WorldWideScience

Sample records for acceptable sol-gel derived

  1. Safe and Environmentally Acceptable Sol-Gel-Derived Pyrophoric Pyrotechnics

    National Research Council Canada - National Science Library

    Simpson, Randall L; Hubble, William; Stevenson, Bradley; Gash, Alexander; Satcher, Joe; Metcalf, Patricia

    2004-01-01

    It was demonstrated that highly porous sol-gel derived iron (III) oxide materials could be reduced to sub-micron-sized metallic iron by heating the materials to intermediate temperatures in a hydrogen atmosphere...

  2. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  3. Sol-Gel Derived Hafnia Coatings

    Science.gov (United States)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  4. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, Timothy Walter [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  5. Dielectric Measurements on Sol-Gel Derived Titania Films

    Science.gov (United States)

    Capan, Rifat; Ray, Asim K.

    2017-11-01

    Alternating current (AC) impedance measurements were performed on 37 nm thick nanostructured sol-gel derived anatase titania films on ultrasonically cleaned (100) p-silicon substrates at temperatures T ranging from 100 K to 300 K over a frequency range between 20 Hz and 1 MHz. The frequency-dependent behavior of the AC conductivity σ ac( f, T) obeys the universal power law, and the values of the effective hopping barrier and hopping distance were found to be 0.79 eV and 6.7 × 10-11 m from an analysis due to the correlated barrier-hopping model. The dielectric relaxation was identified as a thermally activated non-Debye process involving an activation energy of 41.5 meV.

  6. Sol-Gel Derived, Nanostructured Oxide Lubricant Coatings

    National Research Council Canada - National Science Library

    Taylor, Douglas

    2000-01-01

    In this program, we deposited oxide coatings of titanium and nickel by wet-chemical deposition methods, also referred to as sol-gel, which showed excellent tribological properties in previous investigations...

  7. Iron Oxide Silica Derived from Sol-Gel Synthesis

    Directory of Open Access Journals (Sweden)

    João Carlos Diniz da Costa

    2011-02-01

    Full Text Available In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica.

  8. Iron Oxide Silica Derived from Sol-Gel Synthesis.

    Science.gov (United States)

    Darmawan, Adi; Smart, Simon; Julbe, Anne; Diniz da Costa, João Carlos

    2011-02-17

    In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica.

  9. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  10. Iron Oxide Silica Derived from Sol-Gel Synthesis

    OpenAIRE

    João Carlos Diniz da Costa; Anne Julbe; Simon Smart; Adi Darmawan

    2011-01-01

    In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of ...

  11. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  12. Nanostructured energetic materials derived from sol-gel chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-03-15

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm.

  13. Sol-gel derived coatings for the conservation of steel

    Directory of Open Access Journals (Sweden)

    Erika Kiele

    2015-06-01

    Full Text Available In this paper, sol-gel processing route has been applied and investigated for the conservation of steel. Nanosilica coatings on steel surface have been prepared using tetraethylorthosilicate (TEOS as a starting material. The methyl-modified silica sols were obtained by mixing of 3 mas.% SiO2 sol solution with hexamethyldisilozane (HMDS. The surface of steel was coated by dip-coating technique. In order to compare the characteristics of coatings, the steel substrates were also coated with commercial polymers Paraloid B67, Cosmolloid H80 and Antik Patina. The surface morphology changes of the uncoated and coated specimens before and after photochemical ageing were investigated by scanning electron microscopy and atomic force microscopy. The structure of the prepared coatings was also investigated by FTIR spectroscopy. The hydrophobicity of surfaces was evaluated by contact angle measurements. Potentiodynamic measurements were obtained in order to compare corrosion parameters of the coatings.

  14. Synthesis and characterization of polymer-silica hybrid latexes and sol-gel-derived films

    Energy Technology Data Exchange (ETDEWEB)

    Petcu, Cristian; Purcar, Violeta [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania); Ianchiş, Raluca, E-mail: ralumoc@yahoo.com [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania); Spătaru, Cătălin-Ilie; Ghiurea, Marius; Nicolae, Cristian Andi [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania); Stroescu, Hermine [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, 060021, Bucharest (Romania); Atanase, Leonard-Ionuţ [University Apollonia, “Acad. Ioan Haulica” Research Institute, Iasi (Romania); Frone, Adriana Nicoleta; Trică, Bogdan; Donescu, Dan [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania)

    2016-12-15

    Highlights: • Si-based polymer is distributed onto the silica surface of sol-gel hybrid films. • FT-IR spectra of sol-gel derived materials confirmed the different chemical structure. • Hydrophobicity increased due to the increasing number of alkyl groups attached to the surface. - Abstract: Sol-gel derived organic-inorganic hybrid systems were obtained by applying alkaline-catalyzed co-hydrolysis and copolycondensation reactions of tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), isobutyltriethoxysilane (IBTES), diethoxydimethylsilane (DMDES), and vinyltriethoxysilane (VTES), respectively, into a polymer latex functionalized with vinyltriethoxysilane (VTES). The properties of the latex hybrid materials were analyzed by FTIR, water contact angle, environmental scanning electron microscopy (ESEM), TEM and AFM analysis, respectively. FT-IR spectra confirmed that the chemical structures of the sol-gel derived organic-inorganic materials are changed as function of inorganic precursor and Si−O−Si networks are formed during the co-hydrolysis and copolycondensation reactions. The water contact angle on the sol-gel latex film containing TEOS + VTES increased to 135° ± 2 compared to 65° ± 5 for the blank latex, due VTES incorporation into latex material. TGA curves of hybrid sample modifies against neat polymer, the thermal stability being influenced by the presence of the inorganic partner. ESEM analysis showed that the latex hybrid films prepared with different inorganic precursors were formed and the Si-based polymers were distributed on the surface of the dried sol-gel hybrid films. TEM and AFM photos revealed that the latex emulsion morphology was modified due to the VTES incorporation into system.

  15. Influence of p H on optical properties of nano structure sol-gel-derived silica films

    International Nuclear Information System (INIS)

    Heshmatpuor, F.; Adelkhani, H.; Nahavandi, M.; Noorbakhsh Shourabadi, M.

    2006-01-01

    Sol-gel derived silica films were fabricated by dip-coating onto glass microscope substrates. Film properties such as transmission and surface morphology were monitored as function of dip speed and sol p H. Film transmission was increased with increasing of p H in visible range. The surface morphology of films were investigated with scanning electron microscopy.

  16. Residual stress fields in sol-gel-derived thin TiO2 layers

    NARCIS (Netherlands)

    Teeuw, D.H.J.; Haas, M. de; Hosson, J.Th.M. De

    1999-01-01

    This paper discusses the induction of residual stresses during the curing process of thin titania layers, which are derived using a sol-gel process. During this process, stresses may build up in the spinning stage, the drying stage, and the consolidation stage. The magnitude and character of these

  17. Sol-Gel-Derived Biohybrid Materials Incorporating Long-Chain DNA Aptamers.

    Science.gov (United States)

    Carrasquilla, Carmen; Kapteyn, Emily; Li, Yingfu; Brennan, John D

    2017-08-28

    Sol-gel-derived bio/inorganic hybrid materials have been examined for diverse applications, including biosensing, affinity chromatography and drug discovery. However, such materials have mostly been restricted to the interaction between entrapped biorecognition elements and small molecules, owing to the requirement for nanometer-scale mesopores in the matrix to retain entrapped biorecognition elements. Herein, we report on a new class of macroporous bio/inorganic hybrids, engineered through a high-throughput materials screening approach, that entrap micron-sized concatemeric DNA aptamers. We demonstrate that the entrapment of these long-chain DNA aptamers allows their retention within the macropores of the silica material, so that aptamers can interact with high molecular weight targets such as proteins. Our approach overcomes the major limitation of previous sol-gel-derived biohybrid materials by enabling molecular recognition for targets beyond small molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation.

    Science.gov (United States)

    Shahramian, Khalil; Leminen, Heidi; Meretoja, Ville; Linderbäck, Paula; Kangasniemi, Ilkka; Lassila, Lippo; Abdulmajeed, Aous; Närhi, Timo

    2017-11-01

    The purpose of this study was to evaluate the effect of sol-gel derived bioactive coatings on the biaxial flexural strength and fibroblast proliferation of zirconia, aimed to be used as an implant abutment material. Yttrium stabilized zirconia disc-shaped specimens were cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n = 15) were fabricated, zirconia with sol-gel derived titania (TiO 2 ) coating, zirconia with sol-gel derived zirconia (ZrO 2 ) coating, and non-coated zirconia as a control. The surfaces of the specimens were analyzed through images taken using a scanning electron microscope (SEM), and a non-contact tapping mode atomic force microscope (AFM) was used to record the surface topography and roughness of the coated specimens. Biaxial flexural strength values were determined using the piston-on-three ball technique. Human gingival fibroblast proliferation on the surface of the specimens was evaluated using AlamarBlue assay™. Data were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test. Additionally, the biaxial flexural strength data was also statistically analyzed with the Weibull distribution. The biaxial flexural strength of zirconia specimens was unaffected (p > 0.05). Weibull modulus of TiO 2 coated and ZrO 2 coated groups (5.7 and 5.4, respectively) were lower than the control (8.0). Specimens coated with ZrO 2 showed significantly lower fibroblast proliferation compared to other groups (p sol-gel derived coatings have no influence on the flexural strength of zirconia. ZrO 2 coated specimens showed significantly lower cell proliferation after 12 days than TiO 2 coated or non-coated control. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2401-2407, 2017. © 2016 Wiley Periodicals, Inc.

  19. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy

    Directory of Open Access Journals (Sweden)

    Woobin Lee

    2015-12-01

    Full Text Available We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption (A′ vs. wavelength (λ plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  20. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  1. Chemical Processing for Sol-Gel Derived Metal Oxide Thin Films using Supercritical Carbon Dioxide Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Y; Narishige, S; Fujioka, K; Uchida, H; Koda, S, E-mail: uchidah@sophia.ac.jp [Sophia University, Department of Materials and Life Sciences, Tokyo 102-8554 (Japan)

    2011-10-29

    Chemical processing using supercritical carbon dioxide fluid (scCO{sub 2}) was demonstrated for lowering processing temperature of sol-gel-derived metal oxide thin films. The film processing was performed in a hot-wall closed vessel filled with scCO{sub 2} fluid. Precursor films of titanium dioxide (TiO{sub 2}) on soda-glass substrates prepared by sol-gel coating using Ti-alkoxide solution were converted to crystalline TiO{sub 2} (anatase) films successfully by the scCO{sub 2} treatment at a fluid pressure of 15 MPa and a substrate temperature of 300deg. C whereas no crystallization was occurred by conventional heat treatment at 400 deg. C. XPS analysis indicated that the interface reaction related to Si element was suppressed successfully by scCO{sub 2} treatment at 300 deg. C. These results suggest that the sol-gel synthesis using scCO{sub 2} fluid would be a cadidate for low-temperature processing of crystalline oxide films, which is more preferable than conventional techniques based on the heat treatment.

  2. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    Science.gov (United States)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  3. Sol-gel derived lithium-releasing glass for cartilage regeneration.

    Science.gov (United States)

    Li, Siwei; Maçon, Anthony Lb; Jacquemin, Manon; Stevens, Molly M; Jones, Julian R

    2017-07-01

    Wnt-signalling cascade is one of the crucial pathways involved in the development and homeostasis of cartilage. Influencing this pathway can potentially contribute to improved cartilage repair or regeneration. One key molecular regulator of the Wnt pathway is the glycogen synthase kinase-3 enzyme, the inhibition of which allows initiation of the signalling pathway. This study aims to utilise a binary SiO 2 -Li 2 O sol-gel derived glass for controlled delivery of lithium, a known glycogen synthase kinase-3 antagonist. The effect of the dissolution products of the glass on chondrogenic differentiation in an in vitro 3D pellet culture model is reported. Dissolution products that contained 5 mM lithium and 3.5 mM silicon were capable of inducing chondrogenic differentiation and hyaline cartilaginous matrix formation without the presence of growth factors such as TGF-β3. The results suggest that sol-gel derived glass has the potential to be used as a delivery vehicle for therapeutic lithium ions in cartilage regeneration applications.

  4. Coating of the orthopaedic titanium alloys with sol-gel derived hydroxyapatite

    International Nuclear Information System (INIS)

    Milev, A.; Green, D.; Chai, C.S.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) is known to be both biocompatible and bioactive material, however, due to its poor mechanical properties and design limitations is not suitable for applying as a load bearing implant. This could be overcome by using appropriate metallic substrates covered with HAp, derived via different techniques. These coatings allow improved adhesion strength of the load bearing substrate to the bone, resulting in shorter healing periods as well as predictable behaviour of the implant for longer periods of time. There are different techniques of producing HAp appropriate for coating purposes. Due to the small particle size of the grains derived, sol-gel route is preferable where lower sintering temperatures are of primary importance. For better adhesion between substrate and hydroxyapatite coating, the surface of titanium substrate, in this study, was converted to titanium nitride and/or oxynitride. Sintering temperatures of 900 deg C have been used for producing crystalline HAp coatings. The control of sol-gel solutions and the analysis of the coatings were carried out using XRD, SEM and DTA techniques. Results obtained indicate high quality HAp coatings can be produced on titanium substrates especially with complex shapes that benefits over the other coating methods

  5. Sol-gel derived zinc oxide films alloyed with cobalt and aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021 (India); Mehra, R.M., E-mail: rammehra2003@yahoo.co [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021 (India)

    2010-05-03

    ZnO films codoped with 5 at.% Co and 1 at.% Al were prepared by sol-gel technique on corning glass and silicon substrates with precursor sols of different pH values. The pH was varied from 5.4 to 11 by adding varying amounts of monoethanolamine to the sol. Since pH plays an important role in controlling the properties of films, we discuss in detail the effect of pH value on the structural, morphological and optical properties of the grown films. X-ray diffraction and atomic force microscopy images reveal that the size of crystallites increases with pH of the sol. The variation of pH in the reaction system influences the density of homogeneous nucleation and the crystal growth along the c-axis. High quality Co and Al codoped ZnO films annealed at 600 {sup o}C have been obtained using a sol with pH = 9. These sol-gel derived films find their suitability to be used as dilute magnetic semiconductors.

  6. Sol-gel derived zinc oxide films alloyed with cobalt and aluminium

    International Nuclear Information System (INIS)

    Sharma, Mamta; Mehra, R.M.

    2010-01-01

    ZnO films codoped with 5 at.% Co and 1 at.% Al were prepared by sol-gel technique on corning glass and silicon substrates with precursor sols of different pH values. The pH was varied from 5.4 to 11 by adding varying amounts of monoethanolamine to the sol. Since pH plays an important role in controlling the properties of films, we discuss in detail the effect of pH value on the structural, morphological and optical properties of the grown films. X-ray diffraction and atomic force microscopy images reveal that the size of crystallites increases with pH of the sol. The variation of pH in the reaction system influences the density of homogeneous nucleation and the crystal growth along the c-axis. High quality Co and Al codoped ZnO films annealed at 600 o C have been obtained using a sol with pH = 9. These sol-gel derived films find their suitability to be used as dilute magnetic semiconductors.

  7. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    Science.gov (United States)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  8. Sol-gel derived polymer composites for energy storage and conversion

    Science.gov (United States)

    Han, Kuo

    Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical

  9. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  10. Mesoporous silica thin films prepared by argon plasma treatment of sol-gel-derived precursor

    International Nuclear Information System (INIS)

    Zhang Jian; Palaniappan, Alagappan; Su Xiaodi; Tay, Francis E.H.

    2005-01-01

    Argon plasma is used to generate the mesoporous silica thin films from sol-gel-derived precursor. Poly(ethylene glycol) (PEG, MW = 400) is employed as the template, i.e., the pore-directing agent as well as the binder. The influence of the plasma parameters (plasma power and processing time) on the mesoscopic properties of silica films are investigated by scanning electron microscopy (SEM), FT-IR, low-angle X-ray scattering (SAXS), and nitrogen adsorption isotherm. It is concluded that the plasma treatment is a promising way to remove organic templates and generate mesoporous thin films. Compared to the conventional thermal calcination methods, the plasma treatment provides a promising low-temperature, low-cost and time-saving preparation process

  11. Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites

    Science.gov (United States)

    Datar, Ashwini A.; Mathe, Vikas L.

    2017-12-01

    Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.

  12. Influence of the intermediate layer on the hydrothermal stability of sol-gel derived hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    The hydrothermal stability of microporous silica hybrid sol-gel derived membranes is often only tested for either the mesoporous intermediate membrane layer or the microporous separation layer. In this work an investigation is done on the interaction between the intermediate γ-alumina layer and the

  13. Dual-analyte spectroscopic sensing in sol-gel derived polyelectrolyte-silica composite thin films.

    Science.gov (United States)

    Shi, Y; Seliskar, C J; Heineman, W R

    1998-12-01

    Ferrozine (3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p'-disulfonic acid, monosodium salt hydrate), an iron indicator, and HTPS (8-hydroxyl-1,3,6-pyrenetrisulfonic acid, trisodium salt), a pH indicator, were immobilized in sol-gel derived PDMDAAC-SiO(2) (where PDMDAAC stands for poly(dimethyldiallylammonium chloride), composite thin films via ion-exchange. The two indicators were immobilized in two adjacent sections of the same PDMDAAC-SiO(2) film which was supported on a glass optical substrate. The spectroscopic response of the film to both Fe(2+) and H(+) in solutions was investigated by attenuated total reflection (ATR) spectrometry at two well-separated wavelengths, 562 nm for Fe(2+) and 460 nm for H(+). The Ferrozine/HPTS immobilized PDMDAAC-SiO(2) films had the following characteristics: linear range, 2.5x10(-6)-5.0x10(-5) M for Fe(2+), pH 4.1-6.8 for H(+); sensitivity, 2.2x10(4) DeltaA/M for Fe(2+), 0.583 DeltaA/pH for H(+).

  14. A pentacene thin film transistor with good performance using sol-gel derived SiO2 gate dielectric layer

    Science.gov (United States)

    Cavas, M.; Al-Ghamdi, Ahmed A.; Al-Hartomy, O. A.; El-Tantawy, F.; Yakuphanoglu, F.

    2013-02-01

    A low-voltage pentacene field-effect transistor with sol-gel derived SiO2 gate dielectric was fabricated. The mobility of the transistor was achieved as high as 1.526 cm2/V on the bared SiO2/Si substrate by a higher dielectric constant. The interface state density for the transistor was found to vary from 3.8 × 1010 to 7.5 × 1010 eV-1 cm-2 at frequency range of 100 kHz-1 MHz. It is evaluated that the SiO2 derived by low cost sol-gel is quite a promising candidate as a gate dielectric layer for low-voltage pentacene field-effect transistor.

  15. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies.

    Science.gov (United States)

    Shimizu, Takayoshi; Fujibayashi, Shunsuke; Yamaguchi, Seiji; Yamamoto, Koji; Otsuki, Bungo; Takemoto, Mitsuru; Tsukanaka, Masako; Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-04-15

    A polyetheretherketone (PEEK) surface was modified using a sol-gel-derived TiO2 coating in order to confer bone-bonding ability. To enhance the bonding strength of the coating layer, pretreatment with either O2 plasma or sandblasting was performed prior to sol-gel coating. Additionally, post-treatment with acid was carried out to confer apatite (calcium phosphate)-forming ability to the surface. Biomechanical and histological analyses performed using an in vivo rabbit tibia model showed that PEEK surfaces modified with sol-gel-derived TiO2 and acid post-treatment had better bone-bonding properties than uncoated PEEK surfaces. These modified surfaces also performed well in terms of their in vitro cell responses due to their modified surface chemistries and topographies. Although O2 plasma or sandblasting treatment were, for the most part, equivocal in terms of performance, we conclude that sol-gel-derived TiO2 coating followed by acid post-treatment significantly improves the bone bonding ability of PEEK surfaces, thus rendering them optimal for their use in surgical implants. The role of polyetheretherketone (PEEK) as an alternative biomaterial to conventional metallic implant materials has become increasingly important. However, its low bone bonding ability is yet to be resolved. This in vivo and in vitro investigation on the functionalization of PEEK surfaces highlights the utility of this material in clinical interventions that require implants, and may extend range of applications of PEEK. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    Science.gov (United States)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  17. STUDY OF DENSIFICATION OF SOL-GEL DERIVED MULLITE DUE TO EXCESS IRON, NICKEL AND COPPER IONS

    Directory of Open Access Journals (Sweden)

    Roy D.

    2013-09-01

    Full Text Available Mullite (3Al2O3·2SiO2 samples doped with 0.4 M, 0.6 M, 0.8 M, 1.0 M and 1.2 M of iron, nickel and Copper, were prepared by a sol-gel process. Prepared gels were then dried, grinded, pressed into pellets and sintered at temperatures 1100°C and 1400°C for 4 h. Phase formation, densification behavior has been investigated as a function of the metal content and sintering temperature. The density of the sintered ceramics was measured using Archimedes method. The main intention is to study the role of metal ions in influencing mullitization behavior in the case of the sol-gel reaction process, in order to provide useful information of mullite. This paper deals with the effect of metal ions on mullite formation, microstructure and densification behavior in single-phase sol-gel derived mullite. The results showed with increase in concentration of metals (Fe2+, Ni2+, Cu2+, crystallization of mullite was enhanced which is evident from X-ray diffraction upto G3 and FESEM of the composites. The density of the doped samples increases with the increase of metal ion concentration as well as with the sintering temperature. Copper-doped mullite exhibits the highest density 2.46 g cm-3 at 1400°C.

  18. Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil.

    Science.gov (United States)

    Abolghasemi Mahani, A; Motahari, S; Mohebbi, A

    2017-10-11

    Oil spills are the most important threat to the sea ecosystem. The present study is an attempt to investigate the effects of sol-gel parameters on seawater decontamination from crude oil by use of flexible silica aerogel. To this goal, methyltrimethoxysilane (MTMS) based silica aerogels were prepared by two-step acid-base catalyzed sol-gel process, involving ambient pressure drying (APD) method. To investigate the effects of sol-gel parameters, the aerogels were prepared under two different acidic and basic pH values (i.e. 4 and 8) and varied ethanol/MTMS molar ratios from 5 to 15. The adsorption capacity of the prepared aerogels was evaluated for two heavy and light commercial crude oils under multiple adsorption-desorption cycles. To reduce process time, desorption cycles were carried out by using roll milling for the first time. At optimum condition, silica aerogels are able to uptake heavy and light crude oils with the order of 16.7 and 13.7, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides

    Science.gov (United States)

    Etissa, D.; Neff, M.; Pilz, S.; Ryser, M.; Romano, V.

    2012-04-01

    We present our progress in the production of ytterbium (Yb) doped optical fibers fabricated by two variants of the granulated aluminophosphosilicate method. We show advantages and disadvantages of mixing rare earth and aluminophosphosilicate granulated oxides directly (variant 1) or by using the sol-gel method to produce doped granulate material (variant 2). For both methods we studied the effects of varying the dopant concentrations and of introducing iterative melting and milling procedures. In particular, the sol-gel based method eases the inclusion of P2O5 and thus, in combination with Al2O3, higher dopant concentration of Yb and Er are possible. Sintering the sol-gel material at high temperature eliminated bubbles in the core. We fabricated optical fibers that, piecewise, between individual strong scatterers, exhibited attenuation losses as low as 0.35dB/m. For our comparative study we determined volume percentage and distribution of chemical elements in the fabricated fiber glasses by the analytical technique of Energy-Dispersive X-ray, Electro Probe Microanalysis and the degree of crystallization by X-Ray Diffraction analysis. Furthermore we measured fluctuations of the refractive index profile and scattering losses of the fiber core.

  20. Mesoporous silica matrices derived from sol-gel process assisted by low power ultrasonic activation

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2009-06-01

    Full Text Available The present work contributes to elucidating the differences between silica gels obtained by low doses ultrasonic activation, and those obtained by the conventional method, termed as classical sol gel. Silica matrices were produced by sol-gel synthesis process, assisted and non-assisted by an ultrasonic fi eld, and subsequently characterized by various methods. Nitrogen adsorption and small-angle neutron scattering (SANS measurements provided texture and microstructure of the dried gels. The adsorption results show that the sample sonicated for 2 hours presents the most ordered microstructure, characterized by pore shape close to spherical and the narrowest size distribution – about 90 % of the pores for this sample fall into the mesopore range (2–50 nm. SANS data reveal the formation of primary structural units of sizes around 1.5–2 nm which are small linear or branched polymeric species of roughly spherical shape and with rough surface. They are generated in the very early stage of sol gel process, as a result of hydrolysis and condensation reactions. The aggregated primary units form the secondary porous structure which can be described as a rough surface with fractal dimension above 2. The best porosity characteristics were obtained for the sample activated for 2 hours, indicating the optimal doses of sonication in the present conditions. Our results demonstrate the possibility of tailoring the pore size distribution using a low power ultrasonic bath.

  1. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Sol gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V

    Science.gov (United States)

    Stoch, A.; Jastrzebski, W.; Długoń, E.; Lejda, W.; Trybalska, B.; Stoch, G. J.; Adamczyk, A.

    2005-06-01

    Titanium has been used for many medical and dental applications; however, its joining to a living bone is not satisfactorily good or the implant integration with bone tissue takes several months.The aim of this work is to produce hydroxyapatite (HAP) coatings on titanium and its alloy for facilitating and shortening the processes towards osseointegration. HAP coatings were obtained by sol-gel method with sol solutions prepared from calcium nitrate tetrahydrate and triammonium phosphate trihydrate as the calcium and phosphorous sources. Two types of gelatine were added to the sol: agar-agar or animals gelatine. Both were found to enhance the formation and stability of amorphous HAP using soluble salts as the sources of calcium and phosphate. HAP coatings were deposited from HAP-GEL sol using dip-withdrawal technique, then the plates were dried and annealed at temperatures 460-750 °C. FTIR spectroscopy and XRD analysis were used to study the phase composition of phosphate coatings. Morphology and chemical analysis of HAP layers was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyser (SEM+EDX). The biological activity of sol-gel phosphate coatings was observed during thermostatic held in simulated body fluid (SBF). It was found that chemical composition and structure of HAP coatings depends on pH and final thermal treatment of the layer.

  3. Evaluation of the photocatalytic ability of a sol-gel-derived MgO-ZrO2 oxide material

    Directory of Open Access Journals (Sweden)

    Ciesielczyk Filip

    2017-02-01

    Full Text Available This paper deals with the synthesis and characterization of a novel group of potential photocatalysts, based on sol-gel-derived MgO-ZrO2 oxide material. The material was synthesized in a typical sol-gel system using organic precursors of magnesia and zirconia, ammonia as a promoter of hydrolysis and methanol as a solvent. All materials were thoroughly analyzed, including morphology and particle sizes, chemical composition, identification of characteristic functional groups, porous structure parameters and crystalline structure. The proposed methodology of synthesis resulted in obtaining pure MgO-ZrO2 oxide material with micrometric-sized particles and a relatively high surface area. The samples underwent an additional calcination process which led to the crystalline phase of zirconia being formed. The key element of the study was the evaluation of the effectiveness of decomposition of C.I. Basic Blue 9 dye. It was shown that the calcined materials exhibit both satisfactory adsorption and photocatalytic activity with respect to the decomposition of a selected model organic impurity. Total dye removal varied in the range of 50-70%, and was strongly dependent on process parameters such as quantity of photocatalyst, time of irradiation, and the addition of promoters.

  4. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  5. Enhanced Red Emission in Ultrasound-Assisted Sol-Gel Derived ZnO/PMMA Nanocomposite

    Directory of Open Access Journals (Sweden)

    Van-Tuan Mai

    2018-01-01

    Full Text Available Cost-effective methods for preparing ZnO nanostructures are of importance for the deployment of ZnO in many applications including n-type conduits, catalysts, nanophosphor, and optoelectronics. Herein, we present a room-temperature sol-gel method with the aid of ultrasonication to prepare white-emitting ZnO nanoparticles (NPs. X-ray diffraction and electron microscopic analyses revealed that the size and shape of ZnO NPs can be controlled simply by changing the concentration of the Zn precursor. The ZnO NPs had a broad photoluminescence emission, ranging from 450 nm to 800 nm, while their composite in PMMA matrix showed an enhancement in the red region induced by ZnO-PMMA interfacial band-bending effects. The results demonstrated herein promise a simple tool for control over size, shape, and emission of ZnO materials for diverse applications.

  6. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    Science.gov (United States)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  7. Magnetization and Magnetocaloric Effect in Sol-Gel Derived Nanocrystalline Copper-Zinc Ferrite.

    Science.gov (United States)

    Anwar, M S; Ahmed, Faheem; Koo, Bon Heun

    2015-02-01

    We report the sol-gel synthesis and magnetocaloric effect in nanocrystalline copper-zinc ferrite (Cu0.5Zn0.5Fe2O4). The synthesized powder was characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and magnetization measurements. The XRD results confirm the formation of single phase spinel structure. The average particle size was found to be ~58 nm. FE-SEM results suggested that the nanoparticles are agglomerated and spherical in shape. Magnetization measurement reveals that Cu0.5Zn0.5Fe2O4 nanoparticles exhibit transition temperature (Tc) above room temperature. The maximum magnetic entropy change (ΔSM)max shows interesting behaviour and was found to vary with the applied magnetic field. This nanopowder can be considered as potential material for magnetic refrigeration above room temperature.

  8. On the healing mechanism of sol-gel derived hybrid materials containing dynamic di-sulfide bonds

    NARCIS (Netherlands)

    AbdolahZadeh, M.; Esteves, A.C.C.; Van der Zwaag, S.; Garcia Espallargas, S.J.

    2013-01-01

    Sol-gel technology is increasingly being used in coatings for corrosion protection and adhesion improvement. So far, the self-healing concept in sol-gel coatings has only been approached from extrinsic healing perspective (i.e. use of nano and micro carriers of corrosion inhibitors) [1]. Despite the

  9. Formation and optical characteristics of sol-gel derived highly oriented ferroelectric (Sr,Ba)Na2O6 optical waveguide thin films

    International Nuclear Information System (INIS)

    Koo, Jun Mo; Kang, Eun Seok; Bae, Byeong Soo

    2003-01-01

    Highly c-axis oriented SBN thin films with various compositions were obtained by sol-gel process. The preferential orientation of sol-gel derived film was enhanced by poling the film with high dc electric field, and growing the film on seeded MgO substrate. The mechanisms of these methods were discussed in this study. For their optical waveguide applications, the optical properties of SBN thin films were investigated. The anisotropy of refractive indices (n o and n e ) of the oriented films decreased certainly as Sr content in the film composition increased

  10. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers.

    Science.gov (United States)

    Almeida, Rui M; Ribeiro, Tiago; Santos, Luís F

    2017-09-02

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO 1.5 . Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er 3+ was used as an internal reference to compare the intensities of the Yb 3+ PL peaks at ~ 1020 nm. The Yb 3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO₂-14 AlO 1.5 -15 YbO 1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated.

  11. Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide

    Science.gov (United States)

    Ansari, Anees A.; Azahar, Md; Malhotra, B. D.

    2012-04-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been co-immobilized onto a nanostructured-cerium oxide (Nano-CeO2) film deposited onto a indium-tin-oxide (ITO) coated glass substrate by dip-coating via sol-gel process for urea detection. This nanostructured film has characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscope (SEM) and electrochemical techniques, respectively. The particle size of the Nano-CeO2 film has been found to be 23 nm. Electrochemcial response (CV) studies show that Ur-GLDH/Nano-CeO2/ITO bioelectrode is found to be sensitive in the 10-80 mg/dL urea concentration range and can detect urea concentration upto 0.1 mg/dL level. The value of Michaelis-Menten constant (Km) estimated using Lineweaver-Burke plot found as 6.09 mg/dL indicates enhancement in the affinity and/or activity of enzyme attached to their nanobiocomposite. This bioelectrode retained 95% of enzyme activity after 6 months at 4°C.

  12. Synthesis and in vitro investigation of sol-gel derived bioglass-58S nanopowders

    Science.gov (United States)

    Joughehdoust, S.; Manafi, S.

    2012-03-01

    The aim of this research is the synthesis of bioglass-58S nanopowders by sol-gel method. Also, the effect of aging time of parent sols on the morphology, structure and particle size was investigated. Bioglass-58S powders were analyzed by X-ray diffraction patterns (XRD), Fourier transform infrared spectroscopy (FTIR), zetasizer instrument, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results showed that the powder is amorphous and glassy. According to FTIR spectroscopy, silicate bonds were formed in all powders. Zetasizer curves proved that the particle sizes of the powders and agglomerates have increased with aging time. The SEM images confirmed these results, too. Additionally, the TEM observations revealed that the increase of aging time caused the growth of grains with the size between 50-200 nm. The in vitro biological behavior of bioglass-58S powders were investigated by immersing the bioglass discs (made from the powders) in the simulated body fluid (SBF). The XRD patterns and SEM images confirmed the formation of the hydroxyapatite (HA) phase.

  13. Characterization in vitro studies and antibacterial properties on a sol-gel derived silver incorporated bioglass

    Science.gov (United States)

    Bouhazma, S.; Chajri, S.; Khaldi, M.; Sadiki, M.; Barkai, H.; Elabed, S.; Ibnsouda Koraichi, S.; El Bali, B.; Lachkar, M.

    2017-03-01

    The SiO2-CaO, SiO2-CaO-P2O5 and SiO2-CaO-P2O5-Ag2O glass systems were synthesized by the sol-gel technique and characterized with different techniques such as X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), and Environmental Scanning Electron Microscopy (ESEM). In vitro bioactivity tests were performed in Simulated Body Fluid (SBF). The antibacterial action of 65S5Ag (65%SiO2 + 24%CaO + 6%P2O5 + 5% Ag2O) is attributed exclusively to the leaching of Ag+ ions from the glass matrix. The activity of SiO2-CaO-P2O5-Ag2O was compared with that of its binary and ternary counterpart glass system. The concentrations of Ag-bioglass, in the range of 0.05 mg/mL of culture medium, were found to inhibit the growth of these bacteria.

  14. Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate.

    Science.gov (United States)

    Kim, Hae-Won; Kong, Young-Min; Bae, Chang-Jun; Noh, Yoon-Jung; Kim, Hyoun-Ee

    2004-07-01

    Fluor-hydroxyapatite (FHA) film was coated on a zirconia (ZrO(2)) substrate by a sol-gel method. An appropriate amount of F ions was incorporated into the hydroxyapatite (HA) during the preparation of the sols. The apatite phase began to crystallize after heat treatment at 400 degrees C, and increased in intensity above 500 degrees C. No decomposition was detected by X-ray diffraction analyses up to 800 degrees C, which illustrates the high thermal stability of the FHA films. The films showed a uniform and dense morphology with a thickness of approximately 1 microm after a precisely controlled heat treatment process. These FHA films adhered firmly to the zirconia substrate, representing notable adhesion strengths of approximately 70 MPa after heat treatment above 500 degrees C. The dissolution rate of the FHA coating layer varied according to the heat treatment temperature, which was closely related to the film crystallinity. The dissolution rate of the FHA film was lower than that of the HA film, suggesting the possibility of a functional gradient coating of HA and FHA. The MG63 cells seeded onto the FHA films proliferated in a similar manner to those seeded onto pure HA ceramic and a plastic control.

  15. Effect of aging temperature on formation of sol-gel derived fluor-hydroxyapatite nanoparticles.

    Science.gov (United States)

    Joughehdoust, S; Behnamghader, A; Jahandideh, R; Manafi, S

    2010-04-01

    Synthetic hydroxyapatite (HA) has been recognized as one of the most important bone substitute materials in orthopaedics and dentistry over past few decades because of its chemical and biological similarity to the mineral phase of human bone. One solution for reduction the solubility of HA in biological environments is replacing F- by OH in HA structure and forming fluor-hydroxyapatite (FHA) solid solution. In this paper, FHA nanoparticles were successfully synthesized by a sol-gel method. Also, the influence of aging temperature on formation of FHA powder was studied. Equimolar solutions of calcium nitrate tetrahydrate, triethyl phosphite and ammonium fluoride in ethanol were used as Ca, P and F precursors. After aging at different temperatures, the synthesized powders were heat treated at 550 degrees C. The powders were investigated with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED), energy dispersive analysis of X-ray (EDAX) and zetasizer measurement. The results of XRD proved the presence of fluorapatite (FA) and HA in all samples. In addition, the formation of FHA was confirmed by FT-IR results. XRD studies also showed that the crystallites were in nanometric scale. At the same time, this result was in good agreement with the result of zetasizer analysis.

  16. Growth and characterization of sol-gel derived CuGaO2 semiconductor thin films for UV photodetector application

    Science.gov (United States)

    Tsay, Chien-Yie; Chen, Ching-Lien

    2017-06-01

    In this study, a p-type wide-bandgap oxide semiconductor CuGaO2 thin film was grown on quartz substrate by sol-gel method. The authors report the influence of annealing temperature on the phase transformation, structural features, and electrical properties of sol-gel derived Cu-Ga-O thin films. At relatively low annealing temperatures (≤900 °C), the films are a mixture of CuGa2O4, CuGaO2, and CuO phases. At relatively high annealing temperatures (≥925 °C), the majority phase in the films is delafossite CuGaO2. All as-prepared Cu-Ga-O thin films exhibited p-type conductivity, as confirmed by Hall measurements. The mean electrical resistivity of the Cu-Ga-O films decreased from 3.54×104 Ω-cm to 1.35×102 Ω-cm and then increased slightly to 3.51×102 Ω-cm when the annealing temperature was increased from 850 °C to 950 °C. We found that annealing the Cu-based oxide thin films at 925 °C produced nearly phase-pure CuGaO2 thin films with good densification. Such thin films exhibited the best electrical properties: a mean electrical resistivity of 1.35×102 Ω-cm, and a mean hole concentration of 1.60×1016 cm-3. In addition, we also fabricated and characterized MSM-type CuGaO2 UV photodetectors on quartz substrates.

  17. Sol-Gel Derived Adsorbents with Enzymatic and Complexonate Functions for Complex Water Remediation

    Directory of Open Access Journals (Sweden)

    Roman P. Pogorilyi

    2017-09-01

    Full Text Available Sol-gel technology is a versatile tool for preparation of complex silica-based materials with targeting functions for use as adsorbents in water purification. Most efficient removal of organic pollutants is achieved by using enzymatic reagents grafted on nano-carriers. However, enzymes are easily deactivated in the presence of heavy metal cations. In this work, we avoided inactivation of immobilized urease by Cu (II and Cd (II ions using magnetic nanoparticles provided with additional complexonate (diethylene triamine pentaacetic acid or DTPA functions. Obtained nanomaterials were characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. According to TGA, the obtained Fe3O4/SiO2-NH2-DTPA nanoadsorbents contained up to 0.401 mmol/g of DTPA groups. In the concentration range Ceq = 0–50 mmol/L, maximum adsorption capacities towards Cu (II and Cd (II ions were 1.1 mmol/g and 1.7 mmol/g, respectively. Langmuir adsorption model fits experimental data in concentration range Ceq = 0–10 mmol/L. The adsorption mechanisms have been evaluated for both of cations. Crosslinking of 5 wt % of immobilized urease with glutaraldehyde prevented the loss of the enzyme in repeated use of the adsorbent and improved the stability of the enzymatic function leading to unchanged activity in at least 18 cycles. Crosslinking of 10 wt % urease on the surface of the particles allowed a decrease in urea concentration in 20 mmol/L model solutions to 2 mmol/L in up to 10 consequent decomposition cycles. Due to the presence of DTPA groups, Cu2+ ions in concentration 1 µmol/L did not significantly affect the urease activity. Obtained magnetic Fe3O4/SiO2-NH2-DTPA-Urease nanocomposite sorbents revealed a high potential for urease decomposition, even in presence of heavy metal ions.

  18. Entrapped Styrene Butadiene Polymer Chains by Sol-Gel-Derived Silica Nanoparticles with Hierarchical Raspberry Structures.

    Science.gov (United States)

    Vaikuntam, Sankar Raman; Stöckelhuber, Klaus Werner; Subramani Bhagavatheswaran, Eshwaran; Wießner, Sven; Scheler, Ulrich; Saalwächter, Kay; Formanek, Petr; Heinrich, Gert; Das, Amit

    2018-02-15

    A sol-gel transformation of liquid silica precursor to solid silica particles was carried out in a one-pot synthesis way, where a solution of styrene butadiene elastomer was present. The composites, thus produced, offered remarkable improvements of mechanical and dynamic mechanical performances compared to precipitated silica. The morphological analysis reveals that the alkoxy-based silica particles resemble a raspberry structure when the synthesis of the silica was carried out in the presence of polymer molecules and represent a much more open silica-network structure. However, in the absence of the polymer, the morphology of the silica particles is found to be different. It is envisaged that the special morphology of the in situ synthesized silica particles contributes to the superior reinforcement effects, which are associated with a strong silica-rubber interaction by rubber chains trapped inside the raspberry-like silica aggregates. Therefore, the interfaces are characterized in detail by low-field solid-state 1 H NMR spectroscopy, 29 Si solid-state NMR spectroscopy, and energy-dispersive X-ray spectroscopy. Low-field 1 H NMR-based double-quantum experiments provide a quantitative information about the cross-link density of the silica-filled rubber composites and about the influence of silane coupling agent on the chemical cross-link density of the network and correlates well with equilibrium swelling measurements. The special microstructure of the alkoxy-based silica was found to be associated with the interaction between alkoxy-based silica and rubber chains as a consequence of particle growth in the presence of rubber chains.

  19. Calcium phosphate sol-gel-derived coatings on titanium-aluminum-vanadium substrate for biomedical applications

    Science.gov (United States)

    Gan, Lu

    Osseointegration of implants to host bone is a necessary requirement for dental and orthopaedic implants. The rate and quality of osseointegration were enhanced through the use of calcium phosphate (Ca-P) films on metallic substrates. The present study investigates the characteristics of Ca-P films applied using sol-gel dip coating methods to sintered porous-surfaced implants. Ca-P films have been formed using Inorganic Route and Organic Route processes. It has been shown that both approaches resulted in the formation of carbonated hydroxyapatite but with different Ca/P ratios as well as different surface textures and film structures, the Inorganic Route-formed film being more porous at its outermost surface, and having a more irregular topography. An interfacial reaction product (calcium titanium oxide) was detected for the Inorganic Route-formed coatings while this interfacial phase was not detectable in the Organic Route-formed coatings. The interface tensile and shear adhesion strength properties of Ca-P films have been evaluated using an improved direct pull-off testing (ASTM C633) and a substrate straining method, respectively. For both Ca-P films, the adhesive tensile strength was higher than the failure stress of ˜38 MPa occurring between the Ca-P films and the glue or in the glue. A shear lag approach revealed a shear strength of 347 +/- 64MPa and 280 +/- 28MPa for the Inorganic Route and the Organic Route Ca-P films, respectively. In vivo animal model studies have been performed to compare the effect on early bone formation of sintered porous-surfaced implants that had been modified through the addition of Ca-P film. In Group I study (i.e. Inorganic Route-formed Ca-P-coated implants vs. non-coated implants), it has been found that the Inorganic Route-formed Ca-P film significantly enhances the early rate of bone ingrowth for sintered porous-surfaced implants. However, in Group II study (i.e. Organic Route-formed Ca-P-coated implants vs. non

  20. Paramagnetic characterization of sol-gel derived NaGd(WO4)2 for magnetic texturing

    International Nuclear Information System (INIS)

    Durairajan, A.; Thangaraju, D.; Balaji, D.; Moorthy Babu, S.

    2013-01-01

    Preparation of transparent ceramic gains much attention among laser researchers because it eliminates the toughness in high temperature crystal growth process, specifically in controlling the dispersion of dopant ions. Agglomeration free sub-micron precursor particles and novel sintering methods provide new dimension for the development of transparent ceramics. Most of the interesting results in the transparent ceramics were derived from cubic phase materials, since its isotropy and isoaxial nature leads to lower scattering of light and promote high transparency. Even though non-cubic materials are anisotropic and biaxial in nature, it can be converted to oriented transparent ceramics using high magnetic field orientation technique. In the present work, paramagnetic nature of sol-gel derived submicron NaGd(WO 4 ) 2 (NGW) were investigated for magnetic texturing. Synthesized powders were characterized by powder XRD, FT-IR, Raman, SEM, and VSM analysis. The tetragonal phase formation was investigated by powder XRD. Organic liberation with respect to temperature in the samples and carbon content in the pre-fired powder was analyzed using FT-IR results. Raman spectrum reveals the tetrahedral tungstate formation. The morphological changes at different synthesis conditions were observed with SEM micrographs. The paramagnetic property was confirmed with VSM analysis and there was no magnetic phase transition observed in field cooling curve. (author)

  1. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  2. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    Science.gov (United States)

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass

    International Nuclear Information System (INIS)

    Saboori, A.; Rabiee, M.; Moztarzadeh, F.; Sheikhi, M.; Tahriri, M.; Karimi, M.

    2009-01-01

    In this study, the synthesis of SiO 2 -CaO-P 2 O 5 -MgO bioactive glass was performed by the sol-gel method. Sol-gel-derived bioglass material was produced both in powder and in discs form by uniaxial pressing, followed by sintering at 700 deg. C. The obtained material was evaluated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses. The biocompatibility evaluation of the formed glass was assessed through in vitro cell culture [alkaline phosphatase (AP) activity of osteoblasts] experiments and immersion studies in simulated body fluid (SBF) for different time intervals while monitoring the pH changes and the concentration of calcium, phosphorus and magnesium in the SBF medium. The SEM, XRD and FTIR studies were conducted before and after soaking of the material in SBF. At first, an amorphous calcium phosphate was formed; after 7 days this surface consisted of deposited crystalline apatite. The present investigation also revealed that the sol-gel derived quaternary bioglass system has the ability to support the growth of human fetal osteoblastic cells (hFOB 1.19). Finally, this material proved to be non-toxic and compatible for the proposed work in segmental defects in the goat model in vivo

  4. Proton conducting inorganic-organic matrices based on sulfonyl- and styrene derivatives functionalized polycondensates via sol-gel processing

    International Nuclear Information System (INIS)

    Jacob, Stephane; Cochet, Sebastien; Poinsignon, Christiane; Popall, Michael

    2003-01-01

    Proton conducting inorganic-organic hybrid polymer electrolytes were developed in the last decade based on sulfonated, methacryl and epoxy functionalized alkoxysilanes for thin film cells [Electrochim. Acta 45 (2000) 137]. To improve the electrochemical stability of the materials for applications like polymer electrolyte membranes for direct methanol fuel cells, the less stable methacryl and epoxy alkoxysilanes of the former test system [Electrochim. Acta 45 (2000) 137] were replaced by styrene derivative functionalized alkoxysilanes. These alkoxysilanes were synthesized with a new modified Grignard reaction. The sol-gel materials were prepared in a two-step reaction: first, an alkoxysilane containing a sulfonated group and an alkoxysilane containing at least a nitrogen heterocycle, an amine group or a sulfonamide group were separately hydrolyzed and co-condensed each with one half of the amount of a styrene derivative functionalized alkoxysilane. Then, these two co-condensates were mixed. After evaporation of the solvent, the resin was cast in Teflon [reg ] moulds or applied on a substrate as a film and finally organically cross-linked via UV and/or thermal curing. The influence of the sample composition on the conductivity and the mechanical properties was studied. Conductivities of 3x10 -3 S cm -1 at room temperature were obtained for membranes free of water, whose precursor composition consists of 60% sulfonated alkoxysilane, finally mixed with 2 mol imidazole per mol -SO 3 H. If the imidazole is exchanged by water (max. 15 mass% absorption within membrane), the membranes show conductivities up to 8x10 -3 S cm -1 at room temperature. A thermal stability of the inorganic-organic matrix of up to 180 deg. C (<5% weight loss) was measured by thermo-gravimetric (TG) analysis

  5. The effect of post annealing treatment on the citrate sol-gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties

    Science.gov (United States)

    Brightlin, B. C.; Balamurugan, S.

    2016-11-01

    The nanocrystalline BaFe12O19 powders were obtained from citrate sol-gel combustion-derived powder upon annealing at 800-1100 °C, and explored their structural, micro-structural, optical and magnetic properties. The thermal decomposition of citrate sol-gel combustion product was verified by means of thermogravimetric and differential thermal analysis. Structural identification of the citrate sol-gel combustion powder and annealed samples were investigated by powder X-ray diffraction. Though the combustion product exhibits cubic spinel phase material, the annealed powder yields good quality nanocrystalline hexagonal BaFe12O19 phase materials. The thin plate-like flakes morphology with random particle sizes of 100-200 nm with slightly agglomerated particles of BaFe12O19 phase is analyzed by high resolution scanning electron microscopy for the good quality annealed sample. Photoluminescence emission spectrum of BaFe12O19 material reveals broad emission peak at 360 nm under the excitation wavelength of 270 nm. Interestingly, the near infrared relative reflectivity of the nanocrystalline BaFe12O19 materials obtained by citrate sol-gel synthesis method is higher than the nanocrystalline BaFe12O19 materials obtained by mechano-thermal and co-precipitation method. The present dark brown colored BaFe12O19 materials can be applied as a ceramic color pigment which includes several applications. The room temperature magnetic hysteresis loop of the annealed BaFe12O19 sample exhibits a ferromagnetic saturation magnetization, M s of 55.774 emu/g at 15 kOe.

  6. Tin dioxide sol-gel derived thin films deposited on porous silicon

    NARCIS (Netherlands)

    Cobianu, C.; Savaniu, Cristian; Buiu, Octavian; Zaharescu, Maria; Parlog, Constanta; van den Berg, Albert; Pecz, Bela; Dascula, Dan

    1996-01-01

    Undoped and Sb-doped SnO2 sol–gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on

  7. Tin dioxide sol-gel derived thin films deposited on porous silicon

    NARCIS (Netherlands)

    Cobianu, C.; Savaniu, Cristian; Buiu, Octavian; Dascalu, Dan; Zaharescu, Maria; Parlog, Constanta; van den Berg, Albert; Pecz, Bela

    1997-01-01

    Undoped and Sb-doped SnO2 sol¿gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on

  8. Formation and prevention of fractures in sol-gel-derived thin films

    NARCIS (Netherlands)

    Kappert, Emiel; Pavlenko, Denys; Malzbender, J.; Nijmeijer, Arian; Benes, Nieck Edwin; Tsai, Peichun Amy

    2015-01-01

    Sol–gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol–gel coating often induces mechanical stresses, which may fracture the thin films. An experimental

  9. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design.

    Science.gov (United States)

    Deepa, P N; Kanungo, Mandakini; Claycomb, Greg; Sherwood, Peter M A; Collinson, Maryanne M

    2003-10-15

    Sol-gel-derived silicate films were electrochemically deposited on conducting surfaces from a sol consisting of tetramethoxysilane (TMOS). In this method, a sufficiently negative potential is applied to the electrode surface to reduce oxygen to hydroxyl ions, which serves as the catalyst for the hydrolysis and condensation of TMOS. The electrodeposition process was followed by the electrochemical quartz crystal microbalance and cyclic voltammetry. The electrodeposited films were characterized for their surface morphology, porosity, and film thickness using atomic force microscopy, electrochemical probe techniques, surface area and pore size analysis, and profilometry. The electrodeposited films were found to have a completely different surface structure and to be significantly rougher relative to spin-coated films. This is likely due in part to the separation of the gelation and evaporation stages of film formation. The electrodeposited films were found to be permeable to simple redox molecules, such as ruthenium(III) hexaammine and ferrocene methanol. Film thickness can be easily varied from 15 microm by varying the electrode potential from -600 mV to more than -1000 mV, respectively. The electrodeposition process was further applied for the electroencapsulation of redox molecules and organic dyes within the silicate network. Cyclic voltammograms for the gel-entrapped ferrocene methanol (FcCH2OH) and ruthenium(II) tris(bipyridine) (Ru(bpy)3(2+)) exhibited the characteristic redox behavior of the molecules. The electroencapsulation of organic dyes in their "native" form proved to be more difficult because these species typically contain reducible functionalities that change the structure of the dye.

  10. Quartz Crystal Microbalance Coated with Sol-gel-derived Thin Films as Gas Sensor for NO Detection

    Directory of Open Access Journals (Sweden)

    S. J. O’Shea

    2003-10-01

    Full Text Available This paper presents the possibilities and properties of Indium tin oxide (ITO-covered quartz crystal as a NOx toxic gas-sensor. The starting sol-gel solution was prepared by mixing indium chloride dissolved in acetylacetone and tin chloride dissolved in ethanol (0-20% by weight. The ITO thin films were deposited on the gold electrodes of quartz crystal by spin-coating technique and subsequently followed a standard photolithography to pattern the derived films to ensure all sensors with the same sensing areas. All heat treatment processes were controlled below 500°C in order to avoid the piezoelectric characteristics degradation of quartz crystal (Quartz will lose its piezoelectricity at ~573°C due to the phase change from α to β. The electrical and structural properties of ITO thin films were characterized with Hall analysis system, TG/DTA, XRD, XPS, SEM and etc. The gas sensor had featured with ITO thin films of ~100nm as the receptor to sense the toxic gas NO and quartz crystal with frequency of 10MHz as the transducer to transfer the surface reactions (mass loading, etc into the frequency shift. A homemade setup had been employed to measure the sensor response under the static mode. The experimental results had indicated that the ITO-coated QCM had a good sensitivity for NO gas, ~12Hz/100ppm within 5mins. These results prove that the ITO-covered quartz crystals are usable as a gas sensor and as an analytical device.

  11. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs.

    Science.gov (United States)

    Lee, Whitaik David; Gawri, Rahul; Pilliar, Robert M; Stanford, William L; Kandel, Rita A

    2017-10-15

    Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this

  13. Sol-gel derived manganese-releasing bioactive glass as a therapeutical approach for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrioni, B.R.; Oliveira, A.C.; Leite, M.F.; Pereira, M.M. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2016-07-01

    Full text: Bioactive glasses (BG) have been highlighted in tissue engineering, due to their high bioactivity and biocompatibility, being potential materials for bone tissue repair. Its composition is variable and quite flexible, allowing the incorporation of therapeutic metallic ions, which has been regarded as a promising approach in the development of BG with superior properties for tissue engineering. These ions can be released in a controlled manner during the dissolution process of the glass, having the advantage of being released at the exactly implant site where they are needed, thus optimizing the therapeutic efficacy and reducing undesired side effects in the patient. Among several ions that have been studied, Manganese (Mn) has been shown to favor osteogenic differentiation. Besides, this ion is also a cofactor for several enzymes involved in remodeling of extracellular matrix, presenting an important role in cell adhesion. Therefore, it is very important to study the Mn role in the BG network and its influence on the glass bioactivity. In this context, new bioactive glass compositions derived from the 58S (60%SiO2-36%CaO-4%P2O5, mol%) were synthesized in this work, using the sol-gel method, by the incorporation of Mn into their structure. FTIR and Raman spectra showed the presence of typical BG chemical groups, whereas the amorphous structure typical of these materials was confirmed by XRD analysis, which also indicated that the Mn incorporation in the glass network was well succeeded, as its precursor did not recrystallize. The role of Mn in the glass network was also evaluated by XPS. The influence of Mn on carbonated hydroxyapatite layer formation after different periods of immersion of the BG powder in Simulated Body Fluid was evaluated using zeta potential, SEM, EDS and FTIR, whereas the controlled ion release was measured through ICP-OES. MTT assay revealed that Mn-containing BG showed no cytotoxic effect on cell culture. All these results indicate

  14. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  15. Two-Step Sintering Behavior of Sol-Gel Derived Dense and Submicron-Grained YIG Ceramics

    Science.gov (United States)

    Chen, Ruoyuan; Zhou, Jijun; Zheng, Liang; Zheng, Hui; Zheng, Peng; Ying, Zhihua; Deng, Jiangxia

    2018-04-01

    In this work, dense and submicron-grain yttrium iron garnet (YIG, Y3Fe5O12) ceramics were fabricated by a two-step sintering (TSS) method using nano-size YIG powder prepared by a citrate sol-gel method. The densification, microstructure, magnetic properties and ferromagnetic resonance (FMR) linewidth of the ceramics were investigated. The sample prepared at 1300°C in T 1, 1225°C in T 2 and 18 h holding time has a density higher than 98% of the theoretical value and exhibits a homogeneous microstructure with fine grain size (0.975 μm). In addition, the saturation magnetization ( M S) of this sample reaches 27.18 emu/g. High density and small grain size can also achieve small FMR linewidth. Consequently, these results show that the sol-gel process combined with the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense and fine-grained YIG ceramics with appropriate magnetic properties.

  16. Influence of ambient gas on the photoluminescence of sol-gel derived TiO2:Sm3+ films

    Science.gov (United States)

    Reedo, Valter; Lange, Sven; Kiisk, Valter; Lukner, Argo; Tätte, Tanel; Sildos, Ilmo

    2005-08-01

    Photoluminescence (PL) of TiO2:Sm3+ thin films was studied at RT. The films were prepared by the sol-gel spin-coating technique or by atomic layer deposition (ALD) followed by ion implantation. The PL was excited with a Nd:YAG pulse laser emitting at 355 nm. The spectrum of PL consists of intense Sm3+-specific emission lines with a well-pronounced fme structure. The influence of different gaseous environments (air, oxygen, nitrogen) or vacuum on the Sm3+ emission was investigated. In the case of a permanent irradiation of sol-gel films in an oxygen-containing environment, the PL intensity increased. The increase was significantly large but slow. The subsequent evacuation of the measurement chamber led to a rapid decrease of the emission below the detection limit. When the oxygen-containing gas was without any intermediate evacuation replaced by nitrogen, the PL intensity descended to an almost vacuum level. The subsequent exposure to oxygen led to a rather fast emission recovery. The ALD-prepared films exhibited a similar but markedly slower response. The fast response observed was attributed to the adsorption of oxygen on the surface, and the slower one, to the diffbsion of oxygen vacancies taking place under the irradiation in the bulk.

  17. Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro.

    Science.gov (United States)

    Peltola, T; Jokinen, M; Rahiala, H; Levänen, E; Rosenholm, J B; Kangasniemi, I; Yli-Urpo, A

    1999-01-01

    Sol-gel-derived SiO2 and CaO-P2O5-SiO2 have been shown to be bioactive and bone bonding. In this study bioactive sol-gel-derived SiO2 and CaO-P2O5-SiO2 systems were tested for in in vitro bioactivity. The calcined ceramic monoliths were immersed in a simulated body fluid and analyzed to follow the hydroxyapatite formation on the ceramic surface. Apatite-forming ability was investigated in terms of structural changes by changing the composition and the preparation method. The role of Ca and P dopants in the substrate structure is complicated, and careful characterization is needed. The composition and structure together determine the in vitro bioactivity. The pore structure was analyzed using N2-adsorption/desorption isotherms. The results indicate that a great mesopore volume and a wide mesopore size distribution favor hydroxycarbonate apatite nucleation and a great surface area is not needed. The performed preparation process for silica in a basic environment provides a convenient way to prepare a mesoporous material. Copyright 1999 John Wiley & Sons, Inc.

  18. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India); Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{sub 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.

  19. In situ formation of silver nanostructures produced via laser irradiation within sol-gel derived films and their interaction with a fluorescence tagged protein.

    Science.gov (United States)

    Hungerford, Graham; Toury, Marion; McLoskey, David; Finnigan, Scott; Gellie, Shaun; Holmes-Smith, A Sheila

    2010-11-28

    The presence of a conducting metal surface is known to affect the emission of a fluorophore in its proximity. This can lead to an enhancement in its fluorescence intensity along with a decrease in the fluorescence lifetime. This phenomenon, sometimes known as metal enhanced fluorescence, has implications in the area of sensing and "lab on a chip" applications. Here controlled, localised use of metallic structures can be advantageous in enhancing the detection of a fluorescent signal. The sol-gel technique has been demonstrated as a useful method by which to produce a biocompatible material. The versatility of the reaction allows for the inclusion of metal ions, which can form metallic nanostructures permitting the potential enhancement of fluorescence to be exhibited. In this work we incorporate silver nitrate within silica sol-gel derived films produced using a simple procedure at relative low temperatures (close to ambient). A compact time-resolved fluorescence microscope equipped with a semiconductor laser was used to photoactivate the silver ions to form localised metallic structures within the films. Patterning was achieved by computer control of the microscope stage and using the laser in CW mode. The films were characterised using AFM and UV-vis spectroscopy to ascertain the presence of the photoactivated silver nanostructures. The effect of the presence of these structures was elucidated by studying the time-resolved fluorescence of FITC labelled bovine serum albumin adsorbed to the films, where a decrease in the lifetime of the FITC label was observed in the location of the nanostructures.

  20. Optical and sensing properties of sol-gel derived vanadium pentoxide thin films with porous and dense structures

    Science.gov (United States)

    Babeva, T.; Awala, H.; Grand, J.; Lazarova, K.; Vasileva, M.; Mintova, S.

    2018-03-01

    The sol-gel and spin-coating methods were used for deposition of thin transparent V2O5 films on optical glass substrates and silicon wafers. Different synthesis and deposition conditions, including synthesis temperatures and post-deposition annealing, were used aiming at obtaining transparent films with high refractive index and good optical quality. The surface morphology and structure of the films were studied by SEM and XRD. The optical properties (refractive index, extinction coefficient and optical band gap) and thickness of the V2O5 films were determined from their transmittance and reflectance spectra. The potential application of the films as building blocks of optical sensors was demonstrated by preparation of multilayered structures comprising both V2O5 and BEA-type zeolite films and testing their response towards acetone vapors.

  1. Processing and mechanical behavior of Nicalon{reg_sign}/SiC composites with sol-gel derived oxide interfacial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugham, S.; Liaw, P.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1996-10-01

    Recent analytical and finite element modeling studies have indicated that low modulus interface materials are desirable for obtaining Nicalon/SiC composites with good toughness. Two oxides, Al titanate and mullite, were chosen on this basis as interface materials. The oxide and C coatings were deposited by sol-gel and CVD, respectively. Nicalon/SiC composites with oxide/C and C/oxide/C interfaces were fabricated and evaluated for flexure strength in the as-processed and oxidized conditions. Composites with C/oxide/C interfaces retained considerable strength and damage-tolerant behavior even after 500 h oxidation at 1000 C in air. The C/oxide/C interface shows promise as a viable oxidation-resistant interface alternative to C or BN interfaces.

  2. An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system.

    Science.gov (United States)

    Balamurugan, A; Balossier, G; Laurent-Maquin, D; Pina, S; Rebelo, A H S; Faure, J; Ferreira, J M F

    2008-10-01

    The purpose of this study was to evaluate the in vitro antibacterial and biological activity of silver-incorporated bioactive glass system SiO2-CaO-P2O5-Ag2O (AgBG). The bacteriostatic and bactericidal properties of this new quaternary glass system along with the ternary sol-gel glass system SiO2-CaO-P2O5 (BG) have been studied using Escherichia coli as a test micro-organism. The AGBG system thus appears to be a promising material for dental applications, since similar effects might be produced on a film of bacteria and mucous that grows on the teeth. The SiO2-CaO-P2O5-Ag2O and SiO2-CaO-P2O5 glass systems were synthesized by the sol-gel technique and characterized for their physicho-chemical properties. The antibacterial activity and biological properties were evaluated by determining the minimum inhibitory concentrations (MICs). Release of Ag+ into the culture medium was measured by inductively coupled plasma (ICP) analysis. The in vitro antibacterial action of the SiO2-CaO-P2O5-Ag2O was compared with that of its ternary counterpart glass system. The concentrations of Ag-bioglass, in the range of 0.02-0.20 mg of Ag-bioglass per millilitre of culture medium, were found to inhibit the growth of these bacteria. The Ag-bioglass not only acts bacteriostatically but it also elicited a rapid bactericidal action. A complete bactericidal effect was elicited in the early stages of the incubation at Ag-bioglass concentration of 20 mg/ml and the ternary glass system had no effect on bacterial growth or viability. The antibacterial action of Ag-bioglass was exclusively attributed to the leaching of Ag+ ions from the glass matrix. One of the major advantages of incorporating silver ions into a gel glass system is that the porous glass matrix can allow for controlled sustained delivery of the antibacterial agent to dental material, used even under anaerobic conditions such as deep in the periodontal pocket. This glass system also provides long-term action required for systems

  3. Influence of synthesis and processing conditions on the release behavior and stability of sol-gel derived silica xerogels embedded with bioactive compounds.

    Science.gov (United States)

    Morpurgo, M; Teoli, D; Palazzo, B; Bergamin, E; Realdon, N; Guglielmi, M

    2005-08-01

    The influence of processing parameters and synthetic strategies in the properties of sol-gel derived silica matrices intended for the release of bioactive compounds was investigated. The time-evolution of the matrix properties during its aging at room temperature in the dry and wet forms was investigated by measuring some of its physical and drug retaining properties. The results indicate that long term gel aging in the wet form is fundamental for the obtainment of dry matrices that are stable upon storage, a fundamental requirement for any practical application. In the case of hybrid matrices obtained by replacing part of the tetraethoxysilane precursor with mono-methyl trimethoxysilane, the order of addition of the reaction component is also important in determining the properties of the final dry gel, probably by influencing the polymer structural properties. This parameter acts synergistically with the matrix composition in determining the release properties of xerogels embedded with bioactive compounds.

  4. Role of P{sub 2}O{sub 5} on protonic conduction in sol-gel-derived binary phosphosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Abe, Y.; Kasuga, T.; Nogami, M. [Nagoya Institute of Technology, Aichi (Japan). Dept. of Materials Sceince and Engineering

    1999-11-01

    Sol-gel derived P{sub 2}O{sub 5}-SiO{sub 2} glasses were studied and a remarkable improvement in protonic conduction was observed by increasing the P{sub 2}O{sub 5} content. This was attributed to (1) the variation in glass structure including the reduction of the degree of cross-linking skeleton and the increase of specific surface area of glass due to the non-bridging oxygen (P=O) in P-O tetrahedron, (2) the formation of stronger hydrogen bond between hydroxyl group and P=O group as well as hydroxyl group and, (3) the p-{pi} resonance effect in O{sub (3-t)}PO(OH){sub t} unit. (author)

  5. Dependence Properties of Sol-Gel Derived CuO@SiO2 Nanostructure to Diverse Concentrations of Copper Oxide

    Directory of Open Access Journals (Sweden)

    V. Homaunmir

    2013-01-01

    Full Text Available Various concentrations of copper oxide were embedded into silica matrix of xerogel forms using copper source Cu(NO32·3H2O. The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS with determination of new molar ratios of the components by the sol-gel method. In this paper, three samples of copper oxide were doped into silica matrices using different concentrations. We obtained 10, 20, and 30 wt.% of copper oxide in silica matrices labeled as A, B, and C, respectively. The absorption and transmittance spectra of the gel matrices were treated at different concentrations by Uv-vis spectrophotometer. Quantities of water and transparency in the silica network change the spectral characteristics of Cu2+ ions in the host silica. Absorption spectra of the samples heated to higher concentration complete the conversion of Cu2+ ions to Cu+ ions. The effects of concentration of copper oxide were characterized by X-ray diffraction (XRD patterns, and the transmission electron microscope (TEM micrographs. Also, textural properties of samples were studied by surface area analysis (BET method at different concentrations.

  6. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy.

    Science.gov (United States)

    El Hadad, Amir A; Peón, Eduardo; García-Galván, Federico R; Barranco, Violeta; Parra, Juan; Jiménez-Morales, Antonia; Galván, Juan Carlos

    2017-01-24

    The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo's Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

  7. MECHANISMS CONTROLLING Ca ION RELEASE FROM SOL-GEL DERIVED IN SITU APATITE-SILICA NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi

    2015-03-01

    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  8. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan (China); Chen, Chan-Ching; Weng, Chung-Ming [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Tsai, Cheng-Che [Department of Digital Game and Animation Design, Tung-Fang Design University, Kaohsiung 829, Taiwan (China)

    2015-02-28

    Highly (100/110) oriented lead-free Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1−x}NbO{sub 3} (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO{sub 2}/Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P{sub r} = 14.3 μC/cm{sup 2}), piezoelectric coefficient (d{sub 33} = 48.1 pm/V), and leakage current (<10{sup −5} A/cm{sup 2}) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields.

  9. Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: In vitro hydroxyapatite formation and drug delivery.

    Science.gov (United States)

    Wang, Xiang; Zhang, Ying; Lin, Chuan; Zhong, Wenxing

    2017-12-01

    Terbium (Tb) doped mesoporous bioactive glasses (Tb/MBG) nanospheres were successfully synthesized by a facile sol-gel method using cetyl trimethyl ammonium bromide (CTAB) as the template. Results indicated that Tb/MBG had spherical morphology (100-200nm), higher specific surface area (250-350m 2 /g) and narrow mesopore size distribution (2-3nm). In order to investigate the effects of Tb on the in vitro bioactivity, prepared Tb/MBG nanospheres were soaking in simulated body fluid (SBF) for 3 days, and results indicated incorporation Tb ions in the MBG nanospheres could improve the hydroxyapatite formation ability. In addition, Tb/MBG nanospheres showed controlled release property of anti-cancer drugs (DOX) and distinct degradation in PBS with different pH values. Their release mechanism can be explained by Fickian diffusion according the Higuchi model, and the delivery of DOX from Tb/MBG nanospheres can be dominated by changing the doping concentration of Tb and the values of pH. In addition, the cytotoxicity of Tb/MBG nanospheres was assessed using a cell counting kit-8 (CCK-8), and results showed that the synthesized Tb/MBG nanospheres at low concentration had no significant cytotoxicity in MC3T3 cells. These all note that this material is a promising candidate for the therapy of bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis, Structural and Optical Characterization of Sol-Gel-Derived Y-Doped Mesoporous CeO2

    Science.gov (United States)

    Lee, Ying Chieh; Li, Kun-Dar; Lu, Cheng-Hsueh; Shen, Jung-Hsiung; Teoh, Lay Gaik; Chiang, Ghi Wei

    2013-08-01

    Highly crystalline and thermally stable undoped CeO2 and Y-doped mesoporous CeO2 particles have been synthesized from cerium(III) nitrate hexahydrate [Ce(NO3)3·6H2O] by the sol-gel method. Mesoporous CeO2 doped with 2 mol.% Y2O3 and calcined at 500°C possesses specific surface area of 130.39 m2/g and retains a surface area of 91.84 m2/g at 600°C. In comparison, undoped calcined materials have smaller specific surface areas of 43.23 m2/g and 20.24 m2/g at 500°C and 600°C, respectively. Results from x-ray diffraction (XRD) analysis, Raman spectroscopy, and selected-area electron diffraction (SAED) analysis indicated that the synthesized undoped CeO2 and Y-doped mesoporous CeO2 have the fluorite structure of bulk CeO2. The crystallite size of CeO2 is also considerably reduced by doping. The optical bandgap was found to be 3.24 eV for the undoped and 3.36 eV for the doped samples with calcination at 600°C. These results suggest that there are potential applications of Y-doped mesoporous CeO2 with nanocrystals in the design of photocatalysts and optical devices.

  11. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Amir A. El Hadad

    2017-01-01

    Full Text Available The aim of this work was to prepare hydroxyapatite coatings (HAp by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs. Thermogravimetric/Differential Thermal Analyses (TG/DTA and X-ray Diffraction (XRD have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM. The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF applying Inductively Coupled Plasma (ICP spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS. The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

  12. Low-temperature perovskite-type cadmium titanate thin films derived from a simple particulate sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M.R. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)], E-mail: mrm41@cam.ac.uk; Fray, D.J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2009-02-15

    Low-temperature perovskite-type cadmium titanate (CdTiO{sub 3}) with a nanocrystalline and mesoporous structure was prepared at various Ti:Cd molar ratios by a straightforward particulate sol-gel route. The prepared sols had a narrow particle size distribution, in the range 23-26 nm. X-ray diffraction and Fourier transform infrared spectroscopy revealed that the powders contained a mixture of ilmenite-CdTiO{sub 3}, perovskite-CdTiO{sub 3}, anatase and rutile phases, depending on the annealing temperature and the Ti:Cd molar ratio. Perovskite-CdTiO{sub 3} was the major type obtained from cadmium-prominent powders at low temperature, whereas ilmenite-CdTiO{sub 3} was the major type obtained from titanium-prominent powders at high temperature. It was observed that the anatase-to-rutile phase transformation accelerated with decreasing Ti:Cd molar ratio. Furthermore, the ilmenite-to-perovskite phase transformation accelerated with a decrease in both the Ti:Cd molar ratio and the annealing temperature. The crystallite sizes of the ilmenite- and perovskite-CdTiO{sub 3} phases reduced with increasing the Ti:Cd molar ratio. Field emission scanning electron microscopic analysis revealed that the average grain size of the thin films decreased with an increase in the Ti:Cd molar ratio. Moreover, atomic force microscope images showed that CdTiO{sub 3} thin films had a columnar-like morphology. Based on Brunauer-Emmett-Taylor analysis, cadmium titanate powder containing Ti:Cd = 75:25 showed the greatest surface area and roughness and the smallest pore size among all the powders annealed at 500 deg. C. This is one of the smallest crystallite sizes and largest surface areas reported in the literature, and can be used in many applications in areas from optical electronics to gas sensors.

  13. Sol-gel processes and materials. January 1970-August 1988 (Citations from the US Patent data base). Report for January 1970-August 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This bibliography contains citations of selected patents concerning Sol-Gel processes and Sol-Gel derived materials and products. Selected patents include Sol-Gel compositions, ceramic and refractory materials, fabrication of silica glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, Sol-Gel production of microspheres, Sol-Gel thin films and coatings, photographic materials, and dental materials. (Contains 71 citations fully indexed and including a title list.)

  14. Sol-gel-based biosensing applied to medicinal science.

    Science.gov (United States)

    Moreira, Felismina T C; Moreira-Tavares, Ana P; Sales, M Goreti F

    2015-01-01

    Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications.

  15. Study of the surface modification with oleic acid of nanosized HfO{sub 2} synthesized by the polymerized complex derived sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Gonzalez, R., E-mail: rramos.phd@gmail.com [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25250 (Mexico); Garcia-Cerda, L.A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25250 (Mexico); Quevedo-Lopez, M.A. [University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021 (United States)

    2012-06-01

    The synthesis of nanosized hafnium oxide by the polymerized complex derived sol-gel method is reported. The structural and morphological characterization of the HfO{sub 2} was carried out by X-ray diffraction and scanning electron microscopy. The surface of hafnium oxide nanoparticles was modified by capping with oleic acid. The nanoparticle surface area was measured by the gas adsorption technique in order to determine the minimal amount of oleic acid needed to obtain a uniform coverage of the hafnium oxide. The existence of organic layer can be confirmed by Fourier transform spectroscopy, solid state nuclear magnetic resonance spectroscopy, thermal gravimetric analysis and transmission electron microscopy. The FTIR and solid state NMR results reveal that oleic acid is chemisorbed as a carboxylate onto the HfO{sub 2} nanoparticle surface and confirm the formation of a monomolecular layer of oleic acid surrounding the HfO{sub 2}. The cover density of oleic acid on the HfO{sub 2} increases with the amount of oleic acid used to modify the nanoparticles and the surface properties of HfO{sub 2} nanoparticles modified with oleic acid change from hydrophilic to hydrophobic.

  16. Electrical characteristics and density of states of thin-film transistors based on sol-gel derived ZnO channel layers with different annealing temperatures

    Science.gov (United States)

    Wang, S.; Mirkhani, V.; Yapabandara, K.; Cheng, R.; Hernandez, G.; Khanal, M. P.; Sultan, M. S.; Uprety, S.; Shen, L.; Zou, S.; Xu, P.; Ellis, C. D.; Sellers, J. A.; Hamilton, M. C.; Niu, G.; Sk, M. H.; Park, M.

    2018-04-01

    We report on the fabrication and electrical characterization of bottom gate thin-film transistors (TFTs) based on a sol-gel derived ZnO channel layer. The effect of annealing of ZnO active channel layers on the electrical characteristics of the ZnO TFTs was systematically investigated. Photoluminescence (PL) spectra indicate that the crystal quality of the ZnO improves with increasing annealing temperature. Both the device turn-on voltage (Von) and threshold voltage (VT) shift to a positive voltage with increasing annealing temperature. As the annealing temperature is increased, both the subthreshold slope and the interfacial defect density (Dit) decrease. The field effect mobility (μFET) increases with annealing temperature, peaking at 800 °C and decreases upon further temperature increase. An improvement in transfer and output characteristics was observed with increasing annealing temperature. However, when the annealing temperature reaches 900 °C, the TFTs demonstrate a large degradation in both transfer and output characteristics, which is possibly produced by non-continuous coverage of the film. By using the temperature-dependent field effect measurements, the localized sub-gap density of states (DOSs) for ZnO TFTs with different annealing temperatures were determined. The DOSs for the subthreshold regime decrease with increasing annealing temperature from 600 °C to 800 °C and no substantial change was observed with further temperature increase to 900 °C.

  17. Wood-Based Nanocomposite Derived by in Situ Formation of Organic-Inorganic Hybrid Polymer within Wood via a Sol-Gel Method.

    Science.gov (United States)

    Dong, Xiaoying; Zhuo, Xiao; Wei, Jie; Zhang, Gang; Li, Yongfeng

    2017-03-15

    Solid wood materials and wood-plastic composites as two kinds of lightweight materials are attracting great interest from academia and industry due to their green and recycling nature. However, the relatively lower specific strength limits their wider applications. In particular, solid wood is vulnerable to moisture and decay fungi in nature, resulting in its poor durability for effectively long-term utilization. Inspired from the porous structure of wood, we propose a new design to build a wood-based nanocomposite with higher specific strength and satisfactory durability by in situ generation of organic-inorganic hybrid polymer within wood via a sol-gel method. The derived composite has 50-1200% improvement of impact toughness, 56-192% improvement of tensile strength, and 110-291% improvement of flexural strength over those of typical wood-plastic composites, respectively; and even 34% improvement of specific tensile strength than that of 36A steel; 208% enhancement of hardness; and 156% enhancement of compression strength than those of compared solid wood, respectively; as well as significantly improved dimensional stability and decay resistance over those of untreated natural wood. Such materials could be potentially utilized as lightweight and high-strength materials for applications in construction and automotive industries. This method could be extended to constitute other inorganic nanomaterials for novel organic-inorganic hybrid polymer within wood.

  18. Development and Characterization of 316 L Stainless Steel Coated by Melt-derived and Sol-gel derived 45S5 Bioglass for orthopedic applications

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Naghib

    2012-03-01

    Full Text Available The 316L austenitic stainless steel (SS was coated by 45S5 bioactive glass produced by melting and sol-gel techniques to increase the bioactivity and to provide a high mechanical strength for orthopedic and dental applications. The morphologies of coated specimens were investigated by scanning electron microscopy (SEM. Then, the coated specimens were immersed in simulated body fluid (SBF at 37°C for 14 days, and their microstructures after withdrawal were also investigated by SEM. All the specimens were analyzed by FTIR and XRD in order to survey the formation of hydroxyapatite layer.

  19. Identification of TiO2 clusters present during synthesis of sol-gel derived TiO2 nano-particles

    DEFF Research Database (Denmark)

    Simonsen, Morten Enggrob; Søgaard, Erik Gydesen

    Synthesis of titanium dioxide nanoparticles with controlled size distribution and morphology are of great interest for many applications i.e. photocatalysis and dye sensitized solar cells (DSSC). The sol-gel method has some advantages over other preparation techniques in the many parameters, which...

  20. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  1. In Vitro and In Vivo Evaluation of Sol-Gel Derived TiO2 Coatings Based on a Variety of Precursors and Synthesis Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2014-01-01

    Full Text Available The effect of synthesis way of TiO2 coatings on biocompatibility of transplanted materials using an in vitro and in vivo rat model was investigated. TiO2 layers were synthesized by a nonaqueous sol-gel dip-coating method on stainless steel 316L substrates applying two different precursors and their combination. Morphology and topography of newly formed biomaterials were determined as well as chemical composition and elemental distribution of a surface samples. In vitro tests were conducted by adipose-derived mesenchymal stem cells cultured on TiO2 coatings and stainless steel without coatings to assess the bioreactivity of obtained materials. A positive biological effect of TiO2/316L/1 coatings—based on titanium(IV ethoxide—was found in both in vitro and in vivo models. The TiO2/316L/1 exhibited the highest roughness and the lowest titanium concentration in TiO2 than TiO2/316L/2—based on titanium(IV propoxide and TiO2/316L/3—based on both above-mentioned precursors. The proper fibroblast-like morphology and higher proliferation rate of cells cultured on TiO2/316L/1 were observed when compared to the other biomaterials. No inflammatory response in the bone surrounding implant covered by each of the obtained TiO2 was present. Our results showed that improvement of routinely used stainless steel 316L with TiO2/316L/1 layer can stimulate beneficial biological response.

  2. White phosphor using Yb3+-sensitized Er3+-and Tm3+-doped sol-gel derived lead-fluorosilicate transparent glass ceramic excited at 980 nm

    Science.gov (United States)

    Tavares, M. C. P.; da Costa, E. B.; Bueno, L. A.; Gouveia-Neto, A. S.

    2018-01-01

    Generation of primary colors and white light through frequency upconversion using sol-gel derived 80SiO2:20PbF2 vitroceramic phosphors doped with Er3+, Er3+/Yb3+, Tm3+/Yb3+, and Er3+/Tm3+/Yb3+ excited at 980 nm is demonstrated. For Er3+ and Er3+/Yb3+ doped samples emissions were obtained in the blue (410 nm), green (530, and 550 nm) and red (670 nm) regions, corresponding to the 2H9/2 → 4I15/2,2H11/2 → 4I15/2, 4S3/2 → 4I152 and 4F9/2 → 4I15/2 transitions of Er3+, respectively. The codoping with Yb3+ ions altered the spectral profile of most of the emissions compared to the single doped samples, resulting in changes in the emitted color, in addition to a significant increase in the emission intensity. In Tm3+/Yb3+ co-doped samples visible emissions in the blue (480 nm), and red (650 nm), corresponding to transitions 1G4 → 3H6 and 1G4 → 3F4 of Tm3+, respectively, were obtained. The emission intensity around 480 nm overcome the red emission, and luminescence showed a predominantly blue tone. White light with CIE-1931 coordinates (0.36; 0.34) was produced by homogeneously mixing up powders of heat treated at 400 °C co-doped samples 5.0Er3+/5.0Yb3+ and 0.5Tm3+/2.5Yb3+ in the mass ratio of 13%, and 87%, respectively. The measured emission spectrum for a sample resulting from the mixture showed a profile with very good agreement with the spectrum found from the superimposition of the spectra of the co-doped samples.

  3. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  4. Sol-gel-derived carbon ceramic electrode containing 9,10-phenanthrenequinone, and its electrocatalytic activity toward iodate.

    Science.gov (United States)

    Yang, Z; Wang, P; Zhang, W; Zhu, G

    2001-10-01

    9,10-Phenanthrenequinone (PQ) supported on graphite powder by adsorption was dispersed in propyltrimethoxysilane-derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified carbon ceramic electrode. In this configuration, PQ acts as a catalyst, graphite powder guarantees conductivity by percolation, the silicate provides a rigid porous backbone, and the propyl groups endow hydrophobicity and thus limit the wetting region of the modified electrode. Square-wave voltammetry was exploited to investigate the pH-dependent electrochemical behavior of the composite electrode and an almost Nernstian response was obtained from pH 0.42 to 6.84. Because the chemically modified electrode can electrocatalyze the reduction of iodate in acidic aqueous solution (pH 2.45), it was used as an amperometric sensor for the determination of iodate in table salt. The advantages of the electrode are that it can be polished in the event of surface fouling, it is simple to prepare, has excellent chemical and mechanical stability, and the reproducibility of surface-renewal is good.

  5. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  6. Fast Processing of Sol-Gel TCO

    NARCIS (Netherlands)

    Deelen, J. van; Rem, M.; Arfsten, N.; Buskens, P.P.

    2016-01-01

    TCOs are usually deposited using sputtering or chemical vapor deposition, which have a yield of typically 50-75%. The sol gel method does not need low pressure and can be done with a high precursor yield in the range of 90 – 100%. Sol gel enables also the TCO function as a planarization or

  7. Anion embedded sol-gel films on Al for corrosion protection

    International Nuclear Information System (INIS)

    Sheffer, Mari; Groysman, Alec; Starosvetsky, David; Savchenko, Natali; Mandler, Daniel

    2004-01-01

    We report here on the successful incorporation of organic anions into a sol-gel film on Al as a means of enhancing the protection against corrosion. Following our previous study where we showed that hydrophobic sol-gel films provided pronounced corrosion inhibition, we studied the corrosion inhibition that phenylphosphonic acid (PPA) has when embedded inside a thin sol-gel coating on Al. The anion of this organic anion tends to stay inside a phenyltrimethoxysilane (PTMOS) based sol-gel film due to π-interactions. Our findings, which are derived primarily from potentiodynamic polarization measurements, electrochemical noise, scanning electron microscopy measurements and Auger electron spectroscopy (AES), clearly show that the organic phosphonate adds to the protection efficiency of the sol-gel film

  8. Study of catalytic properties of sol-gel-derived CoO x -SiO2 film systems by the example of the growth of carbon nanomaterials

    Science.gov (United States)

    Levitskii, V. S.; Maksimov, A. I.; Moshnikov, V. A.; Terukov, E. I.

    2014-07-01

    Film catalytic samples in the Si-Co-O system in the composition range from 15 to 90 mol % Co have been prepared using the sol-gel technology. Carbon nanomaterials have been fabricated by pyrolytic synthesis using these films as catalysts. Raman spectroscopy of materials has shown that multiwalled carbon nanotubes are formed by pyrolysis on catalytic films containing Co3O4. The dependence of the carbon material length on the synthesis time has been considered. It has been shown that the average growth rate of tubes and fibers is ˜3 μm/min.

  9. Structure/Property Relationships for Sol-gel Derived YBa2Cu3O7-d and SrTiO3 Films

    Science.gov (United States)

    Dawley, Jeff; Clem, Paul; Siegal, Michael; Overmyer, Don

    2001-03-01

    Solution deposition of c-axis oriented YBa2Cu3O7-d (YBCO) films on buffered RABiT substrates is a potential method for rapid, low cost production of superconducting tapes for power transmission and other applications. For this work, 100-250 nm thick YBCO and SrTiO3 (STO) films have been prepared by spin-coating and dip-coating sol-gel solutions onto LaAlO3 (100) and RABiT Ni (200) substrates. Biaxially textured STO coatings have been deposited on LaAlO3 and RABiT Ni by using a "templating" technique and controlling growth temperature and pO2. YBCO films grown on STO coated LaAlO3 possess comparable superconducting properties to YBCO films grown directly on LaAlO3 ( 1 MA/cm2 at 77K), indicating that a high quality STO layer does not degrade the crystalline quality of the YBCO. The effects of processing parameters on the STO buffer layer and novel processing techniques for decreasing the processing time and simplifying the integration of sol-gel YBCO with Ni substrates will be discussed. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US Dept. Of Energy under contract DE-AC04-94A185000.

  10. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingming, E-mail: liumm@mail.hzau.edu.cn [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Pi, Jiangyan; Wang, Xiaojie; Huang, Rong; Du, Yamei; Yu, Xiaoyang; Tan, Wenfeng; Liu, Fan [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Shea, Kenneth J., E-mail: kjshea@uci.edu [Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (United States)

    2016-08-17

    A pH-responsive surface molecularly imprinted poly(ionic liquids) (MIPILs) was prepared on the surface of multiwall carbon nanotubes (MWCNTs) by a sol-gel technique. The material was synthesized using a 3-aminopropyl triethoxysilane modified multiwall carbon nanotube (MWCNT-APTES) as the substrate, bovine serum albumin (BSA) as the template molecule, an alkoxy-functionalized IL 1-(3-trimethoxysilyl propyl)-3-methyl imidazolium chloride ([TMSPMIM]Cl) as both the functional monomer and the sol-gel catalyst, and tetraethoxysilane (TEOS) as the crosslinking agent. The molecular interaction between BSA and [TMSPMIM]Cl was quantitatively evaluated by UV–vis spectroscopy prior to polymerization so as to identify an optimal template/monomer ratio and the most suitable pH value for the preparation of the MWCNTs@BSA-MIPILs. This strategy was found to be effective to overcome the problems of trial-and-error protocol in molecular imprinting. The optimum synthesis conditions were as follows: template/monomer ratio 7:20, crosslinking agent content 2.0–2.5 mL, temperature 4 °C and pH 8.9 Tris–HCl buffer. The influence of incubation pH on adsorption was also studied. The result showed that the imprinting effect and selectivity improved significantly with increasing incubation pH from 7.7 to 9.9. This is mainly because the non-specific binding from electrostatic and hydrogen bonding interactions decreased greatly with the increase of pH value, which made the specific binding affinity from shape selectivity strengthened instead. The polymers synthesized under the optimal conditions were then characterized by BET surface area measurement, FTIR, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The adsorption capacity, imprinting effect, selective recognition and reusability were also evaluated. The as-prepared MWCNTs@BSA-MIPILs were also found to have a number of advantages including high surface area (134.2 m{sup 2} g{sup −1}), high adsorption

  11. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Liu, Mingming; Pi, Jiangyan; Wang, Xiaojie; Huang, Rong; Du, Yamei; Yu, Xiaoyang; Tan, Wenfeng; Liu, Fan; Shea, Kenneth J.

    2016-01-01

    A pH-responsive surface molecularly imprinted poly(ionic liquids) (MIPILs) was prepared on the surface of multiwall carbon nanotubes (MWCNTs) by a sol-gel technique. The material was synthesized using a 3-aminopropyl triethoxysilane modified multiwall carbon nanotube (MWCNT-APTES) as the substrate, bovine serum albumin (BSA) as the template molecule, an alkoxy-functionalized IL 1-(3-trimethoxysilyl propyl)-3-methyl imidazolium chloride ([TMSPMIM]Cl) as both the functional monomer and the sol-gel catalyst, and tetraethoxysilane (TEOS) as the crosslinking agent. The molecular interaction between BSA and [TMSPMIM]Cl was quantitatively evaluated by UV–vis spectroscopy prior to polymerization so as to identify an optimal template/monomer ratio and the most suitable pH value for the preparation of the MWCNTs@BSA-MIPILs. This strategy was found to be effective to overcome the problems of trial-and-error protocol in molecular imprinting. The optimum synthesis conditions were as follows: template/monomer ratio 7:20, crosslinking agent content 2.0–2.5 mL, temperature 4 °C and pH 8.9 Tris–HCl buffer. The influence of incubation pH on adsorption was also studied. The result showed that the imprinting effect and selectivity improved significantly with increasing incubation pH from 7.7 to 9.9. This is mainly because the non-specific binding from electrostatic and hydrogen bonding interactions decreased greatly with the increase of pH value, which made the specific binding affinity from shape selectivity strengthened instead. The polymers synthesized under the optimal conditions were then characterized by BET surface area measurement, FTIR, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The adsorption capacity, imprinting effect, selective recognition and reusability were also evaluated. The as-prepared MWCNTs@BSA-MIPILs were also found to have a number of advantages including high surface area (134.2 m 2  g −1 ), high adsorption capacity

  12. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  13. Preparation and optical properties of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} thin films derived by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiwei [School of Physics and Nuclear Energy Engineering, Beihang University, No. 37 XueYuan Road, HaiDian District, Beijing 100191 (China); Zhang Junying, E-mail: zjy@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, No. 37 XueYuan Road, HaiDian District, Beijing 100191 (China); Li Yuan; Chen Ziyu; Wang Tianmin [School of Physics and Nuclear Energy Engineering, Beihang University, No. 37 XueYuan Road, HaiDian District, Beijing 100191 (China)

    2010-05-01

    ZnGa{sub 2}O{sub 4}:Cr{sup 3+} thin films with bright red emission were synthesized using a sol-gel process, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and UV-vis and fluorescence spectrophotometry measurements. Effects of calcining temperature, film thickness, calcining duration and substrates on the crystal structure and photoluminescent property have been investigated. It is found that the crystallinity, Ga/Zn ratio and band gap energy (E{sub g}) are significant factors influencing optical characteristics, while the nature of substrates affect the surface morphologies of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} thin films.

  14. Small angle neutron scattering of sol-gel derived nano-sized oligosiloxanes for fabrication of inorganic-organic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hwan; Lee, Tae Ho; Bae, Byeong Soo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2005-07-01

    Inorganic-organic materials (HYBRIMER) synthesized by non-hydrolytic sol-gel method were characterized by Small Angle Neutron Scattering (SANS) spectra. They could be successfully synthesized in nano scale and effectively controlled to various sized oligosiloxanes using different silicate precursors such as 3-methacryloxypropyltrimethoxysilane (MPTS), 3-glycidoxypropyltrimethoxysilane (GPTS), 3-aminopropyltrimethoxysilane (APTS) and diphenylsilanediol (DPSD). Samples were prepared as following; MD (MPTS-DPSD), GD (GPTS-DPSD) and MAD (MPTSAPTS- DPSD). Their nano structures depending on compositions were analyzed by SANS. As a result, it can be confirmed that the control of particle size in HYBRIMER was achieved through a changing the kind and the amount of precursors. The oligosiloxanes with various sizes and organic groups were synthesized and characterized.

  15. Effect of Al and N Doping on Structural and Optical Properties of Sol-Gel Derived ZnO Thin Films

    International Nuclear Information System (INIS)

    Bangbai, C.; Chongsri, K.; Pecharapa, W.; Techitdheera, W.

    2013-01-01

    In this work, the preparation of ZnO, N-doped ZnO (NZO), Al-doped ZnO (AZO) and Al, N-doped ZnO (ANZO) thin films by the sol-gel spin-coating method is reported. The structural properties and surface morphologies of films were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optical properties of the films were interpreted from their transmission spectra using UV-VIS spectrophotometer. The XRD and SEM results disclosed that the crystallization quality and grain size of as-prepared films were highly influenced by N and Al doping. UV-VIS spectrophotometer results indicated that Al and N additives could significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films. (author)

  16. Effect of magnesia on the degradability and bioactivity of sol-gel derived SiO2-CaO-MgO-P2O5 system glasses.

    Science.gov (United States)

    Ma, J; Chen, C Z; Wang, D G; Jiao, Y; Shi, J Z

    2010-11-01

    Mesoporous 58SiO(2)-(38-x)CaO-xMgO-4P(2)O(5) glasses (where x=0, 5, 10 and 20 mol%) have been prepared by the sol-gel synthesis route. The effects of the substitution of MgO for CaO on glass degradation and bioactivity were studied in tris-(hydroxymethyl)-aminomethane and hydrochloric acid buffer solution (Tris-HCl) and simulated body fluid (SBF), respectively. It is observed that the synthesized glasses with various MgO contents possess the similar textural properties. The studies of in vitro degradability and bioactivity show that the rate of glass degradation gradually decreases with the increase of MgO and the formation of apatite layer on glass surface is retarded. The influences of the composition upon glass properties are explained in terms of their internal structures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Site-selective spectroscopy in Sm(3+)-doped sol-gel-derived nano-glass-ceramics containing SnO(2) quantum dots.

    Science.gov (United States)

    Yanes, A C; Velázquez, J J; Del-Castillo, J; Méndez-Ramos, J; Rodríguez, V D

    2008-07-23

    Nano-glass-ceramics of composition 95SiO(2)-5SnO(2) doped with 0.4 Sm(3+) (mol%) were synthesized by the thermal treatment of precursor sol-gel glasses. Structural and luminescence measurements were carried out. The precipitated SnO(2) nanocrystals in the glass matrix constitute a wide bandgap quantum-dot system with size comparable to the bulk exciton Bohr radius. A site-selective excitation, by energy transfer from the semiconductor host, reveals that a fraction of the Sm(3+) ions are incorporated in the SnO(2) nanocrystals, whereas the rest remains in the silica glassy phase. An evolution in the Sm(3+) emission spectra has been observed when the SnO(2) nanocrystals are excited with different UV wavelengths, which has been ascribed to selective excitation of nanocrystal sets with predetermined size.

  18. Enhanced self-repairing capability of sol-gel derived SrTiO3/nano Al2O3 composite films

    International Nuclear Information System (INIS)

    Yao, Manwen; Peng, Yong; Xiao, Ruihua; Li, Qiuxia; Yao, Xi

    2016-01-01

    SrTiO 3 /nano Al 2 O 3 inorganic nanocomposites were prepared by using a conventional sol-gel spin coating process. For comparison, SrTiO 3 films doped by equivalent amount of sol-Al 2 O 3 have also been investigated. Aluminum deposited by using vacuum evaporation was used as the top electrode. The nanocomposites exhibited a significantly enhanced dielectric strength of 506.9 MV/m, which was increased by 97.4% as compared with the SrTiO 3 films doped with sol-Al 2 O 3 . The leakage current maintained of the same order of microampere until the ultimate breakdown of the nanocomposites. The excellent electrical performances are ascribed to the anodic oxidation reaction in origin, which can repair the internal and/or surface defects of the films.

  19. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells

    Directory of Open Access Journals (Sweden)

    B. L. Guo

    2014-09-01

    Full Text Available The fabrication of environmental-friendly Cu2ZnSnS4 (CZTS thin films with pure kesterite phase is always a challenge to researchers in the field of solar cells. We introduce a simple non-vacuum sol-gel method to fabricate kesterite CZTS films. Ethylenediamine is used as the chelating agent and stabilizer and plays an important role in preparing stable precursor. X-ray diffraction, Raman and scanning electron microscopy studies suggest that the microstructure and optical properties of CZTS films depend strongly on annealing temperatures. The temperature dependence of conductivity of 500 °C annealed CZTS film shows that the Mott law dominates in the low temperature region and thermionic emission is predominant at high temperatures.

  20. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes.

    Science.gov (United States)

    Liu, Mingming; Pi, Jiangyan; Wang, Xiaojie; Huang, Rong; Du, Yamei; Yu, Xiaoyang; Tan, Wenfeng; Liu, Fan; Shea, Kenneth J

    2016-08-17

    A pH-responsive surface molecularly imprinted poly(ionic liquids) (MIPILs) was prepared on the surface of multiwall carbon nanotubes (MWCNTs) by a sol-gel technique. The material was synthesized using a 3-aminopropyl triethoxysilane modified multiwall carbon nanotube (MWCNT-APTES) as the substrate, bovine serum albumin (BSA) as the template molecule, an alkoxy-functionalized IL 1-(3-trimethoxysilyl propyl)-3-methyl imidazolium chloride ([TMSPMIM]Cl) as both the functional monomer and the sol-gel catalyst, and tetraethoxysilane (TEOS) as the crosslinking agent. The molecular interaction between BSA and [TMSPMIM]Cl was quantitatively evaluated by UV-vis spectroscopy prior to polymerization so as to identify an optimal template/monomer ratio and the most suitable pH value for the preparation of the MWCNTs@BSA-MIPILs. This strategy was found to be effective to overcome the problems of trial-and-error protocol in molecular imprinting. The optimum synthesis conditions were as follows: template/monomer ratio 7:20, crosslinking agent content 2.0-2.5 mL, temperature 4 °C and pH 8.9 Tris-HCl buffer. The influence of incubation pH on adsorption was also studied. The result showed that the imprinting effect and selectivity improved significantly with increasing incubation pH from 7.7 to 9.9. This is mainly because the non-specific binding from electrostatic and hydrogen bonding interactions decreased greatly with the increase of pH value, which made the specific binding affinity from shape selectivity strengthened instead. The polymers synthesized under the optimal conditions were then characterized by BET surface area measurement, FTIR, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The adsorption capacity, imprinting effect, selective recognition and reusability were also evaluated. The as-prepared MWCNTs@BSA-MIPILs were also found to have a number of advantages including high surface area (134.2 m(2) g(-1)), high adsorption capacity (55.52

  1. Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment

    International Nuclear Information System (INIS)

    Sameie, H.; Salimi, R.; Sabbagh Alvani, A.A.; Sarabi, A.A.; Moztarzadeh, F.; Tahriri, M.

    2010-01-01

    A novel nanostructure pigment of Eu 2+ doped SrMgAl 2 SiO 7 was prepared via the sol-gel route. The phase composition and condition of crystallites during heating were characterized by X-ray diffraction (XRD) analysis. Investigation of optical properties by spectrophotometer illustrated that under short ultraviolet excitation wavelength, the main emission peak occurred at about 415-420 nm. Also, relatively pure purplish blue color was observed that can be ascribed to the 4f 6 5d 1 ( 2 D)→4f 7 ( 8 S 7/2 ) transition of Eu 2+ . The effect of calcination temperature on the luminescence properties of the phosphors was evaluated and, also in this case, scanning electron microscope (SEM) was employed. From colorimetry results, color coordinations of phosphor shift towards the deep blue region as calcination temperature increases. Finally, grain size of products at optimum calcination temperature was estimated to be about 20-30 nm using Scherrer's equation, which was consistent with transmission electron microscopy (TEM) observations.

  2. Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol-gel derived hybrid foams

    Directory of Open Access Journals (Sweden)

    Agda Aline Rocha de Oliveira

    2009-06-01

    Full Text Available Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of these glasses with the flexibility of polymers. In this work it was evaluated the effect of increasing the PVA content of the on structural characteristics and mechanical properties of hybrid. The hybrids were prepared with 70 wt. (% SiO2-30 wt. (% CaO and PVA fractions of 20 to 60 wt. (% by the sol-gel method. The structural and mechanical characterization was done by FTIR, SEM and compression tests. To reduce the acidic character of the hybrids due to the catalysts added, different neutralization solutions were tested. The calcium acetate alcoholic solution was the best neutralizing method, resulting in foams with final pH of about 7.0 and small sample contraction. The foams presented porosity of 60-85 wt. (% and pore diameters of 100-500 μm with interconnected structure. An increase of PVA fraction in the hybrids improved their mechanical properties. The scaffolds produced provided a good environment for the adhesion and proliferation of osteoblasts.

  3. Facile Sol-Gel Derived Crater-like Dual-functioning TiO2 Electron Transport Layer for High Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Ma, Sunihl; Ahn, Jihoon; Oh, Yunjung; Kwon, Hyeok-Chan; Lee, Eunsong; Kim, Kyungmi; Yun, Seong-Cheol; Moon, Jooho

    2018-04-05

    Organic-inorganic hybrid perovskite solar cells (PSCs) are considered promising materials for low-cost solar energy harvesting technology. An electron transport layer (ETL), which facilitates the extraction of photo-generated electrons and their transport to the electrodes, is a key component in planar perovskite solar cells. In this study, a new strategy to concurrently manipulate the electrical and optical properties of ETLs to improve the performance of PSCs is demonstrated. A careful control over the Ti alkoxide-based sol-gel chemistry leads to a crater-like porous/blocking bilayer TiO2 ETL with relatively uniform surface pores of 220 nm diameter. Additionally, the phase separation promoter added to the precursor solution enables nitrogen doping in the TiO2 lattice, thus generating oxygen vacancies. The crater-like surface morphology allows for better light transmission due to reduced reflection, while the electrically conductive crater-like bilayer ETL enhances charge extraction and transport. Through these synergetic improvements in both optical and electrical properties, the power conversion efficiency of crater-like bilayer TiO2 ETL-based PSCs could be increased from 13.7% to 16.0% as compared to conventional dense TiO2-based PSCs.

  4. Far-infrared properties of sol-gel derived PbZr0.52Ti0.48O3 thin films on Pt-coated substrates

    International Nuclear Information System (INIS)

    Kafadaryan, E A; Hovsepyan, R K; Khachaturova, A A; Aghamalyan, N R; Shirinyan, G O; Manukyan, A L; Vardanyan, R S; Hayrapetyan, A G; Grigoryan, S G; Vardanyan, E S

    2003-01-01

    Polycrystalline tetragonal PbZr 0.52 Ti 0.48 O 3 (PZT) thin films have been deposited on the nickel and (111) platinum coated (110) sapphire substrates by the sol-gel method. Optical properties of the PZT thin films were studied using far-infrared reflectivity spectroscopy in the 200-10 000 cm -1 frequency range at 300 K. The frequency dependence of the optical characteristics (σ, ε, -Im ε -1 ) of the films were calculated by the Kramers-Kronig transformation of the reflectivity spectra and analysed by the Drude-Lorentz model. The frequency dependence of the optical conductivity, σ(ω), of the PZT films deposited on platinum coated sapphire is well described by the free-carrier term and an overdamped mid-infrared component. Sapphire/Pt/PZT structures reveal semiconductor properties (effective carrier concentration N/m* is up to 10 20 cm -3 , plasma minimum is located near 3000 cm -1 ). This effect can be related to the favourable influence of the platinum electrode on the charge carrier density at Pt/PZT contact and formation of the interfacial conductive layer

  5. Effect of Annealing Temperature on Structural, Optical, and Electrical Properties of Sol-Gel Spin-Coating-Derived Cu2ZnSnS4 Thin Films

    Science.gov (United States)

    Hosseinpour, Rabie; Izadifard, Morteza; Ghazi, Mohammad Ebrahim; Bahramian, Bahram

    2018-02-01

    The effect of annealing temperature on structural, optical, and electrical properties of Cu2ZnSnS4 (CZTS) thin films grown on a glass substrate by spin coating sol-gel technique has been studied. Structural study showed that all samples had kesterite crystalline structure. Scanning electron microscopy images showed that the crystalline quality of the samples was improved by heat treatment. Optical study showed that the energy gap values for the samples ranged from 1.55 eV to 1.78 eV. Moreover, good optical conductivity values (1012 S-1 to 1014 S-1) were obtained for the samples. Investigation of the electrical properties of the CZTS thin films showed that the carrier concentration increased significantly with the annealing temperature. The photoelectrical behavior of the samples revealed that the photocurrent under light illumination increased significantly. Overall, the results show that the CZTS thin films annealed at 500°C had better structural, optical, and electrical properties and that such CZTS thin films are desirable for use as absorber layers in solar cells. The photovoltaic properties of the CZTS layer annealed at 500°C were also investigated and the associated figure of merit calculated. The results showed that the fabricated ZnS-CZTS heterojunction exhibited good rectifying behavior but rather low fill factor.

  6. Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass.

    Science.gov (United States)

    Balamurugan, Anbalagan; Balossier, Gerard; Kannan, Sanjeevi; Michel, Jean; Rebelo, Avito H S; Ferreira, Jose M F

    2007-03-01

    A CaO-P(2)O(5)-SiO(2)-ZnO bioglass was formed by the sol-gel technique and characterized by Raman spectroscopy, X-ray diffraction, energy dispersive X-ray analysis (EDXA) and scanning electron microscopy (SEM). The surface reactivity of the resultant glass-ceramic specimens was analyzed by immersion studies in simulated body fluid (SBF). SEM-EDXS and inductively coupled plasma atomic emission spectrometry techniques were used to monitor changes in the glass surface and SBF composition. Osteoblast cell culture experiments were performed to assess the biocompatibility and the alkaline phosphatase activity. Cell counts of the osteoblasts cultured on the bioglass samples were studied and compared with the polystyrene plates. The cells cultured on the bioglass disks consistently showed a higher alkaline phosphatase activity and cell counts compared to cells cultured on either polystyrene plates or the base CaO-P(2)O(5)-SiO(2) bioglass. This was due to cell proliferation and differentiation promoted by the zinc-substituted bioglass.

  7. Sol-gel-derived bioactive glass containing SiO2-MgO-CaO-P2O5 as an antibacterial scaffold.

    Science.gov (United States)

    Fooladi, Abbas Ali Imani; Hosseini, Hamideh Mahmoodzadeh; Hafezi, Forough; Hosseinnejad, Fatemeh; Nourani, Mohammad Reza

    2013-06-01

    Bioactive glass (BG) composites with a base of SiO2-Na2O-CaO-P2O5 are biocompatible biomaterials. The assessment of their abilities for medical applications has interested researchers. We produced a BG-containing SiO2-MgO-CaO-P2O5 by the sol-gel method. To determine the antibacterial effects, we analyzed the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) properties of this product on three microorganisms, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, known causative agents for biofilm formation on implant surfaces. In addition, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to study the cytotoxic effects of our composite on animal cells. Our results demonstrated that our BG product inhibited the growth of bacteria in a concentration-dependent manner without any cytotoxic effects. Therefore, our BG product can be utilized as an appropriate implant for treating bone and tooth defects. Copyright © 2012 Wiley Periodicals, Inc.

  8. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy.

    Science.gov (United States)

    Shen, Sibo; Cai, Shu; Xu, Guohua; Zhao, Huan; Niu, Shuxin; Zhang, Ruiyue

    2015-05-01

    In this study, bioglass-ceramic coatings were prepared on magnesium alloy substrates through sol-gel dip-coating route followed by heat treatment at the temperature range of 350-500°C. Structure evolution, bond strength and corrosion resistance of samples were studied. It was shown that increasing heat treatment temperature resulted in denser coating structure as well as increased interfacial residual stress. A failure mode transition from cohesive to adhesive combined with a maximum on the measured bond strength together suggested that heat treatment enhanced the cohesion strength of coating on the one hand, while deteriorated the adhesion strength of coating/substrate on the other, thus leading to the highest bond strength of 27.0MPa for the sample heat-treated at 450°C. This sample also exhibited the best corrosion resistance. Electrochemical tests revealed that relative dense coating matrix and good interfacial adhesion can effectively retard the penetration of simulated body fluid through the coating, thus providing excellent protection for the underlying magnesium alloy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances.

    Science.gov (United States)

    Demirci, Selim; Yurddaskal, Metin; Dikici, Tuncay; Sarıoğlu, Cevat

    2018-03-05

    In this work, iodine (I) doped hollow and mesoporous Fe 2 O 3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe 2 O 3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe 2 O 3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe 2 O 3 particles were formed. The optical band gap values of the Fe 2 O 3 photocatalysts changed between 2.104 and 1.93eV. Photocatalytic efficiency of Fe 2 O 3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe 2 O 3 photocatalyst had 97.723% photodegradation rate and 8.638×10 -2 min -1 kinetic constant which showed the highest photocatalytic activity within 45min. Moreover, stability and reusability experiments of Fe 2 O 3 photocatalysts were carried out. The Fe 2 O 3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe 2 O 3 is a good candidate for photocatalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In vitro characterisation of a sol-gel derived in situ silica-coated silicate and carbonate co-doped hydroxyapatite nanopowder for bone grafting.

    Science.gov (United States)

    Latifi, Seyed Mohsen; Fathi, Mohammadhossein; Sharifnabi, Ali; Varshosaz, Jaleh

    2017-06-01

    Design and synthesis of materials with better properties and performance are essential requirements in the field of biomaterials science that would directly improve patient quality of life. For this purpose, in situ silica-coated silicate and carbonate co-doped hydroxyapatite (Sc/S.C.HA) nanopowder was synthesized via the sol-gel method. Characterisation of the prepared nanopowder was carried out by XRD, FTIR, TEM, SEM, EDX, ICP, zeta potential, acid dissolution test, and cell culture test. The substitution of the silicate and carbonate ions into hydroxyapatite structure was confirmed by FTIR analysis. XRD analysis showed that silica is an amorphous phase, which played a role in covering the surface of the S.C.HA nanoparticles as confirmed by acid dissolution test. Low thickness and low integrity of the amorphous silica surface layer facilitated ions release from S.C.HA nanoparticles into physiological saline solution. Zeta potential of the prepared nanopowder suspended in physiological saline solution was -27.3±0.2mV at pH7.4. This negatively charged surface, due to the presence of amorphous silica layer upon the S.C.HA nanoparticles, not only had an accelerating effect on in vitro biomineralization of apatite, but also had a positive effect on cell attachment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sensitized luminescence through nanoscopic effects of ZnO encapsulated in SiO2:Tb3+ sol gel derived phosphor

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Ntwaeaborwa, O.M.; Swart, H.C.; Ngaruiya, J.M.; Hillie, K.T.

    2009-01-01

    Terbium (1 mol%) doped ZnO-SiO 2 binary system was prepared by a sol-gel process. Nanoscopic effects of ZnO on the photoluminescence (PL) and the cathodoluminescence (CL) properties were studied. Defects emission from ZnO nanoparticles was measured at 560 nm and the line emission from Tb 3+ ions in SiO 2 :Tb 3+ and ZnO-SiO 2 :Tb 3+ with a major peak at 542 nm was measured. The PL excitation wavelength for 542 nm Tb 3+ emission was measured at ∼320 nm in both SiO 2 :Tb 3+ and ZnO-SiO 2 :Tb 3+ . The CL data showed quenched luminescence of the ZnO nanoparticles at 560 nm from a composite of ZnO-SiO 2 :Tb 3+ and a subsequent increase in 542 nm emission from the Tb 3+ ions. This suggests that energy was transferred from the ZnO nanoparticles to enhance the green emission of the Tb 3+ ions. The PL and CL properties of ZnO-SiO 2 :Tb 3+ binary system and possible mechanism for energy transfer from the ZnO nanoparticles to Tb 3+ ions are discussed.

  12. Sensitized luminescence through nanoscopic effects of ZnO encapsulated in SiO{sub 2}:Tb{sup 3+} sol gel derived phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Dhlamini, M.S., E-mail: mdhlamini@csir.co.z [National Center for Nanostructured Materials (NCNSM), CSIR (South Africa); Physics Department, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa); Ntwaeaborwa, O.M., E-mail: ntwaeab.sci@ufs.ac.z [Physics Department, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa); Swart, H.C. [Physics Department, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa); Ngaruiya, J.M. [Physics Department, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa); Department of Physics, Jomo Kenyatta Uniiversity of Agriculture and Technology, PO Box 62000, 00200 Nairobi (Kenya); Hillie, K.T. [National Center for Nanostructured Materials (NCNSM), CSIR (South Africa); Physics Department, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa)

    2009-12-01

    Terbium (1 mol%) doped ZnO-SiO{sub 2} binary system was prepared by a sol-gel process. Nanoscopic effects of ZnO on the photoluminescence (PL) and the cathodoluminescence (CL) properties were studied. Defects emission from ZnO nanoparticles was measured at 560 nm and the line emission from Tb{sup 3+} ions in SiO{sub 2}:Tb{sup 3+} and ZnO-SiO{sub 2}:Tb{sup 3+} with a major peak at 542 nm was measured. The PL excitation wavelength for 542 nm Tb{sup 3+} emission was measured at approx320 nm in both SiO{sub 2}:Tb{sup 3+} and ZnO-SiO{sub 2}:Tb{sup 3+}. The CL data showed quenched luminescence of the ZnO nanoparticles at 560 nm from a composite of ZnO-SiO{sub 2}:Tb{sup 3+} and a subsequent increase in 542 nm emission from the Tb{sup 3+} ions. This suggests that energy was transferred from the ZnO nanoparticles to enhance the green emission of the Tb{sup 3+} ions. The PL and CL properties of ZnO-SiO{sub 2}:Tb{sup 3+} binary system and possible mechanism for energy transfer from the ZnO nanoparticles to Tb{sup 3+} ions are discussed.

  13. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  14. Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline Sr(Ti1-xFex)O3-δThin Films.

    Science.gov (United States)

    Wang, Yi-Guang; Tang, Xin-Gui; Liu, Qiu-Xiang; Jiang, Yan-Ping; Jiang, Li-Li

    2017-09-08

    Sr(Ti 1- x Fe x )O 3-δ (0 ≤ x ≤ 0.2) thin films were grown on Si(100) substrates with LaNiO₃ buffer-layer by a sol-gel process. Influence of Fe substitution concentration on the structural, ferroelectric, and magnetic properties, as well as the leakage current behaviors of the Sr(Ti 1- x Fe x )O 3-δ thin films, were investigated by using the X-ray diffractometer (XRD), atomic force microscopy (AFM), the ferroelectric test system, and the vibrating sample magnetometer (VSM). After substituting a small amount of Ti ion with Fe, highly enhanced ferroelectric properties were obtained successfully in SrTi 0.9 Ti 0.1 O 3-δ thin films, with a double remanent polarization (2 P r ) of 1.56, 1.95, and 9.14 μC·cm -2 , respectively, for the samples were annealed in air, oxygen, and nitrogen atmospheres. The leakage current densities of the Fe-doped SrTiO₃ thin films are about 10 -6 -10 -5 A·cm -2 at an applied electric field of 100 kV·cm -1 , and the conduction mechanism of the thin film capacitors with various Fe concentrations has been analyzed. The ferromagnetic properties of the Sr(Ti 1- x Fe x )O 3-δ thin films have been investigated, which can be correlated to the mixed valence ions and the effects of the grain boundary. The present results revealed the multiferroic nature of the Sr(Ti 1- x Fe x )O 3-δ thin films. The effect of the annealing environment on the room temperature magnetic and ferroelectric properties of Sr(Ti 0.9 Fe 0.1 )O 3-δ thin films were also discussed in detail.

  15. The effect of dual complexing agents of lactic and citric acids on the formation of sol-gel derived Ag–PbTiO3 percolative thin film

    International Nuclear Information System (INIS)

    Su, Yanbo; Hu, Tao; Tang, Liwen; Weng, Wenjian; Han, Gaorong; Ma, Ning; Du, Piyi

    2014-01-01

    Controlling the formation of conductive particles to be nano-scale is important for achieving percolation effect in metal dispersed thin film composite to contribute extraordinary dielectric properties required for miniaturization of electronic devices. In this paper, lactic acid (LA) and citric acid (CA) were used as dual complexing agents to prepare a typical Ag nanoparticle dispersed PbTiO 3 (PTO) composite thin film by using a sol-gel method. The phase structure of the thin film and the coordination effect between complexing agent and metallic ions were investigated. It revealed that LA coordinated with Ti 4+ and Pb 2+ and CA coordinated with Ag + . Lead was fixed inside the gel network by LA and restricted to evaporate during heat treatment thus the pyrochlore phase was prevented from forming in the thin film. Ag + was coordinated by CA and the diffusion and thus aggregation of silver during gelation and annealing process were weakened. Silver nanoparticles dispersed in the PTO matrix formed with dual complexing agents of LA and CA introduced during the preparation process. The composite thin film of perfect perovskite phase with silver nanoparticles embedded was obtained at the molar ratio of LA/lead = 0.5 and CA/lead = 0.5. The dielectric constant of the thin film with silver nanoparticles is 5 times higher than that without silver nanoparticles. - Highlights: • Ag nanoparticle–PbTiO 3 percolative film with high dielectric property is prepared. • Evaporation of lead was prevented by coordinating Pb with lactic acid agent. • Dual complexing agents contribute block and pinning effects to form Ag nanoparticles

  16. Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline Sr(Ti1−xFexO3−δ Thin Films

    Directory of Open Access Journals (Sweden)

    Yi-Guang Wang

    2017-09-01

    Full Text Available Sr(Ti1−xFexO3−δ (0 ≤ x ≤ 0.2 thin films were grown on Si(100 substrates with LaNiO3 buffer-layer by a sol-gel process. Influence of Fe substitution concentration on the structural, ferroelectric, and magnetic properties, as well as the leakage current behaviors of the Sr(Ti1−xFexO3−δ thin films, were investigated by using the X-ray diffractometer (XRD, atomic force microscopy (AFM, the ferroelectric test system, and the vibrating sample magnetometer (VSM. After substituting a small amount of Ti ion with Fe, highly enhanced ferroelectric properties were obtained successfully in SrTi0.9Ti0.1O3−δ thin films, with a double remanent polarization (2Pr of 1.56, 1.95, and 9.14 μC·cm−2, respectively, for the samples were annealed in air, oxygen, and nitrogen atmospheres. The leakage current densities of the Fe-doped SrTiO3 thin films are about 10−6–10−5 A·cm−2 at an applied electric field of 100 kV·cm−1, and the conduction mechanism of the thin film capacitors with various Fe concentrations has been analyzed. The ferromagnetic properties of the Sr(Ti1−xFexO3−δ thin films have been investigated, which can be correlated to the mixed valence ions and the effects of the grain boundary. The present results revealed the multiferroic nature of the Sr(Ti1−xFexO3−δ thin films. The effect of the annealing environment on the room temperature magnetic and ferroelectric properties of Sr(Ti0.9Fe0.1O3−δ thin films were also discussed in detail.

  17. New infrared-assisted method for sol-gel derived ZnO:Ag thin films: Structural and bacterial inhibition properties.

    Science.gov (United States)

    González-Penguelly, Brenely; Morales-Ramírez, Ángel de Jesús; Rodríguez-Rosales, Miriam Guadalupe; Rodríguez-Nava, Celestino Odín; Carrera-Jota, María Luz

    2017-09-01

    A new sol-gel method, based on crystallization with Infrared heating, was developed to obtain ZnO:Ag thin films. The common sol, with zinc acetate as precursor and silver nitrate as doping source (1, 3 and 5 % molar), isopropanol and distilled water as solvents and monoethanolamine as stabilizer agent; was modified with Pluronic F127 and diethylene glycol as rheological agents, and with urea as fuel to produce enough energy to the combustion and to promote the crystallization process. Later, Corning glass-substrates were dipped into the sol at a constant speed of 3mms -1 . To provide the necessary energy for obtaining the hexagonal ZnO structure of the coatings during the drying and consolidation process, instead of using the common furnace heat-treatment, the films were heated by means of an infrared (IR) ceramic lamp (800W) for 15, 30, 45, 60 and 180 minutes, and the effect of this annealing method was analyzed. The structural properties were examined by means of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), whereas morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The examination revealed a homogeneous distribution of particles with the characteristic pores of pluronic F127, and the coating roughness had an average value of 100nm by AFM. To evaluate the effect on the number of dipping cycles and the IR-treatment on the thickness, ellipsometry results for 1, 3 and 5 deposits were analyzed and showed increments of 780, 945 and 1082nm, respectively. Finally, to test of the antibacterial activity, instead of the common one-microorganism approach, environmental microorganisms that grow with expose of the broth to the ambient conditions were employed (microbial consortium), which is a real environmental condition. The biological test was carried out by kinetic growth inhibition (optical density) of heterotrophic bacteria in culture liquid media under conditions of light, light-dark and

  18. The Sol-Gel-Xerogel Transition

    Science.gov (United States)

    1993-11-01

    relative mobili- ty are supported by the ESR (Electron Spin Resonance) studies of * * * Ikoma et al. [301 demonstrating that polyamine copper(II) chelates...deactivation of the triplet state of the molecule in the case of RTP. Recent studies on the photoisomerization of azobenzene in sol-gel glass films by

  19. Fluorescence metrology of silica sol-gels

    Indian Academy of Sciences (India)

    We have developed a new method for measuring in-situ the growth of the nanometre-size silica particles which lead to the formation of sol-gel glasses. This technique is based on the decay of fluorescence polarisation anisotropy due to Brownian rotation of dye molecules bound to the particles. Results to date give near ...

  20. Micro-ion beam analysis of physico-chemical reactions in vitro induced by nano-structured sol-gel derived bioactive glasses

    International Nuclear Information System (INIS)

    Lao, J.

    2007-07-01

    The study of bioactive glasses is a multi-field area of research aiming at a major goal: the development of new generation biomaterials that would be able to bond with host tissues through the formation of a strong interfacial bond, together with helping the body heal itself through the stimulation of specific cellular responses. Thus clinical applications of bioactive glasses mainly concern dental surgery and orthopedics, for filling osseous defects. For this purpose, we have elaborated bioactive glasses in the binary SiO 2 -CaO system, ternary SiO 2 -CaO-P 2 O 5 system, and for the first time, to our knowledge, strontium-doped SiO 2 -CaO-SrO and SiO 2 -CaO-P 2 O 5 -SrO glasses. The materials were elaborated using the sol-gel process, which allowed the synthesis of nano-porous materials with great purity and homogeneity. The bio-activity of the glasses was clearly demonstrated in vitro: in contact with biological fluids, the whole lot of mate-rials were able to induce the formation of a Ca-P-Mg layer a few microns thick at their surface. Our work is characterized by the use of PIXE-RBS nuclear microprobes to study the bioactive glass/biological fluids interface. Thanks to these methods we obtained chemical maps that made possible the analysis of major and trace elements concentrations at the interface. Moreover, quantitative information regarding the local reactivity of glasses were acquired. These data are important to evaluate the kinetics and amplitude of the physico-chemical reactions involved in the bio-activity process. Thus, we highlighted that the binary glass is the highest reactive regarding the dissolution of the glassy matrix as well as the first appearance of the Ca-P rich layer. However the Ca/P atomic ratio calculated at the glass/biological fluids interface decreases slowly, indicating that the Ca-P-Mg layer encounters difficulties to be changed into a more stable apatitic phase. For the P-containing glasses, the de-alkalinization of the matrix and

  1. Modified sol-gel coatings for biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Beganskiene, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Raudonis, R [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Jokhadar, S Zemljic [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Batista, U [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Kareiva, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania)

    2007-12-15

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  2. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Low temperature bonding of silicon wafers was achieved using sol-gel technology. The initial sol-gel chemistry of the coating solution was found to influence the mechanical properties of the resulting bonds. More precisely, the influence of parameters such as the alkoxide concentration, water-to-alkoxide molar ratio, pH, and solution aging on the final bond morphologies and interfacial fracture energy was studied. The thickness and density of the sol-gel coating were characterised using ellipsometry. The corresponding bonded specimens were investigated using attenuated total reflectance Fourier transformed infrared spectroscopy to monitor their chemical composition, infrared imaging to control bond integrity, and cross-sectional transmission electron microscopy to study their microstructure. Their interfacial fracture energy was measured using microindentation. An optimum water-to-alkoxide molar ratio of 10 and hydrolysis water at pH = 2 were found. Such conditions led to relatively dense films (> 90%), resulting in bonds with a fracture energy of 3.5 J/m 2 , significantly higher than those obtained using classical hydrophilic bonding (typically 1.5-2.5 J/m 2 ). Ageing of the coating solution was found to decrease the bond strength

  4. Epoxy Sol-Gel Hybrid Thermosets

    Directory of Open Access Journals (Sweden)

    Angels Serra

    2016-02-01

    Full Text Available Sol-gel methodologies are advantageous in the preparation of hybrid materials in front of the conventional addition of nanoparticles, because of the fine dispersion of the inorganic phase that can be reached in epoxy matrices. In addition, the use of organoalkoxysilanes as coupling agents allows covalent linkage between organic and inorganic phases, which is the key point in the improvement of mechanical properties. The sol-gel process involves hydrolysis and condensation reactions under mild conditions, starting from hydrolysable metal alkoxides, generally alkoxy silanes. Using the sol-gel procedure, the viscosity of the formulation is maintained, which is an important issue in coating applications, whereas the transparency of the polymer matrix is also maintained. However, only the proper combination of the chemistries and functionalities of both organic and inorganic structures leads to thermosets with the desired characteristics. The adequate preparation of hybrid epoxy thermosets enables their improvement in characteristics such as mechanical properties (modulus, hardness, scratch resistance, thermal and flame resistance, corrosion and antimicrobial protection, and even optical performance among others.

  5. Screen-printable sol-gel enzyme-containing carbon inks.

    Science.gov (United States)

    Wang, J; Pamidi, P V; Park, D S

    1996-08-01

    Enzymes usually cannot withstand the high-temperature curing associated with the thick-film fabrication process and require a separate immobilization step in connection with the production of single-use biosensors. We report on the development of sol-gel-derived enzyme-containing carbon inks that display compatibility with the screen-printing process. Such coupling of sol-gel and thick-film technologies offers a one-step fabrication of disposable enzyme electrodes, as it obviates the need for thermal curing. The enzyme-containing sol-gel carbon ink, prepared by dispersing the biocatalyst, along with the graphite powder and a binder, within the sol-gel precursors, is cured very rapidly (10 min) at low temperature (4 °C). The influence of the ink preparation conditions is explored, and the sensor performance is evaluated in connection with the incorporation of glucose oxidase or horseradish peroxidase. The resulting strips are stable for at least 3 months. Such sol-gel-derived carbon inks should serve as hosts for other heat-sensitive biomaterials in connection with the microfabrication of various thick-film biosensors.

  6. Sol-gel synthesis of hydroxyapatite; Sintese de hidroxiapatita via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P., E-mail: michelledunin@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  7. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides.

    Science.gov (United States)

    Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    2017-11-02

    The fluorolytic sol-gel synthesis for binary metal fluorides (AlF₃, CaF₂, MgF₂) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF₅, Ca₂AlF₇, LiMgAlF₆). The formation and crystallization of nanoscopic ternary CaAlF₅ and Ca₂AlF₇ sols in ethanol were studied by 19 F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF₅, Ca₂AlF₇, and LiMgAlF₆ xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19 F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF₅ and Ca₂AlF₇ derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  8. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides

    Directory of Open Access Journals (Sweden)

    Alexander Rehmer

    2017-11-01

    Full Text Available The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2 has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6. The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance spectroscopy, as well as transmission electron microscopy (TEM. The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA. The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  9. Industrial applications of sol-gel technology

    International Nuclear Information System (INIS)

    Tuloch, S.M.; Tulloch, G.E.

    1995-01-01

    The purpose of this paper has been to provide a broad, rather than comprehensive view. We have presented a range of applications and only a selection of involved companies and researchers and have relied to a large extent on published information. Nevertheless, we are sure that our view of the importance of Sol-gel technology as an emerging technology, with enormous impact across a wide range of manufacturing, is demonstrated. Applications which are either in production or have been foreshadowed include four broad categories: coatings, fibres, powders and monoliths

  10. Influence of high temperature processing of sol-gel derived barium titanate thin films deposited on platinum and strontium ruthenate coated silicon wafers

    NARCIS (Netherlands)

    Stawski, Tomasz; Vijselaar, Wouter Jan, Cornelis; Göbel, Ole; Veldhuis, Sjoerd; Smith, B.F.; Blank, David H.A.; ten Elshof, Johan E.

    2012-01-01

    Thin films of barium titanate (BTO) of 200 nm thickness, derived from an alkoxide¿carboxylate sol¿gel process, were deposited on Pt/Ti and SrRuO3/ZrO2¿8%Y2O3 coated Si wafers. Films with a dense columnar microstructure were obtained by repeated deposition of thin amorphous layers from

  11. Spontaneous Pattern Formation Induced by Bénard-Marangoni Convection for Sol-Gel-Derived Titania Dip-Coating Films: Effect of Co-solvents with a High Surface Tension and Low Volatility.

    Science.gov (United States)

    Uchiyama, Hiroaki; Matsui, Tadayuki; Kozuka, Hiromitsu

    2015-11-17

    Evaporation-driven surface tension gradient in the liquid layer often causes the convective flow, i.e., Bénard-Marangoni convection, resulting in the formation of cell-like patterns on the surface. Here, we prepared sol-gel-derived titania films from Ti(OC3H7(i))4 solutions by dip coating and discussed the effect of the addition of co-solvents with a high surface tension and low volatility on the spontaneous pattern formation induced by Bénard-Marangoni convection. Propylene glycol (PG, with a surface tension of 38.6 mN m(-1)) and dipropylene glycol (DPG, with a surface tension of 33.9 mN m(-1)) were added to the coating solutions containing 2-propanol (2-Pr, with a surface tension of 22.9 mN m(-1)) for controlling the evaporation-driven surface tension gradient in the coating layer on a substrate. During dip coating at a substrate withdrawal speed of 50 cm min(-1) in a thermostatic oven at 60 °C, linearly arranged cell-like patterns on a micrometer scale were spontaneously formed on the titania gel films, irrespective of the composition of coating solutions. Such surface patterns remained even after the heat treatment at 200 and 600 °C, where the densification and crystallization of the titania films progressed. The width and height of the cell-like patterns increased with increasing PG and DPG contents in the coating solutions, where the addition of PG resulted in the formation of cells with a larger height than DPG.

  12. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    Science.gov (United States)

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Electrical and impedance spectroscopy analysis of sol-gel derived spin coated Cu2ZnSnS4 solar cell

    Science.gov (United States)

    Gupta, Goutam Kumar; Garg, Ashish; Dixit, Ambesh

    2018-01-01

    We carried out electrical and impedance studies on solution derived Al:ZnO/ZnO/CdS/Cu2ZnSnS4/Mo/Glass multilayered solar cell structures to understand their impact on photovoltaic performance. The Cu2ZnSnS4 layer is synthesized on a molybdenum (Mo) coated soda lime glass substrate as an absorber and characterized intensively to optimize the absorber physical properties. The optimized Cu2ZnSnS4 is p-type with 5.8 × 1017 cm-3 hole carrier concentration. The depletion width of the junction is around 20.5 nm and the diffusion capacitance is ˜35.5 nF for these devices. We observed relatively large minority carrier life time ˜23 μs for these structures using open voltage decay analysis. The measured Cu2ZnSnS4/MoS2 and Cu2ZnSnS4/CdS interface resistances are 7.6 kΩ and 12.5 kΩ, respectively. The spatial inhomogeneities are considered and the corresponding resistance is ˜11.4 kΩ. The impedance measurements suggest that in conjunction with series resistance ˜350 Ω, the interface and spatial inhomogeneity resistances also give a significant contribution to the photovoltaic performance.

  14. Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Treated Nanocrystalline Semiconductor Oxide TiO2 Derived from Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Akhmad Yuwono

    2011-05-01

    Full Text Available Dye-sensitized solar cell (DSSC is one of the very promising alternative renewable energy sources to anticipate the declination in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. In the present study, TiO2 nanoparticles of different nanocrystallinity was synthesized via sol−gel process with various water to inorganic precursor ratio (Rw of 0.85, 2.00 and 3.50 upon sol preparation, followed with subsequent drying, conventional annealing and post-hydrothermal treatments. The resulting nanoparticles were integrated into the DSSC prototype and sensitized with an organic dye made of the extract of red onion. The basic performance of the fabricated DSSC has been examined and correlated to the crystallite size and band gap energy of TiO2 nanoparticles. It was found that post-hydrothermally treated TiO2 nanoparticles derived from sol of 2.00 Rw, with the most enhanced nanocrystalline size of 12.46 nm and the lowest band gap energy of 3.48 eV, showed the highest open circuit voltage (Voc of 69.33 mV.

  15. Outdoor weathering of sol-gel-treated wood

    Science.gov (United States)

    Mandla A Tshabalala; Ryan Libert; Nancy Ross Sutherland

    2009-01-01

    Outdoor weathering of wood specimens treated with sol-gel formulations based on methyltrimethoxysilane (MTMOS), hexadecyltrimethoxysilane (HDTMOS), and ferric-zirconia-titania (Fe-Zr-Ti) sol was evaluated. The sol-gel process allowed deposition of a thin film of hybrid inorganic-organic networks (gel) in the wood cell wall that resulted in improved outdoor weathering...

  16. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    Science.gov (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  17. Method of making ionic liquid mediated sol-gel sorbents

    Science.gov (United States)

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  18. Self-Healing Corrosion Protective Sol-Gel Coatings

    NARCIS (Netherlands)

    Abdolah Zadeh, M.

    2016-01-01

    Inspired by the state of the art and the recent advances in the field of self-healing corrosion protective coatings, the thesis entitled “Self-healing corrosion protective sol-gel coatings” addresses novel routes to self-healing corrosion protective sol-gel coatings via extrinsic and intrinsic

  19. Effects of phosphorus-doping on energy band-gap, structural, surface, and photocatalytic characteristics of emulsion-based sol-gel derived TiO{sub 2} nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Ibram, E-mail: ibramganesh@arci.res.in

    2017-08-31

    Highlights: • Reported a novel route to synthesize high specific surface area P-doped TiO{sub 2} nano-powder photocatalysts. • Established methylene blue dye-sensitization mechanism of TiO{sub 2} photocatalyst. • Established the effects of methylene blue adsorption on the surface, structural and photocatalytic activity of P-doped TiO{sub 2}. • Established true quantum efficiency determination method for TiO{sub 2} photocatalysis. - Abstract: Different amounts of phosphorus (P)-doped TiO{sub 2} (PDT) nano-powders (P = 0–10 wt.%) were synthesized by following a new emulsion-based sol-gel (EBSG) route and calcined at 400 °C–800 °C for 6 h. These calcined PDT powders were then thoroughly characterized by means of XRD, XPS, SEM, FT-IR, FT-Raman, DRS, BET surface area, zeta-potential, cyclic-voltammetry and photocatalytic evaluation using methylene blue (MB) as a model-pollutant and established the effects of phosphorous doping on structural, surface, band-gap energy, and photocatalytic characteristics of TiO{sub 2} nano-powder formed in EBSG route. The characterization results suggest that the EBSG derived TiO{sub 2} nano-powder after calcination at 400 °C for 6 h is in the form of anatase phase when it was doped with <8 wt.% P, and it is in the amorphous state when doped with >8 wt.% P. Furthermore, these EBSG derived PDT powders own high negative zeta-potentials, high specific surface areas (up to >250 m{sup 2}/g), and suitable band-gap energies (<3.34 eV). Surprisingly, these PDT powders exhibit very high MB adsorption (up to 50%) from its aqueous 0.01 mM, 0.02 mM and 0.03 mM solutions during 30 min stirring in the dark, whereas, the commercial Degussa P-25 TiO{sub 2} nano-powder shows no adsorption. Among various photocatalysts investigated in this study, the 1 wt.% P-doped TiO{sub 2} nano-powder formed in EBSG route exhibited the highest photocatalytic activity for MB degradation reaction.

  20. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  1. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    application, and the waterborne nature of sol-gel coatings all support the diffusion of these paints to efficiently reduce the accumulation of fouling layers on valued surfaces immersed in marine or fluvial waters. Furthermore, sol-gel glassy coatings are transparent and can be effectively applied to optical devices, windows, and solar panels used in lake, fluvial, or marine environments. Sol-gel technology is eminently versatile, and the first generation sol-gel paints have already shown good performance. Even so, vast opportunities still exist for chemists to develop novel sol-gel derived coatings to both prevent biofouling and enhance the hydrodynamic properties of boat and ship hulls. Moreover, researchers have prepared and applied multifunctional sol-gel coatings providing protection against both biofouling and corrosion. They have tested these in the marine environment with good preliminary results. In this Account, we discuss some of our new strategies for the controlled functionalization of surfaces for the development of efficient antifouling and foul-releasing systems and summarize the main achievements with biocidal and nonbiocidal sol-gel coatings. We conclude by giving insight into the marine coatings and sol-gel products markets, providing arguments to justify our conclusion that the sol-gel coatings technology is now a mature platform for the development of economically viable and environmentally friendly antifouling and foul-release formulations of enhanced performance.

  2. Bioorganically doped sol-gel materials containing amyloglucosidase activity

    Directory of Open Access Journals (Sweden)

    Vlad-Oros Beatrice

    2006-01-01

    Full Text Available Amyloglucosidase (AMG from Aspergillus niger was encapsulated in various matrices derived from tetraethoxysilane, methyltriethoxysilane, phenyltriethoxysilane and vinyltriacetoxysilane by different methods of immobilization. The immobilized enzyme was prepared by entrapment in two steps, in one-step and entrapment/deposition, respectively. The activities of the immobilized AMG were assayed and compared with that of the native enzyme. The effects of the organosilaneprecursors and their molar ratios, the immobilization method, the inorganic support (white ceramic, red ceramic, purolite, alumina, TiO2, celite, zeolite and enzyme loading upon the immobilized enzyme activity were tested. The efficiency of the sol-gel biocomposites can be improved through combination of the fundamental immobilization techniques and selection of the precursors.

  3. Special Advanced Studies for Pollution Prevention. Delivery Order 0016: Investigation of Sol-Gel Processing for Titanium Bonding and On-aircraft Aluminum Bonding

    National Research Council Canada - National Science Library

    1998-01-01

    Our objective was to conduct specific studies in the development of an environmentally acceptable metal surface treatment for structural adhesive bonding using sol-gel technology with epoxy-based adhesives...

  4. Sol-gel materials for optofluidics - process and applications

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm

    2011-01-01

    This Ph.D. thesis is concerned with the use of sol-gel materials in optofluidic applications and the physics of DNA molecules in nanoconfinement. The bottom-up formation of solid material, which is provided by the sol-gel process, enables control of the chemical composition and porosity of the ma......This Ph.D. thesis is concerned with the use of sol-gel materials in optofluidic applications and the physics of DNA molecules in nanoconfinement. The bottom-up formation of solid material, which is provided by the sol-gel process, enables control of the chemical composition and porosity...... high-vacuum techniques. Sealing of the channels was performed by fusion bonding of a glass cover slip to the imprinted surface, and the applicability of the device was demonstrated by sizing experiments on DNA molecules confined in the imprinted nanochannels. In addition, in a fused silica device...

  5. Micro-ion beam analysis of physico-chemical reactions in vitro induced by nano-structured sol-gel derived bioactive glasses; Caracterisation par micro-faisceau d'ions des reactions physico-chimiques induites in vitro par des verres bioactifs nanostructures elabores par la methode sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Lao, J

    2007-07-15

    The study of bioactive glasses is a multi-field area of research aiming at a major goal: the development of new generation biomaterials that would be able to bond with host tissues through the formation of a strong interfacial bond, together with helping the body heal itself through the stimulation of specific cellular responses. Thus clinical applications of bioactive glasses mainly concern dental surgery and orthopedics, for filling osseous defects. For this purpose, we have elaborated bioactive glasses in the binary SiO{sub 2}-CaO system, ternary SiO{sub 2}-CaO-P{sub 2}O{sub 5} system, and for the first time, to our knowledge, strontium-doped SiO{sub 2}-CaO-SrO and SiO{sub 2}-CaO-P{sub 2}O{sub 5}-SrO glasses. The materials were elaborated using the sol-gel process, which allowed the synthesis of nano-porous materials with great purity and homogeneity. The bio-activity of the glasses was clearly demonstrated in vitro: in contact with biological fluids, the whole lot of mate-rials were able to induce the formation of a Ca-P-Mg layer a few microns thick at their surface. Our work is characterized by the use of PIXE-RBS nuclear microprobes to study the bioactive glass/biological fluids interface. Thanks to these methods we obtained chemical maps that made possible the analysis of major and trace elements concentrations at the interface. Moreover, quantitative information regarding the local reactivity of glasses were acquired. These data are important to evaluate the kinetics and amplitude of the physico-chemical reactions involved in the bio-activity process. Thus, we highlighted that the binary glass is the highest reactive regarding the dissolution of the glassy matrix as well as the first appearance of the Ca-P rich layer. However the Ca/P atomic ratio calculated at the glass/biological fluids interface decreases slowly, indicating that the Ca-P-Mg layer encounters difficulties to be changed into a more stable apatitic phase. For the P-containing glasses, the de

  6. Preparation of chitosan-graft-(β-cyclodextrin) based sol-gel stationary phase for open-tubular capillary electrochromatography.

    Science.gov (United States)

    Lü, Haixia; Li, Qingyin; Yu, Xiaowei; Yi, Jiaojiao; Xie, Zenghong

    2013-07-01

    A novel open-tubular CEC column coated with chitosan-graft-(β-CD) (CDCS) was prepared using sol-gel technique. In the sol-gel approach, owing to the 3D network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55,000∼163,000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol-gel-derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol-gel-coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS-bonded capillary column. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure and electrical properties of Na0.5Bi0.5TiO3 ferroelectric thick films derived from a polymer modified sol-gel method.

    Science.gov (United States)

    Ji, Hongfen; Ren, Wei; Wang, Lingyan; Shi, Peng; Chen, Xiaofeng; Wu, Xiaoqing; Yao, Xi; Lau, Sien-Ting; Zhou, Qifa; Shung, K Kirk

    2011-10-01

    Lead-free NaBi(0.5)TiO(3) (NBT) ferroelectric thick films were prepared by a poly(vinylpyrrolidone) (PVP) modified sol-gel method. The NBT thick films annealed from 500°C to 750°C exhibit a perovskite structure. The relationship between annealing temperature, thickness, and electrical properties of the thick films has been investigated. The dielectric constants and remnant polarizations of the thick films increase with annealing temperature. The electrical properties of the NBT films show strong thickness dependence. As thickness increases from 1.0 to 4.8 μm, the dielectric constant of the NBT films increases from 620 to 848, whereas the dielectric loss is nearly independent of the thickness. The remnant polarization of the NBT thick films also increases with increasing thickness. The leakage current density first decreases and then increases with film thickness.

  8. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.

    Science.gov (United States)

    Bian, L; Sun, X L; Cai, X M; Chen, Z M

    2014-12-01

    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. © 2014 Entomological Society of America.

  9. Hydrophobicity of hemp shiv treated with sol-gel coatings

    Science.gov (United States)

    Hussain, Atif; Calabria-Holley, Juliana; Schorr, Diane; Jiang, Yunhong; Lawrence, Mike; Blanchet, Pierre

    2018-03-01

    This is the first time sol-gel technology is used in the treatment of hemp shiv to develop sustainable thermal insulation building materials. The impact on the hydrophobicity of hemp shiv by depositing functionalised sol-gel coatings using hexadecyltrimethoxysilane (HDTMS) has been investigated. Bio-based materials have tendency to absorb large amounts of water due to their hydrophilic nature and highly porous structure. In this work, the influence of catalysts, solvent dilution and HDTMS loading in the silica sols on the hydrophobicity of hemp shiv surface has been reported. The hydrophobicity of sol-gel coated hemp shiv increased significantly when using acid catalysed sols which provided water contact angles of up to 118° at 1% HDTMS loading. Ethanol diluted sol-gel coatings enhanced the surface roughness of the hemp shiv by 36% as observed under 3D optical profilometer. The XPS results revealed that the surface chemical composition of the hemp shiv was altered by the sol-gel coating, blocking the hydroxyl sites responsible for hydrophilicity.

  10. Structural Evolution and Stability of Sol-Gel Biocatalysts

    International Nuclear Information System (INIS)

    Rodgers, L.E.; Foster, L.J.R.; Holden, P.J.; Knott, R.B.; Bartlett, J.B.

    2005-01-01

    Full text: Immobilisation strategies for catalytic enzymes are important as they allow reuse of the biocatalysts. Sol-gel materials have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme with a known crystal structure. The sol-gel bioencapsulate is produced through the condensation of suitable metal alkoxides in the presence of CALB, yielding materials with controlled pore sizes, volume and surface chemistry. Sol-gel matrices have been shown to prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analysis techniques applied to date. Small angle neutron scattering (SANS) allows such multicomponent systems to be characterised through contrast matching. In the sol-gel bioencapsulate system, at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35 percent. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. The SANS protocol developed here may be applied more generally to bioencapsulates. (authors)

  11. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  12. Silica scintillating materials prepared by sol-gel methods

    International Nuclear Information System (INIS)

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-01-01

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons

  13. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  14. Influence of titanium content and temperature on optical and mechanical properties of sol-gel derived TiO2/γ-glycidoxypropyltrimethoxysilane and methyltrimethoxysilane hybrid organic-inorganic films

    International Nuclear Information System (INIS)

    Que, Wenxiu; Hu, X

    2003-01-01

    The influence of titanium content and heat treatment temperature on the optical and mechanical properties of TiO 2 /γ-glycidoxypropyltrimethoxysilane and methyltrimethoxysilane hybrid films processed by the sol-gel technique are studied for photonic applications. Waveguide film with a thickness more than 1.60 μm is prepared by a single spin-coating process and low temperature heat treatment. Thermal gravimetric analysis, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy are used to investigate the optical and structural properties of the hybrid organic-inorganic films. The results indicate that a dense, low absorption, and high transparency in the visible and near infrared range waveguide films can be obtained at a low temperature. The hardness and Young's modulus of the films are characterized by a nanoindenter and they show a dependence on the heat-treatment temperature. Hardness as high as 6.60 Gpa is obtained in 0.5 M titanium content film and heat-treated at 800 deg. C. It is proposed that the high hardness of the film may be related to the carbon and titanium content in the film

  15. THE THICKNESS DEPENDENCE OF OXYGEN PERMEABILITY IN SOL-GEL DERIVED CGO-COFE2O4 THIN FILMS ON POROUS CERAMIC SUBSTRATES: A SPUTTERED BLOCKING LAYER FOR THICKNESS CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K

    2009-01-08

    Mixed conductive oxides are a topic of interest for applications in oxygen separation membranes as well as use in producing hydrogen fuel through the partial oxidation of methane. The oxygen flux through the membrane is governed both by the oxygen ionic conductivity as well as the material's electronic conductivity; composite membranes like Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO)-CoFe{sub 2}O{sub 4} (CFO) use gadolinium doped ceria oxides as the ionic conducting material combined with cobalt iron spinel which serves as the electronic conductor. In this study we employ {approx} 50 nm sputtered CeO{sub 2} layers on the surface of porous CGO ceramic substrates which serve as solution 'blocking' layers during the thin film fabrication process facilitating the control of film thickness. Films with thickness of {approx} 2 and 4 microns were prepared by depositing 40 and 95 separate sol-gel layers respectively. Oxygen flux measurements indicated that the permeation increased with decreasing membrane thickness; thin film membrane with thickness on the micron level showed flux values an order of magnitude greater (0.03 {micro}mol/cm{sup 2} s) at 800 C as compared to 1mm thick bulk ceramic membranes (0.003 {micro}mol/cm{sup 2}).

  16. Sol-Gel/Hydrothermal Synthesis of Mixed Metal Oxide

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition ... Keywords: Nanocomposites, Titanium dioxide, Zinc oxide, Particle sizes, Optical property, X-Ray Diffraction. ABSTRACT. 321 ... doping with other semiconductors like zinc oxide, aluminium oxide ...

  17. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  18. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    Science.gov (United States)

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  19. Analyses of laser and furnace treated sol-gel coatings

    NARCIS (Netherlands)

    De Hosson, JT; De Haas, M; Sudarshan, TS; Jeandin, M; Khor, KA

    1998-01-01

    Here we explore a new method that allows thin films to be made with almost any composition and degree of porosity by means of a combination of sol-gel and laser technology. Results are presented for furnace and laser treated TEOTI-(tetraethylorthotitanate as sol precursor) coated silicon samples.

  20. Neutron detector based on lithiated sol-gel glass

    CERN Document Server

    Wallace, S; Miller, L F; Dai, S

    2002-01-01

    A neutron detector technology is demonstrated based on sup 6 Li/ sup 1 sup 0 B doped sol-gel glass. The detector is a sol-gel glass film coated silicon surface barrier detector (SBD). The ionized charged particles from (n, alpha) reactions in the sol-gel film enter the SBD and are counted. Data showing that gamma-ray pulse amplitudes interfere with identifying charged particles that exit the film layer with energies below the gamma-ray energy is presented. Experiments were performed showing the effect of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co gamma rays on the SBD detector. The reaction product energies of the triton and alpha particles from sup 6 Li are significantly greater than the energies of the Compton electrons from high-energy gamma rays, allowing the measurement of neutrons in a high gamma background. The sol-gel radiation detection technology may be applicable to the characterization of transuranic waste, spent nuclear fuel and to the monitoring of stored plutonium.

  1. Characterisation of a new alkoxide sol-gel hydroxyapatite

    International Nuclear Information System (INIS)

    Green, D.D.; Kannangara, G.S.K.; Milev, A.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) coatings have been used to promote bone growth and fixation towards implant surfaces to encourage faster recovery times for the recipient. Current coating processing techniques, capable of producing thin HAp layers are pulsed-laser deposition and sputtering (high-temperature processing). Other technologies are in vitro methods, electrodeposition and sol-gel, due to the fact that these techniques utilise lower processing temperatures they avoid structural instabilities of HAp at elevated temperatures. The term sol-gel encompasses any process of producing ceramic materials (single and mixed oxides, as well as non-oxides e.g. nitrides) from solutions. The sol-gel process was first identified by Ebelman, and has been used to produce ceramic powders, coatings, and bulk materials including glasses. The implementation of a sol-gel methodology enables increased stoichiometry and homogeneity, while having the ability to coat complex shapes. Sol-gel hydroxyapatite reported by Chai et al. employed tri ethyl phosphite [ P(OEt) 3 ] as the staring phosphorus alkoxide precursor, whereby it was established that in order to obtain monophasic hydroxyapatite upon firing there must be a 24 hour ripening period. The ripening period was determined to be an equilibrium step whereby the equilibrium intermediate phase lied in favour of a diethyl phosphite arrangement (species) within the sol. Therefore, the work here under taken was to produce hydroxyapatite using diethyl phosphite [HOP(OEt) 2 ] as a starting alkoxide precursor with a final aim to reduce or eliminate the ageing period as observed by Chai et al in P(OEt) 3 solutions

  2. Design a sensitive optical thin film sensor based on incorporation of isonicotinohydrazide derivative in sol-gel matrix for determination of trace amounts of copper (II) in fruit juice: Effect of sonication time on immobilization approach.

    Science.gov (United States)

    Shahamirifard, Seyed Alireza; Ghaedi, Mehrorang; Montazerozohori, Morteza

    2018-04-01

    A new selective and sensitive optical sensor based on the incorporation of new synthesized N'-(2-hydroxy-5-iodobenzylidene) isonicotinohydrazide (HIBIN) as an effective reagent into the nanoporous of a transparent glass like material through the sol-gel process was developed which was suitable for the determination of copper (II) ions in aqueous solutions. The thin film sensors were constructed by spin-coating of prepared sol onto glass plate and their surface morphology were studied by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM) technique. Influence of sonication time on immobilization of HIBIN into silica matrix was investigated through calculation of leaching percentage. The Results shown that sonication time of 35 min is suitable to give more stable thin films without fluctuation in sensitivity and response time of presented sensor for a long period of time. The proposed optical sensor can be used for determination of copper (II) ions in the range of 9.1 × 10 -8 -1.12 × 10 -5  mol L -1 with a detection limit of 1.8 × 10 -8  mol L -1 . It also showed relative standard deviation 3.4 and 0.72% for reproducibility and repeatability respectively, along with a fast response time about of 2 min. The constructed optode is stable in wet conditions and could be stored for at least 6 weeks without observing any change in its sensitivity. The developed sensor was successfully applied to the determination of copper (II) in fruit juice and water samples which results were confirmed by atomic absorption spectrometry method. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution

    International Nuclear Information System (INIS)

    Janotta, Markus; Karlowatz, Manfred; Vogt, Frank; Mizaikoff, Boris

    2003-01-01

    This work demonstrates the application of organically modified sol-gels as recognition layers combined with mid-infrared evanescent wave sensors for in situ detection of nitrated organics in aqueous media. Sol-gels were prepared by acid-catalyzed copolymerization of phenyltrimethoxysilane (PTMOS) and tetramethoxysilane (TMOS) and were spin-coated onto ZnSe attenuated total reflection (ATR) waveguides. These sensors were investigated with respect to their enrichment properties of selected organophosphates, i.e. parathion, fenitrothion and paraoxon, respectively, and their capability of suppressing interfering water background absorptions. Figures of merit are derived from calibration curves determined to assess sensitivity and reproducibility of the applied sensor system. It can be concluded that sol-gel coated infrared optical sensors enable reproducible detection of organophosphates down to the sub-ppm concentration range. Furthermore, measurement of spiked river water samples demonstrates feasibility as remote field sensor system. Once the required sensitivity is achieved, sol-gel based mid-infrared evanescent wave sensors have the potential of being an alternative to commonly applied biosensors for detection of organophosphates in environmental analysis, since they provide superior mechanical and chemical stability during application relevant periods of time

  4. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  5. Luminescent hybrid porphyrinosilica obtained by sol gel chemistry

    Directory of Open Access Journals (Sweden)

    Neri Cláudio Roberto

    2003-01-01

    Full Text Available The sol-gel process is a methodology used to obtain organic-inorganic hybrid solids, which open new possibilities in the field of material science. The sol-gel technique offers a low temperature attractive approach for introducing organic molecules into amorphous materials. In order to introduce tetrakis (2-hydroxy-5-nitrophenylporphyrin covalently bounded to a silicate matrix, the inorganic precursor 3-isocyanatopropyltriethoxysilane was added (molar ratio 2:1 to the porphyrin solution in anhydrous dimethylformamide and triethylamine. The isolated porphyrin and the hybrid porphyrinosilica have excitation maximum centred at 400 nm and 424 nm, respectively and the emission spectra for both materials has bands centred at 650 nm and 713 nm. The formation of hybrid matrix was investigated by FTIR.

  6. Sol-Gel Synthesis of Non-Silica Monolithic Materials

    Science.gov (United States)

    Gaweł, Bartłomiej; Gaweł, Kamila; Øye, Gisle

    2010-01-01

    Monolithic materials have become very popular because of various applications, especially within chromatography and catalysis. Large surface areas and multimodal porosities are great advantages for these applications. New sol-gel preparation methods utilizing phase separation or nanocasting have opened the possibility for preparing materials of other oxides than silica. In this review, we present different synthesis methods for inorganic, non-silica monolithic materials. Some examples of application of the materials are also included.

  7. Sol-Gel Thin Films for Plasmonic Gas Sensors

    Science.gov (United States)

    Della Gaspera, Enrico; Martucci, Alessandro

    2015-01-01

    Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216

  8. Sol-Gel Synthesis of Non-Silica Monolithic Materials

    Directory of Open Access Journals (Sweden)

    Bartłomiej Gaweł

    2010-04-01

    Full Text Available Monolithic materials have become very popular because of various applications, especially within chromatography and catalysis. Large surface areas and multimodal porosities are great advantages for these applications. New sol-gel preparation methods utilizing phase separation or nanocasting have opened the possibility for preparing materials of other oxides than silica. In this review, we present different synthesis methods for inorganic, non-silica monolithic materials. Some examples of application of the materials are also included.

  9. Sol-Gel Synthesis of Non-Silica Monolithic Materials

    OpenAIRE

    Gawe?, Bart?omiej; Gawe?, Kamila; ?ye, Gisle

    2010-01-01

    Monolithic materials have become very popular because of various applications, especially within chromatography and catalysis. Large surface areas and multimodal porosities are great advantages for these applications. New sol-gel preparation methods utilizing phase separation or nanocasting have opened the possibility for preparing materials of other oxides than silica. In this review, we present different synthesis methods for inorganic, non-silica monolithic materials. Some examples of appl...

  10. Epoxy-silica hybrids by nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kobera, Libor; Brus, Jiří; Matějka, Libor

    2013-01-01

    Roč. 54, č. 23 (2013), s. 6271-6282 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid * nonaqueous sol-gel process * gelation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.766, year: 2013

  11. Sol-gel processing of bioactive glass nanoparticles: A review.

    Science.gov (United States)

    Zheng, Kai; Boccaccini, Aldo R

    2017-11-01

    Silicate-based bioactive glass nanoparticles (BGN) are gaining increasing attention in various biomedical applications due to their unique properties. Controlled synthesis of BGN is critical to their effective use in biomedical applications since BGN characteristics, such as morphology and composition, determining the properties of BGN, are highly related to the synthesis process. In the last decade, numerous investigations focusing on BGN synthesis have been reported. BGN can mainly be produced through the conventional melt-quench approach or by sol-gel methods. The latter approaches are drawing widespread attention, considering the convenience and versatility they offer to tune the properties of BGN. In this paper, we review the strategies of sol-gel processing of BGN, including those adopting different catalysts for initiating the hydrolysis and condensation of silicate precursors as well as those combining sol-gel chemistry with other techniques. The processes and mechanism of different synthesis approaches are introduced and discussed in detail. Considering the importance of the BGN morphology and composition to their biomedical applications, strategies put forward to control the size, shape, pore structure and composition of BGN are discussed. BGN are particularly interesting biomaterials for bone-related applications, however, they also have potential for other biomedical applications, e.g. in soft tissue regeneration/repair. Therefore, in the last part of this review, recently reported applications of BGN in soft tissue repair and wound healing are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    Science.gov (United States)

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  13. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Directory of Open Access Journals (Sweden)

    Jolanta Gąsiorek

    2018-01-01

    Full Text Available Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  14. Sol-gel assisted preparation and characterization of silver indium diselenide powders

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Szu-Chia; Chen, Fu-Shan [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Lu, Chung-Hsin, E-mail: chlu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China)

    2011-09-08

    Highlights: {center_dot} AgInSe{sub 2} powders used for solar cells have been successfully prepared via a new sol-gel assisted process. {center_dot} AgInSe{sub 2} powders were prepared via mixing sol-gel derived precursors, followed by a selenization process. This process can greatly reduce the required temperatures. {center_dot} The phase purity significantly depends on the amounts of In{sup 3+} ions. Excess amounts of In{sup 3+} ions are needed to add into the starting solution to compensate the loss of In{sub 2}O{sub 3} for obtaining pure AgInSe{sub 2}. {center_dot} A figure that depicts the relationship between the resultant compounds and different selenization temperatures is constructed according to the formed phases. {center_dot} The AgInSe{sub 2} formation mechanism during the selenization process is proposed. Ag{sub 2}Se is formed in the first step and subsequently reacts with selenium to form AgInSe{sub 2} in the second-step. - Abstract: AgInSe{sub 2} powders were successfully prepared via mixing sol-gel derived precursors, followed by a selenization process. To obtain the pure AgInSe{sub 2} compound, excess amounts of In{sup 3+} ions were added into the starting solution to compensate the loss of In{sub 2}O{sub 3} during the selenization process. A figure that depicts the relationship between the resultant compounds and different selenization temperatures was constructed according to the formed phases. The Raman spectrum and Rietveld refinement confirmed that the prepared AgInSe{sub 2} belonged to the chalcopyrite structure. With increasing selenization temperatures, the AgInSe{sub 2} powder particle sizes as well as the crystallinity increased significantly. The AgInSe{sub 2} formation mechanism during the selenization process is proposed as a two-step process. Ag{sub 2}Se is formed in the first step and then induces the second-step reaction to produce AgInSe{sub 2}. The sol-gel route with a selenization process is introduced as a new approach to

  15. The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review

    Directory of Open Access Journals (Sweden)

    Ales Styskalik

    2017-05-01

    Full Text Available This review is devoted to non-hydrolytic sol-gel chemistry. During the last 25 years, non-hydrolytic sol-gel (NHSG techniques were found to be attractive and versatile methods for the preparation of oxide materials. Compared to conventional hydrolytic approaches, the NHSG route allows reaction control at the atomic scale resulting in homogeneous and well defined products. Due to these features and the ability to design specific materials, the products of NHSG reactions have been used in many fields of application. The aim of this review is to present an overview of NHSG research in recent years with an emphasis on the syntheses of mixed oxides, silicates and phosphates. The first part of the review highlights well known condensation reactions with some deeper insights into their mechanism and also presents novel condensation reactions established in NHSG chemistry in recent years. In the second section we discuss porosity control and novel compositions of selected materials. In the last part, the applications of NHSG derived materials as heterogeneous catalysts and supports, luminescent materials and electrode materials in Li-ion batteries are described.

  16. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  17. Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient

    Directory of Open Access Journals (Sweden)

    Czekaj D.

    2017-06-01

    Full Text Available In the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3 are described. X-ray diffraction studies of the phase composition and crystal structure of such complex thin film configuration are given. It was found that gel powders exhibited a large total weight loss of about Δm ≈ 44-47%. Three stages of weight loss took place at temperature ranges: below T ≈ 300°C, at ΔT ≈ 300-500°C and between T = 600°C and T = 800°C. Phase analysis has shown that the dominating phase is Ba0.67Sr0.33TiO3 compound while the second phase is Ba0.7Sr0.3TiO3 or Ba0.5Sr0.5TiO3 for “up-graded” and “down-graded” structure, respectively.

  18. Sol-gel synthesis and characterization of lithiummolybdosilicate glass

    International Nuclear Information System (INIS)

    Prakash, I.; Nallamuthu, N.; Muralidharan, P.; Satyanarayana, N.; Venkateswarlu, M.; Balasubramanyam, S.

    2008-01-01

    10 % Li 2 O + 0.9 % MoO 3 + 89.1 %SiO 2 (LMS) glassy sample was prepared using Sol-gel process and was characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) techniques. The ion conducting mechanism was studied through impedance technique at various temperatures. The conductivity of the sample was found to be 4.1257 x 10 -8 Scm -1 at 613 K. The activation energy was calculated from the log (sT) vs. 1000/T plot and it was found to be (0.1466 ± 0.012) eV. (author)

  19. Iron porphyrins doped sol-gel glasses: a chemometric study

    International Nuclear Information System (INIS)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R.

    2000-01-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na) 4 Cl and Fe TCPP(Na) 4 Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established . The variables (Solvent volume, fractional factorial design in two levels, 2 5-1 type, generating 16 total experiments for each Fe P studied. (author)

  20. Iron porphyrins doped sol-gel glasses: a chemometric study

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R. [Soap Paulo Univ (USP), Sao Carlos (Brazil). Inst. de Fisica; Biazzotto, Juliana C.; Serra, Osvaldo A.; Iamamoto, Yassuko [Sao Paulo Univ. (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Ciuffi, Katia J.; Mello, Cesar A.; Oliveira, Daniela C. de [Universidade de Franca , SP (Brazil)

    2000-07-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe (PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na){sub 4}Cl and Fe TCPP(Na){sub 4} Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established. The variables Solvent volume, fractional factorial design in two levels, 2{sup 5-1} type, generating 16 total experiments for each Fe P studied. (author)

  1. Recubrimientos de hidroxiapatita preparados mediante un proceso sol-gel

    Directory of Open Access Journals (Sweden)

    Peón, E.

    2005-12-01

    Full Text Available Hydroxyapatite coatings (HAp have been obtained starting from precursors of sol-gel type. The coatings previously oxidized were deposited on metal surfaces of a based on iron alloy so-called MA956. The alloys were at high temperatures, in order to improve the adhesion with the hydroxyapatite coatings. The sol-gel coating was obtained applying an aqueous route, using triethyl phosphite and aqueous calcium nitrate, as precursors of phosphorous and calcium, respectively. Different sintering thermal treatments were applied on the resulting gels in order to obtain a homogeneous, adherent and crystalline hydroxyapatite coating. The characterization techniques used for this study were optical microscopy, SEM/EDX, XDR and FTIR. Moreover, the adhesion between the hydroxylapatite coating and the substrate was assessed according to the ASTM D 3359-02 standard test method. The results of this study showed that the best thermal treatment is obtained for a sintering temperature of 550 °C during a time of 72 h.

    Se han preparado nuevos recubrimientos de hidroxiapatita (HAp obtenidos a partir de precursores de tipo sol-gel, depositados sobre sustratos metálicos de una aleación de base hierro denominada MA956, previamente oxidados a elevadas temperaturas, para mejorar la adherencia con los recubrimientos de hidroxiapatita. El recubrimiento sol-gel se obtuvo aplicando una ruta acuosa, utilizando como precursores del fósforo y del calcio trietilfosfito y nitrato cálcico tetrahidratado, respectivamente. Sobre los geles resultantes se aplicaron distintos tratamientos térmicos de sinterización, hasta la obtención de recubrimientos de hidroxiapatita homogéneos, adherentes y cristalinos. Las técnicas de caracterización utilizadas para realizar este estudio han sido microscopía óptica, MBE/EDX, DRX y FTIR. Así mismo, se ha determinado la adherencia entre el substrato y el recubrimiento de hidroxiapatita según la norma ASTM D 3359-02. Los resultados

  2. Percolation of triplet excitation in sol-gel matrix

    Science.gov (United States)

    Saha, D. C.; Misra, T. N.

    1996-11-01

    Triplet spectroscopy and energy migration among benzophenone chromophores have been studied in sol-gel matrix under steady state excitation. The energy migration process was observed by the rise of sensitised emission from triplet energy acceptors like, 1,4-dibromonaphthalene and 1-chloronaphthalene after excitation of benzophenone chromophore. The probability of donor excitation energy capture by the trap shows a critical concentration dependence on the benzophenone molecules. The percolation model has been applied to evaluate the critical exponents. The evaluated critical exponents are in very good agreement with three dimensional excitation transport.

  3. Titanium (IV) sol-gel chemistry in varied gravity environments

    Science.gov (United States)

    Hales, Matthew; Martens, Wayde; Steinberg, Theodore

    Sol-gel synthesis in reduced gravity is a relatively new topic in the literature and further inves-tigation is essential to realise its potential and application to other sol-gel systems. The sol-gel technique has been successfully applied to the synthesis of silica systems of varying porosity for many diverse applications [1-5]. It is proposed that current methods for the synthesis of silica sol-gels in reduced gravity may be applied to titanium sol-gel processing in order to enhance desirable physical and chemical characteristics of the final materials. The physical and chemical formation mechanisms for titanium alkoxide based sol-gels, to date, is not fully understood. However, various authors [6-9] have described potential methods to control the hydrolysis and condensation reactions of titanium alkoxides through the use of chemical inhibitors. A preliminary study of the reaction kinetics of titanium alkoxide sol-gel reaction in normal gravity was undertaken in order to determine reactant mixtures suitable for further testing under varied gravity conditions of limited duration. Through the use of 1H Nuclear Magnetic Resonance spectroscopy (NMR) for structural analysis of precursor materials, Ultra-Violet-Visible spectroscopy (UV-VIS) and viscosity measurements, it was demonstrated that not only could the rate of the chemical reaction could be controlled, but directed linear chain growth within the resulting gel structure was achievable through the use of increased inhibitor concentrations. Two unique test systems have been fabricated to study the effects of varied gravity (reduced, normal, high) on the formation of titanium sol-gels. Whilst the first system is to be used in conjunction with the recently commissioned drop tower facility at Queensland University of Technology in Brisbane, Australia to produce reduced gravity conditions. The second system is a centrifuge capable of providing high gravity environments of up to 70 G's for extended periods of time

  4. Sol-gel based sensor for selective formaldehyde determination

    International Nuclear Information System (INIS)

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Seamus P.J.

    2010-01-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with β-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  5. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  6. Study of silica sol-gel materials for sensor development

    Science.gov (United States)

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  7. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Burke, Megan; Radin, Shula; Garino, Jonathan; Schaer, Thomas; Ducheyne, Paul

    2014-08-01

    Orthopedic injuries constitute the majority of wounds sustained by U.S. soldiers in recent conflicts. The risk of infection is considerable with fracture fixation devices. In this pilot study, we examined the use of unique bactericidal micron-thin sol-gel films on fracture fixation devices and their ability to prevent and eradicate infections. External fixation was studied with micron-thin sol-gel coated percutaneous pins releasing triclosan and inserted medially into rabbit tibiae. A total of 11 rabbits received percutaneous pins that were either uncoated or sol-gel/triclosan coated. Internal fracture fixation was also studied using sol-gel coated intramedullary (IM) nails releasing vancomycin in the intramedullary tibiae. Six sheep received IM nails that were coated with a sol-gel film that either contained vancomycin or did not contain vancomycin. All animals were challenged with Staphylococcus aureus around the implant. Animals were euthanized at 1 month postoperative. Rabbits receiving triclosan/sol-gel coated percutaneous pins did not show signs of infection. Uncoated percutaneous pins had a significantly higher infection rate. In the sheep study, there were no radiographic signs of osteomyelitis with vancomycin/sol-gel coated IM nails, in contrast to the observations in the control cohort. Hence, the nanostructured sol-gel controlled release technology offers the promise of a reliable and continuous delivery system of bactericidals from orthopedic devices to prevent and treat infection. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  8. Development of sol-gel formulations for slow release of phermones

    Science.gov (United States)

    A new type of dispenser for slow-release of semiochemicals and sex pheromones was developed based on sol-gel polymers that can be useful in monitoring, mass trapping, and mating disruption in integrated pest management (IPM). Sol-gel matrices exhibit glass characteristics and allow control of the de...

  9. Sol-gel based oxidation catalyst and coating system using same

    Science.gov (United States)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  10. Structure and properties of carbon nanotubes/sol-gel nanocomposites

    International Nuclear Information System (INIS)

    Pokrass, Mariana

    2013-08-01

    Carbon Nanotubes (CNTs) are promising filler materials owing to their exceptional mechanical, electrical, thermal and optical properties. Since their discovery in 1991, a major effort has been made in developing CNT-polymer nanocomposites, whereas CNT/ceramic based nanocomposites, in particularly, CNT/silica nanocomposites, have been very little studied. This thesis focuses on preparation and characterization of novel CNT/silica nanocomposite glasses synthesized by the Sol-Gel technology. A comprehensive analysis of their morphological, optical, and electrical properties was conducted, and analyzed according to existing theoretical models. The nanocomposites hosting matrix is a hybrid organic/inorganic glass prepared by the Fast-Sol-Gel (FSG) route. Using specific conditions in the FSG procedure, the resultant glasses are nonporous, exhibiting no contraction upon drying. Their analogous Classical-Sol-Gel (CSG) glasses, however, are porous, and do exhibit contraction upon drying. The FSG glasses are relatively new materials, and their physical and optical properties were only meagerly studied. In our present work we have conducted a comprehensive experimental research on some previously ignored characteristics such as: UV-vis-IR optical absorption and transmission, and the organic content effect on the refraction index n, density ρ, thermal expansion coefficient β, and thermo-optic coefficient dn/dT. We found that organic residues within the glass decrease the refractive index, density, and thermo-optic coefficient. The thermal expansion coefficient, however, increases with the organic content. A negative linear dependence of the thermo-optic coefficient on the thermal expansion coefficient was obtained. CNT/FSG nanocomposites were prepared by using a solution mixing method, while CNT/CSG nanocomposites were prepared by means of an in situ polymerization technique. Nanocomposites based on FSG hybrid glasses were characterized for their nonlinear optical and

  11. Optical fiber sensor having a sol-gel fiber core and a method of making

    Science.gov (United States)

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  12. Raman Studies of the Nanostructure of Sol-Gel Materials

    Science.gov (United States)

    Doss, Calvin James

    Four sol-gel systems (alumina, aluminum hydroxide, zirconia, and magnesia) were investigated, primarily by laser spectroscopy, on several series of materials prepared by systematically varying the synthesis procedures. Nanocrystalline boehmite, gamma -AlO(OH), was found to be the principal component in the sol-gel alumina system. Materials were prepared by the hot-water hydrolysis/condensation of rm Al(OC_4H_9)_3, the Yoldas process, as a function of process variables such as the time spent in the sol phase. Small but systematic changes, as a function of sol aging time, were discovered in the lineshape and position of the dominant boehmite Raman band observed in the alumina hydrogels. These spectral changes were interpreted in terms of nanocrystallinity-induced finite-size effects associated with the slow growth of AlO(OH) nanocrystals in the sol. X-ray diffraction experiments were used to determine nanocrystal sizes (as small as 3 nm for gels prepared from fresh sols) and to estimate growth kinetics from the Raman-lineshape results. These results appear to be among the first available for crystallite growth kinetics (ripening) in the near-atomic-scale nanocrystal regime. The trihydroxide polymorph system is closely related to the sol-gel alumina system. The processing temperature and the method of hydrolysis were varied, in order to determine their effect on the trihydroxide phase mix. The trihydroxide phase mix does not change with time; it depends only on the initial hydrolysis conditions. Bayerite is the primary phase present for materials processed at 25 C, while nordstrandite is the primary phase present for materials processed at 60 C. It is shown that the trihydroxide crystal nucleation kinetics are responsible for the Al(OH)_3 phase mix. Hydroxide/oxyhydroxide phase-mix kinetics were also studied; this ratio increases with time. The associated rate constant decreases with increasing temperature. Sol-gel zirconia was prepared by using atmospheric water to

  13. Synthesis of ZNO nanoparticles by Sol-Gel processing

    International Nuclear Information System (INIS)

    Savi, B.M.; Rodrigues, L.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    The aim of this study was to obtain and characterize ZnO nanoparticles by Sol-Gel technique. ZnCl 2 , Zn(NO 3 ) 2 , NaOH were used as precursors for the synthesis. NaOH was dissolved in distilled water at a concentration of 1.0 M with agitation to the desired reaction temperature (50°C and 90°C). 0.5 M ZnCl 2 and 0.5 M Zn(NO3)2 were added by dripping (60 and 30 min). The powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. Nano ZnO particles were obtained with crystallite size between 20 and 40 nm (HR-TEM and XRD). The results of UV-Vis spectrometry show that the band gap energy, given by the absorbance at 300 nm depends on the precursor used. (author)

  14. Uranium Dioxide Powder Flow ability Improvement Using Sol-Gel

    International Nuclear Information System (INIS)

    Juanda, D.; Sambodo Daru, G.

    1998-01-01

    The improvement of flow ability characteristics of uranium dioxide powder has been done using sol-gel process. To anticipate a pellet mass production with uniform pellet dimension, the uranium dioxide powder must be have a spherical form. Uranium dioxide spherical powder has been diluted in acid transformed into sol colloidal solution. To obtain uranium dioxide spherical form, the uranium sol-colloidal solution has been dropped in a hot paraffin ( at the temperature of 90 0 C) to form gelatinous colloid and then dried at 800 0 C, and sintered at the temperature of 1700 0 C. The flow ability of spherical uranium dioxide powder has been examined by using Flowmeter Hall (ASTM. B. 213-46T). The measurement result reveals that the spherical uranium dioxide powder has a flow ability twice than that of unprocessed uranium dioxide powder

  15. Variables of synthesis in obtaining nanosilicas with sol-gel

    International Nuclear Information System (INIS)

    Elia, A; Martin-Aispuro, P; Musante, L; Martin-Martinez, J.M; Vazquez, P

    2008-01-01

    Amorphous silica materials and polycrystalline are now being developed for different applications as optic components, superconductors, nano-particles used as charges in adhesives and paints, among others. Some methods of obtaining these materials involve complex techniques and high costs. Generally, the materials constituents are fused, for example, using the pyrogenic silica technique, widely used industrially. Meanwhile, the sol-gel meted is based on a mixture of liquid reagents at the molecular level, to easily obtain amorphous and polycrystalline materials, even at room temperature. Therefore, the sol-gel way is a promising option for producing new materials, due to its cost advantages compared to the traditional methods. The sol-gel technique consists of the simultaneous reaction of the hydrolysis and the condensation. In this process the precursor solution, the TEOS in our case, becomes a polymeric gel network polymer. The partial hydrolysis of the orthosilicate takes place when it is mixed with water and ethanol (EtOH), the reaction that occurs is: S i(OEt) 4 + H 2 O S i(OEt) 3 (OH) + EtOH. The condensation takes place between two OH groups or between an OH group and an ethoxy to form an oxygen bridge plus water or ethanol. S i(OEt) 4 + H 2 O + S i(OEt) 3 (OH)(EtO) 3 Si-O-Si(OEt) 3 (OH) + H 2 O S i-OH + HO-Si S i-O-Si + H 2 O. The addition of a base or of an acid catalyzes the process and changes the pH of the solution influencing the condensation process and size of the final particle. This work focuses on finding different conditions by varying the pH, using HCI, with and without agitation during the addition of the HCI, and washing the solid obtained with ethanol in order to study its effect. The nanosilicas were characterized by TEM-EDX, DTA-TGA, S BET , FT-IR, DRX, DRS, SEM and pH measurements. The morphology of the nanosilicas was characterized with SEM and TEM. Using these techniques a partial conclusion showed that the samples synthesized with HCI

  16. Structure and luminescence of sol-gel synthesized anatase nanoparticles

    Science.gov (United States)

    Hörmann, U.; Kaiser, U.; Albrecht, M.; Geserick, J.; Hüsing, N.

    2010-02-01

    Two samples of mesoporous anatase nanoparticles, prepared by the sol-gel method, were characterised by Cs-corrected high resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD) and Raman spectroscopy. Statistical evaluation of TEM data showed an average diameter of these crystallites of 8.8 nm and 11.1 nm, respectively. Optical spectroscopy by cathodoluminescence (CL) in a scanning electron microscope (SEM) showed free exciton transitions related to the direct and the indirect band gap of anatase TiO2. From the analysis of the excited states of the free excitons an exciton binding energy of 10 meV and a Bohr radius of 2.35 nm is obtained. The small Bohr radius could explain the absence of quantum confinement in the particles presented in this study.

  17. Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process

    Directory of Open Access Journals (Sweden)

    Li-Zhai Pei

    2010-09-01

    Full Text Available Magnesium oxide and magnesium aluminate (MgAl2O4 spinel (MAS powders have been synthesized by a simple aqueous sol-gel process using citrate polymeric precursors derived from magnesium chloride, aluminium nitrate and citrate. The thermal decomposition of the precursors and subsequent formation of cubic MgO and MAS were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, thermogravimetry-differential scanning calorimetry (TG-DSC and Fourier transform infrared spectra (FTIR. The single phase cubic MgO powder and MAS powder form after heat treatment at 800 and 1200 °C, respectively. The particle size of the MgO and MAS powders is about 100 nm and several micrometers, respectively. Ball milling eliminates the size of MgO and MgAl2O4 spinel powders by decreasing the conglomeration of the powders.

  18. A utilização de materiais obtidos pelo processo de sol-gel na construção de biossensores The utilization of materials obtained by the sol-gel process in biosensors construction

    Directory of Open Access Journals (Sweden)

    Antonio A. S. Alfaya

    2002-09-01

    Full Text Available The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

  19. Formulation and evaluation of antimicrobial activity of Morus alba sol-gel against periodontal pathogens

    Directory of Open Access Journals (Sweden)

    Shilpa Gunjal

    2015-01-01

    Full Text Available Background: Periodontitis has a multifactorial etiology, with primary etiologic agents being pathogenic bacteria that reside in the subgingival area. Recent advances in the field of alternative medicine introduced various herbal products for the treatment of periodontitis. Aim: To assess and compare the antimicrobial activity of Morus alba sol-gel with chlorhexidine sol-gel against ATCC standard strains of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia. Materials and Methods: Crude extract of Morus alba leaves was prepared by Soxhlet method by using ethanol as a solvent. Phytochemical screening of the crude extract of M. alba was performed to check the various chemical constituents. M. alba sol-gel and chlorhexidine sol-gel were formulated using Pluronic f127 and Pluronic f108 and compared for their antimicrobial activity. The minimum inhibitory concentration of both the gels was performed using agar well diffusion technique. Results: The minimum inhibitory concentration of M. alba sol-gel and chlorhexidine sol-gel against A. actinomycetemcomitans is 19 and 17 mm, T. forsythia is 12 and 21 mm, and P. gingivalis is 16 and 18 mm, respectively. Conclusion: Both M. alba and chlorhexidine sol-gel exhibited potent antimicrobial activity against periodontal pathogens.

  20. Monitoring of the Viability of Cells Immobilized by Sol-Gel Process

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Podrazký, Ondřej; Ripp, S.; Trögl, Josef; Sayler, G. S.; Demnerová, K.; Vaňková, Radomíra

    2004-01-01

    Roč. 31, 1-3 (2004), s. 335-342 ISSN 0928-0707. [International Workshop on Sol-Gel and Technology-Part I (Sol-Gel'03) /12./. Sydney, 25.08.2003-29.08.2003] R&D Projects: GA ČR GA104/01/0461; GA MŠk OC 840.20; GA MŠk OC 840.10 Institutional research plan: CEZ:AV0Z4072921 Keywords : sol-gel process * cell entrapment * viability Subject RIV: CE - Biochemistry Impact factor: 1.150, year: 2004

  1. Ultrasound-assisted sol-gel synthesis of ZrO2.

    Science.gov (United States)

    Guel, Marlene Lariza Andrade; Jiménez, Lourdes Díaz; Hernández, Dora Alicia Cortés

    2017-03-01

    Synthesis of tetragonal ZrO 2 by both conventional sol-gel and ultrasound-assisted sol-gel methods and using a non-ionic surfactant Tween-20, was performed. A porous microstructure composed of nanometric particles was observed. Tetragonal ZrO 2 was obtained using a low heat treatment temperature of powders, 500°C by both methods. A higher crystallinity and a shorter reaction time were observed when ultrasound was used in the sol-gel method due to the cavitation phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol-Gel Matrices

    Science.gov (United States)

    2015-10-19

    Catalysts in Sol - Gel Matrices 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0217 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Detty, Michael R. 5d...Technical Report for ONR N00014-09-1-0217 Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol - Gel Matrices Michael R. Detty, PI...Environmentally benign sol - gel antifouling and foul-releasing coatings. Ace. Chem. Res. 2014, 47, 678-687. 11) Alberto, E. E.; Müller, L. M

  3. Growth of two-dimensional KGd(WO 4) 2 nanorods by modified sol-gel Pechini method

    Science.gov (United States)

    Thangaraju, D.; Samuel, P.; Moorthy Babu, S.

    2010-08-01

    KGd (WO 4) 2 nanocrystalline powder was obtained by modified sol-gel Pechini method. The synthesis procedure was optimized with TGA and DTA analyses. Synthesized polymeric resin was calcinated at 550 and 700 °C using resistive furnace in an open atmosphere. Crystallinity of annealed powder was confirmed using X-ray diffraction. Absorption peaks of FT-IR for gel and the annealed samples, at two different temperatures show the decomposition of citrate-ethylene glycol complex and formation of KGW particles. Raman analysis confirms that the derived particles have well constructed bridges of W-O-O-W. External morphology of the particles was analysed through SEM.

  4. Control size of silver nanoparticles in sol-gel glasses

    Science.gov (United States)

    Renteria, Victor M.; Celis, Antonio C.; Garcia-Macedo, Jorge A.

    2000-10-01

    By the sol-gel processing, silver ions in presence of stabilizing function (3-thiocyanatopropyl)triethoxysilane are reduced by heating gels at 180 C for several times in air atmosphere. The spectroscopic Uv-Vis observations, confirm silver nanoparticles presence with peak maximum around 350 nm. The optical properties of the metallic particles are observed at room temperature as function of time, and the absorption spectra practically do not change, which indicated they are trapped and stabilized within the fine porous silica cage. Mie theory calculations, considering the mean free path effect of the conduction electrons, are compatible with experimental spectra, indicating homogeneity in size and form of the metallic nanoparticles. Smithard correlation curve, between half width height (W1/2) of the optical absorption and the particle diameter 2r, predict silver particles size between 4 and 10 nm, during composite heating. Activation energy was measured and compared with previous data on similar systems and the probable reduction process are discussed.

  5. Synthesis of Carbon Nanotubes Using Sol Gel Route

    Science.gov (United States)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  6. The chemistry of plutonium in sol-gel processes

    International Nuclear Information System (INIS)

    Lloyd, M.H.; Haire, R.G.

    1978-01-01

    Studies of plutonium chemical behavior conducted in conjunction with plutonia sol-gel process development at ORNL are described. The colloidal solutions produced consist of 'Pu(IV) polymer,' and this is therefore the study of polymeric plutonium behavior. Spectrophotometric, electron diffraction, and electron microscopy studies, in addition to specific studies that were concerned with the colloidal behavior of Pu(IV) polymer, indicate several characteristics of polymer that are not generally recognized. The particle nature of Pu(IV) polymer indicated by electron microscopy, the amorphous-crystalline characteristics of primary polymer particles demonstrated by electron diffraction, and the reversible and irreversible aggregation of the primary particles shown by spectrophotometric techniques present a useful view of the nature of Pu(IV) polymer that has been helpful in solving or understanding various types of processing problems involving plutonium hydrolytic behavior. The colloidal characteristics of Pu(IV) polymer and crystallite growth of primary polymer particles by thermal denitration are also described. (orig.) [de

  7. Characterization of carbon cryogels synthesized by sol-gel polycondensation

    Directory of Open Access Journals (Sweden)

    BILJANA BABIC

    2005-02-01

    Full Text Available Resorcinol-formaldehyde (RF cryogels were synthesized by the sol-gel polycondensation of resorcinol (R with formaldehyde (F and freeze-drying was carried out with t-butanol. Carbon cryogels were obtained by pyrolyzing RF cryogels in an inert atmosphere. Characterization by nitrogen adsorption showed that the carbon cryogels were micro and mesoporous materials with high specific surface areas (SBET ~ 550 m2/g. Cyclic voltammetry experiments at various scan rates (2 to 200 mV s-1 were performed to study the electrical double-layer charging of carbon cryogel electrodes in 0.5 mol dm-3 HClO4 solution. It has been demonstrated that it is possible to sub-divide the total specific capacitance into the mesoporous and the microporous specific capacitance by analyzing the linear dependence of the charge (q on the reciprocal of the square root of the potential scan rate (v-1/2, and the linear dependence of the reciprocal charge (1/q on the square root of the potential scan rate (v-1/2. The specific capacitance was found to be constant over a wide range of sample weight (12.5 to 50.0 mg and a very promising specific capacitance value of 150 F/g, was found for this material operating in an acidic 0.5 mol dm-3 HClO4 solution at room temperature.

  8. Synthesis of Titania-Silica Materials by Sol-Gel

    Directory of Open Access Journals (Sweden)

    Rubia F. S. Lenza

    2002-10-01

    Full Text Available In this work TiO2-SiO2 glasses containing as much as 20 mol % of TiO2 were prepared via sol-gel process using titanium and silicon alkoxides, in the presence of chlorine, in the form of titanium tetrachloride or HCl. The gels were heat-treated until 800 °C. X-ray diffraction and Fourier transform infrared spectroscopy were used to understand the structural properties of TiO2-SiO2 oxides calcined at different temperatures and to evaluate the homogeneity of these materials. The degree of the compactness of the silica network is inferred from the frequency of the asymmetric stretching vibrations of Si-O-Si bonds. Formation of Si-O-Ti bridges, as monitored by the intensity of characteristic 945 cm-1 ¾ 960 cm-1 vibration, is particularly prominent if the method of basic two-step prehydrolysis of silicon alkoxide, addition of titanium alkoxide and completion of hydrolysis was used.

  9. Sol-Gel Titanium Dioxide Nanoparticles: Preparation and Structural Characterization

    Directory of Open Access Journals (Sweden)

    Oon Lee Kang

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticle was achieved in an alternative sol-gel route, as involved in 1 M acidic solution: HCl-tetrahydrofuran (HCl-THF, HNO3-tetrahydrofuran (HNO3-THF, and ClHNO2-tetrahydrofuran (ClHNO2-THF solution. Resultant TiO2 nanoparticle was further investigated in a systematic analytical approach. Nanoscale TiO2 structure was observed at a moderate hydrolysis ratio (8≤RH≤16. Particle size range was much narrower in an aprotic HNO3-THF medium, as compared to a differential HCl-THF medium. Biphasic TiO2 structure was detected at a certain hydrolysis ratio (RH≥16. Even so, relative anatase content was rather insignificant in an aprotic HCl-THF medium, as compared to a differential HNO3-THF medium. Tetragonal TiO2 structure was observed in the entire hydrolysis ratio (4≤RH≤32. Interstitial lattice defect was evident in an aprotic HNO3-THF medium but absent in a differential ClHNO2-THF medium.

  10. Sol-Gel Synthesis and Characterization of Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Ramesh

    2013-01-01

    Full Text Available The nanoparticles have been synthesized by sol-gel technique. X-ray diffraction, scanning electron microscopy, optical absorption spectroscopy, and electron paramagnetic resonance spectroscopy were used to characterize the sample. The X-ray diffraction results indicate the formation of nanocrystalline materials in tetragonal lattice with P42/nnm space group. The identical distribution of elements were confirmed by scanning electron microscopy with energy dispersive X-ray spectrometry and X-ray mapping. Electron paramagnetic resonance lineshapes of the samples are obtained at various (13 K, 77 K, and 300 K temperatures. The isotropic lineshapes of the sample B1 are attributed to dipole-dipole interaction of Ti3+ ions. The incorporation of Al3+ ions into the sample B2–B5 the isotropic nature of the lineshapes are collapsed due to the distraction in crystal field. Optical absorption spectra results reveal the presence of Ag-TiO2 nanoparticles.

  11. Sol gel growth of titania from electrospun polyacrylonitrile nanofibres

    Science.gov (United States)

    Hong, Youliang; Li, Domgmei; Zheng, Jian; Zou, Guangtian

    2006-04-01

    In this paper we report on the development of TiO2 surface-residing electrospun nanofibres with controllable density of TiO2 on the support fibre surface by means of an electrospinning technique and a sol-gel process. The TiO2 precursor/PAN composite nanofibres were synthesized by electrospinning a polyacrylonitrile (PAN) solution containing TiO2 precursors. Subsequently, an immersion of the electrospun composite nanofibres in deionized water led to the hydrolysis of the TiO2 precursors. SEM, TEM and XRD pattern analyses demonstrated that TiO2 was formed and resided on the nanofibre surface. On further calcining the hydrolysed nanofibres in air at 300 °C, TiO2 could be conveniently converted into anatase without essentially changing the morphology of the hydrolysed nanofibres. Furthermore, surface photovoltage spectroscopy (SPS) confirmed that the TiO2 surface-residing nanofibre nonwovens had a strong SPS response. It can be attributed that the surface residence of TiO2 permits the transfer of the photogenerated electron originating from TiO2 to ITO electrodes. Potential applications of the TiO2 surface-residing nanofibres include filters, catalysis films and environmental pollution remediation films.

  12. Preparation of silica by sol-gel method using formamide

    Directory of Open Access Journals (Sweden)

    R.F.S. Lenza

    2001-07-01

    Full Text Available In this work we obtained microporous and mesoporous silica gels by sol-gel processing. Tetraethylortosilicate (TEOS was used as precursor. Nitric acid and hydrofluoric acid were used as catalysts. In order to study the affect of formamide as drying additive, we used a molar ratio alkoxide/formamide of 1/1. The performance of formamide in obtaining crack-free gels was evaluated through monolithicity measurements. The structural evolution occurring in the interconnected network of the gels during thermal treatment was monitored by Fourier transform infrared spectroscopy (FTIR, shrinkage and density measurements and nitrogen gas sorption. We noted that in the presence of formamide, the Si-O-Si bonds are stronger and belong to a more cross-linked structure. The samples obtained in the presence of formamide have larger pore volume and its pore structure is in the range of mesoporosity. The samples obtained without additive are microporous. Formamide allowed the preparation of crack-free silica gels stabilized at high temperatures.

  13. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.

    Science.gov (United States)

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-08-25

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.

  14. Optical pH detector based on LTCC and sol-gel technologies

    Science.gov (United States)

    Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.

    2013-01-01

    This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.

  15. Infrared wire-grid polarizer with sol-gel antireflection films on both sides

    Science.gov (United States)

    Yamada, Itsunari; Ishihara, Yoshiro

    2017-12-01

    We fabricated an infrared wire-grid polarizer with the high transverse magnetic (TM) polarization transmittance and high extinction ratio by soft imprint lithography, sol-gel method, and Al shadow coating processes. A zilconia film was coated on Si substrate by using sol-gel method and spin coating method. Then, sol-gel zirconia grating was formed on the back side using imprinting using a silicone mold. The polarizer was produced by depositing Al obliquely on the grating. The TM transmittance of the fabricated element was greater than 80% at a wavelength of 4.8 μm. The sol-gel zilconia films acted as antireflection films. The extinction ratio exceeded 26 dB at its wavelength.

  16. Environmentally Benign Sol-Gel Surface Treatment for Aluminum Bonding Applications

    National Research Council Canada - National Science Library

    Osborne, Joseph

    1996-01-01

    A surface treatment process for aluminum using sol-gel chemistry has been developed that produces strong adhesive bonds without the rinse water requirements of traditional anodizing or etching processes...

  17. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy

    Science.gov (United States)

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K.; Li, Jiangyu; Zhou, Qifa

    2013-01-01

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate–lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  18. Morphology, structure and optical properties of sol-gel ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, T.F.; Teodorescu, V.S.; Blanchin, M.G.; Stoica, T.A.; Gartner, M.; Losurdo, M.; Zaharescu, M

    2003-08-15

    The alkoxidic route and the spinning deposition were used to prepare monolayer sol-gel indium tin oxide (ITO) films. The morphology and crystalline structure were investigated by cross-section transmission electron microscopy (XTEM) and atomic force microscopy (AFM). The ITO sol-gel mono-layer contains three regions of different porosities. The basic crystalline structure is that of the In{sub 2}O{sub 3} lattice. The optical properties have been studied by optical transmission and spectroscopic ellipsometry.

  19. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  20. One-step sol-gel imprint lithography for guided-mode resonance structures.

    Science.gov (United States)

    Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng

    2016-03-04

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  1. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  2. Sol-gel preparation of silica and titania thin films

    Science.gov (United States)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  3. Densification and crystallization of zirconia thin films prepared by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, R.W.; Voigt, J.A.; Buchheit, C.D.; Boyle, T.J.

    1993-12-31

    We have investigated the effects of precursor nature and heat treatment schedule on the densification and crystallization behavior of sol-gel derived zirconia thin films. Precursor solutions were prepared from n-propanol, zirconium (IV) n-propoxide, and either acetic acid, or 2,4-pentanedione (acac) and water additions. By controlling the ligand type and ligand-to-metal ratio, we were able to prepare films which displayed significant differences in densification behavior. We attribute the dissimilarity in densification to variations in the nature of the as-deposited films, as influenced by ligand type and concentration. While the acac- derived film was a physical gel, (i.e., a physical aggregation of the oligomeric species), the acetic acid-derived film, which exhibited less consolidation, was a chemical gel that could not be redissolved in the parent solvent. Films prepared with large acac/metal ratios and small water additions exhibited minimal crosslinking at 25{degree}C, displayed the greatest consolidation ({approximately}86% shrinkage) and the highest refractive index (n = 2.071) when heat treated. These results indicate the importance that M-O-M bonds (crosslinks) formed at low temperature can have on densification behavior. We also report on the effects of heat-treatment schedules and ramp rates on densification behavior. All of the films of the present study crystallized into the cubic phase, at temperatures ranging from {approximately}400{degree}C to greater than 700{degree}C, depending on the heating rate.

  4. High-coercivity CoFe{sub 2}O{sub 4} thin films on Si substrates by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xianwu; Jin, Linghua; Wei, Renhuai; Zhu, Xiaoguang; Yang, Jie; Dai, Jianming; Song, Wenhai [Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei 230031 (China); Zhu, Xuebin, E-mail: xbzhu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei 230031 (China); Hefei Science Center, CAS, Hefei 230031 (China); Sun, Yuping, E-mail: ypsun@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei 230031 (China); High Magnetic Field Laboratory, CAS, Hefei 230031 (China)

    2017-01-15

    CoFe{sub 2}O{sub 4} (CFO) thin films with high coercivity H{sub C} are desirable in applications. The difficulty in achieving large-area CFO thin films with high coercivity by sol-gel has hindered the development of CFO thin films. Herein, polycrystalline CFO thin films with the room temperature out-of-plane and in-plane coercivity H{sub C} respectively reached ~5.9 and 3.6 kOe has been achieved on the silicon substrate by sol-gel. The room-temperature maximum magnetic energy product (BH){sub max} and remanence ratio M{sub r}/M{sub s} are of 1.66 MG Oe and 0.58 respectively, which are also the largest values amongst the CFO thin films prepared by solution methods. At the same time, annealing temperature and thickness effects on the H{sub C}, (BH){sub max} and M{sub r}/M{sub s} of the derived CFO thin films have been investigated. It is observed that grain size and residual tensile strain in the derived films play an important role in the variations of H{sub C} and M{sub r}/M{sub s}. These results will provide an effective route for fabricating larger-area high-coercivity CFO thin films with low-cost by sol-gel on silicon wafers. - Highlights: • The CFO films show the largest room-temperature H{sub c} amongst the sol-gel derived ones. • (BH){sub max} and M{sub r}/M{sub s} are also the largest amongst the CFO films derived in this way. • Grain size and residual strain are the key to the improved films magnetic properties.

  5. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    Science.gov (United States)

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  6. Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.

    Science.gov (United States)

    Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong

    2018-02-01

    In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.

  7. Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms.

    Science.gov (United States)

    Briones, M; Casero, E; Vázquez, L; Pariente, F; Lorenzo, E; Petit-Domínguez, M D

    2016-02-18

    In the present work, we have included for the first time diamond nanoparticles (DNPs) in a sol-gel matrix derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) in order to improve electron transfer in a lactate oxidase (LOx) based electrochemical biosensing platform. Firstly, an exhaustive AFM study, including topographical, surface potential (KFM) and capacitance gradient (CG) measurements, of each step involved in the biosensing platform development was performed. The platform is based on gold electrodes (Au) modified with the sol-gel matrix (Au/MPTS) in which diamond nanoparticles (Au/MPTS/DNPs) and lactate oxidase (Au/MPTS/DNPs/LOx) have been included. For the sake of comparison, we have also characterized a gold electrode directly modified with DNPs (Au/DNPs). Secondly, the electrochemical behavior of a redox mediator (hydroxymethyl-ferrocene, HMF) was evaluated at the platforms mentioned above. The response of Au/MPTS/DNPs/LOx towards lactate was obtained. A linear concentration range from 0.053 mM to 1.6 mM, a sensitivity of 2.6 μA mM(-1) and a detection limit of 16 μM were obtained. These analytical properties are comparable to other biosensors, presenting also as advantages that DNPs are inexpensive, environment-friendly and easy-handled nanomaterials. Finally, the developed biosensor was applied for lactate determination in wine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V. [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Aruna, S.T., E-mail: staruna194@gmail.com [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012 (India)

    2017-01-30

    Highlights: • Corrosion protection efficiency comparison of ceria nanoparticles and cerium nitrate. • Silica-alumina hybrid coating exhibited good barrier protection. • Detailed XPS study confirm the hybrid structure and presence of Ce species in coating. • Loss of cerium ions not prevalent in ceria doped coating unlike that of cerium nitrate. • Ceria increased the coating integrity, corrosion inhibition and barrier protection. - Abstract: The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  9. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    Science.gov (United States)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  10. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    International Nuclear Information System (INIS)

    King, C.M.; Thompson, M.C.; Buchanan, B.R.; King, R.B.; Garber, A.R.

    1989-01-01

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO 2 ), has been useful in sorting out the chemical mechanism in the sol-gel steps. 13 C, 15 N, and 1 H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C 6 H l2 N 4 ) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. 17 0 NMR of uranyl (UO 2 ++ ) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, [(UO 2 ) 3 (μ 3 -O)(μ 2 -OH) 3 ] + , induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH + is occluded as an ''intercalation'' cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH 4 ) 2 [(UO 2 ) 8 O 4 (OH) 10 ] · 8H 2 0. This compound is the precursor to sintered U0 2 ceramic fuel

  11. Mechanical compatibility of sol-gel annealing with titanium for orthopaedic prostheses.

    Science.gov (United States)

    Greer, Andrew I M; Lim, Teoh S; Brydone, Alistair S; Gadegaard, Nikolaj

    2016-01-01

    Sol-gel processing is an attractive method for large-scale surface coating due to its facile and inexpensive preparation, even with the inclusion of precision nanotopographies. These are desirable traits for metal orthopaedic prostheses where ceramic coatings are known to be osteoinductive and the effects may be amplified through nanotexturing. However there are a few concerns associated with the application of sol-gel technology to orthopaedics. Primarily, the annealing stage required to transform the sol-gel into a ceramic may compromise the physical integrity of the underlying metal. Secondly, loose particles on medical implants can be carcinogenic and cause inflammation so the coating needs to be strongly bonded to the implant. These concerns are addressed in this paper. Titanium, the dominant material for orthopaedics at present, is examined before and after sol-gel processing for changes in hardness and flexural modulus. Wear resistance, bending and pull tests are also performed to evaluate the ceramic coating. The findings suggest that sol-gel coatings will be compatible with titanium implants for an optimum temperature of 500 °C.

  12. Optical sensing of HCl with phenol red doped sol-gels

    International Nuclear Information System (INIS)

    Wang Enju; Chow, Kwok-Fan; Wang Wenqun; Wong, Crystal; Yee, Cynthia; Persad, Alvin; Mann, Jonathan; Bocarsly, Andrew

    2005-01-01

    A dye doped sol-gel for the sensing of hydrochloric acid in solution and/or gaseous phase is described. The sol-gel is obtained by acidic hydrolysis of tetraethoxysilane (TEOS) and phenyltriethoxysilane (Ph-TriEOS) in the presence of phenol red (PR) and further spin-coating onto glass slides. The sensitive response is based on an increase of the absorption band at 510 nm of phenol red entrapped in the sol-gel casting when exposed to HCl solution or gas, due to protonation of the dye. The detection limit of the sol-gel response to moisturized gaseous HCl is below 12 ppm, and its response to HCl in solution falls in the range of 0.01-6 M. The sol-gel coating has a response time of less than 40 s in steady-state, and life-time of more than a year. Weak acids such as acetic acid, benzoic acid, salicylate acid, citrate acid, and carbonic acid do not interfere the response. The responses in acid solutions are completely reversible. In the gaseous phase, response of HCl appears to be moisture sensitive

  13. Optical sensing of HCl with phenol red doped sol-gels

    Energy Technology Data Exchange (ETDEWEB)

    Wang Enju [Department of Chemistry, St. John' s University, 8000 Utopia Parkway, Jamaica, NY 11439 (United States)]. E-mail: wange@stjohns.edu; Chow, Kwok-Fan [Department of Chemistry, St. John' s University, 8000 Utopia Parkway, Jamaica, NY 11439 (United States); Wang Wenqun [Department of Chemistry, St. John' s University, 8000 Utopia Parkway, Jamaica, NY 11439 (United States); Wong, Crystal [Department of Chemistry, St. John' s University, 8000 Utopia Parkway, Jamaica, NY 11439 (United States); Yee, Cynthia [Department of Chemistry, St. John' s University, 8000 Utopia Parkway, Jamaica, NY 11439 (United States); Persad, Alvin [Department of Chemistry, St. John' s University, 8000 Utopia Parkway, Jamaica, NY 11439 (United States); Mann, Jonathan [Department of Chemistry, Princeton University, Princeton, NJ 08540 (United States); Bocarsly, Andrew [Department of Chemistry, Princeton University, Princeton, NJ 08540 (United States)

    2005-04-08

    A dye doped sol-gel for the sensing of hydrochloric acid in solution and/or gaseous phase is described. The sol-gel is obtained by acidic hydrolysis of tetraethoxysilane (TEOS) and phenyltriethoxysilane (Ph-TriEOS) in the presence of phenol red (PR) and further spin-coating onto glass slides. The sensitive response is based on an increase of the absorption band at 510 nm of phenol red entrapped in the sol-gel casting when exposed to HCl solution or gas, due to protonation of the dye. The detection limit of the sol-gel response to moisturized gaseous HCl is below 12 ppm, and its response to HCl in solution falls in the range of 0.01-6 M. The sol-gel coating has a response time of less than 40 s in steady-state, and life-time of more than a year. Weak acids such as acetic acid, benzoic acid, salicylate acid, citrate acid, and carbonic acid do not interfere the response. The responses in acid solutions are completely reversible. In the gaseous phase, response of HCl appears to be moisture sensitive.

  14. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  15. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    Science.gov (United States)

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  17. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks.

    Science.gov (United States)

    Kascholke, Christian; Hendrikx, Stephan; Flath, Tobias; Kuzmenka, Dzmitry; Dörfler, Hans-Martin; Schumann, Dirk; Gressenbuch, Mathias; Schulze, F Peter; Schulz-Siegmund, Michaela; Hacker, Michael C

    2017-11-01

    Biodegradability is a crucial characteristic to improve the clinical potential of sol-gel-derived glass materials. To this end, a set of degradable organic/inorganic class II hybrids from a tetraethoxysilane(TEOS)-derived silica sol and oligovalent cross-linker oligomers containing oligo(d,l-lactide) domains was developed and characterized. A series of 18 oligomers (Mn: 1100-3200Da) with different degrees of ethoxylation and varying length of oligoester units was established and chemical composition was determined. Applicability of an established indirect rapid prototyping method enabled fabrication of a total of 85 different hybrid scaffold formulations from 3-isocyanatopropyltriethoxysilane-functionalized macromers. In vitro degradation was analyzed over 12months and a continuous linear weight loss (0.2-0.5wt%/d) combined with only moderate material swelling was detected which was controlled by oligo(lactide) content and matrix hydrophilicity. Compressive strength (2-30MPa) and compressive modulus (44-716MPa) were determined and total content, oligo(ethylene oxide) content, oligo(lactide) content and molecular weight of the oligomeric cross-linkers as well as material porosity were identified as the main factors determining hybrid mechanics. Cytocompatibility was assessed by cell culture experiments with human adipose tissue-derived stem cells (hASC). Cell migration into the entire scaffold pore network was indicated and continuous proliferation over 14days was found. ALP activity linearly increased over 2weeks indicating osteogenic differentiation. The presented glass-based hybrid concept with precisely adjustable material properties holds promise for regenerative purposes. Adaption of degradation kinetics toward physiological relevance is still an unmet challenge of (bio-)glass engineering. We therefore present a glass-derived hybrid material with adjustable degradation. A flexible design concept based on degradable multi-armed oligomers was combined with an

  18. Infrared wire-grid polarizer with sol-gel zirconia grating

    Science.gov (United States)

    Yamada, Itsunari; Ishihara, Yoshiro

    2017-05-01

    The infrared wire-grid polarizer consisting of an Al grating, Si, and sol-gel derived zirconia grating film was fabricated by soft imprint process and Al shadow coating processes. A silicone mold was used because of its low surface energy, flexibility, and capability of transferring submicrosized patterns. As a result, the Al grating with a pitch of 400 nm and a depth of 100 nm was obtained on the zirconia grating film. The fabricated polarizer exhibited a polarization function with the TM transmittance greater than that of the Si substrate in the specific wavelength range of 3.6-8.5 μm, because the zirconia film acted as an antireflection film. The maximum value was 63% at a wavelength of 5.2 μm. This increment of the TM transmission spectrum results in interference within the zirconia film. Also, the extinction ratio exceeded almost 20 dB in the 3-8.8 μm wavelength range.

  19. Molecular state and distribution of fullerenes entrapped in sol-gel samples.

    Science.gov (United States)

    Tran, Chieu D; Grishko, Victor I; Challa, Santhosh

    2008-11-20

    A novel synthetic method that can encapsulate fullerene molecules (pure C60, pure C70, or their mixture) over a wide range of concentrations ranging from micromolar to millimolar in hybrid glass by a sol-gel method without any time-consuming, complicated, and unwanted extra steps (e.g., addition of a surfactant or derivatization of the fullerenes) has been successfully developed. The molecular state and distribution of encapsulated fullerene molecules in these sol-gel samples were unequivocally characterized using newly developed multispectral imaging techniques. The high sensitivity (single-pixel resolution) and ability of these instruments to record multispectral images at different spatial resolutions (approximately 10 microm with the macroscopic instrument and approximately 0.8 microm with the microscopic instrument) make them uniquely suited for this task. Specifically, the imaging instruments can be used to simultaneously measure multispectral images of sol-gel-encapsulated C60 and C70 molecules at many different positions within a sol-gel sample in an area either as large as 3 mm x 4 mm (with the macroscopic imaging instrument) or as small as 0.8 microm x 0.8 microm (with the microscopic instrument). The absorption spectrum of the fullerene molecule at each position can then be calculated either by averaging the intensity of a 15 x 15 square of pixels (which corresponds to an area of 3 mm x 4 mm) or from the intensity of a single pixel (i.e., an area of about 0.8 microm x 0.8 microm), respectively. The molecular state and distribution of fullerene molecules within sol-gel samples can then be determined from the calculated spectra. It was found that spectra of encapsulated C60 and C70 measured at five different positions within a sol-gel sample were similar not only to one another but also to spectra measured at six different times during the sol-gel reaction process (from t = 0 to 10 days). Furthermore, these spectra are similar to the corresponding spectra

  20. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, Sandra Raquel; Longhi, Marielen; Zini, Lucas Pandolphi [Universidade de Caxias do Sul (CCET/UCS), Caxias do Sul, RS (Brazil). Centro de Ciências Exatas e Tecnologia; Beltrami, Lilian Vanessa Rossa; Boniatti, Rosiana; Cardoso, Henrique Ribeiro Piaggio; Vega, Maria Rita Ortega; Malfatti, Célia de Fraga, E-mail: lvrossa@yahoo.com.br [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Pesquisa em Corrosão

    2017-07-01

    Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl) methacrylate (TMSPMA), tetraethoxysilane (TEOS) and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG) plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA), X-ray diffraction (XRD) nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR). The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior. (author)

  1. Proceedings of the international conference on sol-gel processes for advanced ceramics

    International Nuclear Information System (INIS)

    Vaidya, V.N.; Kumar, N.

    2009-01-01

    Sol-gel science and technology plays an important role in the synthesis of a wide range of materials. viz., fine ceramics, glasses, thin films, aerogels, nanomaterials of controlled composition and shape. speciality products such as nuclear fuels and industrial catalysts and so on. The products are homogeneous, and the synthesis and fabrication processes occur at significantly lower temperatures when compared to the conventional solid state reactions. The objective of the present International Conference on Sol-Gel Processes for Advanced Ceramics (SGPAC-2009) is to consolidate the knowledge on the wide spectrum applications of the sol-gel processes in materials synthesis and fabrication with special emphasis on ceramics. The aim is to bring together specialists from research groups across the globe to discuss the state of the art, and facilitate exchange of ideas. The articles relevant to INIS are indexed separately

  2. Chemical Sensors Based on Molecularly Imprinted Sol-Gel Materials †

    Science.gov (United States)

    Mujahid, Adnan; Lieberzeit, Peter A.; Dickert, Franz L.

    2010-01-01

    The sol-gel technique is earning the worldwide attention of researchers in the field of material science, due to its versatility in synthesizing inorganic ceramic materials at mild conditions. High purity, homogeneity, controlled porosity, stable temperature and nanoscale structuring are the most remarkable features offered by this method for generating highly sensitive and selective matrices to incorporate analyte molecules. The crafting of sol-gel sensors through molecular imprinting has put great influence on the development of innovative chemical sensors, which can be seen from the growing number of publications in this field. The review provides a brief overview of sol-gel sensor applications, and discusses the contribution of molecular imprinting in exploring the new world of sensors.

  3. Characterization of Srβ-alumina prepared by sol-gel and spray pyrolysis methods

    International Nuclear Information System (INIS)

    Kalaignan, G. Paruthimal; Seo, Dae Jong; Park, Seung Bin

    2004-01-01

    Eu 2+ doped β-alumina, Sr 1-x MgAl 10 O 17 Eu x 2+ (x=0.01-0.07) were successfully prepared by sol-gel and spray pyrolysis techniques with the same precursor materials. Srβ-alumina doped with Eu 2+ (SrMgAl 10 O 17 :Eu 2+ ) prepared from sol-gel method showed three photoluminescence (PL) peaks at 390, 418 and 459 nm after excitation wavelength at 254 nm and one PL peak at 461 nm when excitation was at 365 nm. The same powder was prepared from spray pyrolysis technique showed the six PL peaks at 323, 397, 415, 443, 480 and 508 nm after excitation at 254 nm. Also two PL peaks at 440 and 480 nm were observed after the excitation at 365 nm. These PL peaks were dependent on the excitation wavelength. The effect of different annealing temperatures of sol-gel powders, preparation conditions of spray pyrolysis powders and reduction atmospheres of both sol-gel and spray pyrolysis powders of various compositions of Eu 2+ doped Srβ-alumina were also studied. Both the powders were characterized by scanning electron microscopy, X-ray diffraction and PL techniques and comparison between the two preparation methods. Sol-gel prepared powder had eight times higher PL intensity and brightness than the spray pyrolysis prepared powder. The suggested good composition of Srβ-alumina is Sr 0.93 MgAl 10 O 17 :Eu 0.07 for both sol-gel and spay pyrolysis methods

  4. Development of novel Sol-Gel Indicators (SGI's) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    International Nuclear Information System (INIS)

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-01-01

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report

  5. Sol-Gel Production; Proceedings of the First International Conference on Application and Commercialization of Sol-Gel Processing Held in Saarbruecken, Germany on 24-25 May 1993

    National Research Council Canada - National Science Library

    Schmidt, Helmut

    1998-01-01

    ...; Sol-Gel Coatings on Large Glass Substrates for Multilayer Interference Systems; A SiO2-ZrO2 Gel Film doped with Organic Pigments Made by the Sol-Gel Method for Contrast Enhancement of Color Picture Tubes...

  6. Sol-gel fabrication and optical absorption properties of C-NiO nanocomposite coatings

    CSIR Research Space (South Africa)

    Tile, N

    2010-12-01

    Full Text Available of the sunlight as possible, then prevent thermal emittance The manufacturing process for most commercial thermal products is complicated C-NiO/Al has been fabricated using a simple and cheap sol-gel procedure combined with spin coating technique C... SOLUTION) Structure directing templateFinal C-NiO gel By suitable choice of precursor, we can engineer novel composite materials Sol-gel technique can be adapted to different coating methods coating substrate Spray coating Spin coating The material...

  7. Experiences with sol-gel bonded high porosity alumina fiber materials for filter applications

    OpenAIRE

    Handrick, Karin E.; Mohlratzer, August; Ostertag, Rolf; Sporn, Dieter; Schmidt, Helmut K.

    1988-01-01

    High porous alumina fiber structures appear promising for hot gas filtration in particular for diesel particulate traps. For this purpose, however, a method is required for manufacturing of stable shapes resisant to the blow-out by the gas flow. The sol-gel process was expected to be the best suited method for fiber bonding to provide the required stability. The main tasks of the development-work were a uniform isotropic fiber-distribution, the adaptation of the sol-gel-process to the applica...

  8. Investigation of Sol-Gel coatings exposed in the condenser at Fynsvaerket. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [DTU Management Engineering, Kgs. Lyngby (Denmark); Vilhelmsen, T. [Vattenfall Heat Nordic, Copenhagen (Denmark)

    2007-10-15

    The Danish Technological Institute (DTI) has developed a coatings technique using Hybrid Sol-gel nanotechnology to produce coatings which can change the surface characteristics of various components. It is the purpose of this project to investigate where such coatings can be utilised in the power generating industry with respect to fouling and corrosion resistance. Four different sol-gel coatings have been applied to brass condenser tubes about 10 cm in length. The coatings are termed 23, 35, 38, 46. The exact composition of these different coatings was not given. These sections were mounted in the water chamber inlet before the tubes into the condenser and another set were placed on the condenser plate at the outlet. The condenser tube has a composition 76 wt.% Cu, 22 wt.% Zn and 2 wt.% Al corresponding to an aluminium brass. Based on the visual appearance of the four coatings it is clear that Sol-gel 38 does not reduced biological fouling and rust spots can be clearly seen on Sol-gel 46. Thus based on visual appearance, sol-gel 23 and sol-gel 35 are most promising. Due to the presence of corrosion products on the inner side of the unexposed tubes which influences the adherence and protectiveness of coatings applied, the inner side cannot be used to assess the coatings performance. In the next exposure test, better initial cleaning of the tubes is required. Based on visual assessment, Sol-gel 38 has not solved the problems with biological fouling compared to the other coatings. With respect to corrosion, it is observed that in all cases there are corrosion products, either chlorides or oxides/hydroxides/carbonates, present in the interface between the tube and the coating. Coating 38 also experienced lack of adhesion. This could be triggered by a build up of corrosion products under the coating which would eventually lead to delaminating of the coating. Whether the corrosion rate has been decreased compared to the uncoated tubes is not known, however in the next

  9. Sol-gel process for the manufacture of high power switches

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr, Joe; Reibold, Robert

    2016-09-27

    According to one embodiment, a photoconductive semiconductor switch includes a structure of nanopowder of a high band gap material, where the nanopowder is optically transparent, and where the nanopowder has a physical characteristic of formation from a sol-gel process. According to another embodiment, a method includes mixing a sol-gel precursor compound, a hydroxy benzene and an aldehyde in a solvent thereby creating a mixture, causing the mixture to gel thereby forming a wet gel, drying the wet gel to form a nanopowder, and applying a thermal treatment to form a SiC nanopowder.

  10. Plasma spraying of ceramic powders produced by the sol-gel technique

    International Nuclear Information System (INIS)

    Joshi, S.V.; Ganguli, D.

    1992-01-01

    The development of plasma-sprayed protective layers to enhance the surface properties of critical engineering components represents one of the most promising achievements of materials technology in recent times. The important aspects associated with plasma spraying of ceramic powders are discussed and the influence of the powder characteristics on the quality of sprayed coatings is highlighted. The advantages of the sol-gel technique for preparing spray grade powders are briefly outlined. The sol-gel synthesis of a Yttria-stabilized-zirconia powder is discussed as a case study. Results of powder characterization studies and evaluation of its plasma sprayed coating are also presented. (author). 28 refs., 5 figs., 1 tab

  11. Application of sol-gel process on the elaboration of SnO2 based ceramics

    International Nuclear Information System (INIS)

    Prescatan, R.T.; Silva, D.V. da; Hiratsuka, R.S.; Santilli, C.V.; Pulcinelli, S.H.

    1990-01-01

    The electrical, optical and chemical peculiar properties of SnO 2 confers it-self some potential application. The densification difficulty during sintering of SnO 2 compromises its elaboration by ceramic conventional process. In this work the preparation of SnO 2 ceramics by sol-gel process was investigated. Some parameters envolved on the colloidal stability, sol-gel transition and drying process were analysed. The obtained materials were characterized by rheological, X-ray diffraction, infra-red spectroscopy and pores size distribution measurements. The results show that a considerable densification during sintering at 400 and 600 0 C was obtained. (author) [pt

  12. Catalysis in Organic Solvents with Lipase Immobilized by Sol-Gel Technique

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Szilva, János; Hetflejš, Jiří; Šabata, Stanislav

    2003-01-01

    Roč. 26, 1-3 (2003), s. 1183-1187 ISSN 0928-0707. [SOL-GEL 2001. Abano Terme, 16.09.2001-21.09.2001] R&D Projects: GA ČR GA104/01/0461; GA MŠk OK 368; GA MŠk OC 840.10 Institutional research plan: CEZ:AV0Z4072921 Keywords : lipase * organic-inorganic matrices * sol-gel Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.546, year: 2003

  13. Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide.

    Science.gov (United States)

    Lakshmi, R V; Basu, Bharathibai J

    2009-11-15

    A superhydrophobic sol-gel composite film was fabricated by incorporating hydrophobically modified colloidal zinc hydroxide (CZH) in sol-gel matrix. CZH was prepared by controlled precipitation and modified by treatment with stearic acid. The concentration of stearic acid and stirring time were optimized to obtain modified CZH with very high water contact angle (WCA) of 165 degrees and sliding angle (SA)superhydrophobic surfaces. FTIR spectrum also confirmed the presence of zinc stearate in the composite film. The method is simple and cost-effective and does not involve any expensive chemicals or equipments.

  14. Novel Sol-Gel Based Pt Nanocluster Catalysts for Propane Dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Boespflug, Elaine; Kawola, Jeffrey S.; Martino, Anthony; Sault, Allen G.

    1999-08-09

    We report propane dehydrogenation behavior of catalysts prepared using two novel synthesis strategies that combine inverse micelle Pt nanocluster technology with silica and alumina sol-gel processing. Unlike some other sol-gel catalyst preparations. Pt particles in these catalysts are not encapsulated in the support structure and the entire Pt particle surface is accessible for reaction. Turnover frequencies (TOF) for these catalysts are comparable to those obtained over Pt catalysts prepared by traditional techniques such as impregnation, yet the resistance to deactivation by carbon poisoning is much greater in our catalysts. The deactivation behavior is more typical of traditionally prepared PtSn catalysts than of pure Pt catalysts.

  15. Synthesis of superhydrophobic alumina membrane: Effects of sol-gel coating, steam impingement and water treatment

    Science.gov (United States)

    Ahmad, N. A.; Leo, C. P.; Ahmad, A. L.

    2013-11-01

    Ceramic membranes possess natural hydrophilicity thus tending to absorb water droplets. The absorption of water molecules on membrane surface reduces their application in filtration, membrane distillation, osmotic evaporation and membrane gas absorption. Fluoroalkylsilane (FAS) grafting allows the conversion of hydrophilic ceramic membranes into superhydrophobic thin layer, but it usually introduces a great increment of mass transfer resistance. In this study, superhydrophobic alumina membranes were synthesized by dip coating alumina support into sol-gel and grafted with the fluoroalkylsilane (FAS) named (heptadecafluoro-1,1,2,2-tetra hydrodecyl) triethoxysilane. Steam impingement and water treatment acted as additional steps to generate surface roughness on sol-gel and most importantly to reduce mass transfer resistance. Superhydrophobic alumina membrane with high water contact angle (158.4°) and low resistance (139.5 ± 24.9 G m-1) was successfully formed when the alumina membrane was dip coated into sol-gel for 7 s, treated with steam impingement for 1 min and immersed in hot water at 100 °C. However, the mass transfer resistance was greatly induced to 535.6 ± 23.5 G m-1 when the dip coating time was increased to 60 s. Long dip coating time contributes more on the blockage of porous structure rather than creates a thin film on the top of membrane surface. Reducing the pore size and porosity significantly due to increase of coating molecules deposited on the membrane. Steam impingement for 1 min promoted the formation of cones and valleys on the sol-gel, but the macro-roughness was destroyed when the steam impingement duration was extended to more than 3 min. The immersions of membranes into hot water at temperatures higher than 60 °C encouraged the formation of boehmite which enhances the formation of additional roughness and enlarges pore size greatly. Thus, this work showed that the formation of superhydrophobic alumina membrane with low resistance is

  16. Sol-gel silica films embedding NIR- emitting Yb-quinolinolate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Figus, Cristiana, E-mail: cristiana.figus@dsf.unica.it; Quochi, Francesco, E-mail: cristiana.figus@dsf.unica.it; Piana, Giacomo; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni [Dipartimento di Fisica, University of Cagliari, SS 554 Bivio per Sestu, I-09042, Monserrato-Cagliari (Italy); Artizzu, Flavia [Dipartimento di Fisica, University of Cagliari and Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, SS 554 Bivio per Sestu, I-09042, Monserrato-Cagliari (Italy); Mercuri, Maria Laura; Serpe, Angela; Deplano, Paola [Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, SS 554 Bivio per Sestu, I-09042, Monserrato-Cagliari (Italy)

    2014-10-21

    Sol-gel silica thin films embedding an ytterbium quinolinolato complex (YbClQ{sub 4}) have been obtained using different alkoxides. Homogeneous, crack- and defect-free thin films of optical quality have been successfully deposited on glass substrate by dip-coating. The silica thin films have been characterized by time-resolved photoluminescence. The luminescence properties of the YbClQ{sub 4} are preserved in silica films prepared through an optimized sol-gel approach. The excited state lifetime of the lanthanide is comparable to those observed in bulk and longer than the corresponding ones in solution.

  17. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties.

    Science.gov (United States)

    Hendrikx, Stephan; Kascholke, Christian; Flath, Tobias; Schumann, Dirk; Gressenbuch, Mathias; Schulze, F Peter; Hacker, Michael C; Schulz-Siegmund, Michaela

    2016-04-15

    We present a series of organic/inorganic hybrid sol-gel derived glasses, made from a tetraethoxysilane-derived silica sol (100% SiO2) and oligovalent organic crosslinkers functionalized with 3-isocyanatopropyltriethoxysilane. The material was susceptible to heat sterilization. The hybrids were processed into pore-interconnected scaffolds by an indirect rapid prototyping method, described here for the first time for sol-gel glass materials. A large panel of polyethylene oxide-derived 2- to 4-armed crosslinkers of molecular weights ranging between 170 and 8000Da were incorporated and their effect on scaffold mechanical properties was investigated. By multiple linear regression, 'organic content' and the 'content of ethylene oxide units in the hybrid' were identified as the main factors that determined compressive strength and modulus, respectively. In general, 3- and 4-armed crosslinkers performed better than linear molecules. Compression tests and cell culture experiments with osteoblast-like SaOS-2 cells showed that macroporous scaffolds can be produced with compressive strengths of up to 33±2MPa and with a pore structure that allows cells to grow deep into the scaffolds and form mineral deposits. Compressive moduli between 27±7MPa and 568±98MPa were obtained depending on the hybrid composition and problems associated with the inherent brittleness of sol-gel glass materials could be overcome. SaOS-2 cells showed cytocompatibility on hybrid glass scaffolds and mineral accumulation started as early as day 7. On day 14, we also found mineral accumulation on control hybrid glass scaffolds without cells, indicating a positive effect of the hybrid glass on mineral accumulation. We produced a hybrid sol-gel glass material with significantly improved mechanical properties towards an application in bone regeneration and processed the material into macroporous scaffolds of controlled architecture by indirect rapid prototyping. We were able to produce macroporous materials

  18. Weathering characteristics and moisture uptake properties of wood coated with water-borne sol-gel thin films

    Science.gov (United States)

    M. A. Tshabalala; C. Starr; N. R. Sutherland

    2010-01-01

    In this study, wood specimens were coated with water-borne silsesquioxane oligomers by an in situ sol-gel deposition process. The effect of these water-borne sol-gel thin films on weathering characteristics and moisture-uptake properties of the wood specimens were investigated. The weathering characteristics were investigated by exposure of the specimens to artificial...

  19. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  20. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3

    International Nuclear Information System (INIS)

    Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Yasakau, K.A.; Salvado, I.M. Miranda; Ferreira, M.G.S.

    2005-01-01

    Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles. The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements. The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3

  1. Improving the scratch resistance of sol-gel metal oxide coatings cured at 250 C through use of thermogenerated amines

    NARCIS (Netherlands)

    Langanke, J.; Arfsten, N.; Buskens, P.; Habets, R.; Klankermayer, J.; Leitner, W.

    2013-01-01

    Scratch resistant sol-gel metal oxide coatings typically require a thermal post-treatment step (curing process) at temperatures between 400 and 700 C. In this report, we demonstrate that the in situ generation of amines within sol-gel films facilitates the preparation of scratch resistant metal

  2. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  3. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  4. Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film

    International Nuclear Information System (INIS)

    Yu Jiuhong; Ju Huangxian

    2003-01-01

    Hemoglobin (Hb) was entrapped in a titania sol-gel matrix and used as a mimetic peroxidase to construct a novel amperometric biosensor for hydrogen peroxide. The Hb entrapped titania sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process for protein immobilization. The morphologies of both titania sol-gel and the Hb films were characterized using scanning electron microscopy (SEM) and proved to be chemically clean, porous, homogeneous. This matrix provided a biocompatible microenvironment for retaining the native structure and activity of the entrapped Hb and a very low mass transport barrier to the substrates. H 2 O 2 could be reduced by the catalysis of the entrapped hemoglobin at -300 mV without any mediator. The reagentless H 2 O 2 sensor exhibited a fast response (less than 5 s) and sensitivity as high as 1.29 mA mM -1 cm -2 . The linear range for H 2 O 2 determination was from 5.0x10 -7 to 5.4x10 -5 M with a detection limit of 1.2x10 -7 M. The apparent Michaelis-Menten constant of the encapsulated hemoglobin was calculated to be 0.18±0.02 mM. The stability of the biosensor was also evaluated

  5. Gallium contents dependent improved behavior of Sol-gel grown Al ...

    Indian Academy of Sciences (India)

    9

    a Universiti Technologi Malaysia, Laser Center, Ibnu Sina Institute for Scientific and. Industrial Research, Johor Bahru, Johor, Malaysia, 81310. bUniversiti Teknologi Malaysia, Department of Physics, Faculty of Science, Johor. Bahru, Johor ... Amongst all, sol-gel technique appeared advantageous due to its economy, ease,.

  6. Hydrogen permeation through sol-gel-coated iron during galvanostatic charging

    International Nuclear Information System (INIS)

    Zakorchemna, I.; Carmona, N.; Zakroczymski, T.

    2008-01-01

    One-layer sol-gel silica-zirconia and two-layer silica-zirconia and zirconia coatings were deposited on one side of iron membranes by spin-coating, densified in air and annealed up to 800 deg. C in vacuum. Hydrogen permeation through the membranes, coated and uncoated, polarised cathodically under galvanostatic control in 0.1 M NaOH solution was studied using the electrochemical permeation technique. During the initial period, the effect of the sol-gel coatings was insignificant. However, the coatings quite efficiently prevented the iron surface become more active to hydrogen entry during a long-lasting cathodic polarisation. In addition, the electrochemical-corrosion behaviour of the coated iron and the effect of the sol-gel coatings on the effective diffusivity of hydrogen in the coated membranes were studied. On the basis of the polarisation curves and the hydrogen permeation data it was proved that the sol-gel coatings blocked the iron surface for the hydrogen evolution reaction and, consequently, for the hydrogen entry into iron. The effective coating coverage was determined by comparison of the hydrogen fluxes permeating the coated and uncoated membranes. Finally the real concentration of hydrogen beneath the uncoated iron sites and the amount of hydrogen stored in a membrane were evaluated

  7. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    Science.gov (United States)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  8. Core-shell Au/Ag nanoparticles embedded in silicate sol-gel ...

    Indian Academy of Sciences (India)

    Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide ... The present study highlights the influence of molar composition of Ag nanoparticles in the Au/Ag bimetallic composition towards the electrocatalytic reduction and sensing of hydrogen peroxide in ...

  9. Epoxy-based organic-inorganic nanocomposite coatings and films prepared by sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Brus, Jiří; Matějka, Libor

    2004-01-01

    Roč. 6, 3-4 (2004), s. 7-15 R&D Projects: GA ČR GA203/01/0735; GA AV ČR IAA4050008; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : sol-gel process * nanocomposites * solid-state NMR Subject RIV: CD - Macromolecular Chemistry

  10. Foldable and Cytocompatible Sol-gel TiO2 Photonics.

    Science.gov (United States)

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B; Geiger, Sarah J; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-07

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  11. Nanocrystalline Ni-Zn ferrites prepared by sol-gel method

    Czech Academy of Sciences Publication Activity Database

    Popovici, M.; Savii, C.; Nižňanský, Daniel; Šubrt, Jan; Boháček, Jaroslav; Becherescu, D.; Caizer, C.; Enache, C.; Ionescu, C.

    2003-01-01

    Roč. 5, č. 1 (2003), s. 251-256 ISSN 1454-4164 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : nanostructures * sol-gel processing * XRD Subject RIV: CA - Inorganic Chemistry Impact factor: 0.996, year: 2003

  12. Sol-gel immobilization of serine proteases for application in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2001-01-01

    The serine proteases α-chymotrypsin, trypsin, and subtilisin Carlsberg were immobilized in a sol-gel matrix and the effects on the enzyme activity in organic media are evaluated. The percentage of immobilized enzyme is 90% in the case of α-chymotrypsin and the resulting specific enzyme activity in

  13. Organization in sol-gel polymerization of methacrylate co-oligomers containing trimethoxysilylpropyl methacrylate

    Czech Academy of Sciences Publication Activity Database

    Vraštil, J.; Matějka, Libor; Špaček, V.; Večeřa, M.; Prokůpek, L.

    2005-01-01

    Roč. 46, č. 25 (2005), s. 11232-11240 ISSN 0032-3861 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic-inorganic hybrid * sol-gel process * oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.849, year: 2005

  14. Multiwall carbon nanotube/nickel oxide nanocompositecoatings: Sol-gel deposition and characterization

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-09-01

    Full Text Available prepared by a sol-gel process and coated on aluminium substrate. The MWCNTs were chemically functionalized and then added into NiO alcogels which is followed by magnetic stirring in order to homogeneously disperse in the NiO matrix solution. The morphology...

  15. Sol-gel coatings on large area glass sheets for electrochromic devices

    NARCIS (Netherlands)

    Vroon, Z.A.E.P.; Spee, C.I.M.A.

    1997-01-01

    The preparation of vanadium and tungsten oxide coatings is described using vanadium oxide tri-2-propoxide/2-propanol and tungsten penta-ethoxide/2-propanol solutions. These solutions are dip coated onto K-glass substrates and cured. For vanadium oxide coatings it is shown that sol-gel/dip coat

  16. Silica-Based Sol-Gel Coating on Magnesium Alloy with Green Inhibitors

    Directory of Open Access Journals (Sweden)

    Vinod Upadhyay

    2017-06-01

    Full Text Available In this work, the performances of several natural organic inhibitors were investigated in a sol-gel system (applied on the magnesium alloy Mg AZ31B substrate. The inhibitors were quinaldic acid (QDA, betaine (BET, dopamine hydrochloride (DOP, and diazolidinyl urea (DZU. Thin, uniform, and defect-free sol-gel coatings were prepared with and without organic inhibitors, and applied on the Mg AZ31B substrate. SEM and EDX were performed to analyze the coating surface properties, the adhesion to the substrate, and the thickness. Electrochemical measurements, including electrochemical impedance spectroscopy (EIS and anodic potentiodynamic polarization scan (PDS, were performed on the coated samples to characterize the coatings’ protective properties. Also, hydrogen evolution measurement—an easy method to measure magnesium corrosion—was performed in order to characterize the efficiency of coating protection on the magnesium substrate. Moreover, scanning vibrating electrode technique (SVET measurements were performed to examine the efficiency of the coatings loaded with inhibitors in preventing and containing corrosion events in defect areas. From the testing results it was observed that the formulated sol-gel coatings provided a good barrier to the substrate, affording some protection even without the presence of inhibitors. Finally, when the inhibitors’ performances were compared, the QDA-doped sol-gel was able to contain the corrosion event at the defect.

  17. Sol-gel synthesis of cerium doped yttrium silicates and their luminescent properties

    Czech Academy of Sciences Publication Activity Database

    Růžička, J.; Nižňanský, D.; Nikl, Martin; Kučerková, Romana; Cannas, C.

    2010-01-01

    Roč. 25, č. 2 (2010), 229-234 ISSN 0884-2914 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : YSO:Ce * YPS:Ce * sol-gel method * luminescence Ce3+ Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.395, year: 2010

  18. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  19. Thermal stability of porous sol-gel phosphosilicates and their surface area stabilisation by lanthanum addition

    NARCIS (Netherlands)

    Falco, Lorena; De Mendonca, Mariana Van Den Tempel; Mercadal, Juan J.; Zarubina, Valeriya; Melián-Cabrera, Ignacio

    2016-01-01

    The thermal stability of porous sol-gel phosphosilicates was studied by comparing the textural features upon calcination between 400 and 550 °C. A significant loss of surface area and pore volume were observed; the first is due to thermal coarsening of the nanoparticles, and the pore volume

  20. Adhesion enhancement of sol-gel coating on polycarbonate by heated impregnation treatment

    International Nuclear Information System (INIS)

    Wu, Linda Y.L.; Boon, L.; Chen, Z.; Zeng, X.T.

    2009-01-01

    The main limitation in using coated plastics for optical components, electronic applications and display systems is the softness of the substrate surfaces, which is responsible for the low impact and abrasion resistance and weak adhesion between the coating and the substrate. In this paper, we report a new strategy for surface pre-treatment of plastics using heated vacuum equipment and sol-gel materials to provide both chemical bonds and penetrated hard layer into the plastic surface to increase the overall performance of the coated plastic components. The heated vacuum treatment process involves: (1) surface cleaning and pore opening by heating and vacuum conditions, (2) impregnation of hydrolyzed hybrid precursor into polymer substrate under pressure and elevated temperature, (3) aminolysis of diffused precursor with surface to form chemical bonds and hardened surface layer, (4) formation of chemical bonds at treated surface with sol-gel hard coating. An impregnation depth of 1.5 μm was detected. Water contact angle dropped to below 40 o and roughness increased after treatment. These provided better adhesion by increased wettability and contact area. Much increased nanoindentation hardness and Young's modulus after impregnation provided a gradient in mechanical properties between soft substrate and hard sol-gel coating. The hardened substrate delays the plastic deformation in substrate during pencil scratch test, thereby preventing early gouge failure. Both the better adhesion and the delayed gouge failure contributed to the increased scratch resistance from 6B to 8H after sol-gel coating.

  1. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  2. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  3. A sol-gel-modified poly(methyl methacrylate) electrophoresis microchip with a hydrophilic channel wall.

    Science.gov (United States)

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-01-01

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was approximately 27.4 degrees compared with approximately 66.3 degrees for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13x10(-4) cm2 V(-1) s(-1) for the native-PMMA channel to 4.86x10(-4) cm2 V(-1) s(-1) for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74,882.3 m(-1) compared with 14,730.5 m(-1) for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  4. Investigations of the small-scale thermal behavior of sol-gel thermites.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith

    2009-02-01

    Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments under argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure to air

  5. Influence of Ce{sup 3+} doping on molecular organization of Si-based organic/inorganic sol-gel layers for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Fedel, Michele, E-mail: michele.fedel@unitn.it [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); Callone, Emanuela [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); “K. Müller” Magnetic Resonance Lab, University of Trento, via Sommarive 9, Povo (Italy); Fabbian, Matias; Deflorian, Flavio [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); Dirè, Sandra [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); “K. Müller” Magnetic Resonance Lab, University of Trento, via Sommarive 9, Povo (Italy)

    2017-08-31

    Highlights: • Ce{sup 3+} ions promote a decrease of the degree of condensation of the silsesquioxane network. • Ce{sup 3+} ions affect ladder and cages like structures formation in the silsesquioxane network. • Ce{sup 3+} ions do not significantly affect the barrier properties of the coatings. • [Ce{sup 3+}] ≈ 5·10{sup −4} M provides the sol-gel film with an effective passivating potential. - Abstract: In this work, organosilane-derived sol-gel films containing different amounts of cerium ions applied on AA 1050 were investigated. The sol-gel coatings were prepared from 3-glycidoxypropyltrimethoxysilane (GPTMS) and methyltriethoxysilane (MTES) mixtures with the addition of cerium nitrate in order to achieve different concentrations of Ce ions (from 10{sup −5} M to 10{sup −2} M). The effect of the cerium load on the structure of the cured sol-gel films was investigated by means of solid state NMR and FT-IR spectroscopy. The corrosion protection properties of the different sol-gel layers were investigated mainly by means potentiodynamic curves and electrochemical impedance spectroscopy (EIS). FT-IR and solid state NMR suggested a significant influence of the Ce cations on the network structure: not only the degree of condensation decreases with Ce addition but also the structural modification of the silsesquioxane network is observed with preferential formation of ladder-like species for low Ce{sup 3+} content and cages predominance for Ce/Si molar ratio greater than 0.039, i.e. [Ce{sup 3+}] = 1·10{sup −4} M. Electrochemical tests revealed that the effect of Ce ions on the structure of the coatings does not lead to remarkable changes in the barrier properties. Moreover, it was found that the Ce ions seems to be present in the cured films and are able to migrate towards the metal/coating interface thus providing a stabilization of the metal interface.

  6. Active corrosion protection of AA2024 by sol-gel coatings with corrosion inhibitors =

    Science.gov (United States)

    Yasakau, Kiryl

    A industria aeronautica utiliza ligas de aluminio de alta resistencia para o fabrico dos elementos estruturais dos avioes. As ligas usadas possuem excelentes propriedades mecanicas mas apresentam simultaneamente uma grande tendencia para a corrosao. Por esta razao essas ligas necessitam de proteccao anticorrosiva eficaz para poderem ser utilizadas com seguranca. Ate a data, os sistemas anticorrosivos mais eficazes para ligas de aluminio contem cromio hexavalente na sua composicao, sejam pre-tratamentos, camadas de conversao ou pigmentos anticorrosivos. O reconhecimento dos efeitos carcinogenicos do cromio hexavalente levou ao aparecimento de legislacao banindo o uso desta forma de cromio pela industria. Esta decisao trouxe a necessidade de encontrar alternativas ambientalmente inocuas mas igualmente eficazes. O principal objectivo do presente trabalho e o desenvolvimento de pretratamentos anticorrosivos activos para a liga de aluminio 2024, baseados em revestimentos hibridos produzidos pelo metodo sol-gel. Estes revestimentos deverao possuir boa aderencia ao substrato metalico, boas propriedades barreira e capacidade anticorrosiva activa. A proteccao activa pode ser alcancada atraves da incorporacao de inibidores anticorrosivos no pretratamento. O objectivo foi atingido atraves de uma sucessao de etapas. Primeiro investigou-se em detalhe a corrosao localizada (por picada) da liga de aluminio 2024. Os resultados obtidos permitiram uma melhor compreensao da susceptibilidade desta liga a processos de corrosao localizada. Estudaram-se tambem varios possiveis inibidores de corrosao usando tecnicas electroquimicas e microestruturais. Numa segunda etapa desenvolveram-se revestimentos anticorrosivos hibridos organico-inorganico baseados no metodo sol-gel. Compostos derivados de titania e zirconia foram combinados com siloxanos organofuncionais a fim de obter-se boa aderencia entre o revestimento e o substrato metalico assim como boas propriedades barreira. Testes

  7. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    Science.gov (United States)

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  8. Silica/quercetin sol-gel hybrids as antioxidant dental implant materials

    Science.gov (United States)

    Catauro, Michelina; Papale, Ferdinando; Bollino, Flavia; Piccolella, Simona; Marciano, Sabina; Nocera, Paola; Pacifico, Severina

    2015-06-01

    The development of biomaterials with intrinsic antioxidant properties could represent a valuable strategy for preventing the onset of peri-implant diseases. In this context, quercetin, a naturally occurring flavonoid, has been entrapped at different weight percentages in a silica-based inorganic material by a sol-gel route. The establishment of hydrogen bond interactions between the flavonol and the solid matrix was ascertained by Fourier transform infrared spectroscopy. This technique also evidenced changes in the stretching frequencies of the quercetin dienonic moiety, suggesting that the formation of a secondary product occurs. Scanning electron microscopy was applied to detect the morphology of the synthesized materials. Their bioactivity was shown by the formation of a hydroxyapatite layer on sample surface soaked in a fluid that simulates the composition of human blood plasma. When the potential release of flavonol was determined by liquid chromatography coupled with ultraviolet and electrospray ionization tandem mass spectrometry techniques, the eluates displayed a retention time that was 0.5 min less than quercetin. Collision-activated dissociation mass spectrometry and untraviolet-visible spectroscopy were in accordance with the release of a quercetin derivative. The antiradical properties of the investigated systems were evaluated by DPPH and ABTS methods, whereas the 2,7-dichlorofluorescein diacetate assay highlighted their ability to inhibit the H2O2-induced intracellular production of reactive oxygen species in NIH-3T3 mouse fibroblast cells. Data obtained, along with data gathered from the MTT cytotoxicity test, revealed that the materials that entrapped the highest amount of quercetin showed notable antioxidant effectiveness.

  9. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    Directory of Open Access Journals (Sweden)

    Chuanjun Liu

    2017-02-01

    Full Text Available The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM sensor arrays based on molecularly imprinted sol-gel (MISG materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL; nonanal (NAL and bezaldehyde (BAL. The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS and tetrabutoxytitanium (TBOT. Aminopropyltriethoxysilane (APT; diethylaminopropyltrimethoxysilane (EAP and trimethoxy-phenylsilane (TMP were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA; nonanoic acid (NA and benzoic acid (BA were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA; multivariate analysis of covariance (MANCOVA and hierarchical cluster analysis (HCA. The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP effect and the matrix

  10. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes.

    Science.gov (United States)

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-02-16

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix

  11. Investigation of Sol-Gel coatings exposed in the condenser at Fynsvaerket. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [DTU Management Engineering, Kgs. Lyngby (Denmark); Vilhelmsen, T. [Vattenfall Heat Nordic, Copenhagen (Denmark); Bennedsen, J. [Teknologisk Institut, Aarhus (Denmark)

    2008-12-15

    The Danish Technological Institute (DTI) has developed a technique using Hybrid Sol-gel nanotechnology to produce coatings which can change the surface characteristics of various components. It is the purpose of this project to investigate where such coatings can be utilised in the power generating industry with respect to fouling and corrosion resistance. Sol-gel coatings have glass-ceramic properties and their fundamental chemical structure is based on silanes (methane where carbon is replaced with silicon) with an amorphous (not crystalline) structure. The basic structure can be modified with various metallic nanoparticles to change the properties of the coatings. In the sol-gel process, the liquid reagents are mixed together to form a sol-gel which is then applied on the surface of a component either by dipping or painting. After that the component is cured at a temperature of 160 deg. C to result in a glass ceramic surface. A report has been written with the initial results with sol-gel coatings on the condenser tubes at Fysnvaerket. Due to the presence of corrosion products on the unexposed tubes which influences the adherence and protectiveness of coatings applied, the effect of sol-gel coatings were difficult to assess. Two different sol-gel coatings have been applied to brass condenser tubes about 10 cm in length. Based on the experience from previous exposures, the surface of the condenser tubes was mechanically cleaned before coating with the sol-gel components. One set was sandblasted and the other set was grinded to a polished finish using sandpaper. The specimens grinded and polished were exposed tubes that had been removed from the condenser. Sections of unexposed cleaned condenser tubes with and without sol-gel are also investigated as control specimens. Before application of the coatings, the tubes were mechanically cleaned either by sandblasting or by grinding to a polished finish. The exact composition of these different coatings was not known

  12. rhEGF-containing thermosensitive and mucoadhesive polymeric sol-gel for endoscopic treatment of gastric ulcer and bleeding.

    Science.gov (United States)

    Maeng, Jin Hee; So, Jung Won; Kim, Jungju; Kim, In Ae; Jung, Ji Hoon; Min, Kyunghyun; Lee, Don Haeng; Yang, Su-Geun

    2014-03-01

    Gastrointestinal endoscopy is a standard diagnostic tool for gastrointestinal ulcers and cancer. In this study, we have developed recombinant human epidermal growth factor-containing ulcer-coating polymeric sol-gel for endoscopic application. Chitosan and pluronic F127 were employed for their thermoresponsive and bioadhesive properties. At temperatures below 21, polymeric sol-gel remains liquid during endoscopic application and transforms to gel at body temperature after application on ulcers. In an in vitro cellular wounding assay, recombinant human epidermal growth factor sol-gel significantly enhanced the cell migration and decreased the wounding area (68%) compared to nontreated, recombinant human epidermal growth factor solution, and sol-gel without recombinant human epidermal growth factor (42, 49, and 32 % decreased at day 1). The in vivo ulcer-healing study was performed in an acetic acid-induced gastric ulcer rat model and proved that our recombinant human epidermal growth factor endoscopic sol-gel facilitated the ulcer-healing process more efficiently than the other treatments. Ulcer sizes in the recombinant human epidermal growth factor sol-gel group were decreased 2.9- and 2.1-fold compared with those in the nontreated group on days 1 and 3 after ulceration, respectively. The mucosal thickness in the recombinant human epidermal growth factor sol-gel group was significantly increased compared to that in the nontreated group (3.2- and 6.9-fold on days 1 and 3 after ulceration, respectively). In a gastric retention study, recombinant human epidermal growth factor sol-gel stayed on the gastric mucosa more than 2 h after application. The present study suggests that recombinant human epidermal growth factor sol-gel is a prospective candidate for treating gastric ulcers via endoscopic application.

  13. Effects of thermal treatment conditions on the phase formation and the morphological changes of sol-gel derived 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 thin films

    International Nuclear Information System (INIS)

    Yang, Sun A; Han, Jin Kyu; Choi, Yong Chan; Bu, Sang Don

    2011-01-01

    We report the synthesis of Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) thin films and the effects of thermal conditions on their surface morphologies and phase formation behaviors. The PMN-PT thin films were prepared by spin-coating PMN-PT sol-gel solutions on Pt/Ti/SiO 2 /Si substrates and subsequent thermal treatments including pyrolysis, annealing, and additional pre-annealing. We found that the surface morphologies and the formation of the perovskite phase were strongly affected by the final annealing temperature. The grain size of perovskite phase and the amount of the perovskite phase increased as the annealing temperature was increased from 550 to 800 .deg. C. We also found that the voids started to form on the surface of the film at an annealing temperature of 650 .deg. C and that their areas increased with increasing in annealing temperature. The void formation was found to depend on the time period of pyrolysis and on the pre-annealing process between pyrolysis and final annealing. Dense PMN-PT films with relatively high amounts of the perovskite phase were obtained when additional pre-annealing at 750 .deg. C for 5 min was performed.

  14. Manufacture of amorphous and poly-crystalline materials with the sol-gel process; Fabricacion de materiales amorfos y policristalinos con la ruta sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda-Contreras, J. [Centro Universitario de Los Lagos, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico)

    2006-01-15

    The sun-gel process is a chemical route that allows the manufacture of amorphous and poly-crystalline materials in a relatively simple way. New materials can be obtained, materials that through the traditional manufacture methods, are very difficult to obtain, such as oxide combinations (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), and that, when being produced by traditional methods, they run the risk of being contaminated with rare earth ions or organic dyes. The unique structures, micro- structures and compounds that can be made with the sun-gel process open many possibilities for practical applications, to name a few: the manufacture of optical components, preforms for optical fibers, dielectric coatings, superconductors, waveguides, nanoparticles, solar cells, etc. [Spanish] El proceso sol-gel es una ruta quimica que permite fabricar materiales amorfos y policristalinos de forma relativamente sencilla. Se pueden obtener nuevos materiales que a traves de los metodos tradicionales de fabricacion son muy dificiles de obtener, tales como combinaciones de oxidos (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), y que, de ser producidos por metodos tradicionales corren el riesgo de contaminarse con iones de tierras raras o colorantes organicos. Las estructuras unicas, micro estructuras y compuestos que pueden hacerse con el proceso sol-gel abren muchas posibilidades para aplicaciones practicas, por nombrar algunas, la fabricacion de componentes opticos, preformas para fibras opticas, recubrimientos dielectricos, superconductores, guias de onda, nanoparticulas, celdas solares, etc.

  15. Incorporation of europium III complex into nanoparticles and films obtained by the Sol-Gel methodology

    Directory of Open Access Journals (Sweden)

    Faley Jean de Sousa

    2010-03-01

    Full Text Available The sol-gel process is very effective for the preparation of new materials with potential applications in optics, sensors, catalyst supports, coatings, and specialty inorganic polymers that can be used as hosts for the accommodation of organic molecules. The low temperature employed in the process is the main advantage of this methodology. In this work, the europium (III complex with 1,10-phenantroline was prepared, and this luminescent complex was incorporated into silica nanoparticles and films by the sol-gel process. The nanoparticles were obtained by the modified Stöber methodology. The films were obtained by the dip-coating technique, at different deposition rates and numbers of layers. The nanoparticles and films were characterized by photoluminescence, thermal analysis, and Raman and infrared spectroscopies. Characterization revealed that the europium (III complex was not affected upon incorporation into the nanoparticles and films, opening a new field for the application of these materials.

  16. Porphyrinosilica and metalloporphyrinosilica: hybrid organic-inorganic materials prepared by sol-gel processing

    Science.gov (United States)

    Iamamoto; Sacco; Biazzotto; Ciuffi; Serra

    2000-01-01

    New materials porphyrinosilica and metalloporphyrinosilica template have been obtained by a sol-gel processing where functionalyzed porphyrins and metalloporphyrins "building blocks" were assembled into a three-dimensional silicate network. The optimized conditions for preparation of these materials are revised. The monomer precursors porphyrinopropylsilyl and metalloporphyrinopropylsilyl preparation reactions and subsequent one pot sol-gel processing with tetraethoxysilane are discussed. In the case of metalloporphyrins the nitrogen base coordinates to the central metal and acts as a template in the molecular imprinting technique. UV-visible absorption spectroscopy, thermogravimetric analysis, electron paramagnetic resonance, nuclear magnetic spectra, infrared spectra, luminescence spectra, surface area and electron spectroscopy imaging of the materials are used to characterize the prepared materials. The catalytic activities of these metalloporphyrinosilica-template are compared.

  17. Porphyrinosilica and metalloporphyrinosilica: hybrid organic-inorganic materials prepared by sol-gel processing

    Directory of Open Access Journals (Sweden)

    YASSUKO IAMAMOTO

    2000-03-01

    Full Text Available New materials porphyrinosilica and metalloporphyrinosilica template have been obtained by a sol-gel processing where functionalyzed porphyrins and metalloporphyrins "building blocks" were assembled into a three-dimensional silicate network. The optimized conditions for preparation of these materials are revised. The monomer precursors porphyrinopropylsilyl and metalloporphyrinopropylsilyl preparation reactions and subsequent one pot sol-gel processing with tetraethoxysilane are discussed. In the case of metalloporphyrins the nitrogen base coordinates to the central metal and acts as a template in the molecular imprinting technique. UV-visible absorption spectroscopy, thermogravimetric analysis, electron paramagnetic resonance, nuclear magnetic spectra, infrared spectra, luminescence spectra, surface area and electron spectroscopy imaging of the materials are used to characterize the prepared materials. The catalytic activities of these metalloporphyrinosilica- template are compared.

  18. Comparative study of ZnO thin films prepared by different sol-gel route

    Directory of Open Access Journals (Sweden)

    F Esmaieli Ghodsi

    2012-03-01

    Full Text Available   Retraction Notice    The paper "Comparative study of ZnO thin films prepared by different sol-gel route" by H. Absalan and F. E. Ghodsi, which appeared in Iranian Journal of Physics Research, Vol. 11, No. 4, 423-428 (in Farsi is translation of the paper "Comparative Study of ZnO Thin Films Prepared by Different Sol-Gel Route" by F. E. Ghodsi and H. Absalan, which appeared in ACTA PHYSICA POLONICA A, Vol 118 (2010 (in English and for this reason is retracted from this journal.The corresponding author  (and also the first author is the only responsible person for this action.   

  19. Exploratory experiments on the feasibility of Th and Pu sol-gel particles

    International Nuclear Information System (INIS)

    Vanhellemont, G.; Beullens, J.; Bairiot, H.

    1965-05-01

    The sol-gel process as developed by the O.E.C.D. Dragon Project has been applied by the Plutonium Project at Mol to determine the feasibility of producing spherical particles containing Th02, Pu02 and C, in the proportions necessary to fabricate thorium-plutonium carbide kernels for irradiation specimens and for fuel cartridges for the Dragon Reactor Experiment. The process has been extended successfully to the preparation of thorium and plutonium gels, having a significant excess of carbon, with the object of evaluating the feasibility of the sol-gel process for the production of Th, C-10 type kernels. Other experiments have been performed to test the feasibility of incorporating U02 powder into the gel spheres. By using this technique, U to Th ratios of up to 9:1 have been obtained. (author)

  20. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants.

    Science.gov (United States)

    Kim, Hae-Won; Kim, Hyoun-Ee; Knowles, Jonathan C

    2004-08-01

    Hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) films were deposited on a titanium substrate using a sol-gel technique. Different concentrations of F- were incorporated into the apatite structure during the sol preparation. Typical apatite structures were obtained for all coatings after dipping and subsequent heat treatment at 500 degrees C. The films obtained were uniform and dense, with a thickness of approximately 5 microm. The dissolution rate of the coating layer decreased with increasing F- incorporation within the apatite structure, which demonstrates the possibility of tailoring the solubility by a functional gradient coating of HA and FHA. The cell proliferation rate on the coating layer decreased slightly with increasing F- incorporation. The alkaline phosphatase (ALP) activity of the cells on all the HA and FHA coated samples showed much higher expression levels compared to pure Ti. This confirmed the improved activity of cell functions on the substrates with the sol-gel coating treatment.

  1. Microstructure of Zirconia-Based Sol-Gel Glasses Studied by SANS

    Czech Academy of Sciences Publication Activity Database

    Ryukhtin, Vasyl; Strunz, Pavel; Kopitsa, G. P.; Ezdakova, K. V.; Gubanova, N. N.; Ivanov, V. K.; Baranchikov, A. Y.; Angelov, Borislav; Feoktistov, A.; Pipich, V.; Levinský, P.

    2015-01-01

    Roč. 128, č. 4 (2015), s. 582-584 ISSN 0587-4246. [ISPMA 13 - 13th INTERNATIONAL SYMPOSIUM ON PHYSICS OF MATERIALS. Praha, 31.08.2014 - 04.09.2014] R&D Projects: GA ČR GB14-36566G; GA MŠk LM2011019 Institutional support: RVO:61389013 ; RVO:61389005 Keywords : sol-gel method * SANS * USANS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015

  2. Performance of the sol-gel method for the preparation of optical fibers

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Hayer, Miloš; Mrázek, Jan; Kašík, Ivan; Podrazký, Ondřej; Pospíšilová, Marie

    2007-01-01

    Roč. 52, č. 10 (2007), s. 991-998 ISSN 0035-3930. [Physical Chemistry Conference ROMPHYSCHEM /12./. Bucharest, 06.09.2006-08.09.2006] R&D Projects: GA ČR GA102/05/0956 Institutional research plan: CEZ:AV0Z20670512 Keywords : sol-gel processing * optical fibres * chemical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.262, year: 2007

  3. Processing of non-oxide ceramics from sol-gel methods

    Science.gov (United States)

    Landingham, Richard; Reibold, Robert A.; Satcher, Joe

    2014-12-12

    A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.

  4. Li+ ions diffusion into sol-gel V2O5 thin films: electrochromic properties

    Science.gov (United States)

    Benmoussa, M.; Outzourhit, A.; Bennouna, A.; Ihlal, A.

    2009-10-01

    V{2}O{5} thin films were prepared by the sol-gel spin coating process. The Li+ ions insertion effect on optical and electrochromic properties of those films was studied. The diffusion coefficient was calculated using both cyclic voltammograms and chronoamperometric curves. The amount x of Li+ ions in LixV{2}O{5} was also calculated. Finally, the electrochromic performance evolution characteristics such as the reversibility, coloration efficiency, coloration memory stability and response time were studied.

  5. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  6. Seed-assisted sol-gel synthesis and characterization of nanoparticular V2O5/anatase

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Riisager, Anders

    2009-01-01

    Nanoparticular supported vanadia materials with crystalline anatase support with a narrow size distribution around 12 nm have been synthesized by a new facile sol-gel, co-precipitation method using decomposable ammonium chloride seed crystals. The materials have been characterized by means of X-r......-5 wt.% vanadia. These materials are promising candidates for improved catalysts for, e.g., oxidation reactions and selective catalytic reduction of NO (X) in flue gases....

  7. Sol-Gel Synthesized Semiconductor Oxides in Photocatalytic Degradation of Phenol

    OpenAIRE

    Maria K. Cherepivska; Roman V. Prihod’ko

    2014-01-01

    Effectiveness of photocatalytic degradation of phenol in aqueous solution using semiconductor oxides (SO) prepared by a sol-gel method was examined. The physical and chemical properties of synthesized catalysts were investigated by X-ray diffraction (XRD), diffuse reflectance UV-Vis spectroscopy (DRS), and N2-adsorption measurements. The optimal conditions of the photocatalytic degradation of phenol using prepared titanium dioxide sample were defined.

  8. Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex

    Science.gov (United States)

    Park, Oun-Ho; Seo, Se-Young; Bae, Byeong-Soo; Shin, Jung H.

    2003-04-01

    Transparent sol-gel hybrid films doped with erbium tris 8-hydroxyquinoline were prepared using methyltriethoxysilane, vinyltriethoxysilane, and phenyltrimethoxysilane as precursors. We obtain a strong 1.53-μm Er3+ luminescence with a wide full width at half-maximum and no thermal quenching. Comparison of absorption of the film with the pump wavelength dependence of Er3+ luminescence intensity indicates the presence of an efficient indirect excitation path for Er3+ via organic ligands.

  9. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, M.A. Dominguez, E-mail: mdominguezc@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Murillo, A. Garcia; Torres-Huerta, A.M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Yanez-Zamora, C. [Estudiante del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira, km 14.5, Carr. Tampico-Puerto Industrial. C.P. 89600, Altamira, Tamaulipas (Mexico); Carrillo-Romo, F. de J [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico)

    2009-08-26

    Chromate conversion coatings have been widely applied for the corrosion of different metallic substrates. However, the waste containing Cr{sup 6+} has many limitations due to the environmental consideration and health hazards. An interesting alternative seems to be the deposition on metallic surface of thin layers of yttria or zirconia or both by the sol-gel process. In this study, Ytttria and Yttria stabilized zirconia (YSZ, 8% Y{sub 2}O{sub 3}) thin films were used for coating commercial carbon steel substrates by sol-gel method and the dip-coating process. The evolution of organic compounds up to crystallization process as a function of heat treatments was study by FT-IR spectroscopy. The structure and morphology of the coatings were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anticorrosion performance of the coatings has been evaluated by using electrochemical techniques in an aggressive media (3.5 wt.% NaCl). The corrosion behaviour of sol-gel method was compared with traditional chromate conversion coatings. Differences in the electrochemical behaviour of YSZ coatings are related to the development of microcracks during the sintering process and to the presence of organic compounds during growth film. Electrochemical results showed that sol-gel YSZ and Y{sub 2}O{sub 3} coatings can act as protective barriers against wet corrosion; however yttria films displayed low adhesion to substrate. The corrosion parameters provide an explanation of the role of each film and show a considerable increase in the corrosion resistance for coated samples in comparison to the bare steel samples.

  10. Mesoscopic objects, porous layers and nanocomposites-Possibilities of sol-gel chemistry

    International Nuclear Information System (INIS)

    Piwonski, Ireneusz

    2009-01-01

    The goal of this study was to prepare mesoscopic objects, thin porous films and nanocomposite coatings with the use of sol-gel technique. Silica nanotubes, titania nanoparticles, porous titania and zirconia coatings as well as titania nanocomposites were successfully synthesized by changing the type of sol-gel precursor, sol composition and applying dip-coating deposition procedure in order to obtain thin films or coatings. All materials were visualized and characterized by the Atomic Force Microcscopy (AFM) technique. Moreover, characterization of titania nanocomposites was extended to the tribological tests performed by means of microtribometer operating in normal loads range of 30-100 mN. The AFM analysis of mesoscopic objects and nanoparticles showed that the diameter of synthesized silica nanotubes was 60-70 nm and the size of titania nanoparticles was 43 nm. In case of porous layers the pore size in titania and zirconia coatings oscillated between 100 and 240 nm, however their shape and distribution were irregular. Microtribological studies of nanocomposites revealed the moderate decrease of the coefficient of friction for samples containing 5, 15 and 5 wt.% of zirconia nanoparticles in titania coatings annealed at 100, 500 and 1000 deg. C respectively. An enhancement of antiwear properties was already observed for 1 wt.% of nanophase content, except the sample annealed at 500 deg. C. It was also found that the annealing at high temperatures is a primary factor which affects the reduction of friction and wear of titania coatings while the presence of nanoparticles has secondary effect. Investigations in this study carried out with the use of the AFM technique highlighted the potential and flexibility of sol-gel approach in designing of various types of advanced materials in a form of mesoscopic objects, porous coatings and composite layers. Results collected in this study clearly demonstrated that sol-gel technique can be applied effectively in preparation of

  11. Self-Protection of Electrochemical Storage Devices via a Thermal Reversible Sol-Gel Transition.

    Science.gov (United States)

    Yang, Hui; Liu, Zhiyuan; Chandran, Bevita K; Deng, Jiyang; Yu, Jiancan; Qi, Dianpeng; Li, Wenlong; Tang, Yuxin; Zhang, Chenguang; Chen, Xiaodong

    2015-10-07

    Thermal self-protected intelligent electrochemical storage devices are fabricated using a reversible sol-gel transition of the electrolyte, which can decrease the specific capacitance and increase and enable temperature-dependent charging and discharging rates in the device. This work represents proof of a simple and useful concept, which shows tremendous promise for the safe and controlled power delivery in electrochemical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Sapio, L.; Naviglio, S. [Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples (Italy)

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO{sub 2}·CaO·P{sub 2}O{sub 5}, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO{sub 2}, CaO and P{sub 2}O{sub 5}, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. - Highlights: • Coatings consisting of SiO{sub 2}·CaO·P{sub 2}O{sub 5} glasses were prepared via sol-gel dip coating. • Ca/P molar ratio affects the film morphology and biocompatibility. • Higher cell proliferation was found in response to higher Ca/P ratios coatings. • A growth cell proliferation inhibition was observed in response to lower Ca/P ratio.

  13. Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

    OpenAIRE

    Merve Küçük; M. Lütfi Öveçoğlu

    2016-01-01

    Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution ...

  14. Role of reaction atmosphere in preparation of potassium tantalate through sol-gel method

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Vaněk, Přemysl; Mika, Filip

    2013-01-01

    Roč. 68, č. 2 (2013), s. 219-233 ISSN 0928-0707 R&D Projects: GA ČR GA13-03708S; GA MŠk ED0017/01/01 Institutional support: RVO:61388980 ; RVO:68378271 ; RVO:68081731 Keywords : Potassium tantalate * thin films * Sol-gel * crystallization * reaction atmosphere Subject RIV: CA - Inorganic Chemistry; JA - Electronics ; Optoelectronics, Electrical Engineering (UPT-D) Impact factor: 1.547, year: 2013

  15. Acquisition of a Scanning Ultrasound Analyzer for Gelation and Drying Studies in Sol-Gel Ceramic Coatings and Monoliths

    National Research Council Canada - National Science Library

    Archer, Lynden

    1997-01-01

    The overall goal of this research project was to develop a fundamental understanding of how colloid chemistry influences structure and properties of ceramic monoliths fabricated by sol-gel synthesis...

  16. Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    V.T. Srisuvetha

    2017-04-01

    Full Text Available MgO thin flims have been prepared on substrates by a novel and simple sol-gel method using magnesium nitrate and collusion as starting material.The MgO nano catalyst with good sensor crystallization were obtained after annealing at 100°C Magnesium oxide was prepared by sol-gel method. The method involves the hydrolysis of magnesium alkoxide in the presence of acid or basic catalysts followed by a Oxalic acid reaction. The synthesized solids were characterized by IR spectroscopy X-ray diffraction electron microscopy. Ultraviolet visible absorbance measurement photoluminescence and Raman scattering spectra. X-ray diffraction (XRD characterization showed the formation of smaller particles after sol gel irradiation the structure and morphology of the MgO particles were analyzed byXRD. These articles were used for FTIR spectroscopic measurement and spectra were collected. In EDS we calculated the peak intensity the SEM the images of metal oxide.UV (Ultra Violet refers to adsorption spectroscopy optical properties of assorption, band gap energy.This means if use light in the visible and adjacent ranges.

  17. Nanoscale morphology for high hydrophobicity of a hard sol-gel thin film

    International Nuclear Information System (INIS)

    Wu, Y.L.; Chen, Z.; Zeng, X.T.

    2008-01-01

    It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol-gel technology and a low volume medium pressure (LVMP) spray process. The sol-gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol-gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures

  18. Nanoscale morphology for high hydrophobicity of a hard sol-gel thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.L. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)], E-mail: ylwu@simtech.a-star.edu.sg; Chen, Z. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zeng, X.T. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2008-08-30

    It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol-gel technology and a low volume medium pressure (LVMP) spray process. The sol-gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol-gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures.

  19. Sol - gel inorganic ion exchangers for conditioning of medium level radioactive waste

    International Nuclear Information System (INIS)

    Arcangeli, G.; Traverso, D.M.; Gerontopoulos, P.; Fava, R.

    1988-01-01

    Decontamination of high-level liquid wastes and medium activity wastes streams by inorganic ion exchange combined with the conversion of the spent inorganic ion exchange material to waste ceramics presents a considerable potential for utilisation in waste conditioning. Ceramic waste forms are found superior to other candidate waste immobilisation forms but practical implementation is hampered because of the complexity of the related fabrication technology. This report shows the possibility of improving this situation by resorting to sol gel techniques earlier developed for preparation of nuclear fuel ceramics. The principal findings are: - superior quality ion exchange xerogel titanates in the form of mechanically resistant, size controlled microspheres can be prepared using a simple sol-gel technique; - the titanate particles can be also used as precursors in Evaporative Deposition on Xerogel Particles (EDXP) a new waste solidification process based on physical impregnation of the xerogel material with the waste liquid followed by evaporation; - waste loaded ion exchange microspheres can be converted to leach resistant ceramics by firing and/or cold pressing and sintering at 900 0 -1100 0 C; - sol-gel inorganic ion exchange and EDXP may find useful application in conditioning MAW streams. 44 figs., 43 refs

  20. Fast-sol-gel synthesis and characterization of glasses for micro-optics

    International Nuclear Information System (INIS)

    Haruvy, Y.; Gilath, I.

    1998-01-01

    The Fast-Sol-Gel Group at Soreq NRC is engaged in the research and development of novel materials based on the Fast-Sol-Gel synthetic route and devices made therefrom. The primary objective of these efforts is the development of a novel fabrication route for both passive and optically active optical and micro-optical components. We expect that, as compared with the existing art, the components thus made will be highly advantageous in terms of technology and cost. Our work is focused on facile replication of micro-optical elements (MOEs) and arrays in Fast-Sol-Gel prepared resins. These resins are made from mixtures of alkyl-alkoxy silane monomers, via hydrolysis and polymerization within 10-20 min, followed by curing that takes a few days. Single-step reproducible fabrication of large crack-free elements, 12 mm thick and 5 cm in diameter, and highly accurate replication of micro-optical arrays comprising elements in the 10-500 mm range, have been demonstrated. Among the wide variety of feasible applications of this technology are device-tailored micro-optical-arrays, aspheric, diffractive or optically active micro-optical elements and arrays

  1. Innovative Sol-Gel Routes for the Bottom-up Preparation of Heterogeneous Catalysts.

    Science.gov (United States)

    Debecker, Damien P

    2017-12-11

    Heterogeneous catalysts can be prepared by different methods offering various levels of control on the final properties of the solid. In this account, we exemplify bottom-up preparation routes that are based on the sol-gel chemistry and allow to tailor some decisive properties of solid catalysts. First, an emulsion templating strategy is shown to lead to macrocellular self-standing monoliths with a macroscopic 3D structure. The latter can be used as catalyst or catalyst supports in flow chemistry, without requiring any subsequent shaping step. Second, the aerosol-assisted sol-gel process allows for the one-step and continuous production of porous mixed oxides. Tailored textural properties can be obtained together with an excellent control on composition and homogeneity. Third, the application of non-hydrolytic sol-gel routes, in the absence of water, leads to mixed oxides with outstanding textural properties and with peculiar surface chemistry. In all cases, the resulting catalytic performance can be correlated with the specificities of the preparation routes presented. This is exemplified in catalytic reactions in the fields of biomass conversion, petro chemistry, enantioselective organic synthesis, and air pollution mitigation. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface modification of quartz fibres for dental composites through a sol-gel process.

    Science.gov (United States)

    Wang, Yazi; Wang, Renlin; Habib, Eric; Wang, Ruili; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2017-05-01

    In this study, quartz fibres (QFs) surface modification using a sol-gel method was proposed and dental posts reinforced with modified QFs were produced. A silica sol (SS) was prepared using tetraethoxysilane (TEOS) and 3-methacryloxypropyltrimethoxysilane (γ-MPS) as precursors. The amount of γ-MPS in the sol-gel system was varied from 0 to 24wt.% with a constant molar ratio of TEOS, ethanol, deionized water, and HCl. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements were used to characterize the modified QFs, which confirmed that SS had successfully coated the surface of QFs. SEM images showed good interfacial bonding between the modified QFs and the resin matrix. The results of three-point bending tests of the fibre reinforced composite (FRC) posts showed that the QFs modified by SS with 12wt.% γ-MPS presented the best mechanical properties, demonstrating improvements of 108.3% and 89.6% for the flexural strength and flexural modulus, respectively, compared with untreated QFs. Furthermore, the sorption and solubility of the prepared dental posts were also studied by immersing the posts in artificial saliva (AS) for 4weeks, and yielded favourable results. This sol-gel surface modification method promises to resolve interfacial bonding issues of fibres with the resin matrix, and produce FRC posts with excellent properties. Copyright © 2017. Published by Elsevier B.V.

  3. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.

    Science.gov (United States)

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A

    2017-11-01

    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of the concentration on sol-gel transition of telechelic polyelectrolytes.

    Science.gov (United States)

    Zhang, Ran; Shi, Tongfei; Li, Hongfei; An, Lijia

    2011-01-21

    Telechelic polyelectrolytes, bearing short hydrophobic blocks at both ends, will ionize into polyions and their counterions when dissolved in water. With the variation of concentration, the interplay between short range attraction and the long range electrostatic interaction as well as the counterion distribution exerts a major influence on the chain conformations (two basic conformations: loop and nonloop, the latter can be subdivided into three association types: free, dangling, and bridge), the cluster structure and the forming of a physical gel. For weak hydrophobic interaction, the relative strong electrostatic interaction dominates the gelation progress; sol-gel transition occurs at higher concentrations due to electrostatic screening and mainly involves the forming of stretched nonloop conformations such as dangling and bridge. While for strong hydrophobic interaction, the hydrophobic interaction dominates and the electrostatic interaction provides a contribution to the formation of gels by maintaining a spatial swelling structure, resulting in a much lower concentration region of sol-gel transition; besides, the sol-gel transition is characterized by the competition of the forming of loop and bridge chains.

  5. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    Science.gov (United States)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  6. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    Science.gov (United States)

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Li Yigang; Fortes, Luis M; Almeida, Rui M [Departamento de Engenharia de Materiais/ICEMS, Instituto Superior Tecnico/TULisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Chiappini, Andrea; Ferrari, Maurizio, E-mail: yigang.li@ist.utl.p, E-mail: rui.almeida@ist.utl.p [CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab., Via alla Cascata 56/C, Povo, 38123 Trento (Italy)

    2009-10-21

    An optimized sol-gel process was developed to fabricate 1D photonic bandgap structures. Several erbium-doped Fabry-Perot microcavities were prepared and characterized. The thickest sample contained two Bragg mirrors, each having 12 distributed Bragg reflector periods of alternating silicate glass and titania layers. The total thickness of this sample reached {approx}12 {mu}m. The Er{sup 3+} photoluminescence spectra at 1.5 {mu}m were measured for the microcavities. A quality factor of 250 and an Er{sup 3+} photoluminescence enhancement of 96 times at 1.5 {mu}m have been reached. The sol-gel processing details, the crystallization of the titania films and the refractive index of the deposited materials are discussed in detail. The simulated optical spectra of the microcavities were found to agree well with the actually measured curves. These results demonstrate that the present sol-gel processing technique is of potential interest for low cost fabrication of 1D photonic bandgap devices.

  8. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  9. Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Lee, Yen-Hsien; Chang, Jung-Jhih; Chien, Chiang-Ting; Yang, Ming-Chien; Chien, Hsiung-Fei

    2012-01-01

    We examined the effects of vitamin C in Pluronic F127 on diabetic wound healing. Full-thickness excision skin wounds were made in normal and diabetic Wistar rats to evaluate the effect of saline, saline plus vitamin C (antioxidant sol), Pluronic F127, or Pluronic F127 plus vitamin C (antioxidant sol-gel). The rate of wound contraction, the levels of epidermal and dermal maturation, collagen synthesis, and apoptosis production in the wound tissue were determined. In vitro data showed that after 6 hours of air exposure, the order of the scavenging abilities for HOCl, H2O2, and O2  − was antioxidant sol-gel > antioxidant saline > Pluronic F127 = saline. After 7 and 14 days of wound injury, the antioxidant sol-gel improved wound healing significantly by accelerated epidermal and dermal maturation, an increase in collagen content, and a decrease in apoptosis formation. However, the wounds of all treatments healed mostly at 3 weeks. Vitamin C in Pluronic F127 hastened cutaneous wound healing by its antioxidant and antiapoptotic mechanisms through a good drug delivery system. This study showed that Pluronic F127 plus vitamin C could potentially be employed as a novel wound-healing enhancer. PMID:22919368

  10. Thin-film silica sol-gels doped with ion responsive fluorescent lipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, D.Y.; Shea, L.E.; Sinclair, M.B.

    1999-01-12

    A metal ion sensitive, fluorescent lipid-b i layer material (5oA PSIDA/DSPC) was successfully immobilized in a silica matrix using a tetramethoxysilane (TMOS) sol-gel procedure. The sol-gel immobilization method was quantitative in the entrapment of seif-assembled Iipid-bilayers and yielded thin films for facile configuration to optical fiber piatforms. The silica matrix was compatible with the solvent sensitive lipid bilayers and provided physical stabilization as well as biological protection. Immobilization in the silica sol-gel produced an added benefit of improving the bilayer's metal ion sensitivity by up to two orders of magnitude. This enhanced performance was attributed to a preconcentrator effect from the anionic surface of the silica matrix. Thin gels (193 micron thickness) were coupled to a bifurcated fiber optic bundle to produce a metal ion sensor probe. Response times of 10 - 15 minutes to 0.1 M CUCIZ were realized with complete regeneration of the sensor using an ethylenediarninetetraacetic acid (EDTA) solution.

  11. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    Science.gov (United States)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  12. Sol-Gel Entrapped Levonorgestrel Antibodies: Activity and Structural Changes as a Function of Different Polymer Formats

    Science.gov (United States)

    Shalev, Moran; Miriam, Altstein

    2011-01-01

    The paper describes development of a sol-gel based immunoaffinity method for the steroid hormone levonorgestrel (LNG) and the effects of changes in the sol-gel matrix format on the activity of the entrapped antibodies (Abs) and on matrix structure. The best sol-gel format for Ab entrapment was found to be a tetramethoxysilane (TMOS) based matrix at a TMOS:water ratio of 1:8, containing 10% polyethylene glycol (PEG) of MW 0.4 kDa. Addition of higher percentages of PEG or a higher MW PEG did not improve activity. No activity was obtained with a TMOS:water ratio of 1:12, most likely because of the very dense polymer that resulted from these polymerization conditions. Only minor differences in the non-specific binding were obtained with the various formats. TMOS was found to be more effective than tetrakis (2-hydroxyethyl)orthosilicate (THEOS) for entrapment of anti-levonorgestrel (LNG) Abs. However, aging the THEOS-based sol-gel for a few weeks at 4 °C stabilized the entrapped Abs and increased its binding capacity. Confocal fluorescent microscopy with fluorescein isothiocyanate (FITC) labeled immunoglobulines (IgGs) entrapped in the sol-gel matrix showed that the entrapped Abs were distributed homogenously within the gel. Scanning electron microscopy (SEM) images have shown the diverse structures of the various sol-gel formats and precursors. PMID:28880001

  13. Sol-Gel Entrapped Levonorgestrel Antibodies: Activity and Structural Changes as a Function of Different Polymer Formats

    Directory of Open Access Journals (Sweden)

    Moran Shalev

    2011-02-01

    Full Text Available The paper describes development of a sol-gel based immunoaffinity method for the steroid hormone levonorgestrel (LNG and the effects of changes in the sol-gel matrix format on the activity of the entrapped antibodies (Abs and on matrix structure. The best sol-gel format for Ab entrapment was found to be a tetramethoxysilane (TMOS based matrix at a TMOS:water ratio of 1:8, containing 10% polyethylene glycol (PEG of MW 0.4 kDa. Addition of higher percentages of PEG or a higher MW PEG did not improve activity. No activity was obtained with a TMOS:water ratio of 1:12, most likely because of the very dense polymer that resulted from these polymerization conditions. Only minor differences in the non-specific binding were obtained with the various formats. TMOS was found to be more effective than tetrakis (2-hydroxyethylorthosilicate (THEOS for entrapment of anti-levonorgestrel (LNG Abs. However, aging the THEOS-based sol-gel for a few weeks at 4 °C stabilized the entrapped Abs and increased its binding capacity. Confocal fluorescent microscopy with fluorescein isothiocyanate (FITC labeled immunoglobulines (IgGs entrapped in the sol-gel matrix showed that the entrapped Abs were distributed homogenously within the gel. Scanning electron microscopy (SEM images have shown the diverse structures of the various sol-gel formats and precursors.

  14. Properties of Zn O/Cr thin films prepared by Sol-Gel; Propiedades de peliculas delgadas ZnO/Cr preparadas por Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S.; Olvera A, R., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Edificio 9, Unidad Profesional A. L. M., San Pedro Zacatenco, 07788 Mexico D. F. (Mexico)

    2014-08-15

    Zn O films and those superficially modified with chromium were deposited on substrates of soda-lime glass, using the Sol-Gel process and the repeated immersion method. Starting from dehydrated zinc acetate was prepared a solution to 0.6 M to ambient temperature in 2-methoxyethanol and monoethanolamine (Mea) stirring magnetically. The Sol was prepared with an aging to seven days and was used to grow a films group with thickness to eight immersions. These same films were superficially modified with several depositions of a chromium nitrate Sol dissolved in ethanol to low concentration. The Zn O films were structurally characterized by X-ray diffraction, its chemical composition by energy dispersive X-ray spectroscopy and its morphology by scanning electron microscopy and atomic force microscopy, as well as their optical properties by UV-vis. Of the obtained results are proposed possible applications. (author)

  15. Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul

    2017-11-03

    A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    Science.gov (United States)

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    Science.gov (United States)

    Jameel, Zainab N.; Haider, Adawiya J.; Taha, Samar Y.; Gangopadhyay, Shubhra; Bok, Sangho

    2016-07-01

    A coating with self-cleaning characteristics has been developed using a TiO2/SiO2 hybrid sol-gel, TiO2 nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO2 nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO2 nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO2 phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO2 NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  18. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Directory of Open Access Journals (Sweden)

    Giulio Gorni

    2018-01-01

    Full Text Available Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  19. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Science.gov (United States)

    Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-01

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706

  20. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    Science.gov (United States)

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  1. Evolution of heterogeneity accompanying sol-gel transitions in a supramolecular hydrogel.

    Science.gov (United States)

    Matsumoto, Yuji; Shundo, Atsuomi; Ohno, Masashi; Tsuruzoe, Nobutomo; Goto, Masahiro; Tanaka, Keiji

    2017-10-18

    When a peptide amphiphile is dispersed in water, it self-assembles into a fibrous network, leading to a supramolecular hydrogel. When the gel is physically disrupted by shaking, it transforms into a sol state. After aging at room temperature for a while, it spontaneously returns to the gel state, called sol-gel transition. However, repeating the sol-gel transition often causes a change in the rheological properties of the gel. To gain a better understanding of the sol-gel transition and its reversibility, we herein examined the thermal motion of probe particles at different locations in a supramolecular hydrogel. The sol obtained by shaking the gel was heterogeneous in terms of the rheological properties and the extent decreased with increasing aging time. This time course of heterogeneity, or homogeneity, which corresponded to the sol-to-gel transition, was observed for the 1st cycle. However, this was not the case for the 2nd and 3rd cycles; the heterogeneity was preserved even after aging. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and atomic force and confocal laser scanning microscopies revealed that, although the molecular aggregation states of amphiphiles both in the gel and sol remained unchanged with the cycles, the fibril density diversified to high and low density regions even after aging. The tracking of particles with different sizes indicated that the partial mesh size in the high density region and the characteristic length scale of the density fluctuation were smaller than 50 nm and 6 μm, respectively.

  2. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    Energy Technology Data Exchange (ETDEWEB)

    Jameel, Zainab N., E-mail: zeinb76-alrekbe@yahoo.com; Haider, Adawiya J., E-mail: adawiyahaider@yahoo.com [Nanotechnology and Advanced Materials Research Center, The University of Technology, Baghdad (Iraq); Taha, Samar Y., E-mail: samarjam2002@yahoo.com [College of Science for Women, University of Baghdad, Baghdad (Iraq); Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu; Bok, Sangho, E-mail: BokSa@missouri.edu [Department of Electrical and Computer, University of Missouri, Engineering, Building West, Columbia, Missouri 65211 (United States)

    2016-07-25

    A coating with self-cleaning characteristics has been developed using a TiO{sub 2}/SiO{sub 2} hybrid sol-gel, TiO{sub 2} nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO{sub 2} nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO{sub 2} nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO{sub 2} phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO{sub 2} NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  3. Sol-gel synthesis and characterization of silica polyamine composites: applications to metal ion capture.

    Science.gov (United States)

    Allen, Jesse J; Rosenberg, Edward; Johnston, Erik; Hart, Carolyn

    2012-03-01

    A sol-gel method has been developed for the synthesis of composite materials analogous to the previously reported and commercialized silica polyamine composite (SPC) materials made from amorphous silica. Monolithic xerogels were formed using a two-step procedure with no templating agent using acid catalyzed followed by base catalyzed hydrolysis. This reaction was followed by (1)H NMR. Initial sol-gels were formed using a methyltrimethoxysilane (MTMOS) and 3-chloropropyltrimethoxysilane (CPTMOS) mixture. Elemental analyses and (13)C CPMAS NMR confirmed incorporation of both monomeric units into the surface structure. Some control over surface morphology was achieved by adjusting synthetic conditions. The resulting xerogels were reacted with poly(allylamine) (PAA) to give composite materials which showed much lower metal ion capacities than the commercially available amorphous silica analogs. The low degree of reaction of the chloropropyl groups indicated they were not surface-available to the polyamine. Addition of tetramethoxysilane (TMOS) produced a structural matrix and resulted in higher chloride utilization (reaction of surface chloropropyl groups with the polyamine). The ratio of the three siloxane monomeric components was varied until the resulting polyamine composite xerogels had metal capacities comparable with the commercialized SPC materials. These composites had narrower average pore size distributions and fewer small pores. Further modification of these composites with metal selective ligands showed material characteristics similar to those of commercially available SPC materials. Subjecting a composite made by the sol-gel route to one thousand load-strip cycles with Cu(2+) shows essentially no loss in metal capacity, and this robustness compares favorably with that observed for the SPC made from amorphous silica gels. © 2012 American Chemical Society

  4. Salt effects on the sol-gel transitions of aqueous peptide-amphiphile solutions

    Science.gov (United States)

    Yamamoto, Masashi; Maeda, Tomoki; Hotta, Atsushi

    A hydrogel made of a peptide amphiphile (PA) is an interesting soft material especially in the biomedical fields due to its controllable nanoscale structures with excellent biocompatibility. To extend the practical use of PA, a comprehensive study of the sol-gel transitions of PA is necessary to be used as e.g. a biomedical material. The effects of the types of salts in our body or in medicinal agents on the physical properties of the PA solution are not fully understood. In this study, different types of salt with various negative ions were added to a PA (C16-W3K) solution. The salt effects on the rheological properties, the pH, and the zeta potentials of the PA solutions were studied. From the rheological testing, it was found that the C16-W3K solutions could not gelate in the presence of Na2CO3 or Na3PO4, which could be caused by the aggregation of the wormlike micelles made of C16-W3K. pH-wise, the sol-gel transitions could be observed only when the PA solutions were relatively acidic (the Zeta potential was positive) instead of basic (the Zeta potential was very negative) . It was therefore concluded that the sol-gel transitions of the PA solution could be effectively controlled by the types of salt. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI.

  5. Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol-gel process of organo-silane.

    Science.gov (United States)

    Kundu, Chanchal Kumar; Wang, Xin; Hou, Yanbei; Hu, Yuan

    2018-02-01

    Phosphorylated chitosan (PCS) was synthesized and grafted onto the surface of polyamide 6.6 (PA 6.6) fabrics via UV-induced grafting polymerization in order to improve the flame retardant properties. Subsequently, PCS grafted PA 6.6 fabrics were modified by (3-aminopropyl) triethoxysilane (APTES) through sol-gel process in order to form a cross-linking coating. The results obtained from the vertical burning test indicated that only the PCS grafted and simultaneously sol-gel treated fabrics could stop the melt dripping. A maximum reduction (30%) in the peak heat release rate was achieved for the PA6.6-PCS-4W-SG fabric sample. The optimal flame retardant effect was achieved for the PA6.6 fabrics treated by PCS and APTES simultaneously, which was attributed to the joint effect of thermal shielding exerted by the silica and char-forming effect derived from PCS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study.

    Science.gov (United States)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol-gel-derived HA/MWCNT composite coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Elaboration and characterisation of yttrium oxide and hafnium oxide powders by the sol-gel process

    International Nuclear Information System (INIS)

    Hours, T.

    1988-01-01

    The two classical sol-gel processes, colloidal and polymeric are studied for the preparation of yttrium oxide and hafnium oxide high performance powders. In the colloidal process, controlled and reproducible conditions for the preparation of yttrium oxide and hafnium oxide sols from salts or alkoxides are developed and the hydrothermal synthesis monodisperse hafnium oxide colloids is studied. The polymeric process is studied with hafnium ethyl-hexylate, hydrolysis kinetics for controlled preparation of sols and gels is investigated. Each step of preparation is detailed and powders obtained are characterized [fr

  8. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  9. KINETICS OF GRAIN-GROWTH OF YTTRIUM ALUMINUM GARNET FIBERS PREPARED BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    Tan H.

    2013-12-01

    Full Text Available The yttrium aluminum garnet (YAG long fibers were prepared by the sol-gel method using aluminum chloride, aluminum powder, yttrium oxide and acetic acid as raw materials. The grain growth law is given by Dn – D0n = Kt (D0 = initial grain size, D = average grain size at time t, n = grain growth exponent and K = reaction constant. The grain growth exponent and activation energy of YAG fibers are ≈ 3 and 200 kJ/mol, respectively. The grain-growth behaviors of YAG were influenced by experimental conditions such as raw materials, initial particle size, initial particle distribution, etc.

  10. Scanning electron microscopy study of protein immobilized on SIO2 Sol-gel surfaces

    Directory of Open Access Journals (Sweden)

    Assis O.B.G.

    2003-01-01

    Full Text Available Uniform attachment of enzymes to solid surfaces is essential in the development of bio and optical sensor devices. Immobilization by adsorption according to hydrophilic or hydrophobic nature is dependent on the charges and defects of the support surfaces. Sol-gel SiO2 densified glass surfaces, frequently used as supports for protein immobilization, are evaluated via scanning electron microscopy. The model protein is globular enzyme lysozyme, deposited by adsorption on functionalized surfaces. Formation of a protein layer is confirmed by FTIR spectroscopy, and the SEM images suggest discontinuous adsorption in areas where cracks predominate on the glass surface.

  11. ENEA contribution to the development of the sol-gel technologies

    International Nuclear Information System (INIS)

    Vatteroni, R.; Arcangeli, G.; Borrello, A.; Majani, C.; Picconi, C.

    1994-11-01

    Compared with conventional ceramic processes, the Sool-Gel technology, invented at the end of sixties for the preparation of ceramic nuclear fuel, seems suitable for obtaining pure and homogeneous fine grade precursors with a deeper control of chemical purity and crystallinity. In the frame of some agreements with other italianrResearch institutes, ENEA (Italian Agency for New Technologies, Energy and Environment) has applied the Sol-Gel technologies to the development of a few advanced ceramic materials; some of these particular applications are described in this report

  12. Green fluorescent protein-doped sol-gel silica planar waveguide to detect organophosphorus compound

    Science.gov (United States)

    Enami, Y.; Suye, S.

    2012-02-01

    We report novel living protein-doped planar waveguide, and real-time detection of an organophosphorus compound using a sol-gel silica planar waveguide doped with a green fluorescent protein and an organophosphorus hydrolase on a yeast-cell surface. The waveguide was pumped at 488 nm, and emitted green fluorescence at the far field. The green fluorescent light at 550 nm changed by 50% from the original power 1 min after application of the organophosphorus compound. The results enable the real-time detection of biochemical weapon and insecticide harmful for human body by using an in-line fiber sensor network.

  13. Synthesis of Peptide Amides using Sol-Gel Immobilized Alcalase in Batch and Continuous Reaction System

    OpenAIRE

    L. N. Corîci; A. E. Frissen; D -J. Van Zoelen; I. F. Eggen; F. Peter; C. M. Davidescu; C. G. Boeriu

    2011-01-01

    Two commercial proteases from Bacillus licheniformis (Alcalase 2.4 L FG and Alcalase 2.5 L, Type DX) were screened for the production of Z-Ala-Phe-NH2 in batch reaction. Alcalase 2.4 L FG was the most efficient enzyme for the C-terminal amidation of Z-Ala-Phe-OMe using ammonium carbamate as ammonium source. Immobilization of protease has been achieved by the sol-gel method, using dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) as precursors (unpublished res...

  14. Erbium-activated silica-zirconia planar waveguides prepared by sol-gel route

    International Nuclear Information System (INIS)

    Goncalves, Rogeria R.; Messaddeq, Younes; Chiasera, Alessandro; Jestin, Yoann; Ferrari, Maurizio; Ribeiro, Sidney J.L.

    2008-01-01

    Er 3+ doped (100 - x)SiO 2 - xZrO 2 planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er 3+ ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 μm. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er 3+ ion

  15. Reinforcement of poly(dimethylsiloxane by sol-gel in situ generated silica and titania particles

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The usual sol-gel process was applied to precipitate silica or titania particles in a preformed poly(dimethylsiloxane (PDMS network under the presence of dibutyltin diacetate used as a catalyst. The resulting structures of the reinforcing fillers were studied by transmission electron microscopy and small-angle neutron scattering. Stress-strain measurements in elongation and equilibrium swelling experiments revealed distinct behaviors mainly attributed to the nature and the size of the generated particles and to the formation, in the case of titania, of a filler network even at low filler loadings.

  16. Gamma ray irradiation induced optical band gap variations in silica sol-gel doped sucrose

    International Nuclear Information System (INIS)

    Marzouki, F.; Farah, K.; Hamzaoui, A.H; Ben Ouada, H

    2015-01-01

    The silica xerogels doped sucrose was prepared via sol-gel process and exposed at room temperature to different doses of high energy ( 60 Co) gamma irradiation. Changes in the UV-visible and FTIR spectra of pristine and irradiated xerogels with varying of gamma doses rays show variation in the gap energy. It was found that energy gap of the investigated silica xerogels decreases with increasing the gamma irradiation doses. Thereby the irradiated samples reveal behaviour changes, from an insulator (Eg ∼5,8 eV) towards a semiconductor with (Eg ∼ 3.5 eV).

  17. Synthesis and photoluminescence properties of Al-O Ceramics obtained by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Arita, K; Sawaguchi, N; Sasaki, M [Muroran Institute of Technology (Japan); Inano, H, E-mail: sasaki@mmm.muroran-it.ac.jp [Hokkaido Research Organization / Industrial Research Institute (Japan)

    2011-10-29

    The Al-O phosphor powders were synthesized by the sol - gel method at the lower temperature of 773 K. From the results of the PL (photo luminescence) measurement, the emission intensities around 400 and 450 nm changed with heating temperatures. From the X-ray diffraction and the X-ray photoelectron spectroscopy measurements, the Al-O ceramics obtained has a similar structure of boehmite (AlOOH). The structural change caused mainly by the loss of the hydroxyl group related to the increase of emission intensities.

  18. Preparation and characterization of Bismaleimide resin/titania nanocomposites via sol-gel process

    OpenAIRE

    Lu, Guotao; Huang, Ying

    2013-01-01

    Bismaleimide (BMI) resin/ titania nanocomposites were synthesized from allylated-phenolic modified bismaleimide resin and TiO2 via the sol-gel process of tetrabutyltitanate (Ti(OnBu)4, TBT). These nanocomposite materials were characterized by FT-IR, XRD, FE-SEM, TGA and DMA. It was found that the nano-scale TiO2 particles were formed in the AP-BMI resin matrix, and the average primary particle size of the dispersed phase in the nanocomposites was less than 100nm, but the particle aggregates w...

  19. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    Directory of Open Access Journals (Sweden)

    Cora Lind

    2010-04-01

    Full Text Available Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  20. Magnetic Characterizations of Sol-Gel-Produced Mn-Doped ZnO

    Directory of Open Access Journals (Sweden)

    R. Asmatulu

    2010-01-01

    Full Text Available Nanoparticles of ZnO doped with 6 at.% Mn were produced by a sol-gel method. X-ray diffraction confirms the hexagonal structure as that of the parent compound ZnO, and high-resolution electron transmission microscopy reveals a single-crystallite lattice. Magnetic measurements using a superconducting quantum interference device indicate that about one half of the Mn2+ ions follow Curie's law for paramagnetism. The remaining Mn2+ ions exhibit a weak ferromagnetic character, which might be induced through canted antiferromagnetic interactions.

  1. SYNTHESIS OF MESOPOROUS TITANIA BY POTATO STARCH TEMPLATED SOL-GEL REACTIONS AND ITS CHARACTERIZATION

    OpenAIRE

    Budi, Canggih Setya; Kartini, Indriana; Rusdiarso, Bambang

    2010-01-01

    Mesoporous titania powders with high-order crystalline building blocks had been synthesized through the sol-gel process using potato starch gel template. Internal spongelike pore structure of starch gel template was generated by heating the starch granules at 95 °C in water solution and freezing the starch gel at -15 °C. The synthesis routes were performed by immersing the starch gel template for 4 days into the white colloidal solution of TiO2 nanoparticles, which were prepared by hydrolyzin...

  2. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    Science.gov (United States)

    Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C

    2014-01-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.

  3. ESTUDO DA IMOBILIZAÇÃO DE LIPASE EM SÍLICA OBTIDA PELA TÉCNICA SOL-GEL

    Directory of Open Access Journals (Sweden)

    Aline Matuella Moreira Ficanha

    2015-03-01

    Full Text Available The objective of this work was the immobilization of the enzyme Candida antarctica lipase B (CAL B using the sol-gel method of immobilization and three different initiators of the polymerization reaction: one acid (HCl, one basic (NH4OH and the other nucleophilic (HBr. Tetraethylorthosilicate was used as the silica precursor. The influence of the additive PEG 1500 on immobilization was assessed. The efficiency of the process was evaluated considering the esterification activity of the xerogels. The immobilization process provided enhanced thermal stability, storage and operational aspects relative to the free enzyme. Storage temperature proved one of the main variables to be considered in the process, with the xerogels stored under refrigeration showing better results in terms of residual activity (nearly 200 days with ≥ 90% residual activity of basic and nucleophilic xerogels when compared with storage at ambient temperature (nearly 40 days. The results demonstrated the possibility of reuse of derivatives and a greater number of cycles (nine, considering a residual activity of 50%.

  4. Evidence of organic luminescent centers in sol-gel-synthesized yttrium aluminum borate matrix leading to bright visible emission

    Energy Technology Data Exchange (ETDEWEB)

    Burner, Pauline; Salauen, Mathieu; Ibanez, Alain; Gautier-Luneau, Isabelle [Univ. Grenoble Alpes, Inst NEEL, Grenoble (France); CNRS, Inst NEEL, Grenoble (France); Sontakke, Atul D.; Viana, Bruno [PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris (France); Bardet, Michel [Universite Grenoble Alpes, CEA, CNRS, INAC, MEM, Grenoble (France); Mouesca, Jean-Marie; Gambarelli, Serge; Maurel, Vincent [Universite Grenoble Alpes, CEA, CNRS, INAC, SyMMES, Grenoble (France); Barra, Anne-Laure [Laboratoire National des Champs Magnetiques Intenses, UPR CNRS 3228, Universite Grenoble Alpes, Grenoble (France); Ferrier, Alban [PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris (France); Sorbonne Universites UPMC Universites Paris 06, Paris (France)

    2017-11-06

    Yttrium aluminum borate (YAB) powders prepared by sol-gel process have been investigated to understand their photoluminescence (PL) mechanism. The amorphous YAB powders exhibit bright visible PL from blue emission for powders calcined at 450 C to broad white PL for higher calcination temperature. Thanks to {sup 13}C labelling, NMR and EPR studies show that propionic acid initially used to solubilize the yttrium nitrate is decomposed into aromatic molecules confined within the inorganic matrix. DTA-TG-MS analyses show around 2 wt % of carbogenic species. The PL broadening corresponds to the apparition of a new band at 550 nm, associated with the formation of aromatic species. Furthermore, pulsed ENDOR spectroscopy combined with DFT calculations enables us to ascribe EPR spectra to free radicals derived from small (2 to 3 rings) polycyclic aromatic hydrocarbons (PAH). PAH molecules are thus at the origin of the PL as corroborated by slow afterglow decay and thermoluminescence experiments. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples.

    Science.gov (United States)

    Ribeiro, Carla M; Miguel, Eliane M; Silva, Jonadab Dos S; Silva, Cristian B da; Goulart, Marília O F; Kubota, Lauro T; Gonzaga, Fabiano B; Santos, Wilney J R; Lima, Phabyanno R

    2016-08-15

    Chlorogenic acid (CGA) is a polyphenol derivative that widely exists in higher plants like fruits, vegetables, black teas, and some traditional Chinese medicines. In this work, we have proposed a sensitive and selective electrochemical sensor for detection of CGA. The sensor was based on a glassy carbon electrode (GCE) modified with a functional platform by grafting vinyltrimethoxysilane (VTMS) in multi-walled carbon nanotubes (MWCNTs) and covered by a molecularly imprinted siloxane (MIS) film prepared using the sol-gel process. The VTMS was grafted onto the surface of the MWCNTs via in situ free radical polymerization. The MIS was obtained from the acid-catalyzed hydrolysis/condensation of a solution consisting of tetraethoxysilane (TEOS), phenyltriethoxysilane (PTEOS), (3-aminopropyl)trimethoxysilane (APTMS), and CGA as a template molecule. The modification procedure was evaluated by differential pulse voltammetry (DPV) and scanning electron microscopy (SEM). Under optimized operational conditions, a linear response was obtained covering a concentration ranging from 0.08μmolL(-1) to 500μmolL(-1) with a detection limit (LOD) of 0.032μmolL(-1). The proposed sensor was applied to CGA determination in coffee, tomato, and apple samples with recoveries ranging from 99.3% to 108.6%, showing a promising potential application in food samples. Additionally, the imprinted sensor showed a significantly higher affinity for target CGA than the non-imprinted siloxane (NIS) sensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Novel kaolin/polysiloxane based organic-inorganic hybrid materials: Sol-gel synthesis, characterization and photocatalytic properties

    Science.gov (United States)

    dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro

    2018-04-01

    New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).

  7. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  8. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    Science.gov (United States)

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Control of the nanocrystalline zirconia structure through a colloidal sol-gel process

    Science.gov (United States)

    Gossard, A.; Grasland, F.; Le Goff, X.; Grandjean, A.; Toquer, G.

    2016-05-01

    A simple method to synthesize tetragonal zirconia stabilized at ambient temperature is developed and allows the monitoring of the tetragonal-monoclinic transition via a colloidal sol-gel process. By increasing the pH of an aqueous solution consisted of a zirconium precursor and a complexing agent (acetylacetone), a colloidal sol and then a gel can be formed under slightly acidic condition. After a drying step, tetragonal zirconia is easily obtained with an adequate thermal treatment at low temperature. The tetragonal-monoclinic transition occurs when the calcination temperature is increased. The relationship between the crystallite size, the crystallographic structure and the thermal treatment has been investigated by X-Ray Diffraction and the behaviour of the system from the gel state to the final powder has been studied by using Small Angle X-Ray Scattering and thermal analysis techniques. We demonstrate that compared to a chemical precipitation route, this colloidal sol-gel process allows the nanostructure of the material to be controlled due to the formation of primary nanoparticles. The presence of these nanoparticles makes possible the specific determination of the zirconia crystallographic phase through an accurate control of the nanostructure during the thermal treatment.

  10. A concetration-dependent model for silver colloids in nanostructured sol-gel materials

    Science.gov (United States)

    Garcia-Macedo, Jorge A.; Franco, Alfredo; Renteria, Victor; Valverde-Aguilar, Guadalupe

    2005-08-01

    We report on the physical modelling of the photoconductive response of nanostructured sol-gel films in function of the silver nitrate concentration (ions and colloids). This model considers several factors as the silver nitrate concentration and the transport parameters obtained. The model is compared with others commonly used. 2d-hexagonal nanostructured sol-gel thin films were prepared by dip-coating method using a non-ionic diblock copolymer Brij58 (surfactant) to produce channels into the film. Silver colloids (metallic Ag0 nanoparticles ) were obtained by spontaneous reduction process of Ag+ ions to Ag0. These nanoparticles were deposited into the channels formed by the surfactant. The structure was identified by X-ray diffraction and TEM. An absorption band located at 430 nm was detected by optical absorption; it corresponds to the plasmon surface. Fit to this band with modified Gans theory is presented. Photoconductivity studies were performed on films with silver ions and films with silver colloids to characterized their mechanisms of charge transport in the darkness and under illumination at 420, 633 nm wavelengths. Transport parameters were calculated. The films with silver colloids exhibit a photovoltaic effect stronger than the films with silver ions. While, the last ones possesses a photoconductivity behaviour.

  11. Preparation of calcium fluoroaluminosilicate glasses containing sodium and phosphorus by the nonhydrolytic sol-gel method

    International Nuclear Information System (INIS)

    Cestari, Alexandre; Bandeira, Lucimara C.; Calefi, Paulo S.; Nassar, Eduardo J.; Ciuffi, Katia J.

    2009-01-01

    Aluminum and silicon oxide-based inorganic matrices have been extensively studied because of their countless applications. Dental cements consist of aluminum and silicon-based amorphous polymeric materials containing fluoride, sodium, phosphorus and calcium, which are also good candidates for bone replacement. The nonhydrolytic sol-gel method has emerged as an alternative route for the preparation of these materials under milder conditions than those employed in traditional methods, such as oxide fusion. The main advantages of the nonhydrolytic sol-gel method include the use of low temperatures and the ready availability and easy purification of the precursors. Together, these factors have contributed to the production of highly pure materials with controlled porosity and nanometric particles. Dental restorations based on aluminosilicate matrices are known as glass ionomer cements. These materials have interesting physical and dental properties, mainly because they display anticariogenic activity and exhibit prolonged adhesiveness to the dental structure. The base of the ionomer is an aluminosilicate that is industrially synthesized by the fusion of SiO 2 , Al 2 O 3 , AlF 3 , CaF 2 , NaF and AlPO 4 , in various concentrations. The characterizations conducted in this study reveal that this ionomer displays interesting properties, so its use as a precursor of dental cement and a biomaterial for bone replacement is highly recommended

  12. Preparation of calcium fluoroaluminosilicate glasses containing sodium and phosphorus by the nonhydrolytic sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Cestari, Alexandre; Bandeira, Lucimara C.; Calefi, Paulo S. [Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, Pq. Universitario, 14404-600 Franca, SP (Brazil); Nassar, Eduardo J. [Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, Pq. Universitario, 14404-600 Franca, SP (Brazil)], E-mail: ejnassar@unifran.br; Ciuffi, Katia J. [Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, Pq. Universitario, 14404-600 Franca, SP (Brazil)

    2009-03-20

    Aluminum and silicon oxide-based inorganic matrices have been extensively studied because of their countless applications. Dental cements consist of aluminum and silicon-based amorphous polymeric materials containing fluoride, sodium, phosphorus and calcium, which are also good candidates for bone replacement. The nonhydrolytic sol-gel method has emerged as an alternative route for the preparation of these materials under milder conditions than those employed in traditional methods, such as oxide fusion. The main advantages of the nonhydrolytic sol-gel method include the use of low temperatures and the ready availability and easy purification of the precursors. Together, these factors have contributed to the production of highly pure materials with controlled porosity and nanometric particles. Dental restorations based on aluminosilicate matrices are known as glass ionomer cements. These materials have interesting physical and dental properties, mainly because they display anticariogenic activity and exhibit prolonged adhesiveness to the dental structure. The base of the ionomer is an aluminosilicate that is industrially synthesized by the fusion of SiO{sub 2}, Al{sub 2}O{sub 3}, AlF{sub 3}, CaF{sub 2}, NaF and AlPO{sub 4}, in various concentrations. The characterizations conducted in this study reveal that this ionomer displays interesting properties, so its use as a precursor of dental cement and a biomaterial for bone replacement is highly recommended.

  13. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings.

    Science.gov (United States)

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Murali, Adhigan; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2012-02-01

    Sol-gel silica/nanoclay composites were prepared through sol-gel polymerization technique using tetraethylorthosilicate precursor and montmorillonite (MMT) clay in aqueous media. In this study, both montmorillonite-K(+) and organically modified MMT (OMMT) clays were used. The prepared composites were coated on glass substrate by making 1 wt% solution in ethyltrichlorosilane. The incorporation of nanoclay does not alter the intensity of characteristic Si-O-Si peak of silica network. Thermogravimetric studies show that increasing clay content increased the degradation temperature of the composites. Differential scanning calorimetry (DSC) results of organically modified MMT nanoclay incorporated composite show a shift in the melting behavior up to 38°C. From DSC thermograms, we observed that the ΔH value decreased with increasing clay loading. X-ray diffraction patterns prove the presence of nanoclay in the composite and increase in the concentration of organically modified nanoclay from 3 to 5 wt% increases the intensity of the peak at 2θ=8° corresponds to OMMT. Morphology of the control silica gel composite was greatly influenced by the incorporation of OMMT. The presence of nanoclay changed the surface of control silica gel composite into cleaved surface with brittle in nature. Contact angle measurements were done for the coatings to study their surface behavior. These hybrid coatings on glass substrate may have applications for hydrophobic coatings on leather substrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Synthesis and characterization of nanostructured strontium hexaferrite thin films by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Masoudpanah, S.M., E-mail: masoodpanah@ut.ac.ir [Center of Excellence for Magnetic Materials, School of Metallurgy and Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Seyyed Ebrahimi, S.A. [Center of Excellence for Magnetic Materials, School of Metallurgy and Materials, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-07-15

    Nanostructured single phase strontium hexaferrite, SrFe{sub 12}O{sub 19}, thin films have been synthesized on the (100) silicon substrate using a spin coating sol-gel process. The thin films with various Fe/Sr molar ratios of 8-12 were calcined at different temperatures from 500 to 900 Degree-Sign C. The composition, microstructure and magnetic properties of the SrFe{sub 12}O{sub 19} thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 Degree-Sign C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm{sup 3}) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios. - Highlights: Black-Right-Pointing-Pointer Preparing of strontium hexaferrite thin film by sol-gel spin coating. Black-Right-Pointing-Pointer The films prepared from the solutions with different Fe/Sr=8-12. Black-Right-Pointing-Pointer The film with Fe/Sr=10 has the lowest calcination temperature, 800 Degree-Sign c. Black-Right-Pointing-Pointer The film with Fe/Sr=10 has simultaneously maximum saturation magnetization and coercivity.

  15. Interactions between DNA purines and ruthenium ammine complexes within nanostructured sol-gel silica matrixes.

    Science.gov (United States)

    Lopes, Luís M F; Garcia, Ana R; Brogueira, Pedro; Ilharco, Laura M

    2010-03-25

    The interactions between DNA purines (guanine and adenine) and three ruthenium ammine complexes (hexaammineruthenium(III) chloride, hexaammineruthenium(II) chloride, and ruthenium-red) were studied in a confined environment, within sol-gel silica matrixes. Two encapsulation methods were rehearsed (differing in temperature and condensation pH), in order to analyze the effects of the sol-gel processes on the purines and on the Ru complexes separately. The extent of decomposition of the Ru complexes, as well as the interactions established with the purine bases, proved to be determined by the coencapsulation method. Combined results by diffuse reflectance UV-vis and infrared spectroscopies showed that, when coencapsulation is carried out at 60 degrees C, specific H bonding interactions are established between the amine group of Ade and the ammine groups of the Ru complex or the hydroxo group of an early decomposition product. These are responsible for the important role of the purine in inhibiting the oxidation reactions of the Ru(II) and Ru(III) complexes. In contrast, Gua establishes preferential H bonds with the matrix (mainly due to the carbonyl group), leading to higher yields in the final oxidation products of the Ru complexes, namely, trimers and dimers. Direct covalent bonding of either purine to the metal was not observed.

  16. Ultraviolet Stimulated Emission from Sol-Gel Spin Coated ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Ahmed S. Razeen

    2017-01-01

    Full Text Available Low cost ultraviolet stimulated emission has been generated using optical excitation of ZnO thin films deposited by sol-gel spin coating on n+ As-doped 100 Si-substrate. The number of deposited layers and the heat treatment have been investigated to obtain a film that can generate stimulated emission under optical excitation. The optimum condition for preparation of the film has been presented. X-ray diffraction and scanning electron microscope have been used for structural and morphological investigations. Input-output intensity dependence and spectral width, peak emission wavelength, and the quantum efficiency versus the pump intensity have been presented. A quantum efficiency of about 24.2% has been reported, a power exponent higher than 8 has been obtained in input-output intensity dependence, and a threshold of about 23 Mw/cm2 has been evaluated for the samples. The mechanism by which stimulated emission occurs has been discussed. The results show that sol-gel spin coating is a promising method for generating ultraviolet stimulated emission from ZnO thin films.

  17. Synthesis of zinc oxide thin films prepared by sol-gel for specific bioactivity

    Science.gov (United States)

    Adam, Tijjani; Basri, B.; Dhahi, Th. S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    Zinc oxide (ZnO) thin films this device to used for many application like chemical sensor, biosensor, solar energy, etc but my project to use for bioactivity(biosensor). Zinc oxide (ZnO) thin films have been grown using sol-gel technique. Characterization was done using Scanning Electron Microscope (SEM), Energy Dispersive X-ray(EDX) and Electrical Measurement(I-V). ZnO thin film was successfully synthesized using low cost sol-gel spin coating method. The coupling of DNA probe to ZnO thin film supports modified with carboxylic acid (COOH) is certainly the best practical method to make DNA immobilization and it does not require any coupling agent which could be a source of variability during the spotting with an automatic device. So, selected this coupling procedure for further experiments. The sensor was tested with initial trial with low concentrated DNA and able to detect detection of the disease effectively. Silicon-on-insulator (SOI) wafer device with ZnO can detect at different concentration in order to valid the device capabilities for detecting development. The lowest concentration 1 µM HPV DNA probe can detect is 0.1 nM HPV target DNA.

  18. Energetic Nanocomposites with Sol-gel Chemistry: Synthesis, Safety, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A E; Simpson, R L; Satcher, J H

    2002-06-05

    The preparation and characterization of energetic composite materials containing nanometer-sized constituents is currently a very active and exciting area of research at laboratories around the world. Some of these efforts have produced materials that have shown very unique and important properties relative to traditional energetic materials. We have previously reported on the use of sol-gel chemical methods to prepare energetic nanocomposites. Primarily we reported on the sol-gel method to synthesize nanometer-sized ferric oxide that was combined with aluminum fuel to make pyrotechnic nanocomposites. Since then we have developed a synthetic approach that allows for the preparation of hybrid inorganic/organic energetic nanocomposites. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N{sub 2} adsorption/description methods, and Fourier-Transform (FT-IR) spectroscopy, results of which will be discussed. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite. The EFTEM results provide a convenient and effective way to evaluate the intimacy of mixing between these component phases. The safe handling and preparation of energetic nanocomposites is of paramount importance to this research and we will report on studies performed to ensure such.

  19. Energetic Nanocomposites with Sol-gel Chemistry: Synthesis, Safety and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A E; Simpson, R L; Satcher, J H

    2002-05-15

    The preparation and characterization of energetic composite materials containing nanometer-sized constituents is currently a very active and exciting area of research at laboratories around the world. Some of these efforts have produced materials that have shown very unique and important properties relative to traditional energetic materials. We have previously reported on the use of sol-gel chemical methods to prepare energetic nanocomposites. Primarily we reported on the sol-gel method to synthesize nanometer-sized ferric oxide that was combined with aluminum fuel to make pyrotechnic nanocomposites. Since then we have developed a synthetic approach that allows for the preparation of hybrid inorganic/organic energetic nanocomposites. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N, adsorption/desorption methods, and Fourier-Transform (FT-IR) spectroscopy, results of which will be discussed. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite. The EFTEM results provide a convenient and effective way to evaluate the intimacy of mixing between these component phases. The safe handling and preparation of energetic nanocomposites is of paramount importance to this research and we will report on studies performed to ensure such.

  20. Preparation of zirconia nanopowders in ultrasonic field by the sol-gel method

    International Nuclear Information System (INIS)

    Li Xiaoxi; Chen Ling; Li Bing; Li Lin

    2005-01-01

    Zirconia nanopowders were prepared in the ultrasonic field by the sol-gel method and the sonochemical effect on the structure of zirconium hydroxide and the zirconia nanopowder properties were systematically investigated in this work. Ultrasound was introduced into the different stages of the synthesis of zirconia nanopowders in sol-gel reaction system, and zirconium hydroxides and the zirconia nanopowders with different properties were obtained. The results indicated that ultrasonic cavitation could not only disaggregate the agglomerates of zirconia colloidal particles but also reduce the amount of coordinated H 2 O, free H 2 O and free hydroxyl groups of the zirconium hydroxide colloidal particles, thus effectively preventing the formation of hard agglomerates in zirconia powders. Moreover, the effects of different ultrasonic output powers and treatment cycles on the structure and properties of ZrO 2 nanopowders were studied by TEM, XRD and SAXS. Zirconia nanopowders with an extremely small crystallite size (10.3 nm) and a narrow size distribution were yielded with 520 W ultrasound for 6 treatment cycles on the formation period and 600 W ultrasound for 2 treatment cycles on the washing period. It is concluded that the ultrasonic field is a potential method for nanopowder preparation. (orig.)

  1. Sol-Gel Synthesis of Ceria-Based Electrolytes and Perovskite-Type Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Pinol, S.; Calleja, A.; Capdevila, X. G.; Najib, M.; Espiell, F.

    2002-06-01

    We have successfully prepared electrolytes of Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} (SDC) and Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} (GDC) and cathodes of La{sub 1-x}Sr{sub x}CoO{sub 3} (LSCO) and La{sub 1-x}Sr{sub x}MnO{sub 3} (LSMO), useful for SOFCs, by the acrylamide sol-gel method. This method consists in the preparation of a solution from the elemental oxides and carbonates followed by a gellification with acrylamide monomer. Then, the combustion of the organic molecules is initiated, obtaining ultra fine calcined powders of the above-mentioned compounds. In this way, we have obtained high purity powders of SDC, GDC, LSCO and LSMO as confirmed by X-ray diffraction powder analysis. On the other hand, we have also studied the preparation of the same products by the solid-state reaction technique for comparison purposes. However, it was not possible to obtain pure LSCO by this ceramic method. We have observed that the optimal synthesis temperature is lower for the sol-gel samples and the final purity of the products is higher. (author)

  2. Perovskite synthesis via complex sol-gel process to immobilize radioactive waste elements

    International Nuclear Information System (INIS)

    Smolinski, T.; Deptula, A.; Olczak, T.; Lada, W.; Brykala, M.; Wojtowicz, P.; Wawszczak, D.; Rogowski, M.; Zaza, F.

    2014-01-01

    Synroc (Synthetic Rocks) materials have been regarded as the second generation of high level waste forms in the world. It allows incorporating into their crystal structures almost all of the elements present in high-level radioactive waste. One of the components of Synroc-C is perovskite (CaTiO 3 ) which immobilize mainly fission products, but also allow immobilizing in his structure long-lived actinides such as plutonium (Pu). Perovskite phase has been fabricated by a sol-gel route. In the present work complex sol-gel process (CSGP Polish Patent PL 172618, 1997) and method of synthesis Me-titanates (Polish Patent PL 198039, 2001) were adapted to prepare of perovskite. Additions of 10 % molar Sr, Co, Cs and Nd into Ti-Ca-nitrate sols were carried out by CSGP. Gels obtained by evaporation of sols under reduced pressure were thermal treated according thermogravimetric (TG, DTA) analysis. Transformation of ascorbat-nitrate gels into doped orthorhombic perovskite phases was definitely lower (about 650 deg C) than those pure nitrate gels (approx. 700 deg C). All structures were confirmed by X-ray diffraction analyses. Surrogates were homogeneously distributed into crystalline structure of perovskite. It means that elaborated process can be applied for synthesis Synroc materials and it might be competitive to vitrification process. (author)

  3. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC in Ionic Media Including Drug Release

    Directory of Open Access Journals (Sweden)

    Sunil C. Joshi

    2011-10-01

    Full Text Available Sol-gel transformations in HPMC (hydroxypropyl methylcellulose are being increasingly studied because of their role in bio-related applications. The thermo-reversible behavior of HPMC is particularly affected by its properties and concentration in solvent media, nature of additives, and the thermal environment it is exposed to. This article contains investigations on the effects of salt additives in Hofmeister series on the HPMC gelation. Various findings regarding gelation with salt ions as well as with the ionic and non-ionic surfactants are presented. The gel formation in physiological salt fluids such as simulated gastric and intestine fluids is also examined with the interest in oral drug delivery systems. The processes of swelling, dissolution and dispersion of HPMC tablets in simulated bio-fluids are explored and the release of a drug from the tablet affected by such processes is studied. Explanations are provided based on the chemical structure and the molecular binding/association of HPMC in a media. The test results at the body or near-body temperature conditions helped in understanding the progress of the gelation process within the human body environment. The detailed interpretation of various molecule level interactions unfolded the sol-gel mechanisms and the influence of a few other factors. The obtained test data and the established mathematical models are expected to serve as a guide in customizing applications of HPMC hydrogels.

  4. Synthesis of ZnO-CuO Nanocomposite Aerogels by the Sol-Gel Route

    Directory of Open Access Journals (Sweden)

    Rula M. Allaf

    2014-01-01

    Full Text Available The epoxide addition sol-gel method has been utilized to synthesize porous zinc-copper composite aerogels in the zinc-to-copper molar ratios of 50 : 50 to 90 : 10. A two-step mixing approach has been employed to produce aerogels composed of nano- to micrometer sized particles. The aerogels were characterized by ultrahigh resolution scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The as-synthesized aerogels had a thin flake- or petal-like microstructure comprised of clustered flakes on two size scales; they were identified as being crystalline with the crystalline species identified as copper nitrate hydroxide, zinc hydroxide chloride hydrate, and zinc hydroxide nitrate hydrate. Annealing of the aerogel materials at a relatively low temperature (400°C resulted in a complete phase transition of the material to give highly crystalline ZnO-CuO aerogels; the aerogels consisted of networked nanoparticles in the ~25–550 nm size range with an average crystallite size of ~3 nm and average crystallinity of 98%. ZnO-CuO aerogels are of particular interest due to their particular catalytic and sensing properties. This work emphasizes the versatility of this sol-gel route in synthesizing aerogels; this method offers a possible route for the fabrication of aerogels of different metal oxides and their composites.

  5. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    International Nuclear Information System (INIS)

    Sidane, D.; Rammal, H.; Beljebbar, A.; Gangloff, S.C.; Chicot, D.; Velard, F.; Khireddine, H.

    2017-01-01

    Titania-Hydroxyapatite (TiO 2 /HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO 2 /HAP composite and TiO 2 /HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO 2 /HAP composite once incubated in physiological conditions for 7 days whereas the TiO 2 /HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO 2 /HAP bilayer whereas on TiO 2 /HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO 2 /HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO 2 /HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO 2 reinforced HAP coatings were investigated and compared. • TiO 2 /HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO 2 /HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications

  6. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release

    Science.gov (United States)

    Joshi, Sunil C.

    2011-01-01

    Sol-gel transformations in HPMC (hydroxypropyl methylcellulose) are being increasingly studied because of their role in bio-related applications. The thermo-reversible behavior of HPMC is particularly affected by its properties and concentration in solvent media, nature of additives, and the thermal environment it is exposed to. This article contains investigations on the effects of salt additives in Hofmeister series on the HPMC gelation. Various findings regarding gelation with salt ions as well as with the ionic and non-ionic surfactants are presented. The gel formation in physiological salt fluids such as simulated gastric and intestine fluids is also examined with the interest in oral drug delivery systems. The processes of swelling, dissolution and dispersion of HPMC tablets in simulated bio-fluids are explored and the release of a drug from the tablet affected by such processes is studied. Explanations are provided based on the chemical structure and the molecular binding/association of HPMC in a media. The test results at the body or near-body temperature conditions helped in understanding the progress of the gelation process within the human body environment. The detailed interpretation of various molecule level interactions unfolded the sol-gel mechanisms and the influence of a few other factors. The obtained test data and the established mathematical models are expected to serve as a guide in customizing applications of HPMC hydrogels. PMID:28824113

  7. Assembly of polymer micelles through the sol-gel transition for effective cancer therapy.

    Science.gov (United States)

    Khaliq, Nisar Ul; Oh, Keun Sang; Sandra, Febrina Carolina; Joo, Yeonhee; Lee, Juhyung; Byun, Youngro; Kim, In-San; Kwon, Ick Chan; Seo, Jae Hong; Kim, Sang Yoon; Yuk, Soon Hong

    2017-06-10

    Photo-induced apoptosis-targeted chemotherapy (PIATC) was designed and characterized to propose a new protocol for improved chemotherapy. Intratumoral injection was selected as the mode of administration of the anticancer drug, doxorubicin (DOX). To extend the retention time of DOX at the tumor parenchyma, in-situ gel formation was induced through the sol-gel transition of the Pluronic NPs containing a prodrug of DOX or a photosensitizer. The prodrug (DEVD-S-DOX) was designed to be inactive with a peptide moiety (Aspartic acid-Glutamic acid-Valine-Aspartic acid: DEVD) linked to DOX and to be cleaved into free DOX by caspase-3 expressed with apoptosis. For reactive oxygen species (ROS)-mediated apoptosis, photo-irradiation with methylene blue (MB, photosensitizer) was utilized. The sol-gel transition of the Pluronic NPs containing reactive species, DEVD-S-DOX or MB, was examined by measuring the cloud point and the gel strength in response to temperature change. ROS-mediated apoptosis was observed by measuring the ROS and membrane integrity with induced apoptosis. The in vivo antitumor efficacy of PIATC was measured with a cardiotoxicity assay in tumor-bearing mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hydroxyapatite Coating on TiO₂ Nanotube by Sol-Gel Method for Implant Applications.

    Science.gov (United States)

    Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin

    2018-02-01

    The aim of this study was to determine the effect of hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotube by sol-gel process on viability of osteoblast like cell (MC3T3-E1) and bone formation in rat tibia. Specimens were divided into three groups including commercially pure titanium (control group), TiO2 nanotubes (group N), and HA coated TiO2 nanotubes (group HN). Surface characteristics were determined using field emission scanning electron microscope (FE-SEM; S-4700, Hitachi, Japan) and contact angles were measured. Cell viability was investigated in vitro after 1 day, 3 days, and 7 days of incubation. Implants (2.0 mm in diameter and 5.0 mm in length) were inserted into the tibia of rats. After 4 weeks, histomorphometric analysis was performed. Both N and HN groups showed enhanced hydrophilicity compared to control group. After 7 days of implantation, group HN showed higher cell viability with marginal significance (0.05 sol-gel process could be used to enhance hydrophilicity and improve osseointegration of dental implant surface.

  9. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system.

    Science.gov (United States)

    Snyder, Katherine L; Holmes, Hallie R; VanWagner, Michael J; Hartman, Natalie J; Rajachar, Rupak M

    2013-06-01

    Silica-based sol-gel and bioglass materials are used in a variety of biomedical applications including the surface modification of orthopedic implants and tissue engineering scaffolds. In this work, a simple system for vapor depositing silica sol-gel nano- and micro-particles onto substrates using nebulizer technology has been developed and characterized. Particle morphology, size distribution, and degradation can easily be controlled through key formulation and manufacturing parameters including water:alkoxide molar ratio, pH, deposition time, and substrate character. These particles can be used as a means to rapidly modify substrate surface properties, including surface hydrophobicity (contact angle changes >15°) and roughness (RMS roughness changes of up to 300 nm), creating unique surface topography. Ions (calcium and phosphate) were successfully incorporated into particles, and induced apatitie-like mineral formation upon exposure to simulated body fluid Preosteoblasts (MC3T3) cultured with these particles showed up to twice the adhesivity within 48 h when compared to controls, potentially indicating an increase in cell proliferation, with the effect likely due to both the modified substrate properties as well as the release of silica ions. This novel method has the potential to be used with implants and tissue engineering materials to influence cell behavior including attachment, proliferation, and differentiation via cell-material interactions to promote osteogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  10. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    Science.gov (United States)

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  11. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630

  12. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    Directory of Open Access Journals (Sweden)

    Josef Trögl

    2015-02-01

    Full Text Available The phospholipid fatty acid (PLFA content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS. Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm of the input microbial suspension (R2 = 0.99. After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0 to their metabolic precursors (16:1ω7 + 18:1ω7, an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications.

  13. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: n.carmona@fis.ucm.es [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)

    2012-06-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  14. Fabrication of mesoporous silica nanoparticles by sol gel method followed various hydrothermal temperature

    Science.gov (United States)

    Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah

    2018-04-01

    Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.

  15. Sol gel silica doped catalysts. A structural study by means of USANS, SANS and IANS measurements

    International Nuclear Information System (INIS)

    Pagliaro, M.; Celso, F.Lo.; Ciriminna, R.; Triolo, A.

    1999-01-01

    Complete text of publication follows. SiO 2 xerogel obtained with the sol-gel technology followed by heat treatment have interesting structural properties which make them promising matrices for catalysts. Recently, nitroxyl radicals have been entrapped in SiO 2 sol-gel matrices, and used as catalysts for selective oxidations. The immobilised nitroxyl radicals proved to be stable, leach proof and recyclable. Occasionally, the catalytic efficiency dropped upon recycling, owing to pore blockage but the activity could be restored by treatment with hot water. In order to investigate the structure of these materials, Ultra Small Angle Neutron Scattering (USANS) results have been combined with Time of flight Small Angle Neutron Scattering (TOF SANS), spanning 6 decades in momentum transfer, for samples in which the radicals were physically entrapped and samples containing radicals chemically entrapped. The structural details obtained for the different samples have been analysed and compared in an attempt to correlate the structural details with the catalytic activity. (author)

  16. Characterization of LiCoO Nanopowders Produced by Sol-Gel Processing

    Directory of Open Access Journals (Sweden)

    Sina Soltanmohammad

    2010-01-01

    Full Text Available LiCoO2 nanopowders, one of the most important cathode materials for lithium-ion batteries, were synthesized via a modified sol-gel process assisted with triethanolamine (TEA as a complexing agent. The influence of three different chelating agents including acrylic acid, citric acid, and oxalic acid on the size and morphology of particles was investigated. Structure and morphology of the synthesized powders were characterized by thermogravimetric/differential thermal analyses (TG/DTA, X-ray diffraction (XRD, and transmission electron microscopy (TEM. Results indicate that the powder processed with TEA and calcinated at 800∘C had an excellent hexagonal ordering of -NaFeO2-type (space group R3m. Also, the other three complexing agents had a decisive influence on the particle size, shape, morphology, and degree of agglomeration of the resulting oxides. Based on the data presented in this work, it is proposed that the optimized size and distribution of LiCoO2 powders may be achieved through sol-gel processing using TEA as a chelating agent.

  17. Preparation and Characterization of Titania-silica Composite Particles by Pechini Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Wu Yuanting

    2016-01-01

    Full Text Available Two Pechini sol-gel processes were used to prepare titania-silica composite particles. The dynamic oxidation behavior of the TiO2-SiO2 powders has been characterized by thermogravimetry-differential scanning calorimetry (TG-DTG-DSC. The crystal phase and microstructure of the composite particles were investigated by X-ray diffraction (XRD and field emission scanning electron microscope (FE-SEM. The effects of Si:Ti molar ratio and sol-gel process on the TiO2-SiO2 powders were studied. The preparation of the polymeric precursors can influence the morphology of obtained TiO2-SiO2 composite particles. The spherical TiO2-SiO2 composite particles which are 20 nm~400 nm in diameter appear in gel-1 system. However, the TiO2-SiO2 powders obtained by gel-2 system are irregular in shape and 2~15 μm in diameter which show a loose porous structure consisted of very fine granules.

  18. Preparation and characterization of strontium-fluorapatite nanopowders by sol-gel method

    Science.gov (United States)

    Kamaei, Maryam; Fathi, Mohammad Hossein

    2018-01-01

    Biomaterials based on calcium orthophosphate are especially attractive for use in medicine, for bone and teeth implants due to their biological properties, such as biocompatibility and bioactivity. Among them, hydroxyapatite (HAP; Ca10(PO4)6(OH)2) is used particularly because of its similarities to the inorganic component of bone. Hydroxyapatite has been widely used for biomedical applications. Despite desirable properties such as bioactivity, biocompatibility, solubility and adsorption, synthetic HA is limited in application due to poor thermostability and poor mechanical properties. Properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. Use of the sol-gel technique is technically simple, cost effective and beneficial for fabrication biomaterials. This research aimed to prepare and characterize Sr-doped FA nanopowders (Sr-FA). Sr-FA with different Sr contents was prepared by sol-gel method. The designated degree of substitution of Ca by Sr in the mixture was determined by the x value in the general formula of (Ca10-x Srx(PO4)6F2), where x=0,0.5,1. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques were utilized to characterize the obtained nano powders. Results showed that Sr ions entered into the fluorapatite lattice and occupied Ca sites. The incorporation of Sr ions into the fluorapatite resulted in the increase of the lattice parameters.

  19. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  20. Soft nanoimprint lithography on SiO2 sol-gel to elaborate sensitive substrates for SERS detection

    Science.gov (United States)

    Hamouda, Frédéric; Bryche, Jean-François; Aassime, Abdelhanin; Maillart, Emmanuel; Gâté, Valentin; Zanettini, Silvia; Ruscica, Jérémy; Turover, Daniel; Bartenlian, Bernard

    2017-12-01

    This paper presents a new alternative fabrication of biochemical sensor based on surface enhanced Raman scattering (SERS) by soft nanoimprint lithography (S-NIL) on SiO2 sol-gel. Stabilization of the sol-gel film is obtained by annealing which simplifies the manufacturing of these biosensors and is compatible with mass production at low cost. This detector relies on a specific pattern of gold nanodisks on a thin gold film to obtain a better sensitivity of molecules' detection. Characterizations of SERS devices were performed on a confocal Raman microspectrophotometer after a chemical functionalization. We report a lateral collapse effect on poly(diméthylsiloxane) (PDMS) stamp for specific nanostructure dimensions. This unintentional effect is used to evaluate S-NIL resolution in SiO2 sol-gel.

  1. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    Science.gov (United States)

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Controlled Sol-Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger.

    Science.gov (United States)

    Wang, Caihong; Hashimoto, Kei; Tamate, Ryota; Kokubo, Hisashi; Watanabe, Masayoshi

    2018-01-02

    Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light-controlled mechanical sol-gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2-phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light-controlled sol-gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self-assembly of a thermoresponsive polymer, leading to macroscopic light-controlled sol-gel transitions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    Science.gov (United States)

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Study of Different Sol-Gel Coatings to Enhance the Lifetime of PDMS Devices: Evaluation of Their Biocompatibility

    Science.gov (United States)

    Aymerich, María; Gómez-Varela, Ana I.; Álvarez, Ezequiel; Flores-Arias, María T.

    2016-01-01

    A study of PDMS (polydimethylsiloxane) sol-gel–coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion. PMID:28773848

  5. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy.

    Science.gov (United States)

    Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C

    2013-05-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Development and characterization of a family of shape memory, biocompatible, degradable, porous (co)-polyurethanes via sol-gel chemistry

    Science.gov (United States)

    Lippincott, Hugh Walker

    In support of the goal of a tissue engineering scaffold that is moldable, biodegradable and has shape-memory, this work explored the space of polyurethane sol-gel formulations and solvents to create a biocompatible, porous xerogel with potential to be such a porous scaffold. The work has resulted in both a process and a sol-gel formulation to effectively create a family of degradable, biocompatible, shape memory, porous, block copolyurethane xerogels from polycaprolactone and castor oil. Formulations of the sol-gel family of potential scaffolds were characterized for their biocompatibility, hydrolytic degradability, porosity, and shape memory. Of the scaffolds tested in this fashion, the most successful supported the attachment and growth of 3T3 fibroblast cells at 72% of the rate of attachment and growth in the standard tissue culture plastic Petri dishes. A method was developed and explained that selects the solvent for creation of a porous xerogel by controlling the phase separation of the polymerizing polyurethane from the reaction solution. This method uses standard polymer solvent swelling and extraction test data. Solvent solutions plotted in the 3-D space of Hansen solubility parameters were used to select solvents that produced porous xerogels from two different polyurethane sol-gel formulations. The process effectively combines a set of methods that search the sol-gel formulation spaces for both shape-memory and porosity. Easily produced dense xerogels from trial sol-gel formulations are sufficient for DSC and initial DMA shape-memory test data, as well as standard solvent swelling and extraction test data to support the search for shape memory and the computation of rankings to select solvent(s) that is most likely to produce a porous xerogel. Accelerated degradation tests on the dense xerogels also produced results useful to guide further testing of the sol-gel formulations. Standard shape-memory research testing only characterizes the free return to

  8. High-Performance Piezoelectric Nanogenerators via Imprinted Sol-Gel BaTiO3Nanopillar Array.

    Science.gov (United States)

    Shin, Sung-Ho; Choi, Seong-Young; Lee, Min Hyung; Nah, Junghyo

    2017-11-29

    We report high-performance piezoelectric nanogenerators (PENGs) with nanoimprinted sol-gel BaTiO 3 (BTO) nanopillar array polarized under high electric field and ultraviolet. The PENGs fabricated using this method demonstrate greatly enhanced output voltage of ∼10 V and current density of ∼1.2 μA cm -2 , respectively, in comparison to that of flat PENG. Further, the PENG demonstrates uniform output characteristics over the entire device area thanks to uniform nanoimprint pillar array. The approach introduced here is simple, effective, reliable, and reproducible way to fabricate high-performance sol-gel-based PENGs and electronic devices.

  9. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Saelim, Ni-on; Magaraphan, Rathanawan; Sreethawong, Thammanoon

    2011-01-01

    Highlights: → Natural dye from red cabbage was successfully employed in DSSC. → A fast sol-gel method to produce TiO 2 /clay thin film was proposed. → The sol-gel-prepared TiO 2 /clay was applied as the scattering layer on top of TiO 2 electrode. → Thicker sol-gel-prepared TiO 2 /clay electrode showed higher DSSC efficiency. - Abstract: The sol-gel TiO 2 /purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol-gel TiO 2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol-gel TiO 2 /purified Na-bentonite composites because the clay platelets prevented TiO 2 particle agglomeration. The sol-gel TiO 2 /5 mol% Si purified Na-bentonite and sol-gel TiO 2 /10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO 2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.

  10. International Workshop on Glasses and Ceramics, Hybrids and Nanocomposites from Gels (9th); Sol-Gel '97 Held in Centre for Glass Research, The University of Sheffield, UK on 31 August-5 September 1997

    National Research Council Canada - National Science Library

    James, Peter

    1998-01-01

    The primary objective of the Journal Of Sol-Gel Science and Technology is to provide an international forum for the dissemination of scientific and technical information and knowledge about sol-gel processed materials...

  11. Low Loss Sol-Gel TiO2 Thin Films for Waveguiding Applications

    Directory of Open Access Journals (Sweden)

    Alexis Fischer

    2013-03-01

    Full Text Available TiO2 thin films were synthesized by sol-gel process: titanium tetraisopropoxide (TTIP was dissolved in isopropanol, and then hydrolyzed by adding a water/isopropanol mixture with a controlled hydrolysis ratio. The as prepared sol was deposited by “dip-coating” on a glass substrate with a controlled withdrawal speed. The obtained films were annealed at 350 and 500 °C (2 h. The morphological properties of the prepared films were analyzed by Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM. The optical waveguiding properties of TiO2 films were investigated for both annealing temperature using m-lines spectroscopy. The refractive indices and the film thickness were determined from the measured effective indices. The results show that the synthesized planar waveguides are multimodes and demonstrate low propagation losses of 0.5 and 0.8 dB/cm for annealing temperature 350 and 500 °C, respectively.

  12. Sol-gel synthesis and characterization of mesoporous iron-titanium mixed oxide for catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Parida, K.M., E-mail: paridakulamani@yahoo.com [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India); Pradhan, Gajendra Kumar [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India)

    2010-10-01

    A mixed phase of mesoporous iron-titanium mixed oxide (ITMO) has been successfully synthesized by simple sol-gel technique by taking iron (II) sulphate and Ti-isopropoxide as the precursors and sodium dodecyl sulphate (SDS) as the surfactant. The prepared catalysts were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-vis spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), N{sub 2} adsorption-desorptions isotherm, temperature programmed desorption (TPD) and gas chromatography (GC). Low-angle XRD (LAXRD) as well as surface area analysis confirms the mesoporosity nature of the catalysts. The phase and crystallinity were revealed by XRD study. The crystallinity of the catalysts increased with increase in calcinations temperature. Catalysts screening were performed for oxidation of cyclohexane to cyclohexanol and cyclohexanone.

  13. Integrated ultrasonic transducers made by the sol gel spray technique for structural health monitoring

    Science.gov (United States)

    Kobayashi, M.; Jen, C.-K.; Moisan, J.-F.; Mrad, N.; Nguyen, S. B.

    2007-04-01

    Integrated piezoelectric-based ultrasonic transducers (UTs) have been developed for potential structural health monitoring. Fabrication techniques and performance evaluation of these transducers at selected monitoring sites are presented. Our novel transducer fabrication approach focuses on the use of handheld and readily accessible equipment to perform sol-gel spray coating, including the use of a heat gun or a torch, to carry out drying and firing, poling and electrode fabrication. The application of these integrated UTs for thickness measurement of graphite/epoxy composites, thickness monitoring of ice build up on aluminum plates at low temperatures, viscosity measurement of a cooling oil flow at temperatures up to 160 °C and monitoring metal debris in cooling oil engines is demonstrated.

  14. Tailoring the oxidation state of cobalt through halide functionality in sol-gel silica

    Science.gov (United States)

    Olguin, Gianni; Yacou, Christelle; Smart, Simon; Diniz da Costa, João C.

    2013-01-01

    The functionality or oxidation state of cobalt within a silica matrix can be tailored through the use of cationic surfactants and their halide counter ions during the sol-gel synthesis. Simply by adding surfactant we could significantly increase the amount of cobalt existing as Co3O4 within the silica from 44% to 77%, without varying the cobalt precursor concentration. However, once the surfactant to cobalt ratio exceeded 1, further addition resulted in an inhibitory mechanism whereby the altered pyrolysis of the surfactant decreased Co3O4 production. These findings have significant implications for the production of cobalt/silica composites where maximizing the functional Co3O4 phase remains the goal for a broad range of catalytic, sensing and materials applications. PMID:24022785

  15. Synthesis of nanostructured iron oxides and new magnetic ceramics using sol-gel and SPS techniques

    Science.gov (United States)

    Papynov, E. K.; Shichalin, O. O.; Belov, A. A.; Portnyagin, A. S.; Mayorov, V. Yu.; Gridasova, E. A.; Golub, A. V.; Nepomnyashii, A. S.; Tananaev, I. G.; Avramenko, V. A.

    2017-02-01

    The original way of synthesis of nanostructured iron oxides and based on them magnetic ceramics via sequential combination of sol-gel and SPS technologies has been suggested. High quality of nanostructured iron oxides is defined by porous structure (Sspec up to 47,3 n2/g) and by phase composition of mixed and individual crystal phases (γ-Fe2O3/Fe3O4 i α-Fe2O3), depending on synthesis conditions. High-temperature SPS consolidation of nanostructured hematite powder, resulting in magnetic ceramics of high mechanical strength (fracture strength 249 MPa) has been investigated. Peculiarities of change of phase composition and composite's microstructure in the range of SPS temperatures from 700 to 900 °C have been revealed. Magnetic properties have been studied and regularities of change of magnetization (Ms) and coercive force (Hc) values of the ceramics with respect to SPS sintering temperature have been described.

  16. Characterization of selenium doped silica glasses synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, R.A.; Toffoli, S.M., E-mail: toffoli@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia Metalurgica e de Materiais

    2012-07-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  17. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  18. Development of photonic crystals using sol-gel process for high power laser applications

    International Nuclear Information System (INIS)

    Benoit, Florence

    2015-01-01

    Three-dimensional photonic crystals (PCs) are periodic materials with a modulated refractive index on a length scale close to the light wavelength. This optical property allows the preparation of specific optical components like highly reflective mirrors. Moreover, these structured materials might have a high laser-induced damage threshold (LIDT) in the sub-nanosecond range compared to multilayered dielectric mirrors. This property is obtained because only one high LIDT material (silica) is used. In this work, we present the development of 3D PCs with narrow-sized colloidal silica particles, prepared by sol-gel process and deposited with Langmuir-Blodgett technique. Different syntheses routes have been investigated and compared regarding the optical properties of the PCs. A numerical model based on an ideal opal network including defect influence is used to explain these experimental results. (author) [fr

  19. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  20. Morphological, Structural, and Electrical Characterization of Sol-Gel-Synthesized ZnO Nano rods

    International Nuclear Information System (INIS)

    Kashif, M.; Hashim, U.; Foo, K.L.; Ali, M.E.; Ali, M.E.; Ali, S.M.U.

    2013-01-01

    ZnO nano rods were grown on thermally oxidized p-type silicon substrate using sol-gel method. The SEM image revealed high-density, well-aligned, and perpendicular ZnO nano rods on the oxidized silicon substrate. The XRD profile confirmed the c-axis orientation of the nano rods. PL measurements showed the synthesized ZnO nano rods have strong ultraviolet (UV) emission. The electrical characterization was performed using interdigitated silver electrodes to investigate the stability in the current flow of the fabricated device under different ultraviolet (UV) exposure times. It was notified that a stable current flow was observed after 60 min of UV exposure. The determination of stable current flow after UV exposure is necessary for UV-based gas sensing and optoelectronic devices.

  1. A novel green nonaqueous sol-gel process for preparation of partially stabilized zirconia nanopowder

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2017-09-01

    Full Text Available A novel green nonaqueous sol-gel process was developed to prepare 3 mol% Y2O3-doped ZrO2 nanopowder from zirconium oxychloride and without need for washing of the obtained particles. It was shown that highly dispersive nanometer-scale zirconia powder with the particle size of 15–25 nm and BET surface area of 41.2 m2/g can be prepared. The sintering behaviour was also investigated. Density of the translucent body sintered at 1400 °C is 98.7 ± 0.3% of its theoretical density and the surface and cross section areas are dense without holes or other defects. The bending strength of the sintered sample is 928 ± 64 MPa.

  2. Impact of temperature on zinc oxide particle size by using sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keanchuan, E-mail: lee.kc@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: dennis.ling@petronas.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Saipolbahri, Zulhilmi Akmal bin, E-mail: zulhilmiakmal@gmail.com [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my, E-mail: hassan.soleimani@petronas.com.my; Soleimani, Hassan, E-mail: beh.hoeguan@petronas.com.my, E-mail: hassan.soleimani@petronas.com.my

    2014-10-24

    Zinc oxide (ZnO) nanoparticles were prepared and synthesized via sol-gel method, by using citric acid as a precursor. The impact of annealing on the particle size was investigated. Based on the results from the Thermogravimetric Analysis (TGA), three different annealing temperature which is 500, 600 and 700 °C were chosen followed by the characterization of the ZnO nanoparticle by using Powder X-Ray Diffraction (PXRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopy (FESEM). Results showed that the crystallite size estimated from PXRD increased with the annealing temperature which was hexagonal structure for ZnO. TEM further revealed the same tendency which the Zn NPs size also increased with the annealing temperature.

  3. Zirconium carbonitride pellets by internal sol gel and spark plasma sintering as inert matrix fuel material

    Science.gov (United States)

    Hedberg, Marcus; Cologna, Marco; Cambriani, Andrea; Somers, Joseph; Ekberg, Christian

    2016-10-01

    Inert matrix fuel is a fuel type where the fissile material is blended with a solid diluent material. In this work zirconium carbonitride microspheres have been produced by internal sol gel technique, followed by carbothermal reduction. Material nitride purities in the produced materials ranged from Zr(N0.45C0.55) to Zr(N0.74C0.26) as determined by X-ray diffraction and application of Vegard's law. The zirconium carbonitride microspheres have been pelletized by spark plasma sintering (SPS) and by conventional cold pressing and sintering. In all SPS experiments cohesive pellets were formed. Maximum final density reached by SPS at 1700 °C was 87% theoretical density (TD) compared to 53% TD in conventional sintering at 1700 °C. Pore sizes in all the produced pellets were in the μm scale and no density gradients could be observed by computer tomography.

  4. Analysis of bioactive glasses obtained by sol-gel processing for radioactive implants

    Directory of Open Access Journals (Sweden)

    Roberto Wanderley dos Santos

    2003-01-01

    Full Text Available This paper presents the chemical and physical characterizations of SiO2 and SiO2-CaO bioactive glasses incorporated with samarium atoms, produced by sol-gel synthesis. The objective is to provide biocompatible and biodegradable radioactive seeds as an alternative to be used in Brachytherapy for the treatment of prostate cancer. The glasses were produced and analyzed by X-ray fluorescence spectroscopy (XRF, energy dispersive X-ray spectroscopy (EDS, scanning electron microscopy (SEM, He picnometry and nitrogen adsorption analysis. A theoretical evaluation of the specific activity of the samples upon neutron activation is proposed. The XRF and EDS results demonstrate the incorporation of samarium atoms in the glass matrix. The experimental data coupled with the theoretical studies in neutron activation suggest that it is possible to obtain radioactive seeds with activities equivalent to 125I seeds used in brachytherapy prostatic.

  5. Preparation of UO2 dense spherical particles by sol-gel technique

    International Nuclear Information System (INIS)

    Urbanek, V.; Dolezal, J.

    1977-01-01

    The results of the basic research and development of processes of preparation of dense UO 2 spherical particles by sol-gel technique are presented. Attention was paid to the study of chemistry of internal gelation step in the uranylnitrate-urea-hexamethylentetramine system. The existence regions of several stable gels with different properties were established in connection with variable ratio of basic gel's components and the appropriate ''Phase diagrams'' were drawn. From these diagrams, two of the most interesting types of uranyl gels were chosen for the subsequent thermal processing which included drying, reduction and sintering. The detailed studies of each step of the whole process enabled preparation of UO 2 dense spheres with well defined microstructure

  6. Formation of bimodal porous silica-titania monoliths by sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Ruzimuradov, O N, E-mail: ruzimuradov@rambler.ru [Department of General Chemistry, Faculty of Chemistry, National University of Uzbekistan, 15, Vuzgorodok, Tashkent, 100174 (Uzbekistan)

    2011-10-29

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N{sub 2} adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  7. Sol-gel coatings: An alternative route for producing planar optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Rey-Garcia, F.; Gomez-Reino, C. [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); Flores-Arias, M.T., E-mail: maite.flores@usc.es [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); De La Fuente, G.F., E-mail: xerman@unizar.es [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Maria de Luna 3, E-50018 Zaragoza (Spain); Duran, A. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain); Castro, Y., E-mail: castro@icv.csic.es [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain)

    2011-09-01

    Inorganic and hybrid planar waveguides with different compositions (silica-titania, methacrylate-silica-cerium oxide, zirconia-cerium oxide and silica-zirconia) have been obtained by sol-gel synthesis followed by dip-coating. Soda-lime glass slides and conventional commercial window glass were used as substrates. The thickness and refractive index of the coatings were determined by profilometry and Spectroscopic Ellipsometry. Waveguide efficiency was measured at ca. 70.8% with a He-Ne laser beam, coupled with an optical microscope objective into and out of the waveguiding layer via a double prism configuration. Thicknesses between 150 and 2000 nm, along with refractive index values ranging between 1.45 and {approx} 1.99 ({lambda} = 633 nm) were obtained depending on the sol composition and the dip-coating conditions. This wide range of values allows designing multilayered guides that can be used in a variety of applications.

  8. Morphological, Structural, and Electrical Characterization of Sol-Gel-Synthesized ZnO Nanorods

    Directory of Open Access Journals (Sweden)

    M. Kashif

    2013-01-01

    Full Text Available ZnO nanorods were grown on thermally oxidized p-type silicon substrate using sol-gel method. The SEM image revealed high-density, well-aligned, and perpendicular ZnO nanorods on the oxidized silicon substrate. The XRD profile confirmed the c-axis orientation of the nanorods. PL measurements showed the synthesized ZnO nanorods have strong ultraviolet (UV emission. The electrical characterization was performed using interdigitated silver electrodes to investigate the stability in the current flow of the fabricated device under different ultraviolet (UV exposure times. It was notified that a stable current flow was observed after 60 min of UV exposure. The determination of stable current flow after UV exposure is necessary for UV-based gas sensing and optoelectronic devices.

  9. Quasi-distributed sol-gel coated fiber optic oxygen sensing probe

    Science.gov (United States)

    Zolkapli, Maizatul; Saharudin, Suhairi; Herman, Sukreen Hana; Abdullah, Wan Fazlida Hanim

    2018-03-01

    In the field of aquaculture, optical sensor technology is beginning to provide alternatives to the conventional electrical sensor. Hence, the development and characterization of a multipoint quasi-distributed optical fiber sensor for oxygen measurement is reported. The system is based on 1 mm core diameter plastic optical fiber where sections of cladding have been removed and replaced with three metal complexes sol-gel films to form sensing points. The sensing locations utilize luminophores that have emission peaks at 385 nm, 405 nm and 465 nm which associated with each of the sensing points. Interrogation of the optical sensor system is through a fiber optic spectrometer incorporating narrow bandpass emission optical filter. The sensors showed comparable sensitivity and repeatability, as well as fast response and recovery towards oxygen.

  10. Development of flame retardant cotton fabric based on ionic liquids via sol-gel technique.

    Science.gov (United States)

    Bentis, A.; Boukhriss, A.; Boyer, D.; Gmouh, S.

    2017-10-01

    In this study, flame retardant cotton fabrics were developed by the sol-gel method, in order to enhance their flame retardant proprieties. For this aim, seven sols were prepared using tetraethylorthosilicate (TEOS) and different ionic liquids (ILs) consist on pyridinium and Methylimidazolium cations with different anions such as: PF6-, CH3COO-, and Br-. Those sols were applied separately to the cotton fabrics by a pad-dry-cure process. The flame retardant properties of functionalized cotton fabrics before and after washing were determined by the vertical flame tests according to ISO6940:2004(F) standard. The effects of anions have been thoroughly investigated, aiming at the optimization of the targeted properties. Thermogravimetric and mechanical according to NF EN ISO 13934-1:2013standard, analyses have been also investigated. The results showed that flame retardancy, thermal stability and mechanical properties of treated fabrics were enhanced by using ionic liquids.

  11. Spectroellipsometric study of the sol-gel nanocrystalline ITO multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, T.F.; Gartner, M.; Losurdo, M.; Teodorescu, V.; Blanchin, M.; Stoica, T.; Zaharescu, M

    2004-05-01

    Tin-doped indium oxide (ITO) thin films have been deposited by sol-gel process using 'sols' of indium and tin isopropoxides. The thickness of one deposited ITO layer is approximately 50 nm. The desired thickness was obtained by 1-5 successive depositions. The XTEM cross-sectional view of an ITO sample with five depositions showed a clear delimitation of the layers with an alternating structure dense/porous ITO layers. The void fraction in porous regions varies between 20 and 25%. Cubic bixbyite In{sub 2}O{sub 3} nanocrystals with size of 10-20 nm and no phases separation of tin oxide were observed. The optical properties of the films have been investigated by optical transmission and spectroscopic ellipsometry. Reliable optical constants and porosity are obtained only with the model of internal structure based on XTEM results.

  12. Erbium-activated silica-zirconia planar waveguides prepared by sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rogeria R. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo-Av., Bandeirantes 3900, cep 14040-901, Ribeirao Preto-SP (Brazil)], E-mail: rrgoncalves@ffclrp.usp.br; Messaddeq, Younes [Instituto de Quimica, UNESP-Rua Prof. Francisco Degni, s/n, Quitandinha, cep 14800-900 Araraquara-SP (Brazil); Chiasera, Alessandro; Jestin, Yoann; Ferrari, Maurizio [CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO group, via Sommarive 14, 38050 Povo, Trento (Italy); Ribeiro, Sidney J.L. [Instituto de Quimica, UNESP-Rua Prof. Francisco Degni, s/n, Quitandinha, cep 14800-900 Araraquara-SP (Brazil)

    2008-03-31

    Er{sup 3+} doped (100 - x)SiO{sub 2} - xZrO{sub 2} planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er{sup 3+} ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 {mu}m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er{sup 3+} ion.

  13. Sol-gel synthesis and optical properties of titanium dioxide thin film

    Science.gov (United States)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  14. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Eric Frickey, E; Leung Heung, L

    2004-02-23

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were

  15. Synthesis of nano-sized zirconium carbide by a sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Dolle, M.; Gosset, D.; Simeone, D. [CEA Saclay, DMN, SRMA, Lab Anal Microstruct Mat, F-91191 Gif Sur Yvette (France); Bogicevic, C.; Karolak, F.; Baldinozzi, G. [Ecole Cent Paris, CNRS, UMR 8580, Lab Struct Proprietes and Modelisat Solides, F-92295 Chatenay Malabry (France)

    2007-07-01

    Nano-sized zirconium carbide was synthesized by a new simple sol-gel method Using zirconium n-prop-oxide, acetic acid as chemical modifier, and saccharose as carbon source. When heat-treated at 900 C under flowing argon, gels transformed into intimately mixed amorphous carbon and nano-sized tetragonal ZrO{sub 2}. Further heat treatments above 1200 degrees C led to the formation of zirconium carbide with some dissolved oxygen in the lattice. Oxygen content Could be reduced by increasing the heat treatment temperature from 1400 to 1600 degrees C, which unfortunately also induced a mean crystallites size increase from 90 to 150 inn. Short heat treatments above 1600 degrees C were carried out to further purify the samples and to limit the particles growth. A compromise between purity and average crystallite's size could then be found. Powders were assessed using X-ray diffraction, thermal analysis and scanning electron microscopy. (authors)

  16. Europium incorporated in silica matrix obtained by sol-gel: luminescent materials

    Directory of Open Access Journals (Sweden)

    Nassar Eduardo José

    2003-01-01

    Full Text Available In this work we report some aspects of the chemistry involved in the preparation of modified silicon oxide by the sol-gel process. Europium III compounds were used as luminescent probe. An organic-inorganic hybrid was obtained by hydrolysis of tetraethylorthosilicate (TEOS and 3-aminopropyltriethoxysilane (APTS. The Eu III compounds were added in different ways. In the first, silica was prepared in the presence of Eu III, and in the second, Eu III was added on the silica surface. These materials were studied by luminescence, infrared spectroscopy and termogravimetric analysis. The results obtained for the hybrid material show different behavior for Eu III emission, which could be excited by the antenna effect and the influence of the surrounding in the luminescence quenching. The thermogravimetric data present different mass loss in samples to range temperature 50 - 150 °C. Thermogravimetric and infrared spectra showed that inorganic polymers incorporated the organic part.

  17. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  18. The effect of Ni and Fe doping on YBCO powder prepared by sol gel method

    Directory of Open Access Journals (Sweden)

    F Saeb

    2009-08-01

    Full Text Available  We fabricated YBa2Cu3-xMxO7- d (M=Ni, Fe bulk samples, with stochiometric amount 0≤x≤0.045 by sol-gel method. The phase analysis and microstructure of specimens were examined by XRD and SEM. The electrical resistivity was measured using standard four probe technique for 77-300K. Investigation of XRD spectrum by MAUD shows Ni and Fe ions substitute in Cu(2 and Cu(1 site, respectively. Transition temperature decreases in 93-87K for Ni-doped samples and 93-92K for Fe-doped series. It seems that the suppression of superconductivity has no direct correlation with the magnetism of ions itself .

  19. Nano crystals of Ni doped Zn O semiconductor by Sol-Gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Carrero, A.; Sagredo, V. [Universidad de Los Andes, Departamento de Fisica, Laboratorio de Magnetismo, 5101 Merida (Venezuela, Bolivarian Republic of); Larionova, J., E-mail: aneelyc@gmail.com [Universite Montpellier II, 2 Place Eugene Bataillon, 34090 Montpellier (France)

    2016-11-01

    Nanoparticles of the system Zn{sub 0.95}O were prepared by sol-gel self - combustion method and a study of their structural, optical and magnetic properties were conducted. X-ray diffraction study shows a hexagonal wurtzite structure for the nano compound. The formation of the wurtzite structure in Ni doped Zn O was further confirmed by Fourier transform infra-red spectrometry. Transmission electron microscopy revealed an average size of 31 nm for the particles. Optical absorption spectra shows that the band energy of Zn{sub 0.95}Ni{sub 0.}9{sub 5}O powders is about 2.54 eV at room temperature. A study of the magnetic properties of the nano powders of Zn O: Ni, reveals paramagnetic behavior, with interaction ferromagnetic between particles. (Author)

  20. Dynamical transition of heat transport in a physical gel near the sol-gel transition

    Science.gov (United States)

    Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei

    2015-12-01

    We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample’s surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions.

  1. Synthesis and Characterization of Modified Cellulose Acetate Propionate Nanocomposites via Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Patrycja Wojciechowska

    2013-01-01

    Full Text Available In this study novel organic-inorganic hybrid nanocomposites were synthesized from modified cellulose acetate propionate (MCAP via sol-gel reaction at ambient temperature. The inorganic phase was introduced in situ by hydrolysis-condensation of tetraethoxysilane (TEOS in different concentrations, under acid catalysis, in the presence of organic polymer dissolved in acetone. The chemical modification of CAP was monitored by infrared spectroscopy (IR. The nanocomposites structure was characterized by IR analysis and solid state 29Si NMR studies. The spectral data revealed that organic and inorganic phases are linked through covalent bound. Surface morphology of the samples and the degree of dispersion of inorganic phase in the polymer matrix were investigated using atomic force microscopy (AFM and scanning electron microscopy (SEM. The actual incorporation of the inorganic component into the hybrid nanocomposites was deducted from the residual weight according to thermogravimetric analysis (TGA.

  2. Properties of Zn O/Cr thin films prepared by Sol-Gel

    International Nuclear Information System (INIS)

    Tirado G, S.; Olvera A, R.

    2014-08-01

    Zn O films and those superficially modified with chromium were deposited on substrates of soda-lime glass, using the Sol-Gel process and the repeated immersion method. Starting from dehydrated zinc acetate was prepared a solution to 0.6 M to ambient temperature in 2-methoxyethanol and monoethanolamine (Mea) stirring magnetically. The Sol was prepared with an aging to seven days and was used to grow a films group with thickness to eight immersions. These same films were superficially modified with several depositions of a chromium nitrate Sol dissolved in ethanol to low concentration. The Zn O films were structurally characterized by X-ray diffraction, its chemical composition by energy dispersive X-ray spectroscopy and its morphology by scanning electron microscopy and atomic force microscopy, as well as their optical properties by UV-vis. Of the obtained results are proposed possible applications. (author)

  3. Analysis of milk ageing by a sol-gel sensors array

    Science.gov (United States)

    Siciliano, P.; Rella, R.; Capone, S.; Taurino, A.; Vasanelli, L.

    2000-12-01

    There is growing interest in the development of electronic odours-detection multisensor systems for objective evaluation of aroma food. Study of food storage, freshness control and ageing is one of the most important application field for this new class of device (named "electronic nose"). In this paper we report a specific application of a semiconductor thin films based electronic nose in the control of the rancidity of two different milk (UHT and pasteurised) during their storage days. The active elements of the array were undoped and Os-, Ni-, Pt-, Pd-doped SnO2 thin films prepared by the sol-gel method. Principal Component Analysis (PCA), applied to the data coming from the response of the sensors, gave satisfactory results in tracking dynamic evolution of milk, that could lead to commercial application in the food industry.

  4. SiO2 sol-gel films after ammonia and heat two-step treatments

    International Nuclear Information System (INIS)

    Zhang Chunlai; Wang Biyi; Tian Dongbin; Yin Wei; Jiang Xiaodong; Yuan Xiaodong; Yan Lianghong; Zhang Hongliang; Zhao Songnan; Lv Haibing

    2008-01-01

    SiO 2 thin films were deposited using tetraethoxylsilane as precursor, ammonia as catalyst on K9 glass by sol-gel method. These films were post-treated by ammonia and heat. The properties of the coatings were characterized by ellipsometer, UV-vis spectrophotometry, FTIR-spectroscopy, scanning probe microscope and contact angle measurement apparatus. The resuits indicate that the thickness of the films with ammonia and heat treatment tend to decrease. Both the refractive index and water contact angle increase after ammonia treatment. However, they both decrease after heat treatment. The former increases by 0.236 for the first step, then decreases by 0.202 for the second. The latter increases to 58.92 degree, then decreases to 38.07 degree. The transmittance of the coatings turn to be better and continuously shift to short wave by UV-vis spectrophotometry. The surface becomes smoother by AFM after the two-step treatment. (authors)

  5. Ozonation and sol-gel method to obtain Cu/Cu O nanoparticles from cyanidation wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Soria A, M. J.; Puente S, D. M.; Carrillo P, F. R. [Universidad Autonoma de Coahuila, Facultad de Metalurgia, Carretera 57 Km 4.5, 25710 Monclova, Coahuila (Mexico); Garcia C, L. A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, Col. Los Pinos, 25253 Saltillo, Coahuila (Mexico); Velazquez S, J., E-mail: frrcarrillo@yahoo.com.mx [University of Texas at San Antonio, Department of Physics and Astronomy, San Antonio TX 78249 (United States)

    2015-07-01

    The extraction process of gold and silver by cyanidation generates large amounts of effluent which also contain contaminants such as cyanide and significant metal values such as copper. This paper presents the results of the removal and recovery of copper from ozonation treatment of a residual aqueous cyanide. The residual solution was treated by ozonation-precipitation to obtain a precipitate of copper. From this, copper nano composites obtained by Pechini modified sol-gel method were obtained. The compounds obtained were characterized by X-ray diffraction, showing a dependence of the type of compounds formed over time of ozonation and heat treatment of the gel. The particle size was measured by scanning electron microscopy and calculated by the Scherrer equation, being between 50 and 120 nm. (Author)

  6. Investigation of the Peroxovanadate Sol-Gel Process and Characterization of the Gels

    Energy Technology Data Exchange (ETDEWEB)

    Fontenot, Craig Joseph [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    In general, the peroxovanadate solution sol-gel process can be thought of as consisting of two parts: (1) the decomposition of the peroxo species and (2) cation hydrolysis leading to gelation. By controlling the synthesis conditions, both layered and amorphous compounds can be created. However, the type of water coordination observed in these gels was found to be identical no matter what the long-range order. The current work clarified many of the discrepancies found in the literature and offered much new valuable information. Highlights include the types of vanadium environments present at various stages of hydration, the role of adsorbed water, oxygen exchange from adsorbed water into the gel sites, and the ability to create metastable VMoO solid solution phases. These results could have a variety of impacts on future catalysis research.

  7. RBS and NRA of cobalt oxide thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Andrade, E.; Huerta, L.; Pineda, J.C.; Zavala, E.P.; Barrera, E.; Rocha, M. F.; Vargas, C.A.

    2001-01-01

    This work presents a study of cobalt oxide thin films produced by the sol-gel process on aluminum and glass substrates. These films have been analyzed using two ion beam analysis (IBA) techniques: a) a standard RBS 4 He 2 MeV and b) nuclear reaction analysis (NRA) using a 1 MeV deuterium beam. The 12 C(d,p 0 ) 13 C nuclear reaction provides information that carbon is incorporated into the film structure, which could be associated to the sinterization film process. Other film measurements such as optical properties, XRD, and SEM were performed in order to complement the IBA analysis. The results show that cobalt oxide film coatings prepared by this technique have good optical properties as solar absorbers and potential uses in solar energy applications

  8. Analysis of the thermoluminescent signal in the hydroxyapatite synthesized by the sol-gel method

    International Nuclear Information System (INIS)

    Mendoza A, D.; Gonzalez, P.R.; Lobato, M.; Rubio, E.; Rodriguez L, V.; Custodio, E.

    2004-01-01

    The physical properties of the ceramics are related with the chemical bonds and the crystalline structure, because the elements that constitute it can be united by ionic bonds or partially ionic giving a covalent character, this last causes that the outer layer is full of electrons. This property makes that the ceramic ones become interesting materials for thermoluminescent applications, as it demonstrates through the recent works presented on the hydroxyapatite that is a ceramic biomaterials that has shown an interesting thermoluminescent signal when being exposed to gamma radiation. In this sense, this work presents the thermoluminescent signal analysis induced by the UV and gamma radiation in a particular type of hydroxyapatite synthesized by sol gel method in which the temperature synthesis is varied. The final thermoluminescent sensitivity of materials is correlated with the crystalline degree, which is analysed through X-ray diffraction. (Author)

  9. Effect of heating temperature on the optical properties of sol-gel synthesized C/NiO nanocomposite thin films

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-05-01

    Full Text Available photo-thermal conversion have shown the feasibility of the C/NiO composite coatings for a selective solar absorber application, nonetheless, a detailed systematic investigation on the effect of the sol-gel fabrication process parameters on the structural...

  10. Advantages of the Pre-Immobilization of Enzymes on Porous Supports for Their Entrapment in Sol-Gels

    Czech Academy of Sciences Publication Activity Database

    Betancor, L.; López-Gallego, F.; Hidalgo, A.; Fuentes, M.; Podrazký, Ondřej; Kuncová, Gabriela; Guisán, J.M.; Fernández-Lafuente, R.

    2005-01-01

    Roč. 6, č. 2 (2005), s. 1027-1030 ISSN 1525-7797 Grant - others:CICYT(ES) BIO2000/0747/C05/02; CICYT(ES) BIO2001/2259 Institutional research plan: CEZ:AV0Z40720504 Keywords : immobilization * enzymes * sol-gel Subject RIV: CE - Biochemistry Impact factor: 3.618, year: 2005

  11. ITO/Poly(Aniline/Sol-Gel Glass: An Optically Transparent, pH-Responsive Substrate for Supported Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Obeidi

    2013-01-01

    Full Text Available Described here is fabrication of a pH-sensitive, optically transparent transducer composed of a planar indium-tin oxide (ITO electrode overcoated with a poly(aniline (PANI thin film and a porous sol-gel layer. Adsorption of the PANI film renders the ITO electrode sensitive to pH, whereas the sol-gel spin-coated layer makes the upper surface compatible with fusion of phospholipid vesicles to form a planar supported lipid bilayer (PSLB. The response to changes in the pH of the buffer contacting the sol-gel/PANI/ITO electrode is pseudo-Nernstian with a slope of 52 mV/pH over a pH range of 4–9. Vesicle fusion forms a laterally continuous PSLB on the upper sol-gel surface that is fluid with a lateral lipid diffusion coefficient of 2.2 μm2/s measured by fluorescence recovery after photobleaching. Due to its lateral continuity and lack of defects, the PSLB blocks the pH response of the underlying electrode to changes in the pH of the overlying buffer. This architecture is simpler to fabricate than previously reported ITO electrodes derivatized for PSLB formation and should be useful for optical monitoring of proton transport across supported membranes derivatized with ionophores and ion channels.

  12. Recent applications of ionic liquids in the sol-gel process for polymer-silica nanocomposites with ionic interfaces

    Czech Academy of Sciences Publication Activity Database

    Donato, K. Z.; Matějka, Libor; Mauler, R. S.; Donato, R. K.

    2017-01-01

    Roč. 1, č. 1 (2017), s. 1-25, č. článku 5. E-ISSN 2504-5377 Institutional support: RVO:61389013 Keywords : ionic liquids * sol-gel * ionic interfaces Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  13. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    Science.gov (United States)

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  14. Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material.

    Science.gov (United States)

    Namnabat, Soha; Kim, Kyung-Jo; Jones, Adam; Himmelhuber, Roland; DeRose, Christopher T; Trotter, Douglas C; Starbuck, Andrew L; Pomerene, Andrew; Lentine, Anthony L; Norwood, Robert A

    2017-09-04

    Silicon photonics has gained interest for its potential to provide higher efficiency, bandwidth and reduced power consumption compared to electrical interconnects in datacenters and high performance computing environments. However, it is well known that silicon photonic devices suffer from temperature fluctuations due to silicon's high thermo-optic coefficient and therefore, temperature control in many applications is required. Here we present an athermal optical add-drop multiplexer fabricated from ring resonators. We used a sol-gel inorganic-organic hybrid material as an alternative to previously used materials such as polymers and titanium dioxide. In this work we studied the thermal curing parameters of the sol-gel and their effect on thermal wavelength shift of the rings. With this method, we were able to demonstrate a thermal shift down to -6.8 pm/°C for transverse electric (TE) polarization in ring resonators with waveguide widths of 325 nm when the sol-gel was cured at 130°C for 10.5 hours. We also achieved thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions. Curing time compared to curing temperature shows to be the most important factor to control sol-gel's thermo-optic value in order to obtain an athermal device in a wide temperature range.

  15. ELISA AND SOL-GEL BASED IMMUNOAFFINITY PURIFICATION OF THE PYRETHROID BIOALLETHRIN IN FOOD AND ENVIRONMENTAL SAMPLES

    Science.gov (United States)

    The peer-reviewed article describes the development of a new sol-gel based immunoaffinity purification procedure and an immunoassay for the pyrethroid bioallethrin. The immunoaffinity chromatography procedure was applied to food samples providing an efficient cleanup prior to im...

  16. A Sol-gel Integrated Dual-readout Microarray Platform for Quantification and Identification of Prostate-specific Antigen.

    Science.gov (United States)

    Lee, SangWook; Lee, Jong Hyun; Kwon, Hyuck Gi; Laurell, Thomas; Jeong, Ok Chan; Kim, Soyoun

    2018-01-01

    Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.

  17. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.

    Science.gov (United States)

    Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko

    2015-12-01

    Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc.

  18. Investigation of the relationship between structure and function of sol-gel immobilised lipase using small angle neutron scattering

    International Nuclear Information System (INIS)

    Rodgers, L.E.; Australian Nuclear Science and Technology Organisation, Menai, NSW; Holden, P.J.; Knott, R.B.; Finnie, K.S.; Bartlett, J.R.; Foster, L.J.R.

    2003-01-01

    Full text: Sol-Gel technology provides a facile, intrinsically low temperature approach to the immobilisation of either inorganic or organic species and has recently been extended to include immobilisation of active biological cells or proteins primarily for biosensor applications. Application to biocatalysis is in its infancy and the key to success lies in the characterisation of the relationship between gel structure, maintenance of active state of the proteins and cells and optimisation of catalytic activity. The application of small angle neutron scattering (SANS) to characterisation of sol-gel based bioencapsulates offers the opportunity to examine this relationship. Biocatalysis in solvents using lipases is currently under extensive investigation for the production of novel polymers with environmental and biomedical applications. The biocatalytic activity of such enzymes has been significantly increased by immobilisation in sol-gel matrices and we are currently investigating structure/function relationships for immobilised Candida antarctica lipase B (CALB). Gels were produced by sodium fluoride-catalysed hydrolysis of tetramethylorthosilicate (TMOS) and methyltrimethoxysilane (MTMS) and phase separation of the enzyme and gel matrix was minimised by the use of glycerol. Glycerol was also found to confer improved stability on the enzyme. The application of neutron scattering techniques and activity studies to elucidating the effects of sol-gel bioencapsulation will be discussed

  19. The development of novel organically modified sol-gel media for use with ATR/FTIR sensing.

    Science.gov (United States)

    Flavin, K; Mullowney, J; Murphy, B; Owens, E; Kirwan, P; Murphy, K; Hughes, H; McLoughlin, P

    2007-03-01

    The ability to prepare and develop novel pre-concentration media by the sol-gel process, and their integration with mid-infrared transparent waveguides has been demonstrated. This research approach resulted in a mid-infrared sensing methodology in which the properties (porosity, functionality, polarity, etc.) of the recognition layer could be tailored by variation of the sol-gel precursors and processing conditions. Cross-linker type and concentration notably influenced p-xylene absorption and diffusion rate. Unreacted silanol groups appeared to be the dominant factor in the hydrophobicity of sol-gel layers. Variation of sol-gel precursors and thermal treatment altered both film cross-link density and polarity, as demonstrated by variation in the rate of analyte diffusion and equilibrium analyte concentration. The use of a novel 1 : 1 PTMOS : DPDMS material as pre-concentration medium in this analytical sensing approach was validated through the determination of p-nitrochlorobenzene in an aqueous environment. The response demonstrated linearity between 0-30 mg L(-1) with a correlation coefficient of 0.989 and a limit of detection of 0.7 mg L(-1). Sensing times for p-nitrochlorobenzene were also reduced from several hours to 24 minutes, without loss of measurement accuracy or sensitivity, by a 10 degrees C increase in the sensing temperature and the use of a predictive Fickian model previously developed by this research group.

  20. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process

    Science.gov (United States)

    Mandla A. Tshabalala; Peter Kingshott; Mark R. VanLandingham; David Plackett

    2003-01-01

    Sol-gel surface deposition of a hydrophobic polysiloxane coating on wood was accomplished by using a mixture of a low molecular weight multifunctional alkoxysilane, methyltrimethoxysilane (MTMOS), and a high molecular weight multifunctional alkoxysilane, hexadecyltrimethoxysilane (HDTMOS). Investigation of the surface chemistry and morphology of the wood specimens by...

  1. Effect of Aging Time and Film Thickness on the Photoelectrochemical Properties of TiO2 Sol-Gel Photoanodes

    Directory of Open Access Journals (Sweden)

    D. Regonini

    2014-01-01

    Full Text Available This work has focused on the investigation of a non-aqueous based sol-gel process to produce TiO2 based photoelectrodes for solar water splitting. In particular, the effect of the aging time of the sol and TiO2 film thickness on the photoelectrochemical properties of the photoanodes has been investigated. In order to achieve optimal performances (i.e., photocurrent density up to 570 µA/cm2 and IPCE of 26% at 300 nm, the sol needs to be aged for 3 to 6 h, before being dip-coated to produce the photoanodes. The importance of the aging time can also be appreciated from the optical properties of the TiO2 films; the absorbance threshold of the sol-gel aged for 3–6 h is slightly shifted towards longer wavelenghts in comparison to 0 h aging. Aging is necessary to build up a well-interconnected sol-gel network which finally leads to a photoelectrode with optimized light absorption and electron collection properties. This is also confirmed by the higher IPCE signal of aged photoelectrodes, especially below 340 nm. Among thicknesses considered, there is no apparent significant difference in the photoresponse (photocurrent density and IPCE of the TiO2 sol-gel films.

  2. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems

    DEFF Research Database (Denmark)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Qui...

  3. Influence of silane on the structure of polystyrene prepared by sol-gel coatings via UV curing

    Science.gov (United States)

    Balbay, Senay; Acıkgoz, Caglayan

    2017-11-01

    Light, heat, oxygen, moisture, ozone, atmospheric pollution and biological effects are the most important effectives wreak to chemical degradation in the polymer structure. In result of chemical degradation on the polymer consist of problems such as discoloration, brittleness, surface cracks, perspiration, crumbling, smell, surface acidity. In this work, it is aimed to improve the problem of the polystyrene (PS) material against chemical degradation. For this reason, PS is coated with silica sol-gel hybrid coating. Silica sol-gel was synthesized by using vinyltrimethoxysilane (VTMS) as a cross-linker and tetraethylorthosilicate (TEOS) as a silica source. Firstly, four different pre-treatment technique (oven, vacuum oven, lyophilizer and freezing) was studied to determine the most suitable pre-treatment technique for coating on PS substrate of sol-gel prepared with initial formulation (S1). A freezing technique gave the best results for coating sample. The change of surface colour of coated PS was measured by CIE L*a*b* methods. Secondly, the most suitable curing agent (Irgacure 184, Irgacure 819, Darocur 1173 and TiO2 as crystalline anatase phase) was determined to coat the sol-gel on PS. It was determined to the lowest yellowing of PS surface hybrid coated as UV curing of TEOS sol modified by VTMS and TiO2 as photo-initiators. Finally, the chemical and morphological structure of the coated PS samples was determined by FT-IR and SEM instruments, respectively.

  4. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Mekhemer, Gamal A.H.; Fouad, Nasr E. [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Jagadale, Tushar C. [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Ogale, Satishchandra B., E-mail: sb.ogale@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2010-10-15

    The surface properties of sol-gel synthesized anatase titania (TiO{sub 2}) nanoparticles are probed by sorptiometry, infrared absorption spectroscopy, UV-vis diffuse reflectance spectroscopy and high resolution transmission electron microscopy. The results reveal strong correlations of the surface area, porosity, pyridine adsorption capacity and strength, and catalytic methylbutynol decomposition activity.

  5. Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solid-state modification and sol-gel reactions

    NARCIS (Netherlands)

    Jain, S; Goossens, H; Picchioni, F; Magusin, P; Mezari, B

    2005-01-01

    A new route is developed by combining solid-state modification (SSM) by grafting vinyl triethoxysilane (VTES) with a sol-gel method to prepare PP/silica nanocomposites with varying degree of adhesion between filler and matrix. VTES was grafted via SSM in porous PP particles. Bulk polymerization

  6. The effect of refluxing on the alkoxide-based sodium potassium niobate sol-gel system: Thermal and spectroscopic studies

    Czech Academy of Sciences Publication Activity Database

    Chowdhury, A.; Bould, Jonathan; Londesborough, Michael Geoffrey Stephen; Milne, S.J.

    2011-01-01

    Roč. 184, č. 2 (2011), s. 317-324 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z40320502 Keywords : sol-gel processes * spectroscopy * thermal properties * X-ray diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.159, year: 2011

  7. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...... expensive high-vacuum lithography and etching techniques. The applicability of the fabricated device for single-molecule studies is demonstrated by measuring the extension of DNA molecules of different lengths confined in the nanochannels....

  8. Diamond nucleation by carbon transport from buried nanodiamond TiO.sub.2./sub. sol-gel composites

    Czech Academy of Sciences Publication Activity Database

    Daenen, M.; Zhang, L.; Erni, R.; Williams, O.A.; Hardy, A.; Van Bael, M.K.; Wagner, P.; Haenen, K.; Nesládek, Miloš; van Tendeloo, G.

    2009-01-01

    Roč. 21, č. 6 (2009), s. 670-673 ISSN 0935-9648 Institutional research plan: CEZ:AV0Z10100520 Keywords : diamond nucleation * nanodiamond * TiO 2 sol-gel omposites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.379, year: 2009

  9. Magnetic properties of sol-gel synthesized C-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Duc, E-mail: dung.nguyenduc@hust.edu.vn [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam); Son, Cao Thai; Loc, Pham Vu; Cuong, Nguyen Huu; Kien, Pham The; Huy, Pham Thanh [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet, Hanoi (Viet Nam)

    2016-05-25

    ZnO doping with Carbon (C-doped ZnO) materials were prepared by sol-gel technique following with a heat treatment process. Single phase of Wurtzite crystal structure of ZnO was concluded via x-ray diffraction (XRD) with a large amount of excess C tracking by energy dispersive X-ray spectroscopy (EDX) analysis. Two types of ZnO crystals (twinning particles) with different grain sizes and shapes were identified via scanning electron microscopy (FE-SEM). The first type has a smaller grain size of about 20 nm and hexagonal shape. And the second type has a larger grain size of about 80–120 nm and round shape. C substitutions of both Zn and O sites to form C–O and C–Zn bonds were conclusively confirmed via x-ray photoelectron spectroscope (XPS). Experimental evidences for the co-existence of different ferromagnetic phases in the materials are reported and discussed. Two Curie points at high temperatures (>500 °C) are presented. A metamagnetic transition was observed at magnetic field H = 19.2 kOe which was related to the co-existence of ferromagnetic phases. These involve in the formation of twinning C-doped ZnO nanoparticles. - Highlights: • Formation of sol-gel prepared single phase wurtzite ZnO nanoparticles. • Two morphological C-doped ZnO nanoparticles of different grain sizes. • The room temperature ferromagnetism. • An abnormal metamagnetic transition at magnetic field H = 19.2 kOe. • Two different Curie points (T{sub C}) at 500–600 °C.

  10. Obtención de Cordierita por Sol-Gel a partir de fuentes nacionales cubanas

    Directory of Open Access Journals (Sweden)

    Pacheco, P.

    2003-10-01

    Full Text Available For cordierite synthesis through the Sol-Gel method, the sodium silicate obtained from the dissolution of a solid residue coming from the aluminum sulfate production based on kaolin, was used. The sources of magnesium and aluminum were obtained using the technologies previously developed by CIPIMM. The elements were mixed in a determined order and quantity to obtain a Gel with cordierite stechiometry. The gel was washed and dried and briquettes were made to treat them at different temperatures, obtaining cordierite in a major phase at 1200ºC. This was checked through the X-Ray diffraction analysis of the products coming from the thermical treatment. The method used when compared to the traditional ones, permitted to reduce crystallization temperature, obtaining more dense products and clean technology.

    Para la síntesis de la Cordierita por el método de Sol-Gel se utilizó, el silicato de sodio, obtenido de la disolución de un residuo sólido proveniente de la producción de sulfato de aluminio a partir de caolín. Los precursores de magnesio y aluminio fueron obtenidos utilizando las tecnologías previamente desarrolladas por el CIPIMM. Los materiales fueron mezclados en un orden y cantidad determinada hasta obtener el Gel con estequiometría de cordierita. El gel fue lavado, secado, briqueteado y tratado térmicamente a diferentes temperaturas, lográndose cordierita en fase mayoritaria a los 1200 ºC, lo cual fue corroborado mediante el análisis por difracción de rayos X de los productos del tratamiento térmico. El método utilizado comparado con los tradicionales permitió reducir la temperatura de cristalización, obtener productos más densificados y tecnología limpia.

  11. Probing sol-gel matrices microenvironments by PGSE HR-MAS NMR.

    Science.gov (United States)

    Ferreira, Ana S D; Barreiros, Susana; Cabrita, Eurico J

    2017-05-01

    We applied Pulsed Gradient Spin Echo diffusion with high-resolution magic angle spinning NMR to study sol-gel matrices used to encapsulate enzymes for biocatalysis (TMOS/MTMS and TMOS/BTMS) to gain insight into the local chemical microenvironment. Transport properties of solvents with different polarities (1-pentanol, acetonitrile and n-hexane) were studied through their apparent self-diffusion coefficients. The spin echo attenuation of the solvents shows two distinct diffusion domains, one with fast diffusion (D fast ) associated with interparticle diffusion and another with slow diffusion (D slow ) corresponding to the displacement inside the pores within the sol-gel particles. The analysis of the root mean square displacements at different diffusion times showed that the D fast domain has a free diffusion regime in both matrices (the root mean square displacement is linearly dependent of the diffusion time), while the D slow domain shows a different regime that depends on the matrix. We investigated the exchange regime between the two diffusion sites. In both matrices, n-hexane was in intermediate exchange between diffusion domains, while the polar solvents were in slow exchange in TMOS/BTMS and in intermediate exchange in TMOS/MTMS. Data were fitted for TMOS/BTMS with the Kärger model, and the physical parameters were obtained. The results add to the evidence that the pores are a hydrophobic environment but that the presence of some free hydrophilic groups inside the pore, as observed in the TMOS/BTMS, has a key role in slowing down the exchange of polar solvents and that this is relevant to explain previously reported enzyme activity in these materials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices

    Science.gov (United States)

    Nguyen, Cuong M.; Rao, Smitha; Yang, Xuesong; Dubey, Souvik; Mays, Jeffrey; Cao, Hung; Chiao, Jung-Chih

    2015-01-01

    Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 μm × 500 μm, and 100 μm × 100 μm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans. PMID:25686309

  13. Sol-gel methods for synthesis of aluminosilicates for dental applications.

    Science.gov (United States)

    Cestari, Alexandre

    2016-12-01

    Amorphous aluminosilicates glasses containing fluorine, phosphorus and calcium are used as a component of the glass ionomer dental cement. This cement is used as a restorative, basis or filling material, but presents lower mechanical resistance than resin-modified materials. The Sol-Gel method is a possible route for preparation of glasses with lower temperature and energy consumption, with higher homogeneity and with uniform and nanometric particles, compared to the industrial methods Glass ionomer cements with uniform, homogeneous and nanometric particles can present higher mechanical resistance than commercial ionomers. The aim of this work was to adapt the Sol-Gel methods to produce new aluminosilicate glass particles by non-hydrolytic, hydrolytic acid and hydrolytic basic routes, to improve glass ionomer cements characteristics. Three materials were synthesized with the same composition, to evaluate the properties of the glasses produced from the different methods, because multicomponent oxides are difficult to prepare with homogeneity. The objective was to develop a new route to produce new glass particles for ionomer cements with possible higher resistance. The particles were characterized by thermal analysis (TG, DTA, DSC), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The glasses were tested with polyacrylic acid to form the glass ionomer cement by the setting reaction. It was possible to produce distinct materials for dental applications and a sample presented superior characteristics (homogeneity, nanometric particles, and homogenous elemental distribution) than commercial glasses for ionomer cements. The new route for glass production can possible improve the mechanical resistance of the ionomer cements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of metal ion dopants on photochemical properties of anatase TiO{sub 2} films synthesized by a modified sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhangfu [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China)]. E-mail: yuanzhf@home.ipe.ac.cn; Zhang Junling [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Li Bin [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Li Jianqiang [Multi-Phase Reaction Laboratory, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10080 (China)

    2007-06-25

    Anatase TiO{sub 2} films were successfully synthesized by a modified sol-gel method wherein peroxo titanic acid solution was derived from TiCl{sub 4}/ethanol/water solution at room temperature. The as-prepared films were further surface-doped by photodeposited Fe{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} to improve its physicochemical properties. The phase and structure of the films were investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The physicochemical properties of the films were also measured. The results show that both hydrophilicity and photocatalytic activity of the films were remarkably improved by doping transition metal ion Fe{sup 3+}. In case of Cr{sup 3+} doped films, hydrophilicity was also significantly enhanced but photocatalytic activity for methyl orange under UV irradiation was still comparable with the undoped films.

  15. Fabrication of gelatin-siloxane fibrous mats via sol-gel and electrospinning procedure and its application for bone tissue engineering

    International Nuclear Information System (INIS)

    Ren Lei; Wang Jun; Yang Fangyu; Wang Lin; Wang Dong; Wang Tianxiao; Tian Miaomiao

    2010-01-01

    Our strategy is to design and fabricate biomimetic and bioactive scaffolds that resemble the native extracellular matrix as closely as possible so as to create conducive living milieu that will induce cell to function naturally. In the present study, gelatin/siloxane (GS) hybrids were prepared by a sol-gel processing, and electrospinning technique was used to fabricate GS fibrous mats to support the growth of bone marrow-derived mesenchymal stem cells (BMSCs) for tissue engineering of bone. The results indicate that the porous structure and fiber size of the GS fibrous mats can be fine tuned by varying the viscosity of GS precursor solution. Additionally, the Ca 2+ -containing GS fibrous mats biomimetically deposited apatite in a simulated body fluid (SBF), as well as stimulating its BMSCs proliferation and differentiation in vitro, thereby dignifying its in vitro bioactivity.

  16. Photocatalytic Activity in CH3CN Related to the Surface Properties of TiO2 Powders Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Marta Bettoni

    2009-01-01

    Full Text Available Some TiO2 powders, prepared from titanium(IVtetraisopropoxide by the sol-gel method and thermally treated between 100 and 1000∘C, have been characterized by X-ray powder diffraction and by nitrogen adsorption and desorption at 77 K to calculate the BET-specific surface area, from which the micropore volume and the external surface area can be derived. The photocatalytic activity (ka of the above powders has been evaluated considering the TiO2-sensitized photo-oxidation of 4-methoxybenzyl alcohol in CH3CN as the test reaction. The decrease of ka have been related to the decrease of the BET surface area, the micropore volume, and the external surface area of the TiO2 powders, but a satisfactory linear correlation is observed only for the last superficial parameter.

  17. SOL-GEL SILICA-BASED Ag–Ca–P COATINGS WITH AGRESSIVE PRETREATMENT OF TITANIUM SUBSTRATE

    Directory of Open Access Journals (Sweden)

    ELENA BORSHCHEVA

    2011-12-01

    Full Text Available The aim of the experiment was the obtaining of thin silica coatings on titanium by sol-gel method, using mechanical (SiC - paper No.180 and chemical (leaching in HF pretreatments of the titanium substrates. The solutions were based on TEOS. For the sol-gel dipping process 4 different solutions were prepared: silica, silica with AgNO3 and silica + AgNO3 with brushite (CaHPO4·2H2O or monetite (CaHPO4 powders. The solutions were aged for 7 and 14 days at laboratory temperature. After sol-gel dip-coating process the samples were dried and fired. The adhesion of fired coatings was measured by tape test according to ASTM procedure and the bioactivity of the coatings was tested using in vitro test. The surfaces of the samples after firing, tape test and in vitro test were observed with the optical and electron microscopes. The firing results showed that silica-silver coatings did not change, brushite sol-gel coatings have cracked and the monetite sol-gel coatings have cracked also, but less than brushite ones. In spite of coating´s crackings, the square’s frames made on the surfaces were without any breakdowns after tape tests and the adhesion of all coatings was very good, classified by the highest grade 5. The results of in vitro tests showed that all coatings interacted with simulated body fluid (SBF. After exposition in SBF the new layer formed on substrates. In case of 7 days aged coatings containing brushite the new layer was uniform and compact. In case of 7 days aged coatings containing monetite the new layer was formed by crystals aggregated tightly together. The monetite and brushite coatings prepared from 14 days aged sol were the same as previous ones, but they were thicker. X-ray analyses after in vitro test confirmed dellaite, titanate and hydroxyapatite phases.

  18. Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.

    Science.gov (United States)

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-05

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    Science.gov (United States)

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  20. Electrocatalysts of Pt-TiO2 prepared by sol-gel and microwave-assisted polyol method for the oxygen reduction reaction in 0.5 M H2SO4.

    Science.gov (United States)

    García-Contreras, Miguel A; Fernández-Valverde, Suilma M

    2011-01-01

    Electrocatalysts of Pt-TiO2 were prepared by sol-gel and microwave assisted polyol method for the oxygen reduction reaction in acid media. The prepared electrocatalysts were morphologically and structurally characterized by X-Ray Diffraction, Scanning Electronic Microscopy and EDX analysis. Cyclic voltammetry and rotating disk electrode techniques were employed for electrocatalytic evaluation. It was found that electrocatalysts consisted of crystalline particles with nanometric size, and those obtained at pH = 9 showed an acceptable activity for the oxygen reduction reaction in acid media.