WorldWideScience

Sample records for accelerometer based instrumentation

  1. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments

    Directory of Open Access Journals (Sweden)

    Shitao Yan

    2017-11-01

    Full Text Available A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.

  2. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  3. A sapphire monolithic differential accelerometer as core sensor for gravity gradiometric geophysical instrumentation

    Directory of Open Access Journals (Sweden)

    F. Mango

    2006-06-01

    Full Text Available Gradiometric gravimetry is a survey technique widely used in geological structure investigation. This work demonstrates the feasibility of a new class of low frequency accelerometers for geodynamics studies and space applications. We present the design features of a new low noise single-axis differential accelerometer; the sensor is suitable to be used in a Gravity Gradiometer (GG system for land geophysical survey and gravity gradient measurements. A resolution of 1 Eötvös (1 Eö=10?9s?2 at one sample per second is achievable in a compact, lightweight (less than 2 kg portable instrument, operating at room temperature. The basic components of the sensor are two identical rigidly connected accelerometers separated by a 15-cm baseline vector and the useful signal is extracted as the subtraction of the two outputs, by means of an interferometric microwave readout system. The structure will be engraved in a monocrystal of sapphire by means of Computer-Numerically-Controlled (CNC ultrasonic machining: the material was chosen because of its unique mix of outstanding mechanical and dielectric properties.

  4. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  5. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection.

    Science.gov (United States)

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-12-23

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  6. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    Directory of Open Access Journals (Sweden)

    Hongyin Li

    2016-12-01

    Full Text Available The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 − 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  7. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  8. Method of Measuring the Mismatch of Parasitic Capacitance in MEMS Accelerometer Based on Regulating Electrostatic Stiffness

    Directory of Open Access Journals (Sweden)

    Xianshan Dong

    2018-03-01

    Full Text Available For the MEMS capacitive accelerometer, parasitic capacitance is a serious problem. Its mismatch will deteriorate the performance of accelerometer. Obtaining the mismatch of the parasitic capacitance precisely is helpful for improving the performance of bias and scale. Currently, the method of measuring the mismatch is limited in the direct measuring using the instrument. This traditional method has low accuracy for it would lead in extra parasitic capacitive and have other problems. This paper presents a novel method based on the mechanism of a closed-loop accelerometer. The strongly linear relationship between the output of electric force and the square of pre-load voltage is obtained through theoretical derivation and validated by experiment. Based on this relationship, the mismatch of parasitic capacitance can be obtained precisely through regulating electrostatic stiffness without other equipment. The results can be applied in the design of decreasing the mismatch and electrical adjusting for eliminating the influence of the mismatch.

  9. A digital output accelerometer using MEMS-based piezoelectric accelerometers and arrayed CMOS inverters with satellite capacitors

    International Nuclear Information System (INIS)

    Kobayashi, T; Okada, H; Maeda, R; Itoh, T; Masuda, T

    2011-01-01

    The present paper describes the development of a digital output accelerometer composed of microelectromechanical systems (MEMS)-based piezoelectric accelerometers and arrayed complementary metal–oxide–semiconductor (CMOS) inverters accompanied by capacitors. The piezoelectric accelerometers were fabricated from multilayers of Pt/Ti/PZT/Pt/Ti/SiO 2 deposited on silicon-on-insulator (SOI) wafers. The fabricated piezoelectric accelerometers were connected to arrayed CMOS inverters. Each of the CMOS inverters was accompanied by a capacitor with a different capacitance called a 'satellite capacitor'. We have confirmed that the output voltage generated from the piezoelectric accelerometers can vary the output of the CMOS inverters from a high to a low level; the state of the CMOS inverters has turned from the 'off-state' into the 'on-state' when the output voltage of the piezoelectric accelerometers is larger than the threshold voltage of the CMOS inverters. We have also confirmed that the CMOS inverters accompanied by the larger satellite capacitor have become 'on-state' at a lower acceleration. On increasing the acceleration, the number of on-state CMOS inverters has increased. Assuming that the on-state and off-state of CMOS inverters correspond to logic '0' and '1', the present digital output accelerometers have expressed the accelerations of 2.0, 3.0, 5.0, and 5.5 m s −2 as digital outputs of 111, 110, 100, and 000, respectively

  10. Triaxial Accelerometer Error Coefficients Identification with a Novel Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Yanbin Gao

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligence techniques, which is widely utilized for optimization purposes. Triaxial accelerometer error coefficients are relatively unstable with the environmental disturbances and aging of the instrument. Therefore, identifying triaxial accelerometer error coefficients accurately and being with lower costs are of great importance to improve the overall performance of triaxial accelerometer-based strapdown inertial navigation system (SINS. In this study, a novel artificial fish swarm algorithm (NAFSA that eliminated the demerits (lack of using artificial fishes’ previous experiences, lack of existing balance between exploration and exploitation, and high computational cost of AFSA is introduced at first. In NAFSA, functional behaviors and overall procedure of AFSA have been improved with some parameters variations. Second, a hybrid accelerometer error coefficients identification algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for triaxial accelerometer error coefficients identification. Furthermore, the NAFSA-identified coefficients are testified with 24-position verification experiment and triaxial accelerometer-based SINS navigation experiment. The priorities of MCS-NAFSA are compared with that of conventional calibration method and optimal AFSA. Finally, both experiments results demonstrate high efficiency of MCS-NAFSA on triaxial accelerometer error coefficients identification.

  11. A novel micro-accelerometer with adjustable sensitivity based on resonant tunnelling diodes

    International Nuclear Information System (INIS)

    Ji-Jun, Xiong; Wen-Dong, Zhang; Kai-Qun, Wang; Hai-Yang, Mao

    2009-01-01

    Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current-voltage characteristics change as a function of external stress, which is regarded as meso-piezoresistance effect of RTDs. In this paper, a novel micro-accelerometer based on AlAs/GaAs/In 0.1 Ga 0.9 As/GaAs/AlAs RTDs is designed and fabricated to be a four-beam-mass structure, and an RTD-Wheatstone bridge measurement system is established to test the basic properties of this novel accelerometer. According to the experimental results, the sensitivity of the RTD based micro-accelerometer is adjustable within a range of 3 orders when the bias voltage of the sensor changes. The largest sensitivity of this RTD based micro-accelerometer is 560.2025 mV/g which is about 10 times larger than that of silicon based micro piezoresistive accelerometer, while the smallest one is 1.49135 mV/g. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  13. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  14. Vehicle Maneuver Detection with Accelerometer-Based Classification

    Directory of Open Access Journals (Sweden)

    Javier Cervantes-Villanueva

    2016-09-01

    Full Text Available In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  15. Fibre Bragg grating based accelerometer with extended bandwidth

    International Nuclear Information System (INIS)

    Basumallick, Nandini; Biswas, Palas; Dasgupta, Kamal; Bandyopadhyay, Somnath; Chakraborty, Rajib; Chakraborty, Sushanta

    2016-01-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer. (paper)

  16. An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers

    International Nuclear Information System (INIS)

    Weiss, A; Herman, T; Plotnik, M; Brozgol, M; Giladi, N; Hausdorff, J M

    2011-01-01

    The Timed Up and Go (TUG) test is a widely used measure of mobility and fall risk among older adults that is typically scored using a stopwatch. We tested the hypothesis that a body-fixed accelerometer can enhance the ability of the TUG to identify community-living older adults with a relatively high fall risk of unknown origin. Twenty-three community-living elderly fallers (76.0 ± 3.9 years) and 18 healthy controls (68.3 ± 9.1 years) performed the TUG while wearing a 3D-accelerometer on the lower back. Acceleration-derived parameters included Sit-to-Stand and Stand-to-Sit times, amplitude range (Range), and slopes (Jerk). Average step duration, number of steps, average step length, gait speed, acceleration-median, and standard-deviation were also calculated. While the stopwatch-based TUG duration was not significantly different between the groups, acceleration-derived TUG duration was significantly higher (p = 0.007) among the fallers. Fallers generally exhibited lower Range and Jerk (p < 0.01). While TUG stopwatch duration successfully identified 63% of the subjects, an accelerometer-derived three-measure-combination correctly classified 87% of the subjects. Accelerometer-derived measures were generally not correlated with TUG duration. These findings demonstrate that fallers have difficulty with specific TUG aspects that can be quantified using an accelerometer. Without compromising simplicity of testing, an accelerometer can apparently be combined with TUG duration to provide complementary, objective measures that allow for a more complete, sensitive TUG-based fall risk assessment

  17. Seasonality in swimming and cycling: Exploring a limitation of accelerometer based studies

    Directory of Open Access Journals (Sweden)

    Flo Harrison

    2017-09-01

    Full Text Available Accelerometer-based studies of children's physical activity have reported seasonal patterns in activity levels. However, the inability of many accelerometers to detect activity while the wearer is swimming or cycling may introduce a bias to the estimation of seasonality if participation in these activities are themselves seasonally patterned. We explore seasonal patterns in children's swimming and cycling among a sample of 7–8 year olds (N = 591 participating in the Millennium Cohort Study, UK. Participating children wore an accelerometer for one week on up to five occasions over the year and their parents completed a diary recording daily minutes spent swimming and cycling. Both swimming and cycling participation showed seasonal patterns, with 2.7 (SE 0.8 more minutes swimming and 5.7 (0.7 more minutes cycling performed in summer compared to winter. Adding swimming and cycling time to accelerometer-determined MVPA increased the summer-winter difference in MVPA from 16.6 (1.6 to 24.9 min. The seasonal trend in swimming and cycling appears to follow the same pattern as accelerometer-measured MVPA. Studies relying solely on accelerometers may therefore underestimate seasonal differences in children's activity.

  18. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  19. Design and Evaluation of Accelerometer based Motional Feedback

    DEFF Research Database (Denmark)

    Schneider, Henrik; Pranjic, Emilio; Agerkvist, Finn T.

    2015-01-01

    and enable radical design changes in the loudspeaker which can lead to efficiency improvements. In combination this has motivated a revisit of the accelerometer based motional feedback technique. Experimental results on a 8 inch subwoofer show that the total harmonic distortion can be significantly reduced...

  20. Piezoelectric accelerometers with integral electronics

    CERN Document Server

    Levinzon, Felix

    2014-01-01

    This book provides an invaluable reference to Piezoelectric Accelerometers with Integral Electronics (IEPE). It describes the design and performance parameters of IEPE accelerometers and their key elements, PE transducers and FET-input amplifiers. Coverage includes recently designed, low-noise and high temperature IEPE accelerometers. Readers will benefit from the detailed noise analysis of the IEPE accelerometer, which enables estimation of its noise floor and noise limits. Other topics useful for designers of low-noise, high temperature silicon-based electronics include noise analysis of FET

  1. MEMS capacitive accelerometer-based middle ear microphone.

    Science.gov (United States)

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  2. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time

    DEFF Research Database (Denmark)

    Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana

    2017-01-01

    with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1min) and wide limits...

  3. Ultra-Sensitive Electrostatic Accelerometers and Future Fundamental Physics Missions

    Science.gov (United States)

    Touboul, Pierre; Christophe, Bruno; Rodrigues, M.; Marque, Jean-Pierre; Foulon, Bernard

    Ultra-sensitive electrostatic accelerometers have in the last decade demonstrated their unique performance and reliability in orbit leading to the success of the three Earth geodesy missions presently in operation. In the near future, space fundamental physics missions are in preparation and highlight the importance of this instrument for achieving new scientific objectives. Corner stone of General Relativity, the Equivalence Principle may be violated as predicted by attempts of Grand Unification. Verification experiment at a level of at least 10-15 is the objective of the CNES-ESA mission MICROSCOPE, thanks to a differential accelerometer configuration with concentric cylindrical test masses. To achieve the numerous severe requirements of the mission, the instrument is also used to control the attitude and the orbital motion of the space laboratory leading to a pure geodesic motion of the drag-free satellite. The performance of the accelerometer is a few tenth of femto-g, at the selected frequency of the test about 10-3 Hz, i.e several orbit frequencies. Another important experimental research in Gravity is the verification of the Einstein metric, in particular its dependence with the distance to the attractive body. The Gravity Advanced Package (GAP) is proposed for the future EJSM planetary mission, with the objective to verify this scale dependence of the gravitation law from Earth to Jupiter. This verification is performed, during the interplanetary cruise, by following precisely the satellite trajectory in the planet and Sun fields with an accurate measurement of the non-gravitational accelerations in order to evaluate the deviations to the geodesic motion. Accelerations at DC and very low frequency domain are concerned and the natural bias of the electrostatic accelerometer is thus compensated down to 5 10-11 m/s2 thanks to a specific bias calibration device. More ambitious, the dedicated mission Odyssey, proposed for Cosmic Vision, will fly in the Solar

  4. Validation of three short physical activity questionnaires with accelerometers among university students in Spain.

    Science.gov (United States)

    Rodríguez-Muñoz, Sheila; Corella, Cristina; Abarca-Sos, Alberto; Zaragoza, Javier

    2017-12-01

    Physical activity (PA) in university students has not been analyzed with specific questionnaires tailored to this population. Therefore, the purpose of this study was to analyze the validity of three PA questionnaires developed on other populations comparing with accelerometer values: counts and moderate to vigorous PA (MVPA) calculated with uniaxial and triaxial cut points. One hundred and forty-five university students (of whom, 92 women) from Spain wore an accelerometer GT3X or GTX+ to collect PA data of 7 full days. Three questionnaires, Physical Activity Questionnaire for Adults (PAQ-AD), Assessment of Physical Activity Questionnaire (APALQ), and the International Physical Activity Questionnaire Short Form (IPAQ-SF) were administrated jointly with the collection of accelerometer values. Finally, after the application of inclusion criteria, data from 95 participants (62 women) with a mean age of 21.96±2.33 years were analyzed to compare the instruments measures. The correlational analysis showed that PAQ-AD (0.44-0.56) and IPAQ-SF (0.26-0.69) questionnaires were significantly related to accelerometers scores: counts, uniaxial MVPA and triaxial MVPA. Conversely, APALQ displayed no significant relations for males with accelerometers scores for MVPA created with both cut points. PAQ-AD and IPAQ-SF questionnaires have shown adequate validity to use with Spanish university students. The use of counts to validate self-report data in order to reduce the variability display by MVPA created with different cut points is discussed. Finally, validated instruments to measure PA in university students will allow implementation of strategies for PA promotion based on reliable data.

  5. Piezoelectric Accelerometers Development

    DEFF Research Database (Denmark)

    Liu, Bin; Bang, Lisbet Fogh

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient...

  6. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  7. SOI Digital Accelerometer Based on Pull-in Time Configuration

    NARCIS (Netherlands)

    Pakula, L.S.; Rajaraman, V.; French, P.J.

    2009-01-01

    The operation principle, design, fabrication and measurement results of a quasi digital accelerometer fabricated on a thin silicon-on-insulator (SOI) substrate is presented. The accelerometer features quasi-digital output, therefore eliminating the need for analogue signal conditioning. The

  8. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  9. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    Science.gov (United States)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  10. The method of attachment influences accelerometer-based activity data in dogs.

    Science.gov (United States)

    Martin, Kyle W; Olsen, Anastasia M; Duncan, Colleen G; Duerr, Felix M

    2017-02-10

    Accelerometer-based activity monitoring is a promising new tool in veterinary medicine used to objectively assess activity levels in dogs. To date, it is unknown how device orientation, attachment method, and attachment of a leash to the collar holding an accelerometer affect canine activity data. It was our goal to evaluate whether attachment methods of accelerometers affect activity counts. Eight healthy, client-owned dogs were fitted with two identical neck collars to which two identical activity monitors were attached using six different methods of attachment. These methods of attachment evaluated the use of a protective case, positioning of the activity monitor and the tightness of attachment of the accelerometer. Lastly, the effect of leash attachment to the collar was evaluated. For trials where the effect of leash attachment to the collar was not being studied, the leash was attached to a harness. Activity data obtained from separate monitors within a given experiment were compared using Pearson correlation coefficients and across all experiments using the Kruskal-Wallis Test. There was excellent correlation and low variability between activity monitors on separate collars when the leash was attached to a harness, regardless of their relative positions. There was good correlation when activity monitors were placed on the same collar regardless of orientation. There were poor correlations between activity monitors in three experiments: when the leash was fastened to the collar that held an activity monitor, when one activity monitor was housed in the protective casing, and when one activity monitor was loosely zip-tied to the collar rather than threaded on using the provided metal loop. Follow-up, pair-wise comparisons identified the correlation associated with these three methods of attachment to be statistically different from the level of correlation when monitors were placed on separate collars. While accelerometer-based activity monitors are useful

  11. Self-noise models of five commercial strong-motion accelerometers

    Science.gov (United States)

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    Strong‐motion accelerometers provide onscale seismic recordings during moderate‐to‐large ground motions (e.g., up to tens of m/s2 peak). Such instruments have played a fundamental role in improving our understanding of earthquake source physics (Bocketal., 2011), earthquake engineering (Youdet al., 2004), and regional seismology (Zollo et al., 2010). Although strong‐motion accelerometers tend to have higher noise levels than high‐quality broadband velocity seismometers, their higher clip‐levels provide linear recordings at near‐field sites even for the largest of events where a collocated broadband sensor would no longer be able to provide onscale recordings (Clinton and Heaton, 2002).

  12. Assessing and Mapping of Road Surface Roughness based on GPS and Accelerometer Sensors on Bicycle-Mounted Smartphones

    Science.gov (United States)

    Shen, Jie; Wan, Mi; Shi, Jiafeng

    2018-01-01

    The surface roughness of roads is an essential road characteristic. Due to the employed carrying platforms (which are often cars), existing measuring methods can only be used for motorable roads. Until now, there has been no effective method for measuring the surface roughness of un-motorable roads, such as pedestrian and bicycle lanes. This hinders many applications related to pedestrians, cyclists and wheelchair users. In recognizing these research gaps, this paper proposes a method for measuring the surface roughness of pedestrian and bicycle lanes based on Global Positioning System (GPS) and accelerometer sensors on bicycle-mounted smartphones. We focus on the International Roughness Index (IRI), as it is the most widely used index for measuring road surface roughness. Specifically, we analyzed a computing model of road surface roughness, derived its parameters with GPS and accelerometers on bicycle-mounted smartphones, and proposed an algorithm to recognize potholes/humps on roads. As a proof of concept, we implemented the proposed method in a mobile application. Three experiments were designed to evaluate the proposed method. The results of the experiments show that the IRI values measured by the proposed method were strongly and positively correlated with those measured by professional instruments. Meanwhile, the proposed algorithm was able to recognize the potholes/humps that the bicycle passed. The proposed method is useful for measuring the surface roughness of roads that are not accessible for professional instruments, such as pedestrian and cycle lanes. This work enables us to further study the feasibility of crowdsourcing road surface roughness with bicycle-mounted smartphones. PMID:29562731

  13. The Development of Piezoelectric Accelerometers Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...... can be effectively used to predict the specifications of the accelerometer, especially when modification of the accelerometer is required. The FE developing technology forms the bases of fast responsiveness and flexible customized design of piezoelectric accelerometers....

  14. The Development of Piezoelectric Accelerometers Using Finite Elemen Analysis

    DEFF Research Database (Denmark)

    Liu, Bin; Yao, Q.; Kriegbaum, B.

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...... can be effectively used to predict the specifications of the accelerometer, especially when modification of the accelerometer is required. The FE developing technology forms the bases of fast responsiveness and flexible customized design of piezoelectric accelerometers...

  15. Problems in Modelling Charge Output Accelerometers

    Directory of Open Access Journals (Sweden)

    Tomczyk Krzysztof

    2016-12-01

    Full Text Available The paper presents major issues associated with the problem of modelling change output accelerometers. The presented solutions are based on the weighted least squares (WLS method using transformation of the complex frequency response of the sensors. The main assumptions of the WLS method and a mathematical model of charge output accelerometers are presented in first two sections of this paper. In the next sections applying the WLS method to estimation of the accelerometer model parameters is discussed and the associated uncertainties are determined. Finally, the results of modelling a PCB357B73 charge output accelerometer are analysed in the last section of this paper. All calculations were executed using the MathCad software program. The main stages of these calculations are presented in Appendices A−E.

  16. A review of micromachined thermal accelerometers

    Science.gov (United States)

    Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar

    2017-12-01

    A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.

  17. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-07-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those plants, against the action of earth quarks is described. The instrumentation is based on the nuclear standards and other components used, as well as their general localization is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The accelerometer is described in detail. (Author) [pt

  18. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  19. MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated Accelerometers

    Directory of Open Access Journals (Sweden)

    Elisabetta Farella

    2007-01-01

    Full Text Available Human-computer interaction (HCI and virtual reality applications pose the challenge of enabling real-time interfaces for natural interaction. Gesture recognition based on body-mounted accelerometers has been proposed as a viable solution to translate patterns of movements that are associated with user commands, thus substituting point-and-click methods or other cumbersome input devices. On the other hand, cost and power constraints make the implementation of a natural and efficient interface suitable for consumer applications a critical task. Even though several gesture recognition solutions exist, their use in HCI context has been poorly characterized. For this reason, in this paper, we consider a low-cost/low-power wearable motion tracking system based on integrated accelerometers called motion capture with accelerometers (MOCA that we evaluated for navigation in virtual spaces. Recognition is based on a geometric algorithm that enables efficient and robust detection of rotational movements. Our objective is to demonstrate that such a low-cost and a low-power implementation is suitable for HCI applications. To this purpose, we characterized the system from both a quantitative point of view and a qualitative point of view. First, we performed static and dynamic assessment of movement recognition accuracy. Second, we evaluated the effectiveness of user experience using a 3D game application as a test bed.

  20. A Self-Diagnostic System for the M6 Accelerometer

    Science.gov (United States)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  1. Hanford strong motion accelerometer network: A summary of the first months of operation

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1997-01-01

    The Hanford Seismic Monitoring Network consists of two designs of equipment and sites: seismometer sites and strong motion accelerometer (SMA) sites. Seismometer sites are designed to locate earthquakes on and near the Hanford Site and determine their magnitude and hypocenter location. The US Department of Energy (DOE) Order 5480.28, Natural Phenomena Hazards (DOE 1993) requires that facilities or sites that have structures or components in Performance Category 2 with hazardous material, and all Performance Category 3 and 4 facilities shall have instrumentation or other means to detect and record the occurrence and severity of seismic events. In order to comply with DOE Order 5480.28, the Hanford Seismic Monitoring Network seismometer sites needed to be complemented with strong motion accelerometers to record the ground motion at specific sites. The combined seismometer sites and strong motion accelerometer sites provide the Hanford Site with earthquake information to comply with DOE Order 5480.28. The data from these instruments will be used by the PHMC staff to assess the damage to facilities following a significant earthquake

  2. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiangqing Huang

    2017-10-01

    Full Text Available A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI. Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  3. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer.

    Science.gov (United States)

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Li, Zhu; Fan, Ji; Tu, Liangcheng

    2017-10-27

    A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI). Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  4. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    Science.gov (United States)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  5. Comparison of home and away-from-home physical activity using accelerometers and cellular network-based tracking devices.

    Science.gov (United States)

    Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S

    2012-08-01

    Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.

  6. Video and accelerometer-based motion analysis for automated surgical skills assessment.

    Science.gov (United States)

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Essa, Irfan

    2018-03-01

    Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data). We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment. We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment. Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.

  7. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-01-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those Plants, against the action of earthquakes is described. The instrumentation described is based on the nuclear standards in force. The minimum amount of sensors and other components used, as well as their general localization, is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The various devices used are not covered in detail, except for the accelerometer, which is the seismic instrumentation basic component. (Author) [pt

  8. Field comparison of the Kistler 303 and the Q-Flex 1100 and 120 accelerometers

    International Nuclear Information System (INIS)

    Vortman, L.J.

    1981-04-01

    Three orthogonal components of acceleration were measured by three canisters, one containing Kistler 303 accelerometers, one Q-Flex 1100 accelerometers, and the other Q-Flex 1200 accelerometers. Measurements were made of ground motion from six different nuclear weapons tests with the three canisters located at the same station. The results from nine separate gages and associated measuring equipment were processed through the same data processing system, integrated to provide velocity and displacement, and combined into vector sums of the ground motion experienced by each canister. The differences in peak vector acceleration, velocity, and displacement were too small to justify a choice of one type of instrument over another on that basis alone

  9. Unit-specific calibration of Actigraph accelerometers in a mechanical setup - is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    DEFF Research Database (Denmark)

    Moeller, Niels C; Korsholm, Lars; Kristensen, Peter L

    2008-01-01

    BACKGROUND: Potentially, unit-specific in-vitro calibration of accelerometers could increase field data quality and study power. However, reduced inter-unit variability would only be important if random instrument variability contributes considerably to the total variation in field data. Therefor...

  10. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy) and LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)]. E-mail: alessandro.bertolini@desy.de; DeSalvo, Riccardo [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Fidecaro, Francesco [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Francesconi, Mario [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Marka, Szabolcs [Department of Physics, Columbia University, 538 W. 120th St., New York, NY 10027 (United States); Sannibale, Virginio [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Simonetti, Duccio [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Takamori, Akiteru [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032 (Japan); Tariq, Hareem [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-01-15

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150Hz. The very high mechanical quality factor, Q{approx}3000 at a resonant frequency of 0.5Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1nm, integrated over the frequency band from 0.01 to 150Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10{sup -3} has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  11. Accelerometer vs. geophone response : a field case history

    Energy Technology Data Exchange (ETDEWEB)

    Hons, M.S.; Stewart, R.R.; Lawton, D.C.; Bertram, M.B. [Calgary Univ., AB (Canada); Hauer, G. [ARAM Systems Ltd, Calgary, AB (Canada)

    2008-07-01

    The geophysical community has shown interest in the use of MEMS accelerometers as a new sensor for acquiring seismic data. Accelerometers, with their flat response in acceleration, may have advantages over geophones at low frequencies as well as high frequencies due to greater sensitivity. In this study, geophones and accelerometers were considered as simple harmonic oscillators. A method was developed to calculate ground acceleration from geophone data using a frequency-domain inverse filter and an empirical scaling constant. A comparison of acceleration-domain spectra from geophones and MEMS accelerometers from an oilfield survey at Violet Grove, Alberta, Canada revealed a distinct similarity between the geophone and accelerometer data, over a band of 5-200 Hz. The accelerometer amplitudes were larger than the geophones below 5 Hz and there were some differences at very high frequencies. Significant events related to the first breaks were not observed on the accelerometer records at some stations. It was concluded that both types of sensors can record ground motion similarly. If data from the two sensor types must be merged, a scaling factor based on matching amplitude spectra should be found. The spectra should be similar once the appropriate scaling is found, particularly around the dominant frequency. Some of the differences in data were related to high frequencies, very low frequencies, and near the first breaks. 4 refs., 6 figs.

  12. Aplikasi Musik Orkestra Angklung Multi Oktaf Berbasis Android Dengan Sensor Accelerometer

    Directory of Open Access Journals (Sweden)

    Mardiyono Mardiyono

    2017-07-01

    Full Text Available The development of android application of music instrument called Angklung is explored in several features and techniques. Previous applications allow the user to play angklung by touching and shaking, learn, answer the quiz, customize the application environment such as changing the background sound, character asset, etc. There are the problems of android angklung application including the amount of tones generally 1 octave, utilizing of accelerometer sensor, and recording system. This paper describes the development of angklung android multi octaves using accelerometer sensor. The method used is waterfall involving requirements definition, system and software design, implementation and unit testing, integration and system testing and operational and maintenance. The application is tested each functionalities (black box and questionnaire. The result show that the application has successfully worked in android device (Jelly Bean, Kit Kat and Lollipop that provides the innovations features to play angklung in 18 tones, play different octave by shaking the device in different way, and record the angklung orchestra sound using android. Based on the questionnaire result, the user satisfaction rate is 82.8%.

  13. Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers

    Science.gov (United States)

    Pham, Cuong; Olivier, Patrick

    Within the context of an endeavor to provide situated support for people with cognitive impairments in the kitchen, we developed and evaluated classifiers for recognizing 11 actions involved in food preparation. Data was collected from 20 lay subjects using four specially designed kitchen utensils incorporating embedded 3-axis accelerometers. Subjects were asked to prepare a mixed salad in our laboratory-based instrumented kitchen environment. Video of each subject's food preparation activities were independently annotated by three different coders. Several classifiers were trained and tested using these features. With an overall accuracy of 82.9% our investigation demonstrated that a broad set of food preparation actions can be reliably recognized using sensors embedded in kitchen utensils.

  14. Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report

  15. Compact Circuit Preprocesses Accelerometer Output

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  16. Eutectic-based wafer-level-packaging technique for piezoresistive MEMS accelerometers and bond characterization using molecular dynamics simulations

    Science.gov (United States)

    Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.

    2018-03-01

    We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.

  17. A low-noise MEMS accelerometer for unattended ground sensor applications

    Science.gov (United States)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  18. Accelerometer-based wireless body area network to estimate intensity of therapy in post-acute rehabilitation

    Directory of Open Access Journals (Sweden)

    Hamel Mathieu

    2008-09-01

    Full Text Available Abstract Background It has been suggested that there is a dose-response relationship between the amount of therapy and functional recovery in post-acute rehabilitation care. To this day, only the total time of therapy has been investigated as a potential determinant of this dose-response relationship because of methodological and measurement challenges. The primary objective of this study was to compare time and motion measures during real life physical therapy with estimates of active time (i.e. the time during which a patient is active physically obtained with a wireless body area network (WBAN of 3D accelerometer modules positioned at the hip, wrist and ankle. The secondary objective was to assess the differences in estimates of active time when using a single accelerometer module positioned at the hip. Methods Five patients (77.4 ± 5.2 y with 4 different admission diagnoses (stroke, lower limb fracture, amputation and immobilization syndrome were recruited in a post-acute rehabilitation center and observed during their physical therapy sessions throughout their stay. Active time was recorded by a trained observer using a continuous time and motion analysis program running on a Tablet-PC. Two WBAN configurations were used: 1 three accelerometer modules located at the hip, wrist and ankle (M3 and 2 one accelerometer located at the hip (M1. Acceleration signals from the WBANs were synchronized with the observations. Estimates of active time were computed based on the temporal density of the acceleration signals. Results A total of 62 physical therapy sessions were observed. Strong associations were found between WBANs estimates of active time and time and motion measures of active time. For the combined sessions, the intraclass correlation coefficient (ICC was 0.93 (P ≤ 0.001 for M3 and 0.79 (P ≤ 0.001 for M1. The mean percentage of differences between observation measures and estimates from the WBAN of active time was -8.7% ± 2.0% using

  19. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  20. Calibration and comparison of accelerometer cut points in preschool children.

    Science.gov (United States)

    van Cauwenberghe, Eveline; Labarque, Valery; Trost, Stewart G; de Bourdeaudhuij, Ilse; Cardon, Greet

    2011-06-01

    The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. To calibrate the accelerometer, 18 preschoolers (5.8 ± 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 ± 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.

  1. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    Science.gov (United States)

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  2. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  3. New capacitive low-g triaxial accelerometer with low cross-axis sensitivity

    International Nuclear Information System (INIS)

    Hsu, Yu-Wen; Chen, Jen-Yi; Chien, Hsin-Tang; Chen, Sheah; Lin, Shih-Ting; Liao, Lu-Po

    2010-01-01

    This work describes a compact accelerometer, which integrates three spring-proof mass systems into a single structure to sense triaxial motion. It has a size of 1.3 × 1.28 mm 2 and an operating range of ±1 g. Silicon-on-glass (SOG) micromachining and deep reactive-ion etching (DRIE)-based process are adopted to fabricate this accelerometer with a high-aspect-ratio sensing structure. The accelerometer has an excellent z-axis output sensitivity of 1.434 V g −1 and a high resolution of 49 µg Hz −1/2 . The sensitivity and minimum cross-axis sensitivity of the x-axis in-plane accelerometer are 1.442 V g −1 and 0.03% and those of the y-axis accelerometer are 1.241 V g −1 and 0.21%, respectively. The new in-plane and out-of-plane accelerometer design exhibits high cross-axis sensitivity immunity, high sensitivity and high linearity suggesting that the triaxial accelerometer has the potential for use in future applications in consumer goods and the cellular phone marketþ

  4. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    Science.gov (United States)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  5. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    Directory of Open Access Journals (Sweden)

    Alessandro Sabato

    2014-09-01

    Full Text Available Recent advances in the Micro Electro-Mechanical System (MEMS technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM of civil engineering structures. To date, sensors’ low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor’s analog signals are converted to digital signals before radio-frequency (RF wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F instead of the conventional Analog to Digital Conversion (ADC. In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  6. Design and fabrication of a GaAs/Al0.4Ga0.6As micro-accelerometer based on piezoresistive effect

    International Nuclear Information System (INIS)

    Liu Guowen; Zhang Binzhen; Zhang Kairui

    2009-01-01

    In this paper, a novel piezoresistive accelerometer based on the piezoresistive effect of GaAs/Al 0.4 Ga 0.6 As thin films was designed. The piezoresistive accelerometer contains four suspended flexural beams and a central proof mass configuration. The piezoresistive effect of a piezoresistor or thin film was used to make a resistor changing the output that is proportional to applied acceleration. The GaAs-based piezoresistive accelerometer was prepared with advanced surface micromachining processes, and bulk micromachining processes. Finally, the static pressure experiments were conducted on the sensing element. The experimental results showed that the combined semiconductor heterostructures and mechanical cantilevers have a good stress sensitive characteristic. The integration of these technologies promises to bring about a revolution in the applications of the semiconductor fine-structure devices.

  7. Accelerometer and GPS Analysis of Trail Use and Associations With Physical Activity.

    Science.gov (United States)

    Tamura, Kosuke; Wilson, Jeffrey S; Puett, Robin C; Klenosky, David B; Harper, William A; Troped, Philip J

    2018-03-26

    Concurrent use of accelerometers and global positioning system (GPS) data can be used to quantify physical activity (PA) occurring on trails. This study examined associations of trail use with PA and sedentary behavior (SB) and quantified on trail PA using a combination of accelerometer and GPS data. Adults (N = 142) wore accelerometer and GPS units for 1-4 days. Trail use was defined as a minimum of 2 consecutive minutes occurring on a trail, based on GPS data. We examined associations between trail use and PA and SB. On trail minutes of light-intensity, moderate-intensity, and vigorous-intensity PA, and SB were quantified in 2 ways, using accelerometer counts only and with a combination of GPS speed and accelerometer data. Trail use was positively associated with total PA, moderate-intensity PA, and light-intensity PA (P GPS and accelerometer data for quantifying on trail activity may be more accurate than accelerometer data alone and is useful for classifying intensity of activities such as bicycling.

  8. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  9. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

    Science.gov (United States)

    Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from

  10. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

    Directory of Open Access Journals (Sweden)

    Eftim Zdravevski

    Full Text Available Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position.The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers.The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be

  11. Structural Design of a Compact in-Plane Nano-Grating Accelerometer

    International Nuclear Information System (INIS)

    Yao Bao-Yin; Zhou Zhen; Feng Li-Shuang; Wang Wen-Pu; Wang Xiao

    2012-01-01

    A combination of large mass, weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration. A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed. First, the numbers of diffraction orders are calculated. Then, structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode. Finally, we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm, crater of 451 nm by an FIB/SEM dual beam system. Based on the ANSYS simulation, a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of ±1 G, corresponding to zeroth diffraction beam optical sensitivity 1%/mG. The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication. These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers

  12. Accelerometer North Finding System Based on the Wavelet Packet De-noising Algorithm and Filtering Circuit

    Directory of Open Access Journals (Sweden)

    LU Yongle

    2014-07-01

    Full Text Available This paper demonstrates a method and system for north finding with a low-cost piezoelectricity accelerometer based on the Coriolis acceleration principle. The proposed setup is based on the choice of an accelerometer with residual noise of 35 ng•Hz-1/2. The plane of the north finding system is aligned parallel to the local level, which helps to eliminate the effect of plane error. The Coriolis acceleration caused by the earth’s rotation and the acceleration’s instantaneous velocity is much weaker than the g-sensitivity acceleration. To get a high accuracy and a shorter time for north finding system, in this paper, the Filtering Circuit and the wavelet packet de-nosing algorithm are used as the following. First, the hardware is designed as the alternating currents across by filtering circuit, so the DC will be isolated and the weak AC signal will be amplified. The DC is interfering signal generated by the earth's gravity. Then, we have used a wavelet packet to filter the signal which has been done through the filtering circuit. Finally, compare the north finding results measured by wavelet packet filtering with those measured by a low-pass filter. Wavelet filter de-noise data shows that wavelet packet filtering and wavelet filter measurement have high accuracy. Wavelet Packet filtering has stronger ability to remove burst noise and higher engineering environment adaptability than that of Wavelet filtering. Experimental results prove the effectiveness and project implementation of the accelerometer north finding method based on wavelet packet de-noising algorithm.

  13. A state-the-art report on the development of the piezoelectric accelerometer sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Yun; Oh, Suk Jin; Kim, Kyung Hoh; Kim, Sun Jae; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    A state-of-the art surveys on the application and the manufacturing technology of a piezoelectric accelerometer sensor. An accelerometer sensor is applied to the monitoring of acoustic leak, reactor coolant pump vibration and loose parts in the reactor, and the measurement of vibration and stress of large equipments such as pump, tubes, etc.. The performance of an accelerometer consisted of piezoelectric ceramic, mass, base, case and cable is depend on the characteristics of each component and the assembling method. Sensitivity, linearity and dynamic range, transverse sensitivity, phase response, transient temperature response, frequency response, base strain sensitivity, magnetic sensitivity, acoustic sensitivity, humidity effect and radiation effect must be measured and evaluated for conforming quality of the developed accelerometer sensor. 35 figs., 29 tabs., 38 refs. (Author).

  14. A state-the-art report on the development of the piezoelectric accelerometer sensor

    International Nuclear Information System (INIS)

    Park, Jee Yun; Oh, Suk Jin; Kim, Kyung Hoh; Kim, Sun Jae; Kang, Dae Kab

    1994-12-01

    A state-of-the art surveys on the application and the manufacturing technology of a piezoelectric accelerometer sensor. An accelerometer sensor is applied to the monitoring of acoustic leak, reactor coolant pump vibration and loose parts in the reactor, and the measurement of vibration and stress of large equipments such as pump, tubes, etc.. The performance of an accelerometer consisted of piezoelectric ceramic, mass, base, case and cable is depend on the characteristics of each component and the assembling method. Sensitivity, linearity and dynamic range, transverse sensitivity, phase response, transient temperature response, frequency response, base strain sensitivity, magnetic sensitivity, acoustic sensitivity, humidity effect and radiation effect must be measured and evaluated for conforming quality of the developed accelerometer sensor. 35 figs., 29 tabs., 38 refs. (Author)

  15. One testing method of dynamic linearity of an accelerometer

    Directory of Open Access Journals (Sweden)

    Lei Jing-Yu

    2015-01-01

    Full Text Available To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half –sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  16. Error Correction of Measured Unstructured Road Profiles Based on Accelerometer and Gyroscope Data

    Directory of Open Access Journals (Sweden)

    Jinhua Han

    2017-01-01

    Full Text Available This paper describes a noncontact acquisition system composed of several time synchronized laser height sensors, accelerometers, gyroscope, and so forth in order to collect the road profiles of vehicle riding on the unstructured roads. A method of correcting road profiles based on the accelerometer and gyroscope data is proposed to eliminate the adverse impacts of vehicle vibration and attitudes change. Because the power spectral density (PSD of gyro attitudes concentrates in the low frequency band, a method called frequency division is presented to divide the road profiles into two parts: high frequency part and low frequency part. The vibration error of road profiles is corrected by displacement data obtained through two times integration of measured acceleration data. After building the mathematical model between gyro attitudes and road profiles, the gyro attitudes signals are separated from low frequency road profile by the method of sliding block overlap based on correlation analysis. The accuracy and limitations of the system have been analyzed, and its validity has been verified by implementing the system on wheeled equipment for road profiles’ measuring of vehicle testing ground. The paper offers an accurate and practical approach to obtaining unstructured road profiles for road simulation test.

  17. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.

    Science.gov (United States)

    Della Mea, Vincenzo; Quattrin, Omar; Parpinel, Maria

    2017-12-01

    Obesity and physical inactivity are the most important risk factors for chronic diseases. The present study aimed at (i) developing and testing a method for classifying household activities based on a smartphone accelerometer; (ii) evaluating the influence of smartphone position; and (iii) evaluating the acceptability of wearing a smartphone for activity recognition. An Android application was developed to record accelerometer data and calculate descriptive features on 5-second time blocks, then classified with nine algorithms. Household activities were: sitting, working at the computer, walking, ironing, sweeping the floor, going down stairs with a shopping bag, walking while carrying a large box, and climbing stairs with a shopping bag. Ten volunteers carried out the activities for three times, each one with a smartphone in a different position (pocket, arm, and wrist). Users were then asked to answer a questionnaire. 1440 time blocks were collected. Three algorithms demonstrated an accuracy greater than 80% for all smartphone positions. While for some subjects the smartphone was uncomfortable, it seems that it did not really affect activity. Smartphones can be used to recognize household activities. A further development is to measure metabolic equivalent tasks starting from accelerometer data only.

  18. Design and fabrication of a GaAs/Al{sub 0.4}Ga{sub 0.6}As micro-accelerometer based on piezoresistive effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guowen; Zhang Binzhen; Zhang Kairui [National Key Laboratory for Electronic Measurement Technology, North University of China Taiyuan, Shanxi, 030051 (China)], E-mail: jacky.mucklow@iop.org

    2009-03-01

    In this paper, a novel piezoresistive accelerometer based on the piezoresistive effect of GaAs/Al{sub 0.4}Ga{sub 0.6}As thin films was designed. The piezoresistive accelerometer contains four suspended flexural beams and a central proof mass configuration. The piezoresistive effect of a piezoresistor or thin film was used to make a resistor changing the output that is proportional to applied acceleration. The GaAs-based piezoresistive accelerometer was prepared with advanced surface micromachining processes, and bulk micromachining processes. Finally, the static pressure experiments were conducted on the sensing element. The experimental results showed that the combined semiconductor heterostructures and mechanical cantilevers have a good stress sensitive characteristic. The integration of these technologies promises to bring about a revolution in the applications of the semiconductor fine-structure devices.

  19. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    Science.gov (United States)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  20. Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull-push mechanism

    Science.gov (United States)

    Jiang, Qi; Yang, Meng

    2013-11-01

    A three-axis fiber Bragg grating accelerometer, which has uniform sensitivities to three axes, has been developed for seismic application. This paper presents the design, simulation and calibration of the three-axis accelerometer. A series of experiments were performed to measure harmonic vibration and shock vibration. The precise acceleration was measured by a PZT accelerometer which provided high sensitivity. The fully described dynamic sensitivity of three-axis accelerometers represented by a 3-by-3 matrix is given. The results indicate that the accelerometer has a sensitivity of 0.068 V g-1 in a measured full scale of ±2.5 m s-2. The cross-axis sensitivity was measured as -75.5 dB, -75.5 dB and -78.2 dB, respectively.

  1. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    Science.gov (United States)

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  2. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    Science.gov (United States)

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  3. User-independent accelerometer-based gesture recognition for mobile devices

    Directory of Open Access Journals (Sweden)

    Eduardo METOLA

    2013-07-01

    Full Text Available Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone

  4. Thimble vibration analysis and monitoring on 1300 and 900 MW reactors using accelerometers and in core neutron noise

    International Nuclear Information System (INIS)

    Trenty, A.; Puyal, C.; Vincent, C.; Baeyens, R.; Messainguiral-Bruynooghe, C.; Lagarde, G.

    1988-01-01

    The axial flow along the thimbles of the in core instrumentation induces vibration and shocks against their guides in the vessel, producing wear and even leakage, either on the thimbles, or on the instrumentation tube of the fuel assemblies. In order to characterize the phenomenon and help to reduce or suppress vibration of the thimbles, two methods have been developed and applied to French and Belgian reactors. The first one consists of an analysis of the shocks perceived on the thimbles tubes by accelerometers; this analysis, based on the study of statistical distribution (amplitude, impulse rate of shocks...) has allowed to choose among the different solutions proposed to solve the problem; this choice has been confirmed by direct wear measurements made later. The second method is based on spectral and time analysis of the fluctuating signals from in core neutron chambers. The correlation appears clearly between shocks and fluctuations. An estimation of the thimble model shape in the instrumentation tube of the assembly, has been made. These two analysis methods have been widely applied during start-up of the first eight 1300 MW reactors: they have contributed to solve the problem and to increase the availability of these plants. On the 900 MW reactors, where the problem is less severe, the approach has been to study the mechanical behaviour of one new plant, Chinon B3: all in core guide tubes have been equipped with accelerometers and an on line monitoring system directly transmits to Chatou the parameters of shocks, in order to define an acoustic parameter able to characterize wear, and so, to define a new type of maintenance for the thimbles. The first results are presented. (author)

  5. Novel seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bolleter, W.; Savary, C.

    1998-01-01

    Conforming to the latest issues of the Nuclear Regulatory Commission Regulatory Guide, a novel hardware and software solution for seismic instrumentation is presented. Both instrumentation and PC-based data evaluation software for post-earthquake actions are type-tested and approved by the German TUeV. Reference installations replacing obsolete analog instrumentation were successfully completed and are presented. The instrumentation consists of highly linear, solid-state capacitive accelerometers as well as digital recorders storing the signals from the sensors in situ. These recorders are linked in a star-topology network to a central unit that permanently communicates with them via fiber-optic cable or current-loop links. The central unit is responsible for alerting and synchronizes all recorders which otherwise act autonomously. Data evaluation is handled by a PC-based software package. It includes automatic data evaluation after earthquakes (batch mode), interactive data evaluation software for detailed data analysis, and software tools for remote operation, maintenance and data storage. (author)

  6. Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism

    International Nuclear Information System (INIS)

    Jiang, Qi; Yang, Meng

    2013-01-01

    A three-axis fiber Bragg grating accelerometer, which has uniform sensitivities to three axes, has been developed for seismic application. This paper presents the design, simulation and calibration of the three-axis accelerometer. A series of experiments were performed to measure harmonic vibration and shock vibration. The precise acceleration was measured by a PZT accelerometer which provided high sensitivity. The fully described dynamic sensitivity of three-axis accelerometers represented by a 3-by-3 matrix is given. The results indicate that the accelerometer has a sensitivity of 0.068 V g −1 in a measured full scale of ±2.5 m s −2 . The cross-axis sensitivity was measured as −75.5 dB, −75.5 dB and −78.2 dB, respectively. (paper)

  7. Display-And-Alarm Circuit For Accelerometer

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  8. Instrumented measurements on radioactive waste disposal containers during experimental drop testing - 59142

    International Nuclear Information System (INIS)

    Quercetti, Thomas; Musolff, Andre; Mueller, Karsten

    2012-01-01

    In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing. (authors)

  9. Fabrication and characterization of a piezoelectric accelerometer

    DEFF Research Database (Denmark)

    Reus, Roger De; Gulløv, Jens; Scheeper, Patrick

    1999-01-01

    Zinc oxide based piezoelectric accelerometers were fabricated by bulk micromachining. A high yield was obtained in a relatively simple process sequence. For two electrode configurations a direction selectivity better than 100 was obtained for acceleration in the vertical direction and a selectivity...

  10. Assessment of Differing Definitions of Accelerometer Nonwear Time

    Science.gov (United States)

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  11. On-Orbit Gradiometry with the scientific instrument of the French Space Mission MICROSCOPE

    Science.gov (United States)

    Foulon, B.; Baghi, Q.; Panet, I.; Rodrigues, M.; Metris, G.; Touboul, P.

    2017-12-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the universality of free fall, the so-called Weak Equivalence Principle (WEP). Based on a CNES Myriade microsatellite launched on the 25th of April 2016, MICROSCOPE is a CNES-ESA-ONERA-CNRS-OCA mission, the scientific objective of which is to test of the Equivalence Principle with an extraordinary accuracy at the level of 10-15. The measurement will be obtained from the T-SAGE (Twin Space Accelerometer for Gravitational Experimentation) instrument constituted by two ultrasensitive differential accelerometers. One differential electrostatic accelerometer, labeled SU-EP, contains, at its center, two proof masses made of Titanium and Platinum and is used for the test. The twin accelerometer, labeled SU-REF, contains two Platinum proof masses and is used as a reference instrument. Separated by a 17 cm-length arm, they are embarked in a very stable and soft environment on board a satellite equipped with a drag-free control system and orbiting on a sun synchronous circular orbit at 710 km above the Earth. In addition to the WEP test, this configuration can be interesting for various applications, and one of the proposed ideas is to use MICROSCOPE data for the measurement of Earth's gravitational gradient. Considering the gradiometer formed by the inner Platinum proof-masses of the two differential accelerometers and the arm along the Y-axis of the instrument which is perpendicular to the orbital plane, possibly 3 components of the gradient can be measured: Txy, Tyy and Tzy. Preliminary studies suggest that the errors can be lower than 10mE. Taking advantage of its higher altitude with respect to GOCE, the low frequency signature of Earth's potential seen by MICROSCOPE could provide an additional observable in gradiometry to discriminate between different models describing the large scales of the mass distribution in the Earth's deep mantle. The poster will shortly present the MICROSCOPE mission

  12. A Simple Accelerometer Calibrator

    International Nuclear Information System (INIS)

    Salam, R A; Islamy, M R F; Khairurrijal; Munir, M M; Latief, H; Irsyam, M

    2016-01-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM. (paper)

  13. Dual Comb Unit High-g Accelerometer Based on CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Mehrdad Mottaghi

    2009-04-01

    Full Text Available In this paper a capacitive based high-g accelerometer with superior level of sensitivity is presented. It takes advantage of dual comb unit configuration and surface micromachining fabrication process. All aspects of mechanical design such as sensor structure, modal analysis, energy dissipations, dynamic response and stresses in moving structure as well as anchors are described. Electrical circuit based on CMOS technology and its output signal is presented. Fabrication process and packaging are also discussed. The proposed sensor can endure impact loads up to 120,000 g (g = 9.81 m.s-2 and achieves 16.75 µV.g-1 sensitivity with 5 V bridge excitation voltage. Main resonant frequency of structure is found to be 42.4 kHz. Intended applications of suggested sensor include military and aerospace industries as well as field of impact engineering.

  14. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  15. Emotion recognition based on customized smart bracelet with built-in accelerometer

    Directory of Open Access Journals (Sweden)

    Zhan Zhang

    2016-07-01

    Full Text Available Background: Recently, emotion recognition has become a hot topic in human-computer interaction. If computers could understand human emotions, they could interact better with their users. This paper proposes a novel method to recognize human emotions (neutral, happy, and angry using a smart bracelet with built-in accelerometer. Methods: In this study, a total of 123 participants were instructed to wear a customized smart bracelet with built-in accelerometer that can track and record their movements. Firstly, participants walked two minutes as normal, which served as walking behaviors in a neutral emotion condition. Participants then watched emotional film clips to elicit emotions (happy and angry. The time interval between watching two clips was more than four hours. After watching film clips, they walked for one minute, which served as walking behaviors in a happy or angry emotion condition. We collected raw data from the bracelet and extracted a few features from raw data. Based on these features, we built classification models for classifying three types of emotions (neutral, happy, and angry. Results and Discussion: For two-category classification, the classification accuracy can reach 91.3% (neutral vs. angry, 88.5% (neutral vs. happy, and 88.5% (happy vs. angry, respectively; while, for the differentiation among three types of emotions (neutral, happy, and angry, the accuracy can reach 81.2%. Conclusions: Using wearable devices, we found it is possible to recognize human emotions (neutral, happy, and angry with fair accuracy. Results of this study may be useful to improve the performance of human-computer interaction.

  16. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features.

    Science.gov (United States)

    Drover, Dylan; Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-06-07

    Faller classification in elderly populations can facilitate preventative care before a fall occurs. A novel wearable-sensor based faller classification method for the elderly was developed using accelerometer-based features from straight walking and turns. Seventy-six older individuals (74.15 ± 7.0 years), categorized as prospective fallers and non-fallers, completed a six-minute walk test with accelerometers attached to their lower legs and pelvis. After segmenting straight and turn sections, cross validation tests were conducted on straight and turn walking features to assess classification performance. The best "classifier model-feature selector" combination used turn data, random forest classifier, and select-5-best feature selector (73.4% accuracy, 60.5% sensitivity, 82.0% specificity, and 0.44 Matthew's Correlation Coefficient (MCC)). Using only the most frequently occurring features, a feature subset (minimum of anterior-posterior ratio of even/odd harmonics for right shank, standard deviation (SD) of anterior left shank acceleration SD, SD of mean anterior left shank acceleration, maximum of medial-lateral first quartile of Fourier transform (FQFFT) for lower back, maximum of anterior-posterior FQFFT for lower back) achieved better classification results, with 77.3% accuracy, 66.1% sensitivity, 84.7% specificity, and 0.52 MCC score. All classification performance metrics improved when turn data was used for faller classification, compared to straight walking data. Combining turn and straight walking features decreased performance metrics compared to turn features for similar classifier model-feature selector combinations.

  17. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  18. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  19. Quality control methods in accelerometer data processing: defining minimum wear time.

    Directory of Open Access Journals (Sweden)

    Carly Rich

    Full Text Available BACKGROUND: When using accelerometers to measure physical activity, researchers need to determine whether subjects have worn their device for a sufficient period to be included in analyses. We propose a minimum wear criterion using population-based accelerometer data, and explore the influence of gender and the purposeful inclusion of children with weekend data on reliability. METHODS: Accelerometer data obtained during the age seven sweep of the UK Millennium Cohort Study were analysed. Children were asked to wear an ActiGraph GT1M accelerometer for seven days. Reliability coefficients(r of mean daily counts/minute were calculated using the Spearman-Brown formula based on the intraclass correlation coefficient. An r of 1.0 indicates that all the variation is between- rather than within-children and that measurement is 100% reliable. An r of 0.8 is often regarded as acceptable reliability. Analyses were repeated on data from children who met different minimum daily wear times (one to 10 hours and wear days (one to seven days. Analyses were conducted for all children, separately for boys and girls, and separately for children with and without weekend data. RESULTS: At least one hour of wear time data was obtained from 7,704 singletons. Reliability increased as the minimum number of days and the daily wear time increased. A high reliability (r = 0.86 and sample size (n = 6,528 was achieved when children with ≥ two days lasting ≥10 hours/day were included in analyses. Reliability coefficients were similar for both genders. Purposeful sampling of children with weekend data resulted in comparable reliabilities to those calculated independent of weekend wear. CONCLUSION: Quality control procedures should be undertaken before analysing accelerometer data in large-scale studies. Using data from children with ≥ two days lasting ≥10 hours/day should provide reliable estimates of physical activity. It's unnecessary to include only children

  20. Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Chih-Yung Huang

    2016-07-01

    Full Text Available With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT type; however, integrating it into intelligent modules is excessively expensive and difficult. Therefore, the micro electro mechanical systems (MEMS accelerometer is an alternative with the advantages of lower price and superior integration. In the present study, we integrated two MEMS accelerometer chips into a low-pass filter and housing to develop a low-cost dual-axis accelerometer with a bandwidth of 5 kHz and a full scale range of ±50 g for measuring machine tool vibration. In addition, a platform for measuring the linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer by using the back-to-back calibration method was also developed. Finally, cutting experiments with steady and chatter cutting were performed to verify the results of comparing the MEMS accelerometer with the PZT accelerometer in the time and frequency domains. The results demonstrated that the dual-axis MEMS accelerometer is suitable for monitoring the vibration of machine tools at low cost.

  1. Screening of inorganic gases released from firework-rockets by a gas chromatography/whistle-accelerometer method.

    Science.gov (United States)

    Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang

    2013-08-30

    The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    Directory of Open Access Journals (Sweden)

    Hyun Chan Kim

    2016-09-01

    Full Text Available This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO nanowire (NW grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  3. Design and measurement of a piezoresistive triaxial accelerometer based on MEMS technology

    International Nuclear Information System (INIS)

    Du Chunhui; He Changde; Yu Jiaqi; Ge Xiaoyang; Zhang Wendong; Zhang Yongping

    2012-01-01

    With the springing up of the MEMS industry, research on accelerometers is focused on miniaturization, integration, high reliability, and high resolution, and shares extensive application prospects in military and civil fields. Comparing with the traditional single cantilever beam structure or 'cantilever-mass' structure, the proposed structure of '8-beams/mass' with its varistor completely symmetric distribution in micro-silicon piezoresistive triaxial accelerometer in this paper has a higher axial sensitivity and smaller cross-axis sensitivity. Adopting ANSYS, the process of structural analysis and the manufacturing flow of sensing unit are showed. In dynamic testing conditions, it can be concluded that the axial sensitivity of x, y, and z are S x = 48 μV/g, S y = 54 μV/g and S z = 217 μV/g respectively, and the nonlinearities are 0.4%, 0.6% and 0.4%.

  4. A Simple Instrumentation System for Large Structure Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Didik R. Santoso

    2010-12-01

    Full Text Available Traditional instrumentation systems used for monitoring vibration of large-scale infrastructure building such as bridges, railway, and others structural building, generally have a complex design. Makes it simple would be very useful both in terms of low-cost and easy maintenance. This paper describes how to develop the instrumentation system. The system is built based on distributed network, with field bus topology, using single-master multi-slave architecture. Master is a control unit, built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave was built by integrating a 3-axis vibration sensor with a microcontroller based data acquisition system. Vibration sensor is designed using the main components of a MEMS accelerometer. While the software is developed for two functions: as a control system hardware and data processing. To verify performance of the developed instrumentation system, several laboratory tests have been performed. The result shows that the system has good performance.

  5. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  6. Using tri-axial accelerometers to identify wild polar bear behaviors

    Science.gov (United States)

    Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.

    2017-01-01

    Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.

  7. Different grades MEMS accelerometers error characteristics

    Science.gov (United States)

    Pachwicewicz, M.; Weremczuk, J.

    2017-08-01

    The paper presents calibration effects of two different MEMS accelerometers of different price and quality grades and discusses different accelerometers errors types. The calibration for error determining is provided by reference centrifugal measurements. The design and measurement errors of the centrifuge are discussed as well. It is shown that error characteristics of the sensors are very different and it is not possible to use simple calibration methods presented in the literature in both cases.

  8. Identification of Capacitive MEMS Accelerometer Structure Parameters for Human Body Dynamics Measurements

    Directory of Open Access Journals (Sweden)

    Vincas Benevicius

    2013-08-01

    Full Text Available Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model’s response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.

  9. Prediction of Gap Asymmetry in Differential Micro Accelerometers

    Directory of Open Access Journals (Sweden)

    Xiaoping He

    2012-05-01

    Full Text Available Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10−2, and that the absolute error is about ±0.2 µm under a 4 µm gap.

  10. Smartphone MEMS accelerometers and earthquake early warning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  11. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    International Nuclear Information System (INIS)

    Zhang Juanting; He Changde; Zhang Hui; Li Yuping; Du Chunhui; Zhang Wendong; Zhang Yongping

    2014-01-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole. (semiconductor devices)

  12. Superconducting accelerometer using niobium-on-sapphire rf resonator

    International Nuclear Information System (INIS)

    Blair, D.G.

    1979-01-01

    An accelerometer is described which uses a rf niobium-on-sapphire resonator as its sensor element. The accelerometer uses a magnetically levitated spool as a test mass and the spool modulates the inductance of the resonator; its position is servo controlled to maintain the resonator at the external rf excitation frequency. The accelerometer has high sensitivity over the full audio frequency range, but is optimized for frequencies between 100 Hz and 1 kHz, where the calculated displacement sensitivity approaches 10 -15 cm for a 1 Hz measurement bandwidth. The system noise sources are analyzed and possible improvements are discussed

  13. Relative performance of several inexpensive accelerometers

    Science.gov (United States)

    Evans, John R.; Rogers, John A.

    1995-01-01

    We examined the performance of several low-cost accelerometers for highly cost-driven applications in recording earthquake strong motion. We anticipate applications for such sensors in providing the lifeline and emergency-response communities with an immediate, comprehensive picture of the extent and characteristics of likely damage. We also foresee their use as 'filler' instruments sited between research-grade instruments to provide spatially detailed and near-field records of large earthquakes (on the order of 1000 stations at 600-m intervals in San Fernando Valley, population 1.2 million, for example). The latter applications would provide greatly improved attenuation relationships for building codes and design, the first examples of mainshock information (that is, potentially nonlinear regime) for microzonation, and a suite of records for structural engineers. We also foresee possible applications in monitoring structural inter-story drift during earthquakes, possibly leading to local and remote alarm functions as well as design criteria. This effort appears to be the first of its type at the USGS. It is spurred by rapid advances in sensor technology and the recognition of potential non-classical applications. In this report, we estimate sensor noise spectra, relative transfer functions and cross-axis sensitivity of six inexpensive sensors. We tested three micromachined ('silicon-chip') sensors in addition to classical force-balance and piezoelectric examples. This sample of devices is meant to be representative, not comprehensive. Sensor noise spectra were estimated by recording system output with the sensor mounted on a pneumatically supported 545-kg optical-bench isolation table. This isolation table appears to limit ground motion to below our system noise level. These noise estimates include noise introduced by signal-conditioning circuitry, the analog-to-digital converter (ADC), and noise induced in connecting wiring by ambient electromagnetic fields in

  14. Sistem Gesture Accelerometer dengan Metode Fast Dynamic Time Warping (FastDTW

    Directory of Open Access Journals (Sweden)

    Sam Farisa Chaerul Haviana

    2016-01-01

    Full Text Available In the modern environment, the interaction between humans and computers require a more natural form of interaction. Therefore, it is important to be able to build a system that can meet these demands, such as by building a hand gesture recognition system or gesture to create a more natural form of interaction. This study aims to design a smartphone’s accelerometer gesture system as human computer interaction interfaces using FastDTW (Fast Dynamic Time Warping.The result of this study is form of gesture interaction which implemented in a system that can make the process of recognition of the human hand movements based on a smartphone accelerometer which generates a command to run the media player application functions as a case study. FastDTW as the development of Dynamic Time Warping method (DTW is able to compute faster than DTW and have an accuracy approaching DTW. From the test results, FastDTW show a fairly high degree of accuracy reached 86% and showed a better computing speed compared to DTW   Keywords: Human and Computer Interaction, Accelerometer-based gesture, FastDTW, Media player application function

  15. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    Science.gov (United States)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  16. A Molecular Electronic Transducer based Low-Frequency Accelerometer with Electrolyte Droplet Sensing Body

    Science.gov (United States)

    Liang, Mengbing

    "Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I3-- + 2e-- ↔ 3I --, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 microg/sqrt(Hz) at 20 Hz.

  17. A mechanical model of the smartphone's accelerometer

    OpenAIRE

    Gallitto, Aurelio Agliolo; Lupo, Lucia

    2015-01-01

    To increase the attention of students, several physics experiments can be performed at school, as well at home, by using the smartphone as laboratory tools. In the paper we describe a mechanical model of the smartphone's accelerometer, which can be used in classroom to allow students to better understand the principle of the accelerometer even by students at the beginning of the study in physics.

  18. Accelerometer-determined physical activity level among government employees in Penang, Malaysia.

    Science.gov (United States)

    Hazizi, A S; Aina, Mardiah B; Mohd, Nasir M T; Zaitun, Y; Hamid, Jan J M; Tabata, I

    2012-04-01

    A cross-sectional study was carried out to investigate accelerometer-determined physical activity level of 233 Malay government employees (104 men, 129 women) working in the Federal Government Building Penang, Malaysia. Body weight, height, waist and hip circumference, body fat percentage and blood pressure were measured for each respondent. All the respondents were asked to wear an accelerometer for 3 days. Body mass index (BMI) and waist-hip ratio (WHR) were calculated using a standard formulas. Fasting blood sample was obtained to determine the lipid profile and glucose levels of the respondents. Based on the accelerometer-determined physical activity level, almost 65% of the respondents were categorised as sedentary. Approximately 50.2% of the respondents were overweight or obese. There were negative but significant relationships between body mass index (BMI) (r = -0.353, p obesity in this study. The high prevalence of physical inactivity and obesity found among respondents of this study indicate a need for implementing intervention programmes among this population.

  19. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  20. ACCELEROMETERS IN FLOW FIELDS: A STRUCTURAL ANALYSIS OF THE CHOPPED DUMMY INPILE TUBE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. K.; Marcum, W. R.; Latimer, G. D.; Weiss, A.; Jones, W. F.; Phillips, A. M.; Woolstenhulme, N.; Holdaway, K.; Campbell, J.

    2016-06-01

    Four tests characterizing the structural response of the Chopped-Dummy In-Pile tube (CDIPT) experiment design were measured in the Hydro-Mechanical Fuel Test Facility (HMFTF). Four different test configurations were tried. These configurations tested the pressure drop and flow impact of various plate configurations and flow control orifices to be used later at different reactor power levels. Accelerometers were placed on the test vehicle and flow simulation housing. A total of five accelerometers were used with one on the top and bottom of the flow simulator and vehicle, and one on the outside of the flow simulator. Data were collected at a series of flow rates for 5 seconds each at an acquisition rate of 2 kHz for a Nyquist frequency of 1 kHz. The data were then analyzed using a Fast Fourier Transform (FFT) algorithm. The results show very coherent vibrations of the CDIPT experiment on the order of 50 Hz in frequency and 0.01 m/s2 in magnitude. The coherent vibrations, although small in magnitude pose a potential design problem if the frequencies coincide with the natural frequency of the fueled plates or test vehicle. The accelerometer data was integrated and combined to create a 3D trace of the experiment during the test. The merits of this data as well as further anomalies and artifacts are also discussed as well as their relation to the instrumentation and experiment design.

  1. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... prototype. Reasonable agreement between the experimental results of the physical prototype and the simulation results is achieved. The design becomes more efficient. In addition, Type 4511 has a built in DeltaTronâ charge amplifier with ID and complies with IEEE-P1451.4 standard, which is a smart transducer...

  2. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  3. Goal conflict and goal facilitation as predictors of daily accelerometer-assessed physical activity.

    Science.gov (United States)

    Presseau, Justin; Tait, Richard I; Johnston, Derek W; Francis, Jill J; Sniehotta, Falko F

    2013-12-01

    To test whether perceptions of conflicting and facilitating personal goals, and actual daily time spent in their pursuit, predict accelerometer-assessed physical activity (PA). A prospective multilevel design with a daily accelerometer-based assessment of PA over 1 week was used (N = 106). Participants' personal goals were elicited using personal projects analysis. Participants then rated their personal goals in terms of how they were perceived to facilitate and conflict with their regular PA. Items assessing PA-specific intention and perceived behavioral control (PBC) were also embedded within the baseline measures. For the subsequent 7 consecutive days, participants completed a daily diary based on the day reconstruction method, indicating the time spent in daily episodes involving each of their personal goals, and wore an RT3 tri-axial accelerometer. The main outcome was accelerometer-assessed daily time spent in moderate to vigorous physical activity (MVPA). Random intercept multilevel models indicated that perceived goal facilitation, but not perceived goal conflict, predicted MVPA over and above intention and PBC. Daily time pursuing conflicting goals negatively predicted MVPA when subsequently added to the model and in so doing, attenuated the association between perceived goal facilitation and MVPA. Perceived goal facilitation predicts objectively measured PA over and above intention and PBC, but daily time spent in pursuit of conflicting personal goals provides a better account of how alternative goals relate to engaging in regular PA.

  4. Attitude angular measurement system based on MEMS accelerometer

    Science.gov (United States)

    Luo, Lei

    2014-09-01

    For the purpose of monitoring the attitude of aircraft, an angular measurement system using a MEMS heat convection accelerometer is presented in this study. A double layers conditioning circuit that center around the single chip processor is designed and built. Professional display software with the RS232 standard is used to communicate between the sensor and the computer. Calibration experiments were carried out to characterize the measuring system with the range of - 90°to +90°. The curves keep good linearity with the practical angle. The maximum deviation occurs at the 90°where the value is 2.8°.The maximum error is 1.6% and the repeatability is measured to be 2.1%. Experiments proved that the developed measurement system is capable of measuring attitude angle.

  5. Mechanical design optimization of a single-axis MOEMS accelerometer based on a grating interferometry cavity for ultrahigh sensitivity

    Science.gov (United States)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang

    2016-08-01

    The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.

  6. Curve aligning approach for gait authentication based on a wearable accelerometer

    International Nuclear Information System (INIS)

    Sun, Hu; Yuao, Tao

    2012-01-01

    Gait authentication based on a wearable accelerometer is a novel biometric which can be used for identity identification, medical rehabilitation and early detection of neurological disorders. The method for matching gait patterns tells heavily on authentication performances. In this paper, curve aligning is introduced as a new method for matching gait patterns and it is compared with correlation and dynamic time warping (DTW). A support vector machine (SVM) is proposed to fuse pattern-matching methods in a decision level. Accelerations collected from ankles of 22 walking subjects are processed for authentications in our experiments. The fusion of curve aligning with backward–forward accelerations and DTW with vertical accelerations promotes authentication performances substantially and consistently. This fusion algorithm is tested repeatedly. Its mean and standard deviation of equal error rates are 0.794% and 0.696%, respectively, whereas among all presented non-fusion algorithms, the best one shows an EER of 3.03%. (paper)

  7. Physical activity derived from questionnaires and wrist-worn accelerometers: comparability and the role of demographic, lifestyle, and health factors among a population-based sample of older adults

    Directory of Open Access Journals (Sweden)

    Koolhaas CM

    2017-12-01

    Full Text Available Chantal M Koolhaas,1 Frank JA van Rooij,1 Magda Cepeda,1 Henning Tiemeier,1–3 Oscar H Franco,1 Josje D Schoufour1 1Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; 2Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands; 3Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands Background: Agreement between questionnaires and accelerometers to measure physical activity (PA differs between studies and might be related to demographic, lifestyle, and health characteristics, including disability and depressive symptoms.Methods: We included 1,410 individuals aged 51–94 years from the population-based Rotterdam Study. Participants completed the LASA Physical Activity Questionnaire and wore a wrist-worn accelerometer on the nondominant wrist for 1 week thereafter. We compared the Spearman correlation and disagreement (level and direction for total PA across levels of demographic, lifestyle, and health variables. The level of disagreement was defined as the absolute difference between questionnaire- and accelerometer-derived PA, whereas the direction of disagreement was defined as questionnaire PA minus accelerometer PA. We used linear regression analyses with the level and direction of disagreement as outcome, including all demographic, lifestyle, and health variables in the model.Results: We observed a Spearman correlation of 0.30 between questionnaire- and accelerometer-derived PA in the total population. The level of disagreement (ie, absolute difference was 941.9 (standard deviation [SD] 747.0 minutes/week, and the PA reported by questionnaire was on average 529.4 (SD 1,079.5 minutes/week lower than PA obtained by the accelerometer. The level of disagreement decreased with higher educational levels. Additionally, participants with obesity, higher disability scores, and more depressive symptoms underestimated their self-reported PA more than their

  8. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    Science.gov (United States)

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh

  9. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    Science.gov (United States)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  10. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    International Nuclear Information System (INIS)

    Rogers, J E; Ramadoss, R; Ozmun, P M; Dean, R N

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52

  11. Accelerometer and strain gage evaluation

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Madsen, M.M.; Uncapher, W.L.; Stenberg, D.R.; Bronowski, D.R.

    1991-01-01

    This document describes the method developed by Sandia National Laboratories (SNL) to evaluate transducer used in the design certification testing of nuclear material shipping packages. This testing project was performed by SNL for the Office of Civilian Radioactive Waste Management (OCRWM). This evaluation is based on the results of tests conducted to measure ruggedness, failure frequency, repeatability, and manufacturers' calibration data under both field and laboratory conditions. The results of these tests are provided and discussed. The transducer were selected for testing by surveying cask contractors and testing facilities. Important insights relating to operational characteristics of accelerometer types were gained during field testing. 11 refs., 105 figs., 16 tabs

  12. Sensitivity improvement techniques for micromechanical vibrating accelerometers

    Directory of Open Access Journals (Sweden)

    Vtorushin Sergey

    2016-01-01

    Full Text Available The paper presents the problems of detecting a desired signal generated by micromechanical vibrating accelerometer. Three detection methods, namely frequency, amplitude and phase are considered in this paper. These methods are used in micromechanical vibrating accelerometers that incorporate a force sensitive element which transforms measured acceleration into the output signal. Investigations are carried out using the ANSYS finite element program and MATLAB/Simulink support package. Investigation results include the comparative analysis of the output signal characteristics obtained by the different detection methods.

  13. Instrument Records And Plays Back Acceleration Signals

    Science.gov (United States)

    Bozeman, Richard J.

    1994-01-01

    Small, battery-powered, hand-held instrument feeds power to accelerometer and records time-varying component of output for 15 seconds in analog form. No power needed to maintain content of memory; memory chip removed after recording and stored indefinitely. Recorded signal plays back at any time up to several years later. Principal advantages: compactness, portability, and low cost.

  14. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    International Nuclear Information System (INIS)

    Seena, V; Hari, K; Prajakta, S; Ramgopal Rao, V; Pratap, Rudra

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µ m and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g −1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g −1 and 82 ppm of Δ R / R per 1 g of acceleration. (paper)

  15. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems

    Directory of Open Access Journals (Sweden)

    Jing Tian

    2016-03-01

    Full Text Available In a charge-coupled device (CCD-based fast steering mirror (FSM tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM to realize the stabilization of the line-of-sight (LOS of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system.

  16. Cascadia, an ultracompact seismic instrument with over 200dB of dynamic range

    Science.gov (United States)

    Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce

    2017-04-01

    Integration of geophysical instrumentation is clearly a way to lower overall station cost, make installations less complex, reduce installation time, increase station utility and value to a wider group of researchers, data miners and monitoring groups. Initiatives to expand early earthquake warning networks and observatories can use these savings for increasing station density. Integration of mature instrument systems such as broadband sensors and accelerometers used in strong motion studies has to be done with care to preserve the low noise and low frequency performance while providing over 200dB of dynamic range. Understanding the instrument complexities and deployment challenges allows the engineering teams to optimize the packaging to make installation and servicing cost effective, simple, routine and ultimately more reliable. We discuss early results from testing both in the lab and in the field of a newly released instrument called the Cascadia that integrates a broadband seismometer with a class A (USGS rating) accelerometer in a small stainless steel sonde suited for dense arrays in either ad hoc direct bury field deployments or in observatory quality shallow boreholes.

  17. PENGENDALIAN PID PADA ROBOT MIROSOT UPN “VETERAN” YOGYAKARTA BERBASIS SENSOR GYROSCOPE DAN ACCELEROMETER

    Directory of Open Access Journals (Sweden)

    Awang Hendrianto Pratomo

    2015-07-01

    Full Text Available MiRoSoT Robot movement is influenced by the speed control from right and left wheels. Wheels speed control on MiroSot robot is determined by parameter PID (Proportional Integral and Derevative value. PID value determined by robot position and angle. MiroSot robot movement is still not stable and can not move in accordance with the instruction have been made. Instability of the robot movement in the game is affected by friction wheels against the ground, friction gear and robot load. In this study, implemented a gyroscope and accelerometer sensors to stabilize robot movement. Based on both sensors are controlled by using a microcontroller ATmega64. Speed control system based on gyroscope and accelerometer sensor is obtained that the robot is able to face a certain angle more precisely. The accelerometer sensor is used as a parameter for the braking system, so the robot is able to move more stable without the loss of power from the motor during a reduction speed from the strategy control.

  18. Using the GOCE star trackers for validating the calibration of its accelerometers

    Science.gov (United States)

    Visser, P. N. A. M.

    2017-12-01

    A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.

  19. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers

    Science.gov (United States)

    Mannini, Andrea; Sabatini, Angelo Maria

    2010-01-01

    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series. PMID:22205862

  20. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill

    2018-01-17

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.

  1. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill

    2018-01-01

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102

  2. Simple force balance accelerometer/seismometer based on a tuning fork displacement sensor

    International Nuclear Information System (INIS)

    Stuart-Watson, D.; Tapson, J.

    2004-01-01

    Seismometers and microelectromechanical system accelerometers use the force-balance principle to obtain measurements. In these instruments the displacement of a mass object by an unknown force is sensed using a very high-resolution displacement sensor. The position of the object is then stabilized by applying an equal and opposite force to it. The magnitude of the stabilizing force is easily measured, and is assumed to be equivalent to the unknown force. These systems are critically dependent on the displacement sensor. In this article we use a resonant quartz tuning fork as the sensor. The tuning fork is operated so that its oscillation is lightly damped by the proximity of the movable mass object. Changes in the position of the mass object cause changes in the phase of the fork's resonance; this is used as the feedback variable in controlling the mass position. We have developed an acceleration sensor using this principle. The mass object is a piezoelectric bimorph diaphragm which is anchored around its perimeter, allowing direct electronic control of the displacement of its center. The tuning fork is brought very close to the diaphragm center, and is connected into a self-oscillating feedback circuit which has phase and amplitude as outputs. The diaphragm position is adjusted by a feedback loop, using phase as the feedback variable, to keep it in a constant position with respect to the tuning fork. The measured noise for this sensor is approximately 10.0 mg in a bandwidth of 100 Hz, which is substantially better than commercial systems of equivalent cost and size

  3. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch

    NARCIS (Netherlands)

    Kosse, Nienke M.; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J. C.

    2015-01-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study

  4. An Accelerometer-Based Sensor System for Real-Time Bridge Scour Monitoring

    Directory of Open Access Journals (Sweden)

    Yi-Jie Hsieh

    2015-11-01

    Full Text Available With the fast global climate change, many bridge structures are facing the nature disasters such as earthquakes and floods. The damage of bridges can cause the severe cost of human life and property. The heavy rain brought by the typhoon in July and August in Taiwan causes the bridge scour and makes the damage or collapse for bridges. Since scour is one of the major causes for bridge failure, how to monitor the bridge scour becomes an important task in Taiwan. This paper presents a real-time bridge scour monitoring system based on accelerometer sensors. The presented sensor network consists of a gateway node and under-water sensor nodes with the wired RS-485 communication protocol. The proposed master-slave architecture of the bridge scour monitoring system owns the scalability and flexibility and is setup in the field currently. The experimental results in the field show the presented sensor system can detect the bridge scour effectively with our proposed scour detection algorithm in real time.

  5. The use of accelerometers in the pavement performance monitoring and analysis

    International Nuclear Information System (INIS)

    Ryynaenen, T; Belt, J; Pellinen, T

    2010-01-01

    This study investigated the use of sensor technology to enhance the management of highway infrastructure. With the help of monitoring data, it is possible to assess the current analytical pavement analysis method, which is based on multi-layered elastic analysis, and, thus enhance the pavement design practices in use. Pavement response was measured using different sensors, installed at various depths. Most promising sensors for the continuous monitoring purposes were the accelerometers. The drawback of these sensors is that the measured quantity is acceleration, which must be converted to the deflection via mathematical integration. In this paper some issues related to the manipulation of accelerometer data is presented and discussed, in addition of the discussion of the calculated and measured pavement response.

  6. 49 CFR 572.21 - Test conditions and instrumentation.

    Science.gov (United States)

    2010-10-01

    ...-Year-Old Child § 572.21 Test conditions and instrumentation. (a)(1) The test probe used for head and... surface of the lumbar spine, and 0.3 inches dorsal to the accelerometer mounting plate surface. (1) The.... For thorax and lumbar spine tests, the seating surface is without the back support as shown in Figures...

  7. Accelerometer-based on-body sensor localization for health and medical monitoring applications

    Science.gov (United States)

    Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid

    2011-01-01

    In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840

  8. Improvements of the Swarm Accelerometer Data Processing

    DEFF Research Database (Denmark)

    Siemes, Christian; Grunwaldt, Ludwig; Peresty, Radek

    , the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release.In this presentation, we describe the new, improved four-stage processing that is required for transforming the disturbed...... acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are manually removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non...... in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set....

  9. Optimization of an Accelerometer and Gyroscope-Based Fall Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Quoc T. Huynh

    2015-01-01

    Full Text Available Falling is a common and significant cause of injury in elderly adults (>65 yrs old, often leading to disability and death. In the USA, one in three of the elderly suffers from fall injuries annually. This study’s purpose is to develop, optimize, and assess the efficacy of a falls detection algorithm based upon a wireless, wearable sensor system (WSS comprised of a 3-axis accelerometer and gyroscope. For this study, the WSS is placed at the chest center to collect real-time motion data of various simulated daily activities (i.e., walking, running, stepping, and falling. Tests were conducted on 36 human subjects with a total of 702 different movements collected in a laboratory setting. Half of the dataset was used for development of the fall detection algorithm including investigations of critical sensor thresholds and the remaining dataset was used for assessment of algorithm sensitivity and specificity. Experimental results show that the algorithm detects falls compared to other daily movements with a sensitivity and specificity of 96.3% and 96.2%, respectively. The addition of gyroscope information enhances sensitivity dramatically from results in the literature as angular velocity changes provide further delineation of a fall event from other activities that may also experience high acceleration peaks.

  10. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    Directory of Open Access Journals (Sweden)

    Maria Feng

    2015-01-01

    Full Text Available Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  11. Citizen sensors for SHM: use of accelerometer data from smartphones.

    Science.gov (United States)

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-29

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  12. Improving BDS Autonomous Orbit Determination Performance Using Onboard Accelerometers

    Directory of Open Access Journals (Sweden)

    QIAO Jing

    2017-05-01

    Full Text Available Autonomous orbit determination is a crucial step for GNSS development to improve GNSS vulnerability, integrity, reliability and robustness. The newly launched BeiDou (BD satellites are capable of conducting satellite to satellite tracking (SST, which can be used for autonomous orbit determination. However, using SST data only, the BD satellite system (BDS will have whole constellation rotation in the absence of absolute constraints from ground or other celestial body over time, due to various force perturbations. The perturbations can be categorized into conservative forces and non-conservative forces. The conservative forces, such as the Earth non-spherical perturbations, tidal perturbation, the solar, lunar and other third-body perturbations, can be precisely modeled with latest force models. The non-conservative forces (i.e. Solar Radiation Pressure (SRP, on the other hand, are difficult to be modeled precisely, which are the main factors affecting satellite orbit determination accuracy. In recent years, accelerometers onboard satellites have been used to directly measure the non-conservative forces for gravity recovery and atmosphere study, such as GRACE, CHAMP, and GOCE missions. This study investigates the feasibility to use accelerometers onboard BD satellites to improve BD autonomous orbit determination accuracy and service span. Using simulated BD orbit and SST data, together with the error models of existing space-borne accelerometers, the orbit determination accuracy for BD constellation is evaluated using either SST data only or SST data with accelerometers. An empirical SRP model is used to extract non-conservative forces. The simulation results show that the orbit determination accuracy using SST with accelerometers is significantly better than that with SST data only. Assuming 0.33 m random noises and decimeter level signal transponder system biases in SST data, IGSO and MEO satellites decimeter level orbit accuracy can be

  13. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.

    Directory of Open Access Journals (Sweden)

    Dustin J Tracy

    Full Text Available Recent interest in sedentary behavior and technological advances expanded use of watch-size accelerometers for continuous monitoring of physical activity (PA over extended periods (e.g., 24 h/day for 1 week in studies conducted in natural living environment. This approach necessitates the development of new methods separating bedtime rest and activity periods from the accelerometer recordings. The goal of this study was to develop a decision tree with acceptable accuracy for separating bedtime rest from activity in youth using accelerometer placed on waist or wrist. Minute-by-minute accelerometry data were collected from 81 youth (10-18 years old, 47 females during a monitored 24-h stay in a whole-room indirect calorimeter equipped with a force platform covering the floor to detect movement. Receiver Operating Characteristic (ROC curve analysis was used to determine the accelerometer cut points for rest and activity. To examine the classification differences, the accelerometer bedtime rest and activity classified by the algorithm in the development group (n = 41 were compared with actual bedtime rest and activity classification obtained from the room calorimeter-measured metabolic rate and movement data. The selected optimal bedtime rest cut points were 20 and 250 counts/min for the waist- and the wrist-worn accelerometer, respectively. The selected optimal activity cut points were 500 and 3,000 counts/min for waist and wrist-worn accelerometers, respectively. Bedtime rest and activity were correctly classified by the algorithm in the validation group (n = 40 by both waist- (sensitivity: 0.983, specificity: 0.946, area under ROC curve: 0. 872 and wrist-worn (0.999, 0.980 and 0.943 accelerometers. The decision tree classified bedtime rest correctly with higher accuracy than commonly used automated algorithm for both waist- and wrist-warn accelerometer (all p<0.001. We concluded that cut points developed and validated for waist- and wrist

  14. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers

    Directory of Open Access Journals (Sweden)

    De Bourdeaudhuij Ilse

    2011-06-01

    Full Text Available Abstract Background Accelerometers are considered to be the most promising tool for measuring physical activity (PA in free-living young children. So far, no studies have examined the feasibility and validity of accelerometer measurements in children under 3 years of age. Therefore, the purpose of the present study was to examine the feasibility and validity of accelerometer measurements in toddlers (1- to 3-year olds. Methods Forty-seven toddlers (25 boys; 20 ± 4 months wore a GT1M ActiGraph accelerometer for 6 consecutive days and parental perceptions of the acceptability of wearing the monitor were assessed to examine feasibility. To investigate the validity of the ActiGraph and the predictive validity of three ActiGraph cut points, accelerometer measurements of 31 toddlers (17 boys; 20 ± 4 months during free play at child care were compared to directly observed PA, using the Observational System for Recording Physical Activity in Children-Preschool (OSRAC-P. Validity was assessed using Pearson and Spearman correlations and predictive validity using area under the Receiver Operating Characteristic curve (ROC-AUC. Results The feasibility examination indicated that accelerometer measurements of 30 toddlers (63.8% could be included with a mean registration time of 564 ± 62 min during weekdays and 595 ± 83 min during weekend days. According to the parental reports, 83% perceived wearing the accelerometer as 'not unpleasant and not pleasant' and none as 'unpleasant'. The validity evaluation showed that mean ActiGraph activity counts were significantly and positively associated with mean OSRAC-P activity intensity (r = 0.66; p Conclusions The present findings suggest that ActiGraph accelerometer measurements are feasible and valid for quantifying PA in toddlers. However, further research is needed to accurately identify PA intensities in toddlers using accelerometry.

  15. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  16. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    Science.gov (United States)

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  17. Comparison between low-cost and traditional MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment

    Directory of Open Access Journals (Sweden)

    Angela Chung

    2011-06-01

    Full Text Available Recent advances in micro-electro-mechanical systems (MEMS sensing and distributed computing techniques have enabled the development of low-cost, rapidly deployed dense seismic networks. The Quake-Catcher Network (QCN uses triaxial MEMS accelerometers installed in homes and businesses to record moderate to large earthquakes. Real-time accelerations are monitored and information is transferred to a central server using open-source, distributed computing software installed on participating computers. Following the September 3, 2010, Mw 7.1 Darfield, New Zealand, earthquake, 192 QCN stations were installed in a dense array in the city of Christchurch and the surrounding region to record the on-going aftershock sequence. Here, we compare the ground motions recorded by QCN accelerometers with GeoNet strong-motion instruments to verify whether low-cost MEMS accelerometers can provide reliable ground-motion information in network-scale deployments. We find that observed PGA and PGV amplitudes and RMS scatter are comparable between the GeoNet and QCN observations. Closely spaced stations provide similar acceleration, velocity, and displacement time series and computed response spectra are also highly correlated, with correlation coefficients above 0.94.

  18. An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection.

    Science.gov (United States)

    Putra, I Putu Edy Suardiyana; Brusey, James; Gaura, Elena; Vesilo, Rein

    2017-12-22

    The fixed-size non-overlapping sliding window (FNSW) and fixed-size overlapping sliding window (FOSW) approaches are the most commonly used data-segmentation techniques in machine learning-based fall detection using accelerometer sensors. However, these techniques do not segment by fall stages (pre-impact, impact, and post-impact) and thus useful information is lost, which may reduce the detection rate of the classifier. Aligning the segment with the fall stage is difficult, as the segment size varies. We propose an event-triggered machine learning (EvenT-ML) approach that aligns each fall stage so that the characteristic features of the fall stages are more easily recognized. To evaluate our approach, two publicly accessible datasets were used. Classification and regression tree (CART), k -nearest neighbor ( k -NN), logistic regression (LR), and the support vector machine (SVM) were used to train the classifiers. EvenT-ML gives classifier F-scores of 98% for a chest-worn sensor and 92% for a waist-worn sensor, and significantly reduces the computational cost compared with the FNSW- and FOSW-based approaches, with reductions of up to 8-fold and 78-fold, respectively. EvenT-ML achieves a significantly better F-score than existing fall detection approaches. These results indicate that aligning feature segments with fall stages significantly increases the detection rate and reduces the computational cost.

  19. Attitude Determination with Magnetometers and Accelerometers to Use in Satellite Simulator

    Directory of Open Access Journals (Sweden)

    Helio Koiti Kuga

    2013-01-01

    Full Text Available Attitude control of artificial satellites is dependent on information provided by its attitude determination process. This paper presents the implementation and tests of a fully self-contained algorithm for the attitude determination using magnetometers and accelerometers, for application on a satellite simulator based on frictionless air bearing tables. However, it is known that magnetometers and accelerometers need to be calibrated so as to allow that measurements are used to their ultimate accuracy. A calibration method is implemented which proves to be essential for improving attitude determination accuracy. For the stepwise real-time attitude determination, it was used the well-known QUEST algorithm which yields quick response with reduced computer resources. The algorithms are tested and qualified with actual data collected on the streets under controlled situations. For such street runaways, the experiment employs a solid-state magnetoresistive magnetometer and an IMU navigation block consisting of triads of accelerometers and gyros, with MEMS technology. A GPS receiver is used to record positional information. The collected measurements are processed through the developed algorithms, and comparisons are made for attitude determination using calibrated and noncalibrated data. The results show that the attitude accuracy reaches the requirements for real-time operation for satellite simulator platforms.

  20. Analytical Model of a PZT Thick-Film Triaxial Accelerometer for Optimum Design

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, S. H.

    2009-01-01

    We present a mechanical model of a triaxial micro accelerometer design using PZT thick-film as the sensing material. The model is based on the full anisotropic material tensors and Eulers' beam equation using simplifying assumptions where the smaller stress contributions are ignored. The model...

  1. A calibration protocol for population-specific accelerometer cut-points in children.

    Science.gov (United States)

    Mackintosh, Kelly A; Fairclough, Stuart J; Stratton, Gareth; Ridgers, Nicola D

    2012-01-01

    To test a field-based protocol using intermittent activities representative of children's physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity. Twenty-eight children (46% boys) aged 10-11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children's play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC) curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities. Cut-points of ≤ 372, >2160 and >4806 counts • min(-1) representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of the activity). Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62), and a high classification agreement (98.6%; 89.0%; 87.2%), respectively. Specificity values of 96-97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89-99%) indicated that minutes of activity were seldom incorrectly classified as inactivity. The development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.

  2. A calibration protocol for population-specific accelerometer cut-points in children.

    Directory of Open Access Journals (Sweden)

    Kelly A Mackintosh

    Full Text Available To test a field-based protocol using intermittent activities representative of children's physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity.Twenty-eight children (46% boys aged 10-11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children's play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities.Cut-points of ≤ 372, >2160 and >4806 counts • min(-1 representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity and specificity (limiting misclassification of the activity. Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62, and a high classification agreement (98.6%; 89.0%; 87.2%, respectively. Specificity values of 96-97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89-99% indicated that minutes of activity were seldom incorrectly classified as inactivity.The development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.

  3. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    International Nuclear Information System (INIS)

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between ±150G with ±0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices

  4. Accelerometer-controlled automatic braking system

    Science.gov (United States)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  5. Calibrating Accelerometers Using an Electromagnetic Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  6. Measuring physical activity with accelerometers for individuals with intellectual disability: A systematic review.

    Science.gov (United States)

    Leung, Willie; Siebert, Erin A; Yun, Joonkoo

    2017-08-01

    Multiple studies have reported differing physical activity levels for individuals with intellectual disabilities when using accelerometers. One of the potential reasons for these differences may be due to how researchers measure physical activity. Currently there is a lack of understanding on measurement protocol of accelerometers. The purpose of this study was to synthesize the current practice of using accelerometers to measure physical activity levels among individuals with intellectual disabilities. A systematic search was conducted using multiple databases including Medline (1998-2015), Sport Discus (1992-2015), Web of Science (1965-2015), and Academic Research Premier (2004-2015). Seventeen articles were found that met the inclusion criteria. There is a lack of consistent research protocols for measuring physical activity levels with accelerometers. Issues with the amount of time participants wore the accelerometer was a challenge for multiple studies. Studies that employed external strategies to maximize wear time had higher compliance rates. There is a need to establish and standardize specific accelerometer protocols for measuring physical activity levels of individuals with intellectual disabilities for higher quality and more comparable data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment

    DEFF Research Database (Denmark)

    Schnurr, Theresia Maria; Bech, Bianca; Haarmark Nielsen, Tenna Ruest

    2017-01-01

    We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objective measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th p...

  8. Accelerometer Cut Points for Physical Activity Assessment of Older Adults with Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Håkan Nero

    Full Text Available To define accelerometer cut points for different walking speeds in older adults with mild to moderate Parkinson's disease.A volunteer sample of 30 older adults (mean age 73; SD 5.4 years with mild to moderate Parkinson's disease walked at self-defined brisk, normal, and slow speeds for three minutes in a circular indoor hallway, each wearing an accelerometer around the waist. Walking speed was calculated and used as a reference measure. Through ROC analysis, accelerometer cut points for different levels of walking speed in counts per 15 seconds were generated, and a leave-one-out cross-validation was performed followed by a quadratic weighted Cohen's Kappa, to test the level of agreement between true and cut point-predicted walking speeds.Optimal cut points for walking speeds ≤ 1.0 m/s were ≤ 328 and ≤ 470 counts/15 sec; for speeds > 1.3 m/s, they were ≥ 730 and ≥ 851 counts/15 sec for the vertical axis and vector magnitude, respectively. Sensitivity and specificity were 61%-100% for the developed cut points. The quadratic weighted Kappa showed substantial agreement: κ = 0.79 (95% CI 0.70-0.89 and κ = 0.69 (95% CI 0.56-0.82 for the vertical axis and the vector magnitude, respectively.This study provides accelerometer cut points based on walking speed for physical-activity measurement in older adults with Parkinson's disease for evaluation of interventions and for investigating links between physical activity and health.

  9. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    Science.gov (United States)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  10. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2018-01-01

    Full Text Available The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.

  11. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer.

    Science.gov (United States)

    Zhou, Wu; He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping

    2018-01-20

    The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.

  12. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    Science.gov (United States)

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  13. Bioinspired electronic white cane implementation based on a LIDAR, a tri-axial accelerometer and a tactile belt.

    Science.gov (United States)

    Pallejà, Tomàs; Tresanchez, Marcel; Teixidó, Mercè; Palacin, Jordi

    2010-01-01

    This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user's forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

  14. Bioinspired Electronic White Cane Implementation Based on a LIDAR, a Tri-Axial Accelerometer and a Tactile Belt

    Directory of Open Access Journals (Sweden)

    Jordi Palacin

    2010-12-01

    Full Text Available This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user’s forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

  15. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.

    Science.gov (United States)

    Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W

    2016-02-01

    This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.

  16. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Seyed Moosavi

    2018-02-01

    Full Text Available The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  17. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    Science.gov (United States)

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking physical activity with adiposity markers in older adults was stronger when physical activity was assessed by accelerometer compared with questionnaire, suggesting that physical activity might be more important for adiposity than previously estimated. PMID:25752539

  18. Accelerometer having integral fault null

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-08-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  19. Technical note: Use of accelerometers to describe gait patterns in dairy calves

    DEFF Research Database (Denmark)

    Passillé, A. M. de; Jensen, Margit Bak; Chapinal, N.

    2010-01-01

    Developments in accelerometer technology offer new opportunities for automatic monitoring of animal behavior. Until now, commercially available accelerometers have been used to measure walking in adult cows but have failed to identify walking in calves. We described the pattern of acceleration...... associated with various gaits in calves and tested whether measures of acceleration could be used to count steps and distinguish among gait types. A triaxial accelerometer (sampling at 33 readings/s with maximum measurement at +/-3.2 g) was attached to 1 hind leg of 7 dairy calves, and each calf was walked...

  20. Theoretical natural frequency of the CTN-10-3/92 accelerometer

    International Nuclear Information System (INIS)

    Armas Cardona, R.L.; Calderon Pinar, F.

    1998-01-01

    The compression CTN-10-3/92 accelerometer model from ISCTN was design in 1992 and constructed in 1994. Its electrochemical characteristics was defined experimentally and reported in 1995-96 publications. The accelerometer answer has been compare with industrial models of the B and K Danish firm, with successful results, and has been used in measuring practices,also with successful results on validation, by the GDVM working group of the ISCTN The natural frequency of the CTN-10-3/92 accelerometer model calculations are essentially executed for uses requirements satisfaction, consistent in specifying the working tool to rectify and improve the design. The work involve a discussion of the transducer general elastic system and the design. The work involve a discussion of transducer general elastic system and the determination of it resonance frequency

  1. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    Science.gov (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  2. Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth.

    Science.gov (United States)

    Belcher, Britni R; Moser, Richard P; Dodd, Kevin W; Atienza, Audie A; Ballard-Barbash, Rachel; Berrigan, David

    2015-05-01

    Discrepancies in self-report and accelerometer-measured moderate-to-vigorous physical activity (MVPA) may influence relationships with obesity-related biomarkers in youth. Data came from 2003-2006 National Health and Nutrition Examination Surveys (NHANES) for 2174 youth ages 12 to 19. Biomarkers were: body mass index (BMI, kg/m2), BMI percentile, height and waist circumference (WC, cm), triceps and subscapular skinfolds (mm), systolic & diastolic blood pressure (BP, mmHg), high-density lipoprotein (HDL, mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), insulin (μU/ml), C-reactive protein (mg/dL), and glycohemoglobin (%). In separate sex-stratified models, each biomarker was regressed on accelerometer variables [mean MVPA (min/day), nonsedentary counts, and MVPA bouts (mean min/day)] and self-reported MVPA. Covariates were age, race/ethnicity, SES, physical limitations, and asthma. In boys, correlations between self-report and accelerometer MVPA were stronger (boys: r = 0.14-0.21; girls: r = 0.07-0.11; P girls, there were no significant associations between biomarkers and any measures of physical activity. Physical activity measures should be selected based on the outcome of interest and study population; however, associations between PA and these biomarkers appear to be weak regardless of the measure used.

  3. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  4. Temperature corrected-calibration of GRACE's accelerometer

    Science.gov (United States)

    Encarnacao, J.; Save, H.; Siemes, C.; Doornbos, E.; Tapley, B. D.

    2017-12-01

    Since April 2011, the thermal control of the accelerometers on board the GRACE satellites has been turned off. The time series of along-track bias clearly show a drastic change in the behaviour of this parameter, while the calibration model has remained unchanged throughout the entire mission lifetime. In an effort to improve the quality of the gravity field models produced at CSR in future mission-long re-processing of GRACE data, we quantify the added value of different calibration strategies. In one approach, the temperature effects that distort the raw accelerometer measurements collected without thermal control are corrected considering the housekeeping temperature readings. In this way, one single calibration strategy can be consistently applied during the whole mission lifetime, since it is valid to thermal the conditions before and after April 2011. Finally, we illustrate that the resulting calibrated accelerations are suitable for neutral thermospheric density studies.

  5. Animations to illustrate the Autocalibration process of accelerometer data

    OpenAIRE

    van Hees, Vincent

    2014-01-01

    .avi files: animation_a_6_3D_prepostautocal.avi – 3D animation showing static points before and after autocalibration process. animation_c_4_2D_duringautocal.avi – 2D animation showing how static points moved during autocalibration. animation_d_3_3D_duringautocal.avi – 3D animation showing how static points moved during autocalibration. Supplementary graphics for paper "Autocalibration of accelerometer data collected in daily life based on local gravity and temperature: an evalua...

  6. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  7. Cognitive function and the agreement between self-reported and accelerometer-accessed physical activity.

    Science.gov (United States)

    Herbolsheimer, Florian; Riepe, Matthias W; Peter, Richard

    2018-02-21

    Numerous studies have reported weak or moderate correlations between self-reported and accelerometer-assessed physical activity. One explanation is that self-reported physical activity might be biased by demographic, cognitive or other factors. Cognitive function is one factor that could be associated with either overreporting or underreporting of daily physical activity. Difficulties in remembering past physical activities might result in recall bias. Thus, the current study examines whether the cognitive function is associated with differences between self-reported and accelerometer-assessed physical activity. Cross-sectional data from the population-based Activity and Function in the Elderly in Ulm study (ActiFE) were used. A total of 1172 community-dwelling older adults (aged 65-90 years) wore a uniaxial accelerometer (activPAL unit) for a week. Additionally, self-reported physical activity was assessed using the LASA Physical Activity Questionnaire (LAPAQ). Cognitive function was measured with four items (immediate memory, delayed memory, recognition memory, and semantic fluency) from the Consortium to Establish a Registry for Alzheimer's Disease Total Score (CERAD-TS). Mean differences of self-reported and accelerometer-assessed physical activity (MPA) were associated with cognitive function in men (r s  = -.12, p = .002) but not in women. Sex-stratified multiple linear regression analyses showed that MPA declined with high cognitive function in men (β = -.13; p = .015). Results suggest that self-reported physical activity should be interpreted with caution in older populations, as cognitive function was one factor that explained the differences between objective and subjective physical activity measurements.

  8. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    Directory of Open Access Journals (Sweden)

    Jingcheng Liu

    2013-08-01

    Full Text Available A signal mass piezoelectric six-degrees-of-freedom (six-DOF accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  9. Daily physical activity patterns from hip- and wrist-worn accelerometers

    DEFF Research Database (Denmark)

    Shiroma, Eric J; Schepps, M A; Harezlak, J

    2016-01-01

    Accelerometer wear location may influence physical activity estimates. This study investigates this relationship through the examination of activity patterns throughout the day. Participants from the aging research evaluating accelerometry (AREA) study (n men = 37, n women = 47, mean age (SD) = 78...... activity accrual provide support that each location is capable of estimating total physical activity volume. The examination of activity patterns over time may provide a more detailed way to examine differences in wear location and different subpopulations. © 2016 Institute of Physics and Engineering.......9 (5.5) years) were asked to wear accelerometers in a free-living environment for 7 d at three different wear locations; one on each wrist and one on the right hip. During waking hours, wrist-worn accelerometers consistently produced higher median activity counts, about 5 × higher, as well as wider...

  10. Validation of Accelerometer-Based Energy Expenditure Prediction Models in Structured and Simulated Free-Living Settings

    Science.gov (United States)

    Montoye, Alexander H. K.; Conger, Scott A.; Connolly, Christopher P.; Imboden, Mary T.; Nelson, M. Benjamin; Bock, Josh M.; Kaminsky, Leonard A.

    2017-01-01

    This study compared accuracy of energy expenditure (EE) prediction models from accelerometer data collected in structured and simulated free-living settings. Twenty-four adults (mean age 45.8 years, 50% female) performed two sessions of 11 to 21 activities, wearing four ActiGraph GT9X Link activity monitors (right hip, ankle, both wrists) and a…

  11. An accurate calibration method for accelerometer nonlinear scale factor on a low-cost three-axis turntable

    International Nuclear Information System (INIS)

    Pan, Jianye; Zhang, Chunxi; Cai, Qingzhong

    2014-01-01

    Strapdown inertial navigation system (SINS) requirements are very demanding on gyroscopes and accelerometers as well as on calibration. To improve the accuracy of SINS, high-accuracy calibration is needed. Adding the accelerometer nonlinear scale factor into the model and reducing estimation errors is essential for improving calibration methods. In this paper, the inertial navigation error model is simplified, including only velocity and tilt errors. Based on the simplified error model, the relationship between the navigation errors (the rates of change of velocity errors) and the inertial measurement unit (IMU) calibration parameters is presented. A tracking model is designed to estimate the rates of change of velocity errors. With a special calibration procedure consisting of six rotation sequences, the accelerometer nonlinear scale factor errors can be computed by the estimates of the rates of change of velocity errors. Simulation and laboratory test results show that the accelerometer nonlinear scale factor can be calibrated with satisfactory accuracy on a low-cost three-axis turntable in several minutes. The comparison with the traditional calibration method highlights the superior performance of the proposed calibration method without precise orientation control. In addition, the proposed calibration method saves a lot of time in comparison with the multi-position calibration method. (paper)

  12. Mining for motivation: using a single wearable accelerometer to detect people's interests

    NARCIS (Netherlands)

    Englebienne, G.; Hung, H.

    2012-01-01

    This paper presents a novel investigation of how motion as measured with just a single wearable accelerometer is informative of people's interests and motivation during crowded social events. We collected accelerometer readings on a large number of people (32 and 46 people in two crowded social

  13. Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Yunyoung Nam

    2016-05-01

    Full Text Available Sleep disorders are a common affliction for many people even though sleep is one of the most important factors in maintaining good physiological and emotional health. Numerous researchers have proposed various approaches to monitor sleep, such as polysomnography and actigraphy. However, such approaches are costly and often require overnight treatment in clinics. With this in mind, the research presented here has emerged from the question: “Can data be easily collected and analyzed without causing discomfort to patients?” Therefore, the aim of this study is to provide a novel monitoring system for quantifying sleep quality. The data acquisition system is equipped with multimodal sensors, including a three-axis accelerometer and a pressure sensor. To identify sleep quality based on measured data, a novel algorithm, which uses numerous physiological parameters, was proposed. Such parameters include non-REM sleep time, the number of apneic episodes, and sleep durations for dominant poses. To assess the effectiveness of the proposed system, three participants were enrolled in this experimental study for a duration of 20 days. From the experimental results, it can be seen that the proposed monitoring system is effective for quantifying sleep quality.

  14. Evaluation of Accelerometer Mechanical Filters on Submerged Cylinders Near an Underwater Explosion

    Directory of Open Access Journals (Sweden)

    G. Yiannakopoulos

    1998-01-01

    Full Text Available An accelerometer, mounted to a structure near an explosion to measure elasto-plastic deformation, can be excited at its resonant frequency by impulsive stresses transmitted within the structure. This results in spurious high peak acceleration levels that can be much higher than acceleration levels from the explosion itself. The spurious signals also have higher frequencies than the underlying signal from the explosion and can be removed by a low pass filter. This report assesses the performance of four accelerometer and filter assemblies. The assessment involves measurements of the response of a mild steel cylinder to an underwater explosion, in which each assembly is mounted onto the interior surface of the cylinder. Three assemblies utilise a piezoresistive accelerometer in which isolation is provided mechanically. In the fourth assembly, a piezoelectric accelerometer, with a built-in filter, incorporates both mechanical and electronic filtering. This assembly is found to be more suitable because of its secure mounting arrangement, ease of use, robustness and noise free results.

  15. The French Accelerometer Network (RAP): Current state in 2007

    International Nuclear Information System (INIS)

    Gueguen, P.; Bard, P.-Y.; Pequegnat, C.; Souriau, A.; Dominique, P.; Regnier, M.

    2007-01-01

    France is a country of moderate seismicity but, due to dense urbanized and industrial areas, the seismic risk is significant. Furthermore, recent developments in numerical and semi-empirical methods requires a good knowledge of several parameters. The mission of the French accelerometer network programme (RAP-Reseau Accelerometrique Permanent) is to expand and modernize significantly the acquisition and application of French accelerometer data (both strong and weak motion) in order to improve earthquake related research and public safety from earthquakes. This network is the result of co-operative efforts including academic institutions (INSU-CNRS, Universities of Grenoble, Nice, Strasbourg, Toulouse, IPG Paris) and several state agencies (BRGM, CEA, IRSN, LCPC). Since 1995, around 120 stations have been installed in some seismic areas of France. This network also includes specific research actions (site effects, building monitoring, deep borehole). Other French accelerometer stations devoted to strong motion recording are also associated to the network. All data are archived and freely distributed in a database center, data being available in SAC, ASCII and SEED format. (authors)

  16. Thermospheric neutral densities derived from Swarm accelerometer and GPS data

    DEFF Research Database (Denmark)

    Doornbos, Eelco; Encarnacao, Joao; van den IJss, Jose

    Over the past years, a lot of effort has been put into characterising and correcting the various disturbance signals that were found in the accelerometer data provided by the Swarm satellites. This effort was first and foremost aimed at the Swarm C along-track axis data, which seems to be the least...... affected and most promising data for scientific use. The goal to make the Swarm C accelerometer along-track axis data ready for further processing into level 2 thermosphere density data has now been accomplished, with the help of information on the satellite motion from the GPS tracking as well...... approach, affects the possibility of determining densities from the accelerometer measurements of the Swarm A and B satellites. We also investigate the possibility of determining crosswind speeds from Swarm data.In the meantime, we have investigated the possibility of deriving thermosphere neutral density...

  17. Moderating effects of age, gender and education on the associations of perceived neighborhood environment attributes with accelerometer-based physical activity

    DEFF Research Database (Denmark)

    Van Dyck, Delfien; Cerin, Ester; De Bourdeaudhuij, Ilse

    2015-01-01

    , and curvilinearly in women. Perceived crime safety was related to MVPA only in women. No moderating relationships were found for education. Overall the associations of adults' perceptions of environmental attributes with MVPA were largely independent of the socio-demographic factors examined. These findings......The study's purpose was to examine age, gender, and education as potential moderators of the associations of perceived neighborhood environment variables with accelerometer-based moderate-to-vigorous physical activity (MVPA). Data were from 7273 adults from 16 sites (11 countries) that were part...

  18. Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.

    Science.gov (United States)

    Kerr, Jacqueline; Carlson, Jordan; Godbole, Suneeta; Cadmus-Bertram, Lisa; Bellettiere, John; Hartman, Sheri

    2018-02-13

    To improve estimates of sitting time from hip worn accelerometers used in large cohort studies by employing machine learning methods developed on free living activPAL data. Thirty breast cancer survivors concurrently wore a hip worn accelerometer and a thigh worn activPAL for 7 days. A random forest classifier, trained on the activPAL data, was employed to detect sitting, standing and sit-stand transitions in 5 second windows in the hip worn accelerometer. The classifier estimates were compared to the standard accelerometer cut point and significant differences across different bout lengths were investigated using mixed effect models. Overall, the algorithm predicted the postures with moderate accuracy (stepping 77%, standing 63%, sitting 67%, sit to stand 52% and stand to sit 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of 2 minutes or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts and underestimating long bouts. This is among the first algorithms for sitting and standing for hip worn accelerometer data to be trained from entirely free living activPAL data. The new algorithm detected prolonged sitting which has been shown to be most detrimental to health. Further validation and training in larger cohorts is warranted.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  19. A high and low noise model for strong motion accelerometers

    Science.gov (United States)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.

  20. Awareness of wearing an accelerometer does not affect physical activity in youth

    Directory of Open Access Journals (Sweden)

    Jérémy Vanhelst

    2017-07-01

    Full Text Available Abstract Background This study aimed to investigate whether awareness of being monitored by an accelerometer has an effect on physical activity in young people. Methods Eighty healthy participants aged 10–18 years were randomized between blinded and nonblinded groups. The blinded participants were informed that we were testing the reliability of a new device for body posture assessment and these participants did not receive any information about physical activity. In contrast, the nonblinded participants were informed that the device was an accelerometer that assessed physical activity levels and patterns. The participants were instructed to wear the accelerometer for 4 consecutive days (2 school days and 2 school-free days. Results Missing data led to the exclusion of 2 participants assigned to the blinded group. When data from the blinded group were compared with these from the nonblinded group, no differences were found in the duration of any of the following items: (i wearing the accelerometer, (ii total physical activity, (iii sedentary activity, and (iv moderate-to-vigorous activity. Conclusions Our study shows that the awareness of wearing an accelerometer has no influence on physical activity patterns in young people. This study improves the understanding of physical activity assessment and underlines the objectivity of this method. Trial registration NCT02844101 (retrospectively registered at July 13th 2016.

  1. A new virtual instrument for estimating punch velocity in combat sports.

    Science.gov (United States)

    Urbinati, K S; Scheeren, E; Nohama, P

    2013-01-01

    For improving the performance in combat sport, especially percussion, it is necessary achieving high velocity in punches and kicks. The aim of this study was to evaluate the applicability of 3D accelerometry in a Virtual Instrumentation System (VIS) designed for estimating punch velocity in combat sports. It was conducted in two phases: (1) integration of the 3D accelerometer with the communication interface and software for processing and visualization, and (2) applicability of the system. Fifteen karate athletes performed five gyaku zuki type punches (with reverse leg) using the accelerometer on the 3rd metacarpal on the back of the hand. It was performed nonparametric Mann-Whitney U-test to determine differences in the mean linear velocity among three punches performed sequentially (p sport.

  2. Nano-G accelerometer using geometric anti-springs

    NARCIS (Netherlands)

    Boom, B. A.; Bertolini, A.; Hennes, E.; Brookhuis, R. A.; Wiegerink, R. J.; Van Den Brand, J. F J; Beker, M. G.; Oner, A.; Van Wees, D.

    2017-01-01

    We report an ultra-sensitive seismic accelerometer with nano-g sensitivity, using geometric anti-spring technology. High sensitivity is achieved by an on-chip mechanical preloading system comprising four sets of curved leaf springs that support a proof-mass. Using this preloading mechanism,

  3. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    Science.gov (United States)

    Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin

    2017-06-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.

  4. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    International Nuclear Information System (INIS)

    Teo, Adrian J T; Li, Holden; Yoon, Yong-Jin; Tan, Say Hwa

    2017-01-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G −1 , and a highest recorded sensitivity of 44.1 mV G −1 . A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices. (technical note)

  5. Using open source accelerometer analysis to assess physical activity and sedentary behaviour in overweight and obese adults.

    Science.gov (United States)

    Innerd, Paul; Harrison, Rory; Coulson, Morc

    2018-04-23

    Physical activity and sedentary behaviour are difficult to assess in overweight and obese adults. However, the use of open-source, raw accelerometer data analysis could overcome this. This study compared raw accelerometer and questionnaire-assessed moderate-to-vigorous physical activity (MVPA), walking and sedentary behaviour in normal, overweight and obese adults, and determined the effect of using different methods to categorise overweight and obesity, namely body mass index (BMI), bioelectrical impedance analysis (BIA) and waist-to-hip ratio (WHR). One hundred twenty adults, aged 24-60 years, wore a raw, tri-axial accelerometer (Actigraph GT3X+), for 3 days and completed a physical activity questionnaire (IPAQ-S). We used open-source accelerometer analyses to estimate MVPA, walking and sedentary behaviour from a single raw accelerometer signal. Accelerometer and questionnaire-assessed measures were compared in normal, overweight and obese adults categorised using BMI, BIA and WHR. Relationships between accelerometer and questionnaire-assessed MVPA (Rs = 0.30 to 0.48) and walking (Rs = 0.43 to 0.58) were stronger in normal and overweight groups whilst sedentary behaviour were modest (Rs = 0.22 to 0.38) in normal, overweight and obese groups. The use of WHR resulted in stronger agreement between the questionnaire and accelerometer than BMI and BIA. Finally, accelerometer data showed stronger associations with BMI, BIA and WHR (Rs = 0.40 to 0.77) than questionnaire data (Rs = 0.24 to 0.37). Open-source, raw accelerometer data analysis can be used to estimate MVPA, walking and sedentary behaviour from a single acceleration signal in normal, overweight and obese adults. Our data supports the use of WHR to categorise overweight and obese adults. This evidence helps researchers obtain more accurate measures of physical activity and sedentary behaviour in overweight and obese populations.

  6. Analysis of the HASI accelerometers data measured during the impact phase of the Huygens probe on the surface of Titan by means of a simulation with a finite-element model

    Science.gov (United States)

    Bettanini, C.; Zaccariotto, M.; Angrilli, F.

    2008-04-01

    The Huygens Atmospheric Structure Instrument (HASI) [Fulchignoni, M., Ferri, F., Angrilli, F., Bar-Nun, A., Barucci, M.A., Bianchini, G., Borucki, W., Coradini, M., Coustenis, A., Falkner, P., Flamini, E., Grard, R., Hamelin, M., Harri, A.M., Leppelmaier, G.W., Lopez-Moreno, J.J., McDonnell, J.A.M., McKay, C.P., Neubauer, F.M., Pedersen, A., Piacardi, G., Pirronello, V., Schwingenschuh, K., Seiff, A., Svedhem, H., Vanzani, V., Zarnecki, J.C., 2002. The characterisation of Titan atmosphere physical properties. Space Sci. Rev. 104, 395-431] was a very complete instrument suite installed on board the Huygens probe, the planetary lander of the Cassini Huygens Mission to Saturn system, which successfully completed its mission in January 2005. HASI comprised a set of accelerometers, temperature sensors, pressure transducers and permittivity analysers aimed at the investigation of Titan atmosphere, which were fully operative during a several hour-long parachuted descent from an altitude of 157 km to planetary surface. Accelerometers were the only instruments activated earlier, just after Cassini separation, and recorded data during all the mission phases from atmospheric entry to landing, providing essential information for elaborating probe trajectory as well as Titan atmospheric profiles [G. Colombatti, et al. Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument, this same PSS issue]. Although not specifically designed for monitoring very fast dynamic events, HASI accelerometers have also recorded the trace of probe impact with the planetary surface, building up along with the data from Huygens Surface Science Package (SSP) instrument [ Zarnecki, J.C., Leese, M.R., Garry, J.R.C., Ghafoor, N.A.L., Hathi, B., 2002. Huygens Surface Science Package. Space Sci. Rev. 104, 593-611] the only set of direct measurements of the mechanical properties of the Titan soil. Though not considered secondary with respect to SSP data, HASI

  7. Synthesis of the System Modeling and Signal Detecting Circuit of a Novel Vacuum Microelectronic Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhengguo Shang

    2009-05-01

    Full Text Available A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %.

  8. Accelerometer method and apparatus for integral display and control functions

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-06-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  9. Quality control methods in accelerometer data processing: identifying extreme counts.

    Directory of Open Access Journals (Sweden)

    Carly Rich

    Full Text Available Accelerometers are designed to measure plausible human activity, however extremely high count values (EHCV have been recorded in large-scale studies. Using population data, we develop methodological principles for establishing an EHCV threshold, propose a threshold to define EHCV in the ActiGraph GT1M, determine occurrences of EHCV in a large-scale study, identify device-specific error values, and investigate the influence of varying EHCV thresholds on daily vigorous PA (VPA.We estimated quantiles to analyse the distribution of all accelerometer positive count values obtained from 9005 seven-year old children participating in the UK Millennium Cohort Study. A threshold to identify EHCV was derived by differentiating the quantile function. Data were screened for device-specific error count values and EHCV, and a sensitivity analysis conducted to compare daily VPA estimates using three approaches to accounting for EHCV.Using our proposed threshold of ≥ 11,715 counts/minute to identify EHCV, we found that only 0.7% of all non-zero counts measured in MCS children were EHCV; in 99.7% of these children, EHCV comprised < 1% of total non-zero counts. Only 11 MCS children (0.12% of sample returned accelerometers that contained negative counts; out of 237 such values, 211 counts were equal to -32,768 in one child. The medians of daily minutes spent in VPA obtained without excluding EHCV, and when using a higher threshold (≥19,442 counts/minute were, respectively, 6.2% and 4.6% higher than when using our threshold (6.5 minutes; p<0.0001.Quality control processes should be undertaken during accelerometer fieldwork and prior to analysing data to identify monitors recording error values and EHCV. The proposed threshold will improve the validity of VPA estimates in children's studies using the ActiGraph GT1M by ensuring only plausible data are analysed. These methods can be applied to define appropriate EHCV thresholds for different accelerometer models.

  10. Monitoring feeding behaviour of dairy cows using accelerometers

    Directory of Open Access Journals (Sweden)

    Gabriele Mattachini

    2016-03-01

    Full Text Available Monitoring cow behaviour has become increasingly important in understanding the nutrition, production, management of the well being, and overall health of dairy cows. Methods of assessing behavioural activity have changed in recent years, favouring automatic recording techniques. Traditional methods to measure behaviour, such as direct observation or time-lapse video, are labour-intensive and time-consuming. Automated recording devices have become increasingly common to measure behaviour accurately. Thus, the development of automated monitoring systems that can continuously and accurately quantify feeding behaviour are required for efficient monitoring and control of modern and automated dairy farms. The aim of this study was to evaluate the possible use of a 3D accelerometer to record feeding behaviour of dairy cows. Feeding behaviour (feeding time and number of visits to the manger of 12 lactating dairy cows was recorded for approximately 3 h with 3D-accelerometer data loggers (HOBO Pendant G logger. The sensors were positioned in the high part of the neck to monitor head movements. Behaviour was simultaneously recorded using visual observation as a reference. Linear regression analysis between the measurement methods showed that the recorded feeding time (R2=0.90, n=12, P<0.001 was closely related to visual observations. In contrast, the number of visits was inadequately recorded by the 3D-accelerometer, showing a poor relationship with visual observations (R2=0.31, n=12, P<0.06. Results suggest that the use of accelerometer sensors can be a reliable and suitable technology for monitoring feeding behaviour of individual dairy cows in free stall housing. However, further research is necessary to develop an appropriate device able to detect and recognise the movements connected with the head movement during feeding. Such a device could be part of an automatic livestock management tool for the efficient monitoring and control of comfort and

  11. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults

    DEFF Research Database (Denmark)

    Matthews, Charles E; Keadle, S. K.; Troiano, Richard P

    2016-01-01

    Background: Moderate-to-vigorous-intensity physical activity is recommended to maintain and improve health, but the mortality benefits of light activity and risk for sedentary time remain uncertain. Objectives: Using accelerometer-based measures, we 1) described the mortality dose-response...... for sedentary time and light-and moderateto-vigorous-intensity activity using restricted cubic splines, and 2) estimated the mortality benefits associated with replacing sedentary time with physical activity, accounting for total activity. Design: US adults (n = 4840) from NHANES (2003-2006) wore...... an accelerometer for #7 d and were followed prospectively for mortality. Proportional hazards models were used to estimate adjusted HRs and 95% CIs for mortality associations with time spent sedentary and in light-and moderate-to-vigorous-intensity physical activity. Splines were used to graphically present...

  12. Using an accelerometer for analyzing a reach-to-grasp movement after stroke

    Directory of Open Access Journals (Sweden)

    Stella Maris Michaelsen

    2013-12-01

    Full Text Available The purpose of this study was using an accelerometer to access the kinematics of reach-to-grasp movements in subjects with hemiparesis. Eight subjects (59.4 ± 6.9 years old with chronic hemiparesis (50.9 ± 25.8 months post-stroke participated in this study. Kinematic assessment was performed using a triaxial accelerometer (EMG Systems, Brazil attached to the subjects' forearm. Ten reach-to-grasp movements of grabbing a 500ml-size bottle were performed by the subjects with the paretic and the non-paretic upper limbs (ULs. The following space-temporal variables were calculated and used to compare the paretic and non-paretic ULs: movement time (MT, time to reach the peak velocity, absolute and relative (TPV and TPV%MT, relative deceleration duration (DEC%MT, time to peak acceleration (TPA and peak hand acceleration (PA. Movements were slower in the paretic UL with increased MT, TPA and DEC. The accelerometer allowed to identify of changes in reaching-to-grasp movements of subjects with hemiparesis. When complex systems are not available, accelerometers can be an alternative to measure UL movements.

  13. Validity and Reliability of Accelerometers in Patients With COPD: A SYSTEMATIC REVIEW.

    Science.gov (United States)

    Gore, Shweta; Blackwood, Jennifer; Guyette, Mary; Alsalaheen, Bara

    2018-05-01

    Reduced physical activity is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Accelerometers have greatly improved quantification of physical activity by providing information on step counts, body positions, energy expenditure, and magnitude of force. The purpose of this systematic review was to compare the validity and reliability of accelerometers used in patients with COPD. An electronic database search of MEDLINE and CINAHL was performed. Study quality was assessed with the Strengthening the Reporting of Observational Studies in Epidemiology checklist while methodological quality was assessed using the modified Quality Appraisal Tool for Reliability Studies. The search yielded 5392 studies; 25 met inclusion criteria. The SenseWear Pro armband reported high criterion validity under controlled conditions (r = 0.75-0.93) and high reliability (ICC = 0.84-0.86) for step counts. The DynaPort MiniMod demonstrated highest concurrent validity for step count using both video and manual methods. Validity of the SenseWear Pro armband varied between studies especially in free-living conditions, slower walking speeds, and with addition of weights during gait. A high degree of variability was found in the outcomes used and statistical analyses performed between studies, indicating a need for further studies to measure reliability and validity of accelerometers in COPD. The SenseWear Pro armband is the most commonly used accelerometer in COPD, but measurement properties are limited by gait speed variability and assistive device use. DynaPort MiniMod and Stepwatch accelerometers demonstrated high validity in patients with COPD but lack reliability data.

  14. Physical activity discrimination improvement using accelerometers and wireless sensor network localization - biomed 2013.

    Science.gov (United States)

    Bashford, Gregory R; Burnfield, Judith M; Perez, Lance C

    2013-01-01

    Automating documentation of physical activity data (e.g., duration and speed of walking or propelling a wheelchair) into the electronic medical record (EMR) offers promise for improving efficiency of documentation and understanding of best practices in the rehabilitation and home health settings. Commercially available devices which could be used to automate documentation of physical activities are either cumbersome to wear or lack the specificity required to differentiate activities. We have designed a novel system to differentiate and quantify physical activities, using inexpensive accelerometer-based biomechanical data technology and wireless sensor networks, a technology combination that has not been used in a rehabilitation setting to date. As a first step, a feasibility study was performed where 14 healthy young adults (mean age = 22.6 ± 2.5 years, mean height = 173 ± 10.0 cm, mean mass = 70.7 ± 11.3 kg) carried out eight different activities while wearing a biaxial accelerometer sensor. Activities were performed at each participant’s self-selected pace during a single testing session in a controlled environment. Linear discriminant analysis was performed by extracting spectral parameters from the subjects’ accelerometer patterns. It is shown that physical activity classification alone results in an average accuracy of 49.5%, but when combined with rule-based constraints using a wireless sensor network with localization capabilities in an in silico simulated room, accuracy improves to 99.3%. When fully implemented, our technology package is expected to improve goal setting, treatment interventions and patient outcomes by enhancing clinicians’ understanding of patients’ physical performance within a day and across the rehabilitation program.

  15. Real-Time Integration of Positioning and Accelerometer Data for Early Earthquake Warning on Canada's West Coast

    Science.gov (United States)

    Biffard, B.; Rosenberger, A.; Pirenne, B.; Valenzuela, M.; MacArthur, M.

    2017-12-01

    Ocean Networks Canada (ONC) operates ocean and coastal observatories on all three of Canada's coasts, and more particularly across the Cascadia subduction zone. The data are acquired, parsed, calibrated and archived by ONC's data management system (Oceans 2.0), with real-time event detection, reaction and access capabilities. As such, ONC is in a unique position to develop early warning systems for earthquakes, near- and far-field tsunamis and other events. ONC is leading the development of a system to alert southwestern British Columbia of an impending Cascadia subduction zone earthquake on behalf of the provincial government and with the support of the Canadian Federal Government. Similarly to other early earthquake warning systems, an array of accelerometers is used to detect the initial earthquake p-waves. This can provide 5-60 seconds of warning to subscribers who can then take action, such as stopping trains and surgeries, closing valves, taking cover, etc. To maximize the detection capability and the time available to react to a notification, instruments are placed both underwater and on land on Vancouver Island. A novel feature of ONC's system is, for land-based sites, the combination of real-time satellite positioning (GNSS) and accelerometer data in the calculations to improve earthquake intensity estimates. This results in higher accuracy, dynamic range and responsiveness than either type of sensor is capable of alone. P-wave detections and displacement data are sent from remote stations to a data centre that must calculate epicentre locations and magnitude. The latter are then delivered to subscribers with client software that, given their position, will calculate arrival time and intensity. All of this must occur with very high standards for latency, reliability and accuracy.

  16. Locations of Joint Physical Activity in Parent-Child Pairs Based on Accelerometer and GPS Monitoring

    Science.gov (United States)

    Dunton, Genevieve Fridlund; Liao, Yue; Almanza, Estela; Jerrett, Micheal; Spruijt-Metz, Donna; Pentz, Mary Ann

    2012-01-01

    Background Parental factors may play an important role in influencing children’s physical activity levels. Purpose This cross-sectional study sought to describe the locations of joint physical activity among parents and children. Methods Parent-child pairs (N = 291) wore an Actigraph GT2M accelerometer and GlobalSat BT-335 Global Positioning Systems (GPS) device over the same 7-day period. Children were ages 8–14 years. Joint behavior was defined by a linear separation distance of less than 50m between parent and child. Land use classifications were assigned to GPS data points. Results Joint physical activity was spread across residential locations (35%), and commercial venues (24%), and open spaces/parks (20%). Obese children and parents performed less joint physical activity in open spaces/parks than under/normal weight children and parents (p’s parent-child physical activity naturally occurs may inform location-based interventions to promote these behaviors. PMID:23011914

  17. Associations of subjective social status with accelerometer-based physical activity and sedentary time among adolescents.

    Science.gov (United States)

    Rajala, Katja; Kankaanpää, Anna; Laine, Kaarlo; Itkonen, Hannu; Goodman, Elizabeth; Tammelin, Tuija

    2018-06-11

    This study examined the associations of subjective social status (SSS) with physical activity (PA) and sedentary time (ST) among adolescents. The study population consisted of 420 Finnish adolescents aged 13 to 14 years. The adolescents reported their own SSS within their school (school SSS) and their family's social position within society (society SSS) based on the youth version of the Subjective Social Status Scale. Adolescents' moderate- to vigorous-intensity physical activity (MVPA) and ST were measured objectively by accelerometers and analyzed separately for the whole day and the school day. The associations between SSS and MVPA and ST outcomes were analyzed using multilevel modeling. School SSS was positively associated with whole-day MVPA and negatively associated with school-time ST. Society SSS was not significantly associated with objectively measured MVPA or ST. Both MVPA and ST are important behavioral determinants of health. As an important correlate of MVPA and ST, school SSS should be addressed by providers when discussing obesity risk and healthy behaviors with adolescents.

  18. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    Science.gov (United States)

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  19. Detection of falls using accelerometers and mobile phone technology.

    Science.gov (United States)

    Lee, Raymond Y W; Carlisle, Alison J

    2011-11-01

    to study the sensitivity and specificity of fall detection using mobile phone technology. an experimental investigation using motion signals detected by the mobile phone. the research was conducted in a laboratory setting, and 18 healthy adults (12 males and 6 females; age = 29 ± 8.7 years) were recruited. each participant was requested to perform three trials of four different types of simulated falls (forwards, backwards, lateral left and lateral right) and eight other everyday activities (sit-to-stand, stand-to-sit, level walking, walking up- and downstairs, answering the phone, picking up an object and getting up from supine). Acceleration was measured using two devices, a mobile phone and an independent accelerometer attached to the waist of the participants. Bland-Altman analysis shows a higher degree of agreement between the data recorded by the two devices. Using individual upper and lower detection thresholds, the specificity and sensitivity for mobile phone were 0.81 and 0.77, respectively, and for external accelerometer they were 0.82 and 0.96, respectively. fall detection using a mobile phone is a feasible and highly attractive technology for older adults, especially those living alone. It may be best achieved with an accelerometer attached to the waist, which transmits signals wirelessly to a phone.

  20. Standing stability evaluation using a triaxial accelerometer

    NARCIS (Netherlands)

    Mayagoitia, Ruth E.; Mayagoitia, R.E.; Lötters, Joost Conrad; Lotters, Joost Conrad; Veltink, Petrus H.

    1996-01-01

    A triaxial accelerometer is placed at the back of the subject at the height of the center of mass. Force plate data are collected simultaneously. Subjects stand in a comfortable position with eyes open, eyes closed and doing cognitive tasks; and with feet together with eyes open and closed. The

  1. MEMS Accelerometers Sensors: an Application in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Daniel CORRÊA

    2010-09-01

    Full Text Available The measurement of a particular human body member position is extremely important in many applications. The human behavior understanding typically involves the body posture analysis or estimation, as well as the generated corresponding gestures. This behavior characterization allows analyzing, interpreting, and animating human actions and therefore enables us the use of experimental methodologies. Using the virtual reality devices to facilitate people’s lives, they can help to train and improve the actions of an Olympic athlete, for example and imitation of human actions by robotic systems. The systems development to monitor human body members’ movements is a growing interesting area, both in entertainment and in systems to help physically disabled people, as that developing assistive technology. To contribute to this area, this paper presents the experimental development of an instrumented glove prototype of low cost for the recognition of hand inclination movements, using a Micro-Electro-Mechanical Systems (MEMS accelerometer, by virtual reality concepts for demonstration in real time. We present the hardware that was developed, the calibration procedures, the achieved results with their statistical corresponding validation. The results allowed to state that the system is suitable for the inclination measurement in a 2D plan, thus allowing its use in entertainment systems and as an auxiliary device for assistive technology system.

  2. DEPTracker – Sleep Pattern Tracking with Accelerometer Technology

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Havn, Ib; Svane Hansen, Lars

    2015-01-01

    REM (Rapid Eye Movement) sleep pattern changes are known to be an early indicator of effective medical treatment of patients with a depression diagnosis. Existing methods to detect REM sleep pattern changes are known to be inaccurate, costly, or otherwise inadequate in normal settings...... of this patient group. In this paper, we demonstrate DEPTracker, a system capable of detecting sleep patterns, and in particular REM sleep. We show that DEPTracker is an accurate, cost-effective and suitable approach for sleep pattern detection in general. Details of the technology used, combining accelerometer...... technology with digital signal analysis is given and illustrates that the system is able to successfully detect REM sleep. The project demonstrates that accelerometers can be mounted on an eye lid and eye movements can be detected, sampled and stored in a database for online real-time analysis or post-sleep...

  3. Measurement of peak impact loads differ between accelerometers - Effects of system operating range and sampling rate.

    Science.gov (United States)

    Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C

    2017-06-14

    A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    International Nuclear Information System (INIS)

    Dong Linxi; Chen Jindan; Huo Weihong; Li Yongjie; Sun Lingling; Yan Haixia

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30: 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  5. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    Science.gov (United States)

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-01-14

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.

  6. Tilt measurement using inclinometer based on redundant configuration of MEMS accelerometers

    Science.gov (United States)

    Lu, Jiazhen; Liu, Xuecong; Zhang, Hao

    2018-05-01

    Inclinometers are widely used in tilt measurement and their required accuracy is becoming ever higher. Most existing methods can effectively work only when the tilt is less than 60°, and the accuracy still can be improved. A redundant configuration of micro-electro mechanical system accelerometers is proposed in this paper and a least squares method and data processing normalization are used. A rigorous mathematical derivation is given. Simulation and experiment are used to verify its feasibility. The results of a Monte Carlo simulation, repeated 3000 times, and turntable reference experiments have shown that the tilt measure range can be expanded to 0°–90° by this method and that the measurement accuracy of θ can be improved by more than 10 times and the measurement accuracy of γ can be also improved effectively. The proposed method is proved to be effective and significant in practical application.

  7. The use of MP3 recorders to log data from equine hoof mounted accelerometers.

    Science.gov (United States)

    Parsons, K J; Wilson, A M

    2006-11-01

    MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction

  8. Design of a Piezoelectric Accelerometer with High Sensitivity and Low Transverse Effect

    Directory of Open Access Journals (Sweden)

    Bian Tian

    2016-09-01

    Full Text Available In order to meet the requirements of cable fault detection, a new structure of piezoelectric accelerometer was designed and analyzed in detail. The structure was composed of a seismic mass, two sensitive beams, and two added beams. Then, simulations including the maximum stress, natural frequency, and output voltage were carried out. Moreover, comparisons with traditional structures of piezoelectric accelerometer were made. To verify which vibration mode is the dominant one on the acceleration and the space between the mass and glass, mode analysis and deflection analysis were carried out. Fabricated on an n-type single crystal silicon wafer, the sensor chips were wire-bonged to printed circuit boards (PCBs and simply packaged for experiments. Finally, a vibration test was conducted. The results show that the proposed piezoelectric accelerometer has high sensitivity, low resonance frequency, and low transverse effect.

  9. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    International Nuclear Information System (INIS)

    D’Emilia, Giulio; Di Gasbarro, David; Gaspari, Antonella; Natale, Emanuela

    2016-01-01

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behavior if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.

  10. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    Energy Technology Data Exchange (ETDEWEB)

    D’Emilia, Giulio, E-mail: giulio.demilia@univaq.it; Di Gasbarro, David, E-mail: david.digasbarro@graduate.univaq.it; Gaspari, Antonella, E-mail: antonella.gaspari@graduate.univaq.it; Natale, Emanuela, E-mail: emanuela.natale@univaq.it [University of L’Aquila, Department of Industrial and Information Engineering and Economics (DIIIE), via G. Gronchi, 18, 67100 L’Aquila (Italy)

    2016-06-28

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behavior if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.

  11. The timing of scour and fill in a gravel-bedded river measured with buried accelerometers

    Science.gov (United States)

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.

    2013-01-01

    A device that measures the timing of streambed scour and the duration of sediment mobilization at specific depths of a streambed was developed using data-logging accelerometers placed within the gravel substrate of the Cedar River, Washington, USA. Each accelerometer recorded its orientation every 20 min and remained stable until the surrounding gravel matrix mobilized as sediment was transported downstream and scour reached the level of the accelerometer. The accelerometer scour monitors were deployed at 26 locations in salmon-spawning habitat during the 2010–2011 flood season to record when the streambed was scoured to the depth of typical egg-pocket deposition. Scour was recorded at one location during a moderate high-flow event (65 m3/s; 1.25–1.5-year recurrence interval) and at 17 locations during a larger high-flow event (159 m3/s; 7-year recurrence interval). Accelerometer scour monitors recorded periods of intermittent sediment mobilization and stability within a high-flow event providing insight into the duration of scour. Most scour was recorded during the rising limb and at the peak of a flood hydrograph, though some scour occurred during sustained high flows following the peak of the flood hydrograph.

  12. Physics Education using a Smartphone Accelerometer

    OpenAIRE

    Peters, Randall D.

    2010-01-01

    Described is an experiment in which a smartphone was caused to move at steady state in a vertical plane, on a path that was nearly circular. During a time interval of data acquisition that encompassed multiple orbits, the acceleration of the phone was measured by means of its internal accelerometer. A subsequent analysis of the data that was collected shows reasonable agreement between experiment and a simple theory of the motion.

  13. Monitoring walking and cycling of middle-aged to older community dwellers using wireless wearable accelerometers

    NARCIS (Netherlands)

    Zhang, Yuting; Beenakker, Karel G.M.; Butala, Pankil M.; Lin, Cheng Chieh; Little, Thomas D.C.; Maier, Andrea B.; Stijntjes, Marjon; Vartanian, Richard; Wagenaar, Robert C.

    2012-01-01

    Changes in gait parameters have been shown to be an important indicator of several age-related cognitive and physical declines of older adults. In this paper we propose a method to monitor and analyze walking and cycling activities based on a triaxial accelerometer worn on one ankle. We use an

  14. Monitoring walking and cycling of middle-aged to older community dwellers using wireless wearable accelerometers.

    NARCIS (Netherlands)

    Zhang, Yuting; Beenakker, Karel G.M.; Butala, Pankil M.; Lin, Cheng Chieh; Little, Thomas D.C.; Maier, Andrea B.; Stijntjes, Marjon; Vartanian, Richard; Wagenaar, Robert C.

    2012-01-01

    Changes in gait parameters have been shown to be an important indicator of several age-related cognitive and physical declines of older adults. In this paper we propose a method to monitor and analyze walking and cycling activities based on a triaxial accelerometer worn on one ankle. We use an

  15. Design of a MEMS Capacitive Comb-drive Micro-accelerometer with Sag Optimization

    Directory of Open Access Journals (Sweden)

    B. D. PANT

    2009-10-01

    Full Text Available The current paper presents an optimization study for the designing of a highly sensitive inertial grade capacitive accelerometer based on comb-drive actuation and sensing. The proof mass, suspension system (beams or tethers, stators and rotors have to be realized through an HAR (high aspect ratio DRIE (deep reactive ion etching process for which process optimization has already been done at our laboratory. As the proof mass is a bulk micro-machined structure having a mass in milligram range, the optimum positioning of the tethers on the proof mass is important to have minimum sag, necessary to reduce the off-axis sensitivity. The optimization for the positioning of the tethers has been carried out using a commercial software tool ANSYSTM Multiphysics. The accelerometer has been modeled analytically to predict its characteristics. The dependency of sensitivity on the dimensions of the suspension beams (tethers has also been verified using the above FEM software tool. The present device has been designed to deliver a high sensitivity of 13.6 mV/g/V for low-g applications.

  16. Modeling the Microstructure Curvature of Boron-Doped Silicon in Bulk Micromachined Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiaoping He

    2013-01-01

    Full Text Available Microstructure curvature, or buckling, is observed in the micromachining of silicon sensors because of the doping of impurities for realizing certain electrical and mechanical processes. This behavior can be a key source of error in inertial sensors. Therefore, identifying the factors that influence the buckling value is important in designing MEMS devices. In this study, the curvature in the proof mass of an accelerometer is modeled as a multilayered solid model. Modeling is performed according to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process (BDWP based on the self-stopped etch technique. Moreover, the proposed multilayered solid model is established as an equivalent composite structure formed by a group of thin layers that are glued together. Each layer has a different Young’s modulus value and each undergoes different volume shrinkage strain owing to boron doping in silicon. Observations of five groups of proof mass blocks of accelerometers suggest that the theoretical model is effective in determining the buckling value of a fabricated structure.

  17. Detecting gunshots using wearable accelerometers.

    Directory of Open Access Journals (Sweden)

    Charles E Loeffler

    Full Text Available Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  18. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.

    Science.gov (United States)

    Scott, Joseph J; Rowlands, Alex V; Cliff, Dylan P; Morgan, Philip J; Plotnikoff, Ronald C; Lubans, David R

    2017-12-01

    To determine the comparability and feasibility of wrist- and hip-worn accelerometers among free-living adolescents. 89 adolescents (age=13-14years old) from eight secondary schools in New South Wales (NSW), Australia wore wrist-worn GENEActiv and hip-worn ActiGraph (GT3X+) accelerometers simultaneously for seven days and completed an accelerometry behavior questionnaire. Bivariate correlations between the wrist- and hip-worn out-put were used to determine concurrent validity. Paired samples t-test were used to compare minutes per day in moderate-to-vigorous physical activity (MVPA). Group means and paired sample t-tests were used to analyze participants' perceptions of the wrist- and hip-worn monitoring protocols to assist with determining the feasibility. Wrist-worn accelerometry compared favorably with the hip-worn in average activity (r=0.88, phip-worn accelerometer (n=152, 24.4%). Participants reported they liked to wear the device on the wrist (phip (phip-worn accelerometer out-put among adolescents in free-living conditions. Adolescent compliance was significantly higher with wrist placement, with participants reporting that it was more comfortable and less embarrassing to wear on the wrist. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Feasibility of heart sounds measurements from an accelerometer within an ICD pulse generator.

    Science.gov (United States)

    Siejko, Krzysztof Z; Thakur, Pramodsingh H; Maile, Keith; Patangay, Abhilash; Olivari, Maria-Teresa

    2013-03-01

    The feasibility of detecting heart sounds (HS) from an accelerometer sensor enclosed within an implantable cardioverter defibrillator (ICD) pulse generator (PG) was explored in a noninvasive pilot study on heart failure (HF) patients with audible third HS (S3). Accelerometer circuitry enhanced for HS was incorporated into non-functional ICDs. A study was conducted on 30 HF patients and 10 normal subjects without history of cardiac disease. The devices were taped to the skin surface over both left and right pectoral regions to simulate subcutaneous implants. A lightweight reference accelerometer was taped over the cardiac apex. Waveforms were recorded simultaneously with a surface electrocardiogram for 2 minutes. Algorithms were developed to perform off-line automatic detection of HS and HS time intervals (HSTIs). S1, S2, and S3 vibrations were detected in all accelerometer locations for all 40 subjects, including 16 subjects without an audible S3. A substantial proportion of S3 energy was infrasonic (remote ambulatory monitoring of HF progression and the detection of the onset of HF decompensation. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  20. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    Science.gov (United States)

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  1. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    Science.gov (United States)

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  2. Quantifying walking and standing behaviour of dairy cows using a moving average based on output from an accelerometer

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Pedersen, Asger Roer; Herskin, Mette S

    2010-01-01

    in sequences of approximately 20 s for the period of 10 min. Afterwards the cows were stimulated to move/lift the legs while standing in a cubicle. The behaviour was video recorded, and the recordings were analysed second by second for walking and standing behaviour as well as the number of steps taken....... Various algorithms for predicting walking/standing status were compared. The algorithms were all based on a limit of a moving average calculated by using one of two outputs of the accelerometer, either a motion index or a step count, and applied over periods of 3 or 5 s. Furthermore, we investigated...... the effect of additionally applying the rule: a walking period must last at least 5 s. The results indicate that the lowest misclassification rate (10%) of walking and standing was obtained based on the step count with a moving average of 3 s and with the rule applied. However, the rate of misclassification...

  3. A method to deal with installation errors of wearable accelerometers for human activity recognition

    International Nuclear Information System (INIS)

    Jiang, Ming; Wang, Zhelong; Shang, Hong; Li, Hongyi; Wang, Yuechao

    2011-01-01

    Human activity recognition (HAR) by using wearable accelerometers has gained significant interest in recent years in a range of healthcare areas, including inferring metabolic energy expenditure, predicting falls, measuring gait parameters and monitoring daily activities. The implementation of HAR relies heavily on the correctness of sensor fixation. The installation errors of wearable accelerometers may dramatically decrease the accuracy of HAR. In this paper, a method is proposed to improve the robustness of HAR to the installation errors of accelerometers. The method first calculates a transformation matrix by using Gram–Schmidt orthonormalization in order to eliminate the sensor's orientation error and then employs a low-pass filter with a cut-off frequency of 10 Hz to eliminate the main effect of the sensor's misplacement. The experimental results showed that the proposed method obtained a satisfactory performance for HAR. The average accuracy rate from ten subjects was 95.1% when there were no installation errors, and was 91.9% when installation errors were involved in wearable accelerometers

  4. Arc-Second Pointer for Balloon-Borne Astronomical Instrument

    Science.gov (United States)

    Ward, Philip R.; DeWeese, Keith

    2004-01-01

    A control system has been designed to keep a balloon-borne scientific instrument pointed toward a celestial object within an angular error of the order of an arc second. The design is intended to be adaptable to a large range of instrument payloads. The initial payload to which the design nominally applies is considered to be a telescope, modeled as a simple thin-walled cylinder 24 ft (approx.= 7.3 m) long, 3 ft (approx.= 0.91 m) in diameter, weighing 1,500 lb (having a mass of .680 kg). The instrument would be mounted on a set of motor-driven gimbals in pitch-yaw configuration. The motors on the gimbals would apply the control torques needed for fine adjustments of the instrument in pitch and yaw. The pitch-yaw mount would, in turn, be suspended from a motor mount at the lower end of a pair of cables hanging down from the balloon (see figure). The motor in this mount would be used to effect coarse azimuth control of the pitch-yaw mount. A notable innovation incorporated in the design is a provision for keeping the gimbal bearings in constant motion. This innovation would eliminate the deleterious effects of static friction . something that must be done in order to achieve the desired arc-second precision. Another notable innovation is the use of linear accelerometers to provide feedback that would facilitate the early detection and counteraction of disturbance torques before they could integrate into significant angular-velocity and angular-position errors. The control software processing the sensor data would be capable of distinguishing between translational and rotational accelerations. The output of the accelerometers is combined with that of angular position and angular-velocity sensors into a proportional + integral + derivative + acceleration control law for the pitch and yaw torque motors. Preliminary calculations have shown that with appropriate gains, the power demand of the control system would be low enough to be satisfiable by means of storage

  5. Garment-based detection of falls and activities of daily living using 3-axis MEMS accelerometer

    International Nuclear Information System (INIS)

    Nyan, M N; Tay, Francis E H; Manimaran, M; Seah, K H W

    2006-01-01

    This paper studied the detection of falls and activities of daily living (ADL) with two objectives: (1) minimum number of sensors for a broad range of activities and (2) maximize the comfort of the wearer for long term use. We used a garment to provide long term comfort for the wearer, with a 3-axis MEMS accelerometer on the shoulder position, as a wearable platform. ADL were detected in time-frequency domain and summation of absolute peak values of 3-D acceleration signals was used as feature in fall detection. 6 male and female subjects performed approximately five-hour long experiment. Sensitivity of 94.98% and specificity of 98.83% for altogether 1495 activities were achieved. Our garment-based detection system fulfilled the objective of providing the comfort of the wearer in long term monitoring of falls and ADL with high sensitivity. In fall detection, our device can summon medical assistances via SMS (Short Message Service). This detection system can raise fall alarm (fall SMS) automatically to individuals to get a shortened interval of the arrival of assistance

  6. Extracting objective estimates of sedentary behavior from accelerometer data: measurement considerations for surveillance and research applications.

    Directory of Open Access Journals (Sweden)

    Youngdeok Kim

    Full Text Available Accelerometer-based activity monitors are widely used in research and surveillance applications for quantifying sedentary behavior (SB and physical activity (PA. Considerable research has been done to refine methods for assessing PA, but relatively little attention has been given to operationalizing SB parameters (i.e., sedentary time and breaks from accelerometer data - particularly in relation to health outcomes. This study investigated: (a the accrued patterns of sedentary time and breaks; and (b the associations of sedentary time and breaks in different bout durations with cardiovascular risk factors.Accelerometer data on 5,917 adults from the National Health Examination and Nutrition Survey (NHANES 2003-2006 were used. Sedentary time and breaks at different bout durations (i.e., 1, 2-4, 5-9, 10-14, 15-19, 20-24, 25-29, and ≥ 30-min were obtained using a threshold of < 100 counts per minute. Sedentary time and breaks were regressed on cardiovascular risk factors (waist circumference, triglyceride, and high-density lipoprotein cholesterol and body mass index across bout durations.The results revealed that the majority of sedentary time occurred within relatively short bout durations (≈ 70% and ≈ 85% for < 5-min and < 10-min, respectively. The associations of sedentary time and breaks with health outcomes varied depending on how bout time was defined. Estimates of SB parameters based on bout durations of 5 min or shorter were associated with reduced cardiovascular risk factors while durations longer than 10-min were generally associated with increased risk factors.The present study demonstrates that the duration of sedentary bouts should be further considered when operationalizing the SB parameters from accelerometer data. The threshold of 5 minutes to define a bout is defensible, but a 10 minute threshold would provide a more conservative estimate to clearly capture the prolonged nature of sedentary behavior. Additional research is

  7. Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers

    International Nuclear Information System (INIS)

    Liu, Yu-Chia; Tsai, Ming-Han; Fang, Weileun; Tang, Tsung-Lin

    2011-01-01

    This study presents a simple approach to improve the performance of the CMOS-MEMS capacitive accelerometer by means of the post-CMOS metal electroplating process. The metal layer can be selectively electroplated on the MEMS structures at low temperature and the thickness of the metal layer can be easily adjusted by this process. Thus the performance of the capacitive accelerometer (i.e. sensitivity, noise floor and the minimum detectable signal) can be improved. In application, the proposed accelerometers have been implemented using (1) the standard CMOS 0.35 µm 2P4M process by CMOS foundry, (2) Ti/Au seed layers deposition/patterning by MEMS foundry and (3) in-house post-CMOS electroplating and releasing processes. Measurements indicate that the sensitivity is improved 2.85-fold, noise is decreased near 1.7-fold and the minimum detectable signal is improved from 1 to 0.2 G after nickel electroplating. Moreover, unwanted structure deformation due to the temperature variation is significantly suppressed by electroplated nickel.

  8. Physical activity and sedentary behavior during pregnancy and postpartum, measured using hip and wrist-worn accelerometers

    Directory of Open Access Journals (Sweden)

    Kathryn R. Hesketh

    2018-06-01

    Full Text Available Background: Physical activity in pregnancy and postpartum is beneficial to mothers and infants. To advance knowledge of objective physical activity measurement during these periods, this study compares hip to wrist accelerometer compliance; assesses convergent validity (correlation between hip- and wrist-worn accelerometry; and assesses change in physical activity from pregnancy to postpartum. Methods: We recruited women during pregnancy (n = 100; 2014–2015, asking them to wear hip and wrist accelerometers for 7 days during Trimester 2 (T2, Trimester 3 (T3, and 3-, 6-, 9- and 12-months postpartum. We assessed average wear-time and correlations (axis-specific counts/minute, vector magnitude counts/day and step counts/day at T2, T3, and postpartum. Results: Compliance was higher for wrist-worn accelerometers. Hip and wrist accelerometers showed moderate to high correlations (Pearson's r 0.59 to 0.84. Hip-measured sedentary and active time differed little between T2 and T3. Moderate-to-vigorous physical activity decreased at T3 and remained low postpartum. Light physical activity increased and sedentary time decreased throughout the postpartum period. Conclusions: Wrist accelerometers may be preferable during pregnancy and appear comparable to hip accelerometers. As physical activity declines during later pregnancy and may not rebound post birth, support for re-engaging in physical activity earlier in the postpartum period may benefit women. Keywords: Physical activity, Pregnancy, Postpartum, Sedentary behavior, Measurement

  9. Knowledge based expert system approach to instrumentation selection (INSEL

    Directory of Open Access Journals (Sweden)

    S. Barai

    2004-08-01

    Full Text Available The selection of appropriate instrumentation for any structural measurement of civil engineering structure is a complex task. Recent developments in Artificial Intelligence (AI can help in an organized use of experiential knowledge available on instrumentation for laboratory and in-situ measurement. Usually, the instrumentation decision is based on the experience and judgment of experimentalists. The heuristic knowledge available for different types of measurement is domain dependent and the information is scattered in varied knowledge sources. The knowledge engineering techniques can help in capturing the experiential knowledge. This paper demonstrates a prototype knowledge based system for INstrument SELection (INSEL assistant where the experiential knowledge for various structural domains can be captured and utilized for making instrumentation decision. In particular, this Knowledge Based Expert System (KBES encodes the heuristics on measurement and demonstrates the instrument selection process with reference to steel bridges. INSEL runs on a microcomputer and uses an INSIGHT 2+ environment.

  10. A novel stress isolation guard-ring design for the improvement of a three-axis piezoresistive accelerometer

    International Nuclear Information System (INIS)

    Hsieh, Hsieh-Shen; Chang, Heng-Chung; Hu, Chih-Fan; Cheng, Chao-Lin; Fang, Weileun

    2011-01-01

    This study designs and implements a stress isolation guard-ring structure to improve the performances of the existing single proof-mass three-axis piezoresistive accelerometer. Thus, the environment disturbances, such as temperature variation and force/deflection transmittance, for a packaged three-axis piezoresistive accelerometer are significantly reduced. In application, the three-axis piezoresistive accelerometer has been fabricated using the bulk micromachining process on the SOI wafer. Experimental results show that the out-of-plane deformation of the suspended spring mass on the packaged accelerometer is reduced from 0.72 to 0.10 µm at a 150 °C temperature elevation. The temperature coefficient of zero-g offset for the presented sensor is reduced, and the temperature-induced sensitivity variation is minimized as well. Measurements also demonstrate that the guard-ring design successfully reduces the false signals induced by the force and displacement transmittance disturbances for one order of magnitude. Moreover, the three-axis acceleration sensing for the presented accelerometer with guard ring has also been demonstrated with sensitivities of 0.12–0.17 mV V −1 g −1 and nonlinearity < 1.02%.

  11. A comparison of the Actigraph GT1M and GT3X accelerometers under standardized and free-living conditions

    International Nuclear Information System (INIS)

    Kaminsky, Leonard A; Ozemek, Cemal

    2012-01-01

    Prior to 2008, data collection from Actigraph accelerometers was only possible in the uniaxial mode. In 2009, Actigraph released the GT3X, which allows triaxial data collection. The purpose of this study was to determine if data collected by the GT3X in the uniaxial mode are comparable to its predecessor, the GT1M, under both standardized and free-living conditions. Thirty-four subjects (17 women and 17 men) provided complete data for this study. Subjects wore the accelerometers (one GT1M and one GT3X) on their waistband in line with the right and left anterior axillary lines. Each subject walked on a treadmill at speeds of 2.4, 3.2, 4.0, 4.8, 5.6 and 6.4 km h −1 for 5 min each, and then continued to wear both accelerometers for all waking hours for three consecutive days. Mean steady-state activity counts min –1 for both accelerometers were not statistically different for the standardized treadmill walking speeds and for mean minutes/day and activity counts/day for intensity classifications under the free-living condition. Based on comparisons made from both standardized walking speeds and free-living conditions, it is reasonable to compare data derived from either the GT1M or GT3X when collected in the uniaxial mode. (paper)

  12. Novel Oversampling Technique for Improving Signal-to-Quantization Noise Ratio on Accelerometer-Based Smart Jerk Sensors in CNC Applications.

    Science.gov (United States)

    Rangel-Magdaleno, Jose J; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Cabal-Yepez, Eduardo

    2009-01-01

    Jerk monitoring, defined as the first derivative of acceleration, has become a major issue in computerized numeric controlled (CNC) machines. Several works highlight the necessity of measuring jerk in a reliable way for improving production processes. Nowadays, the computation of jerk is done by finite differences of the acceleration signal, computed at the Nyquist rate, which leads to low signal-to-quantization noise ratio (SQNR) during the estimation. The novelty of this work is the development of a smart sensor for jerk monitoring from a standard accelerometer, which has improved SQNR. The proposal is based on oversampling techniques that give a better estimation of jerk than that produced by a Nyquist-rate differentiator. Simulations and experimental results are presented to show the overall methodology performance.

  13. Compressed sensing method for human activity recognition using tri-axis accelerometer on mobile phone

    Institute of Scientific and Technical Information of China (English)

    Song Hui; Wang Zhongmin

    2017-01-01

    The diversity in the phone placements of different mobile users' dailylife increases the difficulty of recognizing human activities by using mobile phone accelerometer data.To solve this problem,a compressed sensing method to recognize human activities that is based on compressed sensing theory and utilizes both raw mobile phone accelerometer data and phone placement information is proposed.First,an over-complete dictionary matrix is constructed using sufficient raw tri-axis acceleration data labeled with phone placement information.Then,the sparse coefficient is evaluated for the samples that need to be tested by resolving L1 minimization.Finally,residual values are calculated and the minimum value is selected as the indicator to obtain the recognition results.Experimental results show that this method can achieve a recognition accuracy reaching 89.86%,which is higher than that of a recognition method that does not adopt the phone placement information for the recognition process.The recognition accuracy of the proposed method is effective and satisfactory.

  14. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed oxy...

  15. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  16. The impact of accelerometer mounting methods on the level of vibrations recorded at ground surface

    Directory of Open Access Journals (Sweden)

    Krzysztof Czech

    2014-08-01

    Full Text Available The paper presents the results of field research based on the measurements of accelerations recorded at ground surface. The source of the vibration characterized by high repetition rate of pulse parameters was light falling weight deflectometer ZFG-01. Measurements of vibrations have been carried out using top quality high-precision measuring system produced by Brüel&Kiær. Accelerometers were mounted on a sandy soil surface at the measuring points located radially at 5-m and 10-m distances from the source of vibration. The paper analyses the impact that the method of mounting accelerometers on the ground has on the level of the recorded values of accelerations of vibrations. It has been shown that the method of attaching the sensor to the surface of the ground is crucial for the credibility of the performed measurements.[b]Keywords[/b]: geotechnics, surface vibrations, ground, vibration measurement

  17. Employing a tri-axial accelerometer for estimating energy ...

    African Journals Online (AJOL)

    The Tritrac-R3D, a portable tri-axial accelerometer, was assessed for its ability to estimate energy expenditure during simulated load carrying activities. The Tritrac data were compared to metabolic data collected simultaneously by a MetaMax ergospirometry system while ten, healthy male subjects (aged 20.7 ±1.4 years) ...

  18. Experimental Study of the Information Signal of Combined Shock, Tilt, and Motion Sensor Based on the 3-Axis MEMS-Accelerometer

    Directory of Open Access Journals (Sweden)

    S. A. Vasyukov

    2014-01-01

    Full Text Available Modern car alarm systems are equipped with smart sensors implemented using various physical principles. These sensors have to ensure high reliability and validity of monitored parameters with a lack of false operations. First of all, shock sensor, which is a part of, essentially, entire alarm systems, as well as tilt and motion sensors are referred to the smart sensors.Shock sensors with the sensitive elements (SE of piezoelectric, microphone, and electromagnetic types possess a number of the essential shortcomings caused by the type of SE. It is, first of all, a narrow band of the sensitive elements, which does not allow true differentiation of shocks to the autobody from false actions, as well as a various sensitivity of sensors depending on the SE axis orientation.Tilt sensors of electromagnetic type implemented as separate devices were seldom used because of their high cost and imperfect characteristics. Though there is still a need for such sensors. The specified shortcomings can be hardly overcome through improvement of sensitive element hangers of considered sensors. The use of the three-axial accelerometers made by MEMS technology seems to be the most perspective here.The article presents results of pilot studies of the accelerations reached when auto-body is under shock and a car is inclined and runs. When measuring, the test board STM32F3DISCOVERY with the MEMS accelerometer LSM303DLHS is used. A level of noise and vibrations has been analysed when mounting a board on the plastic panel of the car and when operating the engine in the range from 700 to 4000 rpm. The article presents accelerations implemented under the following conditions: light shocks in different parts of the auto-body (wing, trunk, hood; strong shock (closing a door; slow and fast acceleration to the speed of 20 km/h with the subsequent braking and passage of obstacles such as "sleeping policemen".Research results enabled us to make justification for selecting the

  19. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  20. A Comparative Study of All-Accelerometer Strapdowns for UAV INS

    National Research Council Canada - National Science Library

    Cardou, Philippe; Angeles, Jorge

    2005-01-01

    ...) for Unmanned Aerial Vehicles (UAV). Benefiting from the fabrication processes of MEMS technologies, accelerometers now offer several advantages over gyroscopes, such as low weight, compactness, high reliability and low cost, for example...

  1. A biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model

  2. Convergent validity of ActiGraph and Actical accelerometers for estimating physical activity in adults

    DEFF Research Database (Denmark)

    Duncan, Scott; Stewart, Tom; Bo Schneller, Mikkel

    2018-01-01

    PURPOSE: The aim of the present study was to examine the convergent validity of two commonly-used accelerometers for estimating time spent in various physical activity intensities in adults. METHODS: The sample comprised 37 adults (26 males) with a mean (SD) age of 37.6 (12.2) years from San Diego......, USA. Participants wore ActiGraph GT3X+ and Actical accelerometers for three consecutive days. Percent agreement was used to compare time spent within four physical activity intensity categories under three counts per minute (CPM) threshold protocols: (1) using thresholds developed specifically......Graph and Actical accelerometers provide significantly different estimates of time spent in various physical activity intensities. Regression and threshold adjustment were able to reduce these differences, although some level of non-agreement persisted. Researchers should be aware of the inherent limitations...

  3. Research on Web-Based Networked Virtual Instrument System

    International Nuclear Information System (INIS)

    Tang, B P; Xu, C; He, Q Y; Lu, D

    2006-01-01

    The web-based networked virtual instrument (NVI) system is designed by using the object oriented methodology (OOM). The architecture of the NVI system consists of two major parts: client-web server interaction and instrument server-virtual instrument (VI) communication. The web server communicates with the instrument server and the clients connected to it over the Internet, and it handles identifying the user's name, managing the connection between the user and the instrument server, adding, removing and configuring VI's information. The instrument server handles setting the parameters of VI, confirming the condition of VI and saving the VI's condition information into the database. The NVI system is required to be a general-purpose measurement system that is easy to maintain, adapt and extend. Virtual instruments are connected to the instrument server and clients can remotely configure and operate these virtual instruments. An application of The NVI system is given in the end of the paper

  4. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    Science.gov (United States)

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  5. Effect of the Detector Width and Gas Pressure on the Frequency Response of a Micromachined Thermal Accelerometer

    Directory of Open Access Journals (Sweden)

    Johann Courteaud

    2011-05-01

    Full Text Available In the present work, the design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor. It has been theoretically and experimentally studied with different detector widths, pressure and gas nature. Although this type of sensor has already been intensively examined, little information concerning the frequency response modeling is currently available and very few experimental results about the frequency response are reported in the literature. In some particular conditions, our measurements show a cut-off frequency at −3 dB greater than 200 Hz. By using simple cylindrical and planar models of the thermal accelerometer and an equivalent electrical circuit, a good agreement with the experimental results has been demonstrated.

  6. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals.

    Science.gov (United States)

    Rhudy, Matthew B; Mahoney, Joseph M

    2018-04-01

    The goal of this work is to compare the differences between various step counting algorithms using both accelerometer and gyroscope measurements from wrist and ankle-mounted sensors. Participants completed four different conditions on a treadmill while wearing an accelerometer and gyroscope on the wrist and the ankle. Three different step counting techniques were applied to the data from each sensor type and mounting location. It was determined that using gyroscope measurements allowed for better performance than the typically used accelerometers, and that ankle-mounted sensors provided better performance than those mounted on the wrist.

  7. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers

    International Nuclear Information System (INIS)

    Ellis, Katherine; Lanckriet, Gert; Kerr, Jacqueline; Godbole, Suneeta; Wing, David; Marshall, Simon

    2014-01-01

    Wrist accelerometers are being used in population level surveillance of physical activity (PA) but more research is needed to evaluate their validity for correctly classifying types of PA behavior and predicting energy expenditure (EE). In this study we compare accelerometers worn on the wrist and hip, and the added value of heart rate (HR) data, for predicting PA type and EE using machine learning. Forty adults performed locomotion and household activities in a lab setting while wearing three ActiGraph GT3X+ accelerometers (left hip, right hip, non-dominant wrist) and a HR monitor (Polar RS400). Participants also wore a portable indirect calorimeter (COSMED K4b2), from which EE and metabolic equivalents (METs) were computed for each minute. We developed two predictive models: a random forest classifier to predict activity type and a random forest of regression trees to estimate METs. Predictions were evaluated using leave-one-user-out cross-validation. The hip accelerometer obtained an average accuracy of 92.3% in predicting four activity types (household, stairs, walking, running), while the wrist accelerometer obtained an average accuracy of 87.5%. Across all 8 activities combined (laundry, window washing, dusting, dishes, sweeping, stairs, walking, running), the hip and wrist accelerometers obtained average accuracies of 70.2% and 80.2% respectively. Predicting METs using the hip or wrist devices alone obtained root mean square errors (rMSE) of 1.09 and 1.00 METs per 6 min bout, respectively. Including HR data improved MET estimation, but did not significantly improve activity type classification. These results demonstrate the validity of random forest classification and regression forests for PA type and MET prediction using accelerometers. The wrist accelerometer proved more useful in predicting activities with significant arm movement, while the hip accelerometer was superior for predicting locomotion and estimating EE. (paper)

  8. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.

    Science.gov (United States)

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Lanckriet, Gert; Wing, David; Marshall, Simon

    2014-11-01

    Wrist accelerometers are being used in population level surveillance of physical activity (PA) but more research is needed to evaluate their validity for correctly classifying types of PA behavior and predicting energy expenditure (EE). In this study we compare accelerometers worn on the wrist and hip, and the added value of heart rate (HR) data, for predicting PA type and EE using machine learning. Forty adults performed locomotion and household activities in a lab setting while wearing three ActiGraph GT3X+ accelerometers (left hip, right hip, non-dominant wrist) and a HR monitor (Polar RS400). Participants also wore a portable indirect calorimeter (COSMED K4b2), from which EE and metabolic equivalents (METs) were computed for each minute. We developed two predictive models: a random forest classifier to predict activity type and a random forest of regression trees to estimate METs. Predictions were evaluated using leave-one-user-out cross-validation. The hip accelerometer obtained an average accuracy of 92.3% in predicting four activity types (household, stairs, walking, running), while the wrist accelerometer obtained an average accuracy of 87.5%. Across all 8 activities combined (laundry, window washing, dusting, dishes, sweeping, stairs, walking, running), the hip and wrist accelerometers obtained average accuracies of 70.2% and 80.2% respectively. Predicting METs using the hip or wrist devices alone obtained root mean square errors (rMSE) of 1.09 and 1.00 METs per 6 min bout, respectively. Including HR data improved MET estimation, but did not significantly improve activity type classification. These results demonstrate the validity of random forest classification and regression forests for PA type and MET prediction using accelerometers. The wrist accelerometer proved more useful in predicting activities with significant arm movement, while the hip accelerometer was superior for predicting locomotion and estimating EE.

  9. Design and characterization of a fully differential MEMS accelerometer fabricated using MetalMUMPs technology.

    Science.gov (United States)

    Qu, Peng; Qu, Hongwei

    2013-05-02

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and -5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A -0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  10. Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population.

    Science.gov (United States)

    Chu, A H Y; van Dam, R M; Biddle, S J H; Tan, C S; Koh, D; Müller-Riemenschneider, F

    2018-04-05

    The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population. From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics. The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated

  11. Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test

    Science.gov (United States)

    James, George H.; Grygier, Michael; Selig, Molly M.

    2015-01-01

    Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.

  12. Physical activity in adolescents – Accelerometer data reduction criteria

    DEFF Research Database (Denmark)

    Toftager, Mette; Breum, Lars; Kristensen, Peter Lund

    and PA outcomes (mean cpm). The following parameters in the data reduction analyses were fixed: 30sec epoch, 24h duration, first registration accepted after 4h, maximum value 20,000cpm, and two activity epochs permitted in blocks of non-wear. Results: Accelerometer data were obtained from a total of 1...... 1 valid day of 6h wear time using a 10min non-wear criterion. The corresponding numbers using a 90min non-wear criterion were 20.6% and 99.4%. Lengthening the non-wear period decreases PA level (mean cpm) substantially, e.g. average PA was 641 cpm (5 days of 10h) using the 10min non-wear criterion...... compared to 570 cpm using 90min non-wear. No systematic differences in PA outcomes were found when comparing the range of days and hours. Discussion: We used a systematic approach to illustrate that even small inconsistencies in accelerometer data reduction can have substantial impact on compliance and PA...

  13. Utilizing Glove-Based Gestures and a Tactile Vest Display for Covert Communications and Robot Control

    Science.gov (United States)

    2014-06-01

    wearing instrumented glove for hand and arm signals. .......................................9 Figure 4. TDS Nomad handheld computer...of a standard tactical glove with accelerometers embedded within each finger, and an accelerometer, gyroscope, and digital compass embedded in the...signal communication were performed by two TDS Nomad GPS-enabled ruggedized handheld computers (one carried by the individual generating hand signals and

  14. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    Science.gov (United States)

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-01-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.

  15. Realization of OFCC based Transimpedance Mode Instrumentation Amplifier

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2016-01-01

    Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.

  16. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    International Nuclear Information System (INIS)

    O’Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Kim, C.; Shaner, M.; Asadoor, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Bhawal, A.; Gong, P.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-01-01

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems

  17. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Rodionov, A. V.; Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Shaner, M.; Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street Pasadena, California 91105 (United States); Sobacchi, E. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dergachev, V.; DeSalvo, R., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientfica 1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia)

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  18. Using a balloon-borne accelerometer to improve understanding of the turbulent structure of the atmosphere for aviation.

    Science.gov (United States)

    Marlton, Graeme; Harrison, Giles; Nicoll, Keri; Williams, Paul

    2017-04-01

    This work describes the instrument development, characterisation and data analysis from 51 radiosondes specially equipped with accelerometers to measure atmospheric turbulence. Turbulence is hazardous to aircraft as it cannot be observed in advance. It is estimated that turbulence costs the airline industry millions of US dollars a year through damage to aircraft and injuries to passengers and crew. To avoid turbulence pilots and passengers rely on Clear Air Turbulence forecasts, which have limited skill. One limitation in this area is lack of quantitative unbiased observations. The main source of turbulence observations is from commercial airline pilot reports, which are subjective, biased by the size of aircraft and pilot experience. This work seeks to improve understanding of turbulence through a standardised method of turbulence observations amenable throughout the troposphere. A sensing package has been developed to measure the acceleration of the radiosonde as it swings in response to turbulent agitation of its carrier balloon. The accelerometer radiosonde has been compared against multiple turbulence remote sensing methods to characterise its measurements including calibration with Doppler lidar eddy dissipation rate in the boundary layer. A further relationship has been found by comparison with the spectral width of a Mesospheric, Stratospheric and Tropospheric (MST) radar. From the full dataset of accelerometer sonde ascents a standard deviation of 5 m s-2 is defined as a threshold for significant turbulence. The dataset spans turbulence generated in meteorological phenomena such as jet streams, clouds and in the presence of convection. The analysis revealed that 77% of observed turbulence could be explained by the aforementioned phenomena. In jet streams, turbulence generation was often caused by horizontal processes such as deformation. In convection, turbulence is found to form when CAPE >150 J kg-1. Deeper clouds were found to be more turbulent due to

  19. Effect of Slice Error of Glass on Zero Offset of Capacitive Accelerometer

    Science.gov (United States)

    Hao, R.; Yu, H. J.; Zhou, W.; Peng, B.; Guo, J.

    2018-03-01

    Packaging process had been studied on capacitance accelerometer. The silicon-glass bonding process had been adopted on sensor chip and glass, and sensor chip and glass was adhered on ceramic substrate, the three-layer structure was curved due to the thermal mismatch, the slice error of glass lead to asymmetrical curve of sensor chip. Thus, the sensitive mass of accelerometer deviated along the sensitive direction, which was caused in zero offset drift. It was meaningful to confirm the influence of slice error of glass, the simulation results showed that the zero output drift was 12.3×10-3 m/s2 when the deviation was 40μm.

  20. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  1. Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference

    NARCIS (Netherlands)

    Slootmaker, S.M.; Chin A Paw, M.J.M.; Schuit, A.J.; Mechelen, W. van; Koppes, L.L.J.

    2009-01-01

    The purpose of this study was to examine the concurrent validity of the Personal Activity Monitor (PAM) accelerometer relative to the Actigraph accelerometer using oxygen consumption as a reference, and to assess the test-retest reliability of the PAM. Thirty-two fit, normal weight adults (aged

  2. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  3. Design and Characterization of a Fully Differential MEMS Accelerometer Fabricated Using MetalMUMPs Technology

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2013-05-01

    Full Text Available This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and −5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A −0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  4. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    Science.gov (United States)

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  5. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Guillermo Royo

    2016-12-01

    Full Text Available In this work, we present a capacitance-to-voltage converter (CVC for capacitive accelerometers based on microelectromechanical systems (MEMS. Based on a fully-differential transimpedance amplifier (TIA, it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  6. Feasibility of Optical Instruments Based on Multiaperture Optics.

    Science.gov (United States)

    1984-10-16

    system may be configured. The optical elements may be nonimaging concentrators (light horns), the field of view (FOV) of which may be controlled by a...RD-RI58 868 FEASIBILITY OF OPTICAL INSTRUMENTS BASED ON i/I MULTIAPERTURE OPTICS (U) FLORIDA UNIV GAINESVILLE DEPT OF NUCLEAR ENGINEERING SCIENCES J D...d Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ’ 0 Feasibility of Optical Instruments Based on Final Report * CD Multiaperature Optics 615/83 to 9/30

  7. A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series

    International Nuclear Information System (INIS)

    Kobayashi, T; Okada, H; Maeda, R; Itoh, T; Masuda, T

    2010-01-01

    A digital output piezoelectric accelerometer is proposed to realize an ultra-low power consumption wireless sensor node. The accelerometer has patterned piezoelectric thin films (piezoelectric plates) electrically connected in series accompanied by CMOS switches at the end of some of the piezoelectric plates. The connected piezoelectric plates amplify the output voltage without the use of amplifiers. The CMOS switches turn on when the output voltage of the piezoelectric plates is higher than the CMOS threshold voltage. The piezoelectric accelerometer converts the acceleration into a number of on-state CMOS switches, which can be called the digital output. The proposed digital output piezoelectric accelerometer, using Pb(Zr, Ti)O 3 (PZT) thin films as the piezoelectric material, was fabricated through a microelectromechanical system (MEMS) microfabrication process. The output voltage was found to be amplified by the number of connected piezoelectric plates. The DC output voltage obtained by using an AC to DC conversion circuit is proportional to the number of connections. The results show the potential for realizing the proposed digital output piezoelectric accelerometer

  8. Avoidance-based human Pavlovian-to-instrumental transfer

    Science.gov (United States)

    Lewis, Andrea H.; Niznikiewicz, Michael A.; Delamater, Andrew R.; Delgado, Mauricio R.

    2013-01-01

    The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning but, more recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse. PMID:24118624

  9. Validation of Swarm accelerometer data by modelled nongravitational forces

    Czech Academy of Sciences Publication Activity Database

    Bezděk, Aleš; Sebera, J.; Klokočník, Jaroslav

    2017-01-01

    Roč. 59, č. 10 (2017), s. 2512-2521 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) LG15003 Institutional support: RVO:67985815 Keywords : space -borne accelerometers * nongravitational accelerations * swarm mission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics, space science) Impact factor: 1.401, year: 2016

  10. Indoor footstep localization from structural dynamics instrumentation

    Science.gov (United States)

    Poston, Jeffrey D.; Buehrer, R. Michael; Tarazaga, Pablo A.

    2017-05-01

    Measurements from accelerometers originally deployed to measure a building's structural dynamics can serve a new role: locating individuals moving within a building. Specifically, this paper proposes measurements of footstep-generated vibrations as a novel source of information for localization. The complexity of wave propagation in a building (e.g., dispersion and reflection) limits the utility of existing algorithms designed to locate, for example, the source of sound in a room or radio waves in free space. This paper develops enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure. Experiments with actual measurements from an instrumented public building demonstrate the potential of locating footsteps to sub-meter accuracy. Furthermore, this paper explains how to forecast performance in other buildings with different sensor configurations. This localization capability holds the potential to assist public safety agencies in building evacuation and incidence response, to facilitate occupancy-based optimization of heating or cooling and to inform facility security.

  11. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Wu, S. C.; Zhou, Z. B.; Bai, Y. Z.; Hu, M.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-12-15

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10{sup −8} m/s{sup 2}/Hz{sup 1/2} at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  12. Design and Implementation of an Embedded Digital Throwing System Based on MEMS Multiaxial Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhen GAO

    2010-04-01

    Full Text Available This paper presents a novel embedded digital throwing system for synchronously sensing the throwing force of shot-put athletes in real time. The three axes integrated accelerometer, as a crucial device in the force sensing system, can acquire the kinetics data along three orthogonal directions with reasonably high accuracy. The digital shot with almost the same size and weight as the standard shot for open female has been designed, fabricated and implemented. The mechanical structure, signal processing system, and human-machine interface are illuminated in detail. In this manner, the force sensing system serves as a powerful tool for coaches and sports scientists to make scientific researches on professional throwing techniques. It also provides an intuitive and reliable guidance for the throwing athletes to improve their skills.

  13. Actigraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children.

    Directory of Open Access Journals (Sweden)

    Richard M Pulsford

    Full Text Available Accurate objective assessment of sedentary and physical activity behaviours during childhood is integral to the understanding of their relation to later health outcomes, as well as to documenting the frequency and distribution of physical activity within a population.To calibrate the Actigraph GT1M accelerometer, using energy expenditure (EE as the criterion measure, to define thresholds for sedentary behaviour and physical activity categories suitable for use in a large scale epidemiological study in young children.Accelerometer-based assessments of physical activity (counts per minute were calibrated against EE measures (kcal x kg(-1 x hr(-1 obtained over a range of exercise intensities using a COSMED K4b(2 portable metabolic unit in 53 seven-year-old children. Children performed seven activities: lying down viewing television, sitting upright playing a computer game, slow walking, brisk walking, jogging, hopscotch and basketball. Threshold count values were established to identify sedentary behaviour and light, moderate and vigorous physical activity using linear discriminant analysis (LDA and evaluated using receiver operating characteristic (ROC curve analysis.EE was significantly associated with counts for all non-sedentary activities with the exception of jogging. Threshold values for accelerometer counts (counts x minute(-1 were <100 for sedentary behaviour and ≤2240, ≤3840 and ≥3841 for light, moderate and vigorous physical activity respectively. The area under the ROC curves for discrimination of sedentary behaviour and vigorous activity were 0.98. Boundaries for light and moderate physical activity were less well defined (0.61 and 0.60 respectively. Sensitivity and specificity were higher for sedentary (99% and 97% and vigorous (95% and 91% than for light (60% and 83% and moderate (61% and 76% thresholds.The accelerometer cut points established in this study can be used to classify sedentary behaviour and to distinguish between

  14. Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test.

    Science.gov (United States)

    Doheny, Emer P; Walsh, Cathal; Foran, Timothy; Greene, Barry R; Fan, Chie Wei; Cunningham, Clodagh; Kenny, Rose Anne

    2013-09-01

    The five-times-sit-to-stand test (FTSS) is an established assessment of lower limb strength, balance dysfunction and falls risk. Clinically, the time taken to complete the task is recorded with longer times indicating increased falls risk. Quantifying the movement using tri-axial accelerometers may provide a more objective and potentially more accurate falls risk estimate. 39 older adults, 19 with a history of falls, performed four repetitions of the FTSS in their homes. A tri-axial accelerometer was attached to the lateral thigh and used to identify each sit-stand-sit phase and sit-stand and stand-sit transitions. A second tri-axial accelerometer, attached to the sternum, captured torso acceleration. The mean and variation of the root-mean-squared amplitude, jerk and spectral edge frequency of the acceleration during each section of the assessment were examined. The test-retest reliability of each feature was examined using intra-class correlation analysis, ICC(2,k). A model was developed to classify participants according to falls status. Only features with ICC>0.7 were considered during feature selection. Sequential forward feature selection within leave-one-out cross-validation resulted in a model including four reliable accelerometer-derived features, providing 74.4% classification accuracy, 80.0% specificity and 68.7% sensitivity. An alternative model using FTSS time alone resulted in significantly reduced classification performance. Results suggest that the described methodology could provide a robust and accurate falls risk assessment. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    International Nuclear Information System (INIS)

    David von Seggern

    2005-01-01

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount (∼ 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two boreholes. Signal correlation

  16. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014

  17. Stress relaxation insensitive designs for metal compliant mechanism threshold accelerometers

    Directory of Open Access Journals (Sweden)

    Carlos Vilorio

    2015-12-01

    Full Text Available We present two designs for metal compliant mechanisms for use as threshold accelerometers which require zero external power. Both designs rely on long, thin flexures positioned orthogonally to a flat body. The first design involves cutting or stamping a thin spring-steel sheet and then bending elements to form the necessary thin flexors. The second design uses precut spring-steel flexure elements mounted into a mold which is then filled with molten tin to form a bimetallic device. Accelerations necessary to switch the devices between bistable states were measured using a centrifuge. Both designs showed very little variation in threshold acceleration due to stress relaxation over a period of several weeks. Relatively large variations in threshold acceleration were observed for devices of the same design, most likely due to variations in the angle of the flexor elements relative to the main body of the devices. Keywords: Structural health monitoring, Sensor, Accelerometer, Zero power, Shock, Threshold

  18. Recognizing Human Activities User-independently on Smartphones Based on Accelerometer Data

    Directory of Open Access Journals (Sweden)

    Pekka Siirtola

    2012-06-01

    Full Text Available Real-time human activity recognition on a mobile phone is presented in this article. Unlike in most other studies, not only the data were collected using the accelerometers of a smartphone, but also models were implemented to the phone and the whole classification process (preprocessing, feature extraction and classification was done on the device. The system is trained using phone orientation independent features to recognize five everyday activities: walking, running, cycling, driving a car and sitting/standing while the phone is in the pocket of the subject's trousers. Two classifiers were compared, knn (k nearest neighbors and QDA (quadratic discriminant analysis. The models for real-time activity recognition were trained offline using a data set collected from eight subjects and these offline results were compared to real-time recognition rates, which are obtained by implementing models to mobile activity recognition application which currently supports two operating systems: Symbian^3 and Android. The results show that the presented method is light and, therefore, suitable for be used in real-time recognition. In addition, the recognition rates on the smartphones were encouraging, in fact, the recognition accuracies obtained are approximately as high as offline recognition rates. Also, the results show that the method presented is not an operating system dependent.

  19. Modelling fat mass as a function of weekly physical activity profiles measured by Actigraph accelerometers

    International Nuclear Information System (INIS)

    Augustin, Nicole H; Faraway, Julian J; Mattocks, Calum; Cooper, Ashley R; Ness, Andy R

    2012-01-01

    We show results on the Avon longitudinal study of parents and children (ALSPAC) using a new approach for modelling the relationship between health outcomes and physical activity assessed by accelerometers. The key feature of the model is that it uses the histogram of physical activity counts as a predictor function, rather than scalar summary measures such as average daily moderate to vigorous physical activity (MVPA). Three models are fitted: (1a) A regression of fat mass at age 12 (N = 4164) onto the histogram of accelerometer counts at age 12; (1b) A regression of fat mass at age 14 (N = 2403) onto the histogram of accelerometer counts at age 12 and (1c) a regression of fat mass at age 14 (N = 2413) onto the accelerometer counts at age 14. All three models significantly improve on models including MVPA instead of the histogram and improve the goodness of fit of models (2a), (2b) and (2c) from R 2 = 0.267, 0.248 and 0.230 to R 2 = 0.292, 0.263 and 0.258 for models (1a), (1b) and (1c) respectively. The proportion of time spent in sedentary and very light activity (corresponding to slow walking and similar activities) has a positive contribution towards fat mass and time spent in moderate to vigorous activity has a negative contribution towards fat mass. (paper)

  20. Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis

    Science.gov (United States)

    Arendra, A.; Akhmad, S.

    2018-01-01

    This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly

  1. Tracking of Physical Activity with Accelerometers Over a Two-year Time Period

    DEFF Research Database (Denmark)

    Dencker, Magnus; Tanha, Tina; Wollmer, Per

    2013-01-01

    BACKGROUND: Limited data exists of tracking and changes in accelerometer measured physical activity in children. METHODS: Physical activity was assessed by accelerometers for four days in 167 children (boys n=90, girls n=77), aged 9.8±0.6 years. Follow-up measurement was made 2.0±0.1 yrs later...... (range 1.9-2.1 yrs). General physical activity (GPA) was defined as mean count/minute. Minutes of inactivity, light- moderate- and vigorous physical activity (LMVPA), moderate and vigorous physical activity (MVPA) and vigorous physical activity (VPA) per day were calculated both as absolute values...... and as percentage of total registration time. RESULTS: Spearman rank order correlation indicated low tracking of MVPA and VPA in girls (r=0.25-0.33, P...

  2. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Sofía Ruiz de Gauna

    2016-01-01

    Full Text Available Background. Cardiopulmonary resuscitation (CPR feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin’s back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%. Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p<0.001. Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p<0.001. Median error in rate was 0.9 cpm (1.0%, with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces.

  3. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

    Directory of Open Access Journals (Sweden)

    Azrul Azlan Hamzah

    2008-11-01

    Full Text Available This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.

  4. Multiple-stage integrating accelerometer

    International Nuclear Information System (INIS)

    Devaney, H.F.

    1986-01-01

    An accelerometer assembly is described for use in activating a switch or the like responding to multiple acceleration pulses in series, comprising: a housing forming a chamber having a first and second end; a mass slidably disposed in the chamber and movable during acceleration from the first end toward the second end; means for biasing the movable mass toward a reset position adjacent the first end; means for damping the movement of the mass in the chamber; cam and follower means carried by the movable mass and the housing for relative movement in response to the acceleration, the cam and follower means including means for temporarily blocking the mass movement toward the second end after a first acceleration pulse; the cam and follower means cooperating together to allow continued movement toward the second end and switch activation in response to at least a second separate acceleration pulse in series with the first

  5. Some suggestions based on the instrumentation installation experience at RAPP

    International Nuclear Information System (INIS)

    Raghunath, M.R.; Singh, S.; Jain, V.K.

    1977-01-01

    Suggestions regarding installation of reactor instrumentation have been made based on the instrumentation installation experience at the Rajasthan Atomic Power Plant. It has been mentioned that the instrumentation installation work has to proceed simultaneously with that of the heavy equipment and piping errection work, to meet the commissioning target dates. (S.K.K.)

  6. Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based loading and stability.

    Science.gov (United States)

    Schütte, Kurt H; Seerden, Stefan; Venter, Rachel; Vanwanseele, Benedicte

    2018-01-01

    Medial tibial stress syndrome (MTSS) is a common overuse running injury with pathomechanics likely to be exaggerated by fatigue. Wearable accelerometry provides a novel alternative to assess biomechanical parameters continuously while running in more ecologically valid settings. The purpose of this study was to determine the influence of outdoor running fatigue and MTSS on both dynamic loading and dynamic stability derived from trunk and tibial accelerometery. Runners with (n=14) and without (n=16) history of MTSS performed an outdoor fatigue run of 3200m. Accelerometer-based measures averaged per lap included dynamic loading of the trunk and tibia (i.e. axial peak positive acceleration, signal power magnitude, and shock attenuation) as well as dynamic trunk stability (i.e. tri-axial root mean square ratio, step and stride regularity, and sample entropy). Regression coefficients from generalised estimating equations were used to evaluate group by fatigue interactions. No evidence could be found for dynamic loading being higher with fatigue in runners with MTSS history (all measures p>0.05). One significant group by running fatigue interaction effect was detected for dynamic stability. Specifically, in MTSS only, decreases mediolateral sample entropy i.e. loss of complexity was associated with running fatigue (prunning state. We suggest that a practical outdoor running fatigue protocol that concurrently captures trunk accelerometry-based movement complexity warrants further prospective investigation as an in-situ screening tool for MTSS individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Project B-610 instrument data base. Revision 6

    International Nuclear Information System (INIS)

    Silvan, G.R.

    1994-01-01

    The following technical information document contains the published data base listing for the instrumentation to be connected into the new MICON distributed control computer. Project B-610 PFP Instrument Upgrade (PFP HVAC Control Room Upgrade) will install the MICON system in PFP and provide for a new control room at the present site of the new SWP change room EDT-150750 1/11/93

  8. Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer

    Directory of Open Access Journals (Sweden)

    Edimar Pedrosa Gomes

    2015-01-01

    Full Text Available Different factors can contribute to a sedentary lifestyle among hemodialysis (HD patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity.

  9. Does accelerometer feedback on high-quality chest compression improve survival rate? An in-hospital cardiac arrest simulation.

    Science.gov (United States)

    Jung, Min Hee; Oh, Je Hyeok; Kim, Chan Woong; Kim, Sung Eun; Lee, Dong Hoon; Chang, Wen Joen

    2015-08-01

    We investigated whether visual feedback from an accelerometer device facilitated high-quality chest compressions during an in-hospital cardiac arrest simulation using a manikin. Thirty health care providers participated in an in-hospital cardiac arrest simulation with 1 minute of continuous chest compressions. Chest compressions were performed on a manikin lying on a bed according to visual feedback from an accelerometer feedback device. The manikin and accelerometer recorded chest compression data simultaneously. The simulated patient was deemed to have survived when the chest compression data satisfied all of the preset high-quality chest compression criteria (depth ≥51 mm, rate >100 per minute, and ≥95% full recoil). Survival rates were calculated from the feedback device and manikin data. The survival rate according to the feedback device data was 80%; however, the manikin data indicated a significantly lower survival rate (46.7%; P = .015). The difference between the accelerometer and manikin survival rates was not significant for participants with a body mass index greater than or equal to 20 kg/m(2) (93.3 vs 73.3%, respectively; P = .330); however, the difference in survival rate was significant in participants with body mass index less than 20 kg/m(2) (66.7 vs 20.0%, respectively; P = .025). The use of accelerometer feedback devices to facilitate high-quality chest compression may not be appropriate for lightweight rescuers because of the potential for compression depth overestimation. Clinical Research Information Service (KCT0001449). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Design and Analysis of Blast Induced Traumatic Brain Injury Mechanism Using a Surrogate Headform: Instrumentation and Outcomes

    Science.gov (United States)

    2011-05-01

    www.allaboutcircuits.com) 46 [35]. This resistance change is measured using a Wheatstone bridge. A Wheatstone bridge consists of 4 resistors in two circuit...measuring the strains and the precision resistors incorporated in the measuring instrument for completing the circuit. A more symmetrical, balanced... Piezo -Electric” and defines a class of accelerometer with low impedance output and built-in electronics that works on a two-wire constant current

  11. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer

    International Nuclear Information System (INIS)

    Long Shanli; Liu Yan; He Kejun; Tang Xinggang; Chen Qian

    2014-01-01

    A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is −116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5 × 2.5 mm 2 and the current is 3.5 mA. (semiconductor integrated circuits)

  12. Multipotenciostat System Based on Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Arrieta-Almario Álvaro Angel

    2014-07-01

    Full Text Available To carry out this project an electronic multichannel system of electrochemical measurement or multipotenciostat was developed. It is based on the cyclic voltammetry measurement technique, controlled by a computer that monitors, by means of an electronic circuit, both the voltage generated from the Pc and supplied to an electrolytic cell, and the current that flows through the electrodes of it. To design the application software and the user interface, Virtual Instrumentation was used. On the other hand, to perform the communication between the multipotenciostat circuit and the designed software, the National Instruments NI9263 and NI9203 acquisition modules were used. The system was tested on a substance with a known REDOX property, as well as to discriminate and classify some samples of coffee.

  13. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch.

    Science.gov (United States)

    Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C

    2015-08-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.

  14. Measurement Uncertainty Analysis of an Accelerometer Calibration Using a POC Electromagnetic Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Timpson, Erik J.; Engel, T. G.

    2012-06-12

    A pulse forming network (PFN), helical electromagnetic launcher (HEML), command module (CM), and calibration table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored nergy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass reinforced epoxy and is designed to accelerate a mass of 600 grams to a velocity of 10 meters per second. The CM is microcontroller-based running Arduino Software. The CM has a keypad input and 7 segment outputs of the PFN voltage and desired charging voltage. After entering a desired PFN voltage, the CM controls the charging of the PFN. When the two voltages are equal it sends a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile’s tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocimeter and catch pot. The target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely so that the velocimeter can accurately read. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  15. Comparison of static balance of elderly women through two methods: computerized photogrammetry and accelerometer

    Directory of Open Access Journals (Sweden)

    Dirciane Stieven de Oliveira

    Full Text Available Introduction The aging process produces functional and structural deficits in the body, among these changes we highlight the changes in balance. Objective This study aims to compare the computed photogrammetry and accelerometer to assess static balance in the elderly. Methods This was an observational, cross-sectional study. The study included 112 female subjects participating in a mothers club, where the balance assessment was performed using computerized photogrammetry and accelerometer. Results Average age 70.3 ± 5.8 [60-79] years, with the majority of the sample (47.3% consisted of elderly widows, followed by 41.1% of married elderly. Most of the sample (73.2% reported not working, eighty-six percent of the sample reported not having suffered falls in the last year. The vast majority of elderly studied (93.8% reported not having suffered fracture episode and 6.3% reported having suffered fracture episode in the last three months, 75% of the sample owned anteriorization trunk, 63% had previous oscillation trunk and 37% had subsequent oscillation. Conclusion There were significant direct and a moderate to good between the measurements obtained in photogrammetry and triaxial accelerometer correlations.

  16. EPROM-based LSI-11 for distributed instrumentation control

    International Nuclear Information System (INIS)

    Hunt, D.N.

    1981-01-01

    The LLNL Nuclear Chemistry Counting Facility (NCCF) is being converted to a modern production facility. A computer network has been designed and built to implement this conversion. The outermost node of the computer network is a dedicated EPROM-based controller. The controller handles the details of driving the attached nuclear instrumentation, providing a standard interface to the remainder of the network. This paper addresses the design and the implementation of the dedicated instrumentation controller

  17. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities

    DEFF Research Database (Denmark)

    Siemes, Christian; da Encarnacao, Joao de Teixeira; Doornbos, Eelco

    2016-01-01

    The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like...... in the acceleration measurements of Swarm B. We show the results of each processing stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set......., the most prominent being slow temperature-induced bias variations and sudden bias changes. In this paper, we describe the new, improved four-stage processing that is applied for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first...... stage, the sudden bias changes in the acceleration measurements are manually removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction...

  18. Development of a noncontact heart rate monitoring system for sedentary behavior based on an accelerometer attached to a chair

    International Nuclear Information System (INIS)

    Lim, Eunho; Lee, Hyo-Ki; Myoung, Hyoun-Seok; Lee, Kyoung-Joung

    2015-01-01

    Although people spend a third of their day engaged in sedentary activities, research on heart activity during sitting is almost nonexistent because of the discomfort experienced when electrocardiogram (ECG) measurement electrodes are attached to the body. Accordingly, in this study, a system was developed to monitor heart rate (HR) in a noncontact and unconstrained way while subjects were seated, by attaching an accelerometer on the backrest of a chair. Acceleration signals were obtained three times from 20 healthy adults, a detection algorithm was applied, and HR detection performance was evaluated by comparing the R-peak values from the ECG. The system had excellent performance results, with a sensitivity of 96.10% and a positive predictive value of 96.43%. In addition, the HR calculated by the new system developed in this study was compared with HR calculated using ECG. The new system exhibited excellent performance; its results were strongly correlated with that of ECG (r = 0.97, p ≪ 0.0001; average difference of −0.08  ±  4.60 [mean ± 1.96∙standard deviation] in Bland–Altman analysis). Accordingly, the method presented in this study is expected to be applicable for evaluating diverse autonomic nervous system components in a noncontact and unconstrained way using an accelerometer to monitor the HR of sedentary workers or adolescents. (note)

  19. Rancang Bangun Aplikasi Perepresentasian Data Perilaku Pengemudi Mobil Berbasis Android Menggunakan Sensor Accelerometer dan Orientation

    Directory of Open Access Journals (Sweden)

    Muhammad Dery Rahma

    2017-01-01

    Full Text Available Semakin meningkatnya popularitas smartphone dari tahun ke tahun, semakin meningkat pula jumlah aplikasi perangkat bergerak yang berkaitan dengan keamanan dalam berkemudi. Oleh karena itu, diperlukan aplikasi perangkat bergerak lain yang dapat mendeteksi pergerakan mobil yang normal dan berbahaya menggunakan sensor accelerometer dan orientation yang berasal dari smartphone serta tanpa memerlukan sensor hardware tambahan. Arsitektur aplikasi perangkat bergerak ini berbasis client-server, dimana web service melayani permintaan dari aplikasi client berbasis Android. Aplikasi ini juga menggabungkan beberapa teknologi lain seperti Geolocation API, Geocoding API, dan Android Sensor API. Teknologi-teknologi tersebut digunakan untuk mengetahui kecepatan mobil, lokasi terkini dari pengemudi, dan merekam pola gerakan mobil melalui representasi nilai-nilai sensor accelerometer dan orientation.Tujuan dari dikembangkannya aplikasi perangkat bergerak untuk tugas akhir ini adalah untuk membantu pihak kepolisian lalu lintas dalam mendapatkan data pergerakan mobil berupa raw data 2-axis yang direkam oleh sensor accelerometer dan orientation pada smartphone Android ketika pengemudi mengendarai mobil. Data-data tersebut nantinya digunakan untuk membantu mendeteksi riwayat pola berkendara seorang pengemudi.

  20. Predicting energy expenditure of physical activity using hip- and wrist-worn accelerometers.

    Science.gov (United States)

    Chen, Kong Y; Acra, Sari A; Majchrzak, Karen; Donahue, Candice L; Baker, Lemont; Clemens, Linda; Sun, Ming; Buchowski, Maciej S

    2003-01-01

    To investigate the association between physical activity and health, we need accurate and detailed free-living physical activity measurements. The determination of energy expenditure of activity (EEACT) may also be useful in the treatment and maintenance of nutritional diseases such as diabetes mellitus. Minute-to-minute energy expenditure during a 24-h period was measured in 60 sedentary normal female volunteers (35.4 +/- 9.0 years, body mass index 30.0 +/- 5.9 kg/m2), using a state-of-the-art whole-room indirect calorimeter. The activities ranged from sedentary deskwork to walking and stepping at different intensities. Body movements were simultaneously measured using a hip-worn triaxial accelerometer (Tritrac-R3D, Hemokentics, Inc., Madison, Wisconsin) and a wrist-worn uniaxial accelerometer (ActiWatch AW64, MiniMitter Co., Sunriver, Oregon) on the dominant arm. Movement data from the accelerometers were used to develop nonlinear prediction models (separately and combined) to estimate EEACT and compared for accuracy. In a subgroup (n=12), a second 24-h study period was repeated for cross-validation of the combined model. The combined model, using Tritrac-R3D and ActiWatch, accurately estimated total EEACT (97.7 +/- 3.2% of the measured values, p=0.781), as compared with using ActiWatch (86.0 +/- 4.7%, ptypes and intensity of activities. This concept can be extended to develop valid models for the accurate measurement of free-living energy metabolism in clinical populations.

  1. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency.

    Science.gov (United States)

    Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong

    2016-02-06

    For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  2. A New Method for Identifying Hazardous Road Locations Using GPS and Accelerometer

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Andersen, Camilla Sloth; Agerholm, Niels

    2016-01-01

    and validated through a case study of Aalborg city, where HRLs identified on the basis of accident statistics are compared to the HCLs identified with the new method on a dataset of more than 36.531 hours of driving tracked with accelerometer and GPS, containing 131 million GPS and 1.1 billion acceleration...... a new method relying on GPS data and accelerometer data. The method developed in this article is superior to previous methods since it utilizes acceleration measurements to identify both a deceleration and a significant drop in speed by integrating acceleration measurements over time in a moving time......-window. This calculation is combined with measurements of jerks to distinguish between planned decelerations and unplanned decelerations, which occurs when drivers react to hazardous situations. Finally, using GPS data, the unplanned decelerations identified are linked to specific locations. The method is tested...

  3. Respiratory monitor system for 4D CT image acquisition based on accelerometer. Design and implementation; Sistema de monitorizacion respiratoria para adquisicion de imagenes 4D de TC basado en un acelerometro. Diseno e implementacion

    Energy Technology Data Exchange (ETDEWEB)

    Llorente Manso, M.; Vivela Serrano, S.; Viera Jorge, J. C.; Garran del Rio, C.; Ferrer Gracia, C.; Carballo Gonzalez, N.

    2013-07-01

    The use of 4D CT images in Radiotherapy planning is increasing. Some commercial systems use abdominal movement to correlate images with respiratory phase. An in-house developed system based on an accelerometer to register patient's abdominal movement and a software to group 4D images in their corresponding respiratory phase is presented. A phantom test evaluates the capacity of the system to properly identify respiratory phases. A volunteers study compares breathing curves acquired by the accelerometer with those obtained using a commercial system. In the phantom images, maximum difference between real and calculated phase is 0.2 s. In the volunteer study, position of the curve maxima found by both systems differs, on average, around 2% (SD=2%) of the respiratory cycle period when volunteer's breathing is regular. Only when breathe is very irregular, differences of up to 10% in the phase assignment are found. (Author)

  4. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    Science.gov (United States)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  5. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer

    DEFF Research Database (Denmark)

    Beniczky, S.; Hjalgrim, Helle; Polster, T.

    2013-01-01

    Our objective was to assess the clinical reliability of a wrist-worn, wireless accelerometer sensor for detecting generalized tonic-clonic seizures (GTCS). Seventy-three consecutive patients (age 6-68 years; median 37 years) at risk of having GTCS and who were admitted to the long-term video-elec...

  6. A 3-axis force balanced accelerometer using a single proof-mass

    Energy Technology Data Exchange (ETDEWEB)

    Lemkin, M.A.; Boser, B.E.; Auslander, D. [Univ. of California, Berkeley, CA (United States); Smith, J. [Sandia National Lab., Albuquerque, NM (United States)

    1997-04-01

    This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

  7. Mobile device-based optical instruments for agriculture

    Science.gov (United States)

    Sumriddetchkajorn, Sarun

    2013-05-01

    Realizing that a current smart-mobile device such as a cell phone and a tablet can be considered as a pocket-size computer embedded with a built-in digital camera, this paper reviews and demonstrates on how a mobile device can be specifically functioned as a portable optical instrument for agricultural applications. The paper highlights several mobile device-based optical instruments designed for searching small pests, measuring illumination level, analyzing spectrum of light, identifying nitrogen status in the rice field, estimating chlorine in water, and determining ripeness level of the fruit. They are suitable for individual use as well as for small and medium enterprises.

  8. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Yu Xu

    2016-02-01

    Full Text Available For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  9. [Research on medical instrument information integration technology based on IHE PCD].

    Science.gov (United States)

    Zheng, Jianli; Liao, Yun; Yang, Yongyong

    2014-06-01

    Integrating medical instruments with medical information systems becomes more and more important in healthcare industry. To make medical instruments without standard communication interface possess the capability of interoperating and sharing information with medical information systems, we developed a medical instrument integration gateway based on Integrating the Healthcare Enterprise Patient Care Device (IHE PCD) integration profiles in this research. The core component is an integration engine which is implemented according to integration profiles and Health Level Seven (HL7) messages defined in IHE PCD. Working with instrument specific Javascripts, the engine transforms medical instrument data into HL7 ORU message. This research enables medical instruments to interoperate and exchange medical data with information systems in a standardized way, and is valuable for medical instrument integration, especially for traditional instruments.

  10. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  11. How many days of accelerometer monitoring predict weekly physical activity behaviour in obese youth?

    Science.gov (United States)

    Vanhelst, Jérémy; Fardy, Paul S; Duhamel, Alain; Béghin, Laurent

    2014-09-01

    The aim of this study was to determine the type and the number of accelerometer monitoring days needed to predict weekly sedentary behaviour and physical activity in obese youth. Fifty-three obese youth wore a triaxial accelerometer for 7 days to measure physical activity in free-living conditions. Analyses of variance for repeated measures, Intraclass coefficient (ICC) and regression linear analyses were used. Obese youth spent significantly less time in physical activity on weekends or free days compared with school days. ICC analyses indicated a minimum of 2 days is needed to estimate physical activity behaviour. ICC were 0·80 between weekly physical activity and weekdays and 0·92 between physical activity and weekend days. The model has to include a weekday and a weekend day. Using any combination of one weekday and one weekend day, the percentage of variance explained is >90%. Results indicate that 2 days of monitoring are needed to estimate the weekly physical activity behaviour in obese youth with an accelerometer. Our results also showed the importance of taking into consideration school day versus free day and weekday versus weekend day in assessing physical activity in obese youth. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  13. Computer-based instrumentation for partial discharge detection in GIS

    International Nuclear Information System (INIS)

    Md Enamul Haque; Ahmad Darus; Yaacob, M.M.; Halil Hussain; Feroz Ahmed

    2000-01-01

    Partial discharge is one of the prominent indicators of defects and insulation degradation in a Gas Insulated Switchgear (GIS). Partial discharges (PD) have a harmful effect on the life of insulation of high voltage equipment. The PD detection using acoustic technique and subsequent analysis is currently an efficient method of performing non-destructive testing of GIS apparatus. A low cost PC-based acoustic PD detection instrument has been developed for the non-destructive diagnosis of GIS. This paper describes the development of a PC-based instrumentation system for partial discharge detection in GIS and some experimental results have also presented. (Author)

  14. Towards Clustering of Mobile and Smartwatch Accelerometer Data for Physical Activity Recognition

    Directory of Open Access Journals (Sweden)

    Chelsea Dobbins

    2018-06-01

    Full Text Available Mobile and wearable devices now have a greater capability of sensing human activity ubiquitously and unobtrusively through advancements in miniaturization and sensing abilities. However, outstanding issues remain around the energy restrictions of these devices when processing large sets of data. This paper presents our approach that uses feature selection to refine the clustering of accelerometer data to detect physical activity. This also has a positive effect on the computational burden that is associated with processing large sets of data, as energy efficiency and resource use is decreased because less data is processed by the clustering algorithms. Raw accelerometer data, obtained from smartphones and smartwatches, have been preprocessed to extract both time and frequency domain features. Principle component analysis feature selection (PCAFS and correlation feature selection (CFS have been used to remove redundant features. The reduced feature sets have then been evaluated against three widely used clustering algorithms, including hierarchical clustering analysis (HCA, k-means, and density-based spatial clustering of applications with noise (DBSCAN. Using the reduced feature sets resulted in improved separability, reduced uncertainty, and improved efficiency compared with the baseline, which utilized all features. Overall, the CFS approach in conjunction with HCA produced higher Dunn Index results of 9.7001 for the phone and 5.1438 for the watch features, which is an improvement over the baseline. The results of this comparative study of feature selection and clustering, with the specific algorithms used, has not been performed previously and provides an optimistic and usable approach to recognize activities using either a smartphone or smartwatch.

  15. Study on virtual instrument developing system based on intelligent virtual control

    International Nuclear Information System (INIS)

    Tang Baoping; Cheng Fabin; Qin Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described

  16. Study on virtual instrument developing system based on intelligent virtual control

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Cheng Fabin; Qin Shuren [Test Center, College of Mechanical Engineering, Chongqing University , Chongqing 400030 (China)

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  17. Calibration of tri-axial MEMS accelerometers in the low-frequency range – Part 2: Uncertainty assessment

    Directory of Open Access Journals (Sweden)

    G. D'Emilia

    2018-05-01

    Full Text Available A comparison among three methods for the calibration of tri-axial accelerometers, in particular MEMS, is presented in this paper, paying attention to the uncertainty assessment of each method. The first method is performed according to the ISO 16063 standards. Two innovative methods are analysed, both suitable for in-field application. The effects on the whole uncertainty of the following aspects have been evaluated: the test bench performances in realizing the reference motion, the vibration reference sensor, the geometrical parameters and the data processing techniques. The uncertainty contributions due to the offset and the transverse sensitivity are also studied, by calibrating two different types of accelerometers, a piezoelectric one and a capacitive one, to check their effect on the accuracy of the methods under comparison. The reproducibility of methods is demonstrated. Relative uncertainty of methods ranges from 3 to 5 %, depending on the complexity of the model and of the requested operations. The results appear promising for low-cost calibration of new tri-axial accelerometers of MEMS type.

  18. Microfabrication and Characterization of an Integrated 3-Axis CMOS-MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    Hongwei QU

    2007-10-01

    Full Text Available This paper reports the fabrication and characterization of a monolithically integrated 3-axis CMOS-MEMS accelerometer with a single proof mass. An improved microfabrication process has been developed to solve the structure overheating and particle contamination problems in the plasma etching processes of device fabrication. The whole device is made of bulk silicon except for some short thin films for electrical isolation, allowing large sensing capacitance and flat device structure. A low-noise, low-power amplifier is designed for each axis, which provides 40 dB on-chip amplification and consumes only 1 mW power. Quasi-static and dynamic characterization of the fabricated device has been performed. The measured sensitivities of the lateral- and z-axis accelerometers are 560 mV/g and 320 mV/g, respectively, which can be tuned by simply varying the amplitude of the modulation signal. The over-all noise floors of the lateral- and z-axis are 12 μg/ÖHz and 110 μg/ÖHz, respectively when tested at 200 Hz.

  19. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    International Nuclear Information System (INIS)

    Shelton, R; O'Brien, D; Nelson, J; Kamperschroer, J

    2007-01-01

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the deployed

  20. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R; O' Brien, D; Nelson, J; Kamperschroer, J

    2007-05-07

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the

  1. Musical Instrument Classification Based on Nonlinear Recurrence Analysis and Supervised Learning

    Directory of Open Access Journals (Sweden)

    R.Rui

    2013-04-01

    Full Text Available In this paper, the phase space reconstruction of time series produced by different instruments is discussed based on the nonlinear dynamic theory. The dense ratio, a novel quantitative recurrence parameter, is proposed to describe the difference of wind instruments, stringed instruments and keyboard instruments in the phase space by analyzing the recursive property of every instrument. Furthermore, a novel supervised learning algorithm for automatic classification of individual musical instrument signals is addressed deriving from the idea of supervised non-negative matrix factorization (NMF algorithm. In our approach, the orthogonal basis matrix could be obtained without updating the matrix iteratively, which NMF is unable to do. The experimental results indicate that the accuracy of the proposed method is improved by 3% comparing with the conventional features in the individual instrument classification.

  2. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  3. Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 µm CMOS MEMS process

    International Nuclear Information System (INIS)

    Tseng, Sheng-Hsiang; Lu, Michael S-C; Wu, Po-Chang; Teng, Yu-Chen; Tsai, Hann-Huei; Juang, Ying-Zong

    2012-01-01

    This paper describes the design, fabrication and characterization of a complementary metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) accelerometer implemented in a 0.18 µm multi-project wafer (MPW) CMOS MEMS process. In addition to the standard CMOS process, an additional aluminum layer and a thick photoresist masking layer are employed to achieve etching and microstructural release. The structural thickness of the accelerometer is up to 9 µm and the minimum structural spacing is 2.3 µm. The out-of-plane deflection resulted from the vertical stress gradient over the whole device is controlled to be under 0.2 µm. The chip area containing the micromechanical structure and switched-capacitor sensing circuit is 1.18 × 0.9 mm 2 , and the total power consumption is only 0.7 mW. Within the sensing range of ±6 G, the measured nonlinearity is 1.07% and the cross-axis sensitivities with respect to the in-plane and out-of-plane are 0.5% and 5.8%, respectively. The average sensitivity of five tested accelerometers is 191.4 mV G −1 with a standard deviation of 2.5 mV G −1 . The measured output noise floor is 354 µG Hz −1/2 , corresponding to a 100 Hz 1 G sinusoidal acceleration. The measured output offset voltage is about 100 mV at 27 °C, and the zero-G temperature coefficient of the accelerometer output is 0.94 mV °C −1 below 85 °C. (paper)

  4. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  5. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    Science.gov (United States)

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  6. On-Body Smartphone Localization with an Accelerometer

    Directory of Open Access Journals (Sweden)

    Kaori Fujinami

    2016-03-01

    Full Text Available A user of a smartphone may feel convenient, happy, safe, etc., if his/her smartphone works smartly based on his/her context or the context of the device. In this article, we deal with the position of a smartphone on the body and carrying items like bags as the context of a device. The storing position of a smartphone impacts the performance of the notification to a user, as well as the measurement of embedded sensors, which plays an important role in a device’s functionality control, accurate activity recognition and reliable environmental sensing. In this article, nine storing positions, including four types of bags, are subject to recognition using an accelerometer on a smartphone. In total, 63 features are selected as a set of features among 182 systematically-defined features, which can characterize and discriminate the motion of a smartphone terminal during walking. As a result of leave-one-subject-out cross-validation, an accuracy of 0.801 for the nine-class classification is shown, while an accuracy of 0.859 is obtained against five classes, which merges the subclasses of trouser pockets and bags. We also show the basic performance evaluation to select the proper window size and classifier. Furthermore, the analysis of the contributive features is presented.

  7. Study on the communication technology of instrument based on LabVIEW

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Zhang Xiaobo

    2012-01-01

    The hardware and software structure of communication of universal instrument is discussed based on LabVIEW, the several realization of remote communication is compared too. In the control and measure system of LIA, using LabVIEW, the communication is realized among the plenty of instruments which have the various interfaces, in this paper the frame of hardware and software about instrument communication is showed. (authors)

  8. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer.

    Science.gov (United States)

    van Hees, Vincent T; Renström, Frida; Wright, Antony; Gradmark, Anna; Catt, Michael; Chen, Kong Y; Löf, Marie; Bluck, Les; Pomeroy, Jeremy; Wareham, Nicholas J; Ekelund, Ulf; Brage, Søren; Franks, Paul W

    2011-01-01

    Few studies have compared the validity of objective measures of physical activity energy expenditure (PAEE) in pregnant and non-pregnant women. PAEE is commonly estimated with accelerometers attached to the hip or waist, but little is known about the validity and participant acceptability of wrist attachment. The objectives of the current study were to assess the validity of a simple summary measure derived from a wrist-worn accelerometer (GENEA, Unilever Discover, UK) to estimate PAEE in pregnant and non-pregnant women, and to evaluate participant acceptability. Non-pregnant (N = 73) and pregnant (N = 35) Swedish women (aged 20-35 yrs) wore the accelerometer on their wrist for 10 days during which total energy expenditure (TEE) was assessed using doubly-labelled water. PAEE was calculated as 0.9×TEE-REE. British participants (N = 99; aged 22-65 yrs) wore accelerometers on their non-dominant wrist and hip for seven days and were asked to score the acceptability of monitor placement (scored 1 [least] through 10 [most] acceptable). There was no significant correlation between body weight and PAEE. In non-pregnant women, acceleration explained 24% of the variation in PAEE, which decreased to 19% in leave-one-out cross-validation. In pregnant women, acceleration explained 11% of the variation in PAEE, which was not significant in leave-one-out cross-validation. Median (IQR) acceptability of wrist and hip placement was 9(8-10) and 9(7-10), respectively; there was a within-individual difference of 0.47 (p<.001). A simple summary measure derived from a wrist-worn tri-axial accelerometer adds significantly to the prediction of energy expenditure in non-pregnant women and is scored acceptable by participants.

  9. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer.

    Directory of Open Access Journals (Sweden)

    Vincent T van Hees

    Full Text Available Few studies have compared the validity of objective measures of physical activity energy expenditure (PAEE in pregnant and non-pregnant women. PAEE is commonly estimated with accelerometers attached to the hip or waist, but little is known about the validity and participant acceptability of wrist attachment. The objectives of the current study were to assess the validity of a simple summary measure derived from a wrist-worn accelerometer (GENEA, Unilever Discover, UK to estimate PAEE in pregnant and non-pregnant women, and to evaluate participant acceptability.Non-pregnant (N = 73 and pregnant (N = 35 Swedish women (aged 20-35 yrs wore the accelerometer on their wrist for 10 days during which total energy expenditure (TEE was assessed using doubly-labelled water. PAEE was calculated as 0.9×TEE-REE. British participants (N = 99; aged 22-65 yrs wore accelerometers on their non-dominant wrist and hip for seven days and were asked to score the acceptability of monitor placement (scored 1 [least] through 10 [most] acceptable.There was no significant correlation between body weight and PAEE. In non-pregnant women, acceleration explained 24% of the variation in PAEE, which decreased to 19% in leave-one-out cross-validation. In pregnant women, acceleration explained 11% of the variation in PAEE, which was not significant in leave-one-out cross-validation. Median (IQR acceptability of wrist and hip placement was 9(8-10 and 9(7-10, respectively; there was a within-individual difference of 0.47 (p<.001.A simple summary measure derived from a wrist-worn tri-axial accelerometer adds significantly to the prediction of energy expenditure in non-pregnant women and is scored acceptable by participants.

  10. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer.

    Directory of Open Access Journals (Sweden)

    Vincent T van Hees

    Full Text Available Wrist-worn accelerometers are increasingly being used for the assessment of physical activity in population studies, but little is known about their value for sleep assessment. We developed a novel method of assessing sleep duration using data from 4,094 Whitehall II Study (United Kingdom, 2012-2013 participants aged 60-83 who wore the accelerometer for 9 consecutive days, filled in a sleep log and reported sleep duration via questionnaire. Our sleep detection algorithm defined (nocturnal sleep as a period of sustained inactivity, itself detected as the absence of change in arm angle greater than 5 degrees for 5 minutes or more, during a period recorded as sleep by the participant in their sleep log. The resulting estimate of sleep duration had a moderate (but similar to previous findings agreement with questionnaire based measures for time in bed, defined as the difference between sleep onset and waking time (kappa = 0.32, 95%CI:0.29,0.34 and total sleep duration (kappa = 0.39, 0.36,0.42. This estimate was lower for time in bed for women, depressed participants, those reporting more insomnia symptoms, and on weekend days. No such group differences were found for total sleep duration. Our algorithm was validated against data from a polysomnography study on 28 persons which found a longer time window and lower angle threshold to have better sensitivity to wakefulness, while the reverse was true for sensitivity to sleep. The novelty of our method is the use of a generic algorithm that will allow comparison between studies rather than a "count" based, device specific method.

  11. Analysis of Correlation between an Accelerometer-Based Algorithm for Detecting Parkinsonian Gait and UPDRS Subscales

    Directory of Open Access Journals (Sweden)

    Alejandro Rodríguez-Molinero

    2017-09-01

    Full Text Available BackgroundOur group earlier developed a small monitoring device, which uses accelerometer measurements to accurately detect motor fluctuations in patients with Parkinson’s (On and Off state based on an algorithm that characterizes gait through the frequency content of strides. To further validate the algorithm, we studied the correlation of its outputs with the motor section of the Unified Parkinson’s Disease Rating Scale part-III (UPDRS-III.MethodSeventy-five patients suffering from Parkinson’s disease were asked to walk both in the Off and the On state while wearing the inertial sensor on the waist. Additionally, all patients were administered the motor section of the UPDRS in both motor phases. Tests were conducted at the patient’s home. Convergence between the algorithm and the scale was evaluated by using the Spearman’s correlation coefficient.ResultsCorrelation with the UPDRS-III was moderate (rho −0.56; p < 0.001. Correlation between the algorithm outputs and the gait item in the UPDRS-III was good (rho −0.73; p < 0.001. The factorial analysis of the UPDRS-III has repeatedly shown that several of its items can be clustered under the so-called Factor 1: “axial function, balance, and gait.” The correlation between the algorithm outputs and this factor of the UPDRS-III was −0.67 (p < 0.01.ConclusionThe correlation achieved by the algorithm with the UPDRS-III scale suggests that this algorithm might be a useful tool for monitoring patients with Parkinson’s disease and motor fluctuations.

  12. Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Vitikainen, Anne-Mari; Mäkelä, Elina; Lioumis, Pantelis; Jousmäki, Veikko; Mäkelä, Jyrki P

    2015-09-30

    The use of navigated repetitive transcranial magnetic stimulation (rTMS) in mapping of speech-related brain areas has recently shown to be useful in preoperative workflow of epilepsy and tumor patients. However, substantial inter- and intraobserver variability and non-optimal replicability of the rTMS results have been reported, and a need for additional development of the methodology is recognized. In TMS motor cortex mappings the evoked responses can be quantitatively monitored by electromyographic recordings; however, no such easily available setup exists for speech mappings. We present an accelerometer-based setup for detection of vocalization-related larynx vibrations combined with an automatic routine for voice onset detection for rTMS speech mapping applying naming. The results produced by the automatic routine were compared with the manually reviewed video-recordings. The new method was applied in the routine navigated rTMS speech mapping for 12 consecutive patients during preoperative workup for epilepsy or tumor surgery. The automatic routine correctly detected 96% of the voice onsets, resulting in 96% sensitivity and 71% specificity. Majority (63%) of the misdetections were related to visible throat movements, extra voices before the response, or delayed naming of the previous stimuli. The no-response errors were correctly detected in 88% of events. The proposed setup for automatic detection of voice onsets provides quantitative additional data for analysis of the rTMS-induced speech response modifications. The objectively defined speech response latencies increase the repeatability, reliability and stratification of the rTMS results. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers.

    Science.gov (United States)

    Aziz, Omar; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2014-01-01

    Falls are the number one cause of injury in older adults. Lack of objective evidence on the cause and circumstances of falls is often a barrier to effective prevention strategies. Previous studies have established the ability of wearable miniature inertial sensors (accelerometers and gyroscopes) to automatically detect falls, for the purpose of delivering medical assistance. In the current study, we extend the applications of this technology, by developing and evaluating the accuracy of wearable sensor systems for determining the cause of falls. Twelve young adults participated in experimental trials involving falls due to seven causes: slips, trips, fainting, and incorrect shifting/transfer of body weight while sitting down, standing up from sitting, reaching and turning. Features (means and variances) of acceleration data acquired from four tri-axial accelerometers during the falling trials were input to a linear discriminant analysis technique. Data from an array of three sensors (left ankle+right ankle+sternum) provided at least 83% sensitivity and 89% specificity in classifying falls due to slips, trips, and incorrect shift of body weight during sitting, reaching and turning. Classification of falls due to fainting and incorrect shift during rising was less successful across all sensor combinations. Furthermore, similar classification accuracy was observed with data from wearable sensors and a video-based motion analysis system. These results establish a basis for the development of sensor-based fall monitoring systems that provide information on the cause and circumstances of falls, to direct fall prevention strategies at a patient or population level. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Web based remote instrumentation and control

    International Nuclear Information System (INIS)

    Dhekne, P.S.; Patil, Jitendra; Kulkarni, Jitendra; Babu, Prasad; Lad, U.C.; Rahurkar, A.G.; Kaura, H.K.

    2001-01-01

    The Web-based technology provides a very powerful communication medium for transmitting effectively multimedia information containing data generated from various sources, which may be in the form of audio, video, text, still or moving images etc. Large number of sophisticated web based software tools are available that can be used to monitor and control distributed electronic instrumentation projects. For example data can be collected online from various smart sensors/instruments such as images from CCD camera, pressure/ humidity sensor, light intensity transducer, smoke detectors etc and uploaded in real time to a central web server. This information can be processed further, to take control action in real time from any remote client, of course with due security care. The web-based technology offers greater flexibility, higher functionality, and high degree of integration providing standardization. Further easy to use standard browser based interface at the client end to monitor, view and control the desired process parameters allow you to cut down the development time and cost to a great extent. A system based on a web client-server approach has been designed and developed at Computer division, BARC and is operational since last year to monitor and control remotely various environmental parameters of distributed computer centers. In this paper we shall discuss details of this system, its current status and additional features which are currently under development. This type of system is typically very useful for Meteorology, Environmental monitoring of Nuclear stations, Radio active labs, Nuclear waste immobilization plants, Medical and Biological research labs., Security surveillance and in many such distributed situations. A brief description of various tools used for this project such as Java, CGI, Java Script, HTML, VBScript, M-JPEG, TCP/IP, UDP, RTP etc. along with their merits/demerits have also been included

  15. Sensor agent robot with servo-accelerometer for structural health monitoring

    Science.gov (United States)

    Lee, Nobukazu; Mita, Akira

    2012-04-01

    SHM systems are becoming feasible with the growth of computer and sensor technologies during the last decade. However, high cost prevents SHM to become common in general homes. The reason of this high cost is partially due to many accelerometers. In this research, we propose a moving sensor agent robot with accelerometers and a laser range finder (LRF). If this robot can properly measure accurate acceleration data, the cost of SHM would be cut down and resulting in the spread of SHM systems. Our goal is to develop a platform for SHM using the sensor agent robot. We designed the prototype robot to correctly detect the floor vibrations and acquire the micro tremor information. When the sensor agent robot is set in the mode of acquiring the data, the dynamics of the robot should be tuned not to be affected by its flexibility. To achieve this purpose the robot frame was modified to move down to the ground and to provide enough rigidity to obtain good data. In addition to this mechanism, we tested an algorithm to correctly know the location of the robot and the map of the floor to be used in the SHM system using the LRF and Simultaneously Localization and Mapping (SLAM).

  16. Non-consent to a wrist-worn accelerometer in older adults: the role of socio-demographic, behavioural and health factors.

    Directory of Open Access Journals (Sweden)

    Maliheh Hassani

    Full Text Available Accelerometers, initially waist-worn but increasingly wrist-worn, are used to assess physical activity free from reporting-bias. However, its acceptability by study participants is unclear. Our objective is to assess factors associated with non-consent to a wrist-mounted accelerometer in older adults.Data are from 4880 Whitehall II study participants (1328 women, age range = 60-83, requested to wear a wrist-worn accelerometer 24 h every day for 9 days in 2012/13. Sociodemographic, behavioral, and health-related factors were assessed by questionnaire and weight, height, blood pressure, cognitive and motor function were measured during a clinical examination.210 participants had contraindications and 388 (8.3% of the remaining 4670 participants did not consent. Women, participants reporting less physical activity and less favorable general health were more likely not to consent. Among the clinical measures, cognitive impairment (Odds Ratio = 2.21, 95% confidence interval: 1.22-4.00 and slow walking speed (Odds Ratio = 1.38, 95% confidence interval: 1.02-1.86 were associated with higher odds of non-consent.The rate of non-consent in our study of older adults was low. However, key markers of poor health at older ages were associated with non-consent, suggesting some selection bias in the accelerometer data.

  17. Is there a Sex Difference in Accelerometer Counts During Walking in Older Adults?

    DEFF Research Database (Denmark)

    Van Domelen, Dane R; Caserotti, Paolo; Brychta, Robert J

    2014-01-01

    Accelerometers have emerged as a useful tool for measuring free-living physical activity in epidemiological studies. Validity of activity estimates depends on the assumption that measurements are equivalent for males and females while performing activities of the same intensity. The primary purpose...

  18. Modeling and Experimental Analysis of Piezoelectric Shakers for High-Frequency Calibration of Accelerometers

    International Nuclear Information System (INIS)

    Vogl, Gregory W.; Harper, Kari K.; Payne, Bev

    2010-01-01

    Piezoelectric shakers have been developed and used at the National Institute of Standards and Technology (NIST) for decades for high-frequency calibration of accelerometers. Recently, NIST researchers built new piezoelectric shakers in the hopes of reducing the uncertainties in the calibrations of accelerometers while extending the calibration frequency range beyond 20 kHz. The ability to build and measure piezoelectric shakers invites modeling of these systems in order to improve their design for increased performance, which includes a sinusoidal motion with lower distortion, lower cross-axial motion, and an increased frequency range. In this paper, we present a model of piezoelectric shakers and match it to experimental data. The equations of motion for all masses are solved along with the coupled state equations for the piezoelectric actuator. Finally, additional electrical elements like inductors, capacitors, and resistors are added to the piezoelectric actuator for matching of experimental and theoretical frequency responses.

  19. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    Science.gov (United States)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  20. Simulasi Sensor Seismometer Horizontal Menggunakan MEMS Accelerometer Berbasis Arduino UNO

    OpenAIRE

    Hutapea, Cynthya Dorothy

    2017-01-01

    130801045 Telah dirancang sebuah alat sebagai seismometer horizontal menggunakan GY-521 dan Arduino UNO ATMEGA 328P. Alat ini terdiri dari GY-521 modul MPU-6050 sebagai sensor vibrasi dan arduino UNO sebagai pengendali sistem. Perangkat lunak yang digunakan sebagai pengendali sistem adalah Arduino IDE. Cara kerja alat tersebut cukup sederhana yaitu accelerometer MPU-6050 mengukur amplitudo dan frekuensi dari kecepatan suatu getaran dan kemudian datanya akan dikirim ke arduino. Arduino UNO ...

  1. Differential diagnosis between Parkinson's disease and essential tremor using the smartphone's accelerometer.

    Directory of Open Access Journals (Sweden)

    Sergi Barrantes

    Full Text Available The differential diagnosis between patients with essential tremor (ET and those with Parkinson's disease (PD whose main manifestation is tremor may be difficult unless using complex neuroimaging techniques such as 123I-FP-CIT SPECT. We considered that using smartphone's accelerometer to stablish a diagnostic test based on time-frequency differences between PD an ET could support the clinical diagnosis.The study was carried out in 17 patients with PD, 16 patients with ET, 12 healthy volunteers and 7 patients with tremor of undecided diagnosis (TUD, who were re-evaluated one year after the first visit to reach the definite diagnosis. The smartphone was placed over the hand dorsum to record epochs of 30 s at rest and 30 s during arm stretching. We generated frequency power spectra and calculated receiver operating characteristics curves (ROC curves of total spectral power, to establish a threshold to separate subjects with and without tremor. In patients with PD and ET, we found that the ROC curve of relative energy was the feature discriminating better between the two groups. This threshold was then used to classify the TUD patients.We could correctly classify 49 out of 52 subjects in the category with/without tremor (97.96% sensitivity and 83.3% specificity and 27 out of 32 patients in the category PD/ET (84.38% discrimination accuracy. Among TUD patients, 2 of 2 PD and 2 of 4 ET were correctly classified, and one patient having PD plus ET was classified as PD.Based on the analysis of smartphone accelerometer recordings, we found several kinematic features in the analysis of tremor that distinguished first between healthy subjects and patients and, ultimately, between PD and ET patients. The proposed method can give immediate results for the clinician to gain valuable information for the diagnosis of tremor. This can be useful in environments where more sophisticated diagnostic techniques are unavailable.

  2. Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.

    Science.gov (United States)

    DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K

    2015-01-01

    Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals.

  3. Development of multiple performance indices and system parameter study for the design of a MEMS accelerometer

    International Nuclear Information System (INIS)

    Kim, Yong Il; Choi, Chan Kyu; Yoo, Hong Hee

    2012-01-01

    For the design of a MEMS accelerometer, proper performance indices should be defined and employed. Performance indices are obtained using either an experimental method or a numerical method. In the present study, a vibration analysis model of a MEMS accelerometer is introduced to calculate three performance indices: sensitivity, measurable acceleration range, and measurable frequency range. The accuracy of the vibration analysis model is first validated by comparing its modal and transient results with those of a commercial finite element code. Measurable acceleration and frequency ranges versus allowable errors for electrical and mechanical sensitivities are obtained and the effects of system parameter variations on the three performance indices are investigated

  4. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    Science.gov (United States)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  5. Moderating effects of age, gender and education on the associations of perceived neighborhood environment attributes with accelerometer-based physical activity: the IPEN Adult study Moderating effects of age, gender and education on the associations of perceived neighborhood environment attributes with accelerometer-based physical activity: the IPEN Adult study

    Science.gov (United States)

    Van Dyck, Delfien; Cerin, Ester; De Bourdeaudhuij, Ilse; Salvo, Deborah; Christiansen, Lars B; Macfarlane, Duncan; Owen, Neville; Mitas, Josef; Troelsen, Jens; Aguinaga-Ontoso, Ines; Davey, Rachel; Reis, Rodrigo; Sarmiento, Olga L; Schofield, Grant; Conway, Terry L; Sallis, James F

    2015-01-01

    The study's purpose was to examine age, gender, and education as potential moderators of the associations of perceived neighborhood environment variables with accelerometer-based moderate-to-vigorous physical activity (MVPA). Data were from 7273 adults from 16 sites (11 countries) that were part of a coordinated multi-country cross-sectional study. Age moderated the associations of perceived crime safety, and perceiving no major physical barriers to walking, with MVPA: positive associations were only found in older adults. Perceived land use mix-access was linearly (positive) associated with MVPA in men, and curvilinearly in women. Perceived crime safety was related to MVPA only in women. No moderating relationships were found for education. Overall the associations of adults’ perceptions of environmental attributes with MVPA were largely independent of the socio-demographic factors examined. These findings are encouraging, suggesting that efforts to optimize the perceived built and social environment may act in a socially-equitable manner to facilitate MVPA. PMID:26454247

  6. Design of reactor alarm instrument based on SOPC

    International Nuclear Information System (INIS)

    Li Meng; Lu Yi; Rong Ru

    2008-01-01

    The design of embedded alarm instrument in reactors based on Nios II CPU is introduced in this paper. This design uses the SOPC technology based on the Cyclone series FPGA as a digital bench, and connects the MPU and drivers and interface of times, RS232, sdram,and etc. into a FPGA chip. It is proved that the system achieves the design goals in primary experimentation. (authors)

  7. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Gunhee Koo

    2017-11-01

    Full Text Available A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  8. The Domain Five Observation Instrument: A Competency-Based Coach Evaluation Tool

    Science.gov (United States)

    Shangraw, Rebecca

    2017-01-01

    The Domain Five Observation Instrument (DFOI) is a competency-based observation instrument recommended for sport leaders or researchers who wish to evaluate coaches' instructional behaviors. The DFOI includes 10 behavior categories and four timed categories that encompass 34 observable instructional benchmarks outlined in domain five of the…

  9. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  10. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    Science.gov (United States)

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (frequency

  11. A compact HV supply for field/PC based nuclear instrumentation

    International Nuclear Information System (INIS)

    Manna, A.; Nikhare, D.M.; Madhavi, V.; Bayala, A.K.; Mukhopadhyay, P.K.; Kataria, S.K.

    2001-01-01

    In the recent years, most of the nuclear instruments that were earlier based on NIM Bin standards, are becoming available as PC Add-on cards. This trend is due to the decreasing prices of desktop personal computers and the necessity for automation in radioactivity measurements. This paper describes the design and development of a HV supply module and its PC Add-on card version for field portable/ PC based nuclear instrumentation. The HV supply though being very compact in size meets all the stringent specifications required for detector biasing applications and it has been tested for use with NaI, BF 3 . (author)

  12. Circular Piezoelectric Accelerometer for High Band Width Application

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Larsen, Jack; Lou-Møller, Rasmus

    2009-01-01

    An uniaxial bulk-micromachined piezoelectric MEMS accelerometer intended for high bandwidth application is fabricated and characterized. A circular seismic mass (radius = 1200 ¿m) is suspended by a 20 ¿m thick annular silicon membrane (radius = 1800 ¿m). A 24 ¿m PZT screen printed thick film...... is used as the sensing material on top of the silicon membrane. Accelerations in the out of plane direction induce a force on the seismic mass bending the membrane and a potential difference is measured in the out of plane direction of the stressed PZT. A resonance frequency of 23.50 kHz, a charge...

  13. Accelerometer measured daily physical activity and sedentary pursuits--comparison between two models of the Actigraph and the importance of data reduction.

    Science.gov (United States)

    Tanha, Tina; Tornberg, Åsa; Dencker, Magnus; Wollmer, Per

    2013-10-31

    Very few validation studies have been performed between different generations of the commonly used Actigraph accelerometers. We compared daily physical activity data generated from the old generation Actigraph model 7164 with the new generation Actigraph GT1M accelerometer in 15 young females for eight consecutive days. We also investigated if different wear time thresholds had any impact on the findings. Minutes per day of moderate and vigorous physical activity (MVPA), vigorous physical activity (VPA) and very vigorous physical activity (VVPA) were calculated. Moreover, minutes of sedentary pursuits per day were calculated. There were significant (P physical activity. Median minutes of sedentary pursuits per day are highly dependent on which wear time threshold that is used, and not by accelerometer model.

  14. Development of an accelerometer-linked online intervention system to promote physical activity in adolescents.

    Science.gov (United States)

    Guthrie, Nicole; Bradlyn, Andrew; Thompson, Sharon K; Yen, Sophia; Haritatos, Jana; Dillon, Fred; Cole, Steve W

    2015-01-01

    Most adolescents do not achieve the recommended levels of moderate-to-vigorous physical activity (MVPA), placing them at increased risk for a diverse array of chronic diseases in adulthood. There is a great need for scalable and effective interventions that can increase MVPA in adolescents. Here we report the results of a measurement validation study and a preliminary proof-of-concept experiment testing the impact of Zamzee, an accelerometer-linked online intervention system that combines proximal performance feedback and incentive motivation features to promote MVPA. In a calibration study that parametrically varied levels of physical activity in 31 12-14 year-old children, the Zamzee activity meter was shown to provide a valid measure of MVPA (sensitivity in detecting MVPA = 85.9%, specificity = 97.5%, and r = .94 correspondence with the benchmark RT3 accelerometer system; all p videogame (p adolescents.

  15. Simulation of a low frequency Z-axis SU-8 accelerometer in coventorware and MEMS+

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2013-04-01

    This paper presents the simulation of a z-axis SU-8 capacitive accelerometer. The study consists of a modal analysis of the modeled accelerometer, a study relating capacitance to acceleration, capacitance to deflection, an effective spring constant calculation, and a comparison of results achieved using CoventorWare® ANALYZER™ and MEMS+®. A fabricated energy harvester design from [1] was used for modeling and simulation in this study, with a four spring attachment of a 650μm×650μm; ×110μm proof mass of 4.542×10-8 kg. At rest, the spacing between electrodes is 4μm along the z-axis, and at 1.5g acceleration, there is 1.9μm spacing between electrodes, at which point pull in occurs for a 1V voltage. © 2013 IEEE.

  16. The Practical Design of In-vehicle Telematics Device with GPS and MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    D. M. Dramićanin

    2012-11-01

    Full Text Available The latest generation of vehicle tracking devices relies not only on Global Positioning System (GPS but also uses low-cost Micro-Electro-Mechanical Systems (MEMS accelerometers. This combination supports new services such as driving style characterization and Automatic Crash Notification (ACN. Our focus will be on practical considerations of such a telematics unit. The paper will consider the boundaries of allowed errors and minimal requirements for sensors and mounting requirements. Sensor range for crash detection and impact angle estimation was tested on field trials with two units containing accelerometers range of 18g and 2g. The kinematic orientation of vehicle is evaluated in a series of field trials with a resulting standard deviation of estimation of 1.67°. The second run of experiments considers the dynamic range and sampling rate of sensors during collision. A sensor range of 8g (typical for present-day telematics devices can be used to detect crash without accurate knowledge of impact angle.

  17. Advances in Field Deployable Instrumented Particles for the Study of Alluvial Transport Mechanisms

    Science.gov (United States)

    Dillon, B.; Strom, K.

    2017-12-01

    Advances in microelectromechanical systems (MEMs) in the past decade have lead to the development of various instrumented or "smart" particles for use in the study of alluvial transport. The goal of many of these devices is to collect data on the interaction between hydrodynamic turbulence and individual sediment particles. Studying this interaction provides a basis to better understand entrainment and deposition processes which leads to better predictive morphologic and transport models. In collecting data on these processes, researchers seek to capture the time history of the forces incident on the particle and the particle's reaction. Many methods have been employed to capture this data - miniaturized pressure traps, accelerometers, gyroscopes, MEMs pressure transducers, and cantilevered load cells. However no system to date has been able to capture the pressure forces incident on the particle and its reaction while remaining mobile and of a size and density comparable to most gravels. Advances in the development, deployment, and use of waterproofed laboratory instrumentation have led our research group to develop such a particle. This particle has been used in both laboratory settings and large-scale fluvial environments (coupled with a field-deployable PIV system) to capture data on turbulent erosion processes. This system advances the practice in several ways: 1) It is, at present, the smallest (⌀ 19mm) instrumented erodible particle reported in the literature. 2) It contains novel developments in pressure sensing technology which allow the inclusion of six pressure ports, a 3-axis accelerometer, and a 1-axis gyroscope - all of which can be recorded simultaneously. 3) It expands the researcher's abilities to gather data on phenomena that, previously, have mandated the use of a laboratory scale model. The use of this system has generated observations of the so-called very large scale motions (VLSMs) in a reach of the Virginia section of the New River. Their

  18. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users.

    Directory of Open Access Journals (Sweden)

    Tom Edward Nightingale

    Full Text Available To assess the validity of two accelerometer devices, at two different anatomical locations, for the prediction of physical activity energy expenditure (PAEE in manual wheelchair users (MWUs.Seventeen MWUs (36 ± 10 yrs, 72 ± 11 kg completed ten activities; resting, folding clothes, propulsion on a 1% gradient (3,4,5,6 and 7 km·hr-1 and propulsion at 4km·hr-1 (with an additional 8% body mass, 2% and 3% gradient on a motorised wheelchair treadmill. GT3X+ and GENEActiv accelerometers were worn on the right wrist (W and upper arm (UA. Linear regression analysis was conducted between outputs from each accelerometer and criterion PAEE, measured using indirect calorimetry. Subsequent error statistics were calculated for the derived regression equations for all four device/location combinations, using a leave-one-out cross-validation analysis.Accelerometer outputs at each anatomical location were significantly (p < .01 associated with PAEE (GT3X+-UA; r = 0.68 and GT3X+-W; r = 0.82. GENEActiv-UA; r = 0.87 and GENEActiv-W; r = 0.88. Mean ± SD PAEE estimation errors for all activities combined were 15 ± 45%, 14 ± 50%, 3 ± 25% and 4 ± 26% for GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively. Absolute PAEE estimation errors for devices varied, 19 to 66% for GT3X+-UA, 17 to 122% for GT3X+-W, 15 to 26% for GENEActiv-UA and from 17.0 to 32% for the GENEActiv-W.The results indicate that the GENEActiv device worn on either the upper arm or wrist provides the most valid prediction of PAEE in MWUs. Variation in error statistics between the two devices is a result of inherent differences in internal components, on-board filtering processes and outputs of each device.

  19. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users.

    Science.gov (United States)

    Nightingale, Tom Edward; Walhin, Jean-Philippe; Thompson, Dylan; Bilzon, James Lee John

    2015-01-01

    To assess the validity of two accelerometer devices, at two different anatomical locations, for the prediction of physical activity energy expenditure (PAEE) in manual wheelchair users (MWUs). Seventeen MWUs (36 ± 10 yrs, 72 ± 11 kg) completed ten activities; resting, folding clothes, propulsion on a 1% gradient (3,4,5,6 and 7 km·hr-1) and propulsion at 4km·hr-1 (with an additional 8% body mass, 2% and 3% gradient) on a motorised wheelchair treadmill. GT3X+ and GENEActiv accelerometers were worn on the right wrist (W) and upper arm (UA). Linear regression analysis was conducted between outputs from each accelerometer and criterion PAEE, measured using indirect calorimetry. Subsequent error statistics were calculated for the derived regression equations for all four device/location combinations, using a leave-one-out cross-validation analysis. Accelerometer outputs at each anatomical location were significantly (p < .01) associated with PAEE (GT3X+-UA; r = 0.68 and GT3X+-W; r = 0.82. GENEActiv-UA; r = 0.87 and GENEActiv-W; r = 0.88). Mean ± SD PAEE estimation errors for all activities combined were 15 ± 45%, 14 ± 50%, 3 ± 25% and 4 ± 26% for GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively. Absolute PAEE estimation errors for devices varied, 19 to 66% for GT3X+-UA, 17 to 122% for GT3X+-W, 15 to 26% for GENEActiv-UA and from 17.0 to 32% for the GENEActiv-W. The results indicate that the GENEActiv device worn on either the upper arm or wrist provides the most valid prediction of PAEE in MWUs. Variation in error statistics between the two devices is a result of inherent differences in internal components, on-board filtering processes and outputs of each device.

  20. Towards Uniform Accelerometry Analysis: A Standardization Methodology to Minimize Measurement Bias Due to Systematic Accelerometer Wear-Time Variation

    Directory of Open Access Journals (Sweden)

    Tarun R. Katapally, Nazeem Muhajarine

    2014-06-01

    Full Text Available Accelerometers are predominantly used to objectively measure the entire range of activity intensities – sedentary behaviour (SED, light physical activity (LPA and moderate to vigorous physical activity (MVPA. However, studies consistently report results without accounting for systematic accelerometer wear-time variation (within and between participants, jeopardizing the validity of these results. This study describes the development of a standardization methodology to understand and minimize measurement bias due to wear-time variation. Accelerometry is generally conducted over seven consecutive days, with participants' data being commonly considered 'valid' only if wear-time is at least 10 hours/day. However, even within ‘valid’ data, there could be systematic wear-time variation. To explore this variation, accelerometer data of Smart Cities, Healthy Kids study (www.smartcitieshealthykids.com were analyzed descriptively and with repeated measures multivariate analysis of variance (MANOVA. Subsequently, a standardization method was developed, where case-specific observed wear-time is controlled to an analyst specified time period. Next, case-specific accelerometer data are interpolated to this controlled wear-time to produce standardized variables. To understand discrepancies owing to wear-time variation, all analyses were conducted pre- and post-standardization. Descriptive analyses revealed systematic wear-time variation, both between and within participants. Pre- and post-standardized descriptive analyses of SED, LPA and MVPA revealed a persistent and often significant trend of wear-time’s influence on activity. SED was consistently higher on weekdays before standardization; however, this trend was reversed post-standardization. Even though MVPA was significantly higher on weekdays both pre- and post-standardization, the magnitude of this difference decreased post-standardization. Multivariable analyses with standardized SED, LPA and

  1. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.

    Science.gov (United States)

    Ryu, Jiwon; Choi, Jaesoon; Kim, Hee Chan

    2013-01-01

    Robot-assisted minimally invasive surgery is effective for operations in limited space. Enhancing safety based on automatic tracking of surgical instrument position to prevent inadvertent harmful events such as tissue perforation or instrument collisions could be a meaningful augmentation to current robotic surgical systems. A vision-based instrument tracking scheme as a core algorithm to implement such functions was developed in this study. An automatic tracking scheme is proposed as a chain of computer vision techniques, including classification of metallic properties using k-means clustering and instrument movement tracking using similarity measures, Euclidean distance calculations, and a Kalman filter algorithm. The implemented system showed satisfactory performance in tests using actual robot-assisted surgery videos. Trajectory comparisons of automatically detected data and ground truth data obtained by manually locating the center of mass of each instrument were used to quantitatively validate the system. Instruments and collisions could be well tracked through the proposed methods. The developed collision warning system could provide valuable information to clinicians for safer procedures. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study.

    Science.gov (United States)

    Chaix, Basile; Kestens, Yan; Duncan, Scott; Merrien, Claire; Thierry, Benoît; Pannier, Bruno; Brondeel, Ruben; Lewin, Antoine; Karusisi, Noëlla; Perchoux, Camille; Thomas, Frédérique; Méline, Julie

    2014-09-27

    Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations. In 2012-2013, 234 participants of the RECORD GPS Study (French Paris region, median age = 58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate = 57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models. Participants spent a median of 1 h 58 min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation. Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation

  3. Accelerometer Load Profiles for Basketball-Specific Drills in Elite Players

    Directory of Open Access Journals (Sweden)

    Xavi Schelling, Lorena Torres

    2016-12-01

    Full Text Available The purpose of this study was to quantify the workload during basketball-specific drills measured through microtechnology. Twelve professional male basketball players from the Spanish 1st Division were monitored over a 4-week period. Data were collected from 16 sessions, for a total of 95 ± 33 drills per player. Workload data (Acceleration load; AL were obtained from a tri-axial accelerometer at 100Hz sampling frequency, and were expressed over time (AL.min-1. Comparisons among training drills (i.e., 2v2, 3v3, 4v4, and 5v5 were assessed via standardized mean differences. Full-court 3v3 and 5v5 showed the highest physical demand (AL.min-1: 18.7 ± 4.1 and 17.9 ± 4.6, respectively compared with other traditional balanced basketball drills such as 2v2 and 4v4 (14.6 ± 2.8 and 13.8±2.5, respectively. The AL.min-1 on half-court showed trivial-to-moderate differences with a likely increase of ~10-20% in 2v2 drill compared with any other formats. This study provides insight into the specific requirements of a range of exercises typically performed in basketball sessions. The use of accelerometer data is presented as a useful tool in assessing the workload.

  4. Design, fabrication and characterisation of a biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. First measurements indicate

  5. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  6. Clinical validation of a body-fixed 3D accelerometer and algorithm for activity monitoring in orthopaedic patients

    Directory of Open Access Journals (Sweden)

    Matthijs Lipperts

    2017-10-01

    Conclusion: Activity monitoring of orthopaedic patients by counting and timing a large set of relevant daily life events is feasible in a user- and patient-friendly way and at high clinical validity using a generic three-dimensional accelerometer and algorithms based on empirical and physical methods. The algorithms performed well for healthy individuals as well as patients recovering after total joint replacement in a challenging validation set-up. With such a simple and transparent method real-life activity parameters can be collected in orthopaedic practice for diagnostics, treatments, outcome assessment, or biofeedback.

  7. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson's Disease: Toward Clinical and at Home Use.

    Science.gov (United States)

    Del Din, Silvia; Godfrey, Alan; Rochester, Lynn

    2016-05-01

    Measurement of gait is becoming important as a tool to identify disease and disease progression, yet to date its application is limited largely to specialist centers. Wearable devices enables gait to be measured in naturalistic environments, however questions remain regarding validity. Previous research suggests that when compared with a laboratory reference, measurement accuracy is acceptable for mean but not variability or asymmetry gait characteristics. Some fundamental reasons for this have been presented, (e.g., synchronization, different sampling frequencies) but to date this has not been systematically examined. The aims of this study were to: 1) quantify a comprehensive range of gait characteristics measured using a single triaxial accelerometer-based monitor; 2) examine outcomes and monitor performance in measuring gait in older adults and those with Parkinson's disease (PD); and 3) carry out a detailed comparison with those derived from an instrumented walkway to account for any discrepancies. Fourteen gait characteristics were quantified in 30 people with incident PD and 30 healthy age-matched controls. Of the 14 gait characteristics compared, agreement between instruments was excellent for four (ICCs 0.913-0.983); moderate for four (ICCs 0.508-0.766); and poor for six characteristics (ICCs 0.637-0.370). Further analysis revealed that differences reflect an increased sensitivity of accelerometry to detect motion, rather than measurement error. This is most likely because accelerometry measures gait as a continuous activity rather than discrete footfall events, per instrumented tools. The increased sensitivity shown for these characteristics will be of particular interest to researchers keen to interpret "real-world" gait data. In conclusion, use of a body-worn monitor is recommended for the measurement of gait but is likely to yield more sensitive data for asymmetry and variability features.

  8. The design of a simple radon-detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Du Genyuan; Qiu Yingyu; Zhang Jiang

    2007-01-01

    Introduction are given on the internal composition of the radon-detecting instrument based on MCU and the working of the real electric circuit. The single-chip microcomputer P89C58 of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  9. The design of a simple radon-detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Du Genyuan; Chen Jianjun; Zhang Jiang

    2008-01-01

    Introduction are given on the internal composition of the radon-detecting instrument based on MCU and the working of the real electric circuit. The single-chip microcomputer P89C58 of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  10. EASY-An Instrument for Surveillance of Physical Activity in Youth.

    Science.gov (United States)

    Pate, Russell R; McIver, Kerry; Dowda, Marsha; Schenkelberg, Michaela A; Beets, Michael; DiStefano, Christine

    2018-01-23

    Physical activity (PA) promotion among youth is a public health priority and there is a need for robust surveillance systems to help support such initiatives. Existing youth PA self-report instruments that are used for surveillance lack information regarding the types and contexts of activity. Further, these instruments have limited validity with accelerometry. The purpose of the present study was to develop a self-report instrument, with sound psychometric properties, for monitoring compliance with PA guidelines in youth. In focus groups, 162 middle school students identified 30 forms of PA that are highly prevalent in that age group. We incorporated these activities into three preliminary forms of a self-report instrument. An independent sample of middle school students (n = 537) was randomly assigned to complete one of the three preliminary versions of the instrument. Rasch analysis was applied to the responses to the three formats, and a yes/no plus frequency format emerged as the preferred method. A third sample of 342 middle school students then completed the yes/no plus frequency instrument twice following a seven-day period during which they wore an accelerometer. Using both Rasch analysis and traditional correlational methods, validity and reliability of a 14-item instrument were established. Data were collected during 2012 - 2015. Spearman correlation coefficient for the association between the cumulative score for the 14 items and minutes per day of accelerometry-derived moderate-to-vigorous physical activity (MVPA) was 0.33 (95% CI 0.22, 0.43; pCommercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  11. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  12. Content comparison of occupation-based instruments in adult rheumatology and musculoskeletal rehabilitation based on the International Classification of Functioning, Disability and Health.

    Science.gov (United States)

    Stamm, Tanja A; Cieza, Alarcos; Machold, Klaus P; Smolen, Josef S; Stucki, Gerold

    2004-12-15

    To compare the content of clinical, occupation-based instruments that are used in adult rheumatology and musculoskeletal rehabilitation in occupational therapy based on the International Classification of Functioning, Disability and Health (ICF). Clinical instruments of occupational performance and occupation in adult rehabilitation and rheumatology were identified in a literature search. All items of these instruments were linked to the ICF categories according to 10 linking rules. On the basis of the linking, the content of these instruments was compared and the relationship between the capacity and performance component explored. The following 7 instruments were identified: the Canadian Occupational Performance Measure, the Assessment of Motor and Process Skills, the Sequential Occupational Dexterity Assessment, the Jebson Taylor Hand Function Test, the Moberg Picking Up Test, the Button Test, and the Functional Dexterity Test. The items of the 7 instruments were linked to 53 different ICF categories. Five items could not be linked to the ICF. The areas covered by the 7 occupation-based instruments differ importantly: The main focus of all 7 instruments is on the ICF component activities and participation. Body functions are covered by 2 instruments. Two instruments were linked to 1 single ICF category only. Clinicians and researchers who need to select an occupation-based instrument must be aware of the areas that are covered by this instrument and the potential areas that are not covered at all.

  13. Quantitative Accelerated Life Testing of MEMS Accelerometers.

    Science.gov (United States)

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-11-20

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature) and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the"worst case" being smaller than 10 -7 h -1 .

  14. Micromachined Precision Inertial Instruments

    National Research Council Canada - National Science Library

    Najafi, Khalil

    2003-01-01

    This program focuses on developing inertial-grade micromachined accelerometers and gyroscopes and their associated electronics and packaging for use in a variety of military and commercial applications...

  15. Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data.

    Science.gov (United States)

    Martin, Bryan D; Addona, Vittorio; Wolfson, Julian; Adomavicius, Gediminas; Fan, Yingling

    2017-09-08

    We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as much as possible in order to reduce the computational burden of the classification. We combine dimension reduction and classification algorithms and compare them with a metric that balances accuracy and dimensionality. In doing so, we develop a classification algorithm that accurately classifies five different modes of transportation (i.e., walking, biking, car, bus and rail) while being computationally simple enough to run on a typical smartphone. Further, we use data that required no behavioral changes from the smartphone users to collect. Our best classification model uses the random forest algorithm to achieve 96.8% accuracy.

  16. Aging management of instrumentation and control sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2010-01-01

    Pressure to improve plant efficiency and maximize safety and the increasing age of existing NPPs are forcing the global nuclear power industry to confront the challenges of aging - caused by stressors such as temperature, humidity, radiation, electricity, and vibration - in key instrument and control (I and C) components like pressure transmitters, temperature sensors, neutron detectors, and cables. Traditional aging management methods, such as equipment replacement, required the process to be shut down. Recent aging management technologies, collectively known as online monitoring (OLM), enable plants to monitor the condition and aging of their installed I and C while the plant is operating. Developed through R and D initiatives worldwide, such OLM techniques include low- and high-frequency methods that use existing sensors, such as noise analysis; methods based on test or diagnostic sensors, such as for vibration-measuring accelerometers; and methods, such as the power interrupt (PI) test, based on active measurements made by injecting a test signal into the component under test. A review of these aging management methods, their effectiveness, and their interrelation provides a foundation for understanding the next stage in the evolution of OLM: truly integrated hybrid OLM systems capable of robust condition monitoring in both novel and familiar operating conditions.

  17. Automatic identification of solid-phase medication intake using wireless wearable accelerometers.

    Science.gov (United States)

    Rui Wang; Sitova, Zdenka; Xiaoqing Jia; Xiang He; Abramson, Tobi; Gasti, Paolo; Balagani, Kiran S; Farajidavar, Aydin

    2014-01-01

    We have proposed a novel solution to a fundamental problem encountered in implementing non-ingestion based medical adherence monitoring systems, namely, how to reliably identify pill medication intake. We show how wireless wearable devices with tri-axial accelerometer can be used to detect and classify hand gestures of users during solid-phase medication intake. Two devices were worn on the wrists of each user. Users were asked to perform two activities in the way that is natural and most comfortable to them: (1) taking empty gelatin capsules with water, and (2) drinking water and wiping mouth. 25 users participated in this study. The signals obtained from the devices were filtered and the patterns were identified using dynamic time warping algorithm. Using hand gesture signals, we achieved 84.17 percent true positive rate and 13.33 percent false alarm rate, thus demonstrating that the hand gestures could be used to effectively identify pill taking activity.

  18. Recognition of risk situations based on endoscopic instrument tracking and knowledge based situation modeling

    Science.gov (United States)

    Speidel, Stefanie; Sudra, Gunther; Senemaud, Julien; Drentschew, Maximilian; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2008-03-01

    Minimally invasive surgery has gained significantly in importance over the last decade due to the numerous advantages on patient-side. The surgeon has to adapt special operation-techniques and deal with difficulties like the complex hand-eye coordination, limited field of view and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality (AR) techniques. In order to generate a context-aware assistance it is necessary to recognize the current state of the intervention using intraoperatively gained sensor data and a model of the surgical intervention. In this paper we present the recognition of risk situations, the system warns the surgeon if an instrument gets too close to a risk structure. The context-aware assistance system starts with an image-based analysis to retrieve information from the endoscopic images. This information is classified and a semantic description is generated. The description is used to recognize the current state and launch an appropriate AR visualization. In detail we present an automatic vision-based instrument tracking to obtain the positions of the instruments. Situation recognition is performed using a knowledge representation based on a description logic system. Two augmented reality visualization programs are realized to warn the surgeon if a risk situation occurs.

  19. Perancangan Kendali Robot pada Smartphone Menggunakan Sensor Accelerometer Berbasis Metode Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Mohamad Agung Prawira Negara

    2017-08-01

    Full Text Available Telecommunications and robotics technology is being developed to assist and facilitate the work of a human. In the field of telecommunications particularly smartphone has reached the planting of operating systems like android until planting sensors such as an accelerometer, gyro, proximity, etc. We would like to take advantage of the accelerometer sensor on a smartphone as robot control. We will compare the use of Sugeno Fuzzy Logic and Mamdani Fuzzy Logic to determine the best control method. The basic components of the robot are the Bluetooth module HC-05 as a medium of communication with the android, arduino as the control system and actuators such as DC motors drive the rear wheels to adjust the speed of the robot, and servo motor drives the front wheels to adjust the degree of turn robot. In robot’s movement test, 4 of 8 trials or approximately 50% stated better Sugeno Fuzzy Logic than Mamdani Fuzzy Logic in terms of linearity. In robot's controller response test, for Sugeno Fuzzy Logic method the average delay is 0.41 seconds, and for Mamdani Fuzzy Logic method the average delay is 10.80 seconds.

  20. Children's physical activity behavior during school recess: A case study using GPS, accelerometer, participant observation, and go-along interview

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Troelsen, Jens

    participated in go-along group interviews, and recess behavior was observed using an ethnographical participant observation approach. All data were analyzed separated sys- tematically answering the Five W Questions. Children were categorized into Low, Middle and High physical activity groups and these groups...... quantitative GPS and accelerometer measurements with qualitative go-along group interviews and participant observations. Data were collected during three weekdays in a public school in Denmark. Eighty-one children (47 girls) wore an accelerometer (ActiGraph GT3X) and GPS (QStarz BT-Q1000xt), sixteen children...

  1. Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears

    Science.gov (United States)

    Jasmine Ware,; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Robbins, Charles T.; Joy Erlenbach,; Shannon Jensen,; Amy Cutting,; Nicole Nicassio-Hiskey,; Amy Hash,; Owen, Megan A.; Heiko Jansen,

    2015-01-01

    Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.

  2. Developing evaluation instrument based on CIPP models on the implementation of portfolio assessment

    Science.gov (United States)

    Kurnia, Feni; Rosana, Dadan; Supahar

    2017-08-01

    This study aimed to develop an evaluation instrument constructed by CIPP model on the implementation of portfolio assessment in science learning. This study used research and development (R & D) method; adapting 4-D by the development of non-test instrument, and the evaluation instrument constructed by CIPP model. CIPP is the abbreviation of Context, Input, Process, and Product. The techniques of data collection were interviews, questionnaires, and observations. Data collection instruments were: 1) the interview guidelines for the analysis of the problems and the needs, 2) questionnaire to see level of accomplishment of portfolio assessment instrument, and 3) observation sheets for teacher and student to dig up responses to the portfolio assessment instrument. The data obtained was quantitative data obtained from several validators. The validators consist of two lecturers as the evaluation experts, two practitioners (science teachers), and three colleagues. This paper shows the results of content validity obtained from the validators and the analysis result of the data obtained by using Aikens' V formula. The results of this study shows that the evaluation instrument based on CIPP models is proper to evaluate the implementation of portfolio assessment instruments. Based on the experts' judgments, practitioners, and colleagues, the Aikens' V coefficient was between 0.86-1,00 which means that it is valid and can be used in the limited trial and operational field trial.

  3. Beam diagnostics based on virtual instrument technology for HLS

    International Nuclear Information System (INIS)

    Sun Baogen; Lu Ping; Wang Xiaohui; Wang Baoyun; Wang Junhua; Gu Liming; Fang Jia; Ma Tianji

    2009-01-01

    The paper introduce the beam diagnostics system using virtual instrument technology for Hefei Light Source (HLS), which includes a GPIB bus-based DCCT measurement system to measure the beam DC current and beam life, a VXIbus-based closed orbit measurement system to measure the beam position, a PCIbus-based beam profile measurement system to measure the beam profile and emittance, a GPIB-LAN based bunch length system using photoelectric method, and a Ethernet-based photon beam position measurement system. The software is programmed by LabVIEW, which reduces much developing work. (authors)

  4. Modeling and Analysis of a Closed-Loop System for High-Q MEMS Accelerometer Sensor

    Directory of Open Access Journals (Sweden)

    Wang Yalin

    2018-01-01

    Full Text Available High-Q sensing element is desirable for high performance while makes the loop control a great challenge. This paper presents a closed-loop system for high-Q capacitive MEMS accelerometer which has achieved loop control effectively. The proportional-derivative(PDcontrol is developed in the system to improve the system stability. In addition, pulse width modulation (PWM electrostatic force feedback is designed in the loop to overcome the nonlinearity. Furthermore, a sigma-delta (ΣΔ modulator with noise shaping is built to realize digital output. System model is built in Matlab/Simulink. The simulation results indicate that equivalent Q value is reduced to 1.5 to ensure stability and responsiveness of the system. The effective number of bits of system output is 14.7 bits. The system nonlinearity is less than 5‰. The equivalent linear model including main noise factors is built, and then a complete theory of noise and linearity analysis is established to contribute to common MEMS accelerometer research.

  5. Shuttle high resolution accelerometer package experiment results - Atmospheric density measurements between 60-160 km

    Science.gov (United States)

    Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.

    1988-01-01

    Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.

  6. Ontology Based Vocabulary Matching for Oceanographic Instruments

    Science.gov (United States)

    Chen, Yu; Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Leadbetter, Adam

    2014-05-01

    Data integration act as the preliminary entry point as we enter the era of big data in many scientific domains. However the reusefulness of various dataset has met the hurdle due to different initial of interests of different parties, therefore different vocabularies in describing similar or semantically related concepts. In this scenario it is vital to devise an automatic or semi-supervised algorithm to facilitate the convergence of different vocabularies. The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. In an attempt to harmonize these regional data systems, especially vocabularies, R2R recognizes the value of the SeaDataNet vocabularies served by the NERC Vocabulary Server (NVS) hosted at the British Oceanographic Data Centre as a trusted, authoritative source for describing many oceanographic research concepts such as instrumentation. In this work, we make use of the semantic relations in the vocabularies served by NVS to build a Bayesian network and take advantage of the idea of entropy in evaluating the correlation between different concepts and keywords. The performance of the model is evaluated against matching instruments from R2R against the SeaDataNet instrument vocabularies based on calculated confidence scores in the instrument pairings. These pairings with their scores can then be analyzed for assertion growing the interoperability of the R2R vocabulary through its links to the SeaDataNet entities.

  7. Gait and posture discrimination in sheep using a tri-axial accelerometer.

    Science.gov (United States)

    Radeski, M; Ilieski, V

    2017-07-01

    Temporo-spatial observation of the leg could provide important information about the general condition of an animal, especially for those such as sheep and other free-ranging farm animals that can be difficult to access. Tri-axial accelerometers are capable of collecting vast amounts of data for locomotion and posture observations; however, interpretation and optimization of these data records remain a challenge. The aim of the present study was to introduce an optimized method for gait (walking, trotting and galloping) and posture (standing and lying) discrimination, using the acceleration values recorded by a tri-axial accelerometer mounted on the hind leg of sheep. The acceleration values recorded on the vertical and horizontal axes, as well as the total acceleration values were categorized. The relative frequencies of the acceleration categories (RFACs) were calculated in 3-s epochs. Reliable RFACs for gait and posture discrimination were identified with discriminant function and canonical analyses. Post hoc predictions for the two axes and total acceleration were conducted, using classification functions and classification scores for each epoch. Mahalanobis distances were used to determine the level of accuracy of the method. The highest discriminatory power for gait discrimination yielded four RFACs on the vertical axis, and five RFACs each on the horizontal axis and total acceleration vector. Classification functions showed the highest accuracy for walking and galloping. The highest total accuracy on the vertical and horizontal axes were 90% and 91%, respectively. Regarding posture discrimination, the vertical axis exhibited the highest discriminatory power, with values of RFAC (0, 1]=99.95% for standing; and RFAC (-1, 0]=99.50% for lying. The horizontal axis showed strong discrimination for the lying side of the animal, as values were in the acceleration category of (0, 1] for lying on the left side and (-1, 0] on the right side. The algorithm developed by

  8. Cellular telephone-based radiation detection instrument

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  9. Design of a fibre-optic disc accelerometer: theory and experiment

    Science.gov (United States)

    Wang, Yongjie; Xiao, Hao; Zhang, Songwei; Li, Fang; Liu, Yuliang

    2007-06-01

    Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10-5 rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.

  10. Field Programmable Gate Array (FPGA Respiratory Monitoring System Using a Flow Microsensor and an Accelerometer

    Directory of Open Access Journals (Sweden)

    Mellal Idir

    2017-04-01

    Full Text Available This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS flow sensor and an IMU (Inertial Measurement Unit accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.

  11. DEVELOPMENT OF PERFORMANCE ASSESSMENT INSTRUMENT FOR NURSES BASED ON WEB IN INPATIENT UNIT

    Directory of Open Access Journals (Sweden)

    Aprilia Nuryanti

    2017-06-01

    Full Text Available Introduction: Performance assessment instrument will be problematic when it is not representative in describing the competency because it is not obvious indicators and inappropriate performance standard to nursing’s task. The purpose of this study is to develop nurses’ performance assessment instrument based on the web from multi sources assessment inpatient unit at SMC Hospital. Methods: This study had two phases. The first phase was an explanatory overview of the performance assessment system using questionnaires completed by 53 respondents of nurses, selected by purposive sampling. Instrument development based on FGD with six decision makers in the hospital. Validity was tested by Pearson Product Moment Correlation and reliability of instrument’s was tested by alpha Cronbach. The second phase was socialization and instrument test to observe the quality of instrument using a questionnaire by 47 respondents and recommendations made by 8 participants of FGD. The samples were selected by purposive sampling technique. Performance assessment system was moderate at 58.49%. All questions which aimed to measure the performance of nurses were valid and reliable. The quality of nurses’ performance assessment instruments based on the web was a good category, which was functionality: 81.60; reliability: 78.16; efficiency: 80.85; usability: 81.70 and portability: 81.70. Results: The result was a web-based assessment format, scoring with Likert scale, resource assessment by the direct supervisor which was a multisource evaluator, the development of performance graph, and confidentiality of data on the database server. Discussion: Recommendations for hospital is to make policy based on the final value of the performance assessment by the supervisor which was multisource feedback and it needs a global writing on a form of performance assessment result.

  12. Comparison of shipping, handling, and shock instrumentation results for two 3.5-m-class primary mirrors

    Science.gov (United States)

    Killpatrick, Don H.; Mayo, James W.

    1998-08-01

    Packing, shipping, and handling procedures employed during several transportation activities for two large telescope primary mirrors are presented along with detailed shock recording results. Operations monitored included craning, forklifting, and shipping by air, sea, and land during all phases of manufacture and installation. The mirrors monitored were the SOR 3.5-m Telescope spun cast borosilicate primary mirror and the AEOS 3.67-m Telescope Zerodur thin meniscus primary mirror. Shock recording instrumentation included 2-, 5-, and 10-g Omni-G(superscript TM) impact indicators, 10-g Impact o-graph(superscript TM) 3-axis recording accelerometers, and high-resolution 3-axis accelerometers with Astromed Dash 8 eight-channel chart recorders and audio indicators. Shock results for some operations were monitored to the 0.01-g level. In-shipment temperature data are also presented and discussed. Effects of lifting operations, road conditions via truck, flight conditions via C-5B aircraft, and transportation via sea- going barge are discussed. Data are presented for three different crate designs and configurations and, in some cases, include mirror-in-cell shipping data. Shock results were observed from as low as a few hundredths-g to over 3- g's during various operations.

  13. Mode extraction on wind turbine blades via phase-based video motion estimation

    Science.gov (United States)

    Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu

    2017-04-01

    In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.

  14. Three 3-axis accelerometers fixed inside the tyre for studying contact patch deformations in wet conditions

    Science.gov (United States)

    Niskanen, Arto J.; Tuononen, Ari J.

    2014-05-01

    The tyre-road contact area was studied visually by means of a high-speed camera and three accelerometers fixed to the inner liner of the tyre carcass. Both methods show a distorted contact area in wet conditions, but interesting differences appeared. First, the contact area in full aquaplaning seems strongly distorted on a glass plate when subjected to visual inspection, while the accelerometers indicate a more even hydrodynamic aquaplaning contact length (CL) across the tyre width. Secondly, the acceleration sensors predict the clear shortening of the CL of the tyre before the critical aquaplaning speed. It can be concluded that the visual contact area and shape are heavily dependent on the transparency of the liquid and smoothness of the glass. Meanwhile, the tyre sensors can provide a CL estimate on any road surface imaginable.

  15. An eHealth System for Pressure Ulcer Risk Assessment Based on Accelerometer and Pressure Data

    Directory of Open Access Journals (Sweden)

    Dieter Hayn

    2015-01-01

    Full Text Available Pressure ulcers are a common skin disease which is associated with pain, reduced autonomy, social isolation, and reduced quality of life. There are several systems for monitoring of pressure ulcer-related risk factors on the market, but up to now no satisfactory solution is available, especially for people with medium pressure ulcer risk. We present a novel pressure ulcer risk assessment and prevention system, which combines the advantages of accelerometer and pressure sensors for monitoring pressure ulcer risk factors. Sensors are used for detection of repositionings of the person lying on the mattress. Sensor data are sent to a tablet where they are analysed and presented graphically. The system was evaluated in a long-term test at the homes of people of the target group. Results indicate that the system is able to detect movements of persons while lying in bed. Weak correlation in between mobility and Braden pressure ulcer risk was found (correlation factor = 0.31. From our data, long-term trends could be visualized as well as 24 h mobility profiles. Such graphical illustrations might be helpful for caregivers in order to optimize care of people with medium to high pressure ulcer risk.

  16. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    Science.gov (United States)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  17. The Pediatrics Milestones Assessment Pilot: Development of Workplace-Based Assessment Content, Instruments, and Processes.

    Science.gov (United States)

    Hicks, Patricia J; Margolis, Melissa; Poynter, Sue E; Chaffinch, Christa; Tenney-Soeiro, Rebecca; Turner, Teri L; Waggoner-Fountain, Linda; Lockridge, Robin; Clyman, Stephen G; Schwartz, Alan

    2016-05-01

    To report on the development of content and user feedback regarding the assessment process and utility of the workplace-based assessment instruments of the Pediatrics Milestones Assessment Pilot (PMAP). One multisource feedback instrument and two structured clinical observation instruments were developed and refined by experts in pediatrics and assessment to provide evidence for nine competencies based on the Pediatrics Milestones (PMs) and chosen to inform residency program faculty decisions about learners' readiness to serve as pediatric interns in the inpatient setting. During the 2012-2013 PMAP study, 18 U.S. pediatric residency programs enrolled interns and subinterns. Faculty, residents, nurses, and other observers used the instruments to assess learner performance through direct observation during a one-month rotation. At the end of the rotation, data were aggregated for each learner, milestone levels were assigned using a milestone classification form, and feedback was provided to learners. Learners and site leads were surveyed and/or interviewed about their experience as participants. Across the sites, 2,338 instruments assessing 239 learners were completed by 630 unique observers. Regarding end-of-rotation feedback, 93% of learners (128/137) agreed the assessments and feedback "helped me understand how those with whom I work perceive my performance," and 85% (117/137) agreed they were "useful for constructing future goals or identifying a developmental path." Site leads identified several benefits and challenges to the assessment process. PM-based instruments used in workplace-based assessment provide a meaningful and acceptable approach to collecting evidence of learner competency development. Learners valued feedback provided by PM-based assessment.

  18. Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass

    International Nuclear Information System (INIS)

    Ravi Sankar, A; Lahiri, S K; Das, S

    2009-01-01

    Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass is presented in this paper. The fabricated accelerometer device consists of a heavy proof mass supported by four thin flexures. Boron-diffused piezoresistors located near the fixed ends of the flexures are used for sensing the developed stress and hence acceleration. Performance enhancement is achieved by electroplating a gold mass of 20 µm thickness on top of the proof mass. A commercially available sulfite-based solution TSG-250(TM) was used for the electroplating process. Aluminum metal lines were used to form a Wheatstone bridge for signal pick-up. To avoid galvanic corrosion between two dissimilar metals having contact in an electrolyte, a shadow mask technique was used to selectively deposit a Cr/Au seed layer on an insulator atop the proof mass for subsequent electrodeposition. Bulk micromachining was performed using a 5% dual-doped TMAH solution. Fabricated devices with different electroplated gold areas were tested up to ±13 g acceleration. For electroplated gold dimensions of 2500 µm × 2500 µm × 20 µm on a proof mass, sensitivity along the Z-axis is increased by 21.8% as compared to the structure without gold. Off-axis sensitivities along the X- and Y-axes are reduced by 7.6% and 6.9%, respectively

  19. Comparison of estimated energy intake in children using a Web-based Dietary Assessment Software with accelerometer-estimated energy expenditure in children

    DEFF Research Database (Denmark)

    Biltoft-Jensen, Anja Pia; Hjort, Mads F.; Trolle, Ellen

    2013-01-01

    -induced thermogenesis. WebDASC's usability was assessed using a questionnaire. Parents could help their children record their diet and answer the questionnaire. Results Evaluated against TEE as derived from the accelerometers worn at the same time, the WebDASC performed just as well as other traditional methods......Background The OPUS (Optimal well-being, development and health for Danish children through a healthy New Nordic Diet) project carried out a school meal study to assess the impact of a New Nordic Diet (NND). The random controlled trial involved 834 children aged 8–11 in nine local authority schools...

  20. Mother-reported sleep, accelerometer-estimated sleep and weight status in Mexican American children: sleep duration is associated with increased adiposity and risk for overweight/obese status

    Science.gov (United States)

    We know of no studies comparing parent-reported sleep with accelerometer-estimated sleep in their relation to paediatric adiposity. We examined: (i) the reliability of mother-reported sleep compared with accelerometer-estimated sleep; and (ii) the relationship between both sleep measures and child a...

  1. Children’s Physical Activity Behavior during School Recess: A Pilot Study Using GPS, Accelerometer, Participant Observation, and Go-Along Interview

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Troelsen, Jens

    participated in go-along group interviews, and recess behavior was observed using an ethnographical participant observation approach. All data were analyzed separated sys- tematically answering the Five W Questions. Children were categorized into Low, Middle and High physical activity groups and these groups...... quantitative GPS and accelerometer measurements with qualitative go-along group interviews and participant observations. Data were collected during three weekdays in a public school in Denmark. Eighty-one children (47 girls) wore an accelerometer (ActiGraph GT3X) and GPS (QStarz BT-Q1000xt), sixteen children...

  2. Validation of reported physical activity for cholesterol control using two different physical activity instruments

    Directory of Open Access Journals (Sweden)

    Amy Z Fan

    2009-08-01

    Full Text Available Amy Z Fan1, Sandra A Ham2, Shravani Reddy Muppidi3, Ali H Mokdad41Behavioral Surveillance Branch, Division of Adult and Community Health, National Center for Chronic Disease Prevention and Health Promotion; 2Physical Activity and Health Branch, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 3College of Public Health, University of Georgia, Athens, GA, USA; 4Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USAAbstract: The National Cholesterol Education Program recommends increasing physical activity to improve cholesterol levels and overall cardiovascular health. We examined whether US adults who reported increasing their physical activity to control or lower blood cholesterol following physician’s advice or on their own efforts had higher levels of physical activity than those who reported that they did not. We used data from the National Health and Nutrition Examination Survey 2003–2004, which implemented two physical activity assessment instruments. The physical activity questionnaire (PAQ assessed self-reported frequency, intensity, and duration of leisure-time, household, and transportation-related physical activity in the past month. Physical movement was objectively monitored using a waist accelerometer that assessed minute-by-minute intensity (counts of movement/minute during waking time over a 7-day period. We adjusted our analysis for age, gender, race/ethnicity, educational attainment, and body mass index. Participants who reported increasing physical activity to control blood cholesterol had more PAQ-assessed physical activity and more accelerometer-assessed active days per week compared to those who did not. However, there were no significant differences in cholesterol levels between comparison groups. These findings suggest that self-report of exercising

  3. Are context-specific measures of parental-reported physical activity and sedentary behaviour associated with accelerometer data in 2-9-year-old European children?

    Science.gov (United States)

    Verbestel, Vera; De Henauw, Stefaan; Bammann, Karin; Barba, Gianvincenzo; Hadjigeorgiou, Charalambos; Eiben, Gabriele; Konstabel, Kenn; Kovács, Eva; Pitsiladis, Yannis; Reisch, Lucia; Santaliestra-Pasías, Alba M; Maes, Lea; De Bourdeaudhuij, Ilse

    2015-04-01

    The aim of the present study was to investigate if context-specific measures of parental-reported physical activity and sedentary behaviour are associated with objectively measured physical activity and sedentary time in children. Cross-sectional study. Seven European countries taking part in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants) study. Data were analysed from 2-9-year-old children (n 5982) who provided both parental-reported and accelerometer-derived physical activity/sedentary behaviour measures. Parents reported their children's daily screen-time, weekly sports participation and daily outdoor playtime by means of the Outdoor Playtime Checklist (OPC) and Outdoor Playtime Recall Questions (OPRQ). Sports participation, OPC- and OPRQ-derived outdoor play were positively associated with accelerometer-derived physical activity. Television viewing and computer use were positively associated with accelerometer-derived sedentary time. All parental-reported measures that were significantly associated with accelerometer outcomes explained only a minor part of the variance in accelerometer-derived physical activity or sedentary time. Parental-reported measures of physical activity and sedentary behaviour are not useful as a proxy for 2-9-year-old children's physical activity and sedentary time. Findings do not preclude the use of context-specific measures but imply that conclusions should be limited to the context-specific behaviours that are actually measured. Depending on the aim of the study, future research should carefully consider the choice of measurements, including the use of subjective or objective measures of the behaviour of interest or a combination of both.

  4. Fully Decoupled Compliant Parallel Mechanism: a New Solution for the Design of Multidimensional Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhen GAO

    2010-08-01

    Full Text Available In this paper, a novel multidimensional accelerometer is proposed based on fully decoupled compliant parallel mechanism. Three separated chains, which are served as the elastic body, are perpendicular to each other for sensing the kinetic information in different directions without decoupling process. As the crucial part of the whole sensor structure, the revolute and prismatic joints in three pairwise orthogonal branches of the parallel mechanism are manufactured with the alloy aluminium as flexure hinge-based compliant joints. The structure development is first introduced, followed by the comprehensive finite-element analysis including the strain of the sensitive legs, modal analysis for total deformation under different frequency, and the performance of harmonic response. Then, the shape optimization is conducted to reduce the unnecessary parts. Compliance optimization with particle swarm algorithm is implemented to redesign the dimension of the sensitive legs. The research supplies a new viewpoint for the mechanical design of physical sensor, especially acceleration sensor.

  5. Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, W.; Markos, C.

    2012-01-01

    In this paper we present our latest work on Fiber Bragg Gratings (FBGs) in microstructured polymer optical fibers (mPOFs) and their application as strain sensing transducers in devices, such as accelerometers and microphones. We demonstrate how the cross-sensitivity of the FBG to temperature...

  6. Tightly-coupled real-time analysis of GPS and accelerometer data for translational and rotational ground motions and application to earthquake and tsunami early warning

    Science.gov (United States)

    Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.

    2013-12-01

    High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion

  7. Towards development of a fiber optic-based transmission monitoring system

    Science.gov (United States)

    Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.

    2011-06-01

    There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.

  8. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  9. Reliability assessment of a peer evaluation instrument in a team-based learning course

    Directory of Open Access Journals (Sweden)

    Wahawisan J

    2016-03-01

    Full Text Available Objective: To evaluate the reliability of a peer evaluation instrument in a longitudinal team-based learning setting. Methods: Student pharmacists were instructed to evaluate the contributions of their peers. Evaluations were analyzed for the variance of the scores by identifying low, medium, and high scores. Agreement between performance ratings within each group of students was assessed via intra-class correlation coefficient (ICC. Results: We found little variation in the standard deviation (SD based on the score means among the high, medium, and low scores within each group. The lack of variation in SD of results between groups suggests that the peer evaluation instrument produces precise results. The ICC showed strong concordance among raters. Conclusions: Findings suggest that our student peer evaluation instrument provides a reliable method for peer assessment in team-based learning settings.

  10. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  11. PERANCANGAN KENDALI NAVIGASI ROBOT TANK SECARA NIRKABEL BERBASIS SENSOR ACCELEROMETER BERDASARKAN GERAKAN TANGAN

    Directory of Open Access Journals (Sweden)

    Muhamad Yusvin Mustar

    2018-04-01

    Full Text Available Sebuah sistem kendali berbeda pada navigasi robot tank diperkenalkan pada penelitian ini. Umumnya sistem kendali navigasi robot tank dikendalikan meggunakan remot kontrol atau joystick dan beberapa perangkat pengontrolan robot lainya. Pengontrolan navigasi robot tank bertujuan untuk dapat mengendalikan pergerakan robot agar dapat berjalan maju, mundur, berbelok ke kiri dan ke kanan. Pada penelitian ini, pengontrolan navigasi robot dilakukan berdasarkan gerakan tangan manusia. Sebuah sarung tangan yang dilengkapi sensor accelerometer ADXL335 didesain untuk dapat mendeteksi setiap bentuk gerakan tangan. Pendeteksian gerakan tangan didasarkan pada pembacaan orientasi axis X dan Y acceleometer. Gerakan tangan ini kemudian diinput pada mikrokontroler Arduino Nano dan ditransmisikan melalui nRF24L01 2.4GHz. Hasil pendeteksian gerak kemudian diterima dan diolah pada mikrokontroler Arduino Mega yang terdapat pada robot tank. Selanjutnya, hasil pendeteksian gerakan tangan ini dipetakan dalam beberapa bagian pengontrolan, agar sesuai dengan pola pengontrolan navigasi robot tank. Hasil penelitian ini menunjukan bahwa sebuah sistem pengontrolan navigasi robot tank berdasarkan gerakan tangan dapat diimplementasikan dan diaplikasikan secara riil, sehingga dapat memberikan pengalaman baru dalam berinteraksi dengan robot. Kata kunci: navigasi, robot tank, deteksi gerakan, accelerometer ADXL335, arduino, nRF24L01.

  12. Accelerometer-measured sedentary behaviour and physical activity of inpatients with severe mental illness.

    Science.gov (United States)

    Kruisdijk, Frank; Deenik, Jeroen; Tenback, Diederik; Tak, Erwin; Beekman, Aart-Jan; van Harten, Peter; Hopman-Rock, Marijke; Hendriksen, Ingrid

    2017-08-01

    Sedentary behaviour and lack of physical activity threatens health. Research concerning these behaviours of inpatients with severe mental illness is limited but urgently needed to reveal prevalence and magnitude. In total, 184 inpatients (men n =108, women n =76, mean age 57,4, 20% first generation antipsychotics, 40% second generation antipsychotics, 43% antidepressants, mean years hospitalisation 13 years), with severe mental illness of a Dutch psychiatric hospital wore an accelerometer for five days to objectively measure total activity counts per hour and percentages in sedentary behaviour, light intensity physical activity and moderate to vigorous physical activity. Accelerometer data were compared with data of 54 healthy ward employees. Patients showed significantly less activity counts per hour compared to employees (p=0.02), although the differences were small (d=0.32). Patients were sedentary during 84% of the wear time (50min/h), spend 10% in light intensity physical activity and 6% in moderate to vigorous physical activity. Age was the only significant predictor, predicting less total activity counts/h in higher ages. Decreasing sedentary behaviour and improving physical activity in this population should be a high priority in clinical practice. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Testing Differential Effects of Computer-Based, Web-Based and Paper-Based Administration of Questionnaire Research Instruments

    Science.gov (United States)

    Hardre, Patricia L.; Crowson, H. Michael; Xie, Kui; Ly, Cong

    2007-01-01

    Translation of questionnaire instruments to digital administration systems, both self-contained and web-based, is widespread and increasing daily. However, the literature is lean on controlled empirical studies investigating the potential for differential effects of administrative methods. In this study, two university student samples were…

  14. Associations between accelerometer-derived physical activity and regional adiposity in young men and women.

    Science.gov (United States)

    Smith, H A; Storti, K L; Arena, V C; Kriska, A M; Gabriel, K K Pettee; Sutton-Tyrrell, K; Hames, K C; Conroy, M B

    2013-06-01

    Empirical evidence supports an inverse relationship between physical activity (PA) and adiposity, but studies using detailed measures of both are scarce. The relationship between regional adiposity and accelerometer-derived PA in men and women are described. Cross-sectional analysis included 253 participants from a weight loss study limited to ages 20-45 years and BMI 25-39.9 kg m(-2) . PA data were collected with accelerometers and expressed as total accelerometer counts and average amount of time per day accumulated in different intensity levels [sedentary, light-, and moderate-to-vigorous intensity PA (MVPA)]. Accumulation of time spent above 100 counts was expressed as total active time. Computed tomography (CT) was used to measure abdominal and adipose tissue (AT). Multivariate linear regression analyses were used to assess the relationship between regional adiposity (dependent variable) and the various PA levels (independent variable), and were executed separately for men and women, adjusting for wear time, age, race, education, and BMI. Among males, light activity was inversely associated with total AT (β = -0.19; P = 0.02) as well as visceral AT (VAT) (β = -0.30; P = 0.03). Among females sedentary time was positively associated with VAT (β = 0.11; P = 0.04) and total active time was inversely associated with VAT (β = -0.12; P = 0.04). Findings from this study suggest that PA intensity level may influence regional adiposity differently in men and women. Additional research is needed in larger samples to clarify the difference in these associations by sex, create recommendations for the frequency, duration and intensity of PA needed to target fat deposits, and determine if these recommendations should differ by sex. Copyright © 2013 The Obesity Society.

  15. An examination of compensation effects in accelerometer-measured occupational and non-occupational physical activity

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gay

    2017-12-01

    Full Text Available Self-report data suggests a large proportion of total physical activity (PA occurs at work. However, adults with higher levels of occupational PA may compensate by engaging in less non-occupational PA. The study aims were to 1 estimate the intensity, volume, and duration of PA in American adults that occurs at work, and 2 determine if those more active at work are less active outside of work. A cross-sectional sample of full-time employed adults (N=510 was recruited from Georgia city and county governments in 2013–2015. Participants wore an Actigraph GT3X+ accelerometer for two weeks. In 2016, for 442 participants with complete data including work schedules and self-reported job titles, accelerometer wear minutes were classified as either occupational or non-occupational, and as sedentary, LPA (light-intensity PA, or MVPA (moderate-to-vigorous intensity PA. The proportion of daily PA that occurred during work was 41.2% for total PA, 41.0% for LPA, and 39.5% for MVPA. Higher levels of occupational LPA were associated with lower levels of non-occupational LPA (r=−0.38, P<0.0001. However, higher levels of occupational MVPA were associated with higher levels of non-occupational MVPA (r=0.17, P<0.0001. These associations remained significant in a MANOVA adjusting for labor sector and other covariates. On average, employed adults get more LPA and MVPA outside of work. Adults who do more occupational MVPA do not compensate by doing less non-occupational MVPA. In contrast, adults who do more occupational LPA do compensate by doing less non-occupational LPA. Evaluations of interventions to reduce sedentary behavior should be designed to detect compensation effects. Keywords: Intensity, Work, Accelerometer

  16. Traveling Atmospheric Disturbances (TADs) in the thermosphere inferred from accelerometer data at three altitudes

    Science.gov (United States)

    Bruinsma, Sean; Forbes, Jeffrey

    2010-05-01

    Densities derived from accelerometer measurements on the GRACE, CHAMP and Air Force/SETA satellites near 490, 390, and 220 km, respectively, are used to elucidate global-scale characteristics of traveling atmospheric disturbances. The accelerometers on the CHAMP and GRACE satellites have made it possible to accumulate near-continuous records of thermosphere density between about 320 and 490 km since May 2001, and July 2002, respectively. They have recorded the response to virtually every significant geomagnetic storm during this period. CHAMP and GRACE are in (near) polar and quasi-circular orbits, sampling 24 hr local time approximately every 4 and 5 months, respectively. These capabilities offer unique opportunities to study the temporal and latitudinal responses of the thermosphere to geomagnetic disturbances. The Air Force/SETA accelerometer data have also been processed, but the analysis is more complicated due to data gaps. Significant and unambiguous TAD activity in the observed response of the thermosphere was detected for about 25 events with CHAMP and GRACE, and less than 10 with SETA. The atmospheric variability is evaluated by de-trending the data, allowing the extraction of specific ranges in horizontal scale, and analyzing density "residuals". The scale of the perturbation is decisive for its lifetime and relative amplitude. Sometimes the disturbances represent wave-like structures propagating far from the source, and these so-called ‘TADs' were detected and described for the May 2003 storm for the first time. Some TADs traveled over the pole into the opposite hemisphere; this was found in both CHAMP and GRACE data. Most TADs propagate equatorward, but poleward propagating TADs have on occasion been detected too. The estimated speeds and amplitudes of the observed TADs, and their dependence on altitude and solar and geomagnetic activity in particular, will be presented in this poster.

  17. Development and validity of mathematical learning assessment instruments based on multiple intelligence

    Directory of Open Access Journals (Sweden)

    Helmiah Suryani

    2017-06-01

    Full Text Available This study was aimed to develop and produce an assessment instrument of mathematical learning results based on multiple intelligence. The methods in this study used Borg & Gall-Research and Development approach (Research & Development. The subject of research was 289 students. The results of research: (1 Result of Aiken Analysis showed 58 valid items were between 0,714 to 0,952. (2 Result of the Exploratory on factor analysis indicated the instrument consist of three factors i.e. mathematical logical intelligence-spatial intelligence-and linguistic intelligence. KMO value was 0.661 df 0.780 sig. 0.000 with valid category. This research succeeded to developing the assessment instrument of mathematical learning results based on multiple intelligence of second grade in elementary school with characteristics of logical intelligence of mathematics, spatial intelligence, and linguistic intelligence.

  18. Estimation of METs by Accelerometers while Walking and Running

    Science.gov (United States)

    Kurihara, Yosuke; Watanabe, Kajiro; Yoneyama, Mitsuru

    It is quite important for Japan to maintain or promote the health condition of elderly citizens. Given the circumstances, the Ministry of Health, Labour and Welfare has established the standards for the activities and exercises for promoting the health, and quantitatively determined the exercise intensity on 107 items of activities. This exercise intensity, however, requires recording the type and the duration of the activity to be calculated. In this paper, the exercise intensities are surmised using 3D accelerometer while the subjects are walking and running. As the result, the exercise intensities were surmised to be within the root mean square error of 1.2[METs] for walking and 3.2[METs] for running respectively.

  19. Advanced ESPI-based medical instruments for otolaryngology

    Science.gov (United States)

    Castracane, James; Conerty, M.; Cacace, Anthony T.; Gardner, Glendon M.; Miller, Mitchell B.; Parnes, Steven M.

    1993-05-01

    Optical fibers have long been used for visual inspection inside the human body for medical diagnoses and treatment. By making use of sophisticated optical interferometric and ultra- small imaging techniques, combined with automated image processing, it is possible to extract significantly increased information for more accurate medical diagnoses. With support from NIH under the SBIR program, we have been developing a range of such instruments. One of these supported by the NIDCD is capable of providing detailed spatial information on the vibratory response of the tympanic membrane (TM). This instrument involves the examination of the TM by means of high speed electronic speckle pattern interferometry (ESPI). This provides a real time view of the vibration patterns of the TM for clinical diagnosis. This Interferometric Otoscope consists of mode conserving fiber optics, miniature diode lasers and high speed solid state detector arrays. We present the current status of the research including holography and ESPI of TM models and excised temporal bone preparations. A second instrument, also developed with support from NIDCD, is for application to the larynx. This system is also ESPI based but will incorporate features for direct vocal cord (VC) examination. By careful examination of the vibratory response of the VC during phonation, the characteristics of the mucosal wave may be examined. Adynamic regions of the cords can signal the start of lesions or cysts. Results of surgery can be evaluated in a quantitative manner. The design of a clinical prototype and preliminary electro-optic experiments on excised larynges and VC models will be presented.

  20. Measurement of International Roughness Index by Using Z-Axis Accelerometers and GPS

    Directory of Open Access Journals (Sweden)

    Yuchuan Du

    2014-01-01

    Full Text Available The International Roughness Index (IRI is a well-recognized standard in the field of pavement management. Many different types of devices can be used to measure the IRI, but these devices are mainly mounted on a full-size automobile and are complicated to operate. In addition, these devices are expensive. The development of methods for IRI measurement is a prerequisite for pavement management systems and other parts of the road management industry. Based on the quarter-car model and the vehicle vibration caused by road roughness, there is a strong correlation between the in-car Z-axis acceleration and the IRI. The variation of speed of the car during the measurement process has a large influence on IRI estimation. A measurement system equipped with Z-axis accelerometers and a GPS device was developed. Using the self-designing measurement system based on the methodology proposed in this study, we performed a small-scale field test. We used a one-wheel linear model and two-wheel model to fit the variation of the Z-axis acceleration. The test results demonstrated that the low-cost measurement system has good accuracy and could enhance the efficiency of IRI measurement.

  1. OFCC based voltage and transadmittance mode instrumentation amplifier

    Science.gov (United States)

    Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant

    2017-07-01

    The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.

  2. User-based motion sensing and fuzzy logic for automated fall detection in older adults

    DEFF Research Database (Denmark)

    Boissy, Patrice; Choquette, Stéphane; Hamel, Mathieu

    2007-01-01

    , and reduce complications from falls. The performance of a 2-stage fall detection algorithm using impact magnitudes and changes in trunk angles derived from user-based motion sensors was evaluated under laboratory conditions. Ten healthy participants were instrumented on the front and side of the trunk with 3...... fall conditions with a success rate of 93% and a false-positive rate of 29% during nonfall conditions. Despite a slightly superior identification performance for the accelerometer located on the front of the trunk, no significant differences were found between the two motion sensor locations. Automated...... detection of fall events based on user-based motion sensing and fuzzy logic shows promising results. Additional rules and optimization of the algorithm will be needed to decrease the false-positive rate....

  3. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    International Nuclear Information System (INIS)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I.; Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A.

    2010-10-01

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY TM platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY TM platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY TM platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  4. Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification

    Science.gov (United States)

    Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman

    2018-05-01

    Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition

  5. The Physical Activity Scale for Individuals with Physical Disabilities: test-retest reliability and comparison with an accelerometer.

    Science.gov (United States)

    van der Ploeg, Hidde P; Streppel, Kitty R M; van der Beek, Allard J; van der Woude, Luc H V; Vollenbroek-Hutten, Miriam; van Mechelen, Willem

    2007-01-01

    The objective was to determine the test-retest reliability and criterion validity of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). Forty-five non-wheelchair dependent subjects were recruited from three Dutch rehabilitation centers. Subjects' diagnoses were: stroke, spinal cord injury, whiplash, and neurological-, orthopedic- or back disorders. The PASIPD is a 7-d recall physical activity questionnaire that was completed twice, 1 wk apart. During this week, physical activity was also measured with an Actigraph accelerometer. The test-retest reliability Spearman correlation of the PASIPD was 0.77. The criterion validity Spearman correlation was 0.30 when compared to the accelerometer. The PASIPD had test-retest reliability and criterion validity that is comparable to well established self-report physical activity questionnaires from the general population.

  6. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Science.gov (United States)

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  7. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  8. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-01-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ( 13 C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B o ), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13 C based endogenous contrast agents used in molecular imaging

  9. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    Science.gov (United States)

    Llosa, Jordi; Vilajosana, Ignasi; Vilajosana, Xavier; Navarro, Nacho; Suriñach, Emma; Marquès, Joan Manuel

    2009-01-01

    In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports. PMID:22423204

  10. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    Directory of Open Access Journals (Sweden)

    Jordi Llosa

    2009-09-01

    Full Text Available In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports.

  11. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    International Nuclear Information System (INIS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-01-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests. (paper)

  12. The design of a simple portable γ ray detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Liu Chunmei; Cao Wen; Zhang Jiang

    2008-01-01

    The internal composition of the γ ray detecting instrument based on MCU and the working of the real electric circuit are introduced. The single-chip microcomputer of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  13. Developing Fine-Grained Actigraphies for Rheumatoid Arthritis Patients from a Single Accelerometer Using Machine Learning.

    Science.gov (United States)

    Andreu-Perez, Javier; Garcia-Gancedo, Luis; McKinnell, Jonathan; Van der Drift, Anniek; Powell, Adam; Hamy, Valentin; Keller, Thomas; Yang, Guang-Zhong

    2017-09-14

    In addition to routine clinical examination, unobtrusive and physical monitoring of Rheumatoid Arthritis (RA) patients provides an important source of information to enable understanding the impact of the disease on quality of life. Besides an increase in sedentary behaviour, pain in RA can negatively impact simple physical activities such as getting out of bed and standing up from a chair. The objective of this work is to develop a method that can generate fine-grained actigraphies to capture the impact of the disease on the daily activities of patients. A processing methodology is presented to automatically tag activity accelerometer data from a cohort of moderate-to-severe RA patients. A study of procesing methods based on machine learning and deep learning is provided. Thirty subjects, 10 RA patients and 20 healthy control subjects, were recruited in the study. A single tri-axial accelerometer was attached to the position of the fifth lumbar vertebra (L5) of each subject with a tag prediction granularity of 3 s. The proposed method is capable of handling unbalanced datasets from tagged data while accounting for long-duration activities such as sitting and lying, as well as short transitions such as sit-to-stand or lying-to-sit. The methodology also includes a novel mechanism for automatically applying a threshold to predictions by their confidence levels, in addition to a logical filter to correct for infeasible sequences of activities. Performance tests showed that the method was able to achieve around 95% accuracy and 81% F-score. The produced actigraphies can be helpful to generate objective RA disease-specific markers of patient mobility in-between clinical site visits.

  14. Using rotating liquid bridges as accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Cabezas, G.; Acero, J.; Zayas, F.

    1999-07-01

    Liquid bridges have recently been proposed as fluid accelerometers that could be used to measure very small inertial forces under microgravity conditions [Meseguer et al., microgravity sci. technol. IX/2 (1996)]. The essential idea is to infer the values of such inertial forces from the liquid bridge interface contour, whose shape obviously depends on the values of such forces (apart from the bridge volume and the geometry of the supporting disks). Following a similar procedure, in this paper we explore the use of rotating axisymmetric liquid bridges to measure the residual axial gravity and the rotation rate of the liquid bridge regarded as a solid body. In light off the difficulties involved in performing experiments on Earth, the role of empirical data is played by an accurate numerical solution of the Young-Laplace equation. The values of both the axial gravity and angular speed are obtained by fitting the approximate analytical expressions derived in this paper to the numerical solution of the Young-Laplace equation. The comparison between the predicted and actual values of the variables of interest shows a satisfactory agreement, supporting the suitability of the procedure. (orig.)

  15. A Reliability and Validity of an Instrument to Evaluate the School-Based Assessment System: A Pilot Study

    Science.gov (United States)

    Ghazali, Nor Hasnida Md

    2016-01-01

    A valid, reliable and practical instrument is needed to evaluate the implementation of the school-based assessment (SBA) system. The aim of this study is to develop and assess the validity and reliability of an instrument to measure the perception of teachers towards the SBA implementation in schools. The instrument is developed based on a…

  16. Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference.

    Science.gov (United States)

    Slootmaker, S M; Chin A Paw, M J M; Schuit, A J; van Mechelen, W; Koppes, L L J

    2009-02-01

    The purpose of this study was to examine the concurrent validity of the Personal Activity Monitor (PAM) accelerometer relative to the Actigraph accelerometer using oxygen consumption as a reference, and to assess the test-retest reliability of the PAM. Thirty-two fit, normal weight adults (aged 21-54) performed two activities, treadmill walking and stair walking, while wearing the PAM, the Actigraph and the Cosmed K4b(2). Correlation coefficients and agreement in absolute energy expenditure (EE) levels between PAM, Actigraph and Cosmed were calculated. The test-retest reliability was examined among 296 PAM's using a laboratory shaker. Intraclass correlation coefficients (ICC) and coefficient of variation (CV) were determined. Correlations for treadmill walking and stair walking, respectively, were r(2)=0.95 and r(2)=0.65 for PAM with Actigraph, r(2)=0.82 and r(2)=0.93 for PAM with VO(2) and r(2)=0.64 and 0.74 for Actigraph with VO(2). Both the PAM and Actigraph underestimated EE during treadmill and stair walking by a substantial amount. The test-retest reliability of the PAM was high [ICC=0.80; 95% confidence interval (CI) (0.28;0.92) and intra-CV=1.5%]. The PAM and Actigraph accelerometer are comparable in assessing bodily movement during treadmill and stair walking. The PAM is a valid device to rank subjects in EE and can be useful in collecting objective data to monitor habitual physical activity.

  17. Validation of Questionnaire-Assessed Physical Activity in Comparison With Objective Measures Using Accelerometers and Physical Performance Measures Among Community-Dwelling Adults Aged ≥85 Years in Tokyo, Japan.

    Science.gov (United States)

    Oguma, Yuko; Osawa, Yusuke; Takayama, Michiyo; Abe, Yukiko; Tanaka, Shigeho; Lee, I-Min; Arai, Yasumichi

    2017-04-01

    To date, there is no physical activity (PA) questionnaire with convergent and construct validity for the oldest-old. The aim of the current study was to investigate the validity of questionnaire-assessed PA in comparison with objective measures determined by uniaxial and triaxial accelerometers and physical performance measures in the oldest-old. Participants were 155 elderly (mean age 90 years) who were examined at the university and agreed to wear an accelerometer for 7 days in the 3-year-follow-up survey of the Tokyo Oldest-Old Survey of Total Health. Fifty-nine participants wore a uniaxial and triaxial accelerometer simultaneously. Self-rated walking, exercise, and household PA were measured using a modified Zutphen PA Questionnaire (PAQ). Several physical performance tests were done, and the associations among PAQ, accelerometer-assessed PA, and physical performances were compared by Spearman's correlation coefficients. Significant, low to moderate correlations between PA measures were seen on questionnaire and accelerometer assessments (ρ = 0.19 to 0.34). Questionnaireassessed PA measure were correlated with a range of lower extremity performance (ρ = 0.21 to 0.29). This PAQ demonstrated convergent and construct validity. Our findings suggest that the PAQ can reasonably be used in this oldest-old population to rank their PA level.

  18. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I. [Research and Production Corporation Radiy, 29 Geroev Stalingrada Str., Kirovograd 25006 (Ukraine); Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A., E-mail: marketing@radiy.co [Center for Safety Infrastructure-Oriented Research and Analysis, 37 Astronomicheskaya Str., Kharkiv 61085 (Ukraine)

    2010-10-15

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY{sup TM} platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY{sup TM} platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY{sup TM} platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  19. Comparison of Yamax pedometer and GT3X accelerometer steps in a free-living sample

    Science.gov (United States)

    Our objective was to compare steps detected by the Yamax pedometer (PEDO) versus the GT3X accelerometer (ACCEL) in free-living adults. Daily PEDO and ACCEL steps were collected from a sample of 23 overweight and obese participants (18 females; mean +/- sd: age = 52.6 +/- 8.4 yr.; body mass index = 3...

  20. A mathematical model for source separation of MMG signals recorded with a coupled microphone-accelerometer sensor pair.

    Science.gov (United States)

    Silva, Jorge; Chau, Tom

    2005-09-01

    Recent advances in sensor technology for muscle activity monitoring have resulted in the development of a coupled microphone-accelerometer sensor pair for physiological acousti signal recording. This sensor can be used to eliminate interfering sources in practical settings where the contamination of an acoustic signal by ambient noise confounds detection but cannot be easily removed [e.g., mechanomyography (MMG), swallowing sounds, respiration, and heart sounds]. This paper presents a mathematical model for the coupled microphone-accelerometer vibration sensor pair, specifically applied to muscle activity monitoring (i.e., MMG) and noise discrimination in externally powered prostheses for below-elbow amputees. While the model provides a simple and reliable source separation technique for MMG signals, it can also be easily adapted to other aplications where the recording of low-frequency (< 1 kHz) physiological vibration signals is required.

  1. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators.

    Science.gov (United States)

    Niskanen, Arto; Tuononen, Ari J

    2015-08-05

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced.

  2. Wear-Time Compliance with a Dual-Accelerometer System for Capturing 24-h Behavioural Profiles in Children and Adults

    Directory of Open Access Journals (Sweden)

    Scott Duncan

    2018-06-01

    Full Text Available To advance the field of time-use epidemiology, a tool capable of monitoring 24 h movement behaviours including sleep, physical activity, and sedentary behaviour is needed. This study explores compliance with a novel dual-accelerometer system for capturing 24 h movement patterns in two free-living samples of children and adults. A total of 103 children aged 8 years and 83 adults aged 20-60 years were recruited. Using a combination of medical dressing and purpose-built foam pouches, participants were fitted with two Axivity AX3 accelerometers—one to the thigh and the other to the lower back—for seven 24 h periods. AX3 accelerometers contain an inbuilt skin temperature sensor that facilitates wear time estimation. The median (IQR wear time in children was 160 (67 h and 165 (79 h (out of a maximum of 168 h for back and thigh placement, respectively. Wear time was significantly higher and less variable in adults, with a median (IQR for back and thigh placement of 168 (1 and 168 (0 h. A greater proportion of adults (71.6% achieved the maximum number of complete days when compared to children (41.7%. We conclude that a dual-accelerometer protocol using skin attachment methods holds considerable promise for monitoring 24-h movement behaviours in both children and adults.

  3. Market-based Economic Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Grundkategorien her er markedet som den optimale allokeringsmekanisme for de belastninger, som de økonomiske instrumenter / miljøskatterne påfører. Det mest omfattende og spektakulære eksempel på markedet som allokatorer af skatter er EU's børs for forureningstilladelser, dvs reelt CO-2 beskatnin...

  4. Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    International Nuclear Information System (INIS)

    Biswas, Dwaipayan; Cranny, Andy; Maharatna, Koushik; Corda, Daniele; Baldus, Giovanni; Achner, Josy; Klemke, Jasmin; Jöbges, Michael; Ortmann, Steffen

    2014-01-01

    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, ‘making-a-cup-of-tea’. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients. (paper)

  5. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2016-07-01

    Full Text Available Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI was also conducted. Results showed that the PSI of the three groups measured during 20–30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***. The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***. Correlation coefficients between PSI and CHI of the three groups were −0.440, −0.369, and −0.537, respectively (p < 0.01 **. PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.

  6. Design of software platform based on linux operating system for γ-spectrometry instrument

    International Nuclear Information System (INIS)

    Hong Tianqi; Zhou Chen; Zhang Yongjin

    2008-01-01

    This paper described the design of γ-spectrometry instrument software platform based on s3c2410a processor with arm920t core, emphases are focused on analyzing the integrated application of embedded linux operating system, yaffs file system and qt/embedded GUI development library. It presented a new software platform in portable instrument for γ measurement. (authors)

  7. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.

    Science.gov (United States)

    Mehta, Daryush D; Zañartu, Matías; Feng, Shengran W; Cheyne, Harold A; Hillman, Robert E

    2012-11-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use.

  8. A review on bridge dynamic displacement monitoring using global positioning system and accelerometer

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ibrahim, Nuremira; Ahmad, Fatimah Shafinaz

    2018-02-01

    This paper reviews previous research on bridge dynamic displacement monitoring using Global Positioning System (GPS) and an accelerometer for Structural Health Monitoring (SHM) of bridge. These include the review of the advantages and disadvantages of the measurement as well as the methodology of the measurements used in the recent research study. This review could provide a preliminary decision overview for students or researchers before initiating a research related to the bridge dynamic displacement monitoring.

  9. An instrument for the assessment of diarrhoeal severity based on a longitudinal community-based study

    Science.gov (United States)

    Lee, Gwenyth; Peñataro Yori, Pablo; Paredes Olortegui, Maribel; Caulfield, Laura E; Sack, David A; Fischer-Walker, Christa; Black, Robert E; Kosek, Margaret

    2014-01-01

    Objective Diarrhoea is a significant contributer to morbidity and is among the leading causes of death of children living in poverty. As such, the incidence, duration and severity of diarrhoeal episodes in the household are often key variables of interest in a variety of community-based studies. However, there currently exists no means of defining diarrhoeal severity that are (A) specifically designed and adapted for community-based studies, (B) associated with poorer child outcomes and (C) agreed on by the majority of researchers. Clinical severity scores do exist and are used in healthcare settings, but these tend to focus on relatively moderate-to-severe dehydrating and dysenteric disease, require trained observation of the child and, given the variability of access and utilisation of healthcare, fail to sufficiently describe the spectrum of disease in the community setting. Design Longitudinal cohort study. Setting Santa Clara de Nanay, a rural community in the Northern Peruvian Amazon. Participants 442 infants and children 0–72 months of age. Main outcome measures Change in weight over 1-month intervals and change in length/height over 9-month intervals. Results Diarrhoeal episodes with symptoms of fever, anorexia, vomiting, greater number of liquid stools per day and greater number of total stools per day were associated with poorer weight gain compared with episodes without these symptoms. An instrument to measure the severity was constructed based on the duration of these symptoms over the course of a diarrhoeal episode. Conclusions In order to address limitations of existing diarrhoeal severity scores in the context of community-based studies, we propose an instrument comprised of diarrhoea-associated symptoms easily measured by community health workers and based on the association of these symptoms with poorer child growth. This instrument can be used to test the impact of interventions on the burden of diarrhoeal disease. PMID:24907244

  10. Microprocessor-based, on-line decision aid for resolving conflicting nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1981-01-01

    We describe one design for a microprocessor-based, on-line decision aid for identifying and resolving false, conflicting, or misleading instrument indications resulting from certain systems interactions for a pressurized water reactor. The system processes sensor signals from groups of instruments that track together under nominal transient and certain accident conditions, and alarms when they do not track together. We examine multiple-casualty systems interaction and formulate a trial grouping of variables that track together under specified conditions. A two-of-three type redundancy check of key variables provides alarm and indication of conflicting information when one signal suddenly tracks in opposition due to multiple casualty, instrument failure, and/or locally abnormal conditions. Since a vote count of two of three variables in conflict as inconclusive evidence, the system is not designed to provide tripping or corrective action, but improves the operator/instrument interface by providing additional and partially digested information

  11. Development of an international standard on instruments setpoints based on ISA S67.04 - 1994

    International Nuclear Information System (INIS)

    Quinn, E.L.

    1996-01-01

    This is a summary of the application for and development of an international standard on instrument setpoints, based on the Instrument Society of America (ISA) Standard S67.04 - 1994. The forum this new standard was proposed in is the International Electrotechnique Commission (IEC), based in Geneva, Switzerland, which is the international commission which oversees electrical and instrumentation standards for all applications around the world. The Instrument Society of America (ISA) is a United States based Society for the advancement of instrumentation and controls related science and technology and has 30,000 members. A division within the ISA is the Standard and Practices board which has over 5000 members actively involved in standards development and approval. In 1994, the ISA SP67, Nuclear Power Plant Standards Committee authorized that the IEC be approached to develop and issue an IEC standard on Instrument Setpoints. This application was formally submitted in January, 1995 to the IEC and approved for ballot to member countries in June, 1995. Approval for standard development by IEC was received in October, 1995 and the first draft vas issued in February, 1996, and is currently under review by the IEC working group. It is very important to focus on the approach that the U.S. and other countries are taking toward development of IEC standards that can apply to all nuclear instrumentation applications around the world. By referencing IEC standards in design specification, vendors can be solicited from many different countries, thereby ensuring that the highest quality products can be used. This also offsets the need to specify individual standards in the specification, based on the country that each vendor solicited, represents. In summary, this standard development process, with support from the American National Standards Institute (ANSI) will assist U.S. suppliers in competing in the global market for products and services into the next century. (author)

  12. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  13. Application of instrument platform based embedded Linux system on intelligent scaler

    International Nuclear Information System (INIS)

    Wang Jikun; Yang Run'an; Xia Minjian; Yang Zhijun; Li Lianfang; Yang Binhua

    2011-01-01

    It designs a instrument platform based on embedded Linux system and peripheral circuit, by designing Linux device driver and application program based on QT Embedded, various functions of the intelligent scaler are realized. The system architecture is very reasonable, so the stability and the expansibility and the integration level are increased, the development cycle is shorten greatly. (authors)

  14. Fabrication and characterization of monolithic piezoresistive high-g three-axis accelerometer

    Science.gov (United States)

    Jung, Han-Il; Kwon, Dae-Sung; Kim, Jongbaeg

    2017-12-01

    We report piezoresistive high-g three-axis accelerometer with a single proof mass suspended by thin eight beams. This eight-beam design allows load-sharing at high-g preventing structural breakage, as well as the symmetric arrangement of piezoresistors. The device chip size is 1.4 mm × 1.4 mm × 0.51 mm. Experimental results show that the sensitivity in X-, Y- and Z-axes are 0.2433, 0.1308 and 0.3068 mV/g/V under 5 V applied and the resolutions are 24.2, 29.9 and 25.4 g, respectively.

  15. Single-item screening for agoraphobic symptoms : validation of a web-based audiovisual screening instrument

    NARCIS (Netherlands)

    van Ballegooijen, Wouter; Riper, Heleen; Donker, Tara; Martin Abello, Katherina; Marks, Isaac; Cuijpers, Pim

    2012-01-01

    The advent of web-based treatments for anxiety disorders creates a need for quick and valid online screening instruments, suitable for a range of social groups. This study validates a single-item multimedia screening instrument for agoraphobia, part of the Visual Screener for Common Mental Disorders

  16. A Wireless Accelerometer-Based Body Posture Stability Detection System and Its Application for Meditation Practitioners

    Science.gov (United States)

    Chang, Kang-Ming; Chen, Sih-Huei; Lee, Hsin-Yi; Ching, Congo Tak-Shing; Huang, Chun-Lung

    2012-01-01

    The practice of meditation has become an interesting research issue in recent decades. Meditation is known to be beneficial for health improvement and illness reduction and many studies on meditation have been made, from both the physiological and psychological points of view. It is a fundamental requirement of meditation practice to be able to sit without body motion. In this study, a novel body motion monitoring and estimation system has been developed. A wireless tri-axis accelerometer is used to measure body motion. Both a mean and maximum motion index is derived from the square summation of three axes. Two experiments were conducted in this study. The first experiment was to investigate the motion index baseline among three leg-crossing postures. The second experiment was to observe posture dynamics for thirty minute’s meditation. Twenty-six subjects participated in the experiments. In one experiment, thirteen subjects were recruited from an experienced meditation group (meditation experience > 3 years); and the other thirteen subjects were beginners (meditation experience < 1 years). There was a significant posture stability difference between both groups in terms of either mean or maximum parameters (p < 0.05), according to the results of the experiment. Results from another experiment showed that the motion index is different for various postures, such as full-lotus < half-lotus < non-lotus. PMID:23250281

  17. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    Science.gov (United States)

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  18. Real-Life/Real-Time Elderly Fall Detection with a Triaxial Accelerometer.

    Science.gov (United States)

    Sucerquia, Angela; López, José David; Vargas-Bonilla, Jesús Francisco

    2018-04-05

    The consequences of a fall on an elderly person can be reduced if the accident is attended by medical personnel within the first hour. Independent elderly people often stay alone for long periods of time, being in more risk if they suffer a fall. The literature offers several approaches for detecting falls with embedded devices or smartphones using a triaxial accelerometer. Most of these approaches have not been tested with the target population or cannot be feasibly implemented in real-life conditions. In this work, we propose a fall detection methodology based on a non-linear classification feature and a Kalman filter with a periodicity detector to reduce the false positive rate. This methodology requires a sampling rate of only 25 Hz; it does not require large computations or memory and it is robust among devices. We tested our approach with the SisFall dataset achieving 99.4% of accuracy. We then validated it with a new round of simulated activities with young adults and an elderly person. Finally, we give the devices to three elderly persons for full-day validations. They continued with their normal life and the devices behaved as expected.

  19. Virtual instrumentation: a new approach for control and instrumentation - application in containment studies facility

    International Nuclear Information System (INIS)

    Gole, N.V.; Shanware, V.M.; Sebastian, A.; Subramaniam, K.

    2001-01-01

    PC based data-acquisition has emerged as a rapidly developing area particularly with respect to process instrumentation. Computer based data acquisition in process instrumentation combined with Supervisory Control and Data Acquisition (SCADA) software has introduced extensive possibilities with respect to formats for presentation of information. The concept of presenting data using any instrument format with the help of software tools to simulate the instrument on screen, needs to be understood, in order to be able to make use of its vast potential. The purpose of this paper is to present the significant features of the Virtual Instrumentation concept and discuss its application in the instrumentation and control system of containment studies facility (CSF). Factors involved in the development of the virtual instrumentation based I and C system for CSF are detailed and a functional overview of the system configuration is given. (author)

  20. Comparison of two accelerometer filter settings in individuals with Parkinson’s disease

    International Nuclear Information System (INIS)

    Wallén, Martin Benka; Nero, Håkan; Franzén, Erika; Hagströmer, Maria

    2014-01-01

    This study compared common free-living physical activity (PA) outcomes, assessed with the Actigraph GT3X+ accelerometer and processed with two different filter settings, in a sample of elderly individuals with Parkinson´s disease (PD). Sixty-six individuals (73.1  ±  5.8 years) with mild to moderate idiopathic PD carried an accelerometer for 7 d. Data were processed with the default filter setting and a low frequency extension filter (LFE). Significantly larger values were obtained with the LFE for mean counts and steps per day, and for minutes per day in low intensity- and lifestyle activities at moderate intensity, but not for moderate-to vigorous intensity ambulatory activities. The largest difference was observed for mean ± SD steps per day (default = 4730  ±  3210; LFE = 11 117  ±  4553). Intraclass correlation confidence intervals and limits of agreement were generally wide, indicating poor agreement. A sub-study, in which 15 individuals with PD performed a self-paced 3 min walk, demonstrated that neither filter setting differed from video-recorded steps (p ≥ 0.05). This suggests that the LFE might overestimate PA-outcomes in free-living conditions. Until new evidence supporting an extension of the lower filter-band is presented, it is recommended that the default filter setting be used when assessing PA in elderly individuals with PD. (paper)

  1. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  2. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  3. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Jeanneau, H.; Favennec, J.M.; Tournu, E.; Germain, J.L.

    2000-01-01

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  4. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators

    Directory of Open Access Journals (Sweden)

    Arto Niskanen

    2015-08-01

    Full Text Available Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced.

  5. Innovative market-based policy instruments for waste management: A case study on shredder residues in Belgium.

    Science.gov (United States)

    Dubois, Maarten; Hoogmartens, Rob; Van Passel, Steven; Van Acker, Karel; Vanderreydt, Ive

    2015-10-01

    In an increasingly complex waste market, market-based policy instruments, such as disposal taxes, can give incentives for sustainable progress while leaving flexibility for innovation. However, implementation of disposal taxes is often criticised by domestic waste handlers that fear to be outcompeted by competitors in other countries. The article discusses three innovative market-based instruments that limit the impact on international competitiveness: Tradable recycling credits, refunded disposal taxes and differentiated disposal taxes. All three instruments have already been implemented for distinct environmental policies in Europe. In order to illustrate how these instruments can be used for waste policy, the literature review is complemented with a case study on shredder residues from metal-containing waste streams in Belgium. The analysis shows that a conventional disposal tax remains the most efficient, simple and transparent instrument. However, if international competition is a significant issue or if political support is weak, refunded and differentiated disposal taxes can have an added value as second-best instruments. Tradable recycling credits are not an appropriate instrument for use in small waste markets with market power. In addition, refunded taxes create similar incentives, but induce lower transactions costs. © The Author(s) 2015.

  6. Using commodity accelerometers and gyroscopes to improve speed and accuracy of JanusVF

    Science.gov (United States)

    Hutson, Malcolm; Reiners, Dirk

    2010-01-01

    Several critical limitations exist in the currently available commercial tracking technologies for fully-enclosed virtual reality (VR) systems. While several 6DOF solutions can be adapted to work in fully-enclosed spaces, they still include elements of hardware that can interfere with the user's visual experience. JanusVF introduced a tracking solution for fully-enclosed VR displays that achieves comparable performance to available commercial solutions but without artifacts that can obscure the user's view. JanusVF employs a small, high-resolution camera that is worn on the user's head, but faces backwards. The VR rendering software draws specific fiducial markers with known size and absolute position inside the VR scene behind the user but in view of the camera. These fiducials are tracked by ARToolkitPlus and integrated by a single-constraint-at-a-time (SCAAT) filter to update the head pose. In this paper we investigate the addition of low-cost accelerometers and gyroscopes such as those in Nintendo Wii remotes, the Wii Motion Plus, and the Sony Sixaxis controller to improve the precision and accuracy of JanusVF. Several enthusiast projects have implemented these units as basic trackers or for gesture recognition, but none so far have created true 6DOF trackers using only the accelerometers and gyroscopes. Our original experiments were repeated after adding the low-cost inertial sensors, showing considerable improvements and noise reduction.

  7. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    Science.gov (United States)

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  8. Capturing Ultraviolet Radiation Exposure and Physical Activity: Feasibility Study and Comparison Between Self-Reports, Mobile Apps, Dosimeters, and Accelerometers.

    Science.gov (United States)

    Hacker, Elke; Horsham, Caitlin; Allen, Martin; Nathan, Andrea; Lowe, John; Janda, Monika

    2018-04-17

    Skin cancer is the most prevalent cancer in Australia. Skin cancer prevention programs aim to reduce sun exposure and increase sun protection behaviors. Effectiveness is usually assessed through self-report. It was the aim of this study to test the acceptance and validity of a newly developed ultraviolet radiation (UVR) exposure app, designed to reduce the data collection burden to research participants. Physical activity data was collected because a strong focus on sun avoidance may result in unhealthy reductions in physical activity. This paper provides lessons learned from collecting data from participants using paper diaries, a mobile app, dosimeters, and accelerometers for measuring end-points of UVR exposure and physical activity. Two participant groups were recruited through social and traditional media campaigns 1) Group A-UVR Diaries and 2) Group B-Physical Activity. In Group A, nineteen participants wore an UVR dosimeter wristwatch (University of Canterbury, New Zealand) when outside for 7 days. They also recorded their sun exposure and physical activity levels using both 1) the UVR diary app and 2) a paper UVR diary. In Group B, 55 participants wore an accelerometer (Actigraph, Pensacola, FL, USA) for 14 days and completed the UVR diary app. Data from the UVR diary app were compared with UVR dosimeter wristwatch, accelerometer, and paper UVR diary data. Cohen kappa coefficient score was used to determine if there was agreement between categorical variables for different UVR data collection methods and Spearman rank correlation coefficient was used to determine agreement between continuous accelerometer data and app-collected self-report physical activity. The mean age of participants in Groups A (n=19) and B (n=55) was 29.3 and 25.4 years, and 63% (12/19) and 75% (41/55) were females, respectively. Self-reported sun exposure data in the UVR app correlated highly with UVR dosimetry (κ=0.83, 95% CI 0.64-1.00, PHacker, Caitlin Horsham, Martin Allen, Andrea

  9. Randomised controlled trial of a complex intervention by primary care nurses to increase walking in patients aged 60–74 years: protocol of the PACE-Lift (Pedometer Accelerometer Consultation Evaluation - Lift trial

    Directory of Open Access Journals (Sweden)

    Harris Tess

    2013-01-01

    Full Text Available Abstract Background Physical activity is essential for older peoples’ physical and mental health and for maintaining independence. Guidelines recommend at least 150 minutes weekly, of at least moderate intensity physical activity, with activity on most days. Older people’s most common physical activity is walking, light intensity if strolling, moderate if brisker. Less than 20% of United Kingdom 65–74 year olds report achieving the guidelines, despite most being able to. Effective behaviour change techniques include strategies such as goal setting, self-monitoring, building self-efficacy and relapse prevention. Primary care physical activity consultations allow individual tailoring of advice. Pedometers measure step-counts and accelerometers measure physical activity intensity. This protocol describes an innovative intervention to increase walking in older people, incorporating pedometer and accelerometer feedback within a primary care nurse physical activity consultation, using behaviour change techniques. Methods/Design Design: Randomised controlled trial with intervention and control (usual care arms plus process and qualitative evaluations. Participants: 300 people aged 60–74 years registered with 3 general practices within Oxfordshire and Berkshire West primary care trusts, able to walk outside and with no restrictions to increasing their physical activity. Intervention: 3 month pedometer and accelerometer based intervention supported by practice nurse physical activity consultations. Four consultations based on behaviour change techniques, physical activity diary, pedometer average daily steps and accelerometer feedback on physical activity intensity. Individual physical activity plans based on increasing walking and other existing physical activity will be produced. Outcomes: Change in average daily steps (primary outcome and average time spent in at least moderate intensity physical activity weekly (secondary outcome at 3 months

  10. Playing a Musical Instrument as a Protective Factor against Dementia and Cognitive Impairment: A Population-Based Twin Study.

    Science.gov (United States)

    Balbag, M Alison; Pedersen, Nancy L; Gatz, Margaret

    2014-01-01

    Increasing evidence supports that playing a musical instrument may benefit cognitive development and health at young ages. Whether playing an instrument provides protection against dementia has not been established. In a population-based cotwin control study, we examined the association between playing a musical instrument and whether or not the twins developed dementia or cognitive impairment. Participation in playing an instrument was taken from informant-based reports of twins' leisure activities. Dementia diagnoses were based on a complete clinical workup using standard diagnostic criteria. Among 157 twin pairs discordant for dementia and cognitive impairment, 27 pairs were discordant for playing an instrument. Controlling for sex, education, and physical activity, playing a musical instrument was significantly associated with less likelihood of dementia and cognitive impairment (odds ratio [OR] = 0.36 [95% confidence interval 0.13-0.99]). These findings support further consideration of music as a modifiable protective factor against dementia and cognitive impairment.

  11. Playing a Musical Instrument as a Protective Factor against Dementia and Cognitive Impairment: A Population-Based Twin Study

    Directory of Open Access Journals (Sweden)

    M. Alison Balbag

    2014-01-01

    Full Text Available Increasing evidence supports that playing a musical instrument may benefit cognitive development and health at young ages. Whether playing an instrument provides protection against dementia has not been established. In a population-based cotwin control study, we examined the association between playing a musical instrument and whether or not the twins developed dementia or cognitive impairment. Participation in playing an instrument was taken from informant-based reports of twins’ leisure activities. Dementia diagnoses were based on a complete clinical workup using standard diagnostic criteria. Among 157 twin pairs discordant for dementia and cognitive impairment, 27 pairs were discordant for playing an instrument. Controlling for sex, education, and physical activity, playing a musical instrument was significantly associated with less likelihood of dementia and cognitive impairment (odds ratio [OR] = 0.36 [95% confidence interval 0.13–0.99]. These findings support further consideration of music as a modifiable protective factor against dementia and cognitive impairment.

  12. Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    SONG Le; LIN Yuchi; HAO Liguo

    2008-01-01

    Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.

  13. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  14. A leak-detection instrument for long buried pipelines based on radioactive tracer measurements

    International Nuclear Information System (INIS)

    Lu Qingqian; Zhou Shuxuan; Tang Yonghua; Sun Xiaolei; Hu Xusheng; Li Deyi; Yin Liqiang

    1987-01-01

    The instrument introduced provides a means for leak detection of long buried pipelines based on the radioactive tracer technique. The principle, block diagram and performances for the instrument are described. The leak-detecting method and the determination of some related parameters are also presented. Leak-detection sensitivity of the instrument is 185 kBq (5 μCi). Accuracy for leak localization is within 2.5 m (per km). It is suitable for the buried light oil (gasoline, kerosene, diesel oil) and industrial water pipelines with a diameter of 15 or 20 cm. The detection length for a single operation reaches up to 50 km

  15. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  16. Development of a web based instrument on higher education structures of industrial engineering

    OpenAIRE

    Tarba Ioan-Cristian

    2017-01-01

    The research and development of assisted operational instruments on higher education structures of industrial engineering represent a continuous and complex process. The present paper contributes to the building up of support elements and an assisted operational instrument on higher education structures of industrial engineering, with focus on the specific curricula. The use of tested and validated constructive solutions from other projects, as base for the new design, reduces the design time.

  17. Recent evolution of HTGR instrumentation in the USA

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1982-06-01

    The reactor instrumentation system for the 2240 MW(t) HTGR includes ex-core neutron detectors for automatic nuclear power control, separate ex-core neutron detectors for automatic protection purposes (reactor trip), reactor core outlet thermocouples that measure the temperature of the primary coolant (helium) as it exits the nuclear core, cold helium thermocouples that measure the temperature of the primary coolant as it enters the core, external pressure differential gages that measure primary coolant flow, in-core fission chambers that are utilized to map neutron flux, and ex-core primary coolant moisture monitors. All of these subsystems, except for the in-core flux mapping units, are also part of the Fort St. Vrain HTGR, which has provided significant experience for the design of the new system. In-core flux mapping is not necessary at FSV for normal operation because its relatively small core is fairly ''visible'' from the location of the ex-core instruments. However, temporary in-core fission couples, microphones, and displacement sensors, as well as sensitive ex-core accelerometers were utilized to identify periodic core block lateral movement and measure neutron flux and primary coolant temperatures. A search for in-core sensors to facilitate mapping neutron flux distributions in the larger core of the 2240 MW(t) HTGR has led to the selection of a high temperature fission chamber, which has been tested up to 1000 deg. C at General Atomic. The chamber shows adequate signal to noise ratio and repeatability. Other reactor instruments planned for the 2240 MW(t) are of the FSV type (i.e. thermocouples) or improved versions of the FSV design (i.e. moisture monitors). New concepts such as acoustic thermometers are also being considered

  18. Comparison of Compliance and Intervention Outcomes Between Hip- and Wrist-Worn Accelerometers During a Randomized Crossover Trial of an Active Video Games Intervention in Children.

    Science.gov (United States)

    Howie, Erin K; McVeigh, Joanne A; Straker, Leon M

    2016-09-01

    There are several practical issues when considering the use of hip-worn or wrist-worn accelerometers. This study compared compliance and outcomes between hip- and wrist-worn accelerometers worn simultaneously by children during an active video games intervention. As part of a larger randomized crossover trial, participants (n = 73, age 10 to 12 years) wore 2 Actical accelerometers simultaneously during waking hours for 7 days, on the hip and wrist. Measurements were repeated at 4 timepoints: 1) at baseline, 2) during traditional video games condition, 3) during active video games condition, 4) during no video games condition. Compliance and intervention effects were compared between hip and wrist. There were no statistically significant differences at any timepoint in percentage compliance between hip (77% to 87%) and wrist (79% to 89%). Wrist-measured counts (difference of 64.3 counts per minute, 95% CI 4.4-124.3) and moderate-to-vigorous physical activity (MVPA) (12 min/day, 95% CI 0.3-23.7) were higher during the no video games condition compared with the traditional video games condition. There were no differences in hip-measured counts per minute or MVPA between conditions or sedentary time for hip or wrist. There were no differences in compliance between hip- and wrist-worn accelerometers during an intervention trial, however, intervention findings differed between hip and wrist.

  19. Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and accelerometers

    International Nuclear Information System (INIS)

    Ozer, Ekin; Feng, Dongming; Feng, Maria Q

    2017-01-01

    State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces. (paper)

  20. Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and accelerometers

    Science.gov (United States)

    Ozer, Ekin; Feng, Dongming; Feng, Maria Q.

    2017-10-01

    State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.