WorldWideScience

Sample records for accelerometers

  1. Piezoelectric Accelerometers Development

    DEFF Research Database (Denmark)

    Liu, Bin; Bang, Lisbet Fogh

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient...

  2. A microchip optomechanical accelerometer

    CERN Document Server

    Krause, Alexander G; Blasius, Tim D; Lin, Qiang; Painter, Oskar

    2012-01-01

    The monitoring of accelerations is essential for a variety of applications ranging from inertial navigation to consumer electronics. The basic operation principle of an accelerometer is to measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can be realized using capacitive, piezo-electric, tunnel-current, or optical methods. While optical readout provides superior displacement resolution and resilience to electromagnetic interference, current optical accelerometers either do not allow for chip-scale integration or require bulky test masses. Here we demonstrate an optomechanical accelerometer that employs ultra-sensitive all-optical displacement read-out using a planar photonic crystal cavity monolithically integrated with a nano-tethered test mass of high mechanical Q-factor. This device architecture allows for full on-chip integration and achieves a broadband acceleration resolution of 10 \\mu g/rt-Hz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with ...

  3. Compact fiber optic accelerometer

    Institute of Scientific and Technical Information of China (English)

    Feng Peng; Jun Yang; Bing Wu; Yonggui Yuan; Xingliang Li; Ai Zhou; Libo Yuan

    2012-01-01

    A compact fiber optic accelerometer based on a Michelson interferometer is proposed and demonstrated.In the proposed system,the sensing element consists of two single-mode fibers glued together by epoxy,which then act as a simple supported beam.By demodulating the optical phase shift,the acceleration is determined as proportional to the force applied on the central position of the two single-mode fibers.This simple model is able to calculate the sensitivity and the resonant frequency of the compact accelerometer.The experimental results show that the sensitivity and the resonant frequency of the accelerometer are 0.42 rad/g and 600 Hz,respectively.

  4. Python microgravity accelerometer system

    Science.gov (United States)

    Nijhawan, V.; Arrott, A. P.; Grimes, R. S.

    1989-01-01

    A microgravity accelerometer system developed for use in the Space Shuttle middeck locker is described. The system, known as PYTHON, is a microcomputer-based digital acceleration-measurement system that uses primarily off-the-shelf qualified space hardware and modular software. It can be operated on-board in real time and on the ground either during the flight or post-flight. The sensor head consists of an accelerometer, which measures acceleration in three orthogonal axes, and an internal thermister for temperature compensation; threshold and resolution are better than 0.000001 g. The results of acceleration measurements with PYTHON carried out during parabolic maneuvers aboard the NASA's KC-135 aircraft are presented.

  5. Levitated micro-accelerometer.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  6. A Simple Accelerometer Calibrator

    Science.gov (United States)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  7. Piezoelectric accelerometers with integral electronics

    CERN Document Server

    Levinzon, Felix

    2014-01-01

    This book provides an invaluable reference to Piezoelectric Accelerometers with Integral Electronics (IEPE). It describes the design and performance parameters of IEPE accelerometers and their key elements, PE transducers and FET-input amplifiers. Coverage includes recently designed, low-noise and high temperature IEPE accelerometers. Readers will benefit from the detailed noise analysis of the IEPE accelerometer, which enables estimation of its noise floor and noise limits. Other topics useful for designers of low-noise, high temperature silicon-based electronics include noise analysis of FET

  8. On the design of a triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Lötters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1995-01-01

    Up to now, mainly uniaxial accelerometers are described in most publications concerning this subject. However, triaxial accelerometers are needed in the biomedical field. Commercially available triaxial accelerometers consisting of three orthogonally positioned uniaxial devices do not meet all

  9. Single-Axis Accelerometer

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  10. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  11. The LISA accelerometer

    Science.gov (United States)

    Rodrigues, M.; Touboul, P.

    2003-10-01

    In the frame of investigating the fundamental nature of gravity, the Laser Interferometer Space Antenna (LISA) mission could open the way to a new kind of observations unreachable from ground. The experiment, based on a V-formation of six drag-free spacecraft, uses the cubic proof masses of inertial sensors to reflect the laser light, acting as reference mirrors of a 5 × 10 9 m arm length interferometer. The proof masses are also used as inertial references for the drag-free control of the spacecraft which constitute in return a shield against external forces. Derived from space electrostatic accelerometers developed at ONERA, such as GRADIO for the ESA ARISTOTELES and now GOCE mission (Bernard and Touboul, 1991), the proposed LISA sensor should shield its proof mass from any accelerometric disturbance at a level of 10 -15ms-2Hz- 1/2. The accurate capacitive sensing of the mass provides its position relative to the satellite with a resolution better than 10 -9m Hz- 1/2 in order to control the satellite orbit and to minimise the disturbances induced by the satellite self gravity or by the proof mass charge. The sensor configuration and accomodation has to be specifically optimised for the mission requirements. Fortunately, the sensor will benefit from the thermal stability of the LISA optical bench environment, i.e. 10 -6K Hz- 1/2, and of the selected materials that exhibit a very low coefficient of thermal expansion (CTE), ensuring a high geometrical stability. Apart from the modeling and the evaluation of the flight characteristics, the necessary indirect ground demonstration of the performance and the interfaces with the drag-free control will have to be considered in detail in the future.

  12. In-fiber integrated accelerometer.

    Science.gov (United States)

    Peng, Feng; Yang, Jun; Li, Xingliang; Yuan, Yonggui; Wu, Bing; Zhou, Ai; Yuan, Libo

    2011-06-01

    A compact in-fiber integrated fiber-optic Michelson interferometer based accelerometer is proposed and investigated. In the system, the sensing element consists of a twin-core fiber acting as a bending simple supported beam. By demodulating the optical phase shift, we obtain that the acceleration is proportional to the force applied on the central position of the twin-core fiber. A simple model has been established to calculate the sensitivity and resonant frequency. The experimental results show that such an accelerometer has a sensitivity of 0.09 rad/g at the resonant frequency of 680 Hz.

  13. VARIOMETRIC TESTS FOR ACCELEROMETER SENSORS

    Directory of Open Access Journals (Sweden)

    M. G. D'Urso

    2012-07-01

    Full Text Available This paper has been re-published as: VARIOMETRIC TESTS FOR ACCELEROMETER SENSORS M. G. D'Urso and N. Barbati ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I–4, 2012 Page(s 315–320

  14. Accelerometer having integral fault null

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  15. Equating accelerometer estimates among youth

    DEFF Research Database (Denmark)

    Brazendale, Keith; Beets, Michael W; Bornstein, Daniel B;

    2016-01-01

    OBJECTIVES: Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across s...

  16. Accelerometer for mobile robot positioning

    OpenAIRE

    Liu, HS; Pang, GKH

    1999-01-01

    An evaluation of a low-cost, small sized solid state accelerometer is described in this paper. The sensor is intended for positioning of a mobile robot or platform. The acceleration signal outputted by the sensor is doubly integrated with time which yields the traveled distance. Bias offset drift exhibits in the acceleration signal is accumulative and the accuracy of the distance measurement deteriorates with time due to the integration. A Kalman filter is used to reduce errors caused by rand...

  17. Helmsman’s Recording Accelerometer.

    Science.gov (United States)

    2007-11-02

    Silage , Principal Electrical Engineer Mitchell B. Oslon, Research Engineer Conrad Technologies, Inc. Station Square One, Suite 102 Paoli, PA 19301...SUBTITLE Helmsman’s Recording Accelerometer 6. AUTHOR(S) Donald F. DeCleene Mitchell B. Oslon Dennis A. Silage 7. PERFORMING ORGANIZATION NAME(S) AND...58,1995. McCreight, K. K., "Assessing the Seaworthiness of SWATH Ships," SNAME Transactions, vol. 95, pp. 189-214,1987. Silage , D., Hartmann, B

  18. Study of self-calibrating MEMS accelerometers

    Science.gov (United States)

    Chen, Weiping; Li, Xiangyu; Liu, Xiaowei; Yin, Liang

    2015-04-01

    Micro-electromechanical System(MEMS) accelerometers are widely used in a number of inertial navigation systems and vibration detection system thanks to their small size, low cost and low power consumption. In order to improve their performance, the accelerometers have been designed to compensate the zero-bias caused by process variations. A new method of self-calibration sensitivity applies a self-test structure to simulate standard acceleration; depending on the standard and real-time values of the accelerometer's output and by adjustment of the time division feedback, the scale factor of capacitive accelerometers can be flexibly adjusted to achieve sensitivity in self-calibrating MEMS accelerometers. Moreover, this research also uses the following: a PID feedback structure to improve the stability of the closed-loop system; a correlated double sampling (CDS) circuit to attenuate noise, which can eliminate zero drift caused by offset voltage of the pre-amplifier; a time division multiplexing electrostatic force feedback circuit to achieve the operation of a closed-loop micro-accelerometer. The structure can completely avoid electrostatic feedback coupling with a capacitance change detection circuit, which can also improve the bandwidth and stability of the accelerometer. By means of capacitance compensation array the zero-bias performance of accelerometers can be improved. The bias stability of the accelerometer can be reduced from 173mg to 31mg by testing.

  19. Post flight accelerometer data evaluation

    Science.gov (United States)

    Trappen, N.; Demond, F. J.

    The reduction and processing techniques employed to analyze accelerometer (AM) data from the FRG Spacelab mission D1 of October-November 1985 are discussed, and sample data are presented graphically. The D1 payload included three-axis AMs for the material-science laboratory and life-science package and five AMs for the material-science double rack MEDEA, giving a total data volume of over 5 x 10 to the 8th measurement points to be analyzed. Consideration is given to computer-supported data selection, the standardized microgravity representation employed, possibilities for exploring the fine structure at increased resolution, and special applications.

  20. Standing balance evaluation using a triaxial accelerometer

    NARCIS (Netherlands)

    Mayagoitia, R.E.; Mayagoitia, Ruth E.; Lotters, Joost Conrad; Lötters, Joost Conrad; Veltink, Petrus H.; Hermens, Hermanus J.

    2002-01-01

    This paper presents a new inherently triaxial accelerometer-based system for determining the ability to maintain balance while standing. In this study, the accelerometer was placed at the back of the subject at the approximate height of the centre of mass. The data were processed to obtain five

  1. Quantifiying the stability of walking using accelerometers

    NARCIS (Netherlands)

    Waarsing, Jan H.; Mayagoitia, Ruth E.; Veltink, Peter H.

    1996-01-01

    A dynamic analysis method is sought to measure the relative stability of walking, using a triaxial accelerometer. A performance parameter that can be calculated from the data from the accelerometer is defined; it should give a measure of the stability of the subject. It is based on the balancing for

  2. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... interface for sensors including mixed-mode communication protocols and transducer electronic data sheet (TEDS)....

  3. Hybridizing matter-wave and classical accelerometers

    Science.gov (United States)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  4. Hybridizing matter-wave and classical accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A., E-mail: arnaud.landragin@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  5. Hybridizing matter-wave and classical accelerometers

    CERN Document Server

    Lautier, Jean; Hardin, Thomas; Merlet, Sebastien; Santos, Franck Pereira Dos; Landragin, Arnaud

    2014-01-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performances without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely the dead times between consecutive measurements.

  6. Study of self-calibrating MEMS accelerometers

    National Research Council Canada - National Science Library

    Chen, Weiping; Li, Xiangyu; Liu, Xiaowei; Yin, Liang

    2015-01-01

    Micro-electromechanical System(MEMS) accelerometers are widely used in a number of inertial navigation systems and vibration detection system thanks to their small size, low cost and low power consumption...

  7. Analysis of MEMS Accelerometer for Optimized Sensitivity

    National Research Council Canada - National Science Library

    Khairun Nisa Khamil; Kok Swee Leong; Norizan Bin Mohamad; Norhayati Soin; Norshahida Saba

    2014-01-01

    .... The geometrical of the accelerometer, mass width, beam (length and width) of the device and its sensitivity are analyzed theoretically and also using finite element analysis software, COMSOL Multiphysics...

  8. Problems in Modelling Charge Output Accelerometers

    Directory of Open Access Journals (Sweden)

    Tomczyk Krzysztof

    2016-12-01

    Full Text Available The paper presents major issues associated with the problem of modelling change output accelerometers. The presented solutions are based on the weighted least squares (WLS method using transformation of the complex frequency response of the sensors. The main assumptions of the WLS method and a mathematical model of charge output accelerometers are presented in first two sections of this paper. In the next sections applying the WLS method to estimation of the accelerometer model parameters is discussed and the associated uncertainties are determined. Finally, the results of modelling a PCB357B73 charge output accelerometer are analysed in the last section of this paper. All calculations were executed using the MathCad software program. The main stages of these calculations are presented in Appendices A−E.

  9. Dissymmetrical 3×3 Coupled Optical Accelerometer

    Institute of Scientific and Technical Information of China (English)

    GUO Hai-bo; WANG Jin-hai; LIU Chang-chun; YAO Yin-hua; ZHANG Cheng

    2007-01-01

    Without adding feedback to modulate light path system, the dissymmetrical 3×3 coupled optical accelerometer reduces the complexity of the design of light path system. Experiments prove that it can attain good demodulation effects. As carrier is not needed in this system, the frequency range of input signal is diminished so as to decrease the sampling frequency of accelerometer. This makes for the system on programmable chip(SOPC) design of digital demodulating system. The upper limit of accelerometer working frequency can reach 3 500 Hz. But affected by the inherent frequency of sensitive components, its working frequency is 10 Hz~1 000 Hz, and the sensitivity is 8.718 0 V/(m·s-2). This accelerometer can detect the dynamic range of acceleration signal real-timely, steadily and accurately, solving the dissymmetrical problem of light path caused by circumstances and the complexity of process.

  10. A mechanical model of the smartphone's accelerometer

    CERN Document Server

    Gallitto, Aurelio Agliolo

    2015-01-01

    To increase the attention of students, several physics experiments can be performed at school, as well at home, by using the smartphone as laboratory tools. In the paper we describe a mechanical model of the smartphone's accelerometer, which can be used in classroom to allow students to better understand the principle of the accelerometer even by students at the beginning of the study in physics.

  11. Detecting gunshots using wearable accelerometers.

    Science.gov (United States)

    Loeffler, Charles E

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  12. Variometric Tests for Accelerometer Sensors

    Science.gov (United States)

    D'Urso, M. G.; Barbati, N.

    2012-08-01

    We present a comprehensive review of several variometric tests recently carried out on a home-made measurement system composed of a tern of low-cost accelerometer sensors of MEMS (Micro-Electro-Mechanical Systems) type equipped with autonomous electric supply and wireless transmission. The most important parameters characterizing the systematic errors, i.e. bias, scale factor and thermal correction factor, have been evaluated by calibration tests based upon the so-called "six -positions" static test proposed by the IEEE 517 Standard. In this way the system optimal configuration has been defined in terms of data acquisition frequency and of scale factor. In addition to such tests, partly documented elsewhere, the results of some sensitivity tests on the influence of external environmental factors are also presented. With the aim of employing the proposed MEMS-based system as a device for monitoring the onset of slope landslides, some further tests have been carried out in order to measure the inclination of rigid objects which the sensors have been fixed to. The most significant results of the tests are illustrated and discussed.

  13. Detecting gunshots using wearable accelerometers.

    Directory of Open Access Journals (Sweden)

    Charles E Loeffler

    Full Text Available Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  14. VARIOMETRIC TESTS FOR ACCELEROMETER SENSORS

    Directory of Open Access Journals (Sweden)

    M. G. D'Urso

    2012-08-01

    Full Text Available We present a comprehensive review of several variometric tests recently carried out on a home-made measurement system composed of a tern of low-cost accelerometer sensors of MEMS (Micro-Electro-Mechanical Systems type equipped with autonomous electric supply and wireless transmission. The most important parameters characterizing the systematic errors, i.e. bias, scale factor and thermal correction factor, have been evaluated by calibration tests based upon the so-called "six -positions" static test proposed by the IEEE 517 Standard. In this way the system optimal configuration has been defined in terms of data acquisition frequency and of scale factor. In addition to such tests, partly documented elsewhere, the results of some sensitivity tests on the influence of external environmental factors are also presented. With the aim of employing the proposed MEMS-based system as a device for monitoring the onset of slope landslides, some further tests have been carried out in order to measure the inclination of rigid objects which the sensors have been fixed to. The most significant results of the tests are illustrated and discussed.

  15. The Development of Piezoelectric Accelerometers Using Finite Elemen Analysis

    DEFF Research Database (Denmark)

    Liu, Bin; Yao, Q.; Kriegbaum, B.

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...... can be effectively used to predict the specifications of the accelerometer, especially when modification of the accelerometer is required. The FE developing technology forms the bases of fast responsiveness and flexible customized design of piezoelectric accelerometers...

  16. Accelerometers for Precise GNSS Orbit Determination

    Science.gov (United States)

    Hugentobler, Urs; Schlicht, Anja

    2016-07-01

    The solar radiation pressure is the largest non-gravitational acceleration on GNSS satellites limiting the accuracy of precise orbit models. Other non-gravitational accelerations may be thrusts for station keeping maneuvers. Accelerometers measure the motion of a test mass that is shielded against satellite surface forces with respect to a cage that is rigidly connected to the satellite. They can thus be used to measure these difficult-to-model non-gravitational accelerations. Accelerometers however typically show correlated noise as well as a drift of the scaling factors converting measured voltages to accelerations. The scaling thus needs to be regularly calibrated. The presented study is based on several simulated scenarios including orbit determination of accelerometer-equipped Galileo satellites. It shall evaluate different options on how to accommodate accelerometer measurements in the orbit integrator, indicate to what extent currently available accelerometers can be used to improve the modeling of non-gravitational accelerations on GNSS satellites for precise orbit determination, and assess the necessary requirements for an accelerometer that can serve this purpose.

  17. ISA accelerometer and Moon science

    Science.gov (United States)

    Iafolla, Valerio; Peron, Roberto; Santoli, Francesco; Fiorenza, Emiliano; Lefevre, Carlo; Nozzoli, Sergio; Reale, Andrea

    2010-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many performed, ongoing or foreseen missions. The reason for this new wave are manifold. The knowledge of formation and evolution of the Moon to current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data that constrain possible theories of gravitation. All these topics are providing stimulus and inspirations for new experiments. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It therefore can be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. The first option has been explorated in the context of MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre), a proposal for an exploration mission with a noteworthy part dedicated to gravimetry and fundamental physics. The second option is candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. After a description of the instrument, both of them will be described and discussed, giving emphasis on the integration of the instrument with the other components of the respective experiments.

  18. Accelerometer Design Using MOS Ring Oscillator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-hua; YUE Rui-feng; LIU Li-tian

    2006-01-01

    A digital accelerometer is developed by using a ring oscillator (RO) and a mixer.The sensitive unit of the accelerometer is the metal-oxide semiconductor (MOS)ROs located on silicon beams.Based on the piezoresistive effect of the MOS RO,the accelerometer transduces the acceleration into frequency output.The syntonic frequency of the MOS RO changes in relation to many environmental elements,such as temperature,source voltage,and so on.The mixer is art interior signal processor that improves the output signal characteristics,with the digital output signal representing the frequency change.As the accelerometer is based on the piezoresistive effect of the MOS RO,the frequency characteristics of the MOS RO and its relationship with the acceleration are described.The device has been fabricated using standard integrated circuits processing methods combined with the Micro-Electro-Mechanical Systems process.The characteristics of the sample chip are in agreement with the theoretical predictions.The accelerometer has a high sensitivity of 6.91 kHz/g,a low temperature coefficient,and a simple fabrication process.

  19. Fiber optic accelerometer for pipeline surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Luiz C.G.; Cabral, Bruno S. [LUPATECH Monitoring Systems, Caxias do Sul, RS (Brazil); Braga, Arthur M.B. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    The use of accelerometers for monitoring vibration due to impacts and other sources associated with pipeline operation is not new, but conventional electric accelerometers present practical problems to be deployed in the field. In this paper we evaluate the use of both commercially available and prototypes of new optical fiber accelerometers for this application. They all share the possibility of operating at long distances from the reading unit. All tests were performed at CTDUT facilities on free pipes as well as on a 14 pol-OD, 100 meters long pipeline loop. Using controlled impacts, several aspects of the application have been analyzed such as different ways of fixing the accelerometers to the pipeline wall, influence of barriers between impact and sensor, and signal propagation through buried sections of pipeline. Results of measurements performed during the operation of the loop are also presented. They include passing PIGs, pumping water out from the system, and working on the tubes to open the loop. Results indicate that the accelerometers can be placed at distances measuring hundreds of meters from the source of vibration, and that the difference in time and frequency behavior of signals measured by sensors placed in different locations along the pipeline may be used to locate and identify that source. (author)

  20. Designing Electrostatic Accelerometers for Next Gravity Missions

    Science.gov (United States)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  1. Sensitivity improvement techniques for micromechanical vibrating accelerometers

    Directory of Open Access Journals (Sweden)

    Vtorushin Sergey

    2016-01-01

    Full Text Available The paper presents the problems of detecting a desired signal generated by micromechanical vibrating accelerometer. Three detection methods, namely frequency, amplitude and phase are considered in this paper. These methods are used in micromechanical vibrating accelerometers that incorporate a force sensitive element which transforms measured acceleration into the output signal. Investigations are carried out using the ANSYS finite element program and MATLAB/Simulink support package. Investigation results include the comparative analysis of the output signal characteristics obtained by the different detection methods.

  2. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  3. Three-axis MEMS Accelerometer for Structural Inspection

    Science.gov (United States)

    Barbin, E.; Koleda, A.; Nesterenko, T.; Vtorushin, S.

    2016-01-01

    Microelectromechanical system accelerometers are widely used for metrological measurements of acceleration, tilt, vibration, and shock in moving objects. The paper presents the analysis of MEMS accelerometer that can be used for the structural inspection. ANSYS Multiphysics platform is used to simulate the behavior of MEMS accelerometer by employing a finite element model and MATLAB/Simulink tools for modeling nonlinear dynamic systems.

  4. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  5. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    Science.gov (United States)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  6. Fabrication and characterization of a piezoelectric accelerometer

    DEFF Research Database (Denmark)

    Reus, Roger De; Gulløv, Jens; Scheeper, Patrick

    1999-01-01

    Zinc oxide based piezoelectric accelerometers were fabricated by bulk micromachining. A high yield was obtained in a relatively simple process sequence. For two electrode configurations a direction selectivity better than 100 was obtained for acceleration in the vertical direction and a selectivity...

  7. Miniaturized high-performance MEMS accelerometer detector

    Science.gov (United States)

    Gonseth, Stephan; Rudolf, Felix; Eichenberger, Christoph; Durrant, Dick; Airey, Phil

    2015-06-01

    In the framework of the demonstration of European capabilities for future space exploration mission, a high-performance miniaturized MEMS accelerometer detector is developed by Colibrys for incorporation into a compact inertial measurement unit (IMU). The envisaged missions where a miniaturized IMU is under development by SEA should cover: Aerobraking;

  8. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    Science.gov (United States)

    Seena, V.; Hari, K.; Prajakta, S.; Pratap, Rudra; Ramgopal Rao, V.

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µm and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g-1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g-1 and 82 ppm of ΔR/R per 1 g of acceleration.

  9. Micro-Accelerometers Monitor Equipment Health

    Science.gov (United States)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  10. Smartphone MEMS accelerometers and earthquake early warning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  11. Robust optimization of a MEMS accelerometer considering temperature variations.

    Science.gov (United States)

    Liu, Guangjun; Yang, Feng; Bao, Xiaofan; Jiang, Tao

    2015-03-16

    A robust optimization approach for a MEMS accelerometer to minimize the effects of temperature variations is presented. The mathematical model of the accelerometer is built. The effects of temperature variations on the output performance of the accelerometer are determined, and thermal deformation of the accelerometer is analyzed. The deviations of the output capacitance and resonance frequency due to temperature fluctuations are calculated and discussed. The sensitivity analysis method is employed to determine the design variables for robust optimization and find out the key structural parameters that have most significant influence on the output capacitance and resonance frequency of the accelerometer. The mathematical model and procedure for the robust optimization of the accelerometer are proposed. The robust optimization problem is solved and discussed. The robust optimization results show that an optimized accelerometer with high sensitivity, high temperature robustness and decoupling structure is finally obtained.

  12. Robust Optimization of a MEMS Accelerometer Considering Temperature Variations

    Directory of Open Access Journals (Sweden)

    Guangjun Liu

    2015-03-01

    Full Text Available A robust optimization approach for a MEMS accelerometer to minimize the effects of temperature variations is presented. The mathematical model of the accelerometer is built. The effects of temperature variations on the output performance of the accelerometer are determined, and thermal deformation of the accelerometer is analyzed. The deviations of the output capacitance and resonance frequency due to temperature fluctuations are calculated and discussed. The sensitivity analysis method is employed to determine the design variables for robust optimization and find out the key structural parameters that have most significant influence on the output capacitance and resonance frequency of the accelerometer. The mathematical model and procedure for the robust optimization of the accelerometer are proposed. The robust optimization problem is solved and discussed. The robust optimization results show that an optimized accelerometer with high sensitivity, high temperature robustness and decoupling structure is finally obtained.

  13. Accurate Telescope Mount Positioning with MEMS Accelerometers

    Science.gov (United States)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the sub-arcminute range which is well smaller than the field-of-view of conventional imaging telescope systems. Here we present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  14. MGRA: Motion Gesture Recognition via Accelerometer

    Directory of Open Access Journals (Sweden)

    Feng Hong

    2016-04-01

    Full Text Available Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  15. MGRA: Motion Gesture Recognition via Accelerometer.

    Science.gov (United States)

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-04-13

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  16. Developing accelerometer based on graphene nanoribbon resonators

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won, E-mail: jwkang@ut.ac.kr [Department of Computer Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Lee, Jun Ha, E-mail: junha@smu.ac.kr [Department of Computer System Engineering, Sangmyung University, Chonan 330-720 (Korea, Republic of); Hwang, Ho Jung, E-mail: hjhwang@cau.ac.kr [School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Ki-Sub, E-mail: kks1114@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of)

    2012-10-01

    We investigated an ultrahigh sensitive accelerometer based on graphene nanoribbon resonators. Sensing acceleration can be made by their resonance frequency shift and/or their capacitance change. Schematics and the static properties were introduced and the dynamic properties were investigated via classical molecular dynamics simulation. As the acceleration increased, the oscillations of the deflections were going dramatically faster and the mean deflections increased, then the capacitance continually varied with large amplitudes and the resonance frequencies linearly increased in a log–log scale by power regression. The energy loss decreased with increasing time, and the average quality factors were dramatically reduced with increasing acceleration. -- Highlights: ► Ultrahigh sensitive accelerometer based on graphene nanoribbon resonators. ► Sensing acceleration by resonance frequency shift and/or capacitance change. ► Resonance frequencies linearly increased with increasing acceleration in a log–log scale. ► Quality factors were dramatically reduced with increasing acceleration.

  17. Dark Matter Direct Detection with Accelerometers

    CERN Document Server

    Graham, Peter W; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A

    2015-01-01

    The mass of the dark matter particle is unknown, and may be as low as ~$10^{-22}$ eV. The lighter part of this range, below ~eV, is relatively unexplored both theoretically and experimentally but contains an array of natural dark matter candidates. An example is the relaxion, a light boson predicted by cosmological solutions to the hierarchy problem. One of the few generic signals such light dark matter can produce is a time-oscillating, EP-violating force. We propose searches for this using accelerometers, and consider in detail the examples of torsion balances, atom interferometry, and pulsar timing. These approaches have the potential to probe large parts of unexplored parameter space in the next several years. Thus such accelerometers provide radically new avenues for the direct detection of dark matter.

  18. A novel differential optical fiber accelerometer

    Science.gov (United States)

    Pi, Shaohua; Zhao, Jiang; Hong, Guangwei; Jia, Bo

    2013-08-01

    The development of sensitive fiber-optic accelerometers is a subject of continuing interest. To acquire high resolution, Michelson phase interferometric techniques are widely adopted. Among the variety structures, the compliant cylinder approach is particularly attractive due to its high sensitivity that is defined as the induced phase shift per applied acceleration. While the two arms of Michelson interferometer should be at the same optical path, it is inconvenient to adjust the two arms' length to equal, also the polarization instability and phase random drift will cause a signal decline. To overcome these limitations, a novel optical fiber accelerometer based on differential interferometric techniques is proposed and investigated. The interferometer is a Sagnac-like white light interferometer, which means the bandwidth of laser spectrum can be as wide as tens nanometers. This interferometer was firstly reported by Levin in 1990s. Lights are divided to two paths before entering the coupler. To induce time difference, one passes through a delay arm and another goes a direct arm. After modulated by the sensing component, they reflect to opposite arm. The sensing part is formed by a seismic mass that is held to only one compliant cylinder, where the single-mode optical fiber is wrapped tightly. When sticking to vibrations, the cylinder compresses or stretches as a spring. The corresponding changes in cylinder circumference lead to strain in the sensing fibers, which is detected as an optical phase shift by the interferometer. The lights from two arms reach the vibration source at different time, sensing a different accelerate speed; produce a different optic path difference. Integrating the dissimilarity of the accelerated speed by time can obtain the total acceleration graph. A shaker's vibration has been tested by the proposed accelerometer referring to a standard piezoelectric accelerometer. A 99.8% linearity of the optical phase shift to the ground acceleration

  19. Physics Education using a Smartphone Accelerometer

    CERN Document Server

    Peters, Randall D

    2010-01-01

    Described is an experiment in which a smartphone was caused to move at steady state in a vertical plane, on a path that was nearly circular. During a time interval of data acquisition that encompassed multiple orbits, the acceleration of the phone was measured by means of its internal accelerometer. A subsequent analysis of the data that was collected shows reasonable agreement between experiment and a simple theory of the motion.

  20. Time Domain Switched Accelerometer Design and Fabrication

    Science.gov (United States)

    2014-09-01

    report is conducted at a low temperature and can be used to vacuum pack the devices on wafer, v  CONTENTS INTRODUCTION...metallization. The HF etch must not blister or peal the metallizations on either side of the proof-mass wafer. Thermally evaporated metallization holds up...used to vacuum pack the devices on wafer, Mission Area: Advanced Integrated Circuit Technology time-domain switching accelerometer

  1. The GRADIO accelerometer - Design and development status

    Science.gov (United States)

    Bernard, A.; Touboul, P.

    The concept of Satellite Gravity Gradiometry based on differential microaccelerometry has been proposed by ONERA in the early eighties. Since 1986, an important effort is devoted to the development of the GRADIO accelerometers. Their configuration has been optimized for the ARISTOTELES mission with the objective of 0.01 Eotvos resolution for an integrating time of 4 s. The achieved resolution, better than 10 exp -9 G, is limited by the actual stability of alignments on the testing equipment.

  2. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers

    Science.gov (United States)

    Kavitha, S.; Joseph Daniel, R.; Sumangala, K.

    2016-01-01

    Accelerometers used for civil and huge mechanical structural health monitoring intend to measure the shift in the natural frequency of the monitored structures (<100 Hz) and such sensors should have large sensitivity and extremely low noise floor. Sensitivity of accelerometers is inversely proportional to the frequency squared. Commercial MEMS (Micro Electro-Mechanical System) accelerometers that are generally designed for large bandwidth (e.g 25 kHz in ADXL150) have poor sensor level sensitivity and therefore uses complex signal conditioning electronics to achieve large sensitivity and low noise floor which in turn results in higher cost. In this work, an attempt has been made to design MEMS capacitive and piezoresistive accelerometers for smaller bandwidth using IntelliSuite and CoventorWare MEMS tools respectively. The various performance metrics have been obtained using simulation experiments and the results show that these sensors have excellent voltage sensitivity, noise performance and high resolution at sensor level and are even superior to commercial MEMS accelerometers.

  3. MEMS accelerometers in accurate mount positioning systems

    Science.gov (United States)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  4. Capacitive MEMS accelerometer wide range modeling using artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Baharodimehr

    2009-08-01

    Full Text Available This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA. System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN uses the Levenberg‐Marquardt (LM method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation results are very promising.

  5. Performance of an Accelerometer Suspended by a Pendulum

    Institute of Scientific and Technical Information of China (English)

    高尚伟; 栾恩杰; 周泽兵; 罗俊

    2003-01-01

    Performances of an accelerometer suspended by a pendulum and set on ground directly are both discussed.Theoretical analysis shows that the isolation from seismic disturbances of such a suspending accelerometer is equal to that of a narrow band-pass electronic filter. This means that the effect of seismic noises to the accelerometer can be substantially suppressed by means of a pendulum suspension during its performance tests.

  6. Review: Fifty Years Plus of Accelerometer History for Shock and Vibration (1940–1996

    Directory of Open Access Journals (Sweden)

    Patrick L. Walter

    1999-01-01

    Full Text Available This article summarizes the history of accelerometer development and the subsequent evolution of the commercial accelerometer industry. The focus is primarily on piezoelectric and piezoresistive accelerometers, although early resistance-bridge-type accelerometers are also described. The pioneer accelerometer manufacturing companies are identified and a chronology of technology development through today is presented.

  7. Capacitive MEMS accelerometers for measuring high-g accelerations

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2017-05-01

    A possibility of creating a capacitive accelerometer for measuring high- g accelerations (up to 106 g and higher) is discussed. It is demonstrated that insertion of a thin electret film with a high surface potential into the gap between the electrodes ensures significant expansion of the frequency and amplitude ranges of acceleration measurements, whereas the size of the proposed device is smaller than that of available MEMS accelerometers for measuring high- g accelerations. A mathematical model of an electret accelerometer for high- g accelerations is developed, and the main specific features of accelerometer operation are analyzed.

  8. A three-axis ultrasensitive accelerometer for space

    Science.gov (United States)

    Bernard, A.

    A three-axis ultrasensitive accelerometer ASTRE (Accelerometre Spatial Triaxial Electrostatique) is a simplified version of the GRADIO accelerometer designed for the ARISTOTELES mission, which operates by measuring the force provided by a three-axis electrostatic suspension of the proof-mass. It covers the g-spectrum from 10 exp -8 to 10 exp -4 in the frequency range dc to 5 Hz. A dedicated test bench was developed in order to preserve the accelerometer from the seismic noise. The paper presents the performance parameters of the ASTRE accelerometer and some of the design schemes.

  9. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study.

    Science.gov (United States)

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-02-06

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

  10. Study of Piezoresistive Micro Electro-Mechanical Accelerometer Design Platform

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to the inland designer compared with the current MEMS CAD software. The design flow is presented in detail, and the key techique in the platform is analyzed amply. The structure design methodology is exemplified in the design of a piezoresistive accelerometer, and the accelerometer is the optimized structure for the given performance requirements. The accelerometer is now being manufactured.

  11. The GRADIO accelerometer: Design and development status

    Science.gov (United States)

    Bernard, Alain; Touboul, M. P.

    1991-12-01

    The concept of Satellite Gravity Gradiometry (SGG) based on differential microaccelerometry as proposed in the early eighties is summarized. Work devoted to the development of the GRADIO accelerometers is described. The configuration was optimized for the Aristoteles mission with the objective of increasing resolution for an integrating time of 4 s. Thanks to the selected three axis configuration, very sensitive differential tests were carried out between two very representative laboratory models, in directions perpendicular to gravity. The resolution of these tests, limited by the actual stability of alignments of the testing equipment is described.

  12. Real-time inclinometer using accelerometer MEMS

    CERN Document Server

    Hanto, D; Hermanto, B; Puranto, P; Handoko, L T

    2011-01-01

    A preliminary design of inclinometer for real-time monitoring system of soil displacement is proposed. The system is developed using accelerometer sensor with microelectromechanical system (MEMS) device. The main apparatus consists of a single MEMS sensor attached to a solid pipe and stucked pependicularly far away below the soil surface. The system utilizes small fractions of electrical signals from MEMS sensor induced by the pipe inclination due to soil displacements below the surface. It is argued that the system is accurate enough to detect soil displacements responsible for landslides, and then realizes a simple and low cost landslide early warning system.

  13. Studying and Modeling Vibration Transducers and Accelerometers

    Directory of Open Access Journals (Sweden)

    Katalin Ágoston

    2010-12-01

    Full Text Available This paper presents types and operating mode of vibration sensors. Piezoelectric sensing elements are often used in accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and how can be modeled with an electronic circuit. The transfer functions of the electronic circuit models are studied in Matlab and the results are presented. It will be presented the influence of the seismic mass on the accelerometer’s working frequency domain.

  14. Calibrating Accelerometers Using an Electromagnetic Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  15. Classification of Sporting Activities Using Smartphone Accelerometers

    Directory of Open Access Journals (Sweden)

    Noel E. O'Connor

    2013-04-01

    Full Text Available In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT. Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach.

  16. Validation study of Polar V800 accelerometer.

    Science.gov (United States)

    Hernández-Vicente, Adrián; Santos-Lozano, Alejandro; De Cocker, Katrien; Garatachea, Nuria

    2016-08-01

    The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Eighteen Caucasian active people (50% women) aged between 19-23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson's correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. The devices significantly differed from each other on all outcomes (Pvalue was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding "1 hour sedentary bouts" and "V800's walking time vs. ActiTrainer's lifestyle time" in young adults.

  17. Closed-loop Operated Time-Based Accelerometer

    NARCIS (Netherlands)

    Dias, R.A.; Macedo, P.J.; Silva, H.D.; Wolffenbuttel, R.F.; Cretu, E.; Rocha, L.A.

    2012-01-01

    A high-resolution, high dynamic range capacitive accelerometer based on pull-in time measurement is described in this paper. The high sensitivity of pull-in time can be used to implement high performance accelerometers, but non-linearity and low dynamic range compromise device performance. A

  18. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  19. SOI Digital Accelerometer Based on Pull-in Time Configuration

    NARCIS (Netherlands)

    Pakula, L.S.; Rajaraman, V.; French, P.J.

    2009-01-01

    The operation principle, design, fabrication and measurement results of a quasi digital accelerometer fabricated on a thin silicon-on-insulator (SOI) substrate is presented. The accelerometer features quasi-digital output, therefore eliminating the need for analogue signal conditioning. The

  20. Lower extremity angle measurement with accelerometers - error and sensitivity analysis

    NARCIS (Netherlands)

    Willemsen, Antoon Th.M.; Frigo, Carlo; Boom, Herman B.K.

    1991-01-01

    The use of accelerometers for angle assessment of the lower extremities is investigated. This method is evaluated by an error-and-sensitivity analysis using healthy subject data. Of three potential error sources (the reference system, the accelerometers, and the model assumptions) the last is found

  1. Identification of Accelerometer Nonwear Time and Sedentary Behavior

    Science.gov (United States)

    Oliver, Melody; Badland, Hannah M.; Schofield, Grant M.; Shepherd, Janine

    2011-01-01

    The primary aim of the current study was to investigate the accuracy of various automated rules for determining accelerometer nonwear time in a sample of predominantly desk-based office workers (using their self-reported nonwear times as a criterion). Second, the authors examined the effect of applying these rules to accelerometer data retention…

  2. Validation of a wireless accelerometer network for energy expenditure measurement.

    Science.gov (United States)

    Montoye, Alexander H K; Dong, Bo; Biswas, Subir; Pfeiffer, Karin A

    2016-11-01

    The purpose of this study was to validate a wireless network of accelerometers and compare it to a hip-mounted accelerometer for predicting energy expenditure in a semi-structured environment. Adults (n = 25) aged 18-30 engaged in 14 sedentary, ambulatory, exercise, and lifestyle activities over a 60-min protocol while wearing a portable metabolic analyser, hip-mounted accelerometer, and wireless network of three accelerometers worn on the right wrist, thigh, and ankle. Participants chose the order and duration of activities. Artificial neural networks were created separately for the wireless network and hip accelerometer for energy expenditure prediction. The wireless network had higher correlations (r = 0.79 vs. r = 0.72, P  0.05) to the hip accelerometer. Measured (from metabolic analyser) and predicted energy expenditure from the hip accelerometer were significantly different for the 3 of the 14 activities (lying down, sweeping, and cycle fast); conversely, measured and predicted energy expenditure from the wireless network were not significantly different for any activity. In conclusion, the wireless network yielded a small improvement over the hip accelerometer, providing evidence that the wireless network can produce accurate estimates of energy expenditure in adults participating in a range of activities.

  3. The Development of Piezoelectric Accelerometers Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...

  4. Predicting human movement with multiple accelerometers using movelets

    DEFF Research Database (Denmark)

    He, Bing; Bai, Jiawei; Zipunnikov, Vadim V

    2014-01-01

    developed, which, instead of extracting features, build activity-specific dictionaries composed of short signal segments called movelets. Three alternative approaches were proposed to integrate the information from the multiple accelerometers. RESULTS: With at most several seconds of training data per......-worn accelerometers performed almost as well as hip-worn accelerometers (the median difference in accuracy between wrist and hip ranged from -2.7% to 5.8%). Modest improvements in prediction accuracy were achieved by integrating information from multiple accelerometers. DISCUSSION AND CONCLUSIONS: It is possible...... to achieve high prediction accuracy at the second-level temporal resolution with very limited training data. To increase prediction accuracy from the simultaneous use of multiple accelerometers, a careful selection of integrative approaches is required....

  5. Optimal accelerometer placement on a robot arm for pose estimation

    Science.gov (United States)

    Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.

    2017-05-01

    The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.

  6. Modeling of the vibrating beam accelerometer nonlinearities

    Science.gov (United States)

    Romanowski, P. A.; Knop, R. C.

    Successful modeling and processing of the output of a quartz Vibrating Beam Accelerometer (VBA), whose errors are inherently nonlinear with respect to input acceleration, are reported. The VBA output, with two signals that are frequencies of vibrating quartz beams, has inherent higher-order terms. In order to avoid vibration rectification errors, the signal output must be sampled at a rapid rate and the output must be reduced using a nonlinear model. The present model, with acceleration as a function of frequency, is derived by a least-squares process where the covariance matrix is obtained from simulated data. The system performance is found to be acceptable to strategic levels, and it is shown that a vibration rectification error of 400 micrograms/sq g can be reduced to 4 micrograms/sq g by using the processor electronics and a nonlinear model.

  7. Compact optical MEMS accelerometers and temperature sensors

    Science.gov (United States)

    Timotijevic, Branislav; Petremand, Yves; Bayat, Dara; Luetzelschwab, Markus; Aebi, Laurent; Tormen, Maurizio

    2017-02-01

    Continuous and accurate monitoring of acceleration and temperature inside large turbo- and hydro-generators is of crucial importance to prevent extremely expensive system damages and false positives. Development of optical, metalfree sensors for such systems has gained a lot of attention due to the fact that they are resistant to typically very strong electromagnetic fields and that they are non-conductive. We present miniature temperature and accelerometer optical sensors using a common silicon MEMS platform. A linear response with a deviation as small as 1% between set and measured accelerations has been obtained in an acceleration range 0-40g. Preliminary tests for temperature sensors indicate a linear response with sensitivity better than 1°C in a range of 20°C to 150°C.

  8. Quantitative Accelerated Life Testing of MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Jean-Paul Collette

    2007-11-01

    Full Text Available Quantitative Accelerated Life Testing (QALT is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS. A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the“worst case” being smaller than 10-7h-1.

  9. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    Science.gov (United States)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  10. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  11. Design and Fabrication of High Sensitive Piezoresistive MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    JOSHI A.B

    2008-04-01

    Full Text Available This paper addresses the design and fabrication of high sensitive single axis piezoresistive micro-accelerometer for 50 g application. MEMS based accelerometer structure comprise of flexure fixed at one end and having attached proof mass at other end. This structure is designed and simulated using Coventorware. The simulation results show the sensitivity of 4mV/g. The structure is fabricated in N type silicon (100 substrate using Silicon bulk micromachining. This paper also discuses the use of PECVD Si3N4 layer as a masking material for silicon micromachining and process flow for accelerometer.

  12. Lessons Learned in Applying Accelerometers to Nuclear Effects Testing

    Directory of Open Access Journals (Sweden)

    Patrick L. Walter

    2008-01-01

    Full Text Available Exoatmospheric nuclear effects, such as those that would be encounter by reentry bodies, provide instantaneous (near zero-duration, impulsive loading of structures. Endoatmospheric nuclear effects possess an impulse that is finite in duration, but whose rise time is still instantaneous. The commonality of these loadings is that they initiate waves propagating through structures, resulting in extremely short duration accelerations to free surfaces where accelerometers are mounted. Over the years, attempts have been made to measure free surface accelerations using ceramic, quartz, and piezoresistive accelerometers. This paper describes the lessons learned, and looks to the future. It also provides a history of shock accelerometer development.

  13. A digital output accelerometer using MEMS-based piezoelectric accelerometers and arrayed CMOS inverters with satellite capacitors

    Science.gov (United States)

    Kobayashi, T.; Okada, H.; Masuda, T.; Maeda, R.; Itoh, T.

    2011-06-01

    The present paper describes the development of a digital output accelerometer composed of microelectromechanical systems (MEMS)-based piezoelectric accelerometers and arrayed complementary metal-oxide-semiconductor (CMOS) inverters accompanied by capacitors. The piezoelectric accelerometers were fabricated from multilayers of Pt/Ti/PZT/Pt/Ti/SiO2 deposited on silicon-on-insulator (SOI) wafers. The fabricated piezoelectric accelerometers were connected to arrayed CMOS inverters. Each of the CMOS inverters was accompanied by a capacitor with a different capacitance called a 'satellite capacitor'. We have confirmed that the output voltage generated from the piezoelectric accelerometers can vary the output of the CMOS inverters from a high to a low level; the state of the CMOS inverters has turned from the 'off-state' into the 'on-state' when the output voltage of the piezoelectric accelerometers is larger than the threshold voltage of the CMOS inverters. We have also confirmed that the CMOS inverters accompanied by the larger satellite capacitor have become 'on-state' at a lower acceleration. On increasing the acceleration, the number of on-state CMOS inverters has increased. Assuming that the on-state and off-state of CMOS inverters correspond to logic '0' and '1', the present digital output accelerometers have expressed the accelerations of 2.0, 3.0, 5.0, and 5.5 m s - 2 as digital outputs of 111, 110, 100, and 000, respectively.

  14. Adaptive integrated navigation filtering based on accelerometer calibration

    Directory of Open Access Journals (Sweden)

    Qifan Zhou

    2012-11-01

    Full Text Available In this paper, a novel GPS (Global Positioning System and DR (Dead Reckoning system which was based on the accelerometer and gyroscope integrated system was designed and implemented. In this system, the odometer used in traditional DR system was replaced by a MEMS tri-axis accelerometer in order to decrease the cost and the volume of the system. The system was integrated by the Kalman filter and a new mathematical model was introduced. In order to reasonably use the GPS information, an adaptive algorithm based on single measurement system which could estimate the measurement noise covariance was obtained. On the purpose of reducing the effect of the accumulated error caused by drift and bias of accelerometer, the accelerometer was calibrated online when GPS performed well. In this way, the integrated system could not only obtain the high-precision positioning in real time, but also perform stably in practice.

  15. A Novel Frequency Output Accelerometer Using Ring Oscillator and Mixer

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhaohua; YUERuifeng; LIULitian

    2004-01-01

    A novel digital accelerometer using ring oscillator and mixer is presented. The sensitive unit of this accelerometer is MOS ring oscillators located on silicon beams. The output is frequency signal. Mixer is used as interior signal processor in order to improve characteristics of the output signal. The accelerometer has many perfect characteristics such as high sensitivity, low temperature coefficient and simple fabrication process. The frequency character of MOS ring oscillator and its relationship with acceleration are described. The MOS ring oscillator, mixer circuits and physical structures of this accelerometer are designed. The device was fabricated by standard IC process mixed with MEMS process. The sensitivity of fabricated devices is 6.91 kHz/g.

  16. Characteristics of a novel biaxial capacitive MEMS accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Dong Linxi; Li Yongjie; Sun Lingling [Key Laboratory of RF Circuits and System of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018 (China); Yan Haixia, E-mail: donglinxi@hdu.edu.c [Toshiba Hydro-Electro Equipments Company, Hangzhou 311504 (China)

    2010-05-15

    A novel MEMS accelerometer with grid strip capacitors is developed. The mechanical and electrical noise can be reduced greatly for the novel structure design. ANSOFT-Maxwell software was used to analyze the fringing electric field of the grid strip structure and its effects on the designed accelerometer. The effects of the width, thickness and overlapping width of the grid strip on the sensing capacitance are analyzed by using the ANSOFT-Maxwell software. The results show that the parameters have little effect on the characteristics of the presented accelerometer. The designed accelerometer was fabricated based on deep RIE and silicon-glass bonding processes. The preliminary tested sensitivities are 0.53 pF/g and 0.49 pF/g in the x and y axis directions, respectively. A resonator with grid strip structure was also fabricated whose tested quality factor is 514 in air, which proves that the grid strip structure can reduce mechanical noise. (semiconductor devices)

  17. SEMICONDUCTOR DEVICES: Characteristics of a novel biaxial capacitive MEMS accelerometer

    Science.gov (United States)

    Linxi, Dong; Yongjie, Li; Haixia, Yan; Lingling, Sun

    2010-05-01

    A novel MEMS accelerometer with grid strip capacitors is developed. The mechanical and electrical noise can be reduced greatly for the novel structure design. ANSOFT-Maxwell software was used to analyze the fringing electric field of the grid strip structure and its effects on the designed accelerometer. The effects of the width, thickness and overlapping width of the grid strip on the sensing capacitance are analyzed by using the ANSOFT-Maxwell software. The results show that the parameters have little effect on the characteristics of the presented accelerometer. The designed accelerometer was fabricated based on deep RIE and silicon-glass bonding processes. The preliminary tested sensitivities are 0.53 pF/g and 0.49 pF/g in the x and y axis directions, respectively. A resonator with grid strip structure was also fabricated whose tested quality factor is 514 in air, which proves that the grid strip structure can reduce mechanical noise.

  18. Wireless accelerometer iPod application for quantifying gait characteristics.

    Science.gov (United States)

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren

    2011-01-01

    The capability to quantify gait characteristics through a wireless accelerometer iPod application in an effectively autonomous environment may alleviate the progressive strain on highly specific medical resources. The iPod consists of the inherent attributes imperative for robust gait quantification, such as a three dimensional accelerometer, data storage, flexible software, and the capacity for wireless transmission of the gait data through email. Based on the synthesis of the integral components of the iPod, a wireless accelerometer iPod application for quantifying gait characteristics has been tested and evaluated in an essentially autonomous environment. The quantified gait acceleration waveforms were wirelessly transmitted using email for postprocessing. The site for the gait experiment occurred in a remote location relative to the location where the postprocessing was conducted. The wireless accelerometer iPod application for quantifying gait characteristics demonstrated sufficient accuracy and consistency.

  19. Experimental demonstration of bias rejection from electrostatic accelerometer measurements

    CERN Document Server

    Lenoir, Benjamin; Reynaud, Serge; 10.1016/j.measurement.2012.12.004

    2013-01-01

    In order to test gravitation in the Solar System, it is necessary to improve the orbit restitution of interplanetary spacecrafts. The addition of an accelerometer on board is a major step toward this goal because this instrument measures the non-gravitational acceleration of the spacecraft. It must be able to perform measurements at low frequencies with no bias to provide an additional observable of interest. Since electrostatic accelerometers suffer a bias, a technological upgrade has been proposed by Onera. It consists in adding to an electrostatic accelerometer a rotating platform which allows modulating the signal of interest and retrieving it without bias after post-processing. Using this principle, a measurement method and a post-processing method have been developed. The objective of this article is to validate these methods experimentally. To do so, a horizontally controlled pendulum was used to apply a known signal to an accelerometer mounted on a rotating platform. The processing of the experimental...

  20. Wireless Accelerometer for Neonatal MRI Motion Artifact Correction

    Directory of Open Access Journals (Sweden)

    Martyn Paley

    2017-01-01

    Full Text Available A wireless accelerometer has been used in conjunction with a dedicated 3T neonatal MRI system installed on a Neonatal Intensive Care Unit to measure in-plane rotation which is a common problem with neonatal MRI. Rotational data has been acquired in real-time from phantoms simultaneously with MR images which shows that the wireless accelerometer can be used in close proximity to the MR system. No artifacts were observed on the MR images from the accelerometer or from the MR system on the accelerometer output. Initial attempts to correct the raw data using the measured rotational angles have been performed, but further work will be required to make a robust correction algorithm.

  1. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed...

  2. Optical fiber accelerometer based on a silicon micromachined cantilever

    Science.gov (United States)

    Malki, Abdelrafik; Lecoy, Pierre; Marty, Jeanine; Renouf, Christine; Ferdinand, Pierre

    1995-12-01

    An intensity-modulated fiber-optic accelerometer based on backreflection effects has been manufactured and tested. It uses a multimode fiber placed at a spherical mirror center, and the beam intensity is modulated by a micromachined silicon cantilever. This device has applications as an accelerometer and vibrometer for rotating machines. It exhibits an amplitude linearity of +/-1.2% in the range of 0.1-22 m s-2, a frequency linearity of +/-1% in the

  3. Input-output stability for accelerometer control systems

    Science.gov (United States)

    Banks, H. T.; Morris, K. A.

    1991-01-01

    It is shown that, although accelerometer control systems are not well-posed in the sense of Salamon, a well-defined input-output relation exists. It is established that the output of an accelerometer control system can be described by the convolution of the input and a distribution. This distribution is Laplace transformable, and the Laplace transform of the distribution is the transfer function of the system.

  4. Quantitative evaluation of gait ataxia by accelerometers.

    Science.gov (United States)

    Shirai, Shinichi; Yabe, Ichiro; Matsushima, Masaaki; Ito, Yoichi M; Yoneyama, Mitsuru; Sasaki, Hidenao

    2015-11-15

    An appropriate biomarker for spinocerebellar degeneration (SCD) has not been identified. Here, we performed gait analysis on patients with pure cerebellar type SCD and assessed whether the obtained data could be used as a neurophysiological biomarker for cerebellar ataxia. We analyzed 25 SCD patients, 25 patients with Parkinson's disease as a disease control, and 25 healthy control individuals. Acceleration signals during 6 min of walking and 1 min of standing were measured by two sets of triaxial accelerometers that were secured with a fixation vest to the middle of the lower and upper back of each subject. We extracted two gait parameters, the average and the coefficient of variation of motion trajectory amplitude, from each acceleration component. Then, each component was analyzed by correlation with the Scale for the Assessment and Rating of Ataxia (SARA) and the Berg Balance Scale (BBS). Compared with the gait control of healthy subjects and concerning correlation with severity and disease specificity, our results suggest that the average amplitude of medial-lateral (upper back) of straight gait is a physiological biomarker for cerebellar ataxia. Our results suggest that gait analysis is a quantitative and concise evaluation scale for the severity of cerebellar ataxia.

  5. Using rotating liquid bridges as accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Cabezas, G.; Acero, J.; Zayas, F.

    1999-07-01

    Liquid bridges have recently been proposed as fluid accelerometers that could be used to measure very small inertial forces under microgravity conditions [Meseguer et al., microgravity sci. technol. IX/2 (1996)]. The essential idea is to infer the values of such inertial forces from the liquid bridge interface contour, whose shape obviously depends on the values of such forces (apart from the bridge volume and the geometry of the supporting disks). Following a similar procedure, in this paper we explore the use of rotating axisymmetric liquid bridges to measure the residual axial gravity and the rotation rate of the liquid bridge regarded as a solid body. In light off the difficulties involved in performing experiments on Earth, the role of empirical data is played by an accurate numerical solution of the Young-Laplace equation. The values of both the axial gravity and angular speed are obtained by fitting the approximate analytical expressions derived in this paper to the numerical solution of the Young-Laplace equation. The comparison between the predicted and actual values of the variables of interest shows a satisfactory agreement, supporting the suitability of the procedure. (orig.)

  6. Performance of several low-cost accelerometers

    Science.gov (United States)

    Evans, J.R.; Allen, R.M.; Chung, A. I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J. F.

    2014-01-01

    Several groups are implementing low‐cost host‐operated systems of strong‐motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong‐motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument‐performance matters in the working group’s report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake‐Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class‐A and Class‐B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause.

  7. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    Science.gov (United States)

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.

  8. Intelligent seismic sensor with double three component MEMS accelerometers

    Science.gov (United States)

    Fu, Jihua; Wang, Jianjun; Li, Zhitao; Liu, Xiaoxi; Wang, Zhongyu

    2010-08-01

    To better understand the response and damage characteristics of structures under earthquakes, a great number of intelligent seismic sensors with high performance were needed to be installed distributed in the whole country. The intelligent seismic sensor was a cost-sensitive application because of its large number of usages. For this reason, a low cost intelligent seismic sensor was put forward in this paper. This kind of intelligent seismic sensor cut down the cost without sacrificing performance by introducing two three component MEMS accelerometers. It was composed by a microprocessor, two three component MEMS accelerometers, an A/D converter, a flash memory, etc. The MEMS accelerometer has better structure and frequency response characteristics than the conventional geophones'. But one MEMS accelerometer tended to be unreliable and have no enough dynamic range for precision measurement. Therefore two three component MEMS accelerometers were symmetrically mounted on both sides of the circuit board. And their measuring values were composed to describe the ground motion or structure response. The composed value was the in-phase stacking of the two accelerometers' measuring values, which enhanced the signal noise ratio of the sensor and broadened its dynamic range. Through the preliminary theory and experiment analysis, the low cost intelligent seismic sensor could measure the acceleration in accuracy.

  9. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  10. Relative performance of several inexpensive accelerometers

    Science.gov (United States)

    Evans, John R.; Rogers, John A.

    1995-01-01

    We examined the performance of several low-cost accelerometers for highly cost-driven applications in recording earthquake strong motion. We anticipate applications for such sensors in providing the lifeline and emergency-response communities with an immediate, comprehensive picture of the extent and characteristics of likely damage. We also foresee their use as 'filler' instruments sited between research-grade instruments to provide spatially detailed and near-field records of large earthquakes (on the order of 1000 stations at 600-m intervals in San Fernando Valley, population 1.2 million, for example). The latter applications would provide greatly improved attenuation relationships for building codes and design, the first examples of mainshock information (that is, potentially nonlinear regime) for microzonation, and a suite of records for structural engineers. We also foresee possible applications in monitoring structural inter-story drift during earthquakes, possibly leading to local and remote alarm functions as well as design criteria. This effort appears to be the first of its type at the USGS. It is spurred by rapid advances in sensor technology and the recognition of potential non-classical applications. In this report, we estimate sensor noise spectra, relative transfer functions and cross-axis sensitivity of six inexpensive sensors. We tested three micromachined ('silicon-chip') sensors in addition to classical force-balance and piezoelectric examples. This sample of devices is meant to be representative, not comprehensive. Sensor noise spectra were estimated by recording system output with the sensor mounted on a pneumatically supported 545-kg optical-bench isolation table. This isolation table appears to limit ground motion to below our system noise level. These noise estimates include noise introduced by signal-conditioning circuitry, the analog-to-digital converter (ADC), and noise induced in connecting wiring by ambient electromagnetic fields in

  11. Prediction of Gap Asymmetry in Differential Micro Accelerometers

    Directory of Open Access Journals (Sweden)

    Xiaoping He

    2012-05-01

    Full Text Available Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10−2, and that the absolute error is about ±0.2 µm under a 4 µm gap.

  12. Optimal Placement of Accelerometers for the Detection of Everyday Activities

    Directory of Open Access Journals (Sweden)

    Dewar Finlay

    2013-07-01

    Full Text Available This article describes an investigation to determine the optimal placement of accelerometers for the purpose of detecting a range of everyday activities. The paper investigates the effect of combining data from accelerometers placed at various bodily locations on the accuracy of activity detection. Eight healthy males participated within the study. Data were collected from six wireless tri-axial accelerometers placed at the chest, wrist, lower back, hip, thigh and foot. Activities included walking, running on a motorized treadmill, sitting, lying, standing and walking up and down stairs. The Support Vector Machine provided the most accurate detection of activities of all the machine learning algorithms investigated. Although data from all locations provided similar levels of accuracy, the hip was the best single location to record data for activity detection using a Support Vector Machine, providing small but significantly better accuracy than the other investigated locations. Increasing the number of sensing locations from one to two or more statistically increased the accuracy of classification. There was no significant difference in accuracy when using two or more sensors. It was noted, however, that the difference in activity detection using single or multiple accelerometers may be more pronounced when trying to detect finer grain activities. Future work shall therefore investigate the effects of accelerometer placement on a larger range of these activities.

  13. Italian spring accelerometer (ISA) a high sensitive accelerometer for ``BepiColombo'' ESA CORNERSTONE

    Science.gov (United States)

    Iafolla, V.; Nozzoli, S.

    2001-12-01

    The targets of the ESA CORNERSTONE mission to Mercury "BepiColombo" are concerned with both planetary and magnetospheric physics and to test some aspects of the general relativity. A payload devoted to a set of experiments named radio science is located within one of the three proposed modules, the Mercury Planetary Orbiter (MPO). In particular, a high sensitivity accelerometer ( a minFisica dello Spazio Interplanetario (IFSI), with the financial support of the Agenzia Spaziale Italiana (ASI). A prototype of such an instrument was constructed, matching the requirements of the radio science experiment. Results of the study concerning the use of ISA in the BepiColombo mission are reported here, particular care being devoted to the description of the instrument and to its sensitivity and thermal stabilisation.

  14. Accelerometer Method and Apparatus for Integral Display and Control Functions

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  15. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu

    2012-01-01

    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is linear...... up to at least 15 g and sensitivities as high as 19 pm/g (shift in resonance wavelength per unit acceleration) have been demonstrated. Given that 15 g corresponds to a strain of less than 0.02% and that polymer fibers have an elastic limit of more than 1%, the polymer FBG accelerometer can measure...... very strong accelerations. We compare with corresponding silica FBG accelerometers and demonstrate that using polymer FBGs improves the sensitivity by more than a factor of four and increases the figure of merit, defined as the sensitivity times the resonance frequency squared....

  16. Adapting MCM-D technology to a piezoresistive accelerometer packaging

    Science.gov (United States)

    Collado, A.; Plaza, J. A.; Cabruja, E.; Esteve, J.

    2003-07-01

    A silicon-on-silicon multichip module for a piezoresistive accelerometer is presented in this paper. This packaging technology, a type of wafer level packaging, offers fully complementary metal-oxide semiconductor compatible silicon substrates, so a pre-amplification stage can be included at substrate level. The electrical contacts and a partial sealing of the sensor mobile structures are performed at the same step using flip-chip technology, so the cost is reduced. As accelerometers are stress-sensitive devices, great care must be taken in the fabrication process and materials. Thus, test structures have been included to study the packaging effects. In this paper we report on the compatibility of accelerometer and wafer level packaging technologies.

  17. Thermospheric neutral densities derived from Swarm accelerometer and GPS data

    DEFF Research Database (Denmark)

    Doornbos, Eelco; Encarnacao, Joao; van den IJss, Jose;

    approach, affects the possibility of determining densities from the accelerometer measurements of the Swarm A and B satellites. We also investigate the possibility of determining crosswind speeds from Swarm data.In the meantime, we have investigated the possibility of deriving thermosphere neutral density...... affected and most promising data for scientific use. The goal to make the Swarm C accelerometer along-track axis data ready for further processing into level 2 thermosphere density data has now been accomplished, with the help of information on the satellite motion from the GPS tracking as well...... data from the Swarm GPS observations only, with a much lower temporal resolution. We analyse the differences in the data between the three Swarm satellites as well as between the accelerometer-derived and GPS-only-derived densities for Swarm C....

  18. An Electromagnetically Excited Silicon Nitride Beam Resonant Accelerometer

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available A resonant microbeam accelerometer of a novel highly symmetric structure based on MEMS bulk-silicon technology is proposed and some numerical modeling results for this scheme are presented. The accelerometer consists of two proof masses, four supporting hinges, two anchors, and a vibrating triple beam, which is clamped at both ends to the two proof masses. LPCVD silicon rich nitride is chosen as the resonant triple beam material, and parameter optimization of the triple-beam structure has been performed. The triple beam is excited and sensed electromagnetically by film electrodes located on the upper surface of the beam. Both simulation and experimental results show that the novel structure increases the scale factor of the resonant accelerometer, and ameliorates other performance issues such as cross axis sensitivity of insensitive input acceleration, etc.

  19. Micromachined force-balance feedback accelerometer with optical displacement detection

    Science.gov (United States)

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  20. Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer

    Science.gov (United States)

    Lötters, Joost C.; Olthuis, Wouter; Veltink, Peter H.; Bergveld, Piet

    1996-03-01

    Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability and high compressibility. Because of its high flexibility and the very low drift of its properties with time and temperature, polydimethylsiloxane could be well suited for mechanical sensors, such as accelerometers. A novel capacitive accelerometer with polydimethylsiloxane layers as springs has been realized. The obtained measurement results are promising and show a good correspondence with the theoretical values.

  1. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    Directory of Open Access Journals (Sweden)

    Hyun Chan Kim

    2016-09-01

    Full Text Available This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO nanowire (NW grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  2. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  3. An overview of the evolution of vibrating beam accelerometer technology

    Science.gov (United States)

    Norling, B. L.

    The history of vibrating beam accelerometers (VBA) is briefly outlined, and the current status of VBA technology is reviewed. In particular, attention is given to the VBA design fundamentals and the performance characteristics of several state-of-the-art VBA models. Finally, prospects for the future development of VBAs and the effect of VBA technology on the inertial navigation industry are discussed.

  4. Design and Fabrication of a Slanted-Beam MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-03-01

    Full Text Available This paper presents a novel capacitive microelectromechanical systems (MEMS accelerometer with slanted supporting beams and all-silicon sandwich structure. Its sensing mechanism is quite similar to an ordinary sandwich-type MEMS accelerometer, except that its proof mass is suspended by a beam parallel to the {111} plane of a (100 silicon wafer. In this way, each sensing element can detect accelerations in two orthogonal directions. Four of these sensing elements could work together and constitute a 3-axis micro-accelerometer by using a simple planar assembly process. This design avoids the traditional 3-axis accelerometer’ disadvantage of possible placement inaccuracy when assembling on three different planes and largely reduces the package volume. The slanted-beam accelerometer’s performance was modeled and analyzed by using both analytical calculations and finite element method (FEM simulations. A prototype of one sensing element was fabricated and tested. Measured results show that this accelerometer has a good bias stability 76.8 ppm (1σ, tested immediately after power on, two directional sensitivities (sensitivity angle α = 45.4° and low nonlinearity (<0.5% over a sensing range up to ±50 g, which demonstrates a great opportunity for future high-precision three-axis inertial measurement.

  5. A biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model

  6. A model for presenting accelerometer paradata in large studies: ISCOLE

    OpenAIRE

    Tudor-Locke, Catrine; Mire, Emily F; Dentro, Kara N; Barreira, Tiago V.; Schuna, John M.; Zhao, Pei; Tremblay, Mark S; Standage, Martyn; Sarmiento, Olga L.; Onywera, Vincent; Olds, Tim; Matsudo, Victor; Maia, José; Maher, Carol; Estelle V. Lambert

    2015-01-01

    Abstract Background We present a model for reporting accelerometer paradata (process-related data produced from survey administration) collected in the International Study of Childhood Obesity Lifestyle and the Environment (ISCOLE), a multi-national investigation of >7000 children (averaging 10.5 years of age) sampled from 12 different developed and developing countries and five continents. ...

  7. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  8. Single point optical calibration of accelerometers at NIST

    Science.gov (United States)

    Payne, Bev

    2006-06-01

    Typical accelerometer calibrations by laser interferometer are performed by measuring displacement at three places on the shaker table. Each of these measurements, made along the perimeter of the accelerometer, requires repositioning and realigning of the interferometer. This is done to approximate the actual displacement of the accelerometer. Using a dual-coil shaker with a small moving element and two coaxially-located and rigidly-attached mounting tables allows placing the accelerometer on one table and measuring displacement directly on the center axis of the second table. This was found to work effectively at lower frequencies, up to about 5 kHz, with mounting tables of conventional materials such as stainless steel. However, for higher frequencies the use of steel results in unwanted relative motion between the two mounting tables. Mounting tables of beryllium with nickel coating have been used at NIST to overcome this difficulty. This paper shows the calibration results of single point, on-axis measurements, using fringe counting and sine-approximation methods. The results compare favorably with three point measurements made by fringe disappearance using a conventional piezo-electric shaker at frequencies up to 15 kHz.

  9. Silicon-micromachined accelerometers for space inertial systems

    Science.gov (United States)

    Saha, I.; Islam, R.; Kanakaraju, K.; Jain, Yashwant K.; Alex, T. K.

    1999-11-01

    Accelerometers are key components of various motion control systems ranging in use from inertial guidance of rockets and satellite launch vehicles to safety applications in the automotive industry. The accelerometers that are used for spare inertial systems are characterized by high resolution, small bandwidth, large working range and excellent linearity. Current advances in this field are based on silicon micromachining. Silicon bulk and surface micromachined accelerometers offer advantages of reduced size and weight, less power consumption and the use of a fabrication process derived form an already well established semiconductor fab technology. Of the various approaches to silicon micromachined accelerometers, two are in a well advanced state of development. The first is the capacitive force balanced type and the second the piezoresistive type. The capacitive approach has the advantage of higher stability and resolution and lower temperature coefficients. But it requires proximal detection circuitry to prevent parasitics to overwhelm the circuit. A new approach reported recently uses a silicon micromachined cantilever beam which acts as a Fabry Perot interferometer when light form an optical fiber is impinged on it. In this paper we overview all the approaches and try to select a suitable candidate for use in space borne inertial systems.

  10. Diurnal Cycles of Tree Mass Obtained Using Accelerometers

    Science.gov (United States)

    Llamas, R. A.; Niemeier, J. J.; Kruger, A.; Lintz, H. E.; Kleinknecht, G. J.; Miller, R. A.

    2013-12-01

    We used a non-invasive technique to estimate the mass of trees using accelerometers. The technique was inspired by Selker et al., 2011 who performed experiments with an oak tree to estimate the time-varying canopy mass. The technique consists of placing an accelerometer on the trunk of a live tree. The resonance frequency is related to the mass of the tree. Wind drives the tree and the accelerometer data are analyzed to obtain estimates of the resonance frequency and mass of the tree. In addition to wind speed and direction, we also collected ambient temperature and rain accumulation using co-located instruments. We collected data for 3 months using several accelerometers configured for different sampling rates. Analysis of the data revealed diurnal cycles in temperature, wind speed, and tree mass derived from the tree resonance frequency. We used the Welch method for power spectral density estimation to obtain hourly estimates of the tree resonance frequency. Our hypothesis is that the mass diurnal cycle is related to the tree water content.

  11. The MICROSTAR electrostatic accelerometer for the GRASP Mission

    Science.gov (United States)

    Foulon, Bernard; Christophe, Bruno; Liorzou, Francoise; Huynh, Phuong-Anh; Perrot, Eddy

    2015-04-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept dedicated to the enhancement of all the space geodetic techniques, and promising revolutionary improvements to the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). The integration of an ultra sensitive accelerometer at the Center of mass of the satellite can provide not only improvement of the Precise Orbit Determination (POD) by the accurate measurement of the non-gravitational force acting on the surface of the satellite but also by the possibility to calibrate with an accuracy better than 100 µm the change in the position of the Satellite Center of Mass as it is performed in the GRACE mission and to determine the precise motion of the antennas assuming some rigid structure between them and the accelerometer as it is done between the star sensor, the optical cube assembly of satellite laser ranging system and the accelerometer in the GRACE-Follow On mission. The proposed accelerometer is miniaturized version of the electrostatic accelerometers developed for the Earth gravity missions CHAMP, GRACE, GOCE and GRACE-FO. He has 3 sensitive axes thanks to a cubic proof-mass and provides the 3 linear accelerations and the 3 angular accelerations about its 3 orthogonal axes. He is called MICROSTAR and its foreseen performance is a linear acceleration noise lower than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz.

  12. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

    Science.gov (United States)

    Alexander, Jeremy P; Hopkinson, Trent L; Wundersitz, Daniel W T; Serpell, Benjamin G; Mara, Jocelyn K; Ball, Nick B

    2016-11-01

    Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.

  13. Design of MEMS accelerometer based acceleration measurement system for automobiles

    Science.gov (United States)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  14. Study of the Dynamics of Large Reflector Antennas with Accelerometers

    CERN Document Server

    Snel, R C; Baars, J W M

    2007-01-01

    The Atacama Large Millimeter Array (ALMA) will consist of up to 64 state-of-the-art sub-mm telescopes, subject to stringent performance specifications which will push the boundaries of the technology, and makes testing of antenna performance a likewise challenging task. Two antenna prototypes were evaluated at the ALMA Test Facility at the Very Large Array site in New Mexico, USA. The dynamic behaviour of the antennas under operational conditions was investigated with the help of an accelerometer system capable of measuring rigid body motion of the elevation structure of the antenna, as well as a few low-order deformation modes, resulting in dynamic performance numbers for pointing stability, reflector surface stability, path length stability, and structure flexure. Special emphasis was given to wind effects, one of the major factors affecting performance on timescales of seconds to tens of minutes. This paper describes the accelerometer system, its capabilities and limitations, and presents the dynamic perfo...

  15. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  16. DEPTracker – Sleep Pattern Tracking with Accelerometer Technology

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Havn, Ib; Svane Hansen, Lars;

    2015-01-01

    REM (Rapid Eye Movement) sleep pattern changes are known to be an early indicator of effective medical treatment of patients with a depression diagnosis. Existing methods to detect REM sleep pattern changes are known to be inaccurate, costly, or otherwise inadequate in normal settings...... of this patient group. In this paper, we demonstrate DEPTracker, a system capable of detecting sleep patterns, and in particular REM sleep. We show that DEPTracker is an accurate, cost-effective and suitable approach for sleep pattern detection in general. Details of the technology used, combining accelerometer...... technology with digital signal analysis is given and illustrates that the system is able to successfully detect REM sleep. The project demonstrates that accelerometers can be mounted on an eye lid and eye movements can be detected, sampled and stored in a database for online real-time analysis or post-sleep...

  17. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Science.gov (United States)

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-01

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range. PMID:28117740

  18. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    Science.gov (United States)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  19. Monitoring feeding behaviour of dairy cows using accelerometers

    Directory of Open Access Journals (Sweden)

    Gabriele Mattachini

    2016-03-01

    Full Text Available Monitoring cow behaviour has become increasingly important in understanding the nutrition, production, management of the well being, and overall health of dairy cows. Methods of assessing behavioural activity have changed in recent years, favouring automatic recording techniques. Traditional methods to measure behaviour, such as direct observation or time-lapse video, are labour-intensive and time-consuming. Automated recording devices have become increasingly common to measure behaviour accurately. Thus, the development of automated monitoring systems that can continuously and accurately quantify feeding behaviour are required for efficient monitoring and control of modern and automated dairy farms. The aim of this study was to evaluate the possible use of a 3D accelerometer to record feeding behaviour of dairy cows. Feeding behaviour (feeding time and number of visits to the manger of 12 lactating dairy cows was recorded for approximately 3 h with 3D-accelerometer data loggers (HOBO Pendant G logger. The sensors were positioned in the high part of the neck to monitor head movements. Behaviour was simultaneously recorded using visual observation as a reference. Linear regression analysis between the measurement methods showed that the recorded feeding time (R2=0.90, n=12, P<0.001 was closely related to visual observations. In contrast, the number of visits was inadequately recorded by the 3D-accelerometer, showing a poor relationship with visual observations (R2=0.31, n=12, P<0.06. Results suggest that the use of accelerometer sensors can be a reliable and suitable technology for monitoring feeding behaviour of individual dairy cows in free stall housing. However, further research is necessary to develop an appropriate device able to detect and recognise the movements connected with the head movement during feeding. Such a device could be part of an automatic livestock management tool for the efficient monitoring and control of comfort and

  20. Study of a Floated Pendulum Accelerometer with Passive Magnetic Suspension

    OpenAIRE

    TAKIZAWA, Minoru; OOTSUKI, Masao; Suzuki, Takao; 滝沢, 実; 大月, 正男; 鈴木,孝雄

    1980-01-01

    In the last few years, in order to develop more precise inertial sensors, such as floated gyros and floated accelerometers used in the inertial navigation system, a passive magnetic suspension with an eight-pole stator, that can be applied to support the output axes of the sensors, has been theoretically and experimentally studied at NAL (National Aerospace Laboratory). In our previous reports, 7)~10)29) a theoretical analysis and an experimental study of the magnetic suspension were describe...

  1. Analysis of animal accelerometer data using hidden Markov models

    OpenAIRE

    2016-01-01

    Use of accelerometers is now widespread within animal biotelemetry as they provide a means of measuring an animal's activity in a meaningful and quantitative way where direct observation is not possible. In sequential acceleration data there is a natural dependence between observations of movement or behaviour, a fact that has been largely ignored in most analyses. Analyses of acceleration data where serial dependence has been explicitly modelled have largely relied on hidden Markov models (H...

  2. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    Science.gov (United States)

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  3. An integrated MEMS piezoresistive tri-axis accelerometer

    Science.gov (United States)

    Yongping, Zhang; Changde, He; Jiaqi, Yu; Chunhui, Du; Juanting, Zhang; Xiujian, Chou; Wendong, Zhang

    2013-10-01

    An integrated MEMS accelerometer has been designed and fabricated. The device, which is based on the piezoresistive effect, accomplishes the detection of three components of acceleration by using piezoresistors to compose three Wheatstone bridges that are sensitive to the only given orientation. The fabrication of the accelerometer is described, and the theory behind its operation developed. Experimental results on sensitivity, cross-axis-coupling degree, and linearity are presented. The sensitivity of X, Y and Z were 5.49 mV/g, 5.12 mV/g and 4.82 mV/g, respectively; the nonlinearity of X, Y and Z were 0.01%, 0.04% and 0.01%, respectively; the cross-axis-coupling factor of X axis to Y axis and Z axis are 0.119% and 2.26% the cross-axis-coupling factor of Y axis to X axis and Z axis are 0.157% and 4.12% the cross-axis-coupling factor of Z axis to X axis and Y axis are 0.511% and 0.938%. The measured performance indexes attain accurate vector-detection in practical applications, and even at a navigation level. In conclusion, the accelerometer is a highly integrated sensor.

  4. High resolution interface circuit for closed-loop accelerometer*

    Institute of Scientific and Technical Information of China (English)

    Yin Liang; Liu Xiaowei; Chen Weiping; Zhou Zhiping

    2011-01-01

    This paper reports a low noise switched-capacitor CMOS interface circuit for the closed-loop operation of a capacitive accelerometer. The time division multiplexing of the same electrode is adopted to avoid the strong feedthrough between capacitance sensing and electrostatic force feedback. A PID controller is designed to ensure the stability and dynamic response o fa high Q closed-loop accelerometer with a vacuum package. The architecture only requires single ended operational amplifiers, transmission gates and capacitors. Test results show that a full scale acceleration of ±3 g, non-linearity of 0.05% and signal bandwidth of 1000 Hz are achieved. The complete module operates from a ±5 V supply and has a measured sensitivity of 1.2 V/g with a noise of floor of 0.8μg/√(Hz) in closed-loop. The chip is fabricated in the 2 μm two-metal and two-poly n-well CMOS process with an area of 15.2 mm2. These results prove that this circuit is suitable for high performance micro-accelerometer applications like seismic detection and oil exploration.

  5. Denoising and Trend Terms Elimination Algorithm of Accelerometer Signals

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-01-01

    Full Text Available Acceleration-based displacement measurement approach is often used to measure the polish rod displacement in the oilfield pumping well. Random noises and trend terms of the accelerometer signals are the main factors that affect the measuring accuracy. In this paper, an efficient online learning algorithm is proposed to improve the measurement precision of polish rod displacement in the oilfield pumping well. To remove the random noises and eliminate the trend term of accelerometer signals, the ARIMA model and its parameters are firstly derived by using the obtained data of time series of acceleration sensor signals. Secondly, the period of the accelerometer signals is estimated through the Rife-Jane frequency estimation approach based on Fast Fourier Transform. With the obtained model and parameters, the random noises are removed by employing the Kalman filtering algorithm. The quadratic integration of the period is calculated to obtain the polish rod displacement. Moreover, the windowed recursive least squares algorithm is implemented to eliminate the trend terms. The simulation results demonstrate that the proposed online learning algorithm is able to remove the random noises and trend terms effectively and greatly improves the measurement accuracy of the displacement.

  6. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  7. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    Directory of Open Access Journals (Sweden)

    Maria Feng

    2015-01-01

    Full Text Available Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  8. Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Chih-Yung Huang

    2016-07-01

    Full Text Available With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT type; however, integrating it into intelligent modules is excessively expensive and difficult. Therefore, the micro electro mechanical systems (MEMS accelerometer is an alternative with the advantages of lower price and superior integration. In the present study, we integrated two MEMS accelerometer chips into a low-pass filter and housing to develop a low-cost dual-axis accelerometer with a bandwidth of 5 kHz and a full scale range of ±50 g for measuring machine tool vibration. In addition, a platform for measuring the linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer by using the back-to-back calibration method was also developed. Finally, cutting experiments with steady and chatter cutting were performed to verify the results of comparing the MEMS accelerometer with the PZT accelerometer in the time and frequency domains. The results demonstrated that the dual-axis MEMS accelerometer is suitable for monitoring the vibration of machine tools at low cost.

  9. Quality control methods in accelerometer data processing: identifying extreme counts.

    Directory of Open Access Journals (Sweden)

    Carly Rich

    Full Text Available BACKGROUND: Accelerometers are designed to measure plausible human activity, however extremely high count values (EHCV have been recorded in large-scale studies. Using population data, we develop methodological principles for establishing an EHCV threshold, propose a threshold to define EHCV in the ActiGraph GT1M, determine occurrences of EHCV in a large-scale study, identify device-specific error values, and investigate the influence of varying EHCV thresholds on daily vigorous PA (VPA. METHODS: We estimated quantiles to analyse the distribution of all accelerometer positive count values obtained from 9005 seven-year old children participating in the UK Millennium Cohort Study. A threshold to identify EHCV was derived by differentiating the quantile function. Data were screened for device-specific error count values and EHCV, and a sensitivity analysis conducted to compare daily VPA estimates using three approaches to accounting for EHCV. RESULTS: Using our proposed threshold of ≥ 11,715 counts/minute to identify EHCV, we found that only 0.7% of all non-zero counts measured in MCS children were EHCV; in 99.7% of these children, EHCV comprised < 1% of total non-zero counts. Only 11 MCS children (0.12% of sample returned accelerometers that contained negative counts; out of 237 such values, 211 counts were equal to -32,768 in one child. The medians of daily minutes spent in VPA obtained without excluding EHCV, and when using a higher threshold (≥19,442 counts/minute were, respectively, 6.2% and 4.6% higher than when using our threshold (6.5 minutes; p<0.0001. CONCLUSIONS: Quality control processes should be undertaken during accelerometer fieldwork and prior to analysing data to identify monitors recording error values and EHCV. The proposed threshold will improve the validity of VPA estimates in children's studies using the ActiGraph GT1M by ensuring only plausible data are analysed. These methods can be applied to define appropriate EHCV

  10. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    Energy Technology Data Exchange (ETDEWEB)

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  11. Measuring the needle lift and return timing of a CRDI injector using an accelerometer

    OpenAIRE

    Choong Hoon Lee

    2014-01-01

    The needle lift and return timing of a CRDI (common rail direct injection) injector were investigated using an accelerometer and the Bosch injection rate measurement method. The Bosch method was used to measure the fuel injection rate shape when fuel was injected with several patterns. An accelerometer was mounted on the outside of the injector to catch the needle lift and return timing of the injector according to the switching signal of the injector driving voltage. The accelerometer accura...

  12. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  13. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    Science.gov (United States)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  14. Using tri-axial accelerometers to identify wild polar bear behaviors

    Science.gov (United States)

    Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.

    2017-01-01

    Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.

  15. Self-calibration method of the bias of a space electrostatic accelerometer

    Science.gov (United States)

    Qu, Shao-Bo; Xia, Xiao-Mei; Bai, Yan-Zheng; Wu, Shu-Chao; Zhou, Ze-Bing

    2016-11-01

    The high precision space electrostatic accelerometer is an instrument to measure the non-gravitational forces acting on a spacecraft. It is one of the key payloads for satellite gravity measurements and space fundamental physics experiments. The measurement error of the accelerometer directly affects the precision of gravity field recovery for the earth. This paper analyzes the sources of the bias according to the operating principle and structural constitution of the space electrostatic accelerometer. Models of bias due to the asymmetry of the displacement sensing system, including the mechanical sensor head and the capacitance sensing circuit, and the asymmetry of the feedback control actuator circuit are described separately. According to the two models, a method of bias self-calibration by using only the accelerometer data is proposed, based on the feedback voltage data of the accelerometer before and after modulating the DC biasing voltage (Vb) applied on its test mass. Two types of accelerometer biases are evaluated separately using in-orbit measurement data of a space electrostatic accelerometer. Based on the preliminary analysis, the bias of the accelerometer onboard of an experiment satellite is evaluated to be around 10-4 m/s2, about 4 orders of magnitude greater than the noise limit. Finally, considering the two asymmetries, a comprehensive bias model is analyzed. A modified method to directly calibrate the accelerometer comprehensive bias is proposed.

  16. MEMS capacitive accelerometer-based middle ear microphone.

    Science.gov (United States)

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  17. Interest of the MICROSTAR Accelerometer to improve the GRASP Mission.

    Science.gov (United States)

    Perrot, E.; Lebat, V.; Foulon, B.; Christophe, B.; Liorzou, F.; Huynh, P. A.

    2015-12-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept proposed by JPL to improve the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). By taking advantage of the new testing possibilities offer by the catapult facility at the ZARM drop tower, the ONERA's space accelerometer team proposes an up-dated version, called MICROSTAR, of its ultra sensitive electrostatic accelerometers which have contributed to the success of the last Earth's gravity missions GRACE and GOCE. Built around a cubic proof-mass, it provides the 3 linear accelerations with a resolution better than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz and the 3 angular accelerations about its 3 orthogonal axes with 5´10-10 rad.s-2/Hz1/2 resolution. Integrated at the centre of mass of the satellite, MICROSTAR improves the Precise Orbit Determination (POD) by accurate measurement of the non-gravitational force acting on the satellite. It offers also the possibility to calibrate the change in the position of the satellite center of mass with an accuracy better than 100 μm as demonstrated in the GRACE mission. Assuming a sufficiently rigid structure between the antennas and the accelerometer, its data can participate to reach the mission objective of 1 mm precision for the TRF position.

  18. Physical activity in adolescents – Accelerometer data reduction criteria

    DEFF Research Database (Denmark)

    Toftager, Mette; Breum, Lars; Kristensen, Peter Lund

    : number of valid days (1, 2, 3, 4, 5, 6 and 7days), daily wear time (6, 8, 9, 10 and 12 h/day) and non-wear time (10, 20, 30, 60 and 90 min of consecutive zeroes). The open source software Propero Actigraph Data Analyzer was used to compare the effects of the selected criteria on participant inclusion......Introduction: Accelerometry is increasingly being recognized as an accurate and reliable method to assess free-living physical activity (PA). However, reporting of accelerometer data reduction and methods remains inconsistent. In this study we investigated the impact of different data reduction...

  19. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    Science.gov (United States)

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  20. Applying macro design tools to the design of MEMS accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  1. Evolution of accelerometer methods for physical activity research.

    Science.gov (United States)

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report.

  2. Mechanically amplified MEMS optical accelerometer with FPI readout

    Science.gov (United States)

    Davies, Edward; George, David S.; Holmes, Andrew S.

    2014-03-01

    We have developed a silicon MEMS optical accelerometer in which the motion of the proof mass is mechanically amplified using a V-beam mechanism prior to transduction. The output motion of the V-beam is detected using a Fabry-Pérot interferometer (FPI) which is interrogated in reflection mode via a single-mode optical fibre. Mechanical amplification allows the sensitivity of the accelerometer to be increased without compromising the resonant frequency or measurement bandwidth. We have also devised an all-optical method for calibrating the return signal from the FPI, based on photothermal actuation of the V-beam structure using fibre-delivered light of a different wavelength. A finite-element model has been used to predict the relationship between the incident optical power and the cavity length at steady state, as well as the step response which determines the minimum time for calibration. Prototype devices have been fabricated with resonant frequencies above 10 kHz and approximately linear response for accelerations in the range 0.01 to 15 g.

  3. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-12-01

    Full Text Available This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA. This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ of 48 μg and the bias-instability of 4.8 μg have been achieved.

  4. Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer

    Directory of Open Access Journals (Sweden)

    Edimar Pedrosa Gomes

    2015-01-01

    Full Text Available Different factors can contribute to a sedentary lifestyle among hemodialysis (HD patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity.

  5. Physical activity in adolescents – Accelerometer data reduction criteria

    DEFF Research Database (Denmark)

    Toftager, Mette; Breum, Lars; Kristensen, Peter Lund

    and PA outcomes (mean cpm). The following parameters in the data reduction analyses were fixed: 30sec epoch, 24h duration, first registration accepted after 4h, maximum value 20,000cpm, and two activity epochs permitted in blocks of non-wear. Results: Accelerometer data were obtained from a total of 1...... 1 valid day of 6h wear time using a 10min non-wear criterion. The corresponding numbers using a 90min non-wear criterion were 20.6% and 99.4%. Lengthening the non-wear period decreases PA level (mean cpm) substantially, e.g. average PA was 641 cpm (5 days of 10h) using the 10min non-wear criterion...... compared to 570 cpm using 90min non-wear. No systematic differences in PA outcomes were found when comparing the range of days and hours. Discussion: We used a systematic approach to illustrate that even small inconsistencies in accelerometer data reduction can have substantial impact on compliance and PA...

  6. Free fall tests of the accelerometers of the MICROSCOPE mission

    Science.gov (United States)

    Liorzou, F.; Boulanger, D.; Rodrigues, M.; Touboul, P.; Selig, H.

    2014-09-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the Universality of free fall, the so-called Weak Equivalence Principle (WEP), with an expected accuracy better than 10-15. The test principle consists in comparing the accelerations of two proof masses of different composition in the Earth gravitational field. The payload embarks two pairs of test-masses made of Platinum Rhodium and Titanium alloys at the core of two dedicated coaxial electrostatic accelerometers. These instruments are under qualification for a launch in 2016. Their operations are only possible in microgravity environment which makes its validation on ground a real issue. In Europe, only the drop tower of the ZARM Institute provides a facility for experiments under conditions of weightlessness and offers the experimental conditions to verify the correct functioning of the MICROSCOPE payload. The height of the tower limits the “free fall” experiment period to 4.72 s. Under this strong constraint, the demonstration of the capability to control the test masses of the two coaxial electrostatic accelerometers is challenging. This paper describes the complete experimental set up and in which condition the test has been performed, then an analysis of a drop result is given with its interpretations.

  7. Shock margin testing of a one-axis MEMS accelerometer.

    Energy Technology Data Exchange (ETDEWEB)

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  8. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.

    Science.gov (United States)

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-02-19

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge.

  9. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Hidehiko Sekiya

    2016-02-01

    Full Text Available In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge.

  10. Huygens probe entry dynamic model and accelerometer data analysis

    Science.gov (United States)

    Colombatti, Giacomo; Aboudan, Alessio; Ferri, Francesca; Angrilli, Francesco

    2008-04-01

    During the first phase of Huygens arrival into Titan's atmosphere the probe is subjected to gravitational and aerodynamic forces in aerodynamic hypersonic regime. Atmospheric drag exerts a strong deceleration on the capsule measured by Huygens atmospheric structure instrument (HASI) servo accelerometer. A 6 DOF (Degree of Freedom) model of the Huygens probe entry dynamics has been developed and used for data analysis. The accelerometer data are analysed and the model allows the retrieval of dynamics information of Huygens probe from 1545 km altitude down to end of the entry phase. Probe's initial conditions (velocity and position) were refined to match the measured deceleration profile resulting in a different altitude at interface epoch with respect to those of the Cassini Navigation Team. Velocity and position of probe at interface epoch are compatible with those used by Descent Trajectory Working Group (DTWG). Measurements acquired before atmosphere detection are used to estimate probe's angular rate, bound attitude and characterise the angle of attack profile which results to be lower than 4∘ during the whole entry. Probe's spin calculated (6.98 RPM) is slightly different with respect to DTWG of 7.28 RPM but considering a 2% error in the Inertia matrix these results are inside the 1-σ error band.

  11. Mining for motivation: using a single wearable accelerometer to detect people's interests

    NARCIS (Netherlands)

    Englebienne, G.; Hung, H.

    2012-01-01

    This paper presents a novel investigation of how motion as measured with just a single wearable accelerometer is informative of people's interests and motivation during crowded social events. We collected accelerometer readings on a large number of people (32 and 46 people in two crowded social even

  12. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  13. Design, realization and characterization of a symmetrical triaxial capacitive accelerometer for medical applications

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Lotters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1997-01-01

    Small triaxial accelerometers are needed in the medical field for the monitoring of mobility. For this purpose, a new highly symmetrical inherently triaxial capacitive accelerometer has been designed. The basic structure of the device consists of six capacitors surrounding a central mass which is

  14. Assessing Physical Activity in Children with Asthma: Convergent Validity between Accelerometer and Electronic Diary Data

    Science.gov (United States)

    Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.

    2009-01-01

    Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…

  15. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations

    OpenAIRE

    Lyden, Kate; Kozey, Sarah L.; Staudenmeyer, John W.; Freedson, Patty S

    2010-01-01

    Numerous accelerometers and prediction methods are used to estimate energy expenditure (EE). Validation studies have been limited to small sample sizes in which participants complete a narrow range of activities and typically validate only one or two prediction models for one particular accelerometer.

  16. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  17. A new z-axis resonant micro-accelerometer based on electrostatic stiffness.

    Science.gov (United States)

    Yang, Bo; Wang, Xingjun; Dai, Bo; Liu, Xiaojun

    2015-01-05

    Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG) process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 µg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable.

  18. A New Z-axis Resonant Micro-Accelerometer Based on Electrostatic Stiffness

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2015-01-01

    Full Text Available Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 µg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable.

  19. The kinematics of the swing phase obtained from accelerometer and gyroscope measurements

    NARCIS (Netherlands)

    Heyn, Andreas; Mayagoitia, Ruth E.; Nene, Anand V.; Veltink, Peter H.

    1996-01-01

    The kinematics needed to calculate the knee moment during the initial swing phase were obtained from a set of eight leg-mounted uni-axial accelerometers and two gyroscopes. The angular and linear accelerations of shank and thigh were calculated from the signals of two accelerometers mounted on each

  20. Low Frequency Noise Measurement and Analysis of Capacitive Micro-Accelerometers: Temperature Effect

    Science.gov (United States)

    Mohd-Yasin, Faisal; Nagel, David J.; Ong, D. S.; Korman, Can E.; Chuah, H. T.

    2008-06-01

    A noise measurements of micro-accelerometers were performed using a special measurement system. A common spectral behavior of noise is found, with 1/ f noise dominating at low frequencies and white thermal noise being the limiting factor at higher frequencies. A temperature dependent and an acceleration dependant of the noise are found in the accelerometers, in agreement and contract of the theories, respectively.

  1. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.

    Science.gov (United States)

    Wundersitz, Daniel W T; Gastin, Paul B; Richter, Chris; Robertson, Samuel J; Netto, Kevin J

    2015-01-01

    The purpose of this study was to validate peak acceleration data from an accelerometer contained within a wearable tracking device while walking, jogging and running. Thirty-nine participants walked, jogged and ran on a treadmill while 10 peak accelerations per movement were obtained (n = 390). A single triaxial accelerometer measured resultant acceleration during all movements. To provide a criterion measure of acceleration, a 12-camera motion analysis (MA) system tracked the position of a retro-reflective marker affixed to the wearable tracking device. Peak raw acceleration recorded by the accelerometer significantly overestimated peak MA acceleration (P jog compared with walk and for run compared to both other movements. As the magnitude of acceleration increased, the strength of the relationship between the accelerometer and the criterion measure decreased. These results indicate that filtered accelerometer data provide an acceptable means of assessing peak accelerations, in particular for walking and jogging.

  2. Physiological acoustic sensing based on accelerometers: a survey for mobile healthcare.

    Science.gov (United States)

    Hu, Yating; Kim, Eric Guorui; Cao, Gang; Liu, Sheng; Xu, Yong

    2014-11-01

    This paper reviews the applications of accelerometers on the detection of physiological acoustic signals such as heart sounds, respiratory sounds, and gastrointestinal sounds. These acoustic signals contain a rich reservoir of vital physiological and pathological information. Accelerometer-based systems enable continuous, mobile, low-cost, and unobtrusive monitoring of physiological acoustic signals and thus can play significant roles in the emerging mobile healthcare. In this review, we first briefly explain the operation principle of accelerometers and specifications that are important for mobile healthcare. Applications of accelerometer-based monitoring systems are then presented. Next, we review a variety of accelerometers which have been reported in literatures for physiological acoustic sensing, including both commercial products and research prototypes. Finally, we discuss some challenges and our vision for future development.

  3. Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers

    Science.gov (United States)

    Pham, Cuong; Olivier, Patrick

    Within the context of an endeavor to provide situated support for people with cognitive impairments in the kitchen, we developed and evaluated classifiers for recognizing 11 actions involved in food preparation. Data was collected from 20 lay subjects using four specially designed kitchen utensils incorporating embedded 3-axis accelerometers. Subjects were asked to prepare a mixed salad in our laboratory-based instrumented kitchen environment. Video of each subject's food preparation activities were independently annotated by three different coders. Several classifiers were trained and tested using these features. With an overall accuracy of 82.9% our investigation demonstrated that a broad set of food preparation actions can be reliably recognized using sensors embedded in kitchen utensils.

  4. Monolithic CMOS-MEMS integration for high-g accelerometers

    Science.gov (United States)

    Narasimhan, Vinayak; Li, Holden; Tan, Chuan Seng

    2014-10-01

    This paper highlights work-in-progress towards the conceptualization, simulation, fabrication and initial testing of a silicon-germanium (SiGe) integrated CMOS-MEMS high-g accelerometer for military, munition, fuze and shock measurement applications. Developed on IMEC's SiGe MEMS platform, the MEMS offers a dynamic range of 5,000 g and a bandwidth of 12 kHz. The low noise readout circuit adopts a chopper-stabilization technique implementing the CMOS through the TSMC 0.18 µm process. The device structure employs a fully differential split comb-drive set up with two sets of stators and a rotor all driven separately. Dummy structures acting as protective over-range stops were designed to protect the active components when under impacts well above the designed dynamic range.

  5. Attitude angular measurement system based on MEMS accelerometer

    Science.gov (United States)

    Luo, Lei

    2014-09-01

    For the purpose of monitoring the attitude of aircraft, an angular measurement system using a MEMS heat convection accelerometer is presented in this study. A double layers conditioning circuit that center around the single chip processor is designed and built. Professional display software with the RS232 standard is used to communicate between the sensor and the computer. Calibration experiments were carried out to characterize the measuring system with the range of - 90°to +90°. The curves keep good linearity with the practical angle. The maximum deviation occurs at the 90°where the value is 2.8°.The maximum error is 1.6% and the repeatability is measured to be 2.1%. Experiments proved that the developed measurement system is capable of measuring attitude angle.

  6. Stress relaxation insensitive designs for metal compliant mechanism threshold accelerometers

    Directory of Open Access Journals (Sweden)

    Carlos Vilorio

    2015-12-01

    Full Text Available We present two designs for metal compliant mechanisms for use as threshold accelerometers which require zero external power. Both designs rely on long, thin flexures positioned orthogonally to a flat body. The first design involves cutting or stamping a thin spring-steel sheet and then bending elements to form the necessary thin flexors. The second design uses precut spring-steel flexure elements mounted into a mold which is then filled with molten tin to form a bimetallic device. Accelerations necessary to switch the devices between bistable states were measured using a centrifuge. Both designs showed very little variation in threshold acceleration due to stress relaxation over a period of several weeks. Relatively large variations in threshold acceleration were observed for devices of the same design, most likely due to variations in the angle of the flexor elements relative to the main body of the devices.

  7. Vehicle Maneuver Detection with Accelerometer-Based Classification

    Directory of Open Access Journals (Sweden)

    Javier Cervantes-Villanueva

    2016-09-01

    Full Text Available In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  8. Movement prediction using accelerometers in a human population

    DEFF Research Database (Denmark)

    Xiao, L.; He, Bing; Koster, A

    2016-01-01

    the data across subjects by matching the standing up and lying down portions of triaxial accelerometry data. This is necessary to account for differences between the variability in the position of the device relative to gravity, which are induced by body shape and size as well as by the ambiguous...... definition of device placement. We also normalize the data at the device level to ensure that the magnitude of the signal at rest is similar across devices. After normalization we use overlapping movelets (segments of triaxial accelerometry time series) extracted from some of the subjects to predict...... the movement type of the other subjects. The problem was motivated by and is applied to a laboratory study of 20 older participants who performed different activities while wearing accelerometers at the hip. Prediction results based on other people's labeled dictionaries of activity performed almost as well...

  9. ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer

    Science.gov (United States)

    Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.

    2003-01-01

    In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.

  10. A silicon micromachined piezoresistive accelerometer for health and condition monitoring

    Science.gov (United States)

    Walsh, Kevin M.; Henderson, H. Thurman

    1990-01-01

    Silicon micromachining etching techniques were utilized to batch-fabricate hundreds of general purpose microaccelerometers on a single silicon substrate. Piezoresistive sensing elements were aligned to the back-side patterns using an IR mask aligner and then diffused into the areas of maximum stress. Capping of the two-arm cantilever beam structure was achieved using a combination of electrostatic bonding and low temperature glass films. Overrange protection, critical damping, and overall protection from the outside environment are achieved by controlling the cavity depths of the top and bottom covers. Temperature compensation, amplification, and filtering are performed by a companion LSI chip that is interfaced to the accelerometer by conventional wire-bonding techniques.

  11. Improving energy expenditure estimation by using a triaxial accelerometer.

    Science.gov (United States)

    Chen, K Y; Sun, M

    1997-12-01

    In our study of 125 subjects (53 men and 72 women) for two 24-h periods, we validated energy expenditure (EE), estimated by a triaxial accelerometer (Tritrac-R3D), by using a whole-room indirect calorimeter under close-to-normal living conditions. The estimated EE was correlated with the measured total EE for the 2 days (r = 0. 925 and r = 0.855; P linear and a nonlinear model to predict EE by using the acceleration components from the Tritrac. Predicted EE was significantly improved with both models in estimating total EE, total EE for physical activities, EE in low-intensity activities, minute-by-minute averaged relative difference, and minute-by-minute SEE (all P acceleration, EE can be estimated with higher accuracy (averaged SEE = 0.418 W/kg) than with the Tritrac model.

  12. Circular Piezoelectric Accelerometer for High Band Width Application

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Larsen, Jack; Lou-Møller, Rasmus

    2009-01-01

    is used as the sensing material on top of the silicon membrane. Accelerations in the out of plane direction induce a force on the seismic mass bending the membrane and a potential difference is measured in the out of plane direction of the stressed PZT. A resonance frequency of 23.50 kHz, a charge......An uniaxial bulk-micromachined piezoelectric MEMS accelerometer intended for high bandwidth application is fabricated and characterized. A circular seismic mass (radius = 1200 ¿m) is suspended by a 20 ¿m thick annular silicon membrane (radius = 1800 ¿m). A 24 ¿m PZT screen printed thick film...

  13. Validation of the Vivago Wrist-Worn accelerometer in the assessment of physical activity

    Directory of Open Access Journals (Sweden)

    Vanhelst Jérémy

    2012-08-01

    Full Text Available Abstract Background Most accelerometers are worn around the waist (hip or lower back to assess habitual physical activity. Wrist-worn accelerometers may be an alternative to the waist-worn monitors and may improve compliance in studies with prolonged wear. The aim of this study was to validate the Vivago® Wrist-Worn Accelerometer at various intensities of physical activity (PA in adults. Methods Twenty-one healthy adults aged 20–34 years were recruited for the study. Accelerometer data and oxygen uptake (VO2 were measured at sedentary, light, moderate and vigorous levels of PA. Results Activity categories and accelerometer counts were: sedentary, 0–15 counts·min−1; light, 16–40 counts·min−1; moderate, 41–85 counts·min−1; and vigorous activity, >; 85 counts·min−1. ANOVA repeated measures was used to determine the relationship between accelerometry data output and oxygen consumption (r = .89; p  Conclusions Results of the study suggest that the Vivago® wrist-worn accelerometer is a valid measure of PA at varying levels of intensity. The study has also defined threshold values at 4 intensities and hence te Vivago® accelerometer may be used to quantify PA in free living conditions among adults. This device has possible application in treating a variety of important health concerns.

  14. Triaxial Accelerometer Error Coefficients Identification with a Novel Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Yanbin Gao

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligence techniques, which is widely utilized for optimization purposes. Triaxial accelerometer error coefficients are relatively unstable with the environmental disturbances and aging of the instrument. Therefore, identifying triaxial accelerometer error coefficients accurately and being with lower costs are of great importance to improve the overall performance of triaxial accelerometer-based strapdown inertial navigation system (SINS. In this study, a novel artificial fish swarm algorithm (NAFSA that eliminated the demerits (lack of using artificial fishes’ previous experiences, lack of existing balance between exploration and exploitation, and high computational cost of AFSA is introduced at first. In NAFSA, functional behaviors and overall procedure of AFSA have been improved with some parameters variations. Second, a hybrid accelerometer error coefficients identification algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for triaxial accelerometer error coefficients identification. Furthermore, the NAFSA-identified coefficients are testified with 24-position verification experiment and triaxial accelerometer-based SINS navigation experiment. The priorities of MCS-NAFSA are compared with that of conventional calibration method and optimal AFSA. Finally, both experiments results demonstrate high efficiency of MCS-NAFSA on triaxial accelerometer error coefficients identification.

  15. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    Science.gov (United States)

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  16. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    Science.gov (United States)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  17. Quasi-Static Calibration Method of a High-g Accelerometer.

    Science.gov (United States)

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-02-20

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%.

  18. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.

    Science.gov (United States)

    Tracy, Dustin J; Xu, Zhiyi; Choi, Leena; Acra, Sari; Chen, Kong Y; Buchowski, Maciej S

    2014-01-01

    Recent interest in sedentary behavior and technological advances expanded use of watch-size accelerometers for continuous monitoring of physical activity (PA) over extended periods (e.g., 24 h/day for 1 week) in studies conducted in natural living environment. This approach necessitates the development of new methods separating bedtime rest and activity periods from the accelerometer recordings. The goal of this study was to develop a decision tree with acceptable accuracy for separating bedtime rest from activity in youth using accelerometer placed on waist or wrist. Minute-by-minute accelerometry data were collected from 81 youth (10-18 years old, 47 females) during a monitored 24-h stay in a whole-room indirect calorimeter equipped with a force platform covering the floor to detect movement. Receiver Operating Characteristic (ROC) curve analysis was used to determine the accelerometer cut points for rest and activity. To examine the classification differences, the accelerometer bedtime rest and activity classified by the algorithm in the development group (n = 41) were compared with actual bedtime rest and activity classification obtained from the room calorimeter-measured metabolic rate and movement data. The selected optimal bedtime rest cut points were 20 and 250 counts/min for the waist- and the wrist-worn accelerometer, respectively. The selected optimal activity cut points were 500 and 3,000 counts/min for waist and wrist-worn accelerometers, respectively. Bedtime rest and activity were correctly classified by the algorithm in the validation group (n = 40) by both waist- (sensitivity: 0.983, specificity: 0.946, area under ROC curve: 0. 872) and wrist-worn (0.999, 0.980 and 0.943) accelerometers. The decision tree classified bedtime rest correctly with higher accuracy than commonly used automated algorithm for both waist- and wrist-warn accelerometer (all prest from activity in youth.

  19. Comprehensive Calibration of Strap-Down Tri-Axis Accelerometer Unit

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-02-01

    Full Text Available This paper proposes a comprehensive calibration method to improve the precision of a strap-down tri-axis accelerometer unit, in which parameters are divided into static and dynamic ones. The contribution of the manuscript is that it solves the problem of inappropriate installation and the size effect error for tri-axis accelerometer unit at high speed by using static and dynamic calibration method, respectively. The experiment results show the measuring accuracy of accelerometers is increased by more than one order of magnitude, and the navigation precision is increased by more than two orders of magnitude.

  20. Technical note: Use of accelerometers to describe gait patterns in dairy calves

    DEFF Research Database (Denmark)

    Passillé, A. M. de; Jensen, Margit Bak; Chapinal, N.

    2010-01-01

    Developments in accelerometer technology offer new opportunities for automatic monitoring of animal behavior. Until now, commercially available accelerometers have been used to measure walking in adult cows but have failed to identify walking in calves. We described the pattern of acceleration...... associated with various gaits in calves and tested whether measures of acceleration could be used to count steps and distinguish among gait types. A triaxial accelerometer (sampling at 33 readings/s with maximum measurement at +/-3.2 g) was attached to 1 hind leg of 7 dairy calves, and each calf was walked...

  1. Self Diagnostic Accelerometer for Mission Critical Health Monitoring of Aircraft and Spacecraft Engines

    Science.gov (United States)

    Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew

    2009-01-01

    A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.

  2. MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation.

    Science.gov (United States)

    Zabit, Usman; Bernal, Olivier D; Bosch, Thierry; Bony, Francis

    2011-03-01

    A self-mixing (SM) laser displacement sensor coupled with a microelectromechanical system (MEMS) accelerometer is presented that enables reliable displacement measurements even in the case of a nonstationary laser head. The proposed technique allows the use of SM-based sensors for embedded applications. The system resolution is currently limited to approximately 300 nm due to the noise characteristics of the currently used accelerometer. It is shown that this resolution can be greatly improved by the use of a low noise accelerometer.

  3. A Novel Digital Closed Loop MEMS Accelerometer Utilizing a Charge Pump

    Directory of Open Access Journals (Sweden)

    Yixing Chu

    2016-03-01

    Full Text Available This paper presents a novel digital closed loop microelectromechanical system (MEMS accelerometer with the architecture and experimental evaluation. The complicated timing diagram or complex power supply in published articles are circumvented by using a charge pump system of adjustable output voltage fabricated in a 2P4M 0.35 µm complementary metal-oxide semiconductor (CMOS process, therefore making it possible for interface circuits of MEMS accelerometers to be integrated on a single die on a large scale. The output bitstream of the sigma delta modulator is boosted by the charge pump system and then applied on the feedback comb fingers to form electrostatic forces so that the MEMS accelerometer can operate in a closed loop state. Test results agree with the theoretical formula nicely. The nonlinearity of the accelerometer within ±1 g is 0.222% and the long-term stability is about 774 µg.

  4. CMOS-MEMS Microgravity Accelerometer with High-Precision DC Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR project a high-sensitivity low-noise all-silicon CMOS-MEMS accelerometer for quasi-steady measurements of accelerations at sub 1 micro-g levels...

  5. CMOS-MEMS Microgravity Accelerometer with High-Precision DC Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR effort initiates development of a high-sensitivity low-noise all-silicon CMOS-MEMS accelerometer for quasi-steady measurements of accelerations at...

  6. A closed-loop MEMS accelerometer with capacitive sensing interface ASIC

    Science.gov (United States)

    Liu, Minjie; Chi, Baoyong; Liu, Yunfeng; Dong, Jingxin

    2013-01-01

    A closed-loop MEMS accelerometer with capacitive sensing interface ASIC (application specific integrated circuit) is presented. The parasitic-insensitive switched-capacitor sample-charge architecture is used to implement the capacitive sensing, which is crucial to the case where sensor and interface ASIC are combined in a two-chip approach to implement the closed-loop MEMS accelerometer. Based on the 0.35 µm CMOS sensing interface ASIC, an accelerometer prototype has been implemented, in which force-rebalance with the lag-proportional-integral controller is applied to improve the system stability and frequency response performance, and the testing results indicate the sensitivity of the presented accelerometer is 650 mV/g, the full measurement range ±15 g, the non-linearity 0.098% and the noise floor 23.17 µg/rt-Hz.

  7. A Novel Digital Closed Loop MEMS Accelerometer Utilizing a Charge Pump.

    Science.gov (United States)

    Chu, Yixing; Dong, Jingxin; Chi, Baoyong; Liu, Yunfeng

    2016-03-18

    This paper presents a novel digital closed loop microelectromechanical system (MEMS) accelerometer with the architecture and experimental evaluation. The complicated timing diagram or complex power supply in published articles are circumvented by using a charge pump system of adjustable output voltage fabricated in a 2P4M 0.35 µm complementary metal-oxide semiconductor (CMOS) process, therefore making it possible for interface circuits of MEMS accelerometers to be integrated on a single die on a large scale. The output bitstream of the sigma delta modulator is boosted by the charge pump system and then applied on the feedback comb fingers to form electrostatic forces so that the MEMS accelerometer can operate in a closed loop state. Test results agree with the theoretical formula nicely. The nonlinearity of the accelerometer within ±1 g is 0.222% and the long-term stability is about 774 µg.

  8. Quantified reflex strategy using an iPod as a wireless accelerometer application.

    Science.gov (United States)

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren

    2012-01-01

    A primary aspect of a neurological evaluation is the deep tendon reflex, frequently observed through the patellar tendon reflex. The reflex response provides preliminary insight as to the status of the nervous system. A quantified reflex strategy has been developed, tested, and evaluated though the use of an iPod as a wireless accelerometer application integrated with a potential energy device to evoke the patellar tendon reflex. The iPod functions as a wireless accelerometer equipped with robust software, data storage, and the capacity to transmit the recorded accelerometer waveform of the reflex response wirelessly through email for post-processing. The primary feature of the reflex response acceleration waveform is the maximum acceleration achieved subsequent to evoking the patellar tendon reflex. The quantified reflex strategy using an iPod as a wireless accelerometer application yields accurate and consistent quantification of the reflex response.

  9. A state-the-art report on the development of the piezoelectric accelerometer sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Yun; Oh, Suk Jin; Kim, Kyung Hoh; Kim, Sun Jae; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    A state-of-the art surveys on the application and the manufacturing technology of a piezoelectric accelerometer sensor. An accelerometer sensor is applied to the monitoring of acoustic leak, reactor coolant pump vibration and loose parts in the reactor, and the measurement of vibration and stress of large equipments such as pump, tubes, etc.. The performance of an accelerometer consisted of piezoelectric ceramic, mass, base, case and cable is depend on the characteristics of each component and the assembling method. Sensitivity, linearity and dynamic range, transverse sensitivity, phase response, transient temperature response, frequency response, base strain sensitivity, magnetic sensitivity, acoustic sensitivity, humidity effect and radiation effect must be measured and evaluated for conforming quality of the developed accelerometer sensor. 35 figs., 29 tabs., 38 refs. (Author).

  10. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  11. Electrostatic accelerometer with bias rejection for Gravitation and Solar System physics

    CERN Document Server

    Lenoir, Benjamin; Foulon, Bernard; Christophe, Bruno; Lamine, Brahim; Reynaud, Serge

    2010-01-01

    Radio tracking of interplanetary probes is an important tool for navigation purposes as well as for testing the laws of physics or exploring planetary environments. The addition of an accelerometer on board a spacecraft provides orbit determination specialists and physicists with an additional observable of great interest: it measures the value of the non-gravitational acceleration acting on the spacecraft, i.e. the departure of the probe from geodesic motion. This technology is now routinely used for geodesy missions in Earth orbits with electrostatic accelerometers. This article proposes a technological evolution which consists in adding a subsystem to remove the bias of an electrostatic accelerometer. It aims at enhancing the scientific return of interplanetary missions in the Solar System, from the point of view of fundamental physics as well as Solar System physics. The main part of the instrument is an electrostatic accelerometer called MicroSTAR, which inherits mature technologies based on ONERA's expe...

  12. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a compact, high-precision, single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Our...

  13. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    Directory of Open Access Journals (Sweden)

    Jingcheng Liu

    2013-08-01

    Full Text Available A signal mass piezoelectric six-degrees-of-freedom (six-DOF accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  14. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers

    Directory of Open Access Journals (Sweden)

    De Bourdeaudhuij Ilse

    2011-06-01

    Full Text Available Abstract Background Accelerometers are considered to be the most promising tool for measuring physical activity (PA in free-living young children. So far, no studies have examined the feasibility and validity of accelerometer measurements in children under 3 years of age. Therefore, the purpose of the present study was to examine the feasibility and validity of accelerometer measurements in toddlers (1- to 3-year olds. Methods Forty-seven toddlers (25 boys; 20 ± 4 months wore a GT1M ActiGraph accelerometer for 6 consecutive days and parental perceptions of the acceptability of wearing the monitor were assessed to examine feasibility. To investigate the validity of the ActiGraph and the predictive validity of three ActiGraph cut points, accelerometer measurements of 31 toddlers (17 boys; 20 ± 4 months during free play at child care were compared to directly observed PA, using the Observational System for Recording Physical Activity in Children-Preschool (OSRAC-P. Validity was assessed using Pearson and Spearman correlations and predictive validity using area under the Receiver Operating Characteristic curve (ROC-AUC. Results The feasibility examination indicated that accelerometer measurements of 30 toddlers (63.8% could be included with a mean registration time of 564 ± 62 min during weekdays and 595 ± 83 min during weekend days. According to the parental reports, 83% perceived wearing the accelerometer as 'not unpleasant and not pleasant' and none as 'unpleasant'. The validity evaluation showed that mean ActiGraph activity counts were significantly and positively associated with mean OSRAC-P activity intensity (r = 0.66; p Conclusions The present findings suggest that ActiGraph accelerometer measurements are feasible and valid for quantifying PA in toddlers. However, further research is needed to accurately identify PA intensities in toddlers using accelerometry.

  15. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.

    Science.gov (United States)

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert

    2016-05-01

    Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.

  16. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women.

    Science.gov (United States)

    Kinnunen, Tarja I; Tennant, Peter W G; McParlin, Catherine; Poston, Lucilla; Robson, Stephen C; Bell, Ruth

    2011-06-27

    Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Pregnant women (n = 58) with body mass index ≥25 kg/m(2) at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women.

  17. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women

    Directory of Open Access Journals (Sweden)

    McParlin Catherine

    2011-06-01

    Full Text Available Abstract Background Inexpensive, reliable objective methods are needed to measure physical activity (PA in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Methods Pregnant women (n = 58 with body mass index ≥25 kg/m2 at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Results Pedometer step counts correlated moderately (r = 0.36 to 0.54 with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37. However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Conclusions Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women.

  18. Measurement of peak impact loads differ between accelerometers - Effects of system operating range and sampling rate.

    Science.gov (United States)

    Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C

    2017-06-14

    A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Modeling perceived stress via HRV and accelerometer sensor streams.

    Science.gov (United States)

    Wu, Min; Cao, Hong; Nguyen, Hai-Long; Surmacz, Karl; Hargrove, Caroline

    2015-08-01

    Discovering and modeling of stress patterns of human beings is a key step towards achieving automatic stress monitoring, stress management and healthy lifestyle. As various wearable sensors become popular, it becomes possible for individuals to acquire their own relevant sensory data and to automatically assess their stress level on the go. Previous studies for stress analysis were conducted in the controlled laboratory and clinic settings. These studies are not suitable for stress monitoring in one's daily life as various physical activities may affect the physiological signals. In this paper, we address such issue by integrating two modalities of sensors, i.e., HRV sensors and accelerometers, to monitor the perceived stress levels in daily life. We gathered both the heart and the motion data from 8 participants continuously for about 2 weeks. We then extracted features from both sensory data and compared the existing machine learning methods for learning personalized models to interpret the perceived stress levels. Experimental results showed that Bagging classifier with feature selection is able to achieve a prediction accuracy 85.7%, indicating our stress monitoring on daily basis is fairly practical.

  20. Measuring (bio)physical tree properties using accelerometers

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; Gentine, Pierre; Selker, John; van de Giesen, Nick

    2017-04-01

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of heat, water, and CO2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree dynamics are often expensive, or difficult due to challenging environments. We demonstrate the potential of measuring (bio)physical properties of trees using robust and affordable acceleration sensors. Tree sway is dependent on e.g. mass and wind energy absorption of the tree. By measuring tree acceleration we can relate the tree motion to external loads (e.g. precipitation), and tree (bio)physical properties (e.g. mass). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, precipitation, and canopy drag. This presentation aims to show the concept of using accelerometers to measure tree dynamics, and we acknowledge that the presented example applications is not an exhaustive list. Further analyses are the scope of current research, and we hope to inspire others to explore additional applications.

  1. Applications of ISA accelerometer for the exploration of the Moon

    Science.gov (United States)

    Iafolla, Valerio; Peron, Roberto; Nozzoli, Sergio; Santoli, Francesco; Fiorenza, Emiliano; Lefevre, Carlo; Reale, Andrea

    The recent years have seen again the Moon as a target for exploration activities. The reasons for this new wave are manifold, from the knowledge of formation and evolution of the Moon towards its current state to the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data that constrain possible theories of gravitation. ISA (Italian Spring Accelerometer) can provide an important tool in this respect. Thanks to its concept it works both in-orbit and on-ground, with essentially the same configuration. It therefore can be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. Two options have been considered. The first one is the support to space gravimetric measurements to be performed in the context of the proposed MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre) mission. The second one concerns ISA as a candidate seismometer to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. Both options will be discussed, giving emphasis on the integration of the instrument in the overall mission scenarios.

  2. MEMS Accelerometers Sensors: an Application in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Daniel CORRÊA

    2010-09-01

    Full Text Available The measurement of a particular human body member position is extremely important in many applications. The human behavior understanding typically involves the body posture analysis or estimation, as well as the generated corresponding gestures. This behavior characterization allows analyzing, interpreting, and animating human actions and therefore enables us the use of experimental methodologies. Using the virtual reality devices to facilitate people’s lives, they can help to train and improve the actions of an Olympic athlete, for example and imitation of human actions by robotic systems. The systems development to monitor human body members’ movements is a growing interesting area, both in entertainment and in systems to help physically disabled people, as that developing assistive technology. To contribute to this area, this paper presents the experimental development of an instrumented glove prototype of low cost for the recognition of hand inclination movements, using a Micro-Electro-Mechanical Systems (MEMS accelerometer, by virtual reality concepts for demonstration in real time. We present the hardware that was developed, the calibration procedures, the achieved results with their statistical corresponding validation. The results allowed to state that the system is suitable for the inclination measurement in a 2D plan, thus allowing its use in entertainment systems and as an auxiliary device for assistive technology system.

  3. Optimising Performance of a Cantilever-type Micro Accelerometer Sensor

    Directory of Open Access Journals (Sweden)

    B.P. Joshi

    2007-05-01

    Full Text Available A technique for optimising performance of cantilever-type micro acceleration sensor hasbeen developed. Performance of a sensor is judged mainly by its sensitivity and bandwidth.Maximising product of these two important parameters of inertial sensors helps to optimise thesensor performance. It is observed that placement of a lumped mass (add-mass on the sensor'sproof-mass helps to control both sensitivity and the first resonant frequency of the cantileverstructure to the designer's choice. Simulation and modelling of various dimensions of rectangularstructures for acceleration sensor with this novel add-mass technique are discussed. CoventorwareMEMSCAD has been used to model, simulate, and carry out FEM analysis. A simple analyticalmodel is discussed to elaborate the mechanics of cantilever-type micro accelerometer. Thecomparison of the results obtained from analytical model and the finite element simulations revealthese to be in good agreement. The advantages of this technique for choosing the two mostimportant sensor parameters (i.e., sensitivity and bandwidth of an inertial sensor are brought out.

  4. On-Body Smartphone Localization with an Accelerometer

    Directory of Open Access Journals (Sweden)

    Kaori Fujinami

    2016-03-01

    Full Text Available A user of a smartphone may feel convenient, happy, safe, etc., if his/her smartphone works smartly based on his/her context or the context of the device. In this article, we deal with the position of a smartphone on the body and carrying items like bags as the context of a device. The storing position of a smartphone impacts the performance of the notification to a user, as well as the measurement of embedded sensors, which plays an important role in a device’s functionality control, accurate activity recognition and reliable environmental sensing. In this article, nine storing positions, including four types of bags, are subject to recognition using an accelerometer on a smartphone. In total, 63 features are selected as a set of features among 182 systematically-defined features, which can characterize and discriminate the motion of a smartphone terminal during walking. As a result of leave-one-subject-out cross-validation, an accuracy of 0.801 for the nine-class classification is shown, while an accuracy of 0.859 is obtained against five classes, which merges the subclasses of trouser pockets and bags. We also show the basic performance evaluation to select the proper window size and classifier. Furthermore, the analysis of the contributive features is presented.

  5. Classification of knee arthropathy with accelerometer-based vibroarthrography.

    Science.gov (United States)

    Moreira, Dinis; Silva, Joana; Correia, Miguel V; Massada, Marta

    2016-01-01

    One of the most common knee joint disorders is known as osteoarthritis which results from the progressive degeneration of cartilage and subchondral bone over time, affecting essentially elderly adults. Current evaluation techniques are either complex, expensive, invasive or simply fails into detection of small and progressive changes that occur within the knee. Vibroarthrography appeared as a new solution where the mechanical vibratory signals arising from the knee are recorded recurring only to an accelerometer and posteriorly analyzed enabling the differentiation between a healthy and an arthritic joint. In this study, a vibration-based classification system was created using a dataset with 92 healthy and 120 arthritic segments of knee joint signals collected from 19 healthy and 20 arthritic volunteers, evaluated with k-nearest neighbors and support vector machine classifiers. The best classification was obtained using the k-nearest neighbors classifier with only 6 time-frequency features with an overall accuracy of 89.8% and with a precision, recall and f-measure of 88.3%, 92.4% and 90.1%, respectively. Preliminary results showed that vibroarthrography can be a promising, non-invasive and low cost tool that could be used for screening purposes. Despite this encouraging results, several upgrades in the data collection process and analysis can be further implemented.

  6. Can accelerometers detect mass variations in Amazonian trees?

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Gentine, Pierre; Guerin, Marceau; Hut, Rolf; Oliveira, Rafael; van de Giesen, Nick

    2016-04-01

    The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Recent studies have found diurnal variations in radar backscatter over vegetated areas, which might be attributed to mass changes of the vegetation layer. Field measurements are required to study the driving processes. This study aims to use measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest. Trees were selected to cover a broad range of wood density. Using spectral analysis, the governing frequencies in the acceleration time series were found. The governing frequencies showed a diurnal pattern, as well as a change during precipitation events. Our results suggest that we can separate and potentially quantify tree mass changes due to (1) internal water redistribution and (2) intercepted precipitation. This will allow further investigation of the effect of precipitation and water stress on tree dynamics in forest canopies.

  7. BepiColombo ISA accelerometer: ready for launch

    Science.gov (United States)

    Francesco, Santoli; Valerio, Iafolla; Emiliano, Fiorenza; Carlo, Lefevre; Lucchesi David, M.; Marco, Lucente; Carmelo, Magnafico; Sergio, Nozzoli; Roberto, Peron

    2016-04-01

    To be launched in 2017, ESA mission BepiColombo will perform a thorough study of the planet Mercury and its environment. Among the wide range of its scientific objectives, an important set is constituted by the so-called Radio Science Experiments (RSE), which will study the gravitational field and rotation of the planet, and will perform very precise tests of general relativity theory. The fulfilment of these scientific objectives will be made possible by a precise orbit determination of the Mercury Planetary Orbiter (MPO), at the same time estimating a number of relevant parameters. In order to reach the required level of accuracy in recovering these parameters, the data coming from the high-sensitivity ISA (Italian Spring Accelerometer) instrument onboard the MPO probe will be used: the first time for a deep-space probe. After a long path of design and development, the instrument is now ready for integration into MPO. Following a brief description of the RSE in the context of the mission, the instrument and its capabilities will be reviewed. Emphasis will be given to the foreseen strategies for its operation in the various phases of the mission, along with the manifold calibration possibilities.

  8. Free Fall tests for the qualification of Ultra sensitive accelerometers for space missions

    Science.gov (United States)

    Françoise, Liorzou; Pierre, Marque Jean; Santos Rodrigues, Manuel

    ONERA is developing since a long time accelerometers for space applications in the field of Earth Observations and Fundamental Physics. The more recent examples are the accelerom-eters embarked on the ESA GOCE mission launched in March 2009, dedicated to the Earth precise gravity field mapping, and the accelerometers of the CNES MICROSCOPE mission dedicated to the in orbit test of the Equivalence Principle. Those Ultra sensitive accelerome-ters are optimised for the space environment and operate over an acceleration range less than 10-6 ms-2 with an outstanding accuracy around 10-12 ms-2Hz1/2. Their testability on ground requires creating a low gravity environment in order to verify their functionalities and partially their performances before their delivery before launch. Free fall tests are the only way to ob-tain such a microgravity environment in representating space conditions. The presentation will show in a first part the results of the free fall test campaigns performed in the 120-meter high ZARM drop tower that have led to the qualification of the GOCE accelerometers. In a second part, it will describe the test plan being conducted to assess the best free-fall environment for the MICROSCOPE accelerometers. In particular, some efforts have been paid by ZARM and ONERA to develop a dedicated "free-flyer"capsule, in order to reduce the residual drag acceleration along the fall. Some results from the preliminary tests performed in preparation to the MICROSCOPE qualification campaign will be also presented.

  9. Improvement of the Planetary Gravitational Potentiel Field Knwoledge with Accurate Electrostatic Accelerometer / Gradiometer

    Science.gov (United States)

    Christophe, B.; Lebat, V.; Foulon, B.; Liorzou, F.; Perrot, E.; Boulanger, D.; Hardy, E.

    2014-12-01

    ONERA has developed since several years the most accurate accelerometers for the geodesy mission. The accelerometers are still operational in the GRACE mission. Their successors for the GRACE-FO mission are under manufacturing and will fly in 2017. Finally, the GOCE mission has proved the interest of gradiometer for a direct measurement of the gravity field.Now, ONERA proposes a new design of accelerometer, MicroSTAR, for interplanetary mission. It inherits of the same technology but with reduced mass and consumption. It has been proposed in several missions towards outer planets in order to test the deviation to the relativity general over large distance to the sun (with the addition of a bias rejection system). But the same instrument could be interesting to improve our knowledge of the planetary gravitational potential field, allowing a better understanding of the planet interior composition. The success of using accelerometer for geodesy mission could be imported in the planetary science.The paper will present the accuracy achievable on the gravity potential field according to different accelerometer configurations (one accelerometer, one gradiometer arm or a complete 3-axis gradiometer). Then, the instrument will be described and the integration of the instrument inside an interplanetary probe will be evoked.

  10. Improved mapping of planetary gravitational field with an electrostatic accelerometer/gradiometer

    Science.gov (United States)

    Foulon, Bernard; Huynh, Phuong-Anh; Liorzou, Francoise; Christophe, Bruno; Hardy, Emilie; Boulanger, Damien; Lebat, Vincent; Perrot, Eddy

    2015-04-01

    ONERA has a proven record spanning several years in developing the most accurate accelerometers for geodesy missions. They are still operational in the GRACE mission and their successors for the GRACE-FO mission will fly in 2017. Finally, the GOCE mission has shown the benefit of using a gradiometer for the direct measurement of the gravity field. Now, ONERA proposes a new accelerometer design, MicroSTAR, for interplanetary missions. This design based on the same technology as for the GRACE and GOCE space missions, with the notable addition of a bias rejection system, has a reduced mass and consumption. The accelerometer is embarked on Uranus Pathfinder (mission proposal for Cosmic M4) as up-scope instrument to achieve two scientific objectives: 1) to determine the gravity fields of Uranus and the satellites, allowing for a better understanding of the planet interior composition, 2) to test gravity at the largest possible length scales to search for deviations from General Relativity. The success of using accelerometer for geodesy mission could be imported in the planetary science field. The poster details the accuracy which can be achieved on the gravity potential field according to different accelerometer configurations. It describes the instrument and its integration inside an interplanetary probe. Finally, it explains the benefit of using this electrostatic accelerometer complementary to radio science technology for improved planetary gravitational field measurements.

  11. Synthesis of the System Modeling and Signal Detecting Circuit of a Novel Vacuum Microelectronic Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhengguo Shang

    2009-05-01

    Full Text Available A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %.

  12. Use of a Wireless Network of Accelerometers for Improved Measurement of Human Energy Expenditure

    Directory of Open Access Journals (Sweden)

    Alexander H. Montoye

    2014-04-01

    Full Text Available Single, hip-mounted accelerometers can provide accurate measurements of energy expenditure (EE in some settings, but are unable to accurately estimate the energy cost of many non-ambulatory activities. A multi-sensor network may be able to overcome the limitations of a single accelerometer. Thus, the purpose of our study was to compare the abilities of a wireless network of accelerometers and a hip-mounted accelerometer for the prediction of EE. Thirty adult participants engaged in 14 different sedentary, ambulatory, lifestyle and exercise activities for five minutes each while wearing a portable metabolic analyzer, a hip-mounted accelerometer (AG and a wireless network of three accelerometers (WN worn on the right wrist, thigh and ankle. Artificial neural networks (ANNs were created separately for the AG and WN for the EE prediction. Pearson correlations (r and the root mean square error (RMSE were calculated to compare criterion-measured EE to predicted EE from the ANNs. Overall, correlations were higher (r = 0.95 vs. r = 0.88, p < 0.0001 and RMSE was lower (1.34 vs. 1.97 metabolic equivalents (METs, p < 0.0001 for the WN than the AG. In conclusion, the WN outperformed the AG for measuring EE, providing evidence that the WN can provide highly accurate estimates of EE in adults participating in a wide range of activities.

  13. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.

    Directory of Open Access Journals (Sweden)

    Dustin J Tracy

    Full Text Available Recent interest in sedentary behavior and technological advances expanded use of watch-size accelerometers for continuous monitoring of physical activity (PA over extended periods (e.g., 24 h/day for 1 week in studies conducted in natural living environment. This approach necessitates the development of new methods separating bedtime rest and activity periods from the accelerometer recordings. The goal of this study was to develop a decision tree with acceptable accuracy for separating bedtime rest from activity in youth using accelerometer placed on waist or wrist. Minute-by-minute accelerometry data were collected from 81 youth (10-18 years old, 47 females during a monitored 24-h stay in a whole-room indirect calorimeter equipped with a force platform covering the floor to detect movement. Receiver Operating Characteristic (ROC curve analysis was used to determine the accelerometer cut points for rest and activity. To examine the classification differences, the accelerometer bedtime rest and activity classified by the algorithm in the development group (n = 41 were compared with actual bedtime rest and activity classification obtained from the room calorimeter-measured metabolic rate and movement data. The selected optimal bedtime rest cut points were 20 and 250 counts/min for the waist- and the wrist-worn accelerometer, respectively. The selected optimal activity cut points were 500 and 3,000 counts/min for waist and wrist-worn accelerometers, respectively. Bedtime rest and activity were correctly classified by the algorithm in the validation group (n = 40 by both waist- (sensitivity: 0.983, specificity: 0.946, area under ROC curve: 0. 872 and wrist-worn (0.999, 0.980 and 0.943 accelerometers. The decision tree classified bedtime rest correctly with higher accuracy than commonly used automated algorithm for both waist- and wrist-warn accelerometer (all p<0.001. We concluded that cut points developed and validated for waist- and wrist

  14. A Low-Noise DC seismic accelerometer based on a combination of MET/MEMS sensors.

    Science.gov (United States)

    Neeshpapa, Alexander; Antonov, Alexander; Agafonov, Vadim

    2014-12-26

    Molecular-electronic transducers (MET) have a high conversion coefficient and low power consumption, and do not require precision mechanical components thus allowing the construction of cost- and power-efficient seismic accelerometers. Whereas the instrumental resolution of a MET accelerometer within the 0.1-100 Hz frequency range surpasses that of the best Micro-Electro Mechanical Systems (MEMS) and even some force-balanced accelerometers, the fundamental inability to register gravity or, in other words, zero frequency acceleration, significantly constrains the further spread of MET-based accelerometers. Ways of obviating this inherent zero frequency insensitivity within MET technology have so far, not been found. This article explores a possible approach to the construction of a hybrid seismic accelerometer combining the superb performance of a MET sensor in the middle and high frequency range with a conventional on chip MEMS accelerometer covering the lower frequencies and gravity. Though the frequency separation of a signal is widely used in various applications, the opposite task, i.e., the combining of two signals with different bandwidths is less common. Based on theoretical research and the analysis of actual sensors' performance, the authors determined optimal parameters for building a hybrid sensor. Description and results for implementation of the hybrid sensor are given in the Experimental section of the article. Completing a MET sensor with a cost-effective MEMS permitted the construction of a low noise DC accelerometer preserving the noise performance of a MET sensing element. The work presented herein may prove useful in designing other combined sensors based on different technologies.

  15. Evanescent Wave Coupling Using Different Subwavelength Gratings for a MEMS Accelerometer

    Science.gov (United States)

    Rogers, Al-Aakhir A.

    2011-12-01

    A novel technique of coupling near-field evanescent waves by means of variable period subwavelength gratings (1.2 mum and 1.0 mum), using a 1.55 mum infrared semiconductor laser is presented for the use of an optical MEMS accelerometer. The subwavelength gratings were fabricated on both glass and silicon substrates respectively. Optical simulation of the subwavelength gratings was carried out to obtain the maximum coupling efficiency of the two subwavelength gratings; the grating thickness, grating width, and the grating separation were optimized. This was performed for both silicon and glass substrates. The simulations were used to determine the total system noise, including the noise generated from the germanium photodiode, sensitivity, and displacement detection resolution of the coupled subwavelength grating MEMS accelerometer. The coupled gratings were utilized as optical readout accelerometers. The spring/proof mass silicon accelerometer was fabricated using a four mask process, in which the structure was completed using two deep reactive ion etching (DRIE) processes. The designed serpentine spring styles determine the sensitivity of the accelerometer; when the springs are made longer or shorter, thicker or thinner, this directly attributes to the sensitivity of the device. To test function of the example of the devices, the accelerometer is placed on a platform, which permits displacement normal to the plane of the grating. The 1.550 im infrared laser is incident on the coupled subwavelength grating accelerometer device and the output intensity is measured using a geranium photodiode. As the platform is displaced, the grating separation between the two gratings changes and causes the output intensity to change. Using the coupled subwavelength grating simulations as a reference to the output intensity change with respect to gap, the mechanical and coupling sensitivity properties of as it relates to acceleration is presented.

  16. A Low-Noise DC Seismic Accelerometer Based on a Combination of MET/MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Neeshpapa

    2014-12-01

    Full Text Available Molecular-electronic transducers (MET have a high conversion coefficient and low power consumption, and do not require precision mechanical components thus allowing the construction of cost- and power-efficient seismic accelerometers. Whereas the instrumental resolution of a MET accelerometer within the 0.1–100 Hz frequency range surpasses that of the best Micro-Electro Mechanical Systems (MEMS and even some force-balanced accelerometers, the fundamental inability to register gravity or, in other words, zero frequency acceleration, significantly constrains the further spread of MET-based accelerometers. Ways of obviating this inherent zero frequency insensitivity within MET technology have so far, not been found. This article explores a possible approach to the construction of a hybrid seismic accelerometer combining the superb performance of a MET sensor in the middle and high frequency range with a conventional on chip MEMS accelerometer covering the lower frequencies and gravity. Though the frequency separation of a signal is widely used in various applications, the opposite task, i.e., the combining of two signals with different bandwidths is less common. Based on theoretical research and the analysis of actual sensors’ performance, the authors determined optimal parameters for building a hybrid sensor. Description and results for implementation of the hybrid sensor are given in the Experimental section of the article. Completing a MET sensor with a cost-effective MEMS permitted the construction of a low noise DC accelerometer preserving the noise performance of a MET sensing element. The work presented herein may prove useful in designing other combined sensors based on different technologies.

  17. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  18. Evaluation of neural networks to identify types of activity using accelerometers.

    Science.gov (United States)

    De Vries, Sanne I; Garre, Francisca Galindo; Engbers, Luuk H; Hildebrandt, Vincent H; Van Buuren, Stef

    2011-01-01

    To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Forty-nine subjects (21 men and 28 women; age range = 22-62 yr) performed a controlled sequence of activities: sitting, standing, using the stairs, and walking and cycling at two self-paced speeds. All subjects wore an ActiGraph accelerometer on the hip and the ankle. In the ANN models, the following accelerometer signal characteristics were used: 10th, 25th, 75th, and 90th percentiles, absolute deviation, coefficient of variability, and lag-one autocorrelation. The model based on the hip accelerometer data and the model based on the ankle accelerometer data correctly classified the five activities 80.4% and 77.7% of the time, respectively, whereas the model based on the data from both sensors achieved a percentage of 83.0%. The hip model produced a better classification of the activities cycling, using the stairs, and sitting, whereas the ankle model was better able to correctly classify the activities walking and standing still. All three models often misclassified using the stairs and standing still. The accuracy of the models significantly decreased when a distinction was made between regular versus brisk walking or cycling and between going up and going down the stairs. Relatively simple ANN models perform well in identifying the type but not the speed of the activity of adults from accelerometer data.

  19. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    Science.gov (United States)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  20. Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013)

    Science.gov (United States)

    2014-06-01

    Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a

  1. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    Science.gov (United States)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  2. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    Directory of Open Access Journals (Sweden)

    Alessandro Sabato

    2014-09-01

    Full Text Available Recent advances in the Micro Electro-Mechanical System (MEMS technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM of civil engineering structures. To date, sensors’ low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor’s analog signals are converted to digital signals before radio-frequency (RF wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F instead of the conventional Analog to Digital Conversion (ADC. In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  3. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    Science.gov (United States)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  4. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    Science.gov (United States)

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  5. Comparison of IPAQ-SF and Two Other Physical Activity Questionnaires with Accelerometer in Adolescent Boys.

    Science.gov (United States)

    Rääsk, Triin; Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Jürimäe, Toivo; Vainik, Uku; Konstabel, Kenn

    2017-01-01

    Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively).

  6. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers.

    Science.gov (United States)

    García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J

    2015-10-01

    This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.

  7. Calibration for CHAMP Accelerometer Data Based on Crossover Points of the Satellite

    Institute of Scientific and Technical Information of China (English)

    XU Tianhe; YANG Yuanxi

    2005-01-01

    The German CHAlleging Minisatellite Payload (CHAMP) was launched in July 2000. It is the first satellite that provides us with position and accelerometer measurements, with which the gravity field model can be determined. One of the most popular methods for geopotential recovery using the position and accelerometer measurements of CHAMP is the energy conservation method. The main aim of this paper is to determine the scale and bias parameters of CHAMP accelerometer data using the energy conservation method. The basic principle and mathematical model using the crossover points of CHAMP orbit to calibrate the accelerometer data are given based on the energy balance method. The rigorous integral formula as well as its discrete form of the observational equation is presented. This method can be used to estimate only one of the scale and bias parameters or both of them. In order to control the influence of outliers, the robust estimator for the calibration parameters is given. The results of the numerical computations and comparisons using the CHAMP accelerometer data show the validity of the method.

  8. An accelerometer-based system for elite athlete swimming performance analysis

    Science.gov (United States)

    Davey, Neil P.; Anderson, Megan E.; James, Daniel A.

    2005-02-01

    The measurement of sport specific performance characteristics is an important part of an athletes training and preparation for competition. Thus automated measurement, extraction and analysis of performance measures is desired and addressed in this paper. A tri-axial accelerometer based system was located on the lower back or swimmers to record acceleration profiles. The accelerometer system contained two ADXL202 bi-axial accelerometers positioned perpendicular to one another, and can store over 6 hours of data at 150Hz per channel using internal flash memory. The simultaneous collection of video and electronics touch pad timing was used to validate the algorithm results. Using the tri-axial accelerometer data, algorithms have been developed to derive lap times and stroke count. Comparison against electronic touch pad timing against accelerometer lap times has produced results with a typical error of better than +/-0.5 seconds. Video comparison of the stroke count algorithm for freestyle also produced results with an average error of +/-1 stroke. The developed algorithms have a higher level of reliability compared to hand timed and counted date that is commonly used during training.

  9. Validity of three accelerometers during treadmill walking and motor vehicle travel.

    Science.gov (United States)

    Maddocks, Matthew; Petrou, Andrea; Skipper, Lindsay; Wilcock, Andrew

    2010-06-01

    To determine the relative accuracy during treadmill walking and motor vehicle travel of the ActivPAL, PALlite and Digi-Walker accelerometers. Forty healthy volunteers wearing all accelerometers undertook either five treadmill walks (n=20) at speeds ranging between 0.6 and 1.4 m/s or a 15 min motor vehicle journey (n=20). Step counts recorded by each accelerometer were compared with the actual step count determined by video analysis (treadmill walking) or with an actual step count of zero (motor vehicle). Mean percentage measurement error was calculated and compared between devices by one-way ANOVA and Student t test. For treadmill walking, the measurement error was lowest for the ActivPAL, with no significant differences between the ActivPAL and the PALlite monitors. The measurement error was significantly higher for the Digi-Walker at speeds of Digi-Walker (25 steps), but not the ActivPAL monitor (0 steps). The ActivPAL accelerometer accurately measures step count over a range of walking speeds and, unlike the other accelerometers tested, is not falsely triggered by motor vehicle travel.

  10. Improved Iterative Calibration for Triaxial Accelerometers Based on the Optimal Observation

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2012-06-01

    Full Text Available This paper presents an improved iterative nonlinear calibration method in the gravitational field for both low-grade and high-grade triaxial accelerometers. This calibration method assumes the probability density function of a Gaussian distribution for the raw outputs of triaxial accelerometers. A nonlinear criterion function is derived as the maximum likelihood estimation for the calibration parameters and inclination vectors, which is solved by the iterative estimation. First, the calibration parameters, including the scale factors, misalignments, biases and squared coefficients are estimated by the linear least squares method according to the multi-position raw outputs of triaxial accelerometers and the initial inclination vectors. Second, the sequence quadric program method is utilized to solve the nonlinear constrained optimization to update the inclination vectors according to the estimated calibration parameters and raw outputs of the triaxial accelerometers. The initial inclination vectors are supplied by normalizing raw outputs of triaxial accelerometers at different positions without any a priori knowledge. To overcome the imperfections of models, the optimal observation scheme is designed according to some maximum sensitivity principle. Simulation and experiments show good estimation accuracy for calibration parameters and inclination vectors.

  11. Measurement Method of Magnetic Field for the Wire Suspended Micro-Pendulum Accelerometer

    Directory of Open Access Journals (Sweden)

    Yongle Lu

    2015-04-01

    Full Text Available Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor’s scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.

  12. Comparison of IPAQ-SF and Two Other Physical Activity Questionnaires with Accelerometer in Adolescent Boys

    Science.gov (United States)

    Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Vainik, Uku

    2017-01-01

    Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively). PMID:28056080

  13. Utility of Accelerometers to Measure Physical Activity in Children Attending an Obesity Treatment Intervention

    Directory of Open Access Journals (Sweden)

    Wendy Robertson

    2011-01-01

    Full Text Available Objectives. To investigate the use of accelerometers to monitor change in physical activity in a childhood obesity treatment intervention. Methods. 28 children aged 7–13 taking part in “Families for Health” were asked to wear an accelerometer (Actigraph for 7-days, and complete an accompanying activity diary, at baseline, 3-months and 9-months. Interviews with 12 parents asked about research measurements. Results. Over 90% of children provided 4 days of accelerometer data, and around half of children provided 7 days. Adequately completed diaries were collected from 60% of children. Children partake in a wide range of physical activity which uniaxial monitors may undermonitor (cycling, nonmotorised scootering or overmonitor (trampolining. Two different cutoffs (4 METS or 3200 counts⋅min-1 for minutes spent in moderate and vigorous physical activity (MVPA yielded very different results, although reached the same conclusion regarding a lack of change in MVPA after the intervention. Some children were unwilling to wear accelerometers at school and during sport because they felt they put them at risk of stigma and bullying. Conclusion. Accelerometers are acceptable to a majority of children, although their use at school is problematic for some, but they may underestimate children's physical activity.

  14. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  15. Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; CHEN Wen-yuan; XU Guo-ping

    2009-01-01

    A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.

  16. Theoretical analysis and concept demonstration of a novel MOEMS accelerometer based on Raman-Nath diffraction

    Institute of Scientific and Technical Information of China (English)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2012-01-01

    The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman-Nath diffraction are presented.The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers.The fundamental theories and principles of the device are discussed in detail,a 3D finite element simulation of the flexural plate wave delay line oscillator is provided,and the operation frequency around 40 MHz is calculated.Finally,a lecture experiment is performed to demonstrate the feasibility of the device.This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation,and has great potential for various applications.

  17. An arrayed accelerometer device of a wide range of detection for integrated CMOS-MEMS technology

    Science.gov (United States)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-02-01

    This paper reports the design and experimental results of an arrayed accelerometer device in 3 × 3 format that can detect wide range of acceleration between 1G and 20G (1G = 9.8 m/s2). Implemented in a single chip has been performed by gold electroplating for integrated complementary metal oxide semiconductor-microelectromechanical systems (CMOS-MEMS) technology. An equivalent circuit of a MEMS accelerometer has been developed with an electrical circuit simulator to demonstrate the mixed-behavior of the arrayed sensor device and sensing CMOS circuits. Mechanical and electrical crosstalk between the arrayed elements is analyzed on the electrical field distributions. Experimental results show that the resonant frequency and readout capacitance as a function of applied acceleration have been well explained by the results of the multi-physics simulation. As a result, it is confirmed that the proposed device is applicable to an integrated CMOS-MEMS arrayed accelerometer.

  18. Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment

    DEFF Research Database (Denmark)

    Schnurr, Theresia Maria; Bech, Bianca; Nielsen, Tenna Ruest Haarmark

    2017-01-01

    percentile for sex and age, aged 5–17 years had valid GT3X + accelerometer-assessed PA and interview-assessed self-reported information on PA engagement at the time of enrollment in a multidisciplinary outpatient tertiary treatment for childhood obesity. Accelerometer-derived mean overall PA and time spent......We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objective measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th......). PAS, derived from self-report, may be a useful instrument for evaluating PA at a group level among children and adolescents enrolled in multidisciplinary obesity treatment....

  19. Activity recognition in planetary navigation field tests using classification algorithms applied to accelerometer data.

    Science.gov (United States)

    Song, Wen; Ade, Carl; Broxterman, Ryan; Barstow, Thomas; Nelson, Thomas; Warren, Steve

    2012-01-01

    Accelerometer data provide useful information about subject activity in many different application scenarios. For this study, single-accelerometer data were acquired from subjects participating in field tests that mimic tasks that astronauts might encounter in reduced gravity environments. The primary goal of this effort was to apply classification algorithms that could identify these tasks based on features present in their corresponding accelerometer data, where the end goal is to establish methods to unobtrusively gauge subject well-being based on sensors that reside in their local environment. In this initial analysis, six different activities that involve leg movement are classified. The k-Nearest Neighbors (kNN) algorithm was found to be the most effective, with an overall classification success rate of 90.8%.

  20. Android Application to Assess Smartphone Accelerometers and Bluetooth for Real-Time Control

    Directory of Open Access Journals (Sweden)

    M. A. Nugent

    2015-03-01

    Full Text Available Modern smart phones have evolved into sophisticated embedded systems, incorporating hardware and software features that make the devices potentially useful for real-time control operations. An object-oriented Android application was developed to quantify the performance of the smartphone’s on-board linear accelerometers and bluetooth wireless module with a view to potentially transmitting accelerometer data wirelessly between bluetooth-enabled devices. A portable bluetooth library was developed which runs the bluetooth functionality of the application as an independent background service. The performance of bluetooth was tested by pinging data between 2 smartphones, measuring round-trip-time and round-trip-time variation (jitter against variations in data size, transmission distance and sources of interference. The accelerometers were tested for sampling frequency and sampling frequency jitter.

  1. PENGONTROLAN GERAK MOBILE ROBOT MENGGUNAKAN SENSOR ACCELEROMETER PADA PERANGKAT BERGERAK ANDROID

    Directory of Open Access Journals (Sweden)

    Dedy Hermanto

    2015-02-01

    Full Text Available Smartphones are mobile devices that are often use by every one. In android smarphones, embedded several sensors are use to support for android phone. One of sensors that provide on android smartphones are acceleromoter sensor, an accelerometer is used to measure the acceleration of the angle X, Y and Z. With that sensors will used to drive mobile robot movement accordance with the changes of value from accelerometer sensors. This mobile robot application communicate to smartphones using bluetooth, with this wireless technology use serial for line communication to send data value to mobile robot from smartphonnes. Application for mobile robot movement using value X and Y from accelerometer sensor get from smartphones.

  2. Design of a Piezoelectric Accelerometer with High Sensitivity and Low Transverse Effect

    Directory of Open Access Journals (Sweden)

    Bian Tian

    2016-09-01

    Full Text Available In order to meet the requirements of cable fault detection, a new structure of piezoelectric accelerometer was designed and analyzed in detail. The structure was composed of a seismic mass, two sensitive beams, and two added beams. Then, simulations including the maximum stress, natural frequency, and output voltage were carried out. Moreover, comparisons with traditional structures of piezoelectric accelerometer were made. To verify which vibration mode is the dominant one on the acceleration and the space between the mass and glass, mode analysis and deflection analysis were carried out. Fabricated on an n-type single crystal silicon wafer, the sensor chips were wire-bonged to printed circuit boards (PCBs and simply packaged for experiments. Finally, a vibration test was conducted. The results show that the proposed piezoelectric accelerometer has high sensitivity, low resonance frequency, and low transverse effect.

  3. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  4. Measuring the needle lift and return timing of a CRDI injector using an accelerometer

    Directory of Open Access Journals (Sweden)

    Choong Hoon Lee

    2014-10-01

    Full Text Available The needle lift and return timing of a CRDI (common rail direct injection injector were investigated using an accelerometer and the Bosch injection rate measurement method. The Bosch method was used to measure the fuel injection rate shape when fuel was injected with several patterns. An accelerometer was mounted on the outside of the injector to catch the needle lift and return timing of the injector according to the switching signal of the injector driving voltage. The accelerometer accurately caught the timing of the injector needle lift and return for a single-injection pattern, but it could not for the second or third injection when multiple injections occurred. Only the first needle lift timing of the injector was caught with the injection rate shape obtained from the Bosch method, however, this method cannot identify any other lift or return timing values after the first lift timing.

  5. Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics.

    Science.gov (United States)

    Lemoyne, Robert; Mastroianni, Timothy; Cozza, Michael; Coroian, Cristian; Grundfest, Warren

    2010-01-01

    The capacity to quantify and evaluate gait beyond the general confines of a clinical environment under effectively autonomous conditions may alleviate rampant strain on limited and highly specialized medical resources. An iPhone consists of a three dimensional accelerometer subsystem with highly robust and scalable software applications. With the synthesis of the integral iPhone features, an iPhone application, which constitutes a wireless accelerometer system for gait quantification and analysis, has been tested and evaluated in an autonomous environment. The acquired gait cycle data was transmitted wireless and through email for subsequent post-processing in a location remote to the location where the experiment was conducted. The iPhone application functioning as a wireless accelerometer for the acquisition of gait characteristics has demonstrated sufficient accuracy and consistency.

  6. Implementation of an iPhone for characterizing Parkinson's disease tremor through a wireless accelerometer application.

    Science.gov (United States)

    Lemoyne, Robert; Mastroianni, Timothy; Cozza, Michael; Coroian, Cristian; Grundfest, Warren

    2010-01-01

    Parkinson's disease represents a chronic movement disorder, which is generally proportionally to age. The status of Parkinson's disease is traditionally classified through ordinal scale strategies, such as the Unified Parkinson's Disease Rating Scale. However, the application of the ordinal scale strategy inherently requires highly specialized and limited medical resources for interpretation. An alternative strategy involves the implementation of an iPhone application that enables the device to serve as a functional wireless accelerometer system. The Parkinson's disease tremor attributes may be recorded in either an effectively autonomous public or private setting, for which the resultant accelerometer signal of the tremor can be conveyed wireless and through email to a remote location for data post-processing. The initial testing and evaluation of the iPhone wireless accelerometer application for quantifying Parkinson's disease tremor successfully demonstrates the capacity to acquire tremor characteristics in an effectively autonomous environment, while potentially alleviating strain on limited and highly specialized medical resources.

  7. Reliability of the RT3 accelerometer for measurement of physical activity in adolescents.

    Science.gov (United States)

    Vanhelst, Jeremy; Theunynck, Denis; Gottrand, Frédéric; Béghin, Laurent

    2010-02-01

    The aim of this study was to assess the reliability of the RT3 accelerometer under conditions of normal physical activity. Sixty healthy individuals (30 boys, 30 girls) aged 10-16 years wore two accelerometers while performing different structured physical activities. The accelerometers were synchronized and data were recorded every minute during nine 15-min sessions of physical activity that varied in intensity from sedentary (watching television, playing video games) to vigorous (running on a treadmill at different speeds). Intra-instrument coefficients of variation (CV) were assessed using the formula CV = standard deviation of the measure x 100/mean of the measure. The intra-instrument coefficient of variation was higher for sedentary (17%) and light activity (16.2%) than moderate (9.3%) and vigorous activity (6.6%). These results confirmed the poor reliability of the RT3 for activity of low magnitude and frequency that was demonstrated in studies using a shaker.

  8. The modulation and demodulation module of a high resolution MOEMS accelerometer

    Science.gov (United States)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  9. Comparing the 7-Day PAR with a Triaxial Accelerometer for Measuring Time in Exercise

    Science.gov (United States)

    Sloane, Richard; Snyder, Denise Clutter; Demark-Wahnefried, Wendy; Lobach, David; Kraus, William E.

    2009-01-01

    Purpose The primary study aim was to evaluate associations of estimated weekly minutes of moderate-to-vigorous intensity exercise from self-reports of the telephone-administered 7-Day Physical Activity Recall (PAR) with data captured by the RT3 triaxial accelerometer. Methods This investigation was undertaken as part of the FRESH START study, a randomized clinical trial that tested an iteratively-tailored diet and exercise mailed print intervention among newly diagnosed breast and prostate cancer survivors. A convenience sample of 139 medically-eligible subjects living within a 60-mile radius of the study center provided both 7-Day PAR and accelerometer data at enrollment. Ultimately n=115 substudy subjects were found eligible for the FRESH START study and randomized to one of two study treatment arms. Follow-up assessments at Year 1 (n=103) and Year 2 (n=99) provided both the 7-Day PAR and accelerometer data. Results There was moderate agreement between the 7-Day PAR and the accelerometer with longitudinal serial correlation coefficients of .54 (baseline), .24 (Year 1) and .53 (Year 2), all P-values < .01, though the accelerometer estimates for weekly time in moderate-to-vigorous physical activity were much higher than those of the 7-Day PAR at all time points. The two methods were poorly correlated in assessing sensitivity to change from baseline to Year 1 (rho=.11, P=.30). Using mixed models repeated measures analysis, both methods exhibited similar non-significant treatment arm X time interaction P-values (7-Day PAR=.22, accelerometer=.23). Conclusions The correlations for three serial time points were in agreement with findings of other studies that compared self-reported time in exercise with physical activity captured by accelerometry. However, these methods capture somewhat different dimensions of physical activity and provide differing estimates of change over time. PMID:19461530

  10. Characterizing Chilean blue whale vocalizations with DTAGs: a test of using tag accelerometers for caller identification.

    Science.gov (United States)

    Saddler, Mark R; Bocconcelli, Alessandro; Hickmott, Leigh S; Chiang, Gustavo; Landea-Briones, Rafaela; Bahamonde, Paulina A; Howes, Gloria; Segre, Paolo S; Sayigh, Laela S

    2017-09-07

    Vocal behavior of blue whales (Balaenoptera musculus) in the Gulf of Corcovado, Chile, was analyzed using both audio and accelerometer data from digital acoustic recording tags (DTAGs). Over the course of three austral summers (2014, 2015, 2016), seventeen tags were deployed, yielding 124 hours of data. We report the occurrence of Southeast Pacific type 2 (SEP2) calls, which exhibit peak frequencies, durations, and timing consistent with previous recordings made using towed and moored hydrophones. We also describe tonal downswept (D) calls, which have not been previously described for this population. Since being able to accurately assign vocalizations to individual whales is fundamental for studying communication and for estimating population densities from call rates, we further examine the feasibility of using high-resolution DTAG accelerometers to identify low-frequency calls produced by tagged blue whales. We cross-correlated acoustic signals with simultaneous tri-axial accelerometer readings in order to analyze the phase match as well as the amplitude of accelerometer signals associated with low-frequency calls, which provides a quantitative method of determining if a call is associated with a detectable acceleration signal. Our results suggest that vocalizations from nearby individuals are also capable of registering accelerometer signals in the tagged whale's DTAG record. We cross-correlate acceleration vectors between calls to explore the possibility of using signature acceleration patterns associated with sounds produced within the tagged whale as a new method of identifying which accelerometer-detectable calls originate from the tagged animal. © 2017. Published by The Company of Biologists Ltd.

  11. Development of multiple performance indices and system parameter study for the design of a MEMS accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Il; Choi, Chan Kyu; Yoo, Hong Hee [Hanyang University, Seoul (Korea, Republic of)

    2012-01-15

    For the design of a MEMS accelerometer, proper performance indices should be defined and employed. Performance indices are obtained using either an experimental method or a numerical method. In the present study, a vibration analysis model of a MEMS accelerometer is introduced to calculate three performance indices: sensitivity, measurable acceleration range, and measurable frequency range. The accuracy of the vibration analysis model is first validated by comparing its modal and transient results with those of a commercial finite element code. Measurable acceleration and frequency ranges versus allowable errors for electrical and mechanical sensitivities are obtained and the effects of system parameter variations on the three performance indices are investigated.

  12. Optimum Experimental Design applied to MEMS accelerometer calibration for 9-parameter auto-calibration model.

    Science.gov (United States)

    Ye, Lin; Su, Steven W

    2015-01-01

    Optimum Experimental Design (OED) is an information gathering technique used to estimate parameters, which aims to minimize the variance of parameter estimation and prediction. In this paper, we further investigate an OED for MEMS accelerometer calibration of the 9-parameter auto-calibration model. Based on a linearized 9-parameter accelerometer model, we show the proposed OED is both G-optimal and rotatable, which are the desired properties for the calibration of wearable sensors for which only simple calibration devices are available. The experimental design is carried out with a newly developed wearable health monitoring device and desired experimental results have been achieved.

  13. Compact FBG diaphragm accelerometer based on L-shaped rigid cantilever beam

    Institute of Scientific and Technical Information of China (English)

    Yinyan Weng; Xueguang Qiao; Zhongyao Feng; Manli Hu; Jinghua Zhang; YangYang

    2011-01-01

    A compact fiber Bragg grating (FBG) diaphragm accelerometer based on L-shaped rigid cantilever beam is proposed and experimentally demonstrated. The sensing system is based on the integration of a flat diaphragm and an L-shaped rigid cantilever beam. The FBG is pre-tensioned and the two side points are fixed, efficiently avoiding the unwanted chirp effect of grating. Dynamic vibration measurement shows that the proposed FBG diaphragm accelerometer provides a wide frequency response range (0-110 Hz) and an extremely high sensitivity (106.5 pm/g), indemnifying it as a good candidate for embedding structural health monitoring and seismic wave measurement.%A compact fiber Bragg grating (FBG) diaphragm accelerometer based on L-shaped rigid cantilever beam is proposed and experimentally demonstrated.The sensing system is based on the integration of a flat diaphragm and an L-shaped rigid cantilever beam.The FBG is pre-tensioned and the two side points are fixed,efficiently avoiding the unwanted chirp effect of grating.Dynamic vibration measurement shows that the proposed FBG diaphragm accelerometer provides a wide frequency response range (0-110 Hz) and an extremely high sensitivity (106.5 pm/g),indentifying it as a good candidate for embedding structural health monitoring and seismic wave measurement.In the past few decades,accelerometers based on fiber Bragg grating (FBG) have attracted a great deal of interest from researchers and engineers because they play a vital role in vibration measurements.In recent years,FBG accelerometers have been more and more applied in structural health monitoring[1-3) and seismic wave measurement[4-6].This study concerns about the development of geophones composed of FBG accelerometers in seismic exploration.The main frequency of geophones in seismic wave measurement of oil and gas exploration is usually below 100 Hz.An FBG-based accelerometer consisting of a mass resting on a layer of compliant material supported by a rigid base plate

  14. Gyroscope vs. accelerometer measurements of motion from wrist PPG during physical exercise

    Directory of Open Access Journals (Sweden)

    Alexander J. Casson

    2016-12-01

    Full Text Available Many wearable devices include PPG (photoplethysmography sensors for non-invasive heart rate monitoring. However, PPG signals are heavily corrupted by motion interference, and rely on simultaneous motion measurements to remove the interference. Accelerometers are used commonly, but cannot differentiate between acceleration due to movement and acceleration due to gravity. This paper compares measurements of motion using accelerometers and gyroscopes to give a more complete estimate of wrist motion. Results show the two sensor signals are very different, with low correlations present. When used in a wrist PPG heart rate algorithm gyroscope motion estimates obtain better performance in half of the cases.

  15. Design, Simulation and Optimisation of a Fibre-optic 3D Accelerometer

    Science.gov (United States)

    Yang, Zhen; Fang, Xiao-Yong; Zhou, Yan; Li, Ya-lin; Yuan, Jie; Cao, Mao-Sheng

    2013-07-01

    Using an inertia pendulum comprised of two prisms, flexible beams and an elastic flake, we present a novel fibre-optic 3D accelerometer design. The total reverse reflection of the cube-corner prism and the spectroscopic property of an orthogonal holographic grating enable the measurement of the two transverse components of the 3D acceleration simultaneously, while the longitudinal component can be determined from the elastic deformation of the flake. Due to optical interferometry, this sensor may provide a wider range, higher sensitivity and better resolving power than other accelerometers. Moreover, we use finite element analysis to study the performance and to optimise the structural design of the sensor.

  16. Daily physical activity patterns from hip- and wrist-worn accelerometers

    DEFF Research Database (Denmark)

    Shiroma, Eric J; Schepps, M A; Harezlak, J

    2016-01-01

    .9 (5.5) years) were asked to wear accelerometers in a free-living environment for 7 d at three different wear locations; one on each wrist and one on the right hip. During waking hours, wrist-worn accelerometers consistently produced higher median activity counts, about 5 × higher, as well as wider...... variability compared to hip-worn monitors. However, the shape of the accrual pattern curve over the course of the day for the hip and wrist are similar; there is a spike in activity in the morning, with a prolonged tapering of activity level as the day progresses. The similar patterns of hip and wrist...

  17. Self-noise models of five commercial strong-motion accelerometers

    Science.gov (United States)

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    Strong‐motion accelerometers provide onscale seismic recordings during moderate‐to‐large ground motions (e.g., up to tens of m/s2 peak). Such instruments have played a fundamental role in improving our understanding of earthquake source physics (Bocketal., 2011), earthquake engineering (Youdet al., 2004), and regional seismology (Zollo et al., 2010). Although strong‐motion accelerometers tend to have higher noise levels than high‐quality broadband velocity seismometers, their higher clip‐levels provide linear recordings at near‐field sites even for the largest of events where a collocated broadband sensor would no longer be able to provide onscale recordings (Clinton and Heaton, 2002).

  18. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    Science.gov (United States)

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was

  19. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at

  20. Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation

    NARCIS (Netherlands)

    Willemsen, Antoon Th.M.; Bloemhof, Fedde; Boom, Herman B.K.

    1990-01-01

    The development of implantable peroneal nerve stimulators has increased interest in sensors which can detect the different phases of walking (stance and swing). Accelerometers with a potential for implantation are studied as detectors for the swing phase of walking to replace footswitches. Theoretic

  1. Convergent Validity of Four Accelerometer Cutpoints with Direct Observation of Preschool Children's Outdoor Physical Activity

    Science.gov (United States)

    Kahan, David; Nicaise, Virginie; Reuben, Karen

    2013-01-01

    Purpose: More than one fifth of American preschool-aged children are classified as overweight/obese. Increasing physical activity is one means of slowing/reversing progression to overweight or obesity. Measurement of physical activity in this age group relies heavily on motion sensors such as accelerometers. Output is typically interpreted through…

  2. Signals and Noises Acting On The Accelerometer Mounted In The Mpo (mercury Planetary Orbiter).

    Science.gov (United States)

    Iafolla, V.; Fiorenza, E.; Lucchesi, D.; Milyukov, V.; Nozzoli, S.

    The RadioScience experiments proposed for the BepiClombo ESA CORNERSTONE are aiming at performing planetary measurements such as: the rotation state of Mer- cury, the global structure of its gravity field and the local gravitational anomalies, but also to test some aspects of the General Relativity, to an unprecedented level of accu- racy. A high sensitivity accelerometer will measure the inertial acceleration acting on the MPO; these data, together with tracking data are used to evaluate the purely gravi- tational trajectory of the MPO, by transforming it to a virtual drag-free satellite system. At the Istituto di Fisica dello Spazio Interplanetario (IFSI) a high sensitive accelerom- eter named ISA (Italian Spring Accelerometer)* and considered for this mission has been studied. The main problems concerning the use of the accelerometer are related to the high dynamics necessary to follow the variation of the acceleration signals, with accuracy equal to 10^-9 g/sqr(Hz), and very high at the MPO orbital period and due to thermal noise introduced at the sidereal period of Mercury. The description of the accelerometer will be presented, with particular attention to the thermal problems and to the analysis regarding the choice of the mounting position on the MPO. *Project funded by the Italian Space Agency (ASI).

  3. Fiber Optic 3-D Space Piezoelectric Accelerometer and its Antinoise Technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanical structure of piezoelectric accelerometer is designed, and the operation equations on X-, Y-, and Z-axes are deduced. The test results of 3-D frequency response are given. Noise disturbances are effectively eliminated by using fiber optic transmission and synchronous detection.

  4. Is there a Sex Difference in Accelerometer Counts During Walking in Older Adults?

    DEFF Research Database (Denmark)

    Van Domelen, Dane R; Caserotti, Paolo; Brychta, Robert J

    2014-01-01

    Accelerometers have emerged as a useful tool for measuring free-living physical activity in epidemiological studies. Validity of activity estimates depends on the assumption that measurements are equivalent for males and females while performing activities of the same intensity. The primary purpose...

  5. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    Science.gov (United States)

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  6. Gravity Compensation Method for Combined Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements.

    Science.gov (United States)

    Krogh, Magnus Reinsfelt; Nghiem, Giang M; Halvorsen, Per Steinar; Elle, Ole Jakob; Grymyr, Ole-Johannes; Hoff, Lars; Remme, Espen W

    2017-05-01

    A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal. In this study we propose a new method for estimating the gravity, based on strapdown inertial navigation, using a combined accelerometer and gyro. The gyro was used to estimate the orientation of the gravity field and thereby remove it. We compared this method with two previously proposed gravity filtering methods in three experimental models using: (1) in silico computer simulated heart motion; (2) robot mimicked heart motion; and (3) in vivo measured motion on the heart in an animal model. The new method correlated excellently with the reference (r (2) > 0.93) and had a deviation from reference peak systolic displacement (6.3 ± 3.9 mm) below 0.2 ± 0.5 mm for the robot experiment model. The new method performed significantly better than the two previously proposed methods (p gravity component from the accelerometer signal.

  7. Validity of an Accelerometer-Based Activity Monitor System for Measuring Physical Activity in Frail Elderly

    NARCIS (Netherlands)

    Hollewand, Anne M; Spijkerman, Anouk G; Bilo, Henk J; Kleefstra, Nanne; Kamsma, Yvo; van Hateren, Kornelis J

    2016-01-01

    This study aimed to investigate the validity of the accelerometer-based DynaPort system to detect physical activity in frail elderly subjects. Eighteen home-dwelling subjects (Groningen Frailty Indicator (GFI) score ≥4, ≥75 years) were included. Activities in their home environment were simultaneous

  8. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life

    Directory of Open Access Journals (Sweden)

    Alessandro Tognetti

    2015-11-01

    Full Text Available Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities. The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively. In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints.

  9. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.

    Science.gov (United States)

    Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas

    2013-08-22

    Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.

  10. Design and characterization of a fully differential MEMS accelerometer fabricated using MetalMUMPs technology.

    Science.gov (United States)

    Qu, Peng; Qu, Hongwei

    2013-05-02

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and -5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A -0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  11. A novel class of MEMS accelerometers for guidance and control of gun-fired munitions

    Science.gov (United States)

    Rastegar, Jahangir; Feng, Dake; Pereira, Carlos M.

    2015-05-01

    The state of art in shock resistant MEMS accelerometer design is to reduce the size of the proof-mass, thereby reducing the generated forces and moments due to shock loading. Physical stops are also provided to limit proof-mass motion to prevent damage to various moving components. The reduction of the proof-mass size reduces the sensor sensitivity. In addition, to increase the sensor dynamic response, proof-mass motion needs to be minimally damped, resulting in a significant sensor settling time after experiencing a high shock loading such as those experienced by gun-fired munitions during firing. The settling time is particularly important for accelerometers that are used in gun-fired munitions and mortars for navigation and guidance. This paper describes the development of a novel class of accelerometers that are provided with the means of locking the sensor proof-mass in its "null" position when subjected to acceleration levels above prescribed thresholds, thereby protecting the moving parts of the accelerometer. In munitions applications, the proof-mass is thereby locked in its null position during the firing and released during the flight to begin to measure flight acceleration with minimal settling time. Details of the design and operation of the developed sensors and results of their prototyping and testing are presented. The application of the developed technology to other types of inertial sensors and devices is discussed.

  12. Design, fabrication and characterisation of a biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. First measurements indicate

  13. A novel class of MEMS accelerometers for very high-G munitions environment

    Science.gov (United States)

    Rastegar, Jahangir; Feng, Dake

    2016-05-01

    The state of art in shock resistant MEMS accelerometer design is to reduce the size of the proof-mass, thereby reducing the generated forces and moments due to shock loading. Physical stops are also provided to limit proof-mass motion to prevent damage to various moving components. The reduction of the proof-mass size reduces the sensor sensitivity. In addition, to increase the sensor dynamic response, proof-mass motion needs to be minimally damped, resulting in a significant sensor settling time after experiencing a high shock loading such as those experienced by gun-fired munitions during firing. The settling time is particularly important for accelerometers that are used in gun-fired munitions and mortars for navigation and guidance. This paper describes the development of a novel class of accelerometers that are provided with the means of locking the sensor proof-mass in its "null" position when subjected to acceleration levels above a prescribed threshold, thereby protecting the moving parts of the accelerometer. In munitions applications, the proof-mass is thereby locked in its null position during the firing and is released during the flight to measure flight acceleration with minimal settling time. Details of the design and operation of the developed sensors and results of their prototyping and testing are presented. The application of the developed technology to other types of inertial sensors and devices is discussed.

  14. Theory, technology and assembly of a highly symmetrical capacitive triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Lötters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1997-01-01

    A highly symmetrical cubic easy-to-assemble capacitive triaxial accelerometer for biomedical applications has been designed, realized and tested. The outer dimensions of the sensor are 5×5×5 mm 3 and the device is mounted on a standard IC package. New aspects of the sensor are an easy assembly

  15. Characterization of a pull-in based μg-resolution accelerometer

    NARCIS (Netherlands)

    Dias, R.A.; Cretu, E.; Wolffenbuttel, R.F.; Rocha, L.A.

    2012-01-01

    The pull-in time of electrostatically actuated parallel-plate microstructures enables the realization of a high-sensitivity accelerometer that uses time measurement as the transduction mechanism. The key feature is the existence of a metastable region that dominates pull-in behavior, thus making

  16. Design and Characterization of a Fully Differential MEMS Accelerometer Fabricated Using MetalMUMPs Technology

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2013-05-01

    Full Text Available This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and −5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A −0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  17. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  18. A multi-modal approach for hand motion classification using surface EMG and accelerometers.

    Science.gov (United States)

    Fougner, A; Scheme, E; Chan, A D C; Englehart, K; Stavdahl, Ø

    2011-01-01

    For decades, electromyography (EMG) has been used for diagnostics, upper-limb prosthesis control, and recently even for more general human-machine interfaces. Current commercial upper limb prostheses usually have only two electrode sites due to cost and space limitations, while researchers often experiment with multiple sites. Micro-machined inertial sensors are gaining popularity in many commercial and research applications where knowledge of the postures and movements of the body is desired. In the present study, we have investigated whether accelerometers, which are relatively cheap, small, robust to noise, and easily integrated in a prosthetic socket; can reduce the need for adding more electrode sites to the prosthesis control system. This was done by adding accelerometers to a multifunction system and also to a simplified system more similar to current commercially available prosthesis controllers, and assessing the resulting changes in classification accuracy. The accelerometer does not provide information on muscle force like EMG electrodes, but the results show that it provides useful supplementary information. Specifically, if one wants to improve a two-site EMG system, one should add an accelerometer affixed to the forearm rather than a third electrode.

  19. Optimal Methods of RTK-GPS/Accelerometer Integration to Monitor the Displacement of Structures

    Directory of Open Access Journals (Sweden)

    Sungnam Hong

    2012-01-01

    Full Text Available The accurate measurement of diverse displacements of structures is an important index for the evaluation of a structure’s safety. In this study, a comparative analysis was conducted to determine the integrated RTK-GPS/accelerometer method that can provide the most precise structure displacement measurements. For this purpose, three methods of calculating the dynamic displacements from the acceleration data were comparatively analyzed. In addition, two methods of determining dynamic, static, and quasi-static displacements by integrating the displacements measured from the RTK-GPS system and the accelerometer were also comparatively analyzed. To ensure precise comparison results, a cantilever beam was manufactured onto which diverse types of displacements were generated to evaluate the measurement accuracy by method. Linear variable differential transformer (LVDT measurements were used as references for the evaluation to ensure accuracy. The study results showed that the most suitable method of measuring the dynamic displacement with the accelerometer was to calculate the displacement by filtering and double-integrating the acceleration data using the FIR band-pass filter. The integration method that uses frequency-based displacement extraction was most appropriate for the integrated RTK-GPS/accelerometer method of comprehensively measuring the dynamic, static, and quasi-static displacements.

  20. Development and validation of an accelerometer-based method for quantifying gait events.

    Science.gov (United States)

    Boutaayamou, Mohamed; Schwartz, Cédric; Stamatakis, Julien; Denoël, Vincent; Maquet, Didier; Forthomme, Bénédicte; Croisier, Jean-Louis; Macq, Benoît; Verly, Jacques G; Garraux, Gaëtan; Brüls, Olivier

    2015-02-01

    An original signal processing algorithm is presented to automatically extract, on a stride-by-stride basis, four consecutive fundamental events of walking, heel strike (HS), toe strike (TS), heel-off (HO), and toe-off (TO), from wireless accelerometers applied to the right and left foot. First, the signals recorded from heel and toe three-axis accelerometers are segmented providing heel and toe flat phases. Then, the four gait events are defined from these flat phases. The accelerometer-based event identification was validated in seven healthy volunteers and a total of 247 trials against reference data provided by a force plate, a kinematic 3D analysis system, and video camera. HS, TS, HO, and TO were detected with a temporal accuracy ± precision of 1.3 ms ± 7.2 ms, -4.2 ms ± 10.9 ms, -3.7 ms ± 14.5 ms, and -1.8 ms ± 11.8 ms, respectively, with the associated 95% confidence intervals ranging from -6.3 ms to 2.2 ms. It is concluded that the developed accelerometer-based method can accurately and precisely detect HS, TS, HO, and TO, and could thus be used for the ambulatory monitoring of gait features computed from these events when measured concurrently in both feet.

  1. A 3-axis force balanced accelerometer using a single proof-mass

    Energy Technology Data Exchange (ETDEWEB)

    Lemkin, M.A.; Boser, B.E.; Auslander, D. [Univ. of California, Berkeley, CA (United States); Smith, J. [Sandia National Lab., Albuquerque, NM (United States)

    1997-04-01

    This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

  2. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer

    DEFF Research Database (Denmark)

    Beniczky, S.; Hjalgrim, Helle; Polster, T.

    2013-01-01

    Our objective was to assess the clinical reliability of a wrist-worn, wireless accelerometer sensor for detecting generalized tonic-clonic seizures (GTCS). Seventy-three consecutive patients (age 6-68 years; median 37 years) at risk of having GTCS and who were admitted to the long-term video-elec...

  3. Evaluation of Accelerometer Mechanical Filters on Submerged Cylinders Near an Underwater Explosion

    Directory of Open Access Journals (Sweden)

    G. Yiannakopoulos

    1998-01-01

    Full Text Available An accelerometer, mounted to a structure near an explosion to measure elasto-plastic deformation, can be excited at its resonant frequency by impulsive stresses transmitted within the structure. This results in spurious high peak acceleration levels that can be much higher than acceleration levels from the explosion itself. The spurious signals also have higher frequencies than the underlying signal from the explosion and can be removed by a low pass filter. This report assesses the performance of four accelerometer and filter assemblies. The assessment involves measurements of the response of a mild steel cylinder to an underwater explosion, in which each assembly is mounted onto the interior surface of the cylinder. Three assemblies utilise a piezoresistive accelerometer in which isolation is provided mechanically. In the fourth assembly, a piezoelectric accelerometer, with a built-in filter, incorporates both mechanical and electronic filtering. This assembly is found to be more suitable because of its secure mounting arrangement, ease of use, robustness and noise free results.

  4. Identifying types of physical activity with a single accelerometer: Evaluating laboratory trained algorithms in daily life

    NARCIS (Netherlands)

    Cuba Gyllensten, I.; Bonomi, A.G.

    2011-01-01

    Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behaviour. This study aimed at analysing the reproducibility of

  5. Design, fabrication and characterization of a highly symmetrical capacitive triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Bomer, Johan G.; Verloop, A.J.; Droog, Adriaan; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1998-01-01

    A highly symmetrical cubic capacitive triaxial accelerometer for biomedical applications has been designed, fabricated and characterized. The outer dimensions of the sensors are 5 mm × 5 mm × 5 mm. The devices are mounted on a standard IC package for easy testing. Features of the triaxial

  6. Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, W.; Markos, C.

    2012-01-01

    In this paper we present our latest work on Fiber Bragg Gratings (FBGs) in microstructured polymer optical fibers (mPOFs) and their application as strain sensing transducers in devices, such as accelerometers and microphones. We demonstrate how the cross-sensitivity of the FBG to temperature...

  7. Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage

    NARCIS (Netherlands)

    Rocha, L.A.; Dias, R.A.; Cretu, E.; Mol, L.; Wolffenbuttel, R.F.

    2011-01-01

    This paper describes an electro-mechanical auto-calibration technique for use in capacitive MEMS accelerometers. Auto-calibration is achieved using the combined information derived from an initial measurement of the resonance frequency and the measurement of the pull-in voltages during device

  8. Convergent Validity of Four Accelerometer Cutpoints with Direct Observation of Preschool Children's Outdoor Physical Activity

    Science.gov (United States)

    Kahan, David; Nicaise, Virginie; Reuben, Karen

    2013-01-01

    Purpose: More than one fifth of American preschool-aged children are classified as overweight/obese. Increasing physical activity is one means of slowing/reversing progression to overweight or obesity. Measurement of physical activity in this age group relies heavily on motion sensors such as accelerometers. Output is typically interpreted through…

  9. Optimal methods of RTK-GPS/accelerometer integration to monitor the displacement of structures.

    Science.gov (United States)

    Hwang, Jinsang; Yun, Hongsik; Park, Sun-Kyu; Lee, Dongha; Hong, Sungnam

    2012-01-01

    The accurate measurement of diverse displacements of structures is an important index for the evaluation of a structure's safety. In this study, a comparative analysis was conducted to determine the integrated RTK-GPS/accelerometer method that can provide the most precise structure displacement measurements. For this purpose, three methods of calculating the dynamic displacements from the acceleration data were comparatively analyzed. In addition, two methods of determining dynamic, static, and quasi-static displacements by integrating the displacements measured from the RTK-GPS system and the accelerometer were also comparatively analyzed. To ensure precise comparison results, a cantilever beam was manufactured onto which diverse types of displacements were generated to evaluate the measurement accuracy by method. Linear variable differential transformer (LVDT) measurements were used as references for the evaluation to ensure accuracy. The study results showed that the most suitable method of measuring the dynamic displacement with the accelerometer was to calculate the displacement by filtering and double-integrating the acceleration data using the FIR band-pass filter. The integration method that uses frequency-based displacement extraction was most appropriate for the integrated RTK-GPS/accelerometer method of comprehensively measuring the dynamic, static, and quasi-static displacements.

  10. Calibration and validation of individual GOCE accelerometers by precise orbit determination

    NARCIS (Netherlands)

    Visser, P.N.A.M.; Van den IJssel, J.A.A.

    2014-01-01

    The European Space Agency Gravity field and steady-state Ocean Circular Explorer (GOCE) carries a gradiometer consisting of three pairs of accelerometers in an orthogonal triad. Precise GOCE science orbit solutions (PSO), which are based on satellite-to-satellite tracking observations by the Global

  11. Using accelerometers for physical actions recognition by a neural fuzzy network.

    Science.gov (United States)

    Liu, Shing-Hong; Chang, Yuan-Jen

    2009-11-01

    Triaxial accelerometers were employed to monitor human actions under various conditions. This study aimed to determine an optimum classification scheme and sensor placement positions for recognizing different types of physical action. Three triaxial accelerometers were placed on the chest, waist, and thigh, and their abilities to recognize the three actions of walking, sitting down, and falling were determined. The features of the resultant triaxial signals from each accelerometer were extracted by an autoregression (AR) model. A self-constructing neural fuzzy inference network (SONFIN) was used to recognize the three actions. The performance of the SONFIN was assessed based on statistical parameters, sensitivity, specificity, and total classification accuracy. The results show that the SONFIN provided a stability total classification accuracy of 96.3% and 88.7% for the training and testing data, when the parameters of the 60-order AR model were used as the input feature vector, and the accelerometer was placed anywhere on the abdomen. Seven elderly individuals performing the three basic actions had 80.4% confirmation for the testing data.

  12. Identification of Capacitive MEMS Accelerometer Structure Parameters for Human Body Dynamics Measurements

    Directory of Open Access Journals (Sweden)

    Vincas Benevicius

    2013-08-01

    Full Text Available Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model’s response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.

  13. Sensitivity improvement of micro-grating accelerometer based on differential detection method.

    Science.gov (United States)

    Wang, Xiao; Feng, Lishuang; Yao, Baoyin; Ren, Xiaoyuan

    2013-06-20

    A differential detection method (DDM) with a utility type and ease of realization for a micro-grating accelerometer is reported so as to reduce the common-mode noise and improve the sensitivity of the micro-grating accelerometer. The theoretical model is established, based on scalar diffraction theory for differential detection. According to the simulation and analysis of the DDM, the theoretical result shows that the sensitivity of the micro-grating accelerometer can be improved by at least a factor of 2. Based on the analysis, the detection circuit is designed with proper parameters and devices for the handheld experimental prototype, which is realized with our micro-grating acceleration sensor fabricated by inductively coupled plasma, lift-off, and anodic bonding of glass/silicon, etc. The prototype experiment is conducted with the turntable. Compared with the single-order detection method whose sensitivities are 6.797 V/g (zeroth order, 1 g=9.8 m/s²) and 7.767 V/g (first-order), the result of the DDM shows that the sensitivity of the micro-grating accelerometer is 18.61 V/g with an improvement of over two times. The overall signal-to-noise ratio improvement is 6.47 dB with the input of 0.86 g.

  14. A wireless accelerometer node for reliable and valid measurement of lumbar accelerations during treadmill running.

    Science.gov (United States)

    Lindsay, Timothy R; Yaggie, James A; McGregor, Stephen J

    2016-01-01

    This study investigated the reliability of a wireless accelerometer and its agreement with optical motion capture for the measurement of root mean square (RMS) acceleration during running. RMS acceleration provides a whole-body metric of movement mechanics and economy. Fifteen healthy college-age participants performed treadmill running for two 60-s trials at 2.22, 2.78, and 3.33 m/s and one trial of 150 s (five 30-s epochs) at 2.78 m/s. We assessed between-trial and within-trial reliability, and agreement in each axis between a trunk-mounted wireless accelerometer and a reflective marker on the accelerometer measured by optical motion capture. Intraclass correlations assessing between-trial repeatability were 0.89-0.97, depending on the axis, and intraclass correlations assessing within-trial repeatability were 0.99-1.00. Bland-Altman analyses assessing agreement indicated mean difference values between -0.03 and 0.03 g, depending on the axis. Anterio-posterior acceleration had the greatest limits of agreement (LOA) (±0.12 g) and vertical acceleration had the smallest LOA (±0.03 g). For measuring RMS acceleration of the trunk, this wireless accelerometer node provides repeatable and valid measurement compared with the standard laboratory method of optical motion capture.

  15. Recording and analysis of locomotion in dairy cows with 3D accelerometers

    NARCIS (Netherlands)

    Mol, de R.M.; Lammers, R.J.H.; Pompe, J.C.A.M.; Ipema, A.H.; Hogewerf, P.H.

    2009-01-01

    An automated method for lameness detection can be an alternative for detection by regular observations. Accelerometers attached to a leg of the dairy cow can be used to record the locomotion of a dairy cow. In an experiment the 3D acceleration of the right hind leg during walking of three dairy cows

  16. Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage

    NARCIS (Netherlands)

    Rocha, L.A.; Dias, R.A.; Cretu, E.; Mol, L.; Wolffenbuttel, R.F.

    2011-01-01

    This paper describes an electro-mechanical auto-calibration technique for use in capacitive MEMS accelerometers. Auto-calibration is achieved using the combined information derived from an initial measurement of the resonance frequency and the measurement of the pull-in voltages during device operat

  17. Comparison of Yamax pedometer and GT3X accelerometer steps in a free-living sample

    Science.gov (United States)

    Our objective was to compare steps detected by the Yamax pedometer (PEDO) versus the GT3X accelerometer (ACCEL) in free-living adults. Daily PEDO and ACCEL steps were collected from a sample of 23 overweight and obese participants (18 females; mean +/- sd: age = 52.6 +/- 8.4 yr.; body mass index = 3...

  18. Identification of children's activity type with accelerometer-based neural networks

    NARCIS (Netherlands)

    Vries, S.I. de; Engels, M.; Garre, F.G.

    2011-01-01

    Purpose: The study's purpose was to identify children's physical activity type using artificial neural network (ANN) models based on uniaxial or triaxial accelerometer data from the hip or the ankle. Methods: Fifty-eight children (31 boys and 27 girls, age range = 9-12 yr) performed the following ac

  19. IEEE802.15.6 -based multi-accelerometer WBAN system for monitoring Parkinson's disease.

    Science.gov (United States)

    Keränen, Niina; Särestöniemi, Mariella; Partala, Juha; Hämäläinen, Matti; Reponen, Jarmo; Seppänen, Tapio; Iinatti, Jari; Jämsä, Timo

    2013-01-01

    In this paper we present a detailed example of a wireless body area network (WBAN) scenario utilizing the recent IEEE802.15.6 standard as applied to a multi-accelerometer system for monitoring Parkinson's disease and fall detection. Ultra wideband physical layer and standard security protocols are applied to meet application requirements for data rate and security.

  20. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities

    DEFF Research Database (Denmark)

    Siemes, Christian; da Encarnacao, Joao de Teixeira; Doornbos, Eelco

    2016-01-01

    The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like...

  1. Using an accelerometer for analyzing a reach-to-grasp movement after stroke

    Directory of Open Access Journals (Sweden)

    Stella Maris Michaelsen

    2013-12-01

    Full Text Available The purpose of this study was using an accelerometer to access the kinematics of reach-to-grasp movements in subjects with hemiparesis. Eight subjects (59.4 ± 6.9 years old with chronic hemiparesis (50.9 ± 25.8 months post-stroke participated in this study. Kinematic assessment was performed using a triaxial accelerometer (EMG Systems, Brazil attached to the subjects' forearm. Ten reach-to-grasp movements of grabbing a 500ml-size bottle were performed by the subjects with the paretic and the non-paretic upper limbs (ULs. The following space-temporal variables were calculated and used to compare the paretic and non-paretic ULs: movement time (MT, time to reach the peak velocity, absolute and relative (TPV and TPV%MT, relative deceleration duration (DEC%MT, time to peak acceleration (TPA and peak hand acceleration (PA. Movements were slower in the paretic UL with increased MT, TPA and DEC. The accelerometer allowed to identify of changes in reaching-to-grasp movements of subjects with hemiparesis. When complex systems are not available, accelerometers can be an alternative to measure UL movements.

  2. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life.

    Science.gov (United States)

    Tognetti, Alessandro; Lorussi, Federico; Carbonaro, Nicola; de Rossi, Danilo

    2015-11-11

    Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities). The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively). In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints.

  3. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems

    NARCIS (Netherlands)

    Mayagoitia, Ruth E.; Nene, Anand V.; Veltink, Peter H.

    2002-01-01

    A general-purpose system to obtain the kinematics of gait in the sagittal plane based on body-mounted sensors was developed. It consisted of four uniaxial seismic accelerometers and one rate gyroscope per body segment. Tests were done with 10 young healthy volunteers, walking at five different speed

  4. Characterization of a pull-in based μg-resolution accelerometer

    NARCIS (Netherlands)

    Dias, R.A.; Cretu, E.; Wolffenbuttel, R.F.; Rocha, L.A.

    2012-01-01

    The pull-in time of electrostatically actuated parallel-plate microstructures enables the realization of a high-sensitivity accelerometer that uses time measurement as the transduction mechanism. The key feature is the existence of a metastable region that dominates pull-in behavior, thus making pul

  5. A Real-Time Seismogeodetic Network Using MEMS Accelerometers and Its Performance in Kinematic Slip Inversions

    Science.gov (United States)

    Goldberg, D.; Haase, J. S.; Melgar, D.; Bock, Y.; Geng, J.; Saunders, J. K.

    2014-12-01

    The seismogeodetic combination of high-rate GPS observables and seismic acceleration captures the broadband on-scale recording of earthquake ground motions. The use of these data for determining rapid centroid moment tensor solutions ("fastCMT") has been demonstrated in the post-analysis of the 2010 Mw 7.2 El Mayor-Cucapah earthquake. This seismogeodetic combination will improve source inversions for future earthquakes, but large-scale accelerometer deployment at the many available permanent GPS stations is limited by the cost of traditional observatory-grade accelerometers. Instead, we improve feasibility by installing SIO Geodetic Modules and low-cost MEMS accelerometers at 17 GPS stations in southern California near the San Andreas, San Jacinto, and Elsinore faults, transmitting data in real time for analysis of seismic velocity and displacement waveforms. We examine the performance of our seismogeodetic subnetwork using the El Mayor-Cucapah earthquake as our focus. We calculate a kinematic slip inversion, using the small set of seismogeodetic waveforms available at the time of the event, and assess the reliability of the result in comparison to the fastCMT solution. We evaluate reliability by using our model to predict ground motion at independent stations, and using recorded data as verification at a range of frequencies. Next we supplement the dataset by including realistic simulated waveforms for the additional 17 seismogeodetic stations, adding realistic seismogeodetic noise, and demonstrate the improved reliability of our result in terms of reducing the space of possible solutions due to better geometric constraints. The MEMS accelerometer has higher noise than the observatory-grade accelerometer, which we quantify using strong motion recordings from a series of UCSD NEES outdoor shaketable experiments conducted in December 2013 and January 2014. Results will provide confidence in the use of the MEMS accelerometer for large-scale deployment as an

  6. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.

    Science.gov (United States)

    Lyden, Kate; Kozey, Sarah L; Staudenmeyer, John W; Freedson, Patty S

    2011-02-01

    Numerous accelerometers and prediction methods are used to estimate energy expenditure (EE). Validation studies have been limited to small sample sizes in which participants complete a narrow range of activities and typically validate only one or two prediction models for one particular accelerometer. The purpose of this study was to evaluate the validity of nine published and two proprietary EE prediction equations for three different accelerometers. Two hundred and seventy-seven participants completed an average of six treadmill (TRD) (1.34, 1.56, 2.23 ms(-1) each at 0 and 3% grade) and five self-paced activities of daily living (ADLs). EE estimates were compared with indirect calorimetry. Accelerometers were worn while EE was measured using a portable metabolic unit. To estimate EE, 4 ActiGraph prediction models were used, 5 Actical models, and 2 RT3 proprietary models. Across all activities, each equation underestimated EE (bias -0.1 to -1.4 METs and -0.5 to -1.3 kcal, respectively). For ADLs EE was underestimated by all prediction models (bias -0.2 to -2.0 and -0.2 to -2.8, respectively), while TRD activities were underestimated by seven equations, and overestimated by four equations (bias -0.8 to 0.2 METs and -0.4 to 0.5 kcal, respectively). Misclassification rates ranged from 21.7 (95% CI 20.4, 24.2%) to 34.3% (95% CI 32.3, 36.3%), with vigorous intensity activities being most often misclassified. Prediction equations did not yield accurate point estimates of EE across a broad range of activities nor were they accurate at classifying activities across a range of intensities (light METs, moderate 3-5.99 METs, vigorous ≥ 6 METs). Current prediction techniques have many limitations when translating accelerometer counts to EE.

  7. Quasi-Real Time Estimation of Angular Kinematics Using Single-Axis Accelerometers

    Directory of Open Access Journals (Sweden)

    Angelo Cappello

    2013-01-01

    Full Text Available In human movement modeling, the problem of multi-link kinematics estimation by means of inertial measurement units has been investigated by several authors through efficient sensor fusion algorithms. In this perspective a single inertial measurement unit per link is required. This set-up is not cost-effective compared with a solution in which a single-axis accelerometer per link is used. In this paper, a novel fast technique is presented for the estimation of the sway angle in a multi-link chain by using a single-axis accelerometer per segment and by setting the boundary conditions through an ad hoc algorithm. The technique, based on the windowing of the accelerometer output, was firstly tested on a mechanical arm equipped with a single-axis accelerometer and a reference encoder. The technique is then tested on a subject performing a squat task for the knee flexion-extension angle evaluation by using two single-axis accelerometers placed on the thigh and shank segments, respectively. A stereo-photogrammetric system was used for validation. RMSEs (mean ± std are 0.40 ± 0.02° (mean peak-to-peak range of 147.2 ± 4.9° for the mechanical inverted pendulum and 1.01 ± 0.11° (mean peak-to-peak range of 59.29 ± 2.02° for the knee flexion-extension angle. Results obtained in terms of RMSE were successfully compared with an Extended Kalman Filter applied to an inertial measurement unit. These results suggest the usability of the proposed algorithm in several fields, from automatic control to biomechanics, and open new opportunities to increase the accuracy of the existing tools for orientation evaluation.

  8. Chronotropic incompetence in Chagas disease: effectiveness of blended sensor (volume/minute and accelerometer

    Directory of Open Access Journals (Sweden)

    Antonio da Silva Menezes Junior

    2015-09-01

    Full Text Available AbstractIntroduction:Technological progress of pacemakers has allowed the association of two or more sensors in one heart rate system response. The accelerometer sensor measures the intensity of the activity; it has a relatively rapid response to the beginning of it, however, it may present insufficient response to less strenuous or of less impact exercise. The minute ventilation sensor changes the pacing rate in response to changes in respiratory frequency in relation to tidal volume, allowing responses to situations of emotional stress and low impact exercises.Objective:To evaluate the cardiorespiratory response of the accelerometer with respect to the blended sensor (BS=accelerometer sensor+minute ventilation sensor to exercise in chagasic patients undergoing cardiopulmonary exercise test.Methods:This was a prospective, observational, randomized, cross-sectional study. Patients who met the inclusion criteria were selected. The maximum heart rate of the sensor was programmed by age (220-age. The results were analyzed through t test with paired samples (P<0.05.Results:Sample was comprised of 44 patients, with a mean age of 66±10.4 years, 58% were female, 54% as first implant, in 74% were functional class I and 26% were functional class II, left ventricular ejection fraction was 58±7. As for the cardiopulmonary test, maximum expected heart rate and VO2 were not achieved in both the accelerometer sensor and the blended sensor, however, metabolic equivalent in the blended sensor was higher than the expected, all data with P<0.001.Conclusion:Even though the maximal heart rate was not reached, the blended sensor provided a physiological electrical sequence when compared to the accelerometer sensor, providing better physical fitness test in cardiopulmonary hemodynamics and greater efficiency.

  9. High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the ENDEVCO 7270AM6*

    Energy Technology Data Exchange (ETDEWEB)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; NUSSER,MICHAEL A.

    2000-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories (SNL). An Extended Technical Assistance Program (ETAP) with the accelerometer manufacturer has resulted in a commercial mechanically isolated accelerometer that is available to the general public, the ENDEVCO 7270AM6*, for three shock acceleration ranges of 6,000 g, 20,000 g, and 60,000 g. The in-axis response shown in this report has acceptable frequency domain performance from DC to 10 kHz and 10(XO)over a temperature range of {minus}65 F to +185 F. Comparisons with other isolated accelerometers show that the ENDEVCO 7270AM6 has ten times the bandwidth of any other commercial isolator. ENDEVCO 7270AM6 cross-axis response is shown in this report.

  10. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.

    Science.gov (United States)

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Lanckriet, Gert; Wing, David; Marshall, Simon

    2014-11-01

    Wrist accelerometers are being used in population level surveillance of physical activity (PA) but more research is needed to evaluate their validity for correctly classifying types of PA behavior and predicting energy expenditure (EE). In this study we compare accelerometers worn on the wrist and hip, and the added value of heart rate (HR) data, for predicting PA type and EE using machine learning. Forty adults performed locomotion and household activities in a lab setting while wearing three ActiGraph GT3X+ accelerometers (left hip, right hip, non-dominant wrist) and a HR monitor (Polar RS400). Participants also wore a portable indirect calorimeter (COSMED K4b2), from which EE and metabolic equivalents (METs) were computed for each minute. We developed two predictive models: a random forest classifier to predict activity type and a random forest of regression trees to estimate METs. Predictions were evaluated using leave-one-user-out cross-validation. The hip accelerometer obtained an average accuracy of 92.3% in predicting four activity types (household, stairs, walking, running), while the wrist accelerometer obtained an average accuracy of 87.5%. Across all 8 activities combined (laundry, window washing, dusting, dishes, sweeping, stairs, walking, running), the hip and wrist accelerometers obtained average accuracies of 70.2% and 80.2% respectively. Predicting METs using the hip or wrist devices alone obtained root mean square errors (rMSE) of 1.09 and 1.00 METs per 6 min bout, respectively. Including HR data improved MET estimation, but did not significantly improve activity type classification. These results demonstrate the validity of random forest classification and regression forests for PA type and MET prediction using accelerometers. The wrist accelerometer proved more useful in predicting activities with significant arm movement, while the hip accelerometer was superior for predicting locomotion and estimating EE.

  11. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior

    Directory of Open Access Journals (Sweden)

    Alexander H.K. Montoye

    2016-05-01

    Full Text Available Background: Recent evidence suggests that physical activity (PA and sedentary behavior (SB exert independent effects on health. Therefore, measurement methods that can accurately assess both constructs are needed. Objective: To compare the accuracy of accelerometers placed on the hip, thigh, and wrists, coupled with machine learning models, for measurement of PA intensity category (SB, light-intensity PA [LPA], and moderate- to vigorous-intensity PA [MVPA] and breaks in SB. Methods: Forty young adults (21 female; age 22.0 ± 4.2 years participated in a 90-minute semi-structured protocol, performing 13 activities (three sedentary, 10 non-sedentary for 3–10 minutes each. Participants chose activity order, duration, and intensity. Direct observation (DO was used as a criterion measure of PA intensity category, and transitions from SB to a non-sedentary activity were breaks in SB. Participants wore four accelerometers (right hip, right thigh, and both wrists, and a machine learning model was created for each accelerometer to predict PA intensity category. Sensitivity and specificity for PA intensity category classification were calculated and compared across accelerometers using repeated measures analysis of variance, and the number of breaks in SB was compared using repeated measures analysis of variance. Results: Sensitivity and specificity values for the thigh-worn accelerometer were higher than for wrist- or hip-worn accelerometers, > 99% for all PA intensity categories. Sensitivity and specificity for the hip-worn accelerometer were 87–95% and 93–97%. The left wrist-worn accelerometer had sensitivities and specificities of > 97% for SB and LPA and 91–95% for MVPA, whereas the right wrist-worn accelerometer had sensitivities and specificities of 93–99% for SB and LPA but 67–84% for MVPA. The thigh-worn accelerometer had high accuracy for breaks in SB; all other accelerometers overestimated breaks in SB. Conclusion: Coupled with

  12. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent

    2014-05-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with

  13. Quality control methods in accelerometer data processing: defining minimum wear time.

    Directory of Open Access Journals (Sweden)

    Carly Rich

    Full Text Available BACKGROUND: When using accelerometers to measure physical activity, researchers need to determine whether subjects have worn their device for a sufficient period to be included in analyses. We propose a minimum wear criterion using population-based accelerometer data, and explore the influence of gender and the purposeful inclusion of children with weekend data on reliability. METHODS: Accelerometer data obtained during the age seven sweep of the UK Millennium Cohort Study were analysed. Children were asked to wear an ActiGraph GT1M accelerometer for seven days. Reliability coefficients(r of mean daily counts/minute were calculated using the Spearman-Brown formula based on the intraclass correlation coefficient. An r of 1.0 indicates that all the variation is between- rather than within-children and that measurement is 100% reliable. An r of 0.8 is often regarded as acceptable reliability. Analyses were repeated on data from children who met different minimum daily wear times (one to 10 hours and wear days (one to seven days. Analyses were conducted for all children, separately for boys and girls, and separately for children with and without weekend data. RESULTS: At least one hour of wear time data was obtained from 7,704 singletons. Reliability increased as the minimum number of days and the daily wear time increased. A high reliability (r = 0.86 and sample size (n = 6,528 was achieved when children with ≥ two days lasting ≥10 hours/day were included in analyses. Reliability coefficients were similar for both genders. Purposeful sampling of children with weekend data resulted in comparable reliabilities to those calculated independent of weekend wear. CONCLUSION: Quality control procedures should be undertaken before analysing accelerometer data in large-scale studies. Using data from children with ≥ two days lasting ≥10 hours/day should provide reliable estimates of physical activity. It's unnecessary to include only children

  14. Improvement of GNSS Carrier Phase Accuracy Using MEMS Accelerometer-Aided Phase-Locked Loops for Earthquake Monitoring

    Directory of Open Access Journals (Sweden)

    Tisheng Zhang

    2017-06-01

    Full Text Available When strong earthquake occurs, global navigation satellite systems (GNSS measurement errors increase significantly. Combined strategies of GNSS/accelerometer data can estimate better precision in displacement, but are of no help to carrier phase measurement. In this paper, strong-motion accelerometer-aided phase-locked loops (PLLs are proposed to improve carrier phase accuracy during strong earthquakes. To design PLLs for earthquake monitoring, the amplitude-frequency characteristics of the strong earthquake signals are studied. Then, the measurement errors of PLLs before and after micro electro mechanical systems (MEMS accelerometer aiding are analyzed based on error models. Furthermore, tests based on a hardware simulator and a shake table are carried out. Results show that, with MEMS accelerometer aiding, the carrier phase accuracy of the PLL decreases little under strong earthquakes, which is consistent with the models analysis.

  15. Construct validity of RT3 accelerometer: A comparison of level-ground and treadmill walking at self-selected speeds

    Directory of Open Access Journals (Sweden)

    Paul Hendrick, MPhty

    2010-04-01

    Full Text Available This study examined differences in accelerometer output when subjects walked on level ground and on a treadmill. We asked 25 nondisabled participants to wear an RT3 triaxial accelerometer (StayHealthy, Inc; Monrovia, California and walk at their "normal" and "brisk" walking speeds for 10 minutes. These activities were repeated on a treadmill using the individual speeds from level-ground walking on two occasions 1 week apart. Paired t-tests found a difference in RT3 accelerometer vector magnitude (VM counts/min between the two walking speeds on both surfaces on days 1 and 2 (p 0.05, we found wide limits of agreement between level ground and treadmill walking at both speeds. Measurement and discrimination of walking intensity employing RT3 accelerometer VM counts/min on the treadmill demonstrated reasonable validity and stability over two time points compared with level-ground walking.

  16. Identification of electrically stimulated quadriceps - lower leg dynamics - the use of accelerometers for estimating knee joint acceleration and quadriceps torque

    NARCIS (Netherlands)

    Veltink, Peter H.; Tijsmans, Roel; Franken, Henry M.; Boom, Herman B.K.

    1992-01-01

    Knee joiiit acceleration aid quadriceps torque call be estbated from the signals of two tangentially yliiced accelerometers. This euables the ideutificatiou of qundriceps dynamics, loaded with a freely swiugiug lower leg, during electrical stimulation.

  17. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    Science.gov (United States)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  18. Design Optimization of Cantilever Based MEMS Micro-accelerometer for High-g Applications

    Directory of Open Access Journals (Sweden)

    B. D. PANT

    2009-11-01

    Full Text Available Design optimization study of micro-cantilever based MEMS accelerometer is presented in this paper. The cantilever structure is dc biased with an ac signal to extract output voltage generated due to the change in capacitance. This signal modifies the behavior of the sensing element. The cantilever performance under a combined inertial and electrostatic force has been considered for estimating the dimensional dependence of cantilever sensitivity, non-linearity, off-set and critical acceleration and operating voltages. The cantilever performance has been verified using ANSYSTM Multiphysics software. Finally, a micro-accelerometer based on an array of 15 cantilevers has been designed and fabricated with a high sensitivity of 3 - 4 mV/g with a non-linearity of < 1 % for high-g (50 g applications.

  19. Analysis of the thermal effect influence on the MEMS accelerometer sensors measurement results

    Science.gov (United States)

    Sawicki, Aleksander; Walendziuk, Wojciech

    2016-09-01

    In the study the results of the thermal effect influence on the measurements of three different analog accelerometer sensors (ADXL335, ADXL327, LIS344ALH) and one digital sensor (MPU-9255) are presented. The measurement data was registered within the -2°C ÷ 65°C temperature range. The first part of the article characterizes the procedure of determining the acceleration for analog and digital sensors. Moreover, the study includes the methods of determining parameters such as Zero-g Offset and sensitivity. The temperature parameters of the accelerometers, such as Sensitivity change vs. Temperature and Zero-g Offset vs. change Temperature, were also determined. The indicators were determined separately for each of the OX, OY, OZ axes for the investigated MEMS sensors. Finally, the obtained results were compared with the parameters guaranteed by the accelerometric sensor manufacturers.

  20. Identification of calibration and operating limits of a low-cost embedded system with MEMS accelerometer

    Science.gov (United States)

    D'Emilia, G.; Di Gasbarro, D.; Gaspari, A.; Natale, E.

    2017-08-01

    In this paper some aspects concerning the calibration uncertainty of three-axis low-cost accelerometers for possible use in diagnostics of civil buildings are considered, using a linear slide and a laser vibrometer as the reference. In order to analyse the principal and cross sensitivity and the offset of the sensor in dynamic conditions, the sensitivity matrix method has been used. Some considerations about the operating limits of a low-cost embedded system with MEMS accelerometer have been discussed, with reference to the calibration procedure. In particular, the effects of the non-constant sampling and of the achievable sampling rate, are studied with reference to the calibration uncertainty and to the capability of the calibration procedure to assess the best metrological performances of the system under test.

  1. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer

    Science.gov (United States)

    Shanli, Long; Yan, Liu; Kejun, He; Xinggang, Tang; Qian, Chen

    2014-09-01

    A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5 × 2.5 mm2 and the current is 3.5 mA.

  2. Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2015-09-01

    Full Text Available In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz wafers with a thickness of 100 μm and 300 μm, respectively. The finite element method is used to simulate the vibration mode and optimize the sensing element structure. Taking advantage of self-alignment function of the flip chip bonding process, the two parts were precisely bonded at the desired joint position via AuSn solder. Experimental demonstrations were performed on a maximum scale of 4 × 8 mm2 chip, and high sensitivity up to 9.55 Hz/g with a DETF resonator and a Q value of 5000 in air was achieved.

  3. Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer.

    Science.gov (United States)

    Liang, Jinxing; Zhang, Liyuan; Wang, Ling; Dong, Yuan; Ueda, Toshitsugu

    2015-09-02

    In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz wafers with a thickness of 100 μm and 300 μm, respectively. The finite element method is used to simulate the vibration mode and optimize the sensing element structure. Taking advantage of self-alignment function of the flip chip bonding process, the two parts were precisely bonded at the desired joint position via AuSn solder. Experimental demonstrations were performed on a maximum scale of 4 × 8 mm² chip, and high sensitivity up to 9.55 Hz/g with a DETF resonator and a Q value of 5000 in air was achieved.

  4. Robust real-time self-mixing interferometric laser vibration sensor with embedded MEMS accelerometer

    Science.gov (United States)

    Zabit, Usman; Bernal, Olivier D.; Bosch, Thierry

    2012-06-01

    In this paper, we present a real-time implementation of a Self-Mixing (SM) interferometric laser diode (LD) based vibration sensor coupled with an embedded MEMS (microelectromechanical system) accelerometer. Such a sensor allows measuring correct target movements even when the LD based SM sensor is subject to extraneous movements. This results in a vibration sensing system that can be used for embedded applications as there is no more need of keeping the sensor stationary. Such an approach opens the way for the use of such laser sensors in conditions where the use of anti-vibration support is not available or possible. The proposed data fusion between a MEMS accelerometer and a LD based SM sensor results in a robust, compact and low-cost sensing system.

  5. Gait characteristic analysis and identification based on the iPhone's accelerometer and gyrometer.

    Science.gov (United States)

    Sun, Bing; Wang, Yang; Banda, Jacob

    2014-09-12

    Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer,and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed forgait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects.

  6. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.

    Science.gov (United States)

    Li, G; Wu, S C; Zhou, Z B; Bai, Y Z; Hu, M; Luo, J

    2013-12-01

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10(-8) m/s(2)/Hz(1/2) at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  7. A piezoresistive micro-accelerometer with high frequency response and low transverse effect

    Science.gov (United States)

    Wang, Peng; Zhao, Yulong; Tian, Bian; Liu, Yan; Wang, Zixi; Li, Cun; Zhao, You

    2017-01-01

    With the purpose of measuring vibration signals in high-speed machinery, this paper developed a piezoresistive micro-accelerometer with multi-beam structure by combining four tiny sensing beams with four suspension beams. The eight-beam (EB) structure was designed to improve the trade-off between the sensitivity and the natural frequency of piezoresistive accelerometer. Besides, the piezoresistor configuration in the sensing beams reduces the cross interference from the undesirable direction significantly. The natural frequency of the structure and the stress on the sensing beams are theoretically calculated, and then verified through finite element method (FEM). The proposed sensor is fabricated on the n-type single crystal silicon wafer and packaged for experiment. The results demonstrate that the developed device possesses a suitable characteristic in sensitivity, natural frequency and transverse effect, which allows its usage in the measuring high frequency vibration signals.

  8. Simulation of a low frequency Z-axis SU-8 accelerometer in coventorware and MEMS+

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2013-04-01

    This paper presents the simulation of a z-axis SU-8 capacitive accelerometer. The study consists of a modal analysis of the modeled accelerometer, a study relating capacitance to acceleration, capacitance to deflection, an effective spring constant calculation, and a comparison of results achieved using CoventorWare® ANALYZER™ and MEMS+®. A fabricated energy harvester design from [1] was used for modeling and simulation in this study, with a four spring attachment of a 650μm×650μm; ×110μm proof mass of 4.542×10-8 kg. At rest, the spacing between electrodes is 4μm along the z-axis, and at 1.5g acceleration, there is 1.9μm spacing between electrodes, at which point pull in occurs for a 1V voltage. © 2013 IEEE.

  9. Hazard Detection for Motorcycles via Accelerometers: A Self-Organizing Map Approach.

    Science.gov (United States)

    Selmanaj, Donald; Corno, Matteo; Savaresi, Sergio M

    2016-06-09

    This paper deals with collision and hazard detection for motorcycles via inertial measurements. For this kind of vehicles, the most difficult challenge is to distinguish road's anomalies from real hazards. This is usually done by setting absolute thresholds on the accelerometer measurements. These thresholds are heuristically tuned from expensive crash tests. This empirical method is expensive and not intuitive when the number of signals to deal with grows. We propose a method based on self-organized neural networks that can deal with a large number of inputs from different types of sensors. The method uses accelerometer and gyro measurements. The proposed approach is capable of recognizing dangerous conditions although no crash test is needed for training. The method is tested in a simulation environment; the comparison with a benchmark method shows the advantages of the proposed approach.

  10. Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors

    Science.gov (United States)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.

  11. Gait Characteristic Analysis and Identification Based on the iPhone’s Accelerometer and Gyrometer

    Directory of Open Access Journals (Sweden)

    Bing Sun

    2014-09-01

    Full Text Available Gait identification is a valuable approach to identify humans at a distance. In thispaper, gait characteristics are analyzed based on an iPhone’s accelerometer and gyrometer,and a new approach is proposed for gait identification. Specifically, gait datasets are collectedby the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets areprocessed to extract gait characteristic parameters which include gait frequency, symmetrycoefficient, dynamic range and similarity coefficient of characteristic curves. Finally, aweighted voting scheme dependent upon the gait characteristic parameters is proposed forgait identification. Four experiments are implemented to validate the proposed scheme. Theattitude and acceleration solutions are verified by simulation. Then the gait characteristicsare analyzed by comparing two sets of actual data, and the performance of the weightedvoting identification scheme is verified by 40 datasets of 10 subjects.

  12. Comprehensive Warpage Analysis of Stacked Die MEMS Package in Accelerometer Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Packaging of MEMS ( micro-electro-mechanical system ) devices poses more challenges than conventional IC packaging, since the performance of the MEMS devices is highly dependent on packaging processes. A Land Grid Array (LGA) package is introduced for MEMS technology based linear multi-axis accelerometers. Finite element modeling is conducted to simulate the warpage behavior of the LGA packages. A method to correlate the package warpage to matrix block warpage has been developed. Warpage for both package and sensor substrate are obtained. Warpage predicted by simulation correlates very well with experimental measurements. Based on this validated method, detailed design analysis with different package geometrical variations are carried out to optimize the package design. With the optimized package structure,the packaging effect on accelerometer signal performance is well controlled.

  13. Fabrication and assembly of MEMS accelerometer-based heart monitoring device with simplified, one step placement.

    Science.gov (United States)

    Tjulkins, Fjodors; Nguyen, Anh-Tuan Thai; Andreassen, Erik; Aasmundtveit, Knut; Hoivik, Nils; Hoff, Lars; Halvorsen, Per Steinar; Grymyr, Ole-Johannes; Imenes, Kristin

    2015-01-01

    An accelerometer-based heart monitoring system has been developed for real-time evaluation of heart wall movement. In this paper, assembly and fabrication of an improved device is presented along with system characterization and test data from an animal experiment. The new device is smaller and has simplified the implantation procedure compared to earlier prototypes. Leakage current recordings were well below those set by the corresponding standards.

  14. Pyroshock data acquisition-historical developments using piezoelectric accelerometers and other transducers

    Science.gov (United States)

    Himelblau, Harry

    2002-05-01

    For nearly 50 years, P/E accelerometers have been used for acquiring pyroshock data with mixed results. For longer distances between the explosive source and the transducer location (e.g., two feet or more), valid data of lesser shock magnitude were usually obtained. However, for shorter distances, a variety of problems were often encountered, causing erroneous results. It was subsequentially determined that most problems were caused by measurement system nonlinearities, i.e., the nonlinear resonant response of the accelerometer, or exceeding the linear amplitude range of the signal conditioner and recorder. In the earlier years, it was erroneously assumed that subsequent low pass filtering of the signal would remove the nonlinearities, hopefully leading to valid data. This only masked the invalid results. Eventually, improved P/E accelerometers were developed with higher natural frequencies and larger amplitude limits that caused substantially fewer problems and allowed measurements closer to the explosive sources. Shortly thereafter, the high frequency noncontact laser doppler vibrometer became available which circumvented the accelerometer resonance problem. However, this velocity transducer is almost always limited to laboratory tests in order to constrain the motion of the laser head by a very rigid and massive support foundation compared to the flexible structure which is attached to the laser target. Other LDV measurement problems have been encountered that must be avoided to achieve valid data. Conventional strain gages have been successfully used to measure pyroshock strain. However, due to the short wavelength of direct and bending pyroshock waves at high frequencies, small strain gages are usually required to avoid spatial averaging over the length of the gage.

  15. Comparison of equations for predicting energy expenditure from accelerometer counts in children

    DEFF Research Database (Denmark)

    Nilsson, A; Brage, S; Riddoch, C;

    2008-01-01

    sample of children. We examined 1321 children (663 boys, 658 girls; mean age 9.6+/-0.4 years) from four different countries. Physical activity was measured by the MTI accelerometer. One equation, derived from doubly labeled water (DLW) measurements, was compared with one treadmill-based (TM) and one room......, and interpretations of average levels of PAEE in children from available equations should be made with caution. Further development of equations applicable to free-living scenarios is needed....

  16. Quality of GOCE accelerometer data and analysis with ionospheric dynamics during geomagnetically active days

    Science.gov (United States)

    Sinem Ince, Elmas; Fomichev, Victor; Floberghagen, Rune; Schlicht, Anja; Martynenko, Oleg; Pagiatakis, Spiros

    2016-07-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was launched in March, 2009 and completed its mission with great success in November, 2011. GOCE data processing is challenging and not all the disturbances are removed from the gravitational field observations. The disturbances observed in GOCE Vyy gradients around magnetic poles are investigated by using external datasets. It is found that the amplitude of these disturbances increase during geomagnetically active days and can reach up to 5 times the expected noise level of the gradiometer. ACE (Advanced Composition Explorer) and Wind satellites measured electric field and interplanetary magnetic field components have shown that the disturbances observed in the polar regions agree with the increased solar activity. Moreover, equivalent ionospheric currents computed along ascending satellite tracks over North America and Greenland have shown a noticeable correlation with the cross-track and vertical currents and the pointing flux (ExB) components in the satellite cross track direction. Lastly, Canadian Ionosphere and Atmosphere Model (C-IAM) electric field and neutral wind simulations have shown a strong correlation of the enhancement in the ionospheric dynamics during geomagnetically active days and disturbances measured by the GOCE accelerometers over high latitudes. This may be a result of imperfect instrumentation and in-flight calibration of the GOCE accelerometers for an increased geomagnetic activity or a real disturbance on the accelerometers. We use above listed external datasets to understand the causes of the disturbances observed in gravity gradients and reduce/ eliminate them by using response analyses in frequency domain. Based on our test transfer functions, improvement is possible in the quality of the gradients. Moreover, this research also confirms that the accelerometer measurements can be useful to understand the ionospheric dynamics and space weather forecasting.

  17. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer.

    Science.gov (United States)

    Bonomi, A G; Plasqui, G; Goris, A H C; Westerterp, K R

    2009-09-01

    Accelerometers are often used to quantify the acceleration of the body in arbitrary units (counts) to measure physical activity (PA) and to estimate energy expenditure. The present study investigated whether the identification of types of PA with one accelerometer could improve the estimation of energy expenditure compared with activity counts. Total energy expenditure (TEE) of 15 subjects was measured with the use of double-labeled water. The physical activity level (PAL) was derived by dividing TEE by sleeping metabolic rate. Simultaneously, PA was measured with one accelerometer. Accelerometer output was processed to calculate activity counts per day (AC(D)) and to determine the daily duration of six types of common activities identified with a classification tree model. A daily metabolic value (MET(D)) was calculated as mean of the MET compendium value of each activity type weighed by the daily duration. TEE was predicted by AC(D) and body weight and by AC(D) and fat-free mass, with a standard error of estimate (SEE) of 1.47 MJ/day, and 1.2 MJ/day, respectively. The replacement in these models of AC(D) with MET(D) increased the explained variation in TEE by 9%, decreasing SEE by 0.14 MJ/day and 0.18 MJ/day, respectively. The correlation between PAL and MET(D) (R(2) = 51%) was higher than that between PAL and AC(D) (R(2) = 46%). We conclude that identification of activity types combined with MET intensity values improves the assessment of energy expenditure compared with activity counts. Future studies could develop models to objectively assess activity type and intensity to further increase accuracy of the energy expenditure estimation.

  18. Design and development of PVDF-based MEMS hydrophone and accelerometer

    Science.gov (United States)

    Zhu, Bei

    It is always desirable to fabricate low-cost, highly sensitive and miniaturized sensors for various applications. In this thesis, the design and processing of PVDF-based MEMS hydrophones and accelerometers have been investigated. The basic structure of the hydrophone was fabricated on a silicon wafer using standard NMOS process technology. A MOSFET with extended gate electrode was designed as the interface circuit to a sensing material, which is a piezoelectric polymer, polyvinylidene difluoride (PVDF). Acoustic impedance possessed by this piezoelectric material provides a reasonable match to that of water, which makes it very attractive for underwater applications. The electrical signal generated by the PVDF film was directly coupled to the gate of the MOSFET. In order to minimize the parasitic capacitance underneath the PVDF film and hence improve the device sensitivity, a thick photoresist, SU-8, was first employed as the dielectric layer under the extended gate electrode. For underwater operation, the hydrophone was encapsulated by a waterproof Rho-C rubber. However, it was found that the rubber induced the degradation of the MOSFET. To improve the reliability of the hydrophone, the active device was passivated by a silicon nitride layer, which is a good barrier material to most mobile ions and solvents. The device after passivation also shows a lower noise level. A theoretical model was developed to predict the sensitivity of the hydrophone. A reasonable agreement between the theoretical and experimental results was obtained. MEMS accelerometers based on the PVDF-MOSFET structure by attaching a seismic mass on top of the PVDF film were also fabricated. The accelerometer was calibrated using a comparison method and an average sensitivity of 0.28 mV/g was achieved. A dynamic model of the accelerometer was derived and the calculated results are in good agreement with the measured results.

  19. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    Institute of Scientific and Technical Information of China (English)

    Dong Linxi; Chen Jindan; Yan Haixia; Huo Weihong; Li Yongjie; Sun Lingling

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30 : 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  20. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    OpenAIRE

    Alessandro Sabato; Maria Q. Feng

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors’ low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor’s analog signals are converted to digital signals before radio-frequency (RF) wireless ...

  1. MEMS加速度计的六位置测试法%Six-Position Testing of MEMS Accelerometer

    Institute of Scientific and Technical Information of China (English)

    宋丽君; 秦永元

    2009-01-01

    主要介绍了MEMS加速度计的六位置测试法,根据MEMS加速度计输出数学模型详细推导了如何得到MEMS加速度计的输出数学模型中的刻度因数、零偏以及安装误差,并在得到其标定系数后将其封装在C函数中进行了验证实验.通过实验数据分析可知,MEMS加速度计的六位置测试法原理简单、易于实现,且精度较高.这种标定法所得到的MEMS加速度计输出能够比较准确地反映其输出,而且MEMS加速度计的线性度有所改善.%A six-position testing method of MEMS accelerometer is introduced mainly. According to the error model of MEMS accelerometer the scale factor of MEMS accelerometer, bias of MEMS accelerometer and error on installation of MEMS accelerometer are derived. When the user gets these parameters, the user should pack the function of the concrete mathematics model in C code. By analyzing the results of examination, the six-posi-tion testing method of MEMS accelerometer is simple on principle, easy to realize and high in precision as long as the user gets the error model of MEMS accelerometer. And the scale factor nonlinearity is improved by the error model of MEMS accelerometer.

  2. Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment

    DEFF Research Database (Denmark)

    Schnurr, Theresia Maria; Bech, Bianca; Nielsen, Tenna Ruest Haarmark

    2017-01-01

    We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objective measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th......-assessed daily total PA levels (r = 0.34, p children who reported a high PAS were more physically active compared with children who reported a low PAS. There was a fair level of agreement between self-reported PAS and accelerometer-assessed PA (Kappa agreement = 0.23; 95% CI = [0.03, 0.43]; p = .01...... in moderate to vigorous physical intensity were generated, applying cut-offs based on Vector Magnitude settings as defined by Romanzini et al. (2014), and a physical activity score (PAS) based on self-reported data was calculated. Overall, a higher self-reported PAS was correlated with higher accelerometer...

  3. Attitude Determination with Magnetometers and Accelerometers to Use in Satellite Simulator

    Directory of Open Access Journals (Sweden)

    Helio Koiti Kuga

    2013-01-01

    Full Text Available Attitude control of artificial satellites is dependent on information provided by its attitude determination process. This paper presents the implementation and tests of a fully self-contained algorithm for the attitude determination using magnetometers and accelerometers, for application on a satellite simulator based on frictionless air bearing tables. However, it is known that magnetometers and accelerometers need to be calibrated so as to allow that measurements are used to their ultimate accuracy. A calibration method is implemented which proves to be essential for improving attitude determination accuracy. For the stepwise real-time attitude determination, it was used the well-known QUEST algorithm which yields quick response with reduced computer resources. The algorithms are tested and qualified with actual data collected on the streets under controlled situations. For such street runaways, the experiment employs a solid-state magnetoresistive magnetometer and an IMU navigation block consisting of triads of accelerometers and gyros, with MEMS technology. A GPS receiver is used to record positional information. The collected measurements are processed through the developed algorithms, and comparisons are made for attitude determination using calibrated and noncalibrated data. The results show that the attitude accuracy reaches the requirements for real-time operation for satellite simulator platforms.

  4. Parameter Identification Model for Accelerometer%加速度计参数辨识建模

    Institute of Scientific and Technical Information of China (English)

    刘畅; 黄玉清

    2014-01-01

    In this paper , according to the need of the accelerometer parameters model identification , the accelerometer zero bias through gathering , analyzes the characteristics of the data , combining three meth-ods of system identification , the least squares , the recursive least squares and maximum likelihood esti-mate, relevant mathematics models were established zero deflection data , the simulation based on the model, to observe parameters changing trend of curve , the model parameters and to identify the parame-ters in the model after comparison , proves the reliability of the model , for accelerometer parameters change with time of level provides a reference method .%根据加速度计参数模型辨识的需要,通过采集加速度计零偏,分析了数据的特点,结合最小二乘、递推最小二乘、最大似然估计3种系统辨识方法,建立起零偏数据相关的数学模型,再通过对模型进行仿真,观察参数变化曲线趋势,把模型参数和辨识之后的模型参数作对比,证明了模型的可靠性。

  5. Analyzing Body Movements within the Laban Effort Framework Using a Single Accelerometer

    Directory of Open Access Journals (Sweden)

    Basel Kikhia

    2014-03-01

    Full Text Available This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong—Light, Free—Bound and Sudden—Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting Strong—Light body movements using the Random Forest classifier. The wrist placement was also the best location for classifying Bound—Free body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting Sudden—Sustained body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement.

  6. Analyzing body movements within the Laban Effort Framework using a single accelerometer.

    Science.gov (United States)

    Kikhia, Basel; Gomez, Miguel; Jiménez, Lara Lorna; Hallberg, Josef; Karvonen, Niklas; Synnes, Kåre

    2014-03-21

    This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong-Light, Free-Bound and Sudden-Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh) simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting Strong-Light body movements using the Random Forest classifier. The wrist placement was also the best location for classifying Bound-Free body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting Sudden-Sustained body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement.

  7. Design and analysis of a novel virtual gyroscope with multi-gyroscope and accelerometer array

    Science.gov (United States)

    Luo, Zhang; Liu, Chaojun; Yu, Shuai; Zhang, Shengzhi; Liu, Sheng

    2016-08-01

    A new virtual gyroscope with multi-gyroscope and accelerometer array (MGAA) is proposed in this article for improving the performance of angular rate measurement. Outputs of the virtual gyroscope are obtained by merging the signals from gyroscopes and accelerometers through a novel Kalman filter, which intentionally takes the consideration of the MEMS gyroscope error model and kinematics theory of rigid body. A typical configuration of the virtual gyroscope, consisting of four accelerometers and three gyroscopes mounted on designated positions, is initiated to verify the feasibility of the virtual gyroscope with MGAA. Static test and dynamic test are performed subsequently to evaluate its performance. The angular random walk (ARW) and bias instability, two static performance parameters of gyroscope, are reduced from 0.019°/√s and 14.4°/h to 0.0074°/√s and 8.7°/h, respectively. The average root mean square error (RMSE) is reduced from 0.274°/s to 0.133°/s under dynamic test. Compared with the published multi-gyroscope array method, the virtual gyroscope proposed here has a better performance both in static and dynamic tests, with improvement factors of ARW and RMSE about 44.1% and 44.5% higher, respectively.

  8. Time- and Computation-Efficient Calibration of MEMS 3D Accelerometers and Gyroscopes

    Directory of Open Access Journals (Sweden)

    Sara Stančin

    2014-08-01

    Full Text Available We propose calibration methods for microelectromechanical system (MEMS 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations.

  9. Time- and computation-efficient calibration of MEMS 3D accelerometers and gyroscopes.

    Science.gov (United States)

    Stančin, Sara; Tomažič, Sašo

    2014-08-13

    We propose calibration methods for microelectromechanical system (MEMS) 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations.

  10. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems.

    Science.gov (United States)

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-03-25

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system.

  11. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process.

    Science.gov (United States)

    Merdassi, Adel; Yang, Peng; Chodavarapu, Vamsy P

    2015-03-25

    We present the design and fabrication of a single axis low noise accelerometer in an unmodified commercial MicroElectroMechanical Systems (MEMS) process. The new microfabrication process, MEMS Integrated Design for Inertial Sensors (MIDIS), introduced by Teledyne DALSA Inc. allows wafer level vacuum encapsulation at 10 milliTorr which provides a high Quality factor and reduces noise interference on the MEMS sensor devices. The MIDIS process is based on high aspect ratio bulk micromachining of single-crystal silicon layer that is vacuum encapsulated between two other silicon handle wafers. The process includes sealed Through Silicon Vias (TSVs) for compact design and flip-chip integration with signal processing circuits. The proposed accelerometer design is sensitive to single-axis in-plane acceleration and uses a differential capacitance measurement. Over ±1 g measurement range, the measured sensitivity was 1 fF/g. The accelerometer system was designed to provide a detection resolution of 33 milli-g over the operational range of ±100 g.

  12. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    Science.gov (United States)

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  13. Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers

    Science.gov (United States)

    Liu, Yu-Chia; Tsai, Ming-Han; Tang, Tsung-Lin; Fang, Weileun

    2011-10-01

    This study presents a simple approach to improve the performance of the CMOS-MEMS capacitive accelerometer by means of the post-CMOS metal electroplating process. The metal layer can be selectively electroplated on the MEMS structures at low temperature and the thickness of the metal layer can be easily adjusted by this process. Thus the performance of the capacitive accelerometer (i.e. sensitivity, noise floor and the minimum detectable signal) can be improved. In application, the proposed accelerometers have been implemented using (1) the standard CMOS 0.35 µm 2P4M process by CMOS foundry, (2) Ti/Au seed layers deposition/patterning by MEMS foundry and (3) in-house post-CMOS electroplating and releasing processes. Measurements indicate that the sensitivity is improved 2.85-fold, noise is decreased near 1.7-fold and the minimum detectable signal is improved from 1 to 0.2 G after nickel electroplating. Moreover, unwanted structure deformation due to the temperature variation is significantly suppressed by electroplated nickel.

  14. Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer

    Science.gov (United States)

    Verma, Payal; Arya, Sandeep K.; Gopal, Ram

    2015-12-01

    A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOF of the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.

  15. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    Directory of Open Access Journals (Sweden)

    Mohd Haris Md Khir

    2011-08-01

    Full Text Available This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  16. Evaluation of a Hopkinson bar fly-away technique for high amplitude shock accelerometer calibration

    Energy Technology Data Exchange (ETDEWEB)

    Togami, T.C.; Bateman, V.I.; Brown, F.A.

    1997-11-01

    A split Hopkinson bar technique has been developed to evaluate the performance of accelerometers that measure large amplitude pulses. An evaluation of this technique has been conducted in the Mechanical Shock Laboratory at Sandia National Laboratories (SNL) to determine its use in the practical calibration of accelerometers. This evaluation consisted of three tasks. First, the quartz crystal was evaluated in a split Hopkinson bar configuration to evaluate the quartz gage`s sensitivity and frequency response at force levels of 18,000, 35,000 and 53,000 N at ambient temperature, {minus}48 C and +74 C. Secondly, the fly away technique was evaluated at shock amplitudes of 50,000, 100,000, 150,000 and 200,000 G (1 G = 9.81 m/s{sup 2}) at ambient temperature, {minus}48 C and +74 C. Lastly, the technique was performed using a NIST calibrated reference accelerometer. Comparisons of accelerations calculated from the quartz gage data and the measured acceleration data have shown very good agreement. Based on this evaluation, the authors expect this split Hopkinson fly away technique to be certified by the SNL Primary Standards Laboratory.

  17. Physical Explanation on Designing Three Axes as Different Resolution Indexes from GRACE Satellite-Borne Accelerometer

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wei; XU Hou-Ze; ZHONG Min; YUN Mei-Juan

    2008-01-01

    @@ The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conservation principle. The results show that designing XA1(2) as low-sensitivity axis (3 × 10-9 m/s2) of accelerometer and designing YA1(2) and ZA1(2) as high-sensitivity axes (3 × 10-10m/s2) are reasonable. The physical reason why the resolution of XA1(2) is one order of magnitude lower than YA1(2) and ZA1(2) is that non-conservative forces acting on GRACE satellites axe mainly decomposed into YA1(2) and ZA1(2) in the orbital plane.Since X A1(2) is not orthogonal accurately to orbital plane during the development of accelerometer, the measurement of X A1(2) can not be thrown off entirely, but be reduced properly.

  18. Dynamic investigation of a suspension footbridge using accelerometers and microwave interferometer

    Directory of Open Access Journals (Sweden)

    Gentile Carmelo

    2015-01-01

    Full Text Available The paper presents the main results of the serviceability assessment of a lively suspension footbridge. An ambient vibration test was firstly developed on July 2012 using conventional accelerometers with the objective of identifying the baseline dynamic characteristics of the structure; subsequently, groups of volunteers (up to 32 adults simulated normal walking and running at different step rates along the deck and the human-induced vibrations were simultaneously measured by accelerometers and microwave interferometer. The deflection responses recorded by the microwave interferometer suggested the exceeding of comfort criteria threshold and this result was confirmed by the acceleration levels directly measured by accelerometers or derived from the (radar displacement data. Furthermore, a second ambient vibration test was performed in Autumn 2012 using only the microwave interferometer: the natural frequencies of the footbridge generally exhibited not negligible variations, that were conceivably associated to the change of suspension forces induced by temperature, so that special care is suggested in the design of the devices aimed at mitigating the excess of human induced vibrations observed in the footbridge.

  19. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults

    DEFF Research Database (Denmark)

    Matthews, Charles E; Keadle, S. K.; Troiano, Richard P

    2016-01-01

    Background: Moderate-to-vigorous-intensity physical activity is recommended to maintain and improve health, but the mortality benefits of light activity and risk for sedentary time remain uncertain. Objectives: Using accelerometer-based measures, we 1) described the mortality dose-response for se......Background: Moderate-to-vigorous-intensity physical activity is recommended to maintain and improve health, but the mortality benefits of light activity and risk for sedentary time remain uncertain. Objectives: Using accelerometer-based measures, we 1) described the mortality dose......-response for sedentary time and light-and moderateto-vigorous-intensity activity using restricted cubic splines, and 2) estimated the mortality benefits associated with replacing sedentary time with physical activity, accounting for total activity. Design: US adults (n = 4840) from NHANES (2003-2006) wore...... an accelerometer for #7 d and were followed prospectively for mortality. Proportional hazards models were used to estimate adjusted HRs and 95% CIs for mortality associations with time spent sedentary and in light-and moderate-to-vigorous-intensity physical activity. Splines were used to graphically present...

  20. ACCELEROMETERS IN FLOW FIELDS: A STRUCTURAL ANALYSIS OF THE CHOPPED DUMMY INPILE TUBE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. K.; Marcum, W. R.; Latimer, G. D.; Weiss, A.; Jones, W. F.; Phillips, A. M.; Woolstenhulme, N.; Holdaway, K.; Campbell, J.

    2016-06-01

    Four tests characterizing the structural response of the Chopped-Dummy In-Pile tube (CDIPT) experiment design were measured in the Hydro-Mechanical Fuel Test Facility (HMFTF). Four different test configurations were tried. These configurations tested the pressure drop and flow impact of various plate configurations and flow control orifices to be used later at different reactor power levels. Accelerometers were placed on the test vehicle and flow simulation housing. A total of five accelerometers were used with one on the top and bottom of the flow simulator and vehicle, and one on the outside of the flow simulator. Data were collected at a series of flow rates for 5 seconds each at an acquisition rate of 2 kHz for a Nyquist frequency of 1 kHz. The data were then analyzed using a Fast Fourier Transform (FFT) algorithm. The results show very coherent vibrations of the CDIPT experiment on the order of 50 Hz in frequency and 0.01 m/s2 in magnitude. The coherent vibrations, although small in magnitude pose a potential design problem if the frequencies coincide with the natural frequency of the fueled plates or test vehicle. The accelerometer data was integrated and combined to create a 3D trace of the experiment during the test. The merits of this data as well as further anomalies and artifacts are also discussed as well as their relation to the instrumentation and experiment design.

  1. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    Science.gov (United States)

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  2. A Wafer Level Vacuum Encapsulated Capacitive Accelerometer Fabricated in an Unmodified Commercial MEMS Process

    Directory of Open Access Journals (Sweden)

    Adel Merdassi

    2015-03-01

    Full Text Available We present the design and fabrication of a single axis low noise accelerometer in an unmodified commercial MicroElectroMechanical Systems (MEMS process. The new microfabrication process, MEMS Integrated Design for Inertial Sensors (MIDIS, introduced by Teledyne DALSA Inc. allows wafer level vacuum encapsulation at 10 milliTorr which provides a high Quality factor and reduces noise interference on the MEMS sensor devices. The MIDIS process is based on high aspect ratio bulk micromachining of single-crystal silicon layer that is vacuum encapsulated between two other silicon handle wafers. The process includes sealed Through Silicon Vias (TSVs for compact design and flip-chip integration with signal processing circuits. The proposed accelerometer design is sensitive to single-axis in-plane acceleration and uses a differential capacitance measurement. Over ±1 g measurement range, the measured sensitivity was 1fF/g. The accelerometer system was designed to provide a detection resolution of 33 milli-g over the operational range of ±100 g.

  3. Accelerometers for the GOCE Mission: on-ground verification and in-orbit early results

    Science.gov (United States)

    Foulon, B.; Christophe, B.; Marque, J.-P.

    2009-04-01

    The six accelerometers of the ESA GOCE mission have been developed by ONERA under contract with ThalesAleniaSpace France as Prime Contractor of the Gradiometer. These instruments are based on a principle similar to the ones flying from several years on board the CHAMP and the twin GRACE satellites but with some technological evolution to improve their resolution by 2 orders of magnitude in order to guarantee a level of noise acceleration lower than 2E-12 ms-2 Hz-1/2 as required by the GOCE mission scientific performance. Their contribution to the mission is double by providing the Satellite with the linear accelerations as input to the continuous drag compensation system and with the scientific data measurements to be on-ground processed. The presentation will first shortly describe the accelerometer together with a summary of on-ground test plan philosophy and results, including free fall tests in the Bremen drop tower. Then, if available at that time, the first and preliminary results of the in orbit performance of the accelerometers will be presented and compared. Such instrument can also contribute to improve the performance of some new geodetic mission by measuring more accurately the non gravitational forces acting on the satellites, as corner-stone instrument in some gradiometer arms or as sensor for drag compensation system of low orbit spacecrafts.

  4. Kinematics of Gait: New Method for Angle Estimation Based on Accelerometers

    Directory of Open Access Journals (Sweden)

    Dejan B. Popović

    2011-11-01

    Full Text Available A new method for estimation of angles of leg segments and joints, which uses accelerometer arrays attached to body segments, is described. An array consists of two accelerometers mounted on a rigid rod. The absolute angle of each body segment was determined by band pass filtering of the differences between signals from parallel axes from two accelerometers mounted on the same rod. Joint angles were evaluated by subtracting absolute angles of the neighboring segments. This method eliminates the need for double integration as well as the drift typical for double integration. The efficiency of the algorithm is illustrated by experimental results involving healthy subjects who walked on a treadmill at various speeds, ranging between 0.15 m/s and 2.0 m/s. The validation was performed by comparing the estimated joint angles with the joint angles measured with flexible goniometers. The discrepancies were assessed by the differences between the two sets of data (obtained to be below 6 degrees and by the Pearson correlation coefficient (greater than 0.97 for the knee angle and greater than 0.85 for the ankle angle.

  5. Kinematics of gait: new method for angle estimation based on accelerometers.

    Science.gov (United States)

    Djurić-Jovičić, Milica D; Jovičić, Nenad S; Popović, Dejan B

    2011-01-01

    A new method for estimation of angles of leg segments and joints, which uses accelerometer arrays attached to body segments, is described. An array consists of two accelerometers mounted on a rigid rod. The absolute angle of each body segment was determined by band pass filtering of the differences between signals from parallel axes from two accelerometers mounted on the same rod. Joint angles were evaluated by subtracting absolute angles of the neighboring segments. This method eliminates the need for double integration as well as the drift typical for double integration. The efficiency of the algorithm is illustrated by experimental results involving healthy subjects who walked on a treadmill at various speeds, ranging between 0.15 m/s and 2.0 m/s. The validation was performed by comparing the estimated joint angles with the joint angles measured with flexible goniometers. The discrepancies were assessed by the differences between the two sets of data (obtained to be below 6 degrees) and by the Pearson correlation coefficient (greater than 0.97 for the knee angle and greater than 0.85 for the ankle angle).

  6. High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology.

    Science.gov (United States)

    Tian, W; Wu, S C; Zhou, Z B; Qu, S B; Bai, Y Z; Luo, J

    2012-09-01

    High precision accelerometer plays an important role in space scientific and technical applications. A quartz-flexure accelerometer operating in low frequency range, having a resolution of better than 1 ng/Hz(1/2), has been designed based on advanced capacitive sensing and electrostatic control technologies. A high precision capacitance displacement transducer with a resolution of better than 2 × 10(-6) pF/Hz(1/2) above 0.1 Hz, is used to measure the motion of the proof mass, and the mechanical stiffness of the spring oscillator is compensated by adjusting the voltage between the proof mass and the electrodes to induce a proper negative electrostatic stiffness, which increases the mechanical sensitivity and also suppresses the position measurement noise down to 3 × 10(-10) g/Hz(1/2) at 0.1 Hz. A high resolution analog-to-digital converter is used to directly readout the feedback voltage applied on the electrodes in order to suppress the action noise to 4 × 10(-10) g/Hz(1/2) at 0.1 Hz. A prototype of the quartz-flexure accelerometer has been developed and tested, and the preliminary experimental result shows that its resolution comes to about 8 ng/Hz(1/2) at 0.1 Hz, which is mainly limited by its mechanical thermal noise due to low quality factor.

  7. Design and experimental research on cantilever accelerometer based on fiber Bragg grating

    Science.gov (United States)

    Xiang, Longhai; Jiang, Qi; Li, Yibin; Song, Rui

    2016-06-01

    Currently, an acceleration sensor based on fiber Bragg grating (FBG) has been widely used. A cantilever FBG accelerometer is designed. The simulation of this structure was implemented by finite element software (ANSYS) to analyze its sensing performance parameters. And then the optimized structure was produced and calibration experiments were conducted. On the basis of simulation, optical fiber is embedded in the inner tank of the vibrating mass, and Bragg grating is suspended above the cantilever structure, which can effectively avoid the phenomenon of center wavelength chirp or broadening, and greatly improve the sensitivity of the sensor. The experimental results show that the FBG accelerometer exhibits a sensitivity of 75 pm/(m/s2) (100 Hz) and dynamic range of 60 dB. Its linearity error is <2.31% and repeatability error is <2.76%. And the resonant frequency is ˜125 Hz. The simulation results match the experimental results to demonstrate the good performance of FBG accelerometer, which is expected to be used in the actual project.

  8. Accelerometer measurements of acoustic-to-seismic coupling above buried objects.

    Science.gov (United States)

    Attenborough, Keith; Qin, Qin; Jefferis, Jonathan; Heald, Gary

    2007-12-01

    The surface velocity of sand inside a large PVC container, induced by the sound pressure from either a large loudspeaker radiating into an inverted cone and pipe or a Bruel and Kjaer point source loudspeaker mounted with its axis vertical, has been measured using accelerometers. Results of white noise and stepped frequency excitation are presented. Without any buried object the mass loading of an accelerometer creates resonances in the spectral ratio of sand surface velocity to incident acoustic pressure, i.e., the acoustic-to-seismic (A/S) admittance spectra. The A/S responses above a buried compliant object are larger and distinctive. The linear A/S admittance spectra in the presence of a buried electronic components box have been studied as a function of burial depth and sand state. The nonlinear responses above the buried box have been studied as a function of depth, sand state, and amplitude. Predictions of a modified one-dimensional lumped parameter model have been found to be consistent with the observed nonlinear responses. Also the modified model has been used to explain features of the A/S responses observed when using an accelerometer without any buried object.

  9. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data.

    Science.gov (United States)

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2016-02-01

    The recent increase in data accuracy from high resolution accelerometers offers substantial potential for improved understanding and prediction of animal movements. However, current approaches used for analysing these multivariable datasets typically require existing knowledge of the behaviors of the animals to inform the behavioral classification process. These methods are thus not well-suited for the many cases where limited knowledge of the different behaviors performed exist. Here, we introduce the use of an unsupervised learning algorithm. To illustrate the method's capability we analyse data collected using a combination of GPS and Accelerometers on two seabird species: razorbills (Alca torda) and common guillemots (Uria aalge). We applied the unsupervised learning algorithm Expectation Maximization to characterize latent behavioral states both above and below water at both individual and group level. The application of this flexible approach yielded significant new insights into the foraging strategies of the two study species, both above and below the surface of the water. In addition to general behavioral modes such as flying, floating, as well as descending and ascending phases within the water column, this approach allowed an exploration of previously unstudied and important behaviors such as searching and prey chasing/capture events. We propose that this unsupervised learning approach provides an ideal tool for the systematic analysis of such complex multivariable movement data that are increasingly being obtained with accelerometer tags across species. In particular, we recommend its application in cases where we have limited current knowledge of the behaviors performed and existing supervised learning approaches may have limited utility.

  10. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  11. Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth.

    Science.gov (United States)

    Belcher, Britni R; Moser, Richard P; Dodd, Kevin W; Atienza, Audie A; Ballard-Barbash, Rachel; Berrigan, David

    2015-05-01

    Discrepancies in self-report and accelerometer-measured moderate-to-vigorous physical activity (MVPA) may influence relationships with obesity-related biomarkers in youth. Data came from 2003-2006 National Health and Nutrition Examination Surveys (NHANES) for 2174 youth ages 12 to 19. Biomarkers were: body mass index (BMI, kg/m2), BMI percentile, height and waist circumference (WC, cm), triceps and subscapular skinfolds (mm), systolic & diastolic blood pressure (BP, mmHg), high-density lipoprotein (HDL, mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), insulin (μU/ml), C-reactive protein (mg/dL), and glycohemoglobin (%). In separate sex-stratified models, each biomarker was regressed on accelerometer variables [mean MVPA (min/day), nonsedentary counts, and MVPA bouts (mean min/day)] and self-reported MVPA. Covariates were age, race/ethnicity, SES, physical limitations, and asthma. In boys, correlations between self-report and accelerometer MVPA were stronger (boys: r = 0.14-0.21; girls: r = 0.07-0.11; P physical activity. Physical activity measures should be selected based on the outcome of interest and study population; however, associations between PA and these biomarkers appear to be weak regardless of the measure used.

  12. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems

    Directory of Open Access Journals (Sweden)

    Jing Tian

    2016-03-01

    Full Text Available In a charge-coupled device (CCD-based fast steering mirror (FSM tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM to realize the stabilization of the line-of-sight (LOS of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system.

  13. Statistical approaches to account for missing values in accelerometer data: Applications to modeling physical activity.

    Science.gov (United States)

    Xu, Selene Yue; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki

    2016-07-10

    Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.

  14. Accelerometer and gyroscope based gait analysis using spectral analysis of patients with osteoarthritis of the knee.

    Science.gov (United States)

    Staab, Wieland; Hottowitz, Ralf; Sohns, Christian; Sohns, Jan Martin; Gilbert, Fabian; Menke, Jan; Niklas, Andree; Lotz, Joachim

    2014-07-01

    [Purpose] A wide variety of accelerometer tools are used to estimate human movement, but there are no adequate data relating to gait symmetry parameters in the context of knee osteoarthritis. This study's purpose was to evaluate a 3D-kinematic system using body-mounted sensors (gyroscopes and accelerometers) on the trunk and limbs. This is the first study to use spectral analysis for data post processing. [Subjects] Twelve patients with unilateral knee osteoarthritis (OA) (10 male) and seven age-matched controls (6 male) were studied. [Methods] Measurements with 3-D accelerometers and gyroscopes were compared to video analysis with marker positions tracked by a six-camera optoelectronic system (VICON 460, Oxford Metrics). Data were recorded using the 3D-kinematic system. [Results] The results of both gait analysis systems were significantly correlated. Five parameters were significantly different between the knee OA and control groups. To overcome time spent in expensive post-processing routines, spectral analysis was performed for fast differentiation between normal gait and pathological gait signals using the 3D-kinematic system. [Conclusions] The 3D-kinematic system is objective, inexpensive, accurate and portable, and allows long-term recordings in clinical, sport as well as ergonomic or functional capacity evaluation (FCE) settings. For fast post-processing, spectral analysis of the recorded data is recommended.

  15. Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer

    CERN Document Server

    Cervantes, Felipe Guzman; Pratt, Jon; Taylor, Jacob

    2013-01-01

    The reflection spectrum of an optical cavity is exquisitely sensitive to length variations, enabling precise and accurate displacement measurements. When combined with mechanical oscillators, such cavities can yield accelerometers of unprecedented resolution. Previously, accelerometer sensitivity enhancements were achieved by lowering the sensor's natural frequency and bandwidth. Detection near the thermal limit was achieved, but at high acceleration levels due to low oscillator mass. We present a novel self-calibrating accelerometer, capable of reaching nano-gn/rtHz sensitivities (micro-Gal/rtHz -- 1gn=9.81 m/s^2 -- equivalent displacement of attometer/rtHz) over a bandwidth of several kHz, and compare its accuracy to a calibrated commercial system. It consists of a compact (10.6 x 15 mm), high-mQ (5kg) fused-silica oscillator that utilizes fiber-optic micro-mirror cavities, for self-calibrated detection of the motions of its test-mass. This device provides a substantial improvement over conventional systems...

  16. Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters: Part II

    Directory of Open Access Journals (Sweden)

    Eduardo Fernández

    2010-01-01

    Full Text Available In this paper, the fast least-mean-squares (LMS algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate.

  17. Implementation of an iPhone wireless accelerometer application for the quantification of reflex response.

    Science.gov (United States)

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa

    2013-01-01

    The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.

  18. Rancang Bangun Aplikasi Perepresentasian Data Perilaku Pengemudi Mobil Berbasis Android Menggunakan Sensor Accelerometer dan Orientation

    Directory of Open Access Journals (Sweden)

    Muhammad Dery Rahma

    2017-01-01

    Full Text Available Semakin meningkatnya popularitas smartphone dari tahun ke tahun, semakin meningkat pula jumlah aplikasi perangkat bergerak yang berkaitan dengan keamanan dalam berkemudi. Oleh karena itu, diperlukan aplikasi perangkat bergerak lain yang dapat mendeteksi pergerakan mobil yang normal dan berbahaya menggunakan sensor accelerometer dan orientation yang berasal dari smartphone serta tanpa memerlukan sensor hardware tambahan. Arsitektur aplikasi perangkat bergerak ini berbasis client-server, dimana web service melayani permintaan dari aplikasi client berbasis Android. Aplikasi ini juga menggabungkan beberapa teknologi lain seperti Geolocation API, Geocoding API, dan Android Sensor API. Teknologi-teknologi tersebut digunakan untuk mengetahui kecepatan mobil, lokasi terkini dari pengemudi, dan merekam pola gerakan mobil melalui representasi nilai-nilai sensor accelerometer dan orientation.Tujuan dari dikembangkannya aplikasi perangkat bergerak untuk tugas akhir ini adalah untuk membantu pihak kepolisian lalu lintas dalam mendapatkan data pergerakan mobil berupa raw data 2-axis yang direkam oleh sensor accelerometer dan orientation pada smartphone Android ketika pengemudi mengendarai mobil. Data-data tersebut nantinya digunakan untuk membantu mendeteksi riwayat pola berkendara seorang pengemudi.

  19. MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated Accelerometers

    Directory of Open Access Journals (Sweden)

    Elisabetta Farella

    2007-01-01

    Full Text Available Human-computer interaction (HCI and virtual reality applications pose the challenge of enabling real-time interfaces for natural interaction. Gesture recognition based on body-mounted accelerometers has been proposed as a viable solution to translate patterns of movements that are associated with user commands, thus substituting point-and-click methods or other cumbersome input devices. On the other hand, cost and power constraints make the implementation of a natural and efficient interface suitable for consumer applications a critical task. Even though several gesture recognition solutions exist, their use in HCI context has been poorly characterized. For this reason, in this paper, we consider a low-cost/low-power wearable motion tracking system based on integrated accelerometers called motion capture with accelerometers (MOCA that we evaluated for navigation in virtual spaces. Recognition is based on a geometric algorithm that enables efficient and robust detection of rotational movements. Our objective is to demonstrate that such a low-cost and a low-power implementation is suitable for HCI applications. To this purpose, we characterized the system from both a quantitative point of view and a qualitative point of view. First, we performed static and dynamic assessment of movement recognition accuracy. Second, we evaluated the effectiveness of user experience using a 3D game application as a test bed.

  20. Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground Contact Time During Treadmill Running.

    Science.gov (United States)

    Watari, Ricky; Hettinga, Blayne; Osis, Sean; Ferber, Reed

    2016-06-01

    The purpose of this study was to validate measures of vertical oscillation (VO) and ground contact time (GCT) derived from a commercially-available, torso-mounted accelerometer compared with single marker kinematics and kinetic ground reaction force (GRF) data. Twenty-two semi-elite runners ran on an instrumented treadmill while GRF data (1000 Hz) and three-dimensional kinematics (200 Hz) were collected for 60 s across 5 different running speeds ranging from 2.7 to 3.9 m/s. Measurement agreement was assessed by Bland-Altman plots with 95% limits of agreement and by concordance correlation coefficient (CCC). The accelerometer had excellent CCC agreement (> 0.97) with marker kinematics, but only moderate agreement, and overestimated measures between 16.27 mm to 17.56 mm compared with GRF VO measures. The GCT measures from the accelerometer had very good CCC agreement with GRF data, with less than 6 ms of mean bias at higher speeds. These results indicate a torso-mounted accelerometer provides valid and accurate measures of torso-segment VO, but both a marker placed on the torso and the accelerometer yield systematic overestimations of center of mass VO. Measures of GCT from the accelerometer are valid when compared with GRF data, particularly at faster running speeds.

  1. Validity and reliability of intra-stroke kayak velocity and acceleration using a GPS-based accelerometer.

    Science.gov (United States)

    Janssen, Ina; Sachlikidis, Alexi

    2010-03-01

    The aim of this study was to assess the validity and reliability of the velocity and acceleration measured by a kayak-mounted GPS-based accelerometer units compared to the video-derived measurements and the effect of satellite configuration on velocity. Four GPS-based accelerometers units of varied accelerometer ranges (2 g or 6 g) were mounted on a kayak as the paddler performed 12 trials at three different stroke rates for each of three different testing sessions (two in the morning vs. one in the afternoon). The velocity and acceleration derived by the accelerometers was compared with the velocity and acceleration derived from high-speed video footage (100Hz). Validity was measured using Bland and Altman plots, R2, and the root of the mean of the squared difference (RMSe), while reliability was calculated using the coefficient of variation, R2, and repeated measures analysis of variance (ANOVA) tests. The GPS-based accelerometers under-reported kayak velocity by 0.14-0.19 m/s and acceleration by 1.67 m/s2 when compared to the video-derived measurements. The afternoon session reported the least difference, indicating a time of day effect on the velocity measured. This study highlights the need for sports utilising GPS-based accelerometers, such as minimaxX, for intra-stroke measurements to conduct sport-specific validity and reliability studies to ensure the accuracy of their data.

  2. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer.

    Science.gov (United States)

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-06-08

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method.

  3. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    Yunbo Shi

    2016-06-01

    Full Text Available Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method.

  4. Preliminary research of magnetic levitation accelerometer%磁悬浮式加速度计前期研究

    Institute of Scientific and Technical Information of China (English)

    练斌; 叶凌云; 黄添添

    2012-01-01

    为设计新型的小型高精度磁悬浮式加速度计,利用仿真软件对自制超顺磁性加速度计悬浮体在外磁场中所受的磁力进行仿真,并通过悬浮实验测试超顺磁性加速度计悬浮体在常温常压下的悬浮性能.仿真结果表明:超顺磁性加速度计悬浮体在外磁场中所受的磁力完全受外磁场控制.悬浮实验表明:当外磁场强度合适时,超顺磁性加速度计悬浮体可在常温常压下实现悬浮.实验表明:新型超顺磁性加速度计悬浮体适用于设计小型高精度磁悬浮式加速度计.%To design new type of small size high precision magnetic levitation accelerometer, the magnetic force of self-made superparamagnetic levitalion object of accelerometer in external magnetic field is simulated by software, and the levitation properties of superparamagnetic levitation object by accelerometer is test by levitation experiments. Simulation results demonstrate that the superparamagnetic leritation object of accelerometer is fully controlled by external magnetic field. Levitation experiments indicate that the superparamagnetic levitation object of accelerometer can be levitated under normal temperature and pressure. Experimental results show that this superparamagnetic levitation object of accelerometer is suitable for designing small size high precision magnetic levitation accelerometer.

  5. High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts

    Science.gov (United States)

    Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.

    Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of

  6. A calibration protocol for population-specific accelerometer cut-points in children.

    Directory of Open Access Journals (Sweden)

    Kelly A Mackintosh

    Full Text Available PURPOSE: To test a field-based protocol using intermittent activities representative of children's physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity. METHODS: Twenty-eight children (46% boys aged 10-11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children's play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities. RESULTS: Cut-points of ≤ 372, >2160 and >4806 counts • min(-1 representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity and specificity (limiting misclassification of the activity. Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62, and a high classification agreement (98.6%; 89.0%; 87.2%, respectively. Specificity values of 96-97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89-99% indicated that minutes of activity were seldom incorrectly classified as inactivity. CONCLUSION: The development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.

  7. Investigation on a fiber optic accelerometer based on FBG-FP interferometer

    Science.gov (United States)

    Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao

    2014-12-01

    A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.

  8. Numerical validation of linear accelerometer systems for the measurement of head kinematics.

    Science.gov (United States)

    Cappa, Paolo; Masia, Lorenzo; Patanè, Fabrizio

    2005-11-01

    The purpose of this study was to analytically exploit the capabilities of head-mounted systems instrumented with linear accelerometers (ACs) for field use in redundant configurations. We simulated different headsets equipped with uni-, bi- or triaxial sensors with a number of axes that lie in the range of 12-24; the ACs were located on a hemispherical surface by adopting a priori criterion while their orientation was randomized. In addition, for a comparative purpose the nine accelerometer scheme (one triaxial AC and three biaxial ACs addressed in the following as "3-2-2-2 configuration") was also analyzed in the present paper. We simulated and statistically assessed the performances of hemispherical headsets in the test case of a healthy subject walking freely at normal pace over level ground. The numerical results indicated that a well designed instrumented headset can retrieve the angular acceleration and (a0-g) component with rms errors of about 2% and 0.5%, respectively, and angular velocity with a drift error of about 20% in a 6 s trial. On the contrary, the pose of the headset cannot be evaluated because of the drift induced by the integration process. In general, we can state that headsets with uni-, bi- or triaxial ACs have comparable performances. The main implications of the above-mentioned observations are (a) neither expensive triaxial ACs nor assembling procedure based on the use of orthogonal mounting blocks are needed; (b) redundant arrays of low-cost uni- or biaxial ACs can effectively be used to reach adequate performances in biomechanical studies where head acceleration and velocity are investigated; (c) while estimates of angular acceleration with accelerometers are accurate, estimations of angular velocities, linear velocities and pose are not.

  9. Investigation of Au/Si Eutectic Wafer Bonding for MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Dongling Li

    2017-05-01

    Full Text Available Au/Si eutectic bonding is considered to BE a promising technology for creating 3D structures and hermetic packaging in micro-electro-mechanical system (MEMS devices. However, it suffers from the problems of a non-uniform bonding interface and complex processes for the interconnection of metal wires. This paper presents a novel Au/Si eutectic wafer bonding structure and an implementation method for MEMS accelerometer packaging. The related processing parameters influencing the Au/Si eutectic bonding quality were widely investigated. It was found that a high temperature of 400 °C with a low heating/cooling rate of 5 °C/min is crucial for successful Au/Si eutectic bonding. High contact force is beneficial for bonding uniformity, but the bonding strength and bonding yield decrease when the contact force increases from 3000 to 5000 N due to the metal squeezing out of the interface. The application of TiW as an adhesion layer on a glass substrate, compared with a commonly used Cr or Ti layer, significantly improves the bonding quality. The bonding strength is higher than 50 MPa, and the bonding yield is above 90% for the presented Au/Si eutectic bonding. Furthermore, the wafer-level vacuum packaging of the MEMS accelerometer was achieved based on Au/Si eutectic bonding and anodic bonding with one process. Testing results show a nonlinearity of 0.91% and a sensitivity of 1.06 V/g for the MEMS accelerometer. This Au/Si eutectic bonding process can be applied to the development of reliable, low-temperature, low-cost fabrication and hermetic packaging for MEMS devices.

  10. Metabolic responses of upper-body accelerometer-controlled video games in adults.

    Science.gov (United States)

    Stroud, Leah C; Amonette, William E; Dupler, Terry L

    2010-10-01

    Historically, video games required little physical exertion, but new systems utilize handheld accelerometers that require upper-body movement. It is not fully understood if the metabolic workload while playing these games is sufficient to replace routine physical activity. The purpose of this study was to quantify metabolic workloads and estimate caloric expenditure while playing upper-body accelerometer-controlled and classic seated video games. Nineteen adults completed a peak oxygen consumption treadmill test followed by an experimental session where exercising metabolism and ventilation were measured while playing 3 video games: control (CON), low activity (LOW) and high activity (HI). Resting metabolic measures (REST) were also acquired. Caloric expenditure was estimated using the Weir equation. Mean oxygen consumption normalized to body weight for HI condition was greater than LOW, CON, and REST. Mean oxygen consumption normalized to body weight for LOW condition was also greater than CON and REST. Mean exercise intensities of oxygen consumption reserve for HI, LOW, and CON were 25.8% ± 5.1%, 6.4% ± 4.8%, and 0.8% ± 2.4%, respectively. Estimated caloric expenditure during the HI was significantly related to aerobic fitness, but not during other conditions. An active video game significantly elevated oxygen consumption and heart rate, but the increase was dependent on the type of game. The mean oxygen consumption reserve during the HI video game was below recommended international standards for moderate and vigorous activity. Although upper-body accelerometer-controlled video games provided a greater exercising stimulus than classic seated video games, these data suggest they should not replace routine moderate or vigorous exercise.

  11. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice.

    Science.gov (United States)

    Chang, Kang-Ming; Chun, Yu-Teng; Chen, Sih-Huei; Lu, Luo; Su, Hsiao-Ting Jannis; Liang, Hung-Meng; Santhosh, Jayasree; Ching, Congo Tak-Shing; Liu, Shing-Hong

    2016-07-20

    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20-30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were -0.440, -0.369, and -0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.

  12. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2016-07-01

    Full Text Available Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI was also conducted. Results showed that the PSI of the three groups measured during 20–30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***. The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***. Correlation coefficients between PSI and CHI of the three groups were −0.440, −0.369, and −0.537, respectively (p < 0.01 **. PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.

  13. Vibration transmissibility on rifle shooter: A comparison between accelerometer and laser Doppler vibrometer data

    Science.gov (United States)

    Scalise, L.; Casacanditella, L.; Santolini, C.; Martarelli, M.; Tomasini, E. P.

    2014-05-01

    The transmission of mechanical vibrations from tools to human subjects is known to be potentially dangerous for the circulatory and neurological systems. It is also known that such damages are strictly depending on the intensity and the frequency range of the vibrational signals transferred to the different anatomical districts. In this paper, very high impulsive signals, generated during a shooting by a rifle, will be studied, being such signals characterised by a very high acceleration amplitude as well as high frequency range. In this paper, it will be presented an experimental setup aimed to collect experimental data relative to the transmission of the vibration signals from the rifle to the shoulder of subject during the shooting action. In particular the transmissibility of acceleration signals, as well as of the velocity signals, between the rifle stock and the subject's back shoulder will be measured using two piezoelectric accelerometers and a single point laser Doppler vibrometer (LDV). Tests have been carried out in a shooting lab where a professional shooter has conducted the experiments, using different experimental configurations: two different types of stocks and two kinds of bullets with different weights were considered. Two uniaxial accelerometers were fixed on the stock of the weapon and on the back of the shoulder of the shooter respectively. Vibration from the back shoulder was also measured by means of a LDV simultaneously. A comparison of the measured results will be presented and the pros and cons of the use of contact and non-contact transducers will be discussed taking into account the possible sources of the measurement uncertainty as unwanted sensor vibrations for the accelerometer.

  14. Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.

    Science.gov (United States)

    DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K

    2015-01-01

    Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals.

  15. Development of wafer-level-packaging technology for simultaneous sealing of accelerometer and gyroscope under different pressures

    Science.gov (United States)

    Aono, T.; Suzuki, K.; Kanamaru, M.; Okada, R.; Maeda, D.; Hayashi, M.; Isono, Y.

    2016-10-01

    This research demonstrates a newly developed anodic bonding-based wafer-level-packaging technique to simultaneously seal an accelerometer in the atmosphere and a gyroscope in a vacuum with a glass cap for micro-electromechanical systems sensors. It is necessary for the accelerometer, with a damping oscillator, to be sealed in the atmosphere to achieve a high-speed response. As the gyroscope can achieve high sensitivity with a large displacement at the resonant frequency without air-damping, the gyroscope must be sealed in a vacuum. The technique consists of three processing steps: the first bonding step in the atmosphere for the accelerometer, the pressure control step and the second bonding step in a vacuum for the gyroscope. The process conditions were experimentally determined to achieve higher shear strength at the interface of the packaging. The packaging performance of the accelerometer and gyroscope after wafer-level packaging was also investigated using a laser Doppler velocimeter at room temperature. The amplitude at the resonant frequency of the accelerometer was reduced by air damping, and the quality factor of the gyroscope showed a value higher than 1000. The reliability of the gyroscope was also confirmed by a thermal cyclic test and an endurance test at high humidity and high temperature.

  16. Associations of Accelerometer-Measured and Self-Reported Sedentary Time With Leukocyte Telomere Length in Older Women.

    Science.gov (United States)

    Shadyab, Aladdin H; Macera, Caroline A; Shaffer, Richard A; Jain, Sonia; Gallo, Linda C; LaMonte, Michael J; Reiner, Alexander P; Kooperberg, Charles; Carty, Cara L; Di, Chongzhi; Manini, Todd M; Hou, Lifang; LaCroix, Andrea Z

    2017-01-18

    Few studies have assessed the association of sedentary time with leukocyte telomere length (LTL). In a cross-sectional study conducted in 2012-2013, we examined associations of accelerometer-measured and self-reported sedentary time with LTL in a sample of 1,481 older white and African-American women from the Women's Health Initiative and determined whether associations varied by level of moderate- to vigorous-intensity physical activity (MVPA). The association between sedentary time and LTL was evaluated using multiple linear regression models. Women were aged 79.2 (standard deviation, 6.7) years, on average. Self-reported sedentary time was not associated with LTL. In a model adjusting for demographic characteristics, lifestyle behaviors, and health-related factors, among women at or below the median level of accelerometer-measured MVPA, those in the highest quartile of accelerometer-measured sedentary time had significantly shorter LTL than those in the lowest quartile, with an average difference of 170 base pairs (95% confidence interval: 4, 340). Accelerometer-measured sedentary time was not associated with LTL in women above the median level of MVPA. Findings suggest that, on the basis of accelerometer measurements, higher sedentary time may be associated with shorter LTL among less physically active women.

  17. Evaluation of the Accuracy of a Triaxial Accelerometer Embedded into a Cell Phone Platform for Measuring Physical Activity.

    Science.gov (United States)

    Manohar, C U; McCrady, S K; Fujiki, Y; Pavlidis, I T; Levine, J A

    2011-12-20

    Physical activity is important in health and weight management. Several cell phone platforms integrate an accelerometer onto the motherboard. Here we tested the validity of the cell phone accelerometer to assess physical activity in a controlled laboratory setting. 31 subjects wore the cell phone on their waist along with the validated Physical Activity Monitoring System (PAMS) with different body postures and during graded walking. Energy expenditure was measured using indirect calorimetry. 11 subjects also wore the iPhone at different locations such as arm, hand, pant pocket, etc. The cell phone accelerometer was accurate and precise compared to the PAMS, with an intra-class correlation coefficient (r(2)> 0.98). The cell phone accelerometer showed excellent sequential increases with increased in walking velocity and energy expenditure (r(2)>0.9). An accelerometer embedded into a cell phone was accurate and reliable in measuring and quantifying physical activity in the laboratory setting. Data from free-living users shows promise for deployment of a comprehensive integrated physical activity promoting and weight loss platform using such mobile technologies.

  18. Validation of a two-axis accelerometer for monitoring patient activity during blood pressure or ECG holter monitoring.

    Science.gov (United States)

    Wetzler, Marie-Laure; Borderies, Jean René; Bigaignon, Odile; Guillo, Pascal; Gosse, Philippe

    2003-12-01

    The aim of the study was to evaluate the efficiency of a position/activity monitoring system based on a dual-axis accelerometer strapped to the subject's thigh and a position sensor located within a monitor placed on the subject's belt. Twenty-six subjects wearing two monitors (one accelerometer on each thigh) were submitted to various activities and positions under the control of an observer. An analysis of each tracing was performed both manually by a technician and automatically by dedicated software before being compared with the information gathered during the study. The accelerometer allowed accurate discrimination between the standing versus the sitting and lying positions. The sitting and lying positions were correctly detected by the built-in position sensor provided the unit was firmly attached. Walking was adequately detected by the accelerometer. The activity score was well correlated with treadmill speed. Changes in position and activity were detected with a mean error of less than 3 s. The combination of an accelerometer placed on the subject's thigh and a position sensor located at the subject's waist appeared to be a suitable system for position/activity monitoring during ambulatory ECG and blood pressure monitoring.

  19. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    Science.gov (United States)

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-01-01

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534

  20. Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in industrial applications

    Science.gov (United States)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-05-01

    This paper discusses an applicable fiber-optic accelerometer composed of a transmissive grating panel, a reflection mirror, and two optical fibers with a separation of quarter grating pitch as transceivers that monitor the low-frequency accelerations of civil engineering structures. This sensor structure brings together the advantages of both a simple sensor structure, which leads to simplified cable design by 50% in comparison with the conventional transmission-type fiber optic accelerometer, and a stable reflected signals acquisition with repeatability in comparison to the researched grating-reflection type fiber optic accelerometer. The vibrating displacement and sinusoidal acceleration measured from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and a MEMS accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4.0 Hz with a margin of error that is less than 5% and a high sensitivity of 5.06 rad/(m/s)2.

  1. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    Directory of Open Access Journals (Sweden)

    Hongyin Li

    2016-12-01

    Full Text Available The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 − 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  2. Accelerometer-Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging

    Directory of Open Access Journals (Sweden)

    Mojtaba Jafari Tadi

    2014-01-01

    Full Text Available Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG, 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt. Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET to obtain motion-free images in the future.

  3. Analysis and Prevention for Oscillation Failure of Capacitive Micro-accelerometers

    Institute of Scientific and Technical Information of China (English)

    WAN Caixin; DONG Jingxin; HAN Fengtian

    2010-01-01

    As actuator of the force-rebalanced servo loop, the electrostatic force generator of the micro-accelerometer shows high nonlinearity while the interpole of the micro-electro-mechanical system(MEMS) sensor is far away from its balance position. The control system cannot rebalance itself with the limited bandwidth after an external long overload, because the characteristics of the force generator differ from normal case. Although for similar problems, solutions with cascading lead-lag blocks, with the anti-windup(AW) technology, or with the sliding-mode control, are widely reported, the problems such as performance loss or difficulty to synthesize a digital controller still remain. Based on existing researches, remedies are developed by analyzing the characteristic of the system not only near the balance position, but also corresponding to the whole moveable range of the interpole, and a new controller is proposed. The solution is compared with the common solutions of cascading lead-lag blocks method, AW methods, and sliding mode methods. Comparison results show that the proposed solution avoid performance loss, compared to cascading lead-lag blocks solution; the proposed solution is easily synthesized and implemented in the analog servo loop of the micro-accelerometer, compared to digital AW methods; at the same time, the proposed solution avoids suffering the chattering effect problem but just utilize it, compared to the sliding-mode control solution. Nevertheless, comparison results show the solution is lack of commonality, since the solution is only more suitable to micro electrostatic force-rebalance system. The SIMULINK models with and without the proposed solution, taking typical micro-accelerometer parameters, have been set up for simulation; corresponding experiments utilizing electrometric method are also conducted after the successful simulations. Simulation and experiment results verify that the micro-accelerometer will reliably return to normal operation

  4. Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, W.; Markos, C.;

    2012-01-01

    In this paper we present our latest work on Fiber Bragg Gratings (FBGs) in microstructured polymer optical fibers (mPOFs) and their application as strain sensing transducers in devices, such as accelerometers and microphones. We demonstrate how the cross-sensitivity of the FBG to temperature...... is eliminated by using dual-FBG technology and how mPOFs fabricated from different grades of TOPAS with glass transition temperatures around 135 degrees C potentially allow high-temperature humidity insensitive operation. The results bring the mPOF FBG closer to being a viable technology for commercial...

  5. Study of First-Order Thermal Sigma-Delta Architecture for Convective Accelerometers

    CERN Document Server

    Nouet, Pascal; Latorre, Laurent; Nouet, Pascal

    2008-01-01

    This paper presents the study of an original closed-loop conditioning approach for fully-integrated convective inertial sensors. The method is applied to an accelerometer manufactured on a standard CMOS technology using an auto-aligned bulk etching step. Using the thermal behavior of the sensor as a summing function, a first order sigma-delta modulator is built. This "electro-physical" modulator realizes an analog-to-digital conversion of the signal. Besides the feedback scheme should improve the sensor performance.

  6. Design of a fibre-optic disc accelerometer: theory and experiment

    Science.gov (United States)

    Wang, Yongjie; Xiao, Hao; Zhang, Songwei; Li, Fang; Liu, Yuliang

    2007-06-01

    Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10-5 rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.

  7. Using hidden markov models to improve quantifying physical activity in accelerometer data - a simulation study.

    Directory of Open Access Journals (Sweden)

    Vitali Witowski

    Full Text Available INTRODUCTION: The use of accelerometers to objectively measure physical activity (PA has become the most preferred method of choice in recent years. Traditionally, cutpoints are used to assign impulse counts recorded by the devices to sedentary and activity ranges. Here, hidden Markov models (HMM are used to improve the cutpoint method to achieve a more accurate identification of the sequence of modes of PA. METHODS: 1,000 days of labeled accelerometer data have been simulated. For the simulated data the actual sedentary behavior and activity range of each count is known. The cutpoint method is compared with HMMs based on the Poisson distribution (HMM[Pois], the generalized Poisson distribution (HMM[GenPois] and the Gaussian distribution (HMM[Gauss] with regard to misclassification rate (MCR, bout detection, detection of the number of activities performed during the day and runtime. RESULTS: The cutpoint method had a misclassification rate (MCR of 11% followed by HMM[Pois] with 8%, HMM[GenPois] with 3% and HMM[Gauss] having the best MCR with less than 2%. HMM[Gauss] detected the correct number of bouts in 12.8% of the days, HMM[GenPois] in 16.1%, HMM[Pois] and the cutpoint method in none. HMM[GenPois] identified the correct number of activities in 61.3% of the days, whereas HMM[Gauss] only in 26.8%. HMM[Pois] did not identify the correct number at all and seemed to overestimate the number of activities. Runtime varied between 0.01 seconds (cutpoint, 2.0 minutes (HMM[Gauss] and 14.2 minutes (HMM[GenPois]. CONCLUSIONS: Using simulated data, HMM-based methods were superior in activity classification when compared to the traditional cutpoint method and seem to be appropriate to model accelerometer data. Of the HMM-based methods, HMM[Gauss] seemed to be the most appropriate choice to assess real-life accelerometer data.

  8. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users.

    Directory of Open Access Journals (Sweden)

    Tom Edward Nightingale

    Full Text Available To assess the validity of two accelerometer devices, at two different anatomical locations, for the prediction of physical activity energy expenditure (PAEE in manual wheelchair users (MWUs.Seventeen MWUs (36 ± 10 yrs, 72 ± 11 kg completed ten activities; resting, folding clothes, propulsion on a 1% gradient (3,4,5,6 and 7 km·hr-1 and propulsion at 4km·hr-1 (with an additional 8% body mass, 2% and 3% gradient on a motorised wheelchair treadmill. GT3X+ and GENEActiv accelerometers were worn on the right wrist (W and upper arm (UA. Linear regression analysis was conducted between outputs from each accelerometer and criterion PAEE, measured using indirect calorimetry. Subsequent error statistics were calculated for the derived regression equations for all four device/location combinations, using a leave-one-out cross-validation analysis.Accelerometer outputs at each anatomical location were significantly (p < .01 associated with PAEE (GT3X+-UA; r = 0.68 and GT3X+-W; r = 0.82. GENEActiv-UA; r = 0.87 and GENEActiv-W; r = 0.88. Mean ± SD PAEE estimation errors for all activities combined were 15 ± 45%, 14 ± 50%, 3 ± 25% and 4 ± 26% for GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively. Absolute PAEE estimation errors for devices varied, 19 to 66% for GT3X+-UA, 17 to 122% for GT3X+-W, 15 to 26% for GENEActiv-UA and from 17.0 to 32% for the GENEActiv-W.The results indicate that the GENEActiv device worn on either the upper arm or wrist provides the most valid prediction of PAEE in MWUs. Variation in error statistics between the two devices is a result of inherent differences in internal components, on-board filtering processes and outputs of each device.

  9. The Use of Accelerometers and Gyroscopes to Estimate Hip and Knee Angles on Gait Analysis

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2014-05-01

    Full Text Available In this paper the performance of a sensor system, which has been developed to estimate hip and knee angles and the beginning of the gait phase, have been investigated. The sensor system consists of accelerometers and gyroscopes. A new algorithm was developed in order to avoid the error accumulation due to the gyroscopes drift and vibrations due to the ground contact at the beginning of the stance phase. The proposed algorithm have been tested and compared to some existing algorithms on over-ground walking trials with a commercial device for assisted gait. The results have shown the good accuracy of the angles estimation, also in high angle rate movement.

  10. Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test

    Science.gov (United States)

    James, George H.; Grygier, Michael; Selig, Molly M.

    2015-01-01

    Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.

  11. A MEMS accelerometer-based real-time motion-sensing module for urological diagnosis and treatment.

    Science.gov (United States)

    Sun, Hongzhi; Fu, Guoqing; Xie, Huikai

    2013-02-01

    This paper reports a real-time motion-sensing module, which is realized by incorporating multiple MEMS accelerometers into a standard Foley catheter, for assisting diagnosis and treatment of stressed urinary incontinence. The accelerometers measure the orientations of the catheter at multiple points, so the shape of the urethra and movement of the bladder neck can be tracked in real time. An algorithm for extracting tilting, position and shape information from 3-axis MEMS accelerometers has been developed. The model of measurement errors for both static and dynamic testing is also established. The experimental results indicate that the module tracks the movement of the Foley catheter successfully in a real-time environment and the absolute error for static measurement is no more than 1.1° within the operation range.

  12. Bias determination for space accelerometers using the ZARM Catapult system - experimental setup and data analysis

    Science.gov (United States)

    Selig, Hanns; Santos Rodrigues, Manuel; Touboul, Pierre; Liorzou, Françoise

    2012-07-01

    Accelerometers for space applications - like the electrostatic differential accelrometer for the MICROSCOPE mission for testing the equivalence principle in space - have to be tested and qualified in μg-conditions in order to demonstrate the system operation and to determine the characteristic sensor parameters. One important characteristic property is the sensor bias. In principle one can determine the sensor bias directly by using the ZARM catapult system as test platform. Even in the evacuated drop tube the residual air pressure results in an air friction that depends on the capsule velocity. At the apex (highest point of the capsule trajectory) the acceleration (relative to the gravitational acceleration g) becomes zero due to the zero velocity at the apex. The direct measurement of the vertical linear acceleration sensor bias is affected by some additional effects that have to be understood in order to be able to determine the sensor bias. Two catapult campaigns have been carried out to demonstrate the principles of the bias determination using a SuperStar accelerometer (Onera). The presentation gives an overview on the experimental setup and on the corresponding data analysis.

  13. RELATIONSHIP BETWEEN THE MTI ACCELEROMETER (ACTIGRAPH COUNTS AND RUNNING SPEED DURING CONTINUOUS AND INTERMITTENT EXERCISE

    Directory of Open Access Journals (Sweden)

    Alain Durocher

    2005-12-01

    Full Text Available This study was designed to investigate the relationship between Actigraph counts and running speed; and to describe differences due to accelerometer position on the body and due to exercise modality. Eleven physical education students (age, 25.1 ± 3.7 years; height, 1.73 ± 0.10 m; body mass, 70.8 ± 10.8 kg completed two exhaustive exercise tests (continuous and intermittent, with MTI accelerometers mounted both at the hip and ankle. Exercise consisted of running for 3-min at incremental speeds until volitional exhaustion. During both exercise tests, the relationship between the ActiGraph outputs worn at the hip and speed was linear in the range 1.1 - 3.3 m·s-1 (r2 = 0.94 and 0.95, p 0.05. The ActiGraph seems to be a reliable tool for estimating a wide range of activity or exercise intensities. An ActiGraph worn at the ankle may be more appropriate to reflect normal human movement.

  14. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    Science.gov (United States)

    D'Emilia, Giulio; Di Gasbarro, David; Gaspari, Antonella; Natale, Emanuela

    2016-06-01

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behavior if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.

  15. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer

    Science.gov (United States)

    Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.

    2016-08-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10‑4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments.

  16. Accelerometer Load Profiles for Basketball-Specific Drills in Elite Players

    Directory of Open Access Journals (Sweden)

    Xavi Schelling, Lorena Torres

    2016-12-01

    Full Text Available The purpose of this study was to quantify the workload during basketball-specific drills measured through microtechnology. Twelve professional male basketball players from the Spanish 1st Division were monitored over a 4-week period. Data were collected from 16 sessions, for a total of 95 ± 33 drills per player. Workload data (Acceleration load; AL were obtained from a tri-axial accelerometer at 100Hz sampling frequency, and were expressed over time (AL.min-1. Comparisons among training drills (i.e., 2v2, 3v3, 4v4, and 5v5 were assessed via standardized mean differences. Full-court 3v3 and 5v5 showed the highest physical demand (AL.min-1: 18.7 ± 4.1 and 17.9 ± 4.6, respectively compared with other traditional balanced basketball drills such as 2v2 and 4v4 (14.6 ± 2.8 and 13.8±2.5, respectively. The AL.min-1 on half-court showed trivial-to-moderate differences with a likely increase of ~10-20% in 2v2 drill compared with any other formats. This study provides insight into the specific requirements of a range of exercises typically performed in basketball sessions. The use of accelerometer data is presented as a useful tool in assessing the workload.

  17. A study of partial layout of adhesive on the thermal drift of MEMS capacitive accelerometers

    Science.gov (United States)

    Peng, Peng; Zhou, Wu; Yu, Huijun; Hao, Qu; Peng, Bei; He, Xiaoping

    2017-03-01

    The die attachment adhesive is commonly fully deposited on the substrate to connect the chips and the package shell in the packaging of microelectromechanical system (MEMS) devices. The packaging stress and deformation will be changed under temperature variation and further impact the thermal stability of devices. This paper describes a partial layout of die attachment adhesive used in a comb MEMS capacitive accelerometer, which can attenuate the thermal deformation and reduce the thermal drift of the sensor. The accelerometers with the bonded area designed from the global portion to nonsensitive portion of the sensor die are modeled by using finite element analysis (FEA) to study the deformation of the sensitive component induced by temperature change, and the corresponding thermal drift is obtained by simulation and theoretical methods. Both the results indicate that the thermal drift will decrease when the length of the unbonded area is larger than about 700 μm, and when the adhesive bonds only in the area of the nonsensitive portion of the sensor, the thermal drift will reduce about 19% relative to the global attachment. The partial layout of die attachment adhesive is therefore a useful method to improve the thermal stability for stress-sensitive MEMS devices.

  18. Coupled fluid-dynamical and structural analysis of a mono-axial mems accelerometer

    Directory of Open Access Journals (Sweden)

    A Cammarata

    2016-09-01

    Full Text Available This study is aimed to numerically investigate the elastodynamics of a mono-axial MEMS accelerometer. The vibrating part of the device is dipped into a fluid micro-channel and made of a proof mass connected to the frame by two flexible legs. The adopted mathematical model lies on a linearized motion equations system, where the mass matrix is obtained by means of both lumped and distributed approach. The stiffness matrix is otherwise derived through FEA, in which the proof mass and the compliant legs are modeled as rigid and flexible bodies, respectively. The squeezed-film damping effect is evaluated by a fluid-dynamical FE model based on a modified Reynolds formulation. The ensuing analyses are carried-out for three pressure levels of the narrow gas film surrounding the device, by applying the logarithmic decrement method for evaluating the damping ratio. Numerical results, in terms of acceleration, frequency range and noise disturbance, are successfully compared to analytical and experimental ones previously published in literature. Our model characterizes the accelerometer dynamics in space, allowing, in addition, to assess translational motion errors along directions apart the working one.

  19. A novel MEMS field emission accelerometer based on silicon nanotips array

    Science.gov (United States)

    Chen, Li; Wen, Zhi-yu; Wen, Zhong-quan; Liu, Hai-tao

    2011-08-01

    A novel MEMS field emission accelerometer based on silicon nanotips array with about 10000 silicon tips in total is proposed. It consists of a proof mass, four L-shaped springs, silicon nanotips array, anode and feedback electrodes. The sensor is fabricated on one N-type (1 0 0) single crystal silicon wafer and one #7740 glass wafer using bulk silicon micromachining technology. The silicon tip arrays are form by wet etching with HNA (HNO3, HF and CH3COOH) with I2 as additive. After oxidation sharpening, the curvature radius of the tips is smaller than 50nm, and the tip arrays are metalized by sputtering TiW/Au film. ICP process is utilized to release the sensor chip. In order to improve the linearity of the sensor, a feedback control circuit is used to rebalance the proof mass. The accelerometer is tested on a dividing head and test results show that the sensitivity is about 420mV/g and nonlinearity is about 0.7% over a range of -1g~1g.

  20. Design and implementation of a novel sliding mode sensing architecture for capacitive MEMS accelerometers

    Science.gov (United States)

    Sarraf, E. H.; Cousins, B.; Cretu, E.; Mirabbasi, S.

    2011-11-01

    We propose novel feedback control and sensing schemes based on sliding mode control (SMC) for closed-loop micro-accelerometers as alternative digital control architectures to sigma-delta (ΣΔ) approaches. The under-damped micro-device has been designed in Coventorware, fabricated in SOIMUMPs (25 µm thick structural layer) technology and experimentally characterized using a Polytec MSA-500 (micro-system analyzer) equipment. To verify the system architecture robustness, the application of SMC is extended to an over-damped accelerometer model. In either case, the SMC demonstrates the repositioning of the proof mass to null position; however, the over-damped model exhibits shorter transition time (15 ms for 1g acceleration) due to the increased damping. In addition to that, we extend the usage of SMC beyond the classical actuation problem to a novel sensing problem where we demonstrate the extraction of the external acceleration measurement from the switching behavior along the sliding surface. An optimized fixed-point implementation is targeted on a field-programmable gate array (FPGA) using rapid prototyping methodology, where the new proposed method has been compared for reference with a control scheme that employs a ΣΔ modulator. The SMC-based architecture is advantageous in terms of hardware complexity, and the control of the number of degrees of freedom required by an inertial measurement unit can be accommodated on a low-cost FPGA device. SMC offers a sound theoretical framework for the nonlinear control of inertial sensors.

  1. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    Science.gov (United States)

    Juanting, Zhang; Changde, He; Hui, Zhang; Yuping, Li; Yongping, Zhang; Chunhui, Du; Wendong, Zhang

    2014-06-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole.

  2. Design of a MEMS Capacitive Comb-drive Micro-accelerometer with Sag Optimization

    Directory of Open Access Journals (Sweden)

    B. D. PANT

    2009-09-01

    Full Text Available The current paper presents an optimization study for the designing of a highly sensitive inertial grade capacitive accelerometer based on comb-drive actuation and sensing. The proof mass, suspension system (beams or tethers, stators and rotors have to be realized through an HAR (high aspect ratio DRIE (deep reactive ion etching process for which process optimization has already been done at our laboratory. As the proof mass is a bulk micro-machined structure having a mass in milligram range, the optimum positioning of the tethers on the proof mass is important to have minimum sag, necessary to reduce the off-axis sensitivity. The optimization for the positioning of the tethers has been carried out using a commercial software tool ANSYSTM Multiphysics. The accelerometer has been modeled analytically to predict its characteristics. The dependency of sensitivity on the dimensions of the suspension beams (tethers has also been verified using the above FEM software tool. The present device has been designed to deliver a high sensitivity of 13.6 mV/g/V for low-g applications.

  3. Suitable triggering algorithms for detecting strong ground motions using MEMS accelerometers

    Science.gov (United States)

    Jakka, Ravi Sankar; Garg, Siddharth

    2015-03-01

    With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record a seismic event depends upon the efficiency of triggering algorithm, apart from the sensor's sensitivity. There are several classic triggering algorithms developed to detect seismic events, ranging from basic amplitude threshold to more sophisticated pattern recognition. Algorithms based on STA/LTA are reported to be computationally efficient for real time monitoring. In this paper, we analyzed several STA/LTA algorithms to check their efficiency and suitability using data obtained from the Quake Catcher Network (network of MEMS accelerometer stations). We found that most of the STA/LTA algorithms are suitable for use with MEMS accelerometer data to accurately detect seismic events. However, the efficiency of any particular algorithm is found to be dependent on the parameter set used (i.e., window width of STA, LTA and threshold level).

  4. Design of a MEMS Capacitive Comb-drive Micro-accelerometer with Sag Optimization

    Directory of Open Access Journals (Sweden)

    B. D. PANT

    2009-10-01

    Full Text Available The current paper presents an optimization study for the designing of a highly sensitive inertial grade capacitive accelerometer based on comb-drive actuation and sensing. The proof mass, suspension system (beams or tethers, stators and rotors have to be realized through an HAR (high aspect ratio DRIE (deep reactive ion etching process for which process optimization has already been done at our laboratory. As the proof mass is a bulk micro-machined structure having a mass in milligram range, the optimum positioning of the tethers on the proof mass is important to have minimum sag, necessary to reduce the off-axis sensitivity. The optimization for the positioning of the tethers has been carried out using a commercial software tool ANSYSTM Multiphysics. The accelerometer has been modeled analytically to predict its characteristics. The dependency of sensitivity on the dimensions of the suspension beams (tethers has also been verified using the above FEM software tool. The present device has been designed to deliver a high sensitivity of 13.6 mV/g/V for low-g applications.

  5. Measurement Uncertainty Analysis of an Accelerometer Calibration Using a POC Electromagnetic Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Timpson, Erik J.; Engel, T. G.

    2012-06-12

    A pulse forming network (PFN), helical electromagnetic launcher (HEML), command module (CM), and calibration table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored nergy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass reinforced epoxy and is designed to accelerate a mass of 600 grams to a velocity of 10 meters per second. The CM is microcontroller-based running Arduino Software. The CM has a keypad input and 7 segment outputs of the PFN voltage and desired charging voltage. After entering a desired PFN voltage, the CM controls the charging of the PFN. When the two voltages are equal it sends a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile’s tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocimeter and catch pot. The target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely so that the velocimeter can accurately read. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  6. Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements

    Science.gov (United States)

    Cristalli, C.; Paone, N.; Rodríguez, R. M.

    2006-08-01

    This paper presents a comparative study between accelerometer and laser vibrometer measurements aimed at on-line quality control carried out on the universal motors used in washing machines, which exhibit defects localised mainly in the bearings, including faults in the cage, in the rolling element and in the outer and inner ring. A set of no defective and defective motors were analysed by means of the acceleration signal provided by the accelerometer, and the displacement and velocity signals given by a single-point laser vibrometer. Advantages and disadvantages of both absolute and relative sensors and of contact and non-contact instrumentation are discussed taking into account the applicability to real on-line quality control measurements and bringing to light the related measurement problems due to the specific environmental conditions of assembly lines and sensor installation constraints. The performance of different signal-processing algorithms is discussed: RMS computation at steady-state proves effective for pass or fail diagnosis, while the amplitude of selected frequencies in the averaged spectra allows also for classification of a variety of special faults in bearings. Joint time-frequency analysis output data can be successfully used for pass or fail diagnosis during transients, thus achieving a remarkable reduction in testing time, which is important for on-line diagnostics.

  7. A Fully Differential Interface Circuit of Closed-loop Accelerometer with Force Feedback Linearization

    Institute of Scientific and Technical Information of China (English)

    HongLin Xu; HongNa Liu; Chong He; Liang Yin; XiaoWei Liu

    2014-01-01

    In this paper, a fifth-order fully differential interface circuit ( IC) is presented to improve the noise performance for micromechanical sigma-delta (Σ-Δ) accelerometer. A lead compensator is adopted to ensure the stability of the closed-loop high-order system. A low noise capacitance detection circuit is described with a correlated-double-sampling ( CDS) technique to decrease 1/f noise and offset of the operational amplifier. This paper also proposes a self-test technique for the interface circuit to test the harmonic distortion. An electrostatic force feedback linearization circuit is presented to reduce the harmonic distortion resulting in larger dynamic range ( DR) . The layout of the IC is implemented in a standard 0�6 μm CMOS technology and operates at a sampling frequency of 250 kHz. The interface consumes 20 mW from a 5 V supply. The post-simulation results indicate that the noise floor of the digital accelerometer is about -140 dBV/Hz1/2 at low frequency. The sensitivity is 2.5 V/g and the nonlinearity is 0�11%. The self-test function is achieved with 98�2 dB third-order harmonic distortion detection based on the electrostatic force feedback linearization.

  8. ISA on the Moon: useful applications of accelerometers for planetary missions support

    Science.gov (United States)

    Peron, Roberto; Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Milyukov, Vadim; Nozzoli, Sergio; Persichini, Marco; Reale, Andrea; Santoli, Francesco

    The last decade has seen a renewed interest for the exploration of our natural satellite, the Moon. This interest is expected to grow in the foreseeable future, also in view of new manned missions. The scientific reasons for lunar exploration are well-justified, in particular there is space for improved models of its gravitational field: these models will be useful in constraining its formation, evolution and present composition. All the main techniques to obtain information on the fine characteristics of the gravitational selenopotential imply the use of an orbiter in close Moon orbit. The data analysis requires complex models to take into account the dynamical environment the satellite moves in: their intrinsic limitations in describing the non-gravitational perturbations can be overcome measuring them directly by means of an on-board accelerometer like ISA (Italian Spring Accelerometer). Some estimates will be discussed in the context of the proposed mission MAGIA (Missione Altimetrica Gravimetrica Geochimica lunAre). The usefulness of this instrument goes beyond this basic application, and scenarios can be envisaged in which gradiometric and in-situ (seismological) measurements are performed. Each of these possible applications — extending to a wide range of conditions in Solar System exploration — will be shown and discussed.

  9. A novel sacrificial-layer process based on anodic bonding and its application in an accelerometer

    Directory of Open Access Journals (Sweden)

    Lingyun Wang

    2015-04-01

    Full Text Available It is found in our experiments that the depletion layer of anodic bonding is etched faster than the bulk glass (Pyrex 7740 in hydrofluoric acid (HF. Based on this interesting phenomenon, a novel process of a sacrificial layer is proposed in this paper. In order to deeply understand and investigate the rules concerning the influence of bonding parameters on this effect, firstly the width of the depletion layer under different bonding voltages and temperatures and the selection ratio of etching are revealed. To validate the feasibility of the method, a micro-machined accelerometer is designed and fabricated. The test results of resonant frequency and sensitivity of the fabricated accelerometer are 3254.5 Hz and 829.85–844.93 mV/g, respectively. This was further evidence that the depletion layer could be used as a sacrificial layer and the removable structure could be successfully released by fast etching this layer. The important feature of this method is that only one mask is needed in the whole process and therefore it could greatly simplify the fabrication process of the device.

  10. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  11. Microfabrication and Characterization of an Integrated 3-Axis CMOS-MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    Hongwei QU

    2007-10-01

    Full Text Available This paper reports the fabrication and characterization of a monolithically integrated 3-axis CMOS-MEMS accelerometer with a single proof mass. An improved microfabrication process has been developed to solve the structure overheating and particle contamination problems in the plasma etching processes of device fabrication. The whole device is made of bulk silicon except for some short thin films for electrical isolation, allowing large sensing capacitance and flat device structure. A low-noise, low-power amplifier is designed for each axis, which provides 40 dB on-chip amplification and consumes only 1 mW power. Quasi-static and dynamic characterization of the fabricated device has been performed. The measured sensitivities of the lateral- and z-axis accelerometers are 560 mV/g and 320 mV/g, respectively, which can be tuned by simply varying the amplitude of the modulation signal. The over-all noise floors of the lateral- and z-axis are 12 μg/ÖHz and 110 μg/ÖHz, respectively when tested at 200 Hz.

  12. Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2016-09-01

    Full Text Available This paper presents an in-plane sandwich nano-g microelectromechanical systems (MEMS accelerometer. The proof-mass fabrication is based on silicon etching through technology using inductive coupled plasma (ICP etching. The capacitive detection system, which employs the area-changing sensing method, combines elementary capacitive pickup electrodes with periodic-sensing-array transducers. In order to achieve a large dynamic range with an ultrahigh resolution, the capacitive detection system employs two periodic-sensing-array transducers. Each of them can provide numbers for the signal period in the entire operating range. The suspended proof-mass is encapsulated between two glass caps, which results in a three dimensional structure. The measured resonant frequency and quality factor (Q are 13.2 Hz and 47, respectively. The calibration response of a ±0.7 g input acceleration is presented, and the accelerometer system presents a sensitivity of 122 V/g and a noise floor of 30 ng/√Hz (at 1 Hz, and 1 atm. The bias stability for a period of 10 h is 30 μg. The device has endured a shock up to ±2.6 g, and the full scale output appears to be approximately ±1.4 g presently. This work presents a new opportunity for highly sensitive MEMS fabrication to enable future high-precision measurement applications, such as for gravity measurements.

  13. A novel accelerometer based on the first kind of ferrofluid levitation principle

    Science.gov (United States)

    Yao, Jie; Chen, Yibiao; Li, Zhenkun; Zhang, Tianqi; Li, Decai

    2016-09-01

    In this paper, a novel accelerometer exploiting the first kind of ferrofluid levitation principle is presented. The device consists of a piston-shaped container filled with ferrofluid surrounding a nonmagnetic insulating rod, which has the same shape as the container and is regarded as an inertial mass. Two annular magnets outside the container are used to create a non-uniform magnetic field which generates a powerful restoring force acting on the nonmagnetic rod. Under the influence of the external acceleration, two coils can detect the change of the volume distribution of the ferrofluid and transmit the voltage signal, which is proportional to the displacement of the nonmagnetic rod. The determination of the working range, linearity and sensitivity depends on the restoring force, thus these factors affecting the restoring force are sufficiently investigated by calculation and experiment. Furthermore, the comparison between numerical calculations and experimental measurements shows a good agreement. The static characteristics of the accelerometer are obtained by using an optimized structure.

  14. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift

    Directory of Open Access Journals (Sweden)

    Bo Li

    2017-01-01

    Full Text Available Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C.

  15. Sedentary Behavior in Preschoolers: How Many Days of Accelerometer Monitoring Is Needed?

    Directory of Open Access Journals (Sweden)

    Wonwoo Byun

    2015-10-01

    Full Text Available The reliability of accelerometry for measuring sedentary behavior in preschoolers has not been determined, thus we determined how many days of accelerometry monitoring are necessary to reliably estimate daily time spent in sedentary behavior in preschoolers. In total, 191 and 150 preschoolers (three to five years wore ActiGraph accelerometers (15-s epoch during the in-school (≥4 days and the total-day (≥6 days period respectively. Accelerometry data were summarized as time spent in sedentary behavior (min/h using three different cutpoints developed for preschool-age children (<37.5, <200, and <373 counts/15 s. The intraclass correlations (ICCs and Spearman-Brown prophecy formula were used to estimate the reliability of accelerometer for measuring sedentary behavior. Across different cutpoints, the ICCs ranged from 0.81 to 0.92 for in-school sedentary behavior, and from 0.75 to 0.81 for total-day sedentary behavior, respectively. To achieve an ICC of ≥0.8, two to four days or six to nine days of monitoring were needed for in-school sedentary behavior and total-day sedentary behavior, respectively. These findings provide important guidance for future research on sedentary behavior in preschool children using accelerometry. Understanding the reliability of accelerometry will facilitate the conduct of research designed to inform policies and practices aimed at reducing sedentary behavior in preschool children.

  16. Characterization of a 21-Story Reinforced Building in the Valley of Mexico Using MEMS Accelerometers.

    Science.gov (United States)

    Husker, A. L.; Dominguez, L. A.; Becerril, A.; Espejo, L.; Cochran, E. S.

    2014-12-01

    Low cost MEMS accelerometers are becoming increasingly higher resolution making them useful in strong motion studies. Here we present a building response analysis in the lakebed zone of the Valley of Mexico. The Valley of Mexico represents one of the highest seismic risk locations in the world and incorporates Mexico City and part of Mexico State. More than 20 million people live there and it is the political and economic center of Mexico. In addition the valley has very high site effects with amplifications 100 - 500 times that of sites outside of the basin (Singh et al., 1988; Singh et al., 1995). We instrumented a 21-story building with MEMS accelerometers as part of the Quake Catcher Network or Red Atrapa Sismos as it is called in Mexico. The building known as the Centro Cultural de Tlateloco is located in an important historical and political area as well as a zone with some of the highest amplifications in the Valley of Mexico that had some of the worst destruction after the 1985 M8.1 Michoacan earthquake. During the earthquake most of the buildings that failed were between 7 - 18 stories tall. The peak accelerations near Tlateloco were at periods of 2 seconds. Since the earthquake the building has been retrofitted with N-S crossing supports to help withstand another earthquake. We present the measurements of frequencies and amplifications between floors for the length of the building.

  17. The Practical Design of In-vehicle Telematics Device with GPS and MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    D. M. Dramićanin

    2012-11-01

    Full Text Available The latest generation of vehicle tracking devices relies not only on Global Positioning System (GPS but also uses low-cost Micro-Electro-Mechanical Systems (MEMS accelerometers. This combination supports new services such as driving style characterization and Automatic Crash Notification (ACN. Our focus will be on practical considerations of such a telematics unit. The paper will consider the boundaries of allowed errors and minimal requirements for sensors and mounting requirements. Sensor range for crash detection and impact angle estimation was tested on field trials with two units containing accelerometers range of 18g and 2g. The kinematic orientation of vehicle is evaluated in a series of field trials with a resulting standard deviation of estimation of 1.67°. The second run of experiments considers the dynamic range and sampling rate of sensors during collision. A sensor range of 8g (typical for present-day telematics devices can be used to detect crash without accurate knowledge of impact angle.

  18. New modes and mechanisms of thermospheric mass density variations from GRACE accelerometers

    Science.gov (United States)

    Calabia, Andres; Jin, Shuanggen

    2016-11-01

    Monitoring and understanding the upper atmosphere processes is important for orbital decay and space physics. Nowadays, Low Earth Orbit (LEO) accelerometers provide a unique opportunity to study thermospheric density variations with unprecedented details. In this paper, thermospheric mass densities variations from Gravity Recovery and Climate Experiment (GRACE) accelerometers are investigated for the period 2003-2016 using the principal component analysis (PCA). The resulting modes are analyzed and parameterized in terms of solar and magnetospheric forcing, local solar time (LST), and annual variations. A better understanding of global thermospheric air density variations is presented, which validates the suitability of our technique and model. The parameterization of the subsolar-point annual variation shows two maxima around June and only one in December. The LST parameterization shows a new fluctuation controlling a middle latitude four-wave pattern, with two maxima at 12 h and 21 h LST and two minima at 1 h and 17 h LST. Our parameterizations are suitable to represent small-scale variations including, e.g., the equatorial mass density anomaly (EMA) and the midnight density maximum (MDM). Finally, the residuals are analyzed in the spectral domain, and additional contributions are found at the frequencies of the radiational tides and at the periods of 83, 93, 152, and 431 days.

  19. Improving the response of accelerometers for automotive applications by using LMS adaptive filters.

    Science.gov (United States)

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo

    2010-01-01

    In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s(2)) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory.

  20. Sensor agent robot with servo-accelerometer for structural health monitoring

    Science.gov (United States)

    Lee, Nobukazu; Mita, Akira

    2012-04-01

    SHM systems are becoming feasible with the growth of computer and sensor technologies during the last decade. However, high cost prevents SHM to become common in general homes. The reason of this high cost is partially due to many accelerometers. In this research, we propose a moving sensor agent robot with accelerometers and a laser range finder (LRF). If this robot can properly measure accurate acceleration data, the cost of SHM would be cut down and resulting in the spread of SHM systems. Our goal is to develop a platform for SHM using the sensor agent robot. We designed the prototype robot to correctly detect the floor vibrations and acquire the micro tremor information. When the sensor agent robot is set in the mode of acquiring the data, the dynamics of the robot should be tuned not to be affected by its flexibility. To achieve this purpose the robot frame was modified to move down to the ground and to provide enough rigidity to obtain good data. In addition to this mechanism, we tested an algorithm to correctly know the location of the robot and the map of the floor to be used in the SHM system using the LRF and Simultaneously Localization and Mapping (SLAM).

  1. A novel sacrificial-layer process based on anodic bonding and its application in an accelerometer

    Science.gov (United States)

    Wang, Lingyun; He, Yong; Zhan, Zhan; Yu, Lingke; Wang, Huan; Chen, Daner

    2015-04-01

    It is found in our experiments that the depletion layer of anodic bonding is etched faster than the bulk glass (Pyrex 7740) in hydrofluoric acid (HF). Based on this interesting phenomenon, a novel process of a sacrificial layer is proposed in this paper. In order to deeply understand and investigate the rules concerning the influence of bonding parameters on this effect, firstly the width of the depletion layer under different bonding voltages and temperatures and the selection ratio of etching are revealed. To validate the feasibility of the method, a micro-machined accelerometer is designed and fabricated. The test results of resonant frequency and sensitivity of the fabricated accelerometer are 3254.5 Hz and 829.85-844.93 mV/g, respectively. This was further evidence that the depletion layer could be used as a sacrificial layer and the removable structure could be successfully released by fast etching this layer. The important feature of this method is that only one mask is needed in the whole process and therefore it could greatly simplify the fabrication process of the device.

  2. Accelerometer data treatment for adolescents: Fitting a piece of the puzzle

    Directory of Open Access Journals (Sweden)

    Melody Smith

    2017-03-01

    Full Text Available This study aimed to assess the differences in participant retention and associations between physical activity and key variables when a range of accelerometer data inclusion criteria are employed. Data were drawn from 204 adolescents of Pacific Island heritage (survey, body composition, 7-day accelerometry and their parents (date of birth, socioeconomic status between October 2014 and February 2016 in Auckland, New Zealand. Data wear time criteria for inclusion were as follows: A > =10 h/weekday or > = 8 h weekend day, > = 5 days (at least one weekend day; B > =10 h/weekday or > = 8 h weekend day, > = 4 days; C > =7 h/day, > = 3 days; D > =10 h/day, > = 1 day. Overall, 49%, 62%, 88%, and 96% of participants met the criteria, respectively. Adjusted odds of meeting each criterion were examined using a multivariable logistic regression model. Almost 50% of participants were excluded by the most stringent inclusion criteria. Increased body fat percentage and proportion of time in moderate-to-vigorous activity were associated with decreased odds of meeting Criterions A and B. This research contributes to a growing understanding of the impact of differing accelerometer reduction approaches to sample retention and bias in adolescent physical activity research.

  3. Modeling the Microstructure Curvature of Boron-Doped Silicon in Bulk Micromachined Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiaoping He

    2013-01-01

    Full Text Available Microstructure curvature, or buckling, is observed in the micromachining of silicon sensors because of the doping of impurities for realizing certain electrical and mechanical processes. This behavior can be a key source of error in inertial sensors. Therefore, identifying the factors that influence the buckling value is important in designing MEMS devices. In this study, the curvature in the proof mass of an accelerometer is modeled as a multilayered solid model. Modeling is performed according to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process (BDWP based on the self-stopped etch technique. Moreover, the proposed multilayered solid model is established as an equivalent composite structure formed by a group of thin layers that are glued together. Each layer has a different Young’s modulus value and each undergoes different volume shrinkage strain owing to boron doping in silicon. Observations of five groups of proof mass blocks of accelerometers suggest that the theoretical model is effective in determining the buckling value of a fabricated structure.

  4. Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B

    Institute of Scientific and Technical Information of China (English)

    Dong-Ju Peng; Bin Wu

    2008-01-01

    We investigate how well the GRACE satellite orbits can be determined using the onboard GPS data combined with the accelerometer data.The preprocessing of the accelerometer data and the methods and models used in the orbit determination are presented.In order to assess the orbit accuracy,a number of tests are made,including external orbit comparison,and through Satellite Laser Ranging (SLR) residuals and K-band ranging (KBR) residuals.It is shown that the standard deviations of the position differences between the so-called precise science orbits (PSO) produced by GFZ,and the single-difference (SD) and zero-difference (ZD) dynamic orbits are about 7 cm and 6 cm,respectively.The independent SLR validation indicates that the overall root-mean-squared (RMS) errors of the SD solution for days 309-329 of 2002 are about 4.93cm and 5.22cm,for GRACE-A and B respectively; theoverall RMS errors of the ZD solution are about 4.25 cm and 4.71 cm,respectively.The relative accuracy between the two GRACE satellites is validated by the KBR data to be on a level of 1.29 cm for the SD,and 1.03 cm for the ZD solution.

  5. Sensitivity Jump of Micro Accelerometer Induced by Micro-fabrication Defects of Micro Folded Beams

    Directory of Open Access Journals (Sweden)

    Zhou Wu

    2016-08-01

    Full Text Available The abnormal phenomenon occurring in sensor calibration is an obstacle to product development but a useful guideline to product improvement. The sensitivity jump of micro accelerometers in the calibrating process is recognized as an important abnormal behavior and investigated in this paper. The characteristics of jumping output in the centrifuge test are theoretically and experimentally analyzed and their underlying mechanism is found to be related to the varied stiffness of supporting beam induced by the convex defect on it. The convex defect is normally formed by the lithography deviation and/or etching error and can result in a jumping stiffness of folded microbeams and further influence the sensitivity when a part of the bending beams is stopped from moving by two surfaces contacting. The jumping level depends on the location of convex and has nothing to do with the contacting properties of beam and defects. Then the location of defect is predicted by theoretical model and simulation and verified by the observation of micro structures under microscopy. The results indicate that the tested micro accelerometer has its defect on the beam with a distance of about 290μm from the border of proof mass block.

  6. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  7. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer

    Science.gov (United States)

    Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.

    2016-01-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726

  8. Fall-detection solution for mobile platforms using accelerometer and gyroscope data.

    Science.gov (United States)

    De Cillisy, Francesca; De Simioy, Francesca; Guidoy, Floriana; Incalzi, Raffaele Antonelli; Setolay, Roberto

    2015-08-01

    Falls are a major health risk that diminish the quality of life among elderly people. Apart from falls themselves, most dramatic consequences are usually related with long lying periods that can cause serious side effects. These findings call for pervasive long-term fall detection systems able to automatically detect falls. In this paper, we propose an effective fall detection algorithm for mobile platforms. Using data retrieved from wearable sensors, such as Inertial Measurements Units (IMUs) and/or SmartPhones (SPs), our algorithm is able to detect falls using features extracted from accelerometer and gyroscope. While mostly of the mobile-based solutions for fall management deal only with accelerometer data, in the proposed approach we combine the instantaneous acceleration magnitude vector with changes of the user's heading in a Threshold Based Algorithm (TBA). In such a way, we were able to handle falls detection with minimal computational load, increasing the overall system accuracy with respect to traditional fall management methods. Experimental results show the strong detection performance of the proposed solution in discriminating between falls and typical Activities of Daily Living (ADLs) presenting fall-like acceleration patterns.

  9. Effects of filter choice in GT3X accelerometer assessments of free-living activity.

    Science.gov (United States)

    Wanner, Miriam; Martin, Brian W; Meier, Flurina; Probst-Hensch, Nicole; Kriemler, Susi

    2013-01-01

    ActiGraph accelerometers are widely used devices to objectively assess physical activity. The GT3X version has two filter options to be selected before data assessment (normal and low-frequency extension filter option). It is not clear whether the resulting physical activity levels differ depending on the choice of the filter. The aims were to compare GT3X data collected using the different filter options during free-living activities and to establish correction factors if the results were not comparable. Sixty-five participants of the population-based SAPALDIA-cohort (50.8% women, age range = 40-80 yr) wore two GT3X accelerometers with different filter selections simultaneously during 8 d. Spearman correlations, Wilcoxon rank sum tests, McNemar tests, scatter plots, and Bland-Altman plots were used to compare the data. Correction factors were established using linear regression models. Although Spearman correlations were high (r ≥ 0.93), there were significant differences in minutes per day between filter options for nonwearing time and time spent in sedentary, light, and moderate-to-vigorous physical activity (all P Mean counts per minute and steps per day were significantly higher using the low-frequency extension filter (P filter option and to specify the filter choice in publications. The correction factors can be used to make data assessed using the low-frequency extension filter comparable to data assessed using the normal filter option.

  10. Seismic monitoring by piezoelectric accelerometers of a damaged historical monument in downtown L’Aquila

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Giulio

    2015-03-01

    Full Text Available We show the preliminary seismic monitoring of a historical church in L’Aquila (central Italy, which was strongly damaged by the 2009 seismic sequence. This structure, S. Maria del Suffragio church, suffered the collapse of a great part of the dome during the April 6th 2009 Mw 6.1 earthquake. In this paper, recordings of ambient noise and local earthquakes have been analyzed. The seismic data were recorded by means of a dynamic monitoring system (19 mono-directional and 3 tri-directional piezoelectric accelerometers and of two velocimeters, with all the instruments installed into the church. The aim of this research is the evaluation of the performance of the accelerometers of the monitoring system in case of low-amplitude vibrations. Simple techniques of analysis commonly employed in the seismic characterization of buildings have been applied. The reliability of the in-situ data was evaluated and the main modal parameters (natural frequencies and damping ratio of the church were presented.

  11. Accelerometer-Based Recorder of Fingers Dynamic Movements for Post-Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Fajar Akhmad Dwiputra

    2017-02-01

    Full Text Available Stroke is a disease that currently attracts more attention in Indonesia according to the statistics provided by the Ministry of Health of the Republic of Indonesia. This research was motivated by the shortage of physiotherapists which can not catch the increasing number of stroke patients. The therapy becomes less effective and less efficient since each therapist must handle too many patients during his/her work hours. This research has developed a device prototype that can help the therapy to measure and monitor patient exercise, especially at the final stage of rehabilitation when the patient gets therapy to move actively. The angle of the moving body parts  that can represent the ability of patient motion was measured using accelerometers. The developed prototype was in the form of a glove, equipped with an Arduino Nano and two accelerometer modules, that measures the motion of the thumb and index finger. The device was calibrated and tested to determine the characteristics of the sensors. This test showed that the gloves prototype had an accuracy of 95,8% and precision of 99,6%. The application of the prototype was carried out on four types of finger movements, namely thumb abduction-adduction, thumb flexion-extension, finger flexion-hyperextension, and finger abduction-adduction. The prototype was also tested for its ability to work in variations of direction and position of the hand.

  12. Error Correction of Measured Unstructured Road Profiles Based on Accelerometer and Gyroscope Data

    Directory of Open Access Journals (Sweden)

    Jinhua Han

    2017-01-01

    Full Text Available This paper describes a noncontact acquisition system composed of several time synchronized laser height sensors, accelerometers, gyroscope, and so forth in order to collect the road profiles of vehicle riding on the unstructured roads. A method of correcting road profiles based on the accelerometer and gyroscope data is proposed to eliminate the adverse impacts of vehicle vibration and attitudes change. Because the power spectral density (PSD of gyro attitudes concentrates in the low frequency band, a method called frequency division is presented to divide the road profiles into two parts: high frequency part and low frequency part. The vibration error of road profiles is corrected by displacement data obtained through two times integration of measured acceleration data. After building the mathematical model between gyro attitudes and road profiles, the gyro attitudes signals are separated from low frequency road profile by the method of sliding block overlap based on correlation analysis. The accuracy and limitations of the system have been analyzed, and its validity has been verified by implementing the system on wheeled equipment for road profiles’ measuring of vehicle testing ground. The paper offers an accurate and practical approach to obtaining unstructured road profiles for road simulation test.

  13. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    Science.gov (United States)

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  14. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift

    Science.gov (United States)

    Li, Bo; Zhao, Yulong; Li, Cun; Cheng, Rongjun; Sun, Dengqiang; Wang, Songli

    2017-01-01

    Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs) and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM) under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB) which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C. PMID:28106798

  15. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  16. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014

  17. Accelerometer thresholds: Accounting for body mass reduces discrepancies between measures of physical activity for individuals with overweight and obesity.

    Science.gov (United States)

    Raiber, Lilian; Christensen, Rebecca A G; Jamnik, Veronica K; Kuk, Jennifer L

    2017-01-01

    The objective of this study was to explore whether accelerometer thresholds that are adjusted to account for differences in body mass influence discrepancies between self-report and accelerometer-measured physical activity (PA) volume for individuals with overweight and obesity. We analyzed 6164 adults from the National Health and Nutrition Examination Survey between 2003-2006. Established accelerometer thresholds were adjusted to account for differences in body mass to produce a similar energy expenditure (EE) rate as individuals with normal weight. Moderate-, vigorous-, and moderate- to vigorous-intensity PA (MVPA) durations were measured using established and adjusted accelerometer thresholds and compared with self-report. Durations of self-report were longer than accelerometer-measured MVPA using established thresholds (normal weight: 57.8 ± 2.4 vs 9.0 ± 0.5 min/day, overweight: 56.1 ± 2.7 vs 7.4 ± 0.5 min/day, and obesity: 46.5 ± 2.2 vs 3.7 ± 0.3 min/day). Durations of subjective and objective PA were negatively associated with body mass index (BMI) (P overweight and obese groups by 6.0 ± 0.3 min/day and 17.7 ± 0.8 min/day, respectively (P overweight and obese groups. However, accelerometer-measured PA generally remained shorter than durations of self-report within all BMI categories. Further research may be necessary to improve analytical approaches when using objective measures of PA for individuals with overweight or obesity.

  18. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch

    NARCIS (Netherlands)

    Kosse, Nienke M.; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J. C.

    2015-01-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study wa

  19. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch

    NARCIS (Netherlands)

    Kosse, Nienke M.; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J. C.

    2015-01-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study

  20. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare.

    Science.gov (United States)

    Stewart, M; Wilson, M T; Schaefer, A L; Huddart, F; Sutherland, M A

    2017-03-02

    Increasing reliance on automated systems on-farm has led to a need for remote monitoring of health and welfare. We aimed to validate 2 methods that could be integrated into automated systems currently in use: infrared thermography (IRT) to measure respiration rate (RR), and accelerometers to measure the flinch, step, kick (FSK) response and assessing stress and discomfort. We monitored 22 multiparous, nonlactating, Friesian and Friesian × Jersey cows (average 5.1 yr of age) during a baseline period (2 min), a restraint in a crush (2 min), and then a recovery period after exposure to a startle (2 min). We measured RR with continuous IRT imaging of airflow through the nostrils and by counting flank movements from video and live recordings. We recorded heart rate (HR) and HR variability using HR monitors, and we recorded FSK from continuous video analysis of leg movements and indirectly using accelerometers attached to both hind legs. The FSK response was scored between 1 and 4 based on the height and direction of each leg movement. We observed no change in RR, HR variability, or FSK in response to the startle; however, HR increased briefly by 10 bpm. Bland-Altman plots indicated good agreement between the different methods of measuring RR, with average differences of -0.01 ± 0.87, 0.83 ± 0.57, and 0.37 ± 1.02 breaths/min for video versus live, IRT versus live and IRT versus video, respectively. Acceleration was also highly correlated with FSK scores of ≤3 (R(2) = 0.96) and ≤2 (R(2) = 0.89) and moderately correlated with FSK scores of 1 (R(2) = 0.66) over the 4-min sampling period. The results show that accelerometers can provide an indirect measure of the FSK response, and IRT can be used reliably to measure RR. With further development, both technologies could be integrated into existing systems for remote monitoring of dairy cows' health and welfare on-farm.

  1. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study

    Science.gov (United States)

    Jackson, Dan; Hammerla, Nils; Granat, Malcolm H.; van Hees, Vincent T.; Trenell, Michael I.; Owen, Christoper G.; Preece, Stephen J.; Peakman, Tim; Brage, Soren

    2017-01-01

    Background Physical activity has not been objectively measured in prospective cohorts with sufficiently large numbers to reliably detect associations with multiple health outcomes. Technological advances now make this possible. We describe the methods used to collect and analyse accelerometer measured physical activity in over 100,000 participants of the UK Biobank study, and report variation by age, sex, day, time of day, and season. Methods Participants were approached by email to wear a wrist-worn accelerometer for seven days that was posted to them. Physical activity information was extracted from 100Hz raw triaxial acceleration data after calibration, removal of gravity and sensor noise, and identification of wear / non-wear episodes. We report age- and sex-specific wear-time compliance and accelerometer measured physical activity, overall and by hour-of-day, week-weekend day and season. Results 103,712 datasets were received (44.8% response), with a median wear-time of 6.9 days (IQR:6.5–7.0). 96,600 participants (93.3%) provided valid data for physical activity analyses. Vector magnitude, a proxy for overall physical activity, was 7.5% (2.35mg) lower per decade of age (Cohen’s d = 0.9). Women had a higher vector magnitude than men, apart from those aged 45-54yrs. There were major differences in vector magnitude by time of day (d = 0.66). Vector magnitude differences between week and weekend days (d = 0.12 for men, d = 0.09 for women) and between seasons (d = 0.27 for men, d = 0.15 for women) were small. Conclusions It is feasible to collect and analyse objective physical activity data in large studies. The summary measure of overall physical activity is lower in older participants and age-related differences in activity are most prominent in the afternoon and evening. This work lays the foundation for studies of physical activity and its health consequences. Our summary variables are part of the UK Biobank dataset and can be used by researchers as

  2. Contributions of Italian Spring Accelerometer to lunar exploration: gravimetry and seismology .

    Science.gov (United States)

    Iafolla, V.; Fiorenza, E.; Lefevre, C.; Nozzoli, S.; Peron, R.; Reale, A.; Santoli, F.

    The opening of the XXI century sees a new wave in lunar exploration, with a significant number of missions, both ongoing and in preparation. The exploration of our natural satellite is indeed important to gain understanding on the formation of Solar System and to create the basis for a future human colonization. On this respect, the study of the Moon gravity field is an important tool: indeed, the fine knowledge of selenopotential will put strong constraints on Moon internal structure and composition, and therefore on its formation and evolution towards current state. This is one of the main objectives of the proposed mission MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre). Its GRACE-like two-spacecraft configuration, with a microwave link between the main satellite and a subsatellite, will enable a uniform coverage with high resolution. Due to the selected very low orbit (necessary for high resolution), the contribution of non-gravitational perturbations to the spacecraft dynamics will not be negligible. An effective way of accounting for them in the orbit determination and parameter estimation procedure is to measure their effect directly by means of an on-board accelerometer like ISA (Italian Spring Accelerometer). Its role in the mission scenario is discussed. ISA instrument works also on ground, as seismometer and gravimeter, as it does in fact on Earth in a number of sites. It therefore can be used on lunar ground, as part of a selenodetic station permanently monitoring a selected location. This further capability of ISA accelerometer fits well with two current projects, the ILN (International Lunar Network) by NASA and the First Lunar Lander by ESA. Both aim to put on the Moon surface selenodetic stations which include instrumentation to investigate on its interior structure and composition, and on fundamental physics. Seismic measurements to constrain the Moon interior structure are a primary objective in both projects, and ISA is a candidate

  3. Quantifying external load in Australian football matches and training using accelerometers.

    Science.gov (United States)

    Boyd, Luke J; Ball, Kevin; Aughey, Robert J

    2013-01-01

    To describe the external load of Australian football matches and training using accelerometers. Nineteen elite and 21 subelite Australian footballers wore accelerometers during matches and training. Accelerometer data were expressed in 2 ways: from all 3 axes (player load; PL) and from all axes when velocity was below 2 m/s (PLSLOW). Differences were determined between 4 playing positions (midfielders, nomadics, deeps, and ruckmen), 2 playing levels (elite and subelite), and matches and training using percentage change and effect size with 90% confidence intervals. In the elite group, midfielders recorded higher PL than nomadics and deeps did (8.8%, 0.59 ± 0.24; 34.2%, 1.83 ± 0.39 respectively), and ruckmen were higher than deeps (37.2%, 1.27 ± 0.51). Elite midfielders, nomadics, and ruckmen recorded higher PLSLOW than deeps (13.5%, 0.65 ± 0.37; 11.7%, 0.55 ± 0.36; and 19.5%, 0.83 ± 0.50, respectively). Subelite midfielders were higher than nomadics, deeps, and ruckmen (14.0%, 1.08 ± 0.30; 31.7%, 2.61 ± 0.42; and 19.9%, 0.81 ± 0.55, respectively), and nomadics and ruckmen were higher than deeps for PL (20.6%, 1.45 ± 0.38; and 17.4%, 0.57 ± 0.55, respectively). Elite midfielders, nomadics, and ruckmen recorded higher PL (7.8%, 0.59 ± 0.29; 12.9%, 0.89 ± 0.25; and 18.0%, 0.67 ± 0.59, respectively) and PLSLOW (9.4%, 0.52 ± 0.30; 11.3%, 0.68 ± 0.25; and 14.1%, 0.84 ± 0.61, respectively) than subelite players. Small-sided games recorded the highest PL and PLSLOW and were the only training drill to equal or exceed the load from matches across positions and playing levels. PL differed between positions, with midfielders the highest, and between playing levels, with elite higher. Differences between matches and training were also evident, with PL from small-sided games equivalent to or higher than matches.

  4. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    Science.gov (United States)

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  5. Convergent Validity of Four Accelerometer Cutpoints with Direct Observation of Preschool Children's Outdoor Physical Activity

    Science.gov (United States)

    Kahan, David; Nicaise, Virginie; Reuben, Karen

    2013-01-01

    Purpose: More than one fifth of American preschool-aged children are classified as overweight/obese. Increasing physical activity is one means of slowing/reversing progression to overweight or obesity. Measurement of physical activity in this age group relies heavily on motion sensors such as accelerometers. Output is typically interpreted through…

  6. Cost-effective monitoring of ground motion by joint use of a single-frequency GPS and a MEMS accelerometer

    Science.gov (United States)

    Tu, Rui; Wang, Rongjiang; Ge, Maorong; Walter, Thomas R.; Ramatschi, Markus; Milkereit, Claus; Bindi, Dino; Dahm, Torsten

    2014-05-01

    Real-time detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (micro-electro-mechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analysed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers. Reference: Tu, R., R. Wang, M. Ge, T. R. Walter, M. Ramatschi, C. Milkereit, D. Bindi, and T. Dahm (2013), Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer, Geophysical Research Letters, 40, 3825-3829, doi:10.1002/grl.50653.

  7. Analysis and amelioration about the cross-sensitivity of a high resolution MOEMS accelerometer based on diffraction grating

    Science.gov (United States)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan

    2016-10-01

    Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.

  8. Activity controlled cardiac pacemakers during stairwalking: a comparison of accelerometer with vibration guided devices and with sinus rate.

    Science.gov (United States)

    Matula, M; Schlegl, M; Alt, E

    1996-07-01

    Activity controlled pacemakers are the most widely used rate adaptive systems. We studied second-generation activity controlled systems (accelerometer) in 21 patients with such an accelerometer controlled system implanted during walking level and stairs. We compared them to the rate of vibration controlled, first-generation activity pacemakers and to the sinus rate of a healthy control group. A metronome directed the speed during walking and climbing stairs at 92, 108, and 120 steps/min. At 92 steps/min, the new accelerometer controlled systems showed a significant (P walking level to 124 +/- 8 beats/min during climbing stairs, and a significant decrease to 105 +/- 12 beats/min during walking downstairs. In contrast, first-generation activity controlled pacemakers showed a less physiological rate behavior with higher pacing rate (113 +/- 7 beats/min) walking downstairs than walking upstairs (97 +/- 9). For everyday activities at normal walking speed, accelerometer controlled pacemakers show a more physiological rate behavior than first-generation pacemakers, but they lose this physiological response with faster walking.

  9. Accelerometer-Measured versus Self-Reported Physical Activity in College Students: Implications for Research and Practice

    Science.gov (United States)

    Downs, Andrew; Van Hoomissen, Jacqueline; Lafrenz, Andrew; Julka, Deana L.

    2014-01-01

    Objective: To determine the level of moderate-vigorous-intensity physical activity (MVPA) assessed via self-report and accelerometer in the college population, and to examine intrapersonal and contextual variables associated with physical activity (PA). Participants: Participants were 77 college students at a university in the northwest sampled…

  10. Bibliometrical analysys on the scientific outcome attending the usage of the accelerometer in physical activity level gauge (2010-2014

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel Santos Labrador

    2015-09-01

    Full Text Available This essay provides with the data obtained via the bibliometric analysis of the works on the usage of the accelerometer as a physical activity gauge, both at national and international level, ranging from 2010 to 2014. The main purpose is to know which the scientific output has been, concerning the usage of the accelerometer such an instrument of physical activity’s quantification. The data have been extracted from the Scopus Data Base, and the number of articles on this topic raises to 2207. The keywords used in the search were: accelerometer and physical activity. The scientific output, magazines, authors, institutions, countries, and regions, have been escrutinized by years, identifying the most productive ones. The national and international outcomes reveal the most significant features to be the following: the widespread employment of the accelerometer in different scientific areas, and the growing recognition of some authors, magazines, countries and organisations as a benchmark in the field. Furthermore, it's important to stress the differences between scientific outcome at national and international level, where it's noticeable a steady growth lacking locally.

  11. A National Survey of Physical Activity and Sedentary Behavior of Chinese City Children and Youth Using Accelerometers

    Science.gov (United States)

    Wang, Chao; Chen, Peijie; Zhuang, Jie

    2013-01-01

    Purpose: The purpose of this study was to objectively assess levels of physical activity (PA) and sedentary behavior (SB) of Chinese city children and youth aged 9 to 17 years old using accelerometers and to examine their differences by gender, age, grade, and weight status. Method: The PA and SB of 2,163 students in 4th grade through 11th grade…

  12. Validation of the Actigraph GT3X and ActivPAL Accelerometers for the Assessment of Sedentary Behavior

    Science.gov (United States)

    Kim, Youngdeok; Barry, Vaughn W.; Kang, Minsoo

    2015-01-01

    This study examined (a) the validity of two accelerometers (ActiGraph GT3X [ActiGraph LLC, Pensacola, FL, USA] and activPAL [PAL Technologies Ltd., Glasgow, Scotland]) for the assessment of sedentary behavior; and (b) the variations in assessment accuracy by setting minimum sedentary bout durations against a proxy for direct observation using an…

  13. Neckband or backpack? Differences in tag design and their effects on GPS/accelerometer tracking results in large waterbirds

    NARCIS (Netherlands)

    Kölzsch, Andrea; Neefjes, Marjolein; Barkway, Jude; Müskens, G.J.D.M.; Langevelde, van Frank; Boer, de Willem F.; Prins, Herbert H.T.; Cresswell, Brian H.; Nolet, Bart A.

    2016-01-01

    Background
    GPS and accelerometer tracking presently revolutionises the fields of ecology and animal behaviour. However, the effects of tag characteristics like weight, attachment and data quality on study outcomes and animal welfare are important to consider. In this study, we compare how differ

  14. Neckband or backpack? Differences in tag design and their effects on GPS/accelerometer tracking results in large waterbirds.

    NARCIS (Netherlands)

    Kölzsch, Andrea; Neefjes, Marjolein; Barkway, J.; Müskens, G.J.D.M.; van Langevelde, F.; De Boer, W.F.; Prins, H.H.T.; Cresswell, B.H.; Nolet, B.A.

    2016-01-01

    Background GPS and accelerometer tracking presently revolutionises the fields of ecology and animal behaviour. However, the effects of tag characteristics like weight, attachment and data quality on study outcomes and animal welfare are important to consider. In this study, we compare how different

  15. Sensitivity optimization of a monolithic high-shock three-axis piezoresistive accelerometer with single sensing element

    Institute of Scientific and Technical Information of China (English)

    SONG Ping; LI QingZhou; LI KeJie

    2009-01-01

    There exist several difficulties in the design of monolithic high-shock three-axis accelerometer, such as high g overload, transverse overload and the cross coupling in three dimensions, etc. It is necessary to optimize the sensitivity to improve the performance of the accelerometer. For the monolithic high-shock three-axis accelerometer, the complexity of the sensitivity optimization is that it should consider not only the sensitivity difference between different axes but also the elimination of cross-coupling outputs, together with the natural frequency, structural integrity and high g overload. In this paper, the optimization process for decreasing the difference of the sensitivities between different axes of a monolithic high-shock three-axis piezoresistive accelerometer with single sensing element is established. The optimization is conducted in the condition of 100000 g acceleration by two methods-the method based on the optimization module of ANSYS and the ACO (ant colony optimiza-tion) method. The comparison between un-optimized and optimized models proves the efficiency of the optimization methods. In addition, the optimization results show that the ACO method combined with the FEA (finite element analysis) is much more efficient than the method based on the optimization module of ANSYS for the structural optimization problem. And the ACO method can be widely used in the optimization problem of the sensing elements with complicated structure.

  16. Improvements in the Measurement of Physical Activity in Childhood Obesity Research; Lessons from Large Studies of Accelerometers

    Directory of Open Access Journals (Sweden)

    Andy Ness

    2008-01-01

    Full Text Available Advances in technology have improved our ability to measure physical activity in free-living humans. In the last few years, several large epidemiological studies in Europe and the United States have used accelerometers to assess physical activity in children and adolescents. The use of accelerometers to study physical activity has presented some challenges on how to summarise and interpret the data that they generate, however these studies are providing important information on the levels and patterns of physical activity among children and adolescents. Some studies have reported that few children and adolescents appear to meet the recommended minimum of 60 minutes of moderate to vigorous activity per day. Accelerometers have also allowed examination of the relationships between physical activity and health outcomes like obesity and other chronic disease risk factors such as insulin resistance, aerobic fitness, blood lipids and blood pressure. Use of accelerometers allows such relationships to be estimated with a precision that was previously impossible with self-report measures of physical activity. Such information is already advancing our understanding of the role that physical activity plays in preventing childhood obesity and cardiovascular disease risk.

  17. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    Directory of Open Access Journals (Sweden)

    Fengtian Han

    2016-08-01

    Full Text Available The differential electrostatic space accelerometer is an equivalence principle (EP experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  18. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    Science.gov (United States)

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  19. User-independent accelerometer-based gesture recognition for mobile devices

    Directory of Open Access Journals (Sweden)

    Xian WANG

    2012-12-01

    Full Text Available Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone

  20. Improving Accelerometer-Based Activity Recognition by Using Ensemble of Classifiers

    Directory of Open Access Journals (Sweden)

    Tahani Daghistani

    2016-05-01

    Full Text Available In line with the increasing use of sensors and health application, there are huge efforts on processing of collected data to extract valuable information such as accelerometer data. This study will propose activity recognition model aim to detect the activities by employing ensemble of classifiers techniques using the Wireless Sensor Data Mining (WISDM. The model will recognize six activities namely walking, jogging, upstairs, downstairs, sitting, and standing. Many experiments are conducted to determine the best classifier combination for activity recognition. An improvement is observed in the performance when the classifiers are combined than when used individually. An ensemble model is built using AdaBoost in combination with decision tree algorithm C4.5. The model effectively enhances the performance with an accuracy level of 94.04 %.