3 ) 2 and PbCl 2 was similar, as confirmed by Langmuir and Freundlich isotherms. The Pb concentrations in surviving worms increased with increasing Pb concentrations in the soil and did not differ for the 2 Pb salts. Lead was toxic to E. crypticus at median lethal concentrations (LC50s) of 543 and 779 mg Pb/kg dry soil and median effect concentrations (EC50s) of 189 and 134 mg Pb/kg dry soil, for Pb(NO 3 ) 2 and PbCl 2 , respectively. Mortality of E. crypticus was related to internal Pb concentrations in the worms rather than to total or available Pb concentrations in the soil, whereas reproduction toxicity was better explained from Pb concentrations in 0.01 M CaCl 2 extracts or porewater of the test soil than from total Pb concentrations in the soil or Pb concentrations in the worms. Overall, the bioavailability and toxicity of Pb(NO 3 ) 2 and PbCl 2 to E. crypticus in LUFA 2.2 soil did not differ. Environ Toxicol Chem 2017;36:2083-2091. © 2017 SETAC. © 2017 SETAC.

  16. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    International Nuclear Information System (INIS)

    Martinez, D S T; Alves, O L; Barbieri, E

    2013-01-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO 3 -MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO 3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO 3 -treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO 3 -MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO 3 -MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO 3 -MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  17. Use of passive samplers for improving oil toxicity and spill effects assessment

    International Nuclear Information System (INIS)

    Letinski, Daniel; Parkerton, Thomas; Redman, Aaron; Manning, Ryan; Bragin, Gail; Febbo, Eric; Palandro, David; Nedwed, Tim

    2014-01-01

    Highlights: • Methods to quantify dissolved hydrocarbons needed to link oil exposures to toxicity. • Solid phase microextraction (SPME) fibers used to measure dissolved hydrocarbons. • SPME results reliably predicted acute toxicity for range of dispersed oils. • Oil droplets and chemical dispersant did not significantly contribute to toxicity. • SPME analysis improves oil exposure assessment in lab and field studies. - Abstract: Methods that quantify dissolved hydrocarbons are needed to link oil exposures to toxicity. Solid phase microextraction (SPME) fibers can serve this purpose. If fibers are equilibrated with oiled water, dissolved hydrocarbons partition to and are concentrated on the fiber. The absorbed concentration (C polymer ) can be quantified by thermal desorption using GC/FID. Further, given that the site of toxic action is hypothesized as biota lipid and partitioning of hydrocarbons to lipid and fibers is well correlated, C polymer is hypothesized to be a surrogate for toxicity prediction. To test this method, toxicity data for physically and chemically dispersed oils were generated for shrimp, Americamysis bahia, and compared to test exposures characterized by C polymer . Results indicated that C polymer reliably predicted toxicity across oils and dispersions. To illustrate field application, SPME results are reported for oil spills at the Ohmsett facility. SPME fibers provide a practical tool to improve characterization of oil exposures and predict effects in future lab and field studies

  18. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms.

    Science.gov (United States)

    Ebert, Ina; Bachmann, Jean; Kühnen, Ute; Küster, Anette; Kussatz, Carola; Maletzki, Dirk; Schlüter, Christoph

    2011-12-01

    The present study investigated the growth inhibition effect of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin on four photoautotrophic aquatic species: the freshwater microalga Desmodesmus subspicatus, the cyanobacterium Anabaena flos-aquae, the monocotyledonous macrophyte Lemna minor, and the dicotyledonous macrophyte Myriophyllum spicatum. Both antibiotics, which act by inhibiting the bacterial DNA gyrase, demonstrated high toxicity to A. flos-aquae and L. minor and moderate to slight toxicity to D. subspicatus and M. spicatum. The cyanobacterium was the most sensitive species with median effective concentration (EC50) values of 173 and 10.2 µg/L for enrofloxacin and ciprofloxacin, respectively. Lemna minor proved to be similarly sensitive, with EC50 values of 107 and 62.5 µg/L for enrofloxacin and ciprofloxacin, respectively. While enrofloxacin was more toxic to green algae, ciprofloxacin was more toxic to cyanobacteria. Calculated EC50s for D. subspicatus were 5,568 µg/L and >8,042 µg/L for enrofloxacin and ciprofloxacin, respectively. These data, as well as effect data from the literature, were compared with predicted and reported environmental concentrations. For two of the four species, a risk was identified at ciprofloxacin concentrations found in surface waters, sewage treatment plant influents and effluents, as well as in hospital effluents. For ciprofloxacin the results of the present study indicate a risk even at the predicted environmental concentration. In contrast, for enrofloxacin no risk was identified at predicted and measured concentrations. Copyright © 2011 SETAC.

  19. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth.

    Science.gov (United States)

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  20. Potential synergy between two renal toxicants: DTPA and uranium

    International Nuclear Information System (INIS)

    Muller, D.; Houpert, P.; Henge Napoli, M.H.; Paquet, F.; Muller, D.; Henge Napoli, M.H.; Metivier, H.

    2006-01-01

    At present, the most appropriate therapeutic approach to treat an accidental contamination with plutonium and uranium oxide mixture (MOX) is administration of diethylene-triamine-penta-acetate acid (DTPA) in order to accelerate plutonium excretion. As uranium and DTPA are both nephro-toxic compounds, the administration of DTPA after a contamination containing uranium could enhance the nephro-toxic effects of uranium. The aim of the present work was to study in vitro on a kidney proximal tubule cell line (LLC-PK 1 ) the cytotoxicity induced by increasing concentrations of uranium in presence of 3 different chemical forms of DTPA. The results showed that the DTPA used alone induced no cytotoxicity at the concentration used here (420 μM). However, this concentration of DTPA increased the cytotoxicity induced by uranium. This increase was maximal for uranium concentrations close to the lethal concentration for 50% of the cells and reached 37, 31 and 28% for anhydrous DTPA, Na 3 CaDTPA and Na 3 ZnDTPA, respectively. These results suggest that administration of DTPA could enhance the nephrotoxicity induced by uranium. (authors)

  1. Cobalt toxicity in humans-A review of the potential sources and systemic health effects.

    Science.gov (United States)

    Leyssens, Laura; Vinck, Bart; Van Der Straeten, Catherine; Wuyts, Floris; Maes, Leen

    2017-07-15

    Cobalt (Co) and its compounds are widely distributed in nature and are part of numerous anthropogenic activities. Although cobalt has a biologically necessary role as metal constituent of vitamin B 12 , excessive exposure has been shown to induce various adverse health effects. This review provides an extended overview of the possible Co sources and related intake routes, the detection and quantification methods for Co intake and the interpretation thereof, and the reported health effects. The Co sources were allocated to four exposure settings: occupational, environmental, dietary and medical exposure. Oral intake of Co supplements and internal exposure through metal-on-metal (MoM) hip implants deliver the highest systemic Co concentrations. The systemic health effects are characterized by a complex clinical syndrome, mainly including neurological (e.g. hearing and visual impairment), cardiovascular and endocrine deficits. Recently, a biokinetic model has been proposed to characterize the dose-response relationship and effects of chronic exposure. According to the model, health effects are unlikely to occur at blood Co concentrations under 300μg/l (100μg/l respecting a safety factor of 3) in healthy individuals, hematological and endocrine dysfunctions are the primary health endpoints, and chronic exposure to acceptable doses is not expected to pose considerable health hazards. However, toxic reactions at lower doses have been described in several cases of malfunctioning MoM hip implants, which may be explained by certain underlying pathologies that increase the individual susceptibility for Co-induced systemic toxicity. This may be associated with a decrease in Co bound to serum proteins and an increase in free ionic Co 2+ . As the latter is believed to be the primary toxic form, monitoring of the free fraction of Co 2+ might be advisable for future risk assessment. Furthermore, future research should focus on longitudinal studies in the clinical setting of Mo

  2. The toxic and radiological risk equivalence approach in UF6 transport

    International Nuclear Information System (INIS)

    Ringot, C.; Hamard, J.

    1988-12-01

    After a brief description of the safety in transport of UF 6 , we discuss the equivalence of the radioactive and chemical risks in UF 6 transport regulations. As the concept of low specific activity appears to be ill-suited for a toxic gas, we propose a quantity of material limit designated T 2 (equivalent to A 2 for radioactive substances) for packagings unable to withstand accident conditions (9 m drop, 800 0 C fire environment for 30 minutes). It is proposed that this limit be chosen for the amount of release acceptable after AIEA tests. Different possible scenarios are described, with fire assumed to be the most severe toxic risk situation

  3. A Miniscale Algal Toxicity Test

    DEFF Research Database (Denmark)

    Arensberg, Pia; Hemmingsen, Vicky H.; Nyholm, Niels

    1995-01-01

    A simple miniscale (approx. 1 - 2.5 ml) toxicity test procedure with the freshwater green algaSelenastrum capricornutum is described. The procedure fulfils the validity criteria of the ISO (International Association for Standardization) standard test protocol. Practically identical concentration-...... days to 2 days (minitest as well as larger volume tests) in order to avoid excessive biomass growth. Shortening tests to 2 days appears necessary if light intensity and temperature are near the upper limits of the intervals stated in the ISO standard.......A simple miniscale (approx. 1 - 2.5 ml) toxicity test procedure with the freshwater green algaSelenastrum capricornutum is described. The procedure fulfils the validity criteria of the ISO (International Association for Standardization) standard test protocol. Practically identical concentration......-response curves were obtained with the ISO standard test and the minitest for potassium dichromate and 3,5-dichlorophenol. The minitest is conveniently carried out using 2.5 ml test volume in 20 ml glass scintillation vials, placed on a microplate shaker or on an ordinary shaking table, but smaller containers...

  4. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  5. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Kim Tiam, Sandra; Laviale, Martin; Feurtet-Mazel, Agnès; Jan, Gwilherm; Gonzalez, Patrice; Mazzella, Nicolas; Morin, Soizic

    2015-01-01

    Highlights: • Rapid Light Curves were shown to be early markers of toxicant exposure. • Diuron and norflurazon effects were significant at environmentally realistic concentrations. • Toxic effects in intact biofilms seem to be delayed compared to disrupted biofilms. - Abstract: The use of Rapid light curves (RLCs) as a toxicity endpoint for river biofilms was examined in this study and compared to “classical fluorescence parameters” i.e. minimal fluorescence (F 0 ), optimal and effective quantum yields of photosystem II (F v /F m and Φ PSII ). Measurements were performed after exposure to five concentrations of diuron (from 0.3 to 33.4 μg L −1 ), its main degradation product (DCPMU) (from 1.0 to 1014 μg L −1 ) and norflurazon (from 0.6 to 585 μg L −1 ) with the lowest exposure concentrations corresponding to levels regularly encountered in chronically contaminated sites. Biofilm responses were evaluated after 1, 5, 7 and 14 days of exposure to the different toxicants. Overall, the responses of both “classical fluorescence parameters” and RLC endpoints were highly time dependent and related to the mode of action of the different compounds. Interestingly, parameters calculated from RLCs (α, ETR max and I k ) were useful early markers of pesticide exposure since they revealed significant effects of all the tested toxicants from the first day of exposure. In comparison, classical fluorescence endpoints (F 0 and F v /F m ) measured at day 1 were only affected in the DCPMU treatment. Our results demonstrated the interest of RLCs as early markers of toxicant exposure particularly when working with toxicants with less specific mode of action than PSII inhibitors

  6. Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy

    International Nuclear Information System (INIS)

    Kwon, Man Jae; Boyanov, Maxim I.; Yang, Jung-Seok; Lee, Seunghak; Hwang, Yun Ho; Lee, Ju Yeon; Mishra, Bhoopesh; Kemner, Kenneth M.

    2017-01-01

    Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weathering resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. This study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing. - Graphical abstract: Graphical Abstract. Conceptual model of the apparent physical and geochemical processes controlling surface-subsurface partitioning of Zn in the study area. - Highlights: • Zn-concentrate accumulated in soils transformed to Zn species of various stability. • Zn species at our

  7. Heavy metals toxicity after acute exposure of cultured renal cells. Intracellular accumulation and repartition

    International Nuclear Information System (INIS)

    Khodja, Hicham; Carriere, Marie; Avoscan, Laure; Gouget, Barbara

    2005-01-01

    Lead (Pb), cadmium (Cd) and uranium (U) present no known biological function but are toxic in various concentration ranges. Pb and Cd lead generally to nephrotoxicity consisting in proximal renal tubular dysfunction and accumulation while U has been reported to induce chemical kidney toxicity, functional and histological damages being as well mainly observed in proximal tubule cells. This work address the question of Cd, Pb, and U cytotoxicity, intracellular accumulation and repartition after acute intoxication of renal proximal tubule epithelial cells. After cells exposure to different concentrations of metals for various times, morphological changes were observed and intracellular concentrations and distributions of toxic metals were specified by PIXE coupled to RBS. Cell viability, measured by biochemical tests, was used as toxicity indicator. A direct correlation between cytotoxicity and intracellular accumulation in renal epithelial cells have been established. Finally, intracellular Pb and U localizations were detected while Cd was found to be uniformly distributed in renal cells. (author)

  8. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    Directory of Open Access Journals (Sweden)

    Nicolas Defarge

    2016-02-01

    Full Text Available Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH, the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations, and not the declared active ingredient glyphosate (G alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone.

  9. Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available The adverse effects of microcystin (MC produced by cyanobacteria have drawn considerable attention from the public. Yet it remains unclear whether MC confers any benefits to the cyanobacteria themselves. One suggested function of MC is complexation, which may influence the bioaccumulation and toxicity of trace metals. To test this hypothesis, we examined Cd toxicity to wild-type Microcystis aeruginosa PCC 7806 (WT and its MC-lacking mutant (MT under nutrient-enriched (+NP, phosphorus-limited (-P, and nitrogen-limited (-N conditions. The accumulation of Cd and the biochemical parameters associated with its detoxification [total phosphorus (TP, inorganic polyphosphate (Poly-P, and glutathione (GSH in the cells as well as intra- and extra-cellular carbohydrates] were quantified. Although the -P cyanobacteria accumulated less Cd than their +NP and -N counterparts, the different nutrient-conditioned cyanobacteria were similarly inhibited by similar free ion concentration of Cd in the medium ([Cd2+]F. Such good toxicity predictability of [Cd2+]F was ascribed to the synchronous decrease in the intracellular concentrations of Cd and TP. Nevertheless, Cd toxicity was still determined by the intracellular Cd to phosphorus ratio (Cd/P, in accordance with what has been reported in the literature. On the other hand, the concentrations of TP, Poly-P, and carbohydrates went up, but GSH concentration dropped down with the enhancement of [Cd2+]F, indicating their association with Cd detoxification. Although the inactivation of MC peptide synthetase gene had some nutrient and Cd concentration dependent effects on the parameters above, both cyanobacterial strains showed the same Cd accumulation ability and displayed similar Cd sensitivity. These results suggest that MC cannot affect metal toxicity either by regulating metal accumulation or by altering the detoxification ability of the cyanobacteria. Other possible functions of MC need to be further investigated.

  10. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances.

    Science.gov (United States)

    Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi

    2016-09-01

    Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    Science.gov (United States)

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  12. Persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil.

    Science.gov (United States)

    Mumbo, John; Henkelmann, Bernhard; Abdelaziz, Ahmed; Pfister, Gerd; Nguyen, Nghia; Schroll, Reiner; Munch, Jean Charles; Schramm, Karl-Werner

    2015-01-01

    Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying-rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to -15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure-activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.

  13. Toxicity of aluminium in natural waters controlled by type rather than quantity of natural organic matter

    International Nuclear Information System (INIS)

    Papathanasiou, Grigorios; White, Keith N.; Walton, Rachel; Boult, Stephen

    2011-01-01

    Extension of the conditions under which Al toxicity is tested is required. Environmentally representative preparation of waters is used in investigating roles of alginate (AA) and humic acids (HA) in partitioning of Al (0.5 mg L -1 ), subsequent uptake and accumulation by and toxicity to Lymnaea stagnalis. HA and AA did not alter precipitation of Al(OH) 3 , but altered subsequent behaviour of Al. High (40 mg L -1 ) HA concentrations, and to a lesser extent AA, prevented settling and availability for benthic grazing but made deposited Al more likely to be ingested. HA detoxified but AA increased toxicity relative to Al alone. Low concentration (4 mg L -1 ) AA and HA do not change partitioning but increase uptake; they both detoxify, but AA less than HA. The study shows OC:Al ratio is critical in predicting Al behaviour in natural waters, also uptake is mediated by snail behaviour, not solely a function of concentration and form of Al. Therefore, predicting Al behaviour will be subject to errors in determining relevant water composition and response of biota to the new speciation. However, with respect to toxicity, rather than other aspects of Al behaviour, different ratios of HA and Al are insignificant compared to whether AA is present rather than HA. - Highlights: → Toxicity assessment in which environmental relevance is of primary concern. → Mass balance of Al monitored throughout the exposure period. → Al behaviour influenced by concentration of organic matter. → Strong dependence of toxicity on type rather than concentration of organic matter. → Toxicity is a function of Al behaviour but also animal behaviour.

  14. The toxicity of particles from combustion processes

    International Nuclear Information System (INIS)

    Henderson, R.F.; Mauderly, J.L.

    1991-01-01

    The pulmonary toxicity of inhaled particles will depend on their size, solubility and inherent toxicity. Many combustion-derived particles, such as soot and fly ash, are of a respirable size and, being poorly soluble, are retained for prolonged periods in the lung. The acute toxicity of fly ash from coal combustion was compared to that of a known toxic particle, alpha-quartz, by exposures of rats to 35 mg/m 3 of each type of particle for 7 hr/day, 5 days/wk for 4 wk. The acute pulmonary toxicity was measured by analysis of bronchoalveolar lavage fluid. One year after the exposures, fibrosis with granulomas was observed in the quartz-exposed rats, while little or no fibrosis developed in the fly-ash-exposed rats. The toxicity of soot from diesel exhaust was determined by chronic (30 mo) exposures of rats, 7 hr/day, 5 days/wk to exhaust containing 0.35, 3.5 or 7.0 mg/m 3 soot. The two higher exposures caused persistent pulmonary inflammation, fibrosis and neoplasmas. Rats exposed to the lowest concentration demonstrated no toxic responses and there was no life shortening caused by any exposure. Ongoing comparative studies indicate that pure carbon black particles cause responses similar to those caused by diesel exhaust, indicating that much of the toxicity induced by the diesel soot results from the presence of the large lung burdens of carbonaceous particles

  15. [The toxicity variation of organic extracts in drinking water treatment processes].

    Science.gov (United States)

    Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z

    2001-01-01

    Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.

  16. 6 CFR 27.204 - Minimum concentration by security issue.

    Science.gov (United States)

    2010-01-01

    ... Section 27.204 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.204 Minimum concentration by security issue. (a) Release Chemicals—(1) Release-Toxic Chemicals. If a release-toxic chemical of interest...

  17. Hip implants - Paper VI - Ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Sargeant, A. [Department of Biological Sciences, Ohio Northern University, Ada, OH 45810 (United States); Goswami, T. [Department of Mechanical Engineering, Ohio Northern University, Ada, OH 45810 (United States)]. E-mail: t-goswami@onu.edu

    2007-07-01

    Total hip-joint arthroplasty is performed in increasing numbers where it translates to about 0.16-0.2% of population per year in industrial countries. In most cases, an implant is a metallic component articulating with a metal, ceramic or poly-ethylene liner as seen in the case of hip, knee and spine. The metal implants release ions in vivo. Therefore, there is a need to study metallic implants and ions released as a result. Toxic concentrations of ions can lead to many adverse physiological effects, including cytotoxicity, genotoxicity, carcinogenicity, and metal sensitivity. There is a need to map ion concentrations establishing boundaries between normal and toxic levels; which however, does not exist. Reference levels of ion concentrations in body fluids and tissues determined by many studies are compiled, reviewed, and presented in this paper. The concentrations of ions released from different alloys, including cobalt, chromium, nickel, molybdenum titanium, aluminum, and vanadium, are presented in this paper. This paper reviews the literature pertaining to clinical data on metal ion concentrations in patients with metal joint prostheses, and laboratory data on the physiological effects of the metals.

  18. Toxicity of high salinity tannery wastewater and effects on constructed wetland plants

    DEFF Research Database (Denmark)

    Calheirosa, C.S.C.; Silva, G.; Quitério, P.V.B.

    2012-01-01

    The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted ...

  19. Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides.

    Science.gov (United States)

    Weston, Donald P; Ding, Yuping; Zhang, Minghua; Lydy, Michael J

    2013-01-01

    Few currently used agricultural pesticides are routinely monitored for in the environment. Even if concentrations are known, sediment LC(50) values are often lacking for common sediment toxicity testing species. To help fill this data gap, sediments in California's Central Valley were tested for nine hydrophobic pesticides seldom analyzed: abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin. Most were detected, but rarely at concentrations acutely toxic to Hyalella azteca or Chironomus dilutus. Only abamectin, fenpropathrin, and methyl parathion were found at concentrations of potential concern, and only in one or two samples. One-quarter of over 100 samples from agriculture-affected waterways exhibited toxicity, and in three-fourths of the toxic samples, pyrethroids exceeded concentrations expected to cause toxicity. The pyrethroid Bi-fen-thrin in particular, as well as lambda-cyhalothrin, cypermethrin, esfenvalerate, permethrin, and the organophosphate chlorpyrifos, were primarily responsible for the observed toxicity, rather than the more novel analytes, despite the fact that much of the sampling targeted areas of greatest use of the novel pesticides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Influence of in-stream diel concentration cycles of dissolved trace metals on acute toxicity to one-year-old cutthroat trout (Oncorhynchus clarki lewisi)

    Science.gov (United States)

    Nimick, D.A.; Harper, D.D.; Farag, A.M.; Cleasby, T.E.; MacConnell, Elizabeth; Skaar, D.

    2007-01-01

    Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-nai??ve westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-??m filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214-634 ??g/L; mean, 428 ??g/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 ??g/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266-522 ??g/L; mean, 399 ??g/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 ??g/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologie conditions tested. ?? 2007 SETAC.

  1. Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Rice, Julie R; Boyd, Windy A; Chandra, Dave; Smith, Marjolein V; Den Besten, Pamela K; Freedman, Jonathan H

    2014-01-01

    Fluorides are commonly added to drinking water in the United States to decrease the incidence of dental caries. Silicofluorides, such as sodium hexafluorosilicate (Na2 SiF6 ) and fluorosilicic acid (H2 SiF6 ), are mainly used for fluoridation, although fluoride salts such as sodium fluoride (NaF) are also used. Interestingly, only the toxicity of NaF has been examined and not that of the more often used silicofluorides. In the present study, the toxicities of NaF, Na2 SiF6 , and H2 SiF6 were compared. The toxicity of these fluorides on the growth, feeding, and reproduction in the alternative toxicological testing organism Caenorhabditis elegans was examined. Exposure to these compounds produced classic concentration-response toxicity profiles. Although the effects of the fluoride compounds varied among the 3 biological endpoints, no differences were found between the 3 compounds, relative to the fluoride ion concentration, in any of the assays. This suggests that silicofluorides have similar toxicity to NaF. © 2013 SETAC.

  2. Improving toxicity assessment of pesticide mixtures: the use of polar passive sampling devices extracts in microalgae toxicity tests

    Directory of Open Access Journals (Sweden)

    Sandra KIM TIAM

    2016-09-01

    Full Text Available Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively aimed i at characterizing the toxic potential of waters using dose-response curves, and ii at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed.

  3. Acute toxicity of fire control chemicals to Daphnia magna(Straus) and Selenastrum capricornutum(Printz)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1996-01-01

    Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.

  4. Ecological significance of hazardous concentrations in a planktonic food web

    OpenAIRE

    De Laender, F.; Soetaert, K.; De Schamphelaere, K.A.C.; Middelburg, J.J.; Janssen, C.R.

    2010-01-01

    Species sensitivity distributions (SSDs) are statistical distributions that are used to estimate the potentially affected fraction (PAF) of species at a given toxicant concentration, the hazardous concentration for that fraction of species (HCPAF). Here, we use an aquatic food web model that includes 14 phytoplankton and 6 zooplankton species to estimate the number of species experiencing a biomass reduction when the food web is exposed to the HCPAF and this for 1000 hypothetical toxicants an...

  5. Copper bioavailability and toxicity to Mytilus galloprovincialis in Shelter Island Yacht Basin, San Diego, CA.

    Science.gov (United States)

    Bosse, Casey; Rosen, Gunther; Colvin, Marienne; Earley, Patrick; Santore, Robert; Rivera-Duarte, Ignacio

    2014-08-15

    The bioavailability and toxicity of copper (Cu) in Shelter Island Yacht Basin (SIYB), San Diego, CA, USA, was assessed with simultaneous toxicological, chemical, and modeling approaches. Toxicological measurements included laboratory toxicity testing with Mytilus galloprovincialis (Mediterranean mussel) embryos added to both site water (ambient) and site water spiked with multiple Cu concentrations. Chemical assessment of ambient samples included total and dissolved Cu concentrations, and Cu complexation capacity measurements. Modeling was based on chemical speciation and predictions of bioavailability and toxicity using a marine Biotic Ligand Model (BLM). Cumulatively, these methods assessed the natural buffering capacity of Cu in SIYB during singular wet and dry season sampling events. Overall, the three approaches suggested negligible bioavailability, and isolated observed or predicted toxicity, despite an observed gradient of increasing Cu concentration, both horizontally and vertically within the water body, exceeding current water quality criteria for saltwater. Published by Elsevier Ltd.

  6. Toxicity of Diclofenac in the Fern Azolla filiculoides and the Lichen Xanthoria parietina.

    Science.gov (United States)

    Vannini, Andrea; Paoli, Luca; Vichi, Marco; Bačkor, Martin; Bačkorová, Miriam; Loppi, Stefano

    2018-03-01

    This study investigated the occurrence of toxicity, expressed as damage to the photosynthetic apparatus, in the aquatic fern Azolla filiculoides and the lichen Xanthoria parietina following treatments with diclofenac at different concentrations (0.1, 1, 10 and 100 mg/L) and different exposure times (24, 48, 72 and 240 h). Measurements of photosynthetic efficiency, chlorophyll content and chlorophyll degradation indicated dose- and time-dependent toxicity, since significant differences with control samples as well as among treatments, emerged mainly for the highest concentration (100 mg/L) and the longest time (240 h). In addition, also the mycobiont of the lichen X. parietina showed similar toxic effects, expressed as ergosterol content. The absence of relevant alterations at the lowest concentration (0.1 mg/L) suggested a very limited susceptibility of these species to environmentally relevant levels of this pharmaceutical.

  7. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments.

    Science.gov (United States)

    Zimmermann, Sonja; Wolff, Carolina; Sures, Bernd

    2017-05-01

    Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC 50 and LC 50 , respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC 50 (48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The influence of particles on bioavailability and toxicity of pesticides in surface water.

    Science.gov (United States)

    Knauer, Katja; Homazava, Nadzeya; Junghans, Marion; Werner, Inge

    2017-07-01

    Environmental risk assessment is an essential part of the approval process for pesticides. Exposure concentrations are compared with ecotoxicological data obtained from standardized laboratory studies and, if available, from field studies to determine the risk of a substance or formulation for aquatic communities. Predicted concentrations in surface waters are derived using, for example, the European FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS) or the German Exposit models, which distinguish between exposure to dissolved and particle-associated pesticide concentrations, because the dissolved concentration is thought to be the best predictor of bioavailability and toxicity. Water and particle-associated concentrations are estimated based on the organic carbon-water partitioning coefficient (K OC ). This review summarizes published information on the influence of natural suspended solids on bioavailability and toxicity of pesticides to aquatic organisms (algae, invertebrates and fish), and the value of log K OC and log K OW (octanol-water coefficient) as sole predictors of the bioavailable fraction is discussed. The information showed that: 1) the quality and origin of suspended solids played an important role in influencing pesticide bioavailability and toxicity; 2) a decrease in toxicity due to the presence of suspended solids was shown only for pyrethroid insecticides with log K OW greater than 5, but the extent of this reduction depended on particle concentration and size, and potentially also on the ecotoxicological endpoint; 3) for pesticides with a log K OW less than 3 (e.g., triazines, carbamates, and organophosphates), the impact of particles on bioavailability and toxicity is small and species dependent; and 4) pesticide bioavailability is greatly influenced by the test species and their physiology (e.g., feeding behavior or digestion). We conclude that exposure of aquatic organisms to pesticides and environmental risk of many

  9. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)

    Science.gov (United States)

    Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.

    2011-12-01

    The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological

  10. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)

    International Nuclear Information System (INIS)

    Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.

    2011-01-01

    The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological

  11. Predicting molybdenum toxicity to higher plants: Influence of soil properties

    International Nuclear Information System (INIS)

    McGrath, S.P.; Mico, C.; Curdy, R.; Zhao, F.J.

    2010-01-01

    The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED 50 ) of Mo in different soils, explaining > 65% of the variance in ED 50 for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations. - Amorphous iron oxides or organic carbon were found to be the best predictors of the toxicity threshold values of Mo to higher plants on different soils.

  12. Bioluminescent bioreporter pad biosensor for monitoring water toxicity.

    Science.gov (United States)

    Axelrod, Tim; Eltzov, Evgeni; Marks, Robert S

    2016-01-01

    Toxicants in water sources are of concern. We developed a tool that is affordable and easy-to-use for monitoring toxicity in water. It is a biosensor composed of disposable bioreporter pads (calcium alginate matrix with immobilized bacteria) and a non-disposable CMOS photodetector. Various parameters to enhance the sensor's signal have been tested, including the effect of alginate and bacterium concentrations. The effect of various toxicants, as well as, environmental samples were tested by evaluating their effect on bacterial luminescence. This is the first step in the creation of a sensitive and simple operative tool that may be used in different environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Acute Inhalation Toxicity and Blood Absorption of 2,4-Dinitroanisole (DNAN) in Rats

    Science.gov (United States)

    2015-03-17

    light/dark cycle. A certified pesticide -free rodent chow (Harlan Teklad ® , 8728C Certified Rodent Diet) and drinking quality water were available ad...respiration, toxicity, blood, concentration, alternative, welfare, method, model, in vitro, pain, distress, simulate, video , computer, replacement, refinement...Prevention, Pesticides , and Toxic Substances. December 2002. Health Effects Test Guidelines: OPPTS 870.1000, Acute Toxicity Testing - Background. EPA

  14. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim Tiam, Sandra, E-mail: sandra.kimtiam@gmail.com [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France); Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Laviale, Martin [Departamento de Biologia and CESAM – Centro de Estudos do Ambiente e do Mar Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-Sur-Mer (France); CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-Sur-Mer France (France); Feurtet-Mazel, Agnès [Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Jan, Gwilherm [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France); Gonzalez, Patrice [Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Mazzella, Nicolas; Morin, Soizic [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France)

    2015-08-15

    Highlights: • Rapid Light Curves were shown to be early markers of toxicant exposure. • Diuron and norflurazon effects were significant at environmentally realistic concentrations. • Toxic effects in intact biofilms seem to be delayed compared to disrupted biofilms. - Abstract: The use of Rapid light curves (RLCs) as a toxicity endpoint for river biofilms was examined in this study and compared to “classical fluorescence parameters” i.e. minimal fluorescence (F{sub 0}), optimal and effective quantum yields of photosystem II (F{sub v}/F{sub m} and Φ{sub PSII}). Measurements were performed after exposure to five concentrations of diuron (from 0.3 to 33.4 μg L{sup −1}), its main degradation product (DCPMU) (from 1.0 to 1014 μg L{sup −1}) and norflurazon (from 0.6 to 585 μg L{sup −1}) with the lowest exposure concentrations corresponding to levels regularly encountered in chronically contaminated sites. Biofilm responses were evaluated after 1, 5, 7 and 14 days of exposure to the different toxicants. Overall, the responses of both “classical fluorescence parameters” and RLC endpoints were highly time dependent and related to the mode of action of the different compounds. Interestingly, parameters calculated from RLCs (α, ETR{sub max} and I{sub k}) were useful early markers of pesticide exposure since they revealed significant effects of all the tested toxicants from the first day of exposure. In comparison, classical fluorescence endpoints (F{sub 0} and F{sub v}/F{sub m}) measured at day 1 were only affected in the DCPMU treatment. Our results demonstrated the interest of RLCs as early markers of toxicant exposure particularly when working with toxicants with less specific mode of action than PSII inhibitors.

  15. Comparative toxicity of two azadirachtin-based neem pesticides to Daphnia pulex.

    Science.gov (United States)

    Goktepe, Ipek; Plhak, Leslie C

    2002-01-01

    Azadirachtin (AZA)-based pesticides (Neemix and Bioneem) demonstrated toxicity in 48-h nonrenewal toxicity assays using Daphnia pulex at levels that were comparable with several organophosphate pesticides. The median lethal concentration (LC50) values for the two neem pesticides were found to be 0.028 and 0.033 microl/ml, respectively. The LC50 value for nonformulated (95% pure) AZA was determined to be 0.382 microg AZA/ml. Neemix and Bioneem were exposed to air and northern sky daylight in a light box at 24 and 37 degrees C for 1, 3, 6, and 9 d. Standard 48-h acute toxicity tests were used to determine the effect of aging in these dry environmental conditions. Neemix and Bioneem were also fractionated into volatile and nonvolatile fractions, and the toxicity of each was tested. Compared with Neemix, Bioneem remained toxic longer when exposed to light and air at 37 degrees C, indicating that this pesticide may be less prone to environmental degradation. When fractionated, the nonvolatile fractions for both pesticides exhibited significantly lower LC50 values than the full formulations. These results suggest that, depending on the application rate and environmental fate, AZA-based pesticides may have direct adverse effects on aquatic organisms and that the toxicity and stability of formulated pesticides depend on factors other than only the AZA concentration.

  16. Determination of toxic trace elements in body fluid reference samples

    International Nuclear Information System (INIS)

    Gills, T.E.; McClendon, L.T.; Maienthal, E.J.; Becker, D.A.; Durst, R.A.; LaFleur, P.D.

    1974-01-01

    The measurement of elemental concentration in body fluids has been widely used to give indication of exposures to certain toxic materials and/or a measure of body burden. To understand fully the toxicological effect of these trace elements on our physiological system, meaningful analytical data are required along with accurate standards or reference samples. The National Bureau of Standards has prepared for the National Institute for Occupational Safety and Health (NIOSH) a number of reference samples containing selected toxic trace elements in body fluids. The reference samples produced include mercury in urine at three concentration levels, five elements (Se, Cu, As, Ni and Cr) in freeze-dried urine at two levels, fluorine in freeze-dried urine at two levels and lead in blood at two concentration levels. These reference samples have been found to be extremely useful for the evaluation of field and laboratory analytical methods for the analysis of toxic trace elements. In particular the use of at least two calibration points (i.e., ''normal'' and ''elevated'' levels) for a given matrix provides a more positive calibration for most analytical techniques over the range of interest for occupational toxicological levels of exposure. (U.S.)

  17. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    Turcotte, D.; Kautzman, M.; Wojnarowicz, P.; Cutter, J.; Bird, E.; Liber, K.

    2010-01-01

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  18. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    Science.gov (United States)

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  19. Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...

    Science.gov (United States)

    Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op

  20. Bridging the Gap between Social Acceptance and Ethical Acceptability.

    Science.gov (United States)

    Taebi, Behnam

    2017-10-01

    New technology brings great benefits, but it can also create new and significant risks. When evaluating those risks in policymaking, there is a tendency to focus on social acceptance. By solely focusing on social acceptance, we could, however, overlook important ethical aspects of technological risk, particularly when we evaluate technologies with transnational and intergenerational risks. I argue that good governance of risky technology requires analyzing both social acceptance and ethical acceptability. Conceptually, these two notions are mostly complementary. Social acceptance studies are not capable of sufficiently capturing all the morally relevant features of risky technologies; ethical analyses do not typically include stakeholders' opinions, and they therefore lack the relevant empirical input for a thorough ethical evaluation. Only when carried out in conjunction are these two types of analysis relevant to national and international governance of risky technology. I discuss the Rawlsian wide reflective equilibrium as a method for marrying social acceptance and ethical acceptability. Although the rationale of my argument is broadly applicable, I will examine the case of multinational nuclear waste repositories in particular. This example will show how ethical issues may be overlooked if we focus only on social acceptance, and will provide a test case for demonstrating how the wide reflective equilibrium can help to bridge the proverbial acceptance-acceptability gap. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  1. Identification of manganese as a toxicant in a groundwater treatment system: Addressing naturally occurring toxicants

    International Nuclear Information System (INIS)

    Goodfellow, W. Jr.; Sohn, V.; Richey, M.; Yost, J.

    1995-01-01

    Effluent from a groundwater remediation system at a bulk oil storage and distribution terminal has been chronically toxic to Ceriodaphnia dubia. The remediation system was designed in response to a hydrocarbon plume in the area of the terminal. The remediation system consists of a series of groundwater recovery wells and groundwater intercept trench systems with groundwater treatment and phased-separated hydrocarbon recovery systems. The groundwater treatment and petroleum recovery systems consist of oil/water separators, product recovery tanks, air strippers, filters, and carbon adsorption units. The characteristics of this effluent are low total suspended solids, total dissolved solids, and hardness concentrations as well as meeting stringent NPDES permit requirements for lead, copper, zinc, mercury, total petroleum hydrocarbons, and BTEX. Additional priority pollutant evaluations revealed no compounds of concern. Performance of a Toxicity identification Evaluation (TIE) indicated that manganese was the principle toxicant in the effluent. Manganese is a naturally occurring constituent in this groundwater source and is not added to the treatment system. This paper will present the results of the TIE with a discussion of treatability/control options for manganese control at this facility. Recommendations for addressing naturally occurring toxicants that are not a result of the facility's operations will also be presented

  2. Determination of pesticides and toxic potency of rainwater samples in western Greece.

    Science.gov (United States)

    Rouvalis, Angela; Karadima, Constantina; Zioris, Ioannis V; Sakkas, Vasilios A; Albanis, Triantafyllos; Iliopoulou-Georgudaki, Joan

    2009-03-01

    Rainwater samples from four municipalities located in Achaia Prefecture, Greece, were collected from March to September 2006. The toxic potency of pollutants present in 36 rainwater samples was tested using Daphnia pulex. The pesticide determination was conducted with GC-MS. Only phosphamidon was detected, which appeared in 52% and 13% of the rural and urban areas, respectively. The toxicity of rainwater was determined in 52% and 46.7% of the rural and urban area samples, respectively. Chemical analyses showed that in rural areas, the PO(4)(3-) ions had higher concentrations than in urban areas. On the other hand, the SO(4)(2-), NO(-)(3), and NO(-)(2) anions are more highly concentrated in urban areas. Correlation analysis proved that the toxicity of the rainwater samples is moderate, affected by the presence of the insecticide only in the rural areas. The results indicated that toxicity can be directly assessed via bioassays, even when unknown pollutants are present.

  3. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Abstract. Toxic effects of two heavy metals, cadmium (Cd) and copper (Cu), and a fungicide, .... mining 50% morbid concentrations (MC50) and 50% inhibition .... WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper.

  4. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish

    Directory of Open Access Journals (Sweden)

    Leah C. Wehmas

    2015-01-01

    Full Text Available Engineered metal oxide nanoparticles (MO NPs are finding increasing utility in the medical field as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO, titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to associate NP characteristics such as size and charge with toxicity. However, data from our agglomerated MO NPs suggests that the elemental composition and dissolution potential are major drivers of toxicity. Only ZnO caused significant adverse effects of all MO particles tested, and only when prepared in pure water (point estimate median lethal concentration = 3.5–9.1 mg/L. This toxicity was life stage dependent. The 24 h toxicity increased greatly (∼22.7 fold when zebrafish exposures started at the larval life stage compared to the 24 h toxicity following embryonic exposure. Investigation into whether dissolution could account for ZnO toxicity revealed high levels of zinc ion (40–89% of total sample were generated. Exposure to zinc ion equivalents revealed dissolved Zn2+ may be a major contributor to ZnO toxicity.

  5. Oilseed rape genotypes response to boron toxicity

    Directory of Open Access Journals (Sweden)

    Savić Jasna

    2013-01-01

    Full Text Available Response of 16 oilseed rape genotypes to B (boron toxicity was analyzed by comparing the results of two experiments conducted in a glasshouse. In Experiment 1 plants were grown in standard nutrient solutions with 10 µMB (control and 1000 µM B. Relative root and shoot growth varied from 20-120% and 31-117%, respectively. Variation in B concentration in shoots was also wide (206.5-441.7 µg B g-1 DW as well as total B uptake by plant (62.3-281.2 µg B g1. Four selected genotypes were grown in Experiment 2 in pots filled with high B soil (8 kg ha-1 B; B8. Shoot growth was not affected by B8 treatment, while root and shoot B concentration was significantly increased compared to control. Genotypes Panther and Pronto which performed low relative root and shoot growth and high B accumulation in plants in Experiment 1, had good growth in B8 treatment. In Experiment 2 genotype NS-L-7 had significantly lower B concentration in shots under treatment B8, but also very high B accumulation in Experiment 1. In addition, cluster analyses classified genotypes in three groups according to traits contrasting in their significance for analyzing response to B toxicity. The first group included four varieties based on their shared characteristics that have small value for the relative growth of roots and shoots and large values of B concentration in shoot. In the second largest group were connected ten genotypes that are heterogeneous in traits and do not stand out on any characteristic. Genotypes NS-L-7 and Navajo were separated in the third group because they had big relative growth of root and shoot, but also a high concentration of B in the shoot, and high total B uptake. Results showed that none of tested genotypes could not be recommended for breeding process to tolerance for B toxicity. [Projekat Ministarstva nauke Republike Srbije, br. OI 173028

  6. [Toxicity and influencing factors of liquid chlorine on chironomid larvae].

    Science.gov (United States)

    Sun, Xing-Bin; Cui, Fu-Yi; Zhang, Jin-Song; Guo, Zhao-Hai; Xu, Feng; Liu, Li-Jun

    2005-09-01

    The excessive propagation of Chironomid larvae (red worm) in the sedimentation tanks is a difficult problem for the normal function of waterworks. The toxic effect of liquid chlorine on the different instar larvae of Chironomid was studied using distilled water as test sample. Furthermore, the effect of pH value, organic matter content, ammonia nitrogen, and algae content on toxicity of liquid chlorine was observed. The results show that the tolerance of Chironomid larvae to liquid chlorine is strengthened with the increase in instar. The 24h semi-lethal concentration (LC50) of liquid chlorine to the 4th instar larvae of Chironomid is 3.39 mg/L. Low pH value and high algae content are helpful to improve the toxic effect of liquid chlorine to Chironomid larvae. In neutral water body, the increase in organic matter content results in the decrease in the death rate of Chironomid larvae. The toxicity of liquid chlorine differs greatly in different concentrations of ammonia nitrogen. The death rate of the 4th instar larvae of Chironomid in raw water is higher by contrast with that in sedimentation tanks water for 24h disposal with various amount of liquid chlorine.

  7. Developmental toxicity of low generation PAMAM dendrimers in zebrafish

    International Nuclear Information System (INIS)

    King Heiden, Tisha C.; Dengler, Emelyne; Kao, Weiyuan John; Heideman, Warren; Peterson, Richard E.

    2007-01-01

    Biological molecules and intracellular structures operate at the nanoscale; therefore, development of nanomedicines shows great promise for the treatment of disease by using targeted drug delivery and gene therapies. PAMAM dendrimers, which are highly branched polymers with low polydispersity and high functionality, provide an ideal architecture for construction of effective drug carriers, gene transfer devices and imaging of biological systems. For example, dendrimers bioconjugated with selective ligands such as Arg-Gly-Asp (RGD) would theoretically target cells that contain integrin receptors and show potential for use as drug delivery devices. While RGD-conjugated dendrimers are generally considered not to be cytotoxic, there currently exists little information on the risks that such materials pose to human health. In an effort to compliment and extend the knowledge gleaned from cell culture assays, we have used the zebrafish embryo as a rapid, medium throughput, cost-effective whole-animal model to provide a more comprehensive and predictive developmental toxicity screen for nanomaterials such as PAMAM dendrimers. Using the zebrafish embryo, we have assessed the developmental toxicity of low generation (G3.5 and G4) PAMAM dendrimers, as well as RGD-conjugated forms for comparison. Our results demonstrate that G4 dendrimers, which have amino functional groups, are toxic and attenuate growth and development of zebrafish embryos at sublethal concentrations; however, G3.5 dendrimers, with carboxylic acid terminal functional groups, are not toxic to zebrafish embryos. Furthermore, RGD-conjugated G4 dendrimers are less potent in causing embryo toxicity than G4 dendrimers. RGD-conjugated G3.5 dendrimers do not elicit toxicity at the highest concentrations tested and warrant further study for use as a drug delivery device

  8. Acute toxicity assessment of camphor in biopesticides by using and

    Directory of Open Access Journals (Sweden)

    Eun-Chae Yim

    2014-09-01

    Full Text Available Objectives An ecofriendly alternative to chemical pesticides is bio-pesticides, which are derived from natural sources. The interest in bio-pesticides is based on the disadvantages associated with chemical pesticides. Methods We conducted acute toxicity assessments of camphor, a major component of bio-pesticides, by using Daphnia magna (D. magna as well as assessed the morphological abnormalities that occurred in Danio rerio (D. rerio embryos. Results The median effective concentration of camphor on D. magna after 48 hours was 395.0 μM, and the median lethal concentration on D. rerio embryos after 96 hours was 838.6 μM. The no observed effect concentration and predicted no effect concentration of camphor on D. magna, which was more sensitive than D. rerio, were calculated as 55.2 μM and 3.95 μM, respectively. Morphological abnormalities in D. rerio embryos exposed to camphor increased over time. Coagulation, delayed hatching, yolk sac edema, pericardial edema, and pigmentation of embryos mainly appeared between 24 and 48 hours. Further, symptoms of scoliosis and head edema occurred after 72 hours. In addition, bent tails, ocular defects and collapsed symptoms of fertilized embryonic tissue were observed after 96 hours. Conclusions The camphor toxicity results suggest that continuous observations on the ecosystem are necessary to monitor toxicity in areas where biological pesticides containing camphor are sprayed.

  9. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates

    Directory of Open Access Journals (Sweden)

    Mahdi Farzadkia

    2014-01-01

    Full Text Available A new strategy in catalytic ozonation removal method for degradation and detoxification of phenol from industrial wastewater was investigated. Magnetic carbon nanocomposite, as a novel catalyst, was synthesized and then used in the catalytic ozonation process (COP and the effects of operational conditions such as initial pH, reaction time, and initial concentration of phenol on the degradation efficiency and the toxicity assay have been investigated. The results showed that the highest catalytic potential was achieved at optimal neutral pH and the removal efficiency of phenol and COD is 98.5% and 69.8%, respectively. First-order modeling demonstrated that the reactions were dependent on the initial concentration of phenol, with kinetic constants varying from 0.038 min−1  ([phenol]o = 1500 mg/L to 1.273 min−1 ([phenol]o = 50 mg/L. Bioassay analysis showed that phenol was highly toxic to Daphnia magna (LC50 96 h=5.6 mg/L. Comparison of toxicity units (TU of row wastewater (36.01 and the treated effluent showed that TU value, after slightly increasing in the first steps of ozonation for construction of more toxic intermediates, severely reduced at the end of reaction (2.23. Thus, COP was able to effectively remove the toxicity of intermediates which were formed during the chemical oxidation of phenolic wastewaters.

  10. Leachate From Expanded Polystyrene Cups Is Toxic to Aquatic Invertebrates (Ceriodaphnia dubia

    Directory of Open Access Journals (Sweden)

    Clara Thaysen

    2018-02-01

    Full Text Available Expanded polystyrene (EPS products and their associated chemicals (e.g., styrenes are widespread in the marine environment. As a consequence, bans on their use for single-use packaging materials are being proposed in several municipalities. To better understand how science can inform decision-making, we looked at the available scientific literature about contamination and effects and conducted experiments to measure chemical leachate from polystyrene products and toxicity from the leachate. We conducted leaching experiments with common food matrices (water, soup broth, gravy, black coffee and coffee with cream and sugar at relevant temperatures (70 and 95°C that are consumed in or with several polystyrene products (coffee cup lids, polystyrene stir sticks, polystyrene spoons, EPS cups, EPS bowls, and EPS takeout containers. We analyzed each sample for styrene, ethylbenzene, toluene, benzene, meta- and para- xylene, isopropylbenzene, and isopropyltoluene—chemicals associated with polystyrene products. To determine whether the leachates are toxic, we conducted chronic toxicity tests, measuring survival and reproductive output in Ceriodaphnia dubia. Toxicity tests included nine treatments: seven concentrations of ethylbenzene, EPS cup leachate and a negative control. Overall, we found that temperature has a significant effect on leaching. We only detected leachates in trials conducted at higher temperature −95°C. Ethylbenzene was the only target analyte with final concentrations above the method limit of detection, and was present in the greatest concentrations in EPS and with soup broth. Measurable concentrations of ethylbenzene in the leachate ranged from 1.3 to 3.4 μg/L. In toxicity tests, the calculated LC50 for ethylbenzene was 14 mg/L and the calculated LC20 was 210 μg/L. For the treatment exposed to the EPS cup leachate, mortality was 40%—four times greater than the negative control. Finally, there was no significant difference (p

  11. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii

    International Nuclear Information System (INIS)

    Sparling, D.W.; Fellers, G.

    2007-01-01

    Organophosphorus pesticides (OPs) are ubiquitous in the environment and are highly toxic to amphibians. They deactivate cholinesterase, resulting in neurological dysfunction. Most chemicals in this group require oxidative desulfuration to achieve their greatest cholinesterase-inhibiting potencies. Oxon derivatives are formed within liver cells but also by bacterial decay of parental pesticides. This study examines the toxicity of chlorpyrifos, malathion and diazinon and their oxons on the foothill yellow-legged frog (Rana boylii). R. boylii is exposed to agricultural pesticides in the California Central Valley. Median lethal concentrations of the parental forms during a 96 h exposure were 3.00 mg/L (24 h) for chlorpyrifos, 2.14 mg/L for malathion and 7.49 mg/L for diazinon. Corresponding oxons were 10 to 100 times more toxic than their parental forms. We conclude that environmental concentrations of these pesticides can be harmful to R. boylii populations. - Laboratory tests on the toxicity of OP insecticides and their oxons suggest that they may be acutely lethal to amphibians at ecologically relevant concentrations

  12. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii

    Energy Technology Data Exchange (ETDEWEB)

    Sparling, D.W. [Cooperative Wildlife Research Laboratory, Department of Zoology and Center for Ecology, Southern Illinois University, LS II, MS6504, Carbondale, IL 62901 (United States)]. E-mail: dsparl@siu.edu; Fellers, G. [Western Ecology Research Center, U.S. Geological Survey, Point Reyes National Seashore, Point Reyes, CA 94956 (United States)

    2007-06-15

    Organophosphorus pesticides (OPs) are ubiquitous in the environment and are highly toxic to amphibians. They deactivate cholinesterase, resulting in neurological dysfunction. Most chemicals in this group require oxidative desulfuration to achieve their greatest cholinesterase-inhibiting potencies. Oxon derivatives are formed within liver cells but also by bacterial decay of parental pesticides. This study examines the toxicity of chlorpyrifos, malathion and diazinon and their oxons on the foothill yellow-legged frog (Rana boylii). R. boylii is exposed to agricultural pesticides in the California Central Valley. Median lethal concentrations of the parental forms during a 96 h exposure were 3.00 mg/L (24 h) for chlorpyrifos, 2.14 mg/L for malathion and 7.49 mg/L for diazinon. Corresponding oxons were 10 to 100 times more toxic than their parental forms. We conclude that environmental concentrations of these pesticides can be harmful to R. boylii populations. - Laboratory tests on the toxicity of OP insecticides and their oxons suggest that they may be acutely lethal to amphibians at ecologically relevant concentrations.

  13. Sensory Acceptability of Iron-Fortified Red Lentil (Lens culinaris Medik.) Dal.

    Science.gov (United States)

    Podder, Rajib; Khan, Shaan M; Tar'an, Bunyamin; Tyler, Robert T; Henry, Carol J; Jalal, Chowdhury; Shand, Phyllis J; Vandenberg, Albert

    2018-03-01

    Panelists in Saskatoon, Canada (n = 45) and Dhaka, Bangladesh (n = 98) participated in sensory evaluations of the sensory properties of both cooked and uncooked dehulled red lentil dal fortified with FeSO 4 ·7H 2 O, NaFeEDTA or FeSO 4 ·H 2 O at fortificant Fe concentrations of 800, 1,600 (both cooked and uncooked), or 2,800 ppm. Appearance, odor, and overall acceptability of cooked and uncooked samples were rated using a 9-point hedonic scale (1 = dislike extremely to 9 = like extremely). Taste and texture were rated for the cooked samples prepared as typical south Asian lentil meals. Significant differences in sensory quality were observed among all uncooked and cooked samples at both locations. Overall, scores for all sensory attributes and acceptability of uncooked lentil decreased with increasing concentration of Fe in the fortificant; however, Fe fortification (particularly with NaFeEDTA) had small effects on acceptability. Panelists from Saskatoon provided a wider range of scores than those from Bangladesh for all attributes of cooked lentil. Overall, sensory evaluation of Fe fortification using NaFeEDTA minimally affected consumer perception of color, taste, texture, odor, and overall acceptability of cooked lentil. Reliability estimates (Cronbach's alpha [CA]) indicated that consumer scores were generally consistent for all attributes of all lentil samples (mean CA > 0.80). NaFeEDTA was found to be the most suitable Fe fortificant for lentil based on consumer acceptability. Consumption of 45 to 50 g of NaFeEDTA-fortified lentil (fortificant Fe concentration of 1,600 ppm) per day meets the estimated average requirements (EARs) of Fe for humans (10.8 to 29.4 mg). Iron fortification of dehulled lentil dal may change organoleptic attributes that can influence consumer acceptability. Sensory evaluation by consumers helps to determine the effect on appearance, odor, taste, texture, and overall acceptability of fortified lentils. In this study, consumer

  14. Lethal critical body residues as measures of Cd, Pb, and Zn bioavailability and toxicity in the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Conder, J.M.; Lanno, R.P. [Oklahoma State Univ., Dept. of Zoology, Stillwater, OK (United States)

    2003-07-01

    Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective. The objectives of this research were to: i) develop LD{sub 50}s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD{sub 50} for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods. Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. (orig.)

  15. Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia.

    Science.gov (United States)

    Mohamed, Zakaria A

    2008-01-01

    Toxic cyanobacteria are well reported in rivers, lakes and even marine environments, but the toxin production of cyanobacteria in hot springs is largely unexplored. Therefore, the present study investigated the presence of toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. The results of an enzyme-linked immunosorbent assay (ELISA) revealed that Saudi spring cyanobacterial mats contained microcystins (MCYSTs) at concentrations ranging from 468 to 512.5 microg g(-1). The Limulus amebocyte lystae (LAL) assay detected lipopolysaccharide (LPS) endotoxins in these mats at concentrations ranging from 433.3 to 506.8 EU g(-1). MCYSTs and endotoxins were also detected in spring waters at levels of 5.7 microg l(-1) and 640 EU ml(-1), respectively, exceeding WHO's provisional guideline value for MCYST-LR in drinking-water. High-performance liquid chromatography (HPLC) analysis revealed that only Oscillatoria limosa and Synechococcus lividus can produce MCYSTs with a profile consisting of MCYST-RR and -LR. Based on the LAL assay, 12 out of 17 cyanobacterial species contained LPS at concentrations ranging from 0.93 to 21.06 EU g(-1). However, not all LPS of these species were toxic to mice. This study suggests that the hot springs in the world including Saudi Arabia should be screened for toxic cyanobacteria to avoid the exposure of people recreating and bathing in spring waters to cyanobacterial toxins.

  16. Large Dataset of Acute Oral Toxicity Data Created for Testing in Silico Models (ASCCT meeting)

    Science.gov (United States)

    Acute toxicity data is a common requirement for substance registration in the US. Currently only data derived from animal tests are accepted by regulatory agencies, and the standard in vivo tests use lethality as the endpoint. Non-animal alternatives such as in silico models are ...

  17. Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas

    OpenAIRE

    de Polo, A; Scrimshaw, MD

    2012-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 SETAC. An effort is ongoing to develop a biotic ligand model (BLM) that predicts copper (Cu) toxicity in estuarine and marine environments. At present, the BLM accounts for the effects of water chemistry on Cu speciation, but it does not consider the influence of water chemistry on the physiology of the organisms. We discuss how chemistry affects Cu toxicity not only by ...

  18. Toxicity evaluation of the effluent of the ammonium diuranate process proceeding from the Uranium Reconversion Cycle (IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Osti, Silvio Cesar de

    2001-01-01

    This project was developed with the objective to evaluate the acute and chronic toxicity of the ammonium diuranate proceeding from the process used to obtain uranium hexafluoride (UF 6 ), substance which is necessary to produce fuel used by the IEA-R1-IPEN reactor. Five acute toxicity tests were done with Daphnia similis in which concentration values of EC(I)50;48h, between 0,39% and 0,57% of the effluent were determined, and other five with Danio rerio in which concentration values of EC(I)50;48h, between 0,06% and 0,07% of the effluent were determined. Three chronic toxicity tests with Selenastrum capricornutum were done, having found NOEC values for concentrations below 0,12% of the effluents. To determine the ion fluoride toxicity in the Daphnia similis, five acute toxicity tests were done in which values of EC(I)50;48h, between 263.90 mgL -1 and 292.82 mgL -1 were found. The acute toxicity tests done with D. similis demonstrated that the effluent toxicity persisted during its storage period. The acute toxicity test with D.rerio and chronic ones with S. capricornutum using the effluents after the ionic-replace treatment, which objective is to recover uranium for reuse, demonstrated the effluent toxicity persistency. (author)

  19. Toxicity of vanadium in soil on soybean at different growth stages.

    Science.gov (United States)

    Yang, Jinyan; Wang, Mei; Jia, Yanbo; Gou, Min; Zeyer, Josef

    2017-12-01

    Vanadium(V) is present in trace amounts in most plants and widely distributed in soils. However, the environmental toxicity of V compound in soils is controversial. A greenhouse study with soybean from germination to bean production under exposure to pentavalent V [V(V)] was conducted to elucidate the interaction of plants and V fractions in soils and to evaluate the toxicity of V at different plant growth stages. Soybean growth has no effect on non-specific-bond and specific-bond fractions of V in soils, but V fractionation occurred in more extraction-resistant phases at high V concentrations. High concentrations of V(V) postponed the germination and growth of the soybeans. Bean production was less than half of that of the control at 500 mg kg -1 spiked V(V). For the 0 mg kg -1 spiked V(V) treated plants, the root was not the main location where V was retained. Vanadium in the soils at ≤ 250 mg kg -1 did not significantly affect the V concentration in the shoot and leaf of soybeans. With the increase in V concentration in soil, V concentrations in roots increased, whereas those in beans and pods decreased. From vegetative growth to the reproductive growth, the soybeans adsorbed more V and accumulated more V in the roots, with soil. Meanwhile, the ratio of V concentration in cell wall to the total V concentration in the root increased with the increase in V(V) concentration in soils. Our results revealed that high concentrations of V inhibited soybean germination and biomass production. However, plants may produce self-defense systems to endure V toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).

    Science.gov (United States)

    Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee

    2017-08-23

    Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B 1 (FB 1 ), hydrolyzed fumonisin B 1 (HFB 1 ; formed from FB 1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB 1 -contaminated corn.

  1. Predicting molybdenum toxicity to higher plants: Influence of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, S.P., E-mail: steve.mcgrath@bbsrc.ac.u [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Mico, C. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Curdy, R. [Laboratory for Environmental Biotechnology (LBE), Swiss Federal Institute of Technology Lausanne (EPFL) Station 6 CH, 1015 Lausanne (Switzerland); Zhao, F.J. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2010-10-15

    The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED{sub 50}) of Mo in different soils, explaining > 65% of the variance in ED{sub 50} for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations. - Amorphous iron oxides or organic carbon were found to be the best predictors of the toxicity threshold values of Mo to higher plants on different soils.

  2. Determination of phytoextraction potential of plant species for toxic elements in soils of abandoned sulphide-mining areas

    International Nuclear Information System (INIS)

    Freitas, M.C.; Anawar, H.M.; Dionisio, I.; Dung, H.M.; Canha, N.; Bettencourt, A.; Capelo, S.; Henriques, F.; Pinto-Gomes, C.J.

    2009-01-01

    This study has determined contamination levels in soils and plants from the Sao Domingos mining area, Portugal, by k 0 -INAA. Total concentrations of As, Sb, Cr, Hg, Cu, Zn and Fe in soils were very high, exceeding the maximum limits in Portuguese legislation. Concentrations of toxic elements like As, Sb and Zn were highest in roots of Erica andevalensis, Juncus acutus, Agrostis castellana and Nicotiana glauca. Additionally, As, Br, Cr, Fe, Sb and Zn in all organs of most plants were above toxicity levels. Those species that accumulated relatively high concentrations of toxic elements in roots (and tops) may be cultivated for phytostabilisation of similar areas. (author)

  3. Nonimaging concentrators for photovoltaic arrays in space

    Science.gov (United States)

    Winston, R.; Greenman, P.; Rockey, D.

    1981-01-01

    Two stage concentrators are studied in order to design an optimum concentrator for photovoltaic arrays in space. The study is directed at designs with two-dimensional geometries because they are better suited to moderate concentrations of about 10 X to 50 X, and because the instantaneous flux distribution is more uniform. It is found that with an f/0.5 primary, where f is the focal length of the primary, the flux distribution is very smooth regardless of the angle of incidence of the radiation. As the focal ratio is increased, peaks in the distribution begin to appear. The nonuniformities can be reduced by introducing small, closely spaced distortions into the reflecting surfaces, and practical arrays can achieve a concentration of 10 when the acceptance half angle is 4.25 deg or 50 when the acceptance half angle is + or - 1 deg.

  4. Joint use of laboratory bioassays and field-collected plants to evaluate toxicity and contaminant bioaccumulation

    International Nuclear Information System (INIS)

    Long, S.P.; Byron, E.R.; Ohlendorf, H.M.

    1995-01-01

    Soil toxicity tests using lettuce (Latuca saliva) were conducted using soil samples collected as part of ecological risk assessments at two facilities in California. At some sites, terrestrial plants were collected in the field for chemical analysis. Ecological concerns focused on exposures to plants, phytophagous insects, and their secondary consumers, such as birds and small mammals. The toxicity tests were used to assess potential exposures to a variety of site-specific contaminants including organochlorine pesticides, PCBs, PAHs, petroleum hydrocarbons, heavy metals, and other inorganic substances. Site soils were combined with clean control soils to produce toxicity test soil dilutions containing 100%, 75%, 50%, 25%, and 0% site soils. Observations of seed germination and growth were made at day 0, 7, 14, 21 and 28. Toxicity test results were combined with soil chemical analytical results and physical characteristics to establish NOAELs and LOAELs. Bioaccumulation in the lettuce and field-collected plants was evaluated by comparing plant contaminant to soil contaminant concentrations. Allometric equations and sublethal toxicity data were used to predict potential effects on birds and small mammals. Whole-body contaminant concentrations in insects collected on some of the plants in the field were also considered in evaluating the potential for toxicity to insectivorous birds. The study indicated that contaminant uptake was occurring in the field-collected and bioassay plants but not the insects. Site factors in addition to soil contaminant concentration influenced the potential for plant toxicity and bioaccumulation

  5. Acute toxicity assessment of Osthol content in bio-pesticides using two aquatic organisms

    Directory of Open Access Journals (Sweden)

    Eun-Chae Yim

    2014-12-01

    Full Text Available Objectives This study focused on the assessment of acute toxicity caused by Osthol, a major component of environment-friendly biological pesticides, by using two aquatic organisms. Methods The assessment of acute toxicity caused by Osthol was conducted in Daphnia magna and by examining the morphological abnormalities in Danio rerio embryos. Results The median effective concentration value of Osthol in D. magna 48 hours after inoculation was 19.3 μM. The median lethal concentration of D. rerio embryo at 96 hours was 30.6 μM. No observed effect concentration and predicted no effect concentration values of Osthol in D. magna and D. rerio were calculated as 5.4 and 0.19 μM, respectively. There was an increase in the morphological abnormalities in D. rerio embryo due to Osthol over time. Coagulation, delayed hatching, yolk sac edema, pericardial edema, and pigmentation were observed in embryos at 24–48 hours. Symptoms of scoliosis and head edema occurred after 72 hours. In addition, bent tails, ocular defects, and symptoms of collapse were observed in fertilized embryo tissue within 96 hours. Ocular defects and pigmentation were the additional symptoms observed in this study. Conclusions Because Osthol showed considerable toxicity levels continuous toxicity evaluation in agro-ecosystems is necessary when bio-pesticides containing Osthol are used.

  6. Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing

    Energy Technology Data Exchange (ETDEWEB)

    Rojo-Nieto, E., E-mail: elisa.rojo@uca.es [Andalusian Centre of Marine Science and Technology (CACYTMAR), Department of Environmental Technologies, University of Cadiz, 11510 Puerto Real (Spain); Smith, K.E.C. [Department of Environmental Science, Aarhus University, DK-4000 Roskilde (Denmark); Perales, J.A. [Andalusian Centre of Marine Science and Technology (CACYTMAR), Department of Environmental Technologies, University of Cadiz, 11510 Puerto Real (Spain); Mayer, P. [Department of Environmental Science, Aarhus University, DK-4000 Roskilde (Denmark)

    2012-09-15

    The toxicity testing of hydrophobic organic compounds (HOCs) in aquatic media is generally challenging, and this is even more problematic for mixtures. The hydrophobic properties of these compounds make them difficult to dissolve, and subsequently to maintain constant exposure concentrations. Evaporative and sorptive losses are highly compound-specific, which can alter not only total concentrations, but also the proportions between the compounds in the mixture. Therefore, the general aim of this study was to explore the potential of passive dosing for testing the toxicity of a PAH mixture that recreates the mixture composition found in seawater from a coastal area of Spain, the Bay of Algeciras. First, solvent spiking and passive dosing were compared for their suitability to determine the acute toxicity to Artemia franciscana nauplii of several PAHs at their respective solubility limits. Second, passive dosing was applied to recreate the seawater mixture composition of PAHs measured in a Spanish monitoring program, to test the toxicity of this mixture at different levels. HPLC analysis was used to confirm the reproducibility of the dissolved exposure concentrations for the individual PAHs and mixtures. This study shows that passive dosing has some important benefits in comparison with solvent spiking for testing HOCs in aquatic media. These include maintaining constant exposure concentrations, leading to higher reproducibility and a relative increase in toxicity. Passive dosing is also able to faithfully reproduce real mixtures of HOCs such as PAHs, in toxicity tests, reproducing both the levels and proportions of the different compounds. This provides a useful approach for studying the toxicity of environmental mixtures of HOCs, both with a view to investigating their toxicity but also for determining safety factors before such mixtures result in detrimental effects.

  7. Petroleum Hydrocarbon Mixture Toxicity and a Trait Based Approach to Soil Invertebrate Species for Site Specific Risk Assessments.

    Science.gov (United States)

    Gainer, Amy; Cousins, Mark; Hogan, Natacha; Siciliano, Steven D

    2018-05-05

    Although petroleum hydrocarbons (PHCs) released to the environment typically occur as mixtures, PHC remediation guidelines often reflect individual substance toxicity. It is well documented that groups of aliphatic PHCs act via the same mechanism of action, nonpolar narcosis and, theoretically, concentration addition mixture toxicity principles apply. To assess this theory, ten standardized acute and chronic soil invertebrate toxicity tests on a range of organisms (Eisenia fetida, Lumbricus terrestris, Enchytraeus crypticus, Folsomia candida, Oppia nitens and Hypoaspis aculeifer) were conducted with a refined PHC binary mixture. Reference models for concentration addition and independent action were applied to the mixture toxicity data with consideration of synergism, antagonism and dose level toxicity. Both concentration addition and independent action, without further interactions, provided the best fit with observed response to the mixture. Individual fraction effective concentration values were predicted from optimized, fitted reference models. Concentration addition provided a better estimate than independent action of individual fraction effective concentrations based on comparison with available literature and species trends observed in toxic responses to the mixture. Interspecies differences in standardized laboratory soil invertebrate species responses to PHC contaminated soil was reflected in unique traits. Diets that included soil, large body size, permeable cuticle, low lipid content, lack of ability to molt and no maternal transfer were traits linked to a sensitive survival response to PHC contaminated soil in laboratory tests. Traits linked to sensitive reproduction response in organisms tested were long life spans with small clutch sizes. By deriving single fraction toxicity endpoints considerate of mixtures, we reduce resources and time required in conducting site specific risk assessments for the protection of soil organism's exposure pathway. This

  8. Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations.

    Science.gov (United States)

    da Silva, Diana Dias; Silva, Elisabete; Carvalho, Félix; Carmo, Helena

    2014-06-01

    Hepatic injury after 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) intoxications is highly unpredictable and does not seem to correlate with either dosage or frequency of use. The mechanisms involved include the drug metabolic bioactivation and the hyperthermic state of the liver triggered by its thermogenic action and exacerbated by the environmental circumstances of abuse at hot and crowded venues. We became interested in understanding the interaction between ecstasy and its metabolites generated in vivo as users are always exposed to mixtures of parent drug and metabolites. With this purpose, Hep G2 cells were incubated with MDMA and its main human metabolites methylenedioxyamphetamine (MDA), α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA), individually and in mixture (drugs combined in proportion to their individual EC01 ), at normal (37 °C) and hyperthermic (40.5 °C) conditions. After 48 h, viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extensive concentration-response analysis was performed with single drugs and the parameters of the individual non-linear logit fits were used to predict joint effects using the well-founded models of concentration addition (CA) and independent action (IA). Experimental testing revealed that mixture effects on cell viability conformed to CA, for both temperature settings. Additionally, substantial combination effects were attained even when each substance was present at concentrations that individually produced unnoticeable effects. Hyperthermic incubations dramatically increased the toxicity of the tested drug and metabolites, both individually and combined. These outcomes suggest that MDMA metabolism has hazard implications to liver cells even when metabolites are found in low concentrations, as they contribute additively to the overall toxic effect of MDMA. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Optic neuritis with residual tunnel vision in perchloroethylene toxicity.

    Science.gov (United States)

    Onofrj, M; Thomas, A; Paci, C; Rotilio, D

    1998-01-01

    In a 57-year-old female owner of a dry-cleaning shop, we describe the association of severe bilateral optic neuritis with unexpectedly high concentrations of perchloroethylene/metabolites in the blood and of chloroform in urine. Visual disturbances consisted of complete blindness for 9 days in the left eye, for 11 days in the right eye, with bright phosphenes and pain on eye rotation. Only central (2-3 degrees radius) vision recovered in the following months. Although environmental concentrations of perchloroethylene were within normal limits, we measured five-fold increases in vapors emitted when ironing freshly dry-cleaned fabrics, and suggest that inhalation of perchloroethylene vapors was the cause of this case of ocular nerve toxicity, recapitulating a previous report of major perchloroethylene toxicity.

  10. Photocatalytic degradation of rosuvastatin: Analytical studies and toxicity evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tiele Caprioli, E-mail: tiele@enq.ufrgs.br [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil); Pizzolato, Tânia Mara [Chemical Institute, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Arenzon, Alexandre [Ecology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Segalin, Jeferson [Biotechnology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Lansarin, Marla Azário [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil)

    2015-01-01

    Photocatalytic degradation of rosuvastatin, which is a drug that has been used to reduce blood cholesterol levels, was studied in this work employing ZnO as catalyst. The experiments were carried out in a temperature-controlled batch reactor that was irradiated with UV light. Preliminary the effects of the photocatalyst loading, the initial pH and the initial rosuvastatin concentration were evaluated. The experimental results showed that rosuvastatin degradation is primarily a photocatalytic process, with pseudo-first order kinetics. The byproducts that were generated during the oxidative process were identified using nano-ultra performance liquid chromatography tandem mass spectrometry (nano-UPLC–MS/MS) and acute toxicity tests using Daphnia magna were done to evaluate the toxicity of the untreated rosuvastatin solution and the reactor effluent. - Highlights: • The photocatalytic degradation of rosuvastatin was studied under UV irradiation. • Commercial catalyst ZnO was used. • Initial rosuvastatin concentration, photocatalyst loading and pH were evaluated. • The byproducts generated during the oxidative process were detected and identified. • Acute toxicity tests using Daphnia magna were carried out.

  11. Speciation, uptake and toxicity of uranium in Atlantic Salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Teien, Hans-Christian; Hertel-Aas, Turid; Lind, Ole Christian; Skipperud, Lindis; Oughton, Deborah H.; Salbu, Brit [Norwegian University of Life Sciences (NMBU), Center of Excellence in Environmental Radioactivity (CERAD). P.O. Box 5003, N-1432 Aas (Norway); Thoerring, Haavard [Norwegian Radiation Protection Authority (NRPA), P.O. Box 55, N-1332 Oesteraas (Norway)

    2014-07-01

    To obtain information about the bioavailability of uranium (U) and its chemical toxicity, a significant number of Atlantic Salmon (Salmo salar) juveniles (in total about 800 fish) were exposure to commercial available depleted uranium (DU) in controlled experiments conducted in accordance with the OECD guidelines for acute toxicity tests. Speciation, gill accumulation and induced toxicity of U as a function of varying water concentrations of H{sup +}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +} and K{sup +} as well as U were studied. In addition to recording mortality, blood samples were collected and analysed for general stress parameters (plasma Cl and glucose) prior to fish dissection and collection of different tissues. The observed dose-response demonstrated that varying concentrations of K{sup +}, Na{sup +} or Mg{sup 2+} had no apparent effect on the U induced toxicity in terms of 96 h LC50-values. U toxicity was, however, strongly dependent on pH. Reducing pH from about 6.7 to 6.0 or 5.5 reduced the LC50-value from 3.1 to 1.4 mg U/l. However, by increasing pH to 7.9, LC50-values increased to 25 mg/L. Fractionation of the exposure waters, demonstrated that U was present as dissolved species less than 10 kDa in size predominantly as anion, and that a fraction (30%) was present as U colloids ( 3-10 kDa). Furthermore, U accumulated in fish gills, and the accumulation of U in the fish gills increased with increasing U concentration in the water. U accumulation at >50 μg U/g dry weight gill was correlated with ion regulation problems and stress response in fish, reflected by reduced plasma Cl concentration and increased blood glucose, and mortality was observed at concentration levels >300 μg/g gill dry weight. Thus, toxic effects in fish were correlated to U concentration in gills, and the concentration of U in gills was highly dependent upon pH in water and the U speciation. As presented in detail on a poster at the present conference (Cagno et al.), U did not only

  12. Seasonal variation in heavy metal concentration in mangrove foliage

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Bhosle, N.B.

    Seasonal variation in the concentration of some heavy metals in the leaves of seven species of mangrove vegetation from Goa, revealed that maximum concentration of iron and manganese occurs during the monsoon season without any significant toxic...

  13. Effect of reflection losses on stationary dielectric-filled nonimaging concentrators

    Science.gov (United States)

    Madala, Srikanth; Boehm, Robert F.

    2016-10-01

    The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.

  14. Biological Mechanism of Silver Nanoparticle Toxicity

    Science.gov (United States)

    Armstrong, Najealicka Nicole

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities above that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, these investigations were attempted to monitor the effects of AgNPs at a non-lethal concentration on wild type Drosophila melanogaster by exposing them to nanoparticles throughout their development. All adult flies raised in AgNP doped food indicated that of not more than 50 mg/L had no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised after AgNP feeding. The determination of the amount of free ionic silver (Ag+) indicated that the observed biological effects had resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, were decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Furthermore, copper supplementation restored the loss of AgNP induced demelanization, and the reduction of functional Ctr1 in Ctr1 heterozygous mutants caused the flies to be resistant to demelanization. Consequently, these studies proposed a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explained the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, these investigations demonstrated that Drosophila, an established genetic model system, can be well utilized for further

  15. Effect of long-term equilibration on the toxicity of molybdenum to soil organisms

    International Nuclear Information System (INIS)

    Gestel, Cornelis A.M. van; McGrath, Steve P.; Smolders, Erik; Diez Ortiz, Maria; Borgman, Eef; Verweij, Rudo A.; Buekers, Jurgen; Oorts, Koen

    2012-01-01

    To determine if long-term equilibration may alleviate molybdenum toxicity, earthworms, enchytraeids, collembolans and four plant species were exposed to three soils freshly spiked with Na 2 MoO 4 .2H 2 O and equilibrated for 6 or 11 months in the field with free drainage. Total Mo concentrations in soil decreased by leaching, most (up to 98%) in sandy soil and less (54–62%) in silty and clayey soils. Changes in residual Mo toxicity with time were inconclusive in sandy soil. In the other two soils, toxicity of residual total Mo was significantly reduced after 11 months equilibration with a median 5.5-fold increase in ED50s. Mo fixation in soil, i.e. the decrease of soil solution Mo concentrations at equivalent residual total soil Mo, was maximally a factor of 2.1 only. This experiment shows natural attenuation of molybdate ecotoxicity under field conditions is related to leaching of excess Mo and other ions as well as to slow ageing reactions. - Highlights: ► Three molybdate-spiked soils were equilibrated for 6 and 11 months outdoors. ► Mo chronic toxicity to earthworms, enchytraeids, Collembola and four plant species was assessed. ► Mo concentrations in all soils decreased due to leaching. ► Based on actual total Mo remaining in the soil, Mo toxicity decreased by a median factor of 5.5. ► Decreased Mo toxicity was due to leaching as well as slow ageing reactions. - Natural attenuation under field conditions is more related to leaching of excess molybdate than to slow ageing reactions

  16. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p toxicity was measured in one polar soil extract fraction, postbioremediation (p soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.

  17. Silver nanoparticle toxicity in sea urchin Paracentrotus lividus

    International Nuclear Information System (INIS)

    Šiller, Lidija; Lemloh, Marie-Louise; Piticharoenphun, Sunthon; Mendis, Budhika G.; Horrocks, Benjamin R.; Brümmer, Franz; Medaković, Davorin

    2013-01-01

    Silver nanoparticles (AgNPS) are an important model system for studying potential environmental risks posed by the use of nanomaterials. So far there is no consensus as to whether toxicity is due to AgNPs themselves or Ag + ions leaching from their surfaces. In sea urchin Paracentrotus lividus, AgNPs cause dose dependent developmental defects such as delayed development, bodily asymmetry and shortened or irregular arms, as well as behavioural changes, particularly in swimming patterns, at concentration ∼0.3 mg/L AgNPs. It has been observed that AgNPs are more toxic than their equivalent Ag + ion dose. -- Silver nanoparticles cause dose dependent developmental defects in sea urchin and they are more toxic than their equivalent Ag + ion dose

  18. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    Tian, Dayong; Lin, Zhifen; Zhou, Xianghong; Yin, Daqiang

    2013-01-01

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E binding ), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two generic

  19. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dayong [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000 (China); Lin, Zhifen, E-mail: lzhifen@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Xianghong [Department of Public Management, Tongji University, Shanghai 200092 (China); Yin, Daqiang [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2013-10-15

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two

  20. Effect of lactation stage on the concentration of essential and selected toxic elements in milk of Dubrovačka ruda - Croatian endangered breed

    Directory of Open Access Journals (Sweden)

    Zvonko Antunović

    2016-11-01

    Full Text Available The aim of the present study was to determine the lactation stage effect on the concentration of essential and selected toxic elements in the sheep’s milk of Dubrovačka ruda. The research was conducted with 23 sheep, average age of 4 years, of 3rd lactation, while the milk samples were taken during the early (60th day, middle (90th day and late (120th day lactation stage. The sheep were selected according to uniformed body development, adequate health status, body condition, equable age (4 years, parity (3rd lactation, stage of lactation (±7 days and litter size (single. Sheep were reared on the extensive Mediterranean pastures, reared indoors afterwards, fed with hay ad libitum and feed mixtures in average 0.5 kg/day. Milk sample was collected during morning milking from each sheep. The digested samples were analyzed with continuous flow hydride generation technique using inductively coupled plasma for Ca, Mg, K, P, Na, Cu, Fe, Zn, Mn, Ni, Mo, Co, Cr, Cd and Pb concentrations. Significant increase of Mg, Na, Se, Mn, Mo and Cd concentrations were found in milk as well as decrease of K concentration during the lactation. Although the concentration of Ca, Cu, Cr and As in milk during the lactation is increased, the differences between the lactation stages were not observed. Concentrations of P, Fe, Ni, Pb and Hg in milk of Dubrovačka ruda did not differ during the lactation. The low concentrations of Cr, Cd, Pb, As, Hg in milk indicate the safety for consumers and preserved environment of Dubrovnik-Neretva County.

  1. QSAR development and bioavailability determination: the toxicity of chloroanilines to the soil dwelling springtail Folsomia candida.

    Science.gov (United States)

    Giesen, Daniel; van Gestel, Cornelis A M

    2013-03-01

    Quantitative structure-activity relationships (QSARs) are an established tool in environmental risk assessment and a valuable alternative to the exhaustive use of test animals under REACH. In this study a QSAR was developed for the toxicity of a series of six chloroanilines to the soil-dwelling collembolan Folsomia candida in standardized natural LUFA2.2 soil. Toxicity endpoints incorporated in the QSAR were the concentrations causing 10% (EC10) and 50% (EC50) reduction in reproduction of F. candida. Toxicity was based on concentrations in interstitial water estimated from nominal concentrations in the soil and published soil-water partition coefficients. Estimated effect concentrations were negatively correlated with the lipophilicity of the compounds. Interstitial water concentrations for both the EC10 and EC50 for four compounds were determined by using solid-phase microextraction (SPME). Measured and estimated concentrations were comparable only for tetra- and pentachloroaniline. With decreasing chlorination the disparity between modelled and actual concentrations increased. Optimisation of the QSAR therefore could not be accomplished, showing the necessity to move from total soil to (bio)available concentration measurements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Color corrected Fresnel lens for solar concentration

    International Nuclear Information System (INIS)

    Kritchman, E.M.

    1979-01-01

    A new linear convex Fresnel lens with its groove side down is described. The design philosophy is similar to the highly concentrating two focal Fresnel lens but including a correction for chromatic aberration. A solar concentration ratio as high as 80 is achieved. For wide acceptance angles the concentration nears the theoretical maximum. (author)

  3. Toxicity of methanol to fish, crustacean, oligochaete worm, and aquatic ecosystem.

    Science.gov (United States)

    Kaviraj, A; Bhunia, F; Saha, N C

    2004-01-01

    Static renewal bioassays were conducted in the laboratory and in outdoor artificial enclosures to evaluate toxic effects of methanol to one teleost fish and two aquatic invertebrates and to limnological variables of aquatic ecosystem. Ninety-six-hour acute toxicity tests revealed cladoceran crustacea Moina micrura as the most sensitive to methanol (LC50, 4.82 g/L), followed by freshwater teleost Oreochromis mossambicus (LC50, 15.32 g/L) and oligochaete worm Branchiura sowerbyi (LC50, 54.89 g/L). The fish, when exposed to lethal concentrations of methanol, showed difficulties in respiration and swimming. The oligochaete body wrinkled and fragmented under lethal exposure of methanol. Effects of five sublethal concentrations of methanol (0, 23.75, 47.49, 736.10, and 1527.60 mg/L) on the feeding rate of the fish and on its growth and reproduction were evaluated by separate bioassays. Ninety-six-hour bioassays in the laboratory showed significant reduction in the appetite of fish when exposed to 736.10 mg/L or higher concentrations of methanol. Chronic toxicity bioassays (90 days) in outdoor enclosures showed a reduction in growth, maturity index and fecundity of fish at 47.49 mg/L or higher concentrations of methanol. Primary productivity, phytoplankton population, and alkalinity of water were also reduced at these concentrations. Chronic exposure to 1527.60 mg/L methanol resulted in damages of the epithelium of primary and secondary gill lamellae of the fish. The results revealed 23.75 mg/L as the no-observed-effect concentration (NOEC) of methanol to freshwater aquatic ecosystem.

  4. Toxicоlogical evaluation of the plant products using Brine Shrimp (Artemia salina L. model

    Directory of Open Access Journals (Sweden)

    Меntor R. Hamidi

    2014-04-01

    Full Text Available Many natural products could serve as the starting point in the development of modern medicines because of their numerous biological and pharmacological activities. However, some of them are known to carry toxicological properties as well. In order to achieve a safe treatment with plant products, numerous research studies have recently been focused on both pharmacology and toxicity of medicinal plants. Moreover, these studies employed efforts for alternative biological assays. Brine Shrimp Lethality Assay is the most convenient system for monitoring biological activities of various plant species. This method is very useful for preliminary assessment of toxicity of the plant extracts. Rapidness, simplicity and low requirements are several advantages of this assay. However, several conditions need to be completed, especially in the means of standardized experimental conditions (temperature, pH of the medium, salinity, aeration and light. The toxicity of herbal extracts using this assay has been determined in a concentration range of 10, 100 and 1000 µg/ml of the examined herbal extract. Most toxicity studies which use the Brine Shrimp Lethality Assay determine the toxicity after 24 hours of exposure to the tested sample. The median lethal concentration (LC50 of the test samples is obtained by a plot of percentage of the dead shrimps against the logarithm of the sample concentration. LC50 values are estimated using a probit regression analysis and compared with either Meyer’s or Clarkson’s toxicity criteria. Furthermore, the positive correlation between Meyer’s toxicity scale for Artemia salina and Gosselin, Smith and Hodge’s toxicity scale for higher animal models confirmed that the Brine Shrimp Lethality Assay is an excellent predictive tool for the toxic potential of plant extracts in humans.

  5. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  6. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    International Nuclear Information System (INIS)

    Liow, K.Y.; Chow, S.C.

    2013-01-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration

  7. Mycotoxins’ Activity at Toxic and Sub-Toxic Concentrations: Differential Cytotoxic and Genotoxic Effects of Single and Combined Administration of Sterigmatocystin, Ochratoxin A and Citrinin on the Hepatocellular Cancer Cell Line Hep3B

    Directory of Open Access Journals (Sweden)

    Nikolia Αnninou

    2014-02-01

    Full Text Available Food safety organizations indicate the likelihood of constant human and animal exposure to mycotoxin mixtures as a possible negative public health impact. Risk assessment demonstrates that certain mycotoxins of Aspergillus and Penicillium spp. are toxic and hold a significant genotoxic efficacy at nanomolar concentrations. The aim of the current study was to investigate the potential cytogenetic effects of sterigmatocystin (STER, ochratoxin A (OTA and citrinin (CTN alone or in combination, at pM to μΜ concentrations, on the human hepatocellular cancer cell line Hep3B. MTT reduction, mitotic divisions, cell cycle delays and sister chromatid exchange rates (SCE were determined as endpoints of metabolic activity, cytotoxicity, cytostaticity, and genotoxicity, respectively. All mycotoxin treatments induce SCE rates from 10−12 M, while their cytotoxic and cytostatic potential varies. In PRI and MI assays, but not at MTT, STER alone or in combination with OTA + CTN appeared cytostatic and cytotoxic, even at 10−12 M, while CTN alone and all other combinations displayed substantial cellular survival inhibition in doses ≥ 10−8 M. Co-administration of STER + OTA or STER + CTN in concentrations ≤ 10−1 M, increased the MI and MTT activity, while it did not affect the PRI. Mycotoxin co-treatments revealed in general similar-to-additive or antagonistic genotoxic and cytotoxic effects. Our results for the first time describe that STER alone or in combination with OTA and/or CTN share a cytotoxic and cytogenetic potential even at picoMolar concentrations on human hepatoma cells in vitro.

  8. A high throughput passive dosing format for the Fish Embryo Acute Toxicity test

    DEFF Research Database (Denmark)

    Vergauwen, Lucia; Nørgaard Schmidt, Stine; Stinckens, Evelyn

    2015-01-01

    (lethal chemical activity) was 0.047. All values were within ranges expected for baseline toxicity. Impaired swim bladder inflation was the most pronounced morphological effect and swimming activity was reduced in all exposure concentrations. Further analysis showed that the effect on swimming activity...... dilution series. We report effect values for both mortality and sublethal morphological effects based on (1) measured exposure concentrations, (2) (lipid normalized) body residues and (3) chemical activity. The LC50 for 120 hpf was 310 μg/L, CBR50 (critical body residue) was 2.72 mmol/kg fresh wt and La50...... for obtaining mechanistic toxicity information, and (3) cause no toxicity, demonstrating its potential as an extension of the FET test when testing hydrophobic chemicals....

  9. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings

    International Nuclear Information System (INIS)

    Lai, A.C.K.; Mui, K.W.; Wong, L.T.; Law, L.Y.

    2009-01-01

    The indoor environmental quality (IEQ) in residential buildings is examined from the prospect of an occupant's acceptance in four aspects: thermal comfort, indoor air quality, noise level and illumination level. Based on the evaluations by 125 occupants living in 32 typical residential apartments in Hong Kong, this study proposes empirical expressions to approximate the overall IEQ acceptance with respect to four contributors, namely operative temperature, carbon dioxide concentration, equivalent noise level and illumination level, via a multivariate logistic regression model. A range of IEQ acceptances for regular residential conditions is determined and the dependence of the predicted overall IEQ acceptance on the variations of the contributors is discussed. The proposed overall IEQ acceptance can be used as a quantitative assessment criterion for similar residential environments where an occupant's evaluation is expected. (author)

  10. Study of radon, thoron and toxic elements in some textile dyes

    International Nuclear Information System (INIS)

    Abel-Ghany, H.A.

    2013-01-01

    Elemental analysis of textile dyes may provide valuable information concerning the content and concentrations of element, especially the toxic ones. Such information monitors the safety of handling and using these dyes in textile industry. In addition to the safety of wearing of clothes stained with these dyes. In the present work, the specific activity of both radon and thoron were measured in nine textile dyes by using alpha emitters registration which are emitted from radon and thoron gases in CR-39 nuclear track detectors. Unexpectedly, the results obtained reports a high concentration of both radon and thoron gases in some samples (samples D5 and D9). Also the concentration of toxic elements (Cu, Pb, Zn, Mn, Cd and Cr) in textile dyes were determined by flame and graphite furnace atomic absorption spectrometry. (author)

  11. Development of compound parabolic concentrators for solar energy

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.; Winston, R.

    1983-10-01

    The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.

  12. Biodistribution, toxicity and efficacy of a boronated porphyrin for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.; Fairchild, R.; Slatkin, D.; Gabel, D.

    1992-01-01

    Boron-containing porphyrins may be useful for boron neutron capture therapy (BNCT) in the treatment of brain tumors. Porphyrins have been shown to accumulate in tumor tissue and to be essentially excluded from normal brain. However, problems of toxicity may prevent some boron-containing porphyrins from being considered for BNCT. The authors have synthesized the boronated porphyrin 2,4-bis-vinyl-o-nidocarboranyl-deuteroporphyrin IX (VCDP). Preliminary studies in tumor-bearing mice showed considerable uptake of boron at a total dose of 150 μg/gbw with low mortality. They now report that a total dose to mice of ∼ 275 μg VCDP/gbw administered in multiple intraperitoneal (ip) injections can provide 40-50μg B per gram of tumor with acceptable toxicity. Toxicity experiments and a preliminary trial of BNCT in mice given such doses are also reported

  13. Integrated fate and toxicity assessment for site contaminants

    International Nuclear Information System (INIS)

    MacDonell, Margaret; Peterson, John; Finster, Molly; Douglas, R.

    2007-01-01

    Understanding the fate and toxicity of environmental contaminants is essential to framing practical management decisions. Forms and bioavailable concentrations often change over time due to natural physical, chemical, and biological processes. For some sites, hundreds of contaminants may be of initial interest, and even small projects can involve a substantial number of contaminants. With multiple assessments common, attention to effectiveness and efficiency is important, and integrating fate and toxicity information provides a valuable way to focus the analyses. Fate assessments help identify what forms may be present where and when, while toxicity information indicates what health effects could result if people were exposed. The integration process is illustrated by an application for the Hanford site, to support long-term management decisions for the cesium and strontium capsules. Fate data, health-based benchmarks, and related toxicity information were effectively combined to indicate performance targets for chemicals and radionuclides identified for capsule leachate that could migrate to groundwater. More than 50 relevant benchmarks and toxicity context were identified for 15 of the 17 study contaminants; values for chronic drinking water exposure provided the common basis for selected indicators. For two chemicals, toxicity information was identified from the scientific literature to guide the performance targets. (authors)

  14. Effect of soil contaminant extraction method in determining toxicity using the Microtox(reg.) assay

    International Nuclear Information System (INIS)

    Harkey, G.A.; Young, T.M.

    2000-01-01

    This project examined the influence of different extraction methods on the measured toxicity of contaminated soils collected from manufactured gas plant (MGP) sites differing in soil composition and contaminant concentration. Aged soils from a number of MGP sites were extracted using a saline solution, supercritical fluid extraction (SFE), and Soxhlet extraction. Toxicity was assessed using two forms of Microtox tests: acute aqueous tests on saline and SFE soil extracts and solid-phase tests (SPTs) on soil particles. Microtox SPTs were performed on soils before and after SFE to determine resulting toxicity reduction. Three hypotheses were tested: (1) Toxicity of soil extracts is related to contaminant concentrations of the extracts, (2) measured toxicity significantly decreases with less vigorous methods of extraction, and (3) supercritical fluid extractability correlates with measured toxicity. The EC50s for SPTs performed before and after SFE were not different for some soils but were significantly greater after extraction for other soils tested. The most significant toxicity reductions were observed for soils exhibiting the highest toxicity in both preextraction SPTs and acute aqueous tests. Acute Microtox tests performed on SFE extracts showed significantly lower EC50s than those reported from saline-based extraction procedures. Toxicity of the soils measured by Microtox SPTs was strongly correlated with both SFE efficiency and measures of contaminant aging. Data from this project provide evidence of sequestration and reduced availability of polycyclic aromatic hydrocarbons (PAHs) from soils extracted via physiologically based procedures compared to vigorous physical extraction protocols

  15. Work-principle model for predicting toxic fumes of nonideal explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Michael S. [National Institute of Occupational Safety and Health, Pittsburgh Research Center, P.O. Box 18070, Pittsburgh, PA 15236-0070 (United States)

    2004-08-01

    The work-principle from thermodynamics was used to formulate a model for predicting toxic fumes from mining explosives in underground chamber tests, where rapid turbulent combustion within the surrounding air noticeably changes the resulting concentrations. Two model constants were required to help characterize the reaction zone undergoing rapid chemical transformations in conjunction with heat transfer and work output: a stoichiometry mixing fraction and a reaction-quenching temperature. Rudimentary theory with an unsteady uniform concentration gradient was taken to characterize the combustion zone, yielding 75% for the mixing fraction. Four quenching temperature trends were resolved and compared to test results of ammonium nitrate compositions with different fuel-oil percentages (ANFO). The quenching temperature 2345 K was the optimum choice for fitting the two major components of fume toxicity: carbon monoxide (CO) and total nitrogen oxides (NO{sub X}). The resulting two-constant model was used to generate comparisons for test results of ANFO compositions with additives. Though respectable fits were usually found, charge formulations which reacted weakly could not be resolved numerically. The work-principle model yields toxic concentrations for a range of charge formulations, making it a useful tool for investigating the potential hazard of released fumes and reducing the risk of unwanted incidents. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Temperature-dependent toxicity of artemisinin toward the macrophyte Lemna minor and the algae Pseudokirchneriella subcapitata

    DEFF Research Database (Denmark)

    Jessing, Karina Knudsmark; Andresen, Marianne; Cedergreen, Nina

    2014-01-01

    - and groundwater. To make better risk assessments of A. annua which is cultivated under varying climatic conditions, the temperature-dependent toxicity of artemisinin toward the green algae Pseudokirchneriella subcapitata and the macrophyte Lemna minor was evaluated at temperatures ranging from 10 to 30°C....... To include a possible effect of temperature on the degradation rate of artemisinin, artemisinin concentrations were measured during the experiment and toxicity was related to the time-weighted averages of exposure concentrations. The toxicity of artemisinin toward the macrophyte L. minor and the algae P....... subcapitata increased with increasing growth rates, and we conclude that bioavailability plays a minor role in the observed relation between temperature and toxicity of artemisinin. The obtained results are important for possible future risk assessment of A. annua cultivation....

  17. Applications of maximally concentrating optics for solar energy collection

    Science.gov (United States)

    O'Gallagher, J.; Winston, R.

    1985-11-01

    A new family of optical concentrators based on a general nonimaging design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle ±θα has been developed. The maximum limit exceeds by factors of 2 to 10 that attainable by systems using focusing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to ˜10x), collection of circumsolar and some diffuse radiation, and relaxed tolerances. Because of these advantages, these types of concentrators have applications in solar energy wherever concentration is desired, e.g. for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for thermal collector applications are discussed and the use of nonimaging elements as secondary concentrators is illustrated in the context of higher concentration applications.

  18. Concentration of trace metals in boreholes in the Ankobra Basin, Ghan

    African Journals Online (AJOL)

    Roughly 25% of the boreholes had manganese concentration higher than 500 mg l-1, which is the WHO maximum acceptable limit for drinking water. The concentration of mercury was higher than 1.0 mg l-1 (WHO maximum acceptable limit) in 60% of the boreholes during the rainy season but below detection limit in the dry ...

  19. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Inmaculada González-Martín

    2015-11-01

    Full Text Available The potential of near infrared spectroscopy (NIR with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region and Spain (Castilla-León and Galicia regions. The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS regression method was used to develop the NIR calibration model. The determination coefficient (R2 and root mean square error of prediction (RMSEP obtained for aluminum (0.79, 53, calcium (0.83, 94, iron (0.69, 134 potassium (0.95, 117, magnesium (0.70, 99, phosphorus (0.94, 24 zinc (0.87, 10 chromium (0.48, 0.6 nickel (0.52, 0.7 copper (0.64, 0.9 and lead (0.70, 2 in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption.

  20. Quantitative structure–activity relationships for chronic toxicity of alkyl-chrysenes and alkyl-benz[a]anthracenes to Japanese medaka embryos (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongkang [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Morandi, Garrett D. [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Brown, R. Stephen [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Snieckus, Victor; Rantanen, Toni [Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Jørgensen, Kåre B. [Department of Mathematics and Natural Sciences, University of Stavanger, 4036 Stavanger (Norway); Hodson, Peter V., E-mail: peter.hodson@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada)

    2015-02-15

    Highlights: • Medaka embryos were exposed to alkyl chrysenes and benzo[a]anthracenes (BAA). • Concentrations were kept constant by partition controlled delivery. • Chrysene was not toxic within solubility limits, in contrast to BAA. • Alkylation increased the toxicity of chrysene and BAA. • Toxicity was related to hydrophobicity and to specific modes of action. - Abstract: Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are a class of compounds found at significant concentrations in crude oils, and likely the main constituents responsible for the chronic toxicity of oil to fish. Alkyl substituents at different locations on the aromatic rings change the size and shape of PAH molecules, which results in different interactions with tissue receptors and different severities of toxicity. The present study is the first to report the toxicity of several alkylated derivatives of chrysene and benz[a]anthracene to the embryos of Japanese medaka (Oryzias latipes) using the partition controlled delivery (PCD) method of exposure. The PCD method maintained the desired exposure concentrations by equilibrium partitioning of hydrophobic test compounds from polydimethylsiloxane (PDMS) films. Test concentrations declined by only 13% over a period of 17 days. Based on the prevalence of signs of blue sac disease (BSD), as expressed by median effective concentrations (EC50s), benz[a]anthracene (B[a]A) was more toxic than chrysene. Alkylation generally increased toxicity, except at position 2 of B[a]A. Alkyl-PAHs substituted in the middle region had a lower EC50 than those substituted at the distal region. Except for B[a]A and 7-methylbenz[a]anthracene (7-MB), estimated EC50 values were higher than their solubility limits, which resulted in limited toxicity within the range of test concentrations. The regression between log EC50s and log K{sub ow} values provided a rough estimation of structure–activity relationships for alkyl-PAHs, but K{sub ow} alone did not provide

  1. Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica.

    Directory of Open Access Journals (Sweden)

    Ai-Jun Miao

    2010-12-01

    Full Text Available The behavior and toxicity of silver engineered nanoparticles (Ag-ENs to the mixotrophic freshwater alga Ochromonas danica were examined in the present study to determine whether any other mechanisms are involved in their algal toxicity besides Ag(+ liberation outside the cells. Despite their good dispersability, the Ag-ENs were found to continuously aggregate and dissolve rapidly. When the initial nanoparticle concentration was lower than 10 µM, the total dissolved Ag(+ concentration ([Ag(+](T in the suspending media reached its maximum after 1 d and then decreased suggesting that Ag(+ release might be limited by the nanoparticle surface area under these conditions. Furthermore, Ag-EN dissolution extent remarkably increased in the presence of glutathione. In the Ag-EN toxicity experiment, glutathione was also used to eliminate the indirect effects of Ag(+ that was released. However, remarkable toxicity was still observed although the free Ag(+ concentration in the media was orders of magnitude lower than the non-observed effect concentration of Ag(+ itself. Such inhibitive effects were mitigated when more glutathione was added, but could never be completely eliminated. Most importantly, we demonstrate, for the first time, that Ag-ENs can be taken in and accumulated inside the algal cells, where they exerted their toxic effects. Therefore, nanoparticle internalization may be an alternative pathway through which algal growth can be influenced.

  2. Aquatic toxicity of airfield-pavement deicer materials and implications for airport runoff

    Science.gov (United States)

    Corsi, S.R.; Geis, S.W.; Bowman, G.; Failey, G.G.; Rutter, T.D.

    2009-01-01

    Concentrations of airfield-pavement deicer materials (PDM) in a study of airport runoff often exceeded levels of concern regarding aquatic toxicity. Toxicity tests on Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Pseudokirchneriella subcapitata (commonly known as Selenastrum capricornutum) were performed with potassium acetate (K-Ac) PDM, sodium formate (Na-For) PDM, and with freezing- point depressants (K-Ac and Na-For). Results indicate that toxicity in PDM is driven by the freezing-point depressants in all tests except the Vibrio fisheri test for Na-For PDM which is influenced by an additive. Acute toxicity end points for different organisms ranged from 298 to 6560 mg/L (as acetate) for K-Ac PDM and from 1780 to 4130 mg/L (as formate) for Na- For PDM. Chronic toxicity end points ranged from 19.9 to 336 mg/L (as acetate) for K-Ac PDM and from 584 to 1670 mg/L (as formate) for Na-For PDM. Sample results from outfalls at General Mitchell International Airport in Milwaukee, Wl (GMIA) indicated that 40% of samples had concentrations greater than the aquatic-life benchmark for K-Ac PDM. K-Ac has replaced urea during the 1990s as the most widely used PDM at GMIA and in the United States. Results of ammonia samples from airport outfalls during periods when urea-based PDM was used at GMIA indicated that41% of samples had concentrations exceeding the U.S. Environmental Protection Agency (USEPA) 1 -h water-quality criterion. The USEPA 1-h water-quality criterion for chloride was exceeded in 68% of samples collected in the receiving stream, a result of road-salt runoff from urban influence near the airport. Results demonstrate that PDM must be considered to comprehensively evaluate the impact of chemical deicers on aquatic toxicity in water containing airport runoff. ?? 2009 American Chemical Society.

  3. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.

    Science.gov (United States)

    Liu, Chunguang; Dai, Zheng; Xia, Jingye; Chang, Can; Sun, Hongwen

    2018-08-15

    Boron toxicity is a worldwide problem, usually accompanied by salt (NaCl) and drought. The combined stresses may induce complex toxicity to the plant. The aim of the present study was to investigate how the combined stresses of salt and drought affect B toxicity in plants. Puccinellia tenuiflora seedlings were planted in vermiculite. A three (B) × three (salt) × three (drought) factorial experiment (for a total of 27 treatments) was conducted. After a 30-day cultivation, plants were harvested to determine dry weight and the concentrations of B, Na + , K + , Ca 2+ , and Mg 2+ . Plant growth was inhibited by B toxicity, which was alleviated by salt and drought. B stress enhanced B uptake and transport of the plant, which was inhibited by salt and drought. B stress had a little effect on K + and Na + concentration and caused Ca 2+ and Mg 2+ accumulation in the plant. Salt addition increased Na + concentration and inhibited Ca 2+ and Mg 2+ accumulation. Drought addition inhibited Na + accumulation and enhanced Ca 2+ and Mg 2+ accumulation. The combined stresses of salt and drought had a greater alleviation on the inhibition of dry weight caused by B than individual salt and drought. Besides, the combined stresses of salt and drought also enhanced B uptake and inhibited B transport. The results indicate that salt, drought, and the combined stresses of salt and drought all can alleviate B toxicity in P. tenuiflora, the main mechanism of which is the restriction of B and Na + uptake caused by salt and drought. The combined stresses of salt and drought have a greater effect on B toxicity than individual salt and drought. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Toxic effects of aluminium and its concentrations in different brands of malaysian tea

    International Nuclear Information System (INIS)

    Peerzada, N. H.; Tariq, S. A.

    2001-01-01

    The effect of air pollution is felt world wide. Acid rain brings havoc to all forms of life on this planet. One of the many consequences of acid rain is the release of luminum (III) from the soil. Tea is the plant which selectively accumulates soluble aluminium from the soil. The short article is to alert heavy tea drinkers as aluminium is a neuro-toxic metal. (author)

  5. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  6. The acute toxicity of the metaldehyde on the climbing perch

    Science.gov (United States)

    Wahida Mohamad Ismail, Syamimi; Aini Dahalan, Farrah; Zakaria, Ammar; Mad Shakaff, Ali Yeon; Aqlima Ahmad, Siti; Shukor, Mohd Yunus Abd; Khalizan Sabullah, Mohd; Khalil, Khalilah Abdul; Jalil, Mohd Faizal Ab

    2018-03-01

    In Asia, Climbing perch (Anabas testudineus) is commonly found in paddy fields and irrigation systems. Due to its habitat, Climbing perch is exposed to toxic pesticides used in paddy fields such as metaldehyde which is one of the most widely used molluscicide. This study aims to determine the acute toxicity Lethal Concentration50 (LC50) of metaldehyde and its effect on the behaviour and physical changes of the Climbing perch. The fish mortality responses to six different metaldehyde concentrations ranging from 180 to 330 mg/L were investigated. The 96-h LC50 values were determined and analysed using three different analysis methods which is arithmetic, logarithmic and probit graphic. The LC50 values obtained in this study were 239, 234 and 232 mg/L, respectively. After 96-h of exposure to metaldehyde, the fish showed a series of abnormal behavioural response in all cases: imbalance position, and restlessness of movement. The LC50 values show that metaldehyde is moderately toxic to the Climbing perch indicating that metaldehyde is not destructive to Climbing perch. However, long term exposure of aquatic organisms to the metaldehyde means a continuous health risk for the fish population as they are more vulnerable and it is on high risk for human to consume this toxicated fishes.

  7. Uptake, translocation, and toxicity of gold nanorods in maize

    Science.gov (United States)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in

  8. Toxic metals in the atmosphere

    International Nuclear Information System (INIS)

    Munoz-Ribadeneira, F.J.; Mo, T.; Canoy, M.J.

    1975-05-01

    Methods used in Puerto Rico for monitoring toxic metals in the atmosphere are described. Air sampling machines are placed at heights from 15 to 25 ft above the surface and the tapes are subjected to neutron activation and γ spectroscopy. The concentrations of up to 33 elements can be determined with precision and sensitivity without destroying the tapes, which can then be used for analysis by other methods. (U.S.)

  9. Acute and chronic toxicity of uranium compounds to Ceriodaphnia-Daphnia dubia

    International Nuclear Information System (INIS)

    Pickett, J.B.; Specht, W.L.; Keyes, J.L.

    1993-01-01

    A study to determine the acute and chronic toxicity of uranyl nitrate, hydrogen uranyl phosphate, and uranium dioxide to the organism Ceriodaphnia dubia was conducted. The toxicity tests were conducted by two independent environmental consulting laboratories. Part of the emphasis for this determination was based on concerns expressed by SCDHEC, which was concerned that a safety factor of 100 must be applied to the previous 1986 acute toxicity result of 0.22 mg/L for Daphnia pulex, This would have resulted in the LETF release limits being based on an instream concentration of 0.0022 mg/L uranium. The NPDES Permit renewal application to SCDHEC utilized the results of this study and recommended that the LETF release limit for uranium be based an instream concentration of 0.004 mg/L uranium. This is based on the fact that the uranium releases from the M-Area LETF will be in the hydrogen uranyl phosphate form, or a uranyl phosphate complex at the pH (6--10) of the Liquid Effluent Treatment Facility effluent stream, and at the pH of the receiving stream (5.5 to 7.0). Based on the chronic toxicity of hydrogen uranyl phosphate, a lower uranium concentration limit for the Liquid Effluent Treatment Facility outfall vs. the existing NPDES permit was recommended: The current NPDES permit ''Guideline'' for uranium at outfall M-004 is 0.500 mg/L average and 1.0 mg/L maximum, at a design flowrate of 60 gpm. It was recommended that the uranium concentration at the M-004 outfall be reduced to 0.28 mg/L average, and 0.56 mg/L, maximum, and to reduce the design flowrate to 30 gpm. The 0.28 mg/L concentration will provide an instream concentration of 0.004 mg/L uranium. The 0.28 mg/L concentration at M-004 is based on the combined flows from A-014, A-015, and A-011 outfalls (since 1985) of 1840 gpm (2.65 MGD) and was the flow rate which was utilized in the 1988 NPDES permit renewal application

  10. Evaluation of lithium as a toxicant and the modifying effect of sodium

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; O'Reilly, S.E.

    1995-01-01

    Routine compliance tests conducted for a groundwater treatment facility at the Y-12 Plant on the Department of Energy's (DOE) Oak Ridge Reservation (ORR), TN, showed that the effluent was acutely toxic to Ceriodaphnia dubia and fathead minnow (Pimephales promelas) larvae. An evaluation of suspected contaminants revealed that increased toxicity coincided with increased concentrations of lithium. Lithium is a light, strong metal that is used in DOE operations, including fusion weapons and fission reactors. Little has been published about lithium toxicity. Toxicity tests were conducted with fathead minnows and C. dubia using lithium chloride and lithium tetraborate. Dilute mineral water (DMW) or the receiving stream water (East Fork Poplar Creek) was used as the dilution water in the toxicity evaluation. A concentration of 1 mg Li/L in DMW reduced the survival of both test species; 0.5 mg Li/L in DMW reduced C. dubia reproduction and minnow growth. Sodium appears to influence the toxicity of Li; the metal was six times more toxic in the low-sodium DMW than in stream water containing 30 mg Na/L. Tests with LiCl in combination with NaCl and NA 2 SO 4 demonstrated that the presence of sodium reduced the toxicity of Li to C. dubia. In laboratory tests with a snail (Elimia clavaeformis) common on the ORR, the feeding rate declined in 0.15 mg Li/L. Because Li has also been demonstrated to be toxic to several plant species, tests with LiCi were also conducted using buttercrunch lettuce (Lactuca saliva). The EC 50 for seed growth after 8 d incubation was 37.5 mg Li/L. These findings are significant because of widespread industrial use and potential accumulation of Li in soils

  11. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    Directory of Open Access Journals (Sweden)

    Asis Shrestha

    Full Text Available Manganese (Mn is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.. A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170 with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  12. Thyroid cancer in toxic and non-toxic multinodular goiter

    Directory of Open Access Journals (Sweden)

    Cerci C

    2007-01-01

    Full Text Available Background : Many authors have claimed that hyperthyroidism protects against thyroid cancer and believed that the incidence of malignancy is lower in patients with toxic multinodular goiter (TMG than in those with non-toxic multinodular goiter. But in recent studies, it was reported that the incidence of malignancy with TMG is not as low as previously thought. Aim : To compare the thyroid cancer incidence in patients with toxic and non-toxic multinodular goiter. Settings and Design : Histology reports of patients treated surgically with a preoperative diagnosis of toxic and non-toxic multinodular goiter were reviewed to identify the thyroid cancer incidence. Patients having a history of neck irradiation or radioactive iodine therapy were excluded from the study. Materials and Methods : We reviewed 294 patients operated between 2001-2005 from toxic and non-toxic multinodular goiter. One hundred and twenty-four of them were toxic and 170 were non-toxic. Hyperthyroidism was diagnosed by elevated tri-iodothyroinine / thyroxine ratios and low thyroid-stimulating hormone with clinical signs and symptoms. All patients were evaluated with ultrasonography and scintigraphy and fine needle aspiration biopsy. Statistical Analysis Used : Significance of the various parameters was calculated by using ANOVA test. Results : The incidence of malignancy was 9% in the toxic and 10.58% in the non-toxic multinodular goiter group. Any significant difference in the incidence of cancer and tumor size between the two groups could not be detected. Conclusions : The incidence of malignancy in toxic multinodular goiter is not very low as thought earlier and is nearly the same in non-toxic multinodular goiter.

  13. Cellular toxicity and bioaccumulationof silver nanoparticles in the marine polychaete, Nereis diversicolor

    DEFF Research Database (Denmark)

    cong, Yi; Banta, Gary Thomas; Selck, Henriette

    (comet assay) and bioaccumulation as endpoints. Prior to the toxicity experiment, the physical-chemical properties of Ag NPs were fully characterized. The nominal concentrations used in all exposure scenarios were 0, 5, 10, 25, 50 and 100 µg Ag/g dry weight (dw) sediment. Lysosomal membrane stability...... of Nereis coelomocytes, which was measured by neutral red retention time (NRRT), decreased in a concentration-dependent manner in all Ag treatments, indicating increased permeability of lysosomal membranes. Comet assay results showed that Ag was able to cause DNA damage in Nereis coelomocytes regardless......In this study, the toxicities of commercial silver nanoparticles (Ag NPs, 20 and 80 nm) were compared with the toxicities of Ag+ ions in the marine sediment-dwelling polychaete, Nereis diversicolor, after 10 d of sediment exposure, using lysosomal membrane stability (neutral red assay), DNA damage...

  14. The current status of biomarkers for predicting toxicity

    Science.gov (United States)

    Campion, Sarah; Aubrecht, Jiri; Boekelheide, Kim; Brewster, David W; Vaidya, Vishal S; Anderson, Linnea; Burt, Deborah; Dere, Edward; Hwang, Kathleen; Pacheco, Sara; Saikumar, Janani; Schomaker, Shelli; Sigman, Mark; Goodsaid, Federico

    2013-01-01

    Introduction There are significant rates of attrition in drug development. A number of compounds fail to progress past preclinical development due to limited tools that accurately monitor toxicity in preclinical studies and in the clinic. Research has focused on improving tools for the detection of organ-specific toxicity through the identification and characterization of biomarkers of toxicity. Areas covered This article reviews what we know about emerging biomarkers in toxicology, with a focus on the 2012 Northeast Society of Toxicology meeting titled ‘Translational Biomarkers in Toxicology.’ The areas covered in this meeting are summarized and include biomarkers of testicular injury and dysfunction, emerging biomarkers of kidney injury and translation of emerging biomarkers from preclinical species to human populations. The authors also provide a discussion about the biomarker qualification process and possible improvements to this process. Expert opinion There is currently a gap between the scientific work in the development and qualification of novel biomarkers for nonclinical drug safety assessment and how these biomarkers are actually used in drug safety assessment. A clear and efficient path to regulatory acceptance is needed so that breakthroughs in the biomarker toolkit for nonclinical drug safety assessment can be utilized to aid in the drug development process. PMID:23961847

  15. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna.

    Science.gov (United States)

    Li, Shih-Wei; Wang, Yu-Hsiang; Lin, Angela Yu-Chen

    2017-09-01

    Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC 50 ) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p ketamine concentration cannot be ignored and warrant further examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A bioassay approach for determining the effect of cooking on fumonisin toxicity

    Science.gov (United States)

    Fumonisins are considered potential risk factors for cancer and congenital malformations known as neural tube defects (NTD) in populations that consume maize as a diet staple. Cooking variably reduces fumonisin concentrations. However, fumonisin concentrations and potential toxicity of foods might b...

  17. Toxicity and outcome of pelvic IMRT for node-positive prostate cancer

    International Nuclear Information System (INIS)

    Mueller, A.C.; Luetjens, J.; Eckert, F.; Bamberg, M.; Alber, M.; Schilling, D.; Belka, C.; Gaswindt, U.

    2012-01-01

    Background and purpose: This study reports on the treatment techniques, toxicity, and outcome of pelvic intensity-modulated radiotherapy (IMRT) for lymph node-positive prostate cancer (LNPPC, T1-4, c/pN1 cM0). Patients and methods: Pelvic IMRT to 45-50.4 Gy was applied in 39 cases either after previous surgery of involved lymph nodes (n = 18) or with a radiation boost to suspicious nodes (n = 21) with doses of 60-70 Gy, usually combined with androgen deprivation (n = 37). The prostate and seminal vesicles received 70-74 Gy. In cases of previous prostatectomy, prostatic fossa and remnants of seminal vesicles were given 66-70 Gy. Treatment-related acute and late toxicity was graded according to the RTOG criteria. Results: Acute radiation-related toxicity higher than grade 2 occurred in 2 patients (with the need for urinary catheter/subileus related to adhesions after surgery). Late toxicity was mild (grade 1-2) after a median follow-up of 70 months. Over 50% of the patients reported no late morbidity (grade 0). PSA control and cancer-specific survival reached 67% and 97% at over 5 years. Conclusion: Pelvic IMRT after the removal of affected nodes or with a radiation boost to clinically positive nodes led to an acceptable late toxicity (no grade 3/4 events), thus justifying further evaluation of this approach in a larger cohort. (orig.)

  18. Endosulfan Toxicity to Anabas testudineus and Histopathological Changes on Vital Organs

    Directory of Open Access Journals (Sweden)

    Nordin I.L.

    2018-01-01

    Full Text Available The toxicity of endosulfan, an organochlorine type insecticide to a commonly consumed freshwater fish species, A. testudineus (40.68±9.03 g; 13.49±0.99 cm, was investigated under static conditions. The nominal endosulfan concentrations ranging from 10 to 80 μg/L subjected to the fish population results in 96-hour median lethal concentration, LC50, of 35.2±3.99 μg/L. The toxicity is a function of both endosulfan concentration and exposure time (p>0.05. Histopathological analysis on vital organs exposed to sublethal concentrations indicates that structural changes started at sublethal dose and the effects aggravated with increasing endosulfan concentration. Gill was found to experience aneurism, hyperplasia in lamellar and autolysis of mast cell. Pyknotic nuclei and necrosis were observed in liver cell, while the lumen of renal tubule was found to narrow and haemorrhage was observed in cytoplasm cell. High LC50 compared to other fishes indicates that A. testudineus has high tolerant to endosulfan, however, endosulfan slowly alters the fish biochemistry and is potentially transferable to human

  19. Endosulfan Toxicity to Anabas testudineus and Histopathological Changes on Vital Organs

    Science.gov (United States)

    Nordin, I. L.; Ibrahim, N.; Ahmad, S. A.; Hamidin, N. l.; Dahalan, F. A.; Abd. Shukor, M. Y.

    2018-03-01

    The toxicity of endosulfan, an organochlorine type insecticide to a commonly consumed freshwater fish species, A. testudineus (40.68±9.03 g; 13.49±0.99 cm), was investigated under static conditions. The nominal endosulfan concentrations ranging from 10 to 80 μg/L subjected to the fish population results in 96-hour median lethal concentration, LC50, of 35.2±3.99 μg/L. The toxicity is a function of both endosulfan concentration and exposure time (p>0.05). Histopathological analysis on vital organs exposed to sublethal concentrations indicates that structural changes started at sublethal dose and the effects aggravated with increasing endosulfan concentration. Gill was found to experience aneurism, hyperplasia in lamellar and autolysis of mast cell. Pyknotic nuclei and necrosis were observed in liver cell, while the lumen of renal tubule was found to narrow and haemorrhage was observed in cytoplasm cell. High LC50 compared to other fishes indicates that A. testudineus has high tolerant to endosulfan, however, endosulfan slowly alters the fish biochemistry and is potentially transferable to human

  20. Bacterial and toxic pollutants in lakes of river Indus

    International Nuclear Information System (INIS)

    Shafiq, H.B.; Rasool, S.A.; Ajaz, M.

    2011-01-01

    Indus river water gets polluted through three sources viz., municipal wastewater, industrial wastewater and agricultural runoff through drainage structure. The lakes in Sindh (fed by the river Indus), constitute the important source of drinking water, recreation and fish, etc. and offer employment for many. A large number of chemicals that either exist naturally in the land dissolve in the water, or human excreta added due to human activity thereby, contaminating and leading to various diseases. In order to assess the microbial contamination, detection of pollutant indicator organisms (coliform group), using Coliform test was performed by Most Probable Number technique and total bacterial count by Pour Plate method. The level of various heavy metals (arsenic, calcium, cadmium, chromium, copper, iron, lead, mercury, potassium, magnesium, manganese, sodium, selenium and zinc) and electrolytes (Cl/sup -1/, HCO/sub 3/sup -1/) was monitored in water and fish meat samples collected from Haleji and Keenjhar lakes to assess the impact of toxic pollutants. Metal concentrations in water and fish samples were estimated by atomic absorption spectrophotometry. Total coliform organisms were found in both the lake water samples, exceeded in 38% samples than the acceptable limits, while total average aerobic bacterial count analyzed in both the lakes was 102 CFU/ml - 1010 CFU/ml. Toxic chemical contaminants were estimated below the detection limit, while other several (essential) metal ions were found within the range set by WHO, except arsenic, cadmium and iron that exceeded slightly in 12.5% water samples. This study was designed to ensure the access of safe and potable water to urban and rural areas of Sindh. Further, the findings will help public/private enterprises and public health institutions to work for the people health friendly policies. (author)