WorldWideScience

Sample records for accelerators type ilu

  1. Compact ILU-type electron accelerators as a base for industrial 4-sided irradiation systems for cable and tubes

    International Nuclear Information System (INIS)

    Auslender, V.L.; Nekhaev, V.E.; Panfilov, A.D.; Tuvik, A.A.

    1999-01-01

    The ILU-type industrial electron accelerators are developed in BINP sins 1967. Their energy range is 0.7-4.0 MeV at beam power of 20-50 kW. The comparison of the irradiation results after bilateral and four-sided irradiation of cables and tubes is given. It is shown that the required electron energy and beam power in the case of four-sided irradiation are sufficiently lower than in the case of bilateral irradiation, resulting in an increase of productive rate of the process and improvement of treatment quality. The installations for four-sided irradiation of cables and tubes are based on the industrial electron accelerators type ILU

  2. Calculation of a concrete shielding for an ILU-8 D electron accelerator

    International Nuclear Information System (INIS)

    Helal, A.; Imam, A.

    1996-01-01

    A concrete shielding for an electron accelerator of 1 MeV is suggested to replace its structural steel shielding. The thickness of such a shield is calculated. The calculational model used is based on standard and transmission curves given in the literature. The calculated concrete shielding is generally adequate to attenuate the accelerator produced radiation to a level 1 μ Gy/h or less at any point outside of the vault enclosure. 5 figs

  3. Calculation of a concrete shielding for an ILU-8 D electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Helal, A [Nuclear Research Center, AEA, Cairo (Egypt); Imam, A [National Center for Nuclear Safety and Radiation Control, AEA, Cairo (Egypt)

    1997-12-31

    A concrete shielding for an electron accelerator of 1 MeV is suggested to replace its structural steel shielding. The thickness of such a shield is calculated. The calculational model used is based on standard and transmission curves given in the literature. The calculated concrete shielding is generally adequate to attenuate the accelerator produced radiation to a level 1 {mu} Gy/h or less at any point outside of the vault enclosure. 5 figs.

  4. Medium Energy Industrial Electron Beam Accelerator (ILU-EBA) at Navi Mumbai for technology demonstration and commercial operations

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2017-01-01

    BARC in early nineties installed a unique high pulse-powered electron beam accelerator of energy 2 MeV, (for the first time in India), in Trombay for developing industrial applications. The accelerator was capable of delivering powered electron beams up to 20kW average beam power (with 1200kW peak pulse power) with energy range from 1 to 2 MeV. Several applications have been developed and commercially exploited in the field of polymer cross linking, degradation, crystalline alterations etc. In addition, applications pertaining to the environmental remediation using electron beams were also worked out. The facility has been relocated at Navi Mumbai a decade ago operated under BARC safety regulatory body and was developed into a technology demonstration cum commercial plant with several product handling gadgets to evaluate the feasibility of different EB treatment processes for the industry viz. waste water treatment, polymer modifications, recycling to name a few

  5. I.L.U. kauplused = I.L.U. stores

    Index Scriptorium Estoniae

    2010-01-01

    Tallinnas Rocca al Mare kaubanduskeskuses, Tartus Lõunakeskuses ja Pärnus Pärnu Keskuses asuvate I.L.U. kosmeetikakaupkuste sisekujundusest. Sisekujunduse autorid: Triinu Kuub, Andro Kööp, Andri Valk (Torpedo OÜ), nende tähtsamate tööde loetelu. Graafiline disain: reklaamifirma Tank

  6. Algamas on "Kahe ilu festival" / Silja Joon

    Index Scriptorium Estoniae

    Joon, Silja, 1966-

    2008-01-01

    Pärnus 14.-16. novembrini kestva kirjanduse ja muusika festivali "Kahe ilu festival" eelinfo - korraldavad Vaimse Rutiini Preventsiooni Sihtasutus, Kultuurilabor, Pärnu ooper ja Kunstide Maja, festivali raames toimub luulemaraton ning kõnekoosolek "Meie igapäevane põrgu"

  7. Ilu: ülendav, paheline, hirmutav / Jaan Ruus, Viive Ruus

    Index Scriptorium Estoniae

    Ruus, Jaan, 1938-2017

    2015-01-01

    Vastukaja Aurelia Aasa arvustusele ("Idülliline lugu kahetsusest ja igatsusest", Sirp, 9. okt., 2015) filmile "Noorus", režissöör ja stsenarist Paolo Sorrentino. "Noorus" kui järg filmile "Kohutav ilu"

  8. Anneli Remme soovitab : Ajaloo ilu - Johann Sebastian Bach / Anneli Remme

    Index Scriptorium Estoniae

    Remme, Anneli, 1968-

    2005-01-01

    Agentuuri Corelli Music ja Eesti Klavessiinisõprade Tsunfti korraldatavast klavessiinikontsertide sarjast "Ajaloo ilu - Johann Sebastian Bach" (avakontserdid 17. sept. Kadrioru lossis, 18. sept. Pärnu Eliisabeti kirikus)

  9. Classifying sows' activity types from acceleration patterns

    DEFF Research Database (Denmark)

    Cornou, Cecile; Lundbye-Christensen, Søren

    2008-01-01

    An automated method of classifying sow activity using acceleration measurements would allow the individual sow's behavior to be monitored throughout the reproductive cycle; applications for detecting behaviors characteristic of estrus and farrowing or to monitor illness and welfare can be foreseen....... This article suggests a method of classifying five types of activity exhibited by group-housed sows. The method involves the measurement of acceleration in three dimensions. The five activities are: feeding, walking, rooting, lying laterally and lying sternally. Four time series of acceleration (the three...

  10. Two stage-type railgun accelerator

    International Nuclear Information System (INIS)

    Ogino, Mutsuo; Azuma, Kingo.

    1995-01-01

    The present invention provides a two stage-type railgun accelerator capable of spiking a flying body (ice pellet) formed by solidifying a gaseous hydrogen isotope as a fuel to a thermonuclear reactor at a higher speed into a central portion of plasmas. Namely, the two stage-type railgun accelerator accelerates the flying body spiked from a initial stage accelerator to a portion between rails by Lorentz force generated when electric current is supplied to the two rails by way of a plasma armature. In this case, two sets of solenoids are disposed for compressing the plasma armature in the longitudinal direction of the rails. The first and the second sets of solenoid coils are previously supplied with electric current. After passing of the flying body, the armature formed into plasmas by a gas laser disposed at the back of the flying body is compressed in the longitudinal direction of the rails by a magnetic force of the first and the second sets of solenoid coils to increase the plasma density. A current density is also increased simultaneously. Then, the first solenoid coil current is turned OFF to accelerate the flying body in two stages by the compressed plasma armature. (I.S.)

  11. Railgun-type two step accelerator

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Maeda, Hikosuke; Onozuka, Masanori; Oda, Yasutsugu; Azuma, Kingo.

    1995-01-01

    In the two step-type railgun accelerator used in an experimental nuclear fusion device of the present invention, energy of laser beams to be irradiated in an acceleration gas behind a flying object can be reduced, and the voltage applied between the rails can be lowered. Charged particles are generated and supplied to the acceleration gas behind the flying object by a charged particle generating and supplying device so as to promote generation of plasmas caused by irradiation of laser beams. As a result, dielectric break down is caused between the rails by a Paschen's law by application of voltage lower than dielectric breakdown voltage, thereby enabling to generate plasmas easily. Accordingly, the energy of laser beams can be suppressed and the voltage applied between the rails can be lowered. (I.S.)

  12. Railgun-type two step accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Satoshi; Maeda, Hikosuke [Japan Atomic Energy Research Inst., Tokyo (Japan); Onozuka, Masanori; Oda, Yasutsugu; Azuma, Kingo

    1995-10-13

    In the two step-type railgun accelerator used in an experimental nuclear fusion device of the present invention, energy of laser beams to be irradiated in an acceleration gas behind a flying object can be reduced, and the voltage applied between the rails can be lowered. Charged particles are generated and supplied to the acceleration gas behind the flying object by a charged particle generating and supplying device so as to promote generation of plasmas caused by irradiation of laser beams. As a result, dielectric break down is caused between the rails by a Paschen`s law by application of voltage lower than dielectric breakdown voltage, thereby enabling to generate plasmas easily. Accordingly, the energy of laser beams can be suppressed and the voltage applied between the rails can be lowered. (I.S.).

  13. Developments of electron accelerators for national economy in the AN SSSR SO IYaF

    International Nuclear Information System (INIS)

    Auslender, V.L.; Salimov, R.A.

    1979-01-01

    Described is the work aimed at developing ELV-type electrostatic electron accelerators with electron energies ranging from 0.4 to 1.5 MeV and an average beam current of up to 100 mA, and the ILU-6 electron linear accelerator with the energy from 0.5 to 2 MeV and an average beam current of up to 40 mA. To provide an output of a linearly scanned beam a special titanium window with dimension of 75 x 980 mm which provides transit of a current of up to 80 mA has been developed. To irradiate articles having a cylindrical shape two types of devices with a circular beam scanning have been developed. A device has been worked out for the output of concentrated beams into the atmosphere, in which the electron beam leaves the vacuum through a system of four ports having different diameters. Principles of operation and results of tests of these devices are briefly outlined. Examples of their application are given. More than ten tons of tubes have been irradiated on the ILU-6 accelerator to obtain thermal shrinkage, and this accelerator also served as the basis for developing a radiation sewage treatment plant. An annual economical effect is estimated at 2 million roubles per an accelerator

  14. Post accelerator of the IH type structure

    International Nuclear Information System (INIS)

    Chen Ming

    2002-01-01

    The principle, structure, adjustment of the gap voltage, beam dynamic, RF system and the bunchers of the post-accelerator with Interdigital-H type structure, which was developed by the author and Technical University Munich in four years, is described. The energy of ions with mass of three was increased from 340 keV to 1.74 MeV, when resonant frequency of 84.2 MHz and input RF power of 3 kW. The effective shunt impedance reached to 408 MΩ/m. The commissioning was succeeded with H 3 + ion beams. The output energy of H 3 + ion beams reached the design value. The two harmonic double drift buncher used by the IH structure bunches the beam to the bunches with the width of 360 ps. Then the acceptance of the IH structure is increased to 240 degree. Its shunt impedance is three times higher than former single gap bunchers used by TUM and the length of the buncher system is one fifth of former one only because the use of λ/4 coaxial cavities with double gaps

  15. Static condensation, partial orthogonalization of basis functions, and ILU preconditioning in the hp-FEM

    Czech Academy of Sciences Publication Activity Database

    Vejchodský, Tomáš; Šolín, Pavel

    2008-01-01

    Roč. 218, č. 1 (2008), s. 192-200 ISSN 0377-0427 R&D Projects: GA AV ČR IAA100760702; GA ČR GA102/05/0629; GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z20570509 Keywords : static condensation of internal degrees of freedom * orthogonalization * ILU preconditioning Subject RIV: BA - General Mathematics Impact factor: 1.048, year: 2008

  16. Augment-type two stage accelerator

    International Nuclear Information System (INIS)

    Ogino, Mutsuo; Azuma, Kingo.

    1995-01-01

    When a flying body accelerated by a gas gun at a first stage enters into an augment rail passing through an introduction tube, an ignition capacitor for initial plasmas is turned ON to apply a voltage between the augment rails. Subsequently, the accelerating gas present behind the flying body is formed into plasmas by a laser, to flow electric current from one of the inner augment rails → plasma armature → the other of the inner augment rails, and additionally accelerate the flying body by Lorentz force formed in this case. Since the plasmas are maintained in a state of higher density than the plasmas obtained by using all of the augment rails, the ignition capacitor for initial plasmas in switched to a power source. As a result, it is possible to flow the maximum current before the plasmas expand, and a large accelerating force and a high magnetic flux density are attained, to improve acceleration performance of the flying body. (N.H.)

  17. A New Type of Accelerator for Charged Particle Cancer Therapy

    CERN Document Server

    Edgecock, Rob

    2013-01-01

    acceleration of protons and light ions for the treatment of certain cancers. They have unique features as they combine techniques from the existing types of accelerators, cyclotrons and synchrotrons, and hence look to have advantages over both for this application. However, these unique features meant that it was necessary to build one of these accelerators to show that it works and to undertake a detailed conceptual design of a medical machine. Both of these have now been done. This paper will describe the concepts of this type of accelerator, show results from the proof-of-principle machine (EMMA) and described the medical machine (PAMELA).

  18. Tesla-transformer-type electron beam accelerator

    International Nuclear Information System (INIS)

    Liu Jinliang; Zhong Huihuang; Tan Qimei; Li Chuanlu; Zhang Jiande

    2002-01-01

    An electron-beam Tesla-transformer accelerator is described. It consists of the primary storage energy system. Tesla transformer, oil Blumlein pulse form line, and the vacuum diode. The experiments of initial stage showed that diode voltage rises up to about 500 kV with an input of 20 kV and the maximum electron-beam current is about 9 kA, the pulse width is about 50 ns. This device can operate stably and be set up easily

  19. Vacuum system of tandem type electrostatic accelerator of Kyushu University

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1981-01-01

    In the tandem type electrostatic accelerator of Kyushu University, the problem of vacuum in the beam transport system including the accelerator tube has been considered as one of the important elements for the performance of the electrostatic accelerator from the beginning of construction. Though the three-stage tandem accelerating scheme was considered as the beam transport system at the beginning of the program, in which the existing 6 MV Van de Graaf accelerator was to be used as the injector, three types of ion sources are prepared at present; the sputter ion source to generate negative heavy ions, the polarizing ion source to generate negative polarized protons or deuterons, and direct extraction type negative ion source. Ultrahigh evacuating system, in which the sputter ion pump is mainly employed, and the turbo-molecular pump is used supplementarily, was installed in the vacuum system. The vacuum of approximately 10 - 9 Torr level off-beam at the inlet or outlet of the accelerator tube and approximately 10 - 8 Torr level in the tubing section in the center terminal were achieved. Since the upper limit of withstand voltage of the accelerating tube was not able to be satisfied for the insufficient baking at the beginning, it was finally decided that the accelerating tube should be heated by directly supplying power to the electrode through low voltage discharge in the tube. This method enabled the generated voltage at the terminal to exceed 10 MV. (Wakatsuki, Y.)

  20. Marginal evidence for cosmic acceleration from Type Ia supernovae

    Science.gov (United States)

    Nielsen, J. T.; Guffanti, A.; Sarkar, S.

    2016-10-01

    The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

  1. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    Science.gov (United States)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  2. Low power RF measurements of travelling wave type linear accelerator

    International Nuclear Information System (INIS)

    Reddy, Sivananda; Wanmode, Yashwant; Bhisikar, A.; Shrivastava, Purushottam

    2015-01-01

    RRCAT is engaged in the development of travelling wave (TW) type linear accelerator for irradiation of industrial and agricultural products. TW accelerator designed for 2π/3 mode to operate at frequency of 2856 MHz. It consists of input coupler, buncher cells, regular cells and output coupler. Low power measurement of this structure includes measurement of resonant frequency of the cells for different resonant modes and quality factor, tuning of input-output coupler and measurement of phase advance per cell and electric field in the structure. Steele's non-resonant perturbation technique has been used for measurement of phase advance per cell and electric field in the structure. Kyhl's method has been used for the tuning of input-output coupler. Computer based automated bead pull set-up has been developed for measurement of phase advance per cell and electric field profile in the structure. All the codes are written in Python for interfacing of Vector Network Analyzer (VNA) , stepper motor with computer. These codes also automate the measurement process. This paper describes the test set- up for measurement and results of measurement of travelling wave type linear accelerating structure. (author)

  3. Macroparticle acceleration from a modified mather-type plasma gun

    International Nuclear Information System (INIS)

    Hou, W.S.; Yeh, T.R.; Wen, M.; Yeh, C.K.; Shang, D.J.

    1987-01-01

    The use of electromagnetic force to accelerate projectiles of a few grams in a plasma-driven railgun device was described recently. Since then, subsequent research along this development has been exploited at many laboratories. As part of the plasma focus research project, an effort of modified Mather-type plasma gun has also been constructed at the Institute of Nuclear Energy Research (INER) for impact studies. The idea takes the advantage of accelerating plasmas with JxB force toward the muzzle of the gun and then strikes the projecticle to transfer their kinetic energy. Preliminary results indicate that the projecticle velocity of 1.1 km/sec can be achieved routinely with a 1.2-gram stainless steel projectile

  4. Generation of ozone and safety aspects in an accelerator facility of BARC

    International Nuclear Information System (INIS)

    Dubey, Praveen; Sawatkar, Aparna R.; Sathe, Arun P.; Soundararajan, S.; Sarma, K.S.S.

    2009-01-01

    Industrial electron beam accelerators up to 10 MeV are commonly employed for different applications. During normal operation of an accelerator, the principal hazard is the high radiation level produced. Experiments and applications in which the electron beam is used to irradiate materials outside the accelerator vacuum system are associated with problems such as radiation damage and production of considerable quantities of ozone. The possible generation of ozone during the operation of an electron beam accelerator is of special interest due to reactivity, corrosivity and the toxic characteristics of ozone. Industrial hygiene surveys were conducted to estimate the airborne concentration of ozone during operations of the electron beam accelerator (Type: ILU-6; 2 MeV; 20 KW) at varied operating parameters. The ozone concentration in the accelerator room was measured at different powers of the accelerator and the ozone decay pattern was also observed after beam shut down. Ozone in the accelerator room was measured by different methods such as colorimetry using neutral buffered potassium iodide, chemiluminescence method using ethylene and by using electrochemical sensor. An air velocity meter was used to measure the linear air velocity across the exhaust grills and the number of air changes available in the accelerator room was calculated. Necessary control measures were suggested to keep the occupational exposure of the personnel to ozone concentrations well within the Threshold Limit Values. (author)

  5. Installation of a tandem-type accelerator mass spectrometer

    International Nuclear Information System (INIS)

    Mizushima, Toshihiko; Togawa, Orihiko; Mizutani, Yoshihiko; Yamamoto, Tadatoshi

    2000-02-01

    Tandem-type accelerator mass spectrometer (hereinafter referred to as Tandetron) was installed at the Ominato Facility of Mutsu Establishment, JAERI in April, 1997. The objective of its installation is to investigate the mechanism of the mixing and circulation of seawater in the ocean, by collecting seawater samples around Japan and analyzing the horizontal and vertical distributions of 14 C contained in the samples. The Tandetron consists of two lines to measure isotopic ratios of carbon and those of heavier iodine. The adjustment for the carbon line was finished and the measurements of seawater samples were started. The iodine line, on the other hand, is on the final step of its adjustment and performance tests are being carried out with a TOF (Time of Flight) detector. The iodine line will be used to analyze 129 I released from a spent nuclear fuel reprocessing plant and other nuclear facilities. In this report, we summarize the status of installation of the carbon and iodine lines for the Tandetron. The report describes the situations of their adjustments until now, the outline of the Tandetron, tests of measurement performance, evaluation and inspection of shielding performance, problems and their solutions, and so on. (author)

  6. Preparation and Performance of a New-Type Alkali-Free Liquid Accelerator for Shotcrete

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-01-01

    Full Text Available A new type of alkali-free liquid accelerator for shotcrete was prepared. Specifically, the setting time and strength and shrinkage performance of two kinds of Portland cement with the accelerator were fully investigated. Moreover, the accelerating mechanism of alkali-free liquid accelerator and the hydration process of the shotcrete with accelerator were explored. Results show that alkali-free liquid accelerator significantly shortened the setting time of cement paste, where the initial setting time of cement paste with 8 wt% of the accelerator was about 3 min and the final setting time was about 7 min. Compressive strength at 1 day of cement mortar with the accelerator could reach 23.4 MPa, which increased by 36.2% compared to the strength of cement mortar without the accelerator, and the retention rate of 28-day compressive strength reached 110%. In addition, the accelerator still shows a good accelerating effect under low temperature conditions. However, the shrinkage rate of the concrete increased with the amount of the accelerator. 5~8% content of accelerator is recommended for shotcrete in practice. XRD and SEM test results showed that the alkali-free liquid accelerator promoted the formation of ettringite crystals due to the increase of Al3+ and SO42- concentration.

  7. The intense neutron generator and future factory type ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1968-07-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  8. The intense neutron generator and future factory type ion accelerators

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1968-01-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  9. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  10. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    OpenAIRE

    Minárik Stanislav

    2015-01-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensit...

  11. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  12. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    International Nuclear Information System (INIS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-01-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  13. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengjun, E-mail: wufengjun@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Cui, Yuan [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Hongbin [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Zhang, Huajian [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Bin [University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohui [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  14. 2 MeV, 60 kW dual-beam type electron accelerator irradiation facility

    International Nuclear Information System (INIS)

    Yotsumoto, Keiichi; Kanazawa, Takao; Haruyama, Yasuyuki; Agematsu, Takashi; Mizuhashi, Kiyoshi; Sunaga, Hiromi; Washino, Masamitsu; Tamura, Naoyuki

    1984-02-01

    The specification of new irradiation facility which has been constructed from 1978 through 1981 as the replacement of 1st Accelerator of JAERI, TRCRE are described. The accelerator is the Cockcroft-Walton type and both vertical and horizontal accelerating tubes are arranged on a single high voltage generator. Transferring of the high voltage to the horizontal accelerating tube is performed with the high voltage changing system in the pressure vessel. The output ratings of the accelerator are 2 MV of acceleration voltage and 30 mA of beam current. By providing the dual beam system, two irradiation rooms, one for vertical and the other for horizontal beam, are independently operationable. Persons can enter the horizontal irradiation room for experimental setting even when the vertical irradiation room is in operation. The specification of the buildings, the exhaust air treatment system, the irradiation conveyor and the safety observation system are also described. (author)

  15. Gauging the cosmic acceleration with recent type Ia supernovae data sets

    Science.gov (United States)

    Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.

    2018-04-01

    We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.

  16. Study and characteristics of a VIVITRON type electrostatic accelerator

    International Nuclear Information System (INIS)

    Tancogne-Dejean, J.P.

    1986-12-01

    The conception of the 2 MV tandem electrostatic accelerator ARAMIS, which is intended for research in solid state and astrophysics, benefits from certain technological advances of the VIVITRON. Our study has dealt with the shape and arrangement of the column electrodes for this machine. We have employed the program Poisson which performs two-dimensional calculations of the electrical constraint at the surface of the conductors. The maximum field strength on the constrained regions has a value of 11.5 MV/m. This completely acceptable result let one expect that the machine operation will be satisfactory. Certain limitations inherent in the bidimensional calculations have led us to consider programs treating three dimensions. Access to the finite element library MODULEF at the Centre de Calcul in Strasbourg has increased the computational possibilities. The case of an insulating post in the coaxial terminal-tank structure has thus been treated. This work has allowed the construction of the column electrodes to proceed. They will be ready the beginning 1987. The tandem ARAMIS being built should be operational by the end of 1987 [fr

  17. Effects of different computer typing speeds on acceleration and peak contact pressure of the fingertips during computer typing.

    Science.gov (United States)

    Yoo, Won-Gyu

    2015-01-01

    [Purpose] This study showed the effects of different computer typing speeds on acceleration and peak contact pressure of the fingertips during computer typing. [Subjects] Twenty-one male computer workers voluntarily consented to participate in this study. They consisted of 7 workers who could type 200-300 characteristics/minute, 7 workers who could type 300-400 characteristics/minute, and 7 workers who could type 400-500 chracteristics/minute. [Methods] This study was used to measure the acceleration and peak contact pressure of the fingertips for different typing speed groups using an accelerometer and CONFORMat system. [Results] The fingertip contact pressure was increased in the high typing speed group compared with the low and medium typing speed groups. The fingertip acceleration was increased in the high typing speed group compared with the low and medium typing speed groups. [Conclusion] The results of the present study indicate that a fast typing speed cause continuous pressure stress to be applied to the fingers, thereby creating pain in the fingers.

  18. High gradient test of the C-band choke-mode type accelerating structure

    International Nuclear Information System (INIS)

    Inagaki, T.; Shintake, T.; Baba, H.; Togawa, K.; Onoe, K.; Marechal, X.; Takashima, T.; Takahashi, S.; Matsumoto, H.

    2004-01-01

    The C-band (5712 MHz) choke-mode type accelerating structure will be used for SPring-8 Compact SASE-FEL Source (SCSS). To make the accelerator length short, we designed the field gradient as high as 40 MV/m. Since it is higher gradient than other traditional electron accelerators, we have to carefully check its performance (RF breakdown, dark current emission, etc.) in the high gradient test stand. The first experiment will be scheduled in this summer. In this paper, we will describe the preparation progress for the test. (author)

  19. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Directory of Open Access Journals (Sweden)

    Minárik Stanislav

    2015-08-01

    Full Text Available A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage.

  20. Method for controlling an accelerator-type neutron source, and a pulsed neutron source

    International Nuclear Information System (INIS)

    Givens, W.W.

    1991-01-01

    The patent deals with an accelerator-type neutron source which employs a target, an ionization section and a replenisher for supplying accelerator gas. A positive voltage pulse is applied to the ionization section to produce a burst of neutrons. A negative voltage pulse is applied to the ionization section upon the termination of the positive voltage pulse to effect a sharp cut-off to the burst of neutrons. 4 figs

  1. Design and fabrication of an ion accelerator for TFTR-type neutral beam systems

    International Nuclear Information System (INIS)

    Paterson, J.A.; Duffy, T.J.; Haughian, J.M.; Biagi, L.A.; Yee, D.P.

    1977-10-01

    The design of the prototype 120-keV, 65-A, 0.5-sec ion accelerator for TFTR-type beam systems is described. Details of the manufacture of the constituent parts are given along with descriptions of the major components of the accelerator. Included are the molybdenum grid structures, molybdenum shields, stainless steel hats and the epoxy insulator. Specific manufacturing problems are discussed along with the results of tests to determine the voltage holding capabilities of the assembly

  2. Some discussion on the acceleration mechanism of particles in the type-I plasma comet

    International Nuclear Information System (INIS)

    Li Zhongyuan; Guo Sheyu.

    1991-07-01

    Earlier, the large acceleration of plasma (300 cm/s 2 ) were already observed in type-I tail. Recently, the direct measurements for comet G-Z showed that the energy of particle reaches 2x10 5 eV, an energy much higher than the initial energy of comet particles (≤ 2x10 4 eV). So there should be an accelerated process in the comet. 14 refs, 3 figs

  3. P-type diamond stripper foils for tandem ion accelerators

    International Nuclear Information System (INIS)

    Phelps, A.W.; Koba, R.

    1989-01-01

    The authors are developing a stripper foil composed of a p-type diamond membrane. This diamond stripper foil should have a significantly longer lifetime than any conventional stripper foil material. To be useful for stripper foils, the boron-doped blue diamond films must be thinner than 0.8 μm and pore-free. Two methods are compared for their ability to achieve a high nucleation areal density on a W substrate. Some W substrates were first coated with think layer of boron (≤20 nm) in order to enhance nucleation. Other W substrates were scratched with submicron diamond particles. A schematic diagram of the stripper foil is shown. Stripper foils were created by etching away the central area of W substrates. The diamond membrane was then supported by an annulus of W. Tungsten was selected as a ring-support material because of its high electrical and thermal conductivity, relatively low thermal expansion, and proven suitability as a substrate for diamond CVD. Warping or fracture of the diamond film after substrate etch-back was investigated

  4. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Science.gov (United States)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  5. Application of MO-type gapless flange to beam duct for high-current accelerators

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Shirai, M.; Ohtsuka, M.

    2004-01-01

    The MO-type flange, which can provide a gapless connection between flanges, was studied experimentally aiming to apply it to the beam duct for high-current accelerators. The test flange showed a good vacuum sealing property, although the aperture had a complicated shape, that is, the combination of a circular beam duct and a rectangular antechamber. The structural analysis well reproduced the observed deformation of flange, and utilized to optimize the structure. The MO-type flange is a promising one for the connection flange of the beam duct for future accelerators. (author)

  6. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Performance tests of a 1.6-MV Van de Graaff accelerator of tandem type, 1

    International Nuclear Information System (INIS)

    Yano, Syukuro; Nakajima, Tadashi; Kitamura, Akira

    1981-01-01

    Experimental studies on the performance of a 1.6-MV Van de Graaff accelerator of tandem type, Model 5SDH of NEC, are reported. Two kinds of performance test were conducted. First, it was successfully demonstrated that the beam currents observed at two positions, 1m and 7m apart from a switching magnet in the +15 0 beam line, exceed the values accepted for our test according to the specifications of NEC. Second, it turned out that the beam transmission could be kept maximum by selecting the optimum number of live sections in the lower energy accelerator tube depending on terminal voltage. Moreover, the plot of optimum insulating SF 6 gas pressure against terminal voltage prepared by us is found very useful for efficient operation of the 5SDH accelerator. (author)

  8. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  9. Type IIP supernova light curves affected by the acceleration of red supergiant winds

    Science.gov (United States)

    Moriya, Takashi J.; Förster, Francisco; Yoon, Sung-Chul; Gräfener, Götz; Blinnikov, Sergei I.

    2018-05-01

    We introduce the first synthetic light-curve model set of Type IIP supernovae exploded within circumstellar media in which the acceleration of the red supergiant winds is taken into account. Because wind acceleration makes the wind velocities near the progenitors low, the density of the immediate vicinity of the red supergiant supernova progenitors can be higher than that extrapolated by using a constant terminal wind velocity. Therefore, even if the mass-loss rate of the progenitor is relatively low, it can have a dense circumstellar medium at the immediate stellar vicinity and the early light curves of Type IIP supernovae are significantly affected by it. We adopt a simple β velocity law to formulate the wind acceleration. We provide bolometric and multicolour light curves of Type IIP supernovae exploding within such accelerated winds from the combinations of three progenitors, 12-16 M⊙; five β, 1-5; seven mass-loss rates, 10-5-10-2 M⊙ yr-1; and four explosion energies, (0.5-2) × 1051 erg. All the light-curve models are available at https://goo.gl/o5phYb. When the circumstellar density is sufficiently high, our models do not show a classical shock breakout as a consequence of the interaction with the dense and optically thick circumstellar media. Instead, they show a delayed `wind breakout', substantially affecting early light curves of Type IIP supernovae. We find that the mass-loss rates of the progenitors need to be 10-3-10-2 M⊙ yr-1 to explain typical rise times of 5-10 d in Type IIP supernovae assuming a dense circumstellar radius of 1015 cm.

  10. Ilu esiletoojad / Eva Palu

    Index Scriptorium Estoniae

    Palu, Eva

    2005-01-01

    Ilusalongide edu tagab soodne asukoht, läbimõeldud teenuste pakett ja meeldiv teenindus. Spot klubi ja Sütiste ilusalongi juhtide arvamusi. Kommenteerib Nordea äriklientide osakonna juhataja Ingo Põder: Keskmisest riskantsem ärisektor

  11. Study of the properties of the operation of an end-type plasma accelerator initiated by electric foil detonation

    International Nuclear Information System (INIS)

    Gol'dberg, M.M.; Vikaruk, A.Ya.; Sokolov, S.V.; Suminov, I.V.

    1986-01-01

    The results of experimental study of an end-type high-current pulsed plasma accelerator initiated by electric foil detonation are presented. The development stages of the process and formation of the flow pinch are examined during accelerator operation. Analytic functions are obtained which determine the origination conditions of the pinch-effect

  12. Utilization of electron beam accelerators for polymer processing

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2013-01-01

    During the last decade, electron beam processing has been amply demonstrated to the Indian cable industry by BARC using 2 MeV/20 kW electron beam (EB) accelerator (ILU-6 EBA facility) located at BARC-BRIT complex, Vashi. The electron beam accelerator is a machine producing high energy electrons which are made to impinge on the materials for inducing physical, chemical and biological modifications. The process is carried out at room temperature and in ambient atmospheric conditions. Lately, quite a few numbers of accelerators have been installed by the private cable industry and carrying out cross-linking of cable insulations for high performance viz. high temperature stability, good flame retardancy, lesser solvent-swelling, thinner insulations etc. The indigenously made accelerators at EB centre, particularly the 3 MeV/30 kW accelerator will be of much help for Indian industry for polymer processing as the market is poised to grow by adapting the technology

  13. 2 MeV/20 kW industrial electron beam accelerator vis-s-vis its vacuum system

    International Nuclear Information System (INIS)

    Khader, S.A.; Assadullah, M.; Sarma, K.S.S.; Bandi, L.N.

    2003-01-01

    Full text: Electron beam accelerators in the energy range 200 keV to 10 MeV have been extensively used for many radiation processing applications that include polymerization, polymer modifications, radiation sterilization, food irradiation and gem coloration. The accelerator technology is a multidisciplinary one wherein production of stable vacuum in various accelerator systems is of utmost importance to achieve required output beam parameters like beam energy and current for processing industrial products at large through puts on continuous basis. A 2 MeV, 20 kW industrial electron beam accelerator has been in operation since 2001 at BARC-BRIT complex, Navi Mumbai for commercial and R and D applications like crosslinking of wire and cables, heat shrinkable tubes, PE O rings, PTEE degradation and color enhancement in diamonds. The machine is a ILU-6 type pulse RF accelerator consisting of a single resonator copper cavity of 1.2 m diameter and 1.2 m height (volume:∼ 1.5 m3) placed inside a stainless steel container (called cavity container) and a s.s. beam extraction window wherein vacuum needs to be maintained at a minimum 10-6 torr. Four sputter ion pumps are directly fixed on the cavity container to obtain maximum pumping efficiency. The fore vacuum is generated using a combination rotary and a roots pump. The beam extraction widow has a 50 and 956 m thick titanium foil acting as the exit window for electrons from the vacuum into air. Both the cavity and the beam extraction window are coupled through a gate valve which acts as a vacuum separator isolating the systems from each other during foil puncture, scanning system failure or any other related problems. This paper reports details of the vacuum system, measurements, vacuum leaks and detection and the operational experience related to maintenance and troubleshooting exercises that have been carried in the accelerator

  14. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice

    DEFF Research Database (Denmark)

    Livanos, Alexandra E; Greiner, Thomas U; Vangay, Pajau

    2016-01-01

    The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease....... PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic...

  15. Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper.

    Energy Technology Data Exchange (ETDEWEB)

    Maines, Warren Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kittell, David E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hobbs, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State at the tube wall. And we estimated Gurney velocity both at the test cap and tube wall. Our experiments and simulations are within expected uncertainty. The test and the analysis effectively reduce costs while keeping similar fidelity compared with more expensive tests.

  16. The influence of polycarboxylate-type super-plasticizers on alkali-free liquid concrete accelerators performance

    Science.gov (United States)

    Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng

    2017-04-01

    Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.

  17. Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behaviour

    International Nuclear Information System (INIS)

    Belie, N. de; Grosse, C.U.; Kurz, J.; Reinhardt, H.-W.

    2005-01-01

    The possible use of ultrasound measurements for monitoring setting and hardening of mortar containing different accelerating admixtures for shotcrete was investigated. The sensitivity to accelerator type (alkaline aluminate or alkali-free) and dosage, and accelerator-cement compatibility were evaluated. Furthermore, a new automatic onset picking algorithm for ultrasound signals was tested. A stepwise increase of the accelerator dosage resulted in increasing values for the ultrasound pulse velocity at early ages. In the accelerated mortar no dormant period could be noticed before the pulse velocity started to increase sharply, indicating a quick change in solid phase connectivity. The alkaline accelerator had a larger effect than the alkali-free accelerator, especially at ages below 90 min. The effect of the alkali-free accelerator was at very early age more pronounced on mortar containing CEM I in comparison with CEM II, while the alkaline accelerator had a larger influence on mortar containing CEM II. The increase of ultrasound energy could be related to the setting phenomenon and the maximum energy was reached when the end of workability was approached. Only the alkaline accelerator caused a significant reduction in compressive strength and this for all the dosages tested

  18. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  19. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    International Nuclear Information System (INIS)

    Bane, K

    2008-01-01

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm

  20. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan-Ying, E-mail: biozyy@163.com [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Huang, Xin-Yuan [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000 (China); Chen, Zheng-Wang [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  1. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    Science.gov (United States)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  2. Development of an IH-type linac for the acceleration of high current heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, Jan Hendrik

    2017-07-20

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U{sup 28+}. To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  3. Development of an IH-type linac for the acceleration of high current heavy ion beams

    International Nuclear Information System (INIS)

    Haehnel, Jan Hendrik

    2017-01-01

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U 28+ . To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  4. Accelerating policy decisions to adopt haemophilus influenzae type B vaccine: a global, multivariable analysis.

    Science.gov (United States)

    Shearer, Jessica C; Stack, Meghan L; Richmond, Marcie R; Bear, Allyson P; Hajjeh, Rana A; Bishai, David M

    2010-03-16

    Adoption of new and underutilized vaccines by national immunization programs is an essential step towards reducing child mortality. Policy decisions to adopt new vaccines in high mortality countries often lag behind decisions in high-income countries. Using the case of Haemophilus influenzae type b (Hib) vaccine, this paper endeavors to explain these delays through the analysis of country-level economic, epidemiological, programmatic and policy-related factors, as well as the role of the Global Alliance for Vaccines and Immunisation (GAVI Alliance). Data for 147 countries from 1990 to 2007 were analyzed in accelerated failure time models to identify factors that are associated with the time to decision to adopt Hib vaccine. In multivariable models that control for Gross National Income, region, and burden of Hib disease, the receipt of GAVI support speeded the time to decision by a factor of 0.37 (95% CI 0.18-0.76), or 63%. The presence of two or more neighboring country adopters accelerated decisions to adopt by a factor of 0.50 (95% CI 0.33-0.75). For each 1% increase in vaccine price, decisions to adopt are delayed by a factor of 1.02 (95% CI 1.00-1.04). Global recommendations and local studies were not associated with time to decision. This study substantiates previous findings related to vaccine price and presents new evidence to suggest that GAVI eligibility is associated with accelerated decisions to adopt Hib vaccine. The influence of neighboring country decisions was also highly significant, suggesting that approaches to support the adoption of new vaccines should consider supply- and demand-side factors.

  5. Cost-benefit analysis on radiotherapy services for cancer treatment, with LINAC type equipments (linear accelerators

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Blois

    2014-12-01

    Full Text Available This work consists in analyzing the economic feasibility of the investment to implement a Radiotherapy sector for radiological of cancer treatment by type linear accelerators equipments, based on the case of a public hospital in São Paulo. From technical and financial details of the project and the survey reference values for health care to their procedures, the statistical outcome of treatment on patients' life expectancy and average income indicators of the state's population, were estimated to income (private and social and expenses of this health service and other elements that make up the flow of the investment project box. From these estimates we evaluated public and private investment return, ie, if it fits only on the public sector or if private sector could also implement this projects geared exclusively to free admittance.

  6. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice.

    Science.gov (United States)

    Bodin, Johanna; Bølling, Anette Kocbach; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2014-02-01

    Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.

  7. Design of PH-based accelerated life testing plans under multiple-stress-type

    International Nuclear Information System (INIS)

    Elsayed, E.A.; Zhang Hao

    2007-01-01

    Accelerated life testing (ALT) is used to obtain failure time data quickly under high stress levels in order to predict product life performance under design stress conditions. Most of the previous work on designing ALT plans is focused on the application of a single stress. However, as components or products become more reliable due to technological advances, it becomes more difficult to obtain significant amount of failure data within reasonable amount of time using single stress only. Multiple-stress-type ALTs have been employed as a means of overcoming such difficulties. In this paper, we design optimum multiple-stress-type ALT plans based on the proportional hazards model. The optimum combinations of stresses and their levels are determined such that the variance of the reliability estimate of the product over a specified period of time is minimized. The use of the model is illustrated using numerical example, and sensitivity analysis shows that the resultant optimum ALT plan is robust to the deviation in model parameters

  8. Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome

    DEFF Research Database (Denmark)

    Cordeiro, Jonathan M; Marieb, Mark; Pfeiffer, Ryan

    2009-01-01

    S in which loss of function is caused by accelerated inactivation of I(Ca). The proband, a 32 year old male, displayed a Type I ST segment elevation in two right precordial ECG leads following a procainamide challenge. EP study was positive with induction of polymorphic VT/VF. Interrogation of implanted ICD...... significantly faster in mutant channels between 0 and + 20 mV. Action potential voltage clamp experiments showed that total charge was reduced by almost half compared to WT. We report the first BrS mutation in CaCNB2b resulting in accelerated inactivation of L-type calcium channel current. Our results suggest...

  9. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Gh; Marcuta, M [SC ICPE Electrostatica SA, Bucharest (Romania); Jipa, S [' Valahia' University, Targoviste (Romania)

    2001-07-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process.

  10. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    International Nuclear Information System (INIS)

    Marin, Gh.; Marcuta, M.; Jipa, S.

    2001-01-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process

  11. Plutonium (TRU) transmutation and {sup 233}U production by single-fluid type accelerator molten-salt breeder (AMSB)

    Energy Technology Data Exchange (ETDEWEB)

    Furukaw, Kazuo [Tokai Univ., Kanagawa (Japan); Kato, Yoshio [Japan Atom. Ene. Res. Inst., Ibaraki (Japan); Chigrinov, Sergey E. [Academy of Science, Minsk (Belarus)

    1995-10-01

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R&D items including radiation damage, heat removal and material compatibility; (2) few operation/maintenance/processing works: (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  12. [The antigravity suit, chamberless type, as a means of increasing orthostatic tolerance after water immersion hypokinesis and acceleration].

    Science.gov (United States)

    Shul'zhenko, E B; Kozlova, V G; Kurdin, K A; Iarov, A S; Plokhova, V G

    1983-01-01

    Orthostatic tolerance after 7-day dry immersion and head-to-feet acceleration was investigated on test subjects with and without an antigravity suit of bladderless type. With the suit on, the 20 min tilt test at 70 degrees prior to immersion induced less marked changes than without the suit. When the suit was on, cardiovascular reactions to tilt tests after immersion and acceleration improved. The maximum heart rate decreased from 135 +/- 4 to 101 +/- 5 beats/min (p less than 0.01), minimum stroke volume increased from 29 +/- 2 to 41 +/- 3 ml (p less than 0.05), and pulse pressure grew. Thus, an antigravity suit may help increase initial orthostatic tolerance and maintain it after the combined effect of simulated hypogravity and acceleration.

  13. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  14. Accelerators for E-beam and X-ray processing

    Energy Technology Data Exchange (ETDEWEB)

    Auslender, V.L. E-mail: auslen@inp.nsk.su; Bryazgin, A.A.; Faktorovich, B.L.; Gorbunov, V.A.; Kokin, E.N.; Korobeinikov, M.V.; Krainov, G.S.; Lukin, A.N.; Maximov, S.A.; Nekhaev, V.E.; Panfilov, A.D.; Radchenko, V.N.; Tkachenko, V.O.; Tuvik, A.A.; Voronin, L.A

    2002-03-01

    During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90 deg. beam bending system are also given.

  15. Optimization of TW accelerating structures for SLED type modes of operation

    International Nuclear Information System (INIS)

    Le Duff, J.

    1984-02-01

    The SLED method was invented at SLAC in order to produce more electron (and positron) energy from the existing klystrons. The LEP injector LINAC, also now is supposed to operate in the SLED-2 mode. At DESY similar developments have been undertaken too, to improve the linac performances. However in all cases the accelerating sections were not initially optimized for such a mode of operation, and in most cases the designers ended with long accelerating sections making a more efficient use of the klystron power, with rectangular pulses, sometimes at the expense of a longer linac. The present study deals with new approaches for designing linacs, and in particular compact linacs, considering from the beginning a pulse compression scheme, where the main feature consists of having an exponential pulse shape instead of rectangular. Moreover a detailed comparison is made between constant impedance and constant gradient travelling wave (TW) accelerating structures. As a matter of fact the constant impedance structure when optimized looks sligthy better than the second one. In addition short structures appear to be more efficient for a given number of RF sources. Consequently linear accelerators can be made more simple and less expensive, and if one allows for higher tolerable accelerating gradients they can be made even compact

  16. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  17. Acceleration and holographic studies on different types of dynamization of external fixators of the bones

    Science.gov (United States)

    Podbielska, Halina; Kasprzak, Henryk T.; Voloshin, Arkady S.; Pennig, Dietmar; von Bally, Gert

    1992-08-01

    The unilateral axially dynamic fixator (Orthofix) was mounted on a sheep tibial shaft. Three fixation modes: static, dynamic controlled, and dynamic free were examined by means of double exposure holographic interferometry. Simultaneously, the acceleration was measured by an accelerometer and displayed on the monitor together with loading characteristics. The first exposure was made before the acting force was applied to the tibia plateau. The second one after the moment when the acceleration wave started to propagate through the specimen. We stated that in the case of dynamization less torsion occurs at the fracture site. So far, we have not been able to determine any correlation between results of holographic and accelerometric measurements.

  18. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    Science.gov (United States)

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Core characteristics on a hybrid type fast reactor system combined with proton accelerator

    International Nuclear Information System (INIS)

    Kowata, Yasuki; Otsubo, Akira

    1997-06-01

    In our study on a hybrid fast reactor system, we have investigated it from the view point of transmutation ability of trans-uranium (TRU) nuclide making the most effective use of special features (controllability, hard neutron spectrum) of the system. It is proved that a proton beam is superior in generation of neutrons compared with an electron beam. Therefore a proton accelerator using spallation reaction with a target nucleus has an advantage to transmutation of TRU than an electron one. A fast reactor is expected to primarily have a merit that the reactor can be operated for a long term without employment of highly enriched plutonium fuel by using external neutron source such as the proton accelerator. Namely, the system has a desirable characteristic of being possible to self-sustained fissile plutonium. Consequently in the present report, core characteristics of the system were roughly studied by analyses using 2D-BURN code. The possibility of self-sustained fuel was investigated from the burnup and neutronic calculation in a cylindrical core with 300w/cc of power density without considering a target material region for the accelerator. For a reference core of which the height and the radius are both 100 cm, there is a fair prospect that a long term reactor operation is possible with subsequent refueling of natural uranium, if the medium enriched (around 10wt%) uranium or plutonium fuels are fully loaded in the initial core. More precise analyses will be planed in a later fiscal year. (author)

  20. Chimeric Feline Coronaviruses That Encode Type II Spike Protein on Type I Genetic Background Display Accelerated Viral Growth and Altered Receptor Usage▿

    Science.gov (United States)

    Tekes, Gergely; Hofmann-Lehmann, Regina; Bank-Wolf, Barbara; Maier, Reinhard; Thiel, Heinz-Jürgen; Thiel, Volker

    2010-01-01

    Persistent infection of domestic cats with feline coronaviruses (FCoVs) can lead to a highly lethal, immunopathological disease termed feline infectious peritonitis (FIP). Interestingly, there are two serotypes, type I and type II FCoVs, that can cause both persistent infection and FIP, even though their main determinant of host cell tropism, the spike (S) protein, is of different phylogeny and displays limited sequence identity. In cell culture, however, there are apparent differences. Type II FCoVs can be propagated to high titers by employing feline aminopeptidase N (fAPN) as a cellular receptor, whereas the propagation of type I FCoVs is usually difficult, and the involvement of fAPN as a receptor is controversial. In this study we have analyzed the phenotypes of recombinant FCoVs that are based on the genetic background of type I FCoV strain Black but encode the type II FCoV strain 79-1146 S protein. Our data demonstrate that recombinant FCoVs expressing a type II FCoV S protein acquire the ability to efficiently use fAPN for host cell entry and corroborate the notion that type I FCoVs use another main host cell receptor. We also observed that recombinant FCoVs display a large-plaque phenotype and, unexpectedly, accelerated growth kinetics indistinguishable from that of type II FCoV strain 79-1146. Thus, the main phenotypic differences for type I and type II FCoVs in cell culture, namely, the growth kinetics and the efficient usage of fAPN as a cellular receptor, can be attributed solely to the FCoV S protein. PMID:19906918

  1. Improving the output voltage waveform of an intense electron-beam accelerator based on helical type Blumlein pulse forming line

    Directory of Open Access Journals (Sweden)

    Xin-Bing Cheng

    2010-07-01

    Full Text Available The Blumlein pulse forming line (BPFL consisting of an inner coaxial pulse forming line (PFL and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA. The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.

  2. Archimedean-type force in a cosmic dark fluid. I. Exact solutions for the late-time accelerated expansion

    International Nuclear Information System (INIS)

    Balakin, Alexander B.; Bochkarev, Vladimir V.

    2011-01-01

    We establish a new self-consistent model in order to explain from a unified viewpoint two key features of the cosmological evolution: the inflation in the early Universe and the late-time accelerated expansion. The key element of this new model is the Archimedean-type coupling of the dark matter with dark energy, which form the so-called cosmic dark fluid. We suppose that dark matter particles immersed into the dark energy reservoir are affected by the force proportional to the four-gradient of the dark energy pressure. The Archimedean-type coupling is shown to play a role of effective energy-momentum redistributor between the dark matter and the dark energy components of the dark fluid, thus providing the Universe evolution to be a quasiperiodic and/or multistage process. In the first part of the work we discuss a theoretical base and new exact solutions of the model master equations. Special attention is focused on the exact solutions, for which the scale factor is presented by the anti-Gaussian function: these solutions describe the late-time acceleration and are characterized by a nonsingular behavior in the early Universe. The second part contains qualitative and numerical analysis of the master equations; we focus there on the solutions describing a multi-inflationary Universe.

  3. Linear accelerator-based stereotactic radiosurgery for bilateral vestibular schwannomas in patients with neurofibromatosis type 2

    NARCIS (Netherlands)

    Meijer, Otto W. M.; Vandertop, W. Peter; Lagerwaard, Frank J.; Slotman, Ben J.

    2008-01-01

    OBJECTIVE: Patients with neurofibromatosis Type 2 (NF2) patients typically have bilateral vestibular schwannomas (VS) and are at risk for developing bilateral deafness, bilateral trigeminal, and bilateral facial nerve function loss. Previous reports suggested that treatment outcomes in these

  4. Eestis toodetud ilu / Kristel Kirss

    Index Scriptorium Estoniae

    Kirss, Kristel, 1967-

    2008-01-01

    Valik Eesti väljapanekutest mais 2008 Eesti Näituste Pirita messikeskuses toimunud messilt "Interjöör 2008": OÜ Valley lammastega vaip ja mängumuruga tumbad (disainerid Ruth Vassel, Luule Aasma), istumispadjad (tekstiilikunstnikud Liisa Tomasberg, Liisa Kallam), kõlarid (disainer Aleksandr Gorodenkov, nahatükkidest tumba ja lastemööbel (disainer Ingeborg Ahlberg), iste "Põder" (disainer Sirli Ehari), OÜ Seos jonnipunn-tool (disainer Merike Rehepapp), OÜ Resvok lesimisase "Lazy" (disainer Tõnis Krik)

  5. Superhigh-power of Regotron-type generator for linear accelerator with high mean currents

    International Nuclear Information System (INIS)

    Murin, B.P.; Durkin, A.P.; Shlygin, O.Yu.; Shumakov, I.V.

    1991-01-01

    Theoretical principles and construction scheme of new-type super-power microwave relativistic electron-beam (REB) generator (Regotron) are discussed. Unlike other types of REB-generator, Regotron includes distributed power take-off system. To increase device efficiency the autophasing-principle is used. Such principles of device construction eliminate output power generator limitations. Theoretical basis of general generator construction principles is proposed; the results of mathematical simulations are presented; the different versions of construction scheme are discussed. It is shown that Regotron efficiency can reach 70-80% at output power levels up to 10 MW CW

  6. Development of a New Type of Alkali-Free Liquid Accelerator for Wet Shotcrete in Coal Mine and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2015-01-01

    Full Text Available In order to address issues such as large rebound rate, high dust concentration, and low compressive strength of shotcrete when adding liquid accelerator during wet spraying, the factors influencing the efficiency of liquid accelerator were experimentally analyzed. The single-admixture, combination, and orthogonal tests were conducted on the five fundamental raw materials required to develop the new liquid accelerator. The WT-1 type liquid accelerator, which had better adaptability to different kinds of cement, was developed with the mass concentration ratio of 55% aluminum sulfate octadecahydrate, 4% sodium fluoride, 2.5% triethanolamine, 0.5% polyacrylamide, 5% bentonite, and 33% water. Experimental investigation showed that the initial setting time of the reference cement with 6% mass content of this liquid accelerator was 2 minutes and 15 seconds, and the final setting time was 7 minutes and 5 seconds. The compressive strength after 1 day of curing was 13.6 MPa and the strength ratio after 28 days of curing was 94.8%, which met the first grade product requirements of the China National Standard. Compared with the conventional type liquid accelerator, the proposed type WT-1 accelerator is capable of effectively reducing the rebound rate and dust concentration while significantly increasing the compressive strength of the shotcrete.

  7. Accelerated age-related olfactory decline among type 1 Usher patients.

    Science.gov (United States)

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D

    2016-06-22

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin' Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome.

  8. Transmaternal bisphenol a exposure accelerates diabetes type 1 development in NOD mice

    NARCIS (Netherlands)

    Bodin, J.; Bølling, A.B.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C.

    2014-01-01

    Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this

  9. Accelerated age-related olfactory decline among type 1 Usher patients

    Science.gov (United States)

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D.

    2016-01-01

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin’ Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700

  10. Natural killer T (NKT cells accelerate Shiga toxin type 2 (Stx2 pathology in mice

    Directory of Open Access Journals (Sweden)

    Fumiko eObata

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is a leading cause of childhood renal disease He-molytic Uremic Syndrome (HUS. The involvement of renal cytokines and chemokines is sus-pected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO mice. In CD1KO mice, which lack nat-ural killer T (NKT cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  11. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice.

    Science.gov (United States)

    Obata, Fumiko; Subrahmanyam, Priyanka B; Vozenilek, Aimee E; Hippler, Lauren M; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M; Kolling, Glynis L; Latinovic, Olga; Webb, Tonya J

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  12. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    Science.gov (United States)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  13. Secular trends of body mass index in North Indian children with Type 1 diabetes do not support the Accelerator Hypothesis.

    Science.gov (United States)

    Dayal, Devi; Samprathi, Madhusudan; Jayaraman, Dhaarani; Kohat, Dilesh; Bhalla, Anil Kumar

    2016-03-01

    The accelerator hypothesis, which proposes a link between Type 1 diabetes (T1D) and Type 2 diabetes (T2D) through weight-related insulin resistance, remains untested in developing countries with increasing rates of childhood obesity and T1D, and different ethnicities. We aimed to test the accelerator hypothesis in the context of a significant increase in T1D at our centre. Medical records of children diagnosed with T1D between January 2005 and December 2014 were retrospectively reviewed. The body mass index (BMI) standard deviation scores (SDSs) were calculated using height and weight measurements recorded 1-2 months after diagnosis of T1D and compared with age-matched anthropometric data. The rate of change in BMI SDSs over time was calculated. Analysis of BMI data was undertaken for the three age categories: 10 and >10 years. The mean age at diagnosis of 467 children with T1D was 7·27 ± 0·32 years and showed no change over the study period. There was a yearly increase of 14·11% in patient numbers; this increase was similar in the three age categories (22·7%, 17·0%, 16·3%, respectively, P = 1·0). Comparison of patient numbers between the two time periods of 5 years each showed a marked increase during 2010-2014 (148 vs 319, % increase 115·5%). The mean BMI SDSs at diagnosis in the three age categories were similar (P = 1·0) and showed a yearly change of -0·36; the mean change in the three age categories was also similar (-0·35, -0·27, -0·46, respectively, P = 1·0). No correlation was found between age at diagnosis and BMI SDSs (correlation coefficient 0·010, P = 0·82). The mean BMI SDS in patients was significantly lower compared to controls (-0·54 vs -0·02, P = 0·001). There was no association between BMI SDS and age at diagnosis in children with new onset T1D. Further studies are needed to test whether the accelerator hypothesis is relevant in developing countries. © 2015 John Wiley & Sons Ltd.

  14. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  15. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  16. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    Science.gov (United States)

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.

  17. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  18. Accelerators for energy

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  19. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    Science.gov (United States)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-27

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  20. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  1. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  2. Exposure to perfluoroundecanoic acid (PFUnDA accelerates insulitis development in a mouse model of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Johanna Bodin

    Full Text Available Perfluoralkylated substances (PFAS are classified as persistent, bioaccumulative and toxic substances and are widespread environmental contaminants. Humans are exposed through food, drinking water and air. We have previously reported that bisphenol A accelerates spontaneous diabetes development in non-obese diabetic (NOD mice and observed in the present study that perfluoroundecanoic acid, PFUnDA, increased insulitis development, a prerequisite for diabetes development in NOD mice. We exposed NOD mice to PFUnDA in drinking water (3, 30 and 300 μg/l at mating, during gestation and lactation and until 30 weeks of age. After 300 μg/l PFUnDA exposure, we report (i increased pancreatic insulitis, (ii increased number of apoptotic cells in pancreatic islets prior to insulitis and (iii decreased phagocytosis in peritoneal macrophages. There was also a trend of decreased number of tissue resident macrophages in pancreatic islets prior to insulitis after exposure to 300 μg/l, and altered cytokine secretion in activated splenocytes after exposure to 3 μg/l PFUnDA. Although insulitis is a prerequisite for autoimmune diabetes, the accelerated insulitis was not associated with accelerated diabetes development. Instead, the incidence of diabetes tended to be reduced in the animals exposed to 3 and 30 μg/l PFUnDA, suggesting a non-monotonic dose response. The effects of PFUnDA exposure on increased apoptosis in pancreas and reduced macrophage function as well as accelerated insulitis development in NOD mice, may also be relevant for human insulitis. Further observational autoimmune diabetes clinical cohort studies and animal experiments for PFUnDA as well as other PFASs are therefore encouraged. Keywords: Perfluoralkylated substances, PFUnDA, T1DM, Diabetes, NOD mice, Insulitis

  3. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  4. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  5. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  6. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  7. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  8. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  9. Measurement of Omegam, OmegaLambda from a blind analysis of TypeIa supernovae with CMAGIC: Using color information to verify the acceleration of the Universe

    International Nuclear Information System (INIS)

    Conley, A.; Goldhaber, G.; Wang, L.; Aldering, G.; Amanullah, R.; Commins, E.D.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goobar, A.; Groom, D.E.; Hook, I.; Howell, D.A.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lidman, C.; Nobili, S.; Nugent, P.E.; Pain, R.; Perlmutter, S.; Smith, E.; Spadafora, A.L.; Stanishev, V.; Strovink, M.; Thomas, R.C.; Wood-Vasey, W.M.

    2006-01-01

    We present measurements of (Omega) m and (Omega) # Lambda# from a blind analysis of 21 high redshift supernovae using a new technique (CMAGIC) for fitting the multicolor lightcurves of Type Ia supernovae, first introduced in Wang et al. (2003). CMAGIC takes advantage of the remarkably simple behavior of Type Ia supernovae on color-magnitude diagrams, and has several advantages over current techniques based on maximum magnitudes. Among these are a reduced sensitivity to host galaxy dust extinction, a shallower luminosity-width relation, and the relative simplicity of the fitting procedure. This allows us to provide a cross check of previous supernova cosmology results, despite the fact that current data sets were not observed in a manner optimized for CMAGIC. We describe the details of our novel blindness procedure, which is designed to prevent experimenter bias. The data are broadly consistent with the picture of an accelerating Universe, and agree with a at Universe within 1.7σ, including systematics. We also compare the CMAGIC results directly with those of a maximum magnitude fit to the same SNe, finding that CMAGIC favors more acceleration at the 1.6σ level, including systematics and the correlation between the two measurements. A fit for w assuming a at Universe yields a value which is consistent with a cosmological constant within 1.2σ

  10. Standing wave accelerating structures

    International Nuclear Information System (INIS)

    Zavadtsev, A.A.; Zverev, B.V.; Sobepin, N.P.

    1984-01-01

    Accelerating ELA structures are considered and chosen for applied purposes of special designation. Accelerating structures with the standing wave are considered most effective for small size ELA. Designs and results of experimental investigation of two new accelerating structures are described. These are structures of the ''ring'' type with a decreased number of excitinq oscillation types and strucuture with transverse rods with a twice smaller transverse size as compared with the biperiodical structure with internal connection resonators. The accelerating biperiodical structures of the conventional type by the fact that the whole structure is not a linear chain of connected resonators, but a ring one. Model tests have shown that the homogeneous structure with transverse rods (STR) at the frequency of 2.8 GHz in the regime of the standing wave has an effective shunt resistance equalling 23 MOhm/m. It is shown that the small transverse size of biperiodic STR makes its application in logging linear electron accelerators

  11. Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children

    OpenAIRE

    Ziegler, Anette-G.; Pflueger, Maren; Winkler, Christiane; Achenbach, Peter; Akolkar, Beena; Krischer, Jeffrey P.; Bonifacio, Ezio

    2011-01-01

    The incidence of type 1 diabetes is rising worldwide, particularly in young children. Since type 1 diabetes is preceded by autoimmunity to islet antigens, there must be a consequent increase in the incidence of islet autoimmunity in young children or a more rapid rate of progression to diabetes once islet autoimmunity initiates. This study was to determine whether the incidence of islet autoimmunity or the rate of progression from autoimmunity to diabetes onset has changed over a 20-year peri...

  12. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    Rowe, C.H.; Wilton, M.S. de.

    1979-01-01

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  13. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... uses microwave technology (similar to that used for radar) to accelerate electrons in a part of the accelerator called the "wave guide," then allows ... risk of accidental exposure is extremely low. top of page This page was ... No Please type your comment or suggestion into the following text ...

  14. Energy behaviour of neutrons generated by Witch-type distributed axi-symmetrical deuteron beams accelerated onto plane tritium targets

    International Nuclear Information System (INIS)

    Timus, D.M.; Bradley, D.A.; Timus, B.D.; Kalla, S.L.; Srivastava, H.M.

    2000-01-01

    This paper is an analytical study of the spatial dependency of the d-T neutron energy in the vicinity of a homogeneous tritium-occluded plane target. Close to the target, and along the path of incidence of axially symmetric deuteron beams, the transverse density of accelerated deuterons is assumed to be governed by a law approximated by the 'Witch' function. In particular circumstances, the elementary neutron emission process in non-dispersive media can be considered to be omni-directional (due consideration being paid to collision kinetics, depending upon mass and kinetic energy of particles involved in the nuclear collision, nuclear reaction energy, etc.). Consequently, analytical expressions can be considerably simplified. By applying the classical kinetic energy and momentum conservation laws to nuclear processes, a theoretical description is obtained, taking into account the exoergic character of d-T fusion reaction. A number of expressions for energetic prediction of the fast neutron field are proposed. The associated relations, involving elementary functions, can be investigated using a desk-top computer. Computationally tractable tools are of importance in the study of diverse situations such as induced reactions and activation analysis using 14 MeV neutron generators, investigations in health-physics, radiation dose measurements, nuclear medicine, damage effects, and simulation studies

  15. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  16. Targeted treatment of invasive fungal infections accelerates healing of foot wounds in patients with Type 2 diabetes.

    Science.gov (United States)

    Chellan, G; Neethu, K; Varma, A K; Mangalanandan, T S; Shashikala, S; Dinesh, K R; Sundaram, K R; Varma, N; Jayakumar, R V; Bal, A; Kumar, H

    2012-09-01

    To test the hypothesis that fluconazole plus standard care is superior to the standard care for diabetic foot wounds infected with deep-seated fungal infections. We carried out a randomized, controlled, open-label, parallel-arm study in 75 patients with both fungal and bacterial infections in deep tissues of diabetic foot wounds. Thirty-seven patients (control group) were given standard care (surgical debridement + culture-specific antibiotics + offloading + glycaemic control) and 38 patients (treatment group) were given fluconazole 150 mg daily plus standard care. Wound surface area was measured every 2 weeks until the endpoints (complete epithelialization or skin grafting) were met. By week 4, the mean wound surface area reduced to 27.3 from 111.5 cm(2) in the treatment group, as opposed to 67.1 from 87.3 cm(2) in the control group. Subsequently, the mean wound surface areas were remarkably smaller in the treatment group compared with the control group, and statistically significant differences (P ≤ 0.05) in mean wound surface area were observed between the treatment group and the control group at week 6. However, no statistically significant (P ≤ 0.47) difference in complete healing was observed between the treatment group and the control group, 20 vs. 24. The mean wound healing time for the treatment group was 7.3 weeks, whereas for the control group it was 11.3 weeks (P ≤ 0.022). Similarly, the probability of wound healing in the treatment group was 50 vs. 20% in the control group at week 10. Fluconazole plus standard care was superior to standard care alone in accelerating wound reduction among patients with diabetes with deep-seated fungal infections in diabetic foot wounds. Those in the treatment group who did heal, healed more quickly (P ≤ 0.022), but overall healing was not different. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  17. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway

    Directory of Open Access Journals (Sweden)

    Na Li

    2016-01-01

    Full Text Available Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic.

  18. "small ACCELERATORS" 24 May - 2 June 2005

    CERN Multimedia

    2005-01-01

    CERN Accelerator School and Kernfysisch Versneller Instituut (KVI) Groningen, the Netherlands announce a course on "Small Accelerators", Hotel Golden Tulip Drenthe, Zeegse, the Netherlands, 24 May - 2 June 2005. This specialised course is dedicated to the physics and the main applications of small accelerators. The course will review the different accelerator types as well as their specificities in terms of accelerator physics.

  19. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Isakson, K.; Vessell, A.L.

    1994-07-01

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ''best alternatives'': Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases

  1. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  2. Accelerated split-course (Type B) thoracic radiation therapy plus vinorelbine/carboplatin combination chemotherapy in Stage III inoperable non-small cell lung cancer

    International Nuclear Information System (INIS)

    Iaffaioli, R.V.; Tortoriello, A.; Facchini, G.; Maccauro, M.; Dimitri, P.; Ravo, V.; Muto, P.; Crovella, F.

    1996-01-01

    43 patients with stage III NSCLC (non-small cell lung cancer) entered a phase II study aimed at evaluating the toxicity and the activity of a combined modality programme including an accelerated split-course schedule (type B) of thoracic radiation therapy and a combination chemotherapy with vinorelbine and carboplatin. An objective response was achieved in 18/42 evaluable patients (5 complete and 13 partial responses), for an overall response rate of 43% (95% confidence interval, 28-58%). Four complete responses had a duration which exceeded 16 months. Treatment was well tolerated; grade III myelotoxicity occurred in only 14% of patients and treatment was delayed in only 2 cases because of grade 3 oesophagitis. Both tolerability and efficacy data suggest that this regimen holds promise for the treatment of patients with stage III NSCLC. (author)

  3. Methodology of Accelerated Life-Time Tests For Stirling-Type "Bae-Co"-Made Cryocoolers Against Displacer-Blockage by Cryo-Pollutant Deposits

    National Research Council Canada - National Science Library

    Getmanits, Vladimir

    2000-01-01

    ...: The contractor will investigate techniques for accelerated testing of cryocooler technology. During this phase of the effort the contractor will perform a detailed design of the equipment needed to conduct accelerated testing...

  4. Froissart type rise of cross sections and predictions for spectra and multiplicities of hadrons at future accelerators

    International Nuclear Information System (INIS)

    Ter-Martirosyan, K.A.

    1986-01-01

    Experimental data of ISR and SPS colliders on σ tot and on the diffraction cone slope [B(s)] t=0 are used for a more precise determination of parameters (s=αp(0)-1 and others) of the supercritical Pomeron. With account of all P n rescatterings it leads to the Froissart type rise of cross sections at high energy. The quark-gluon string model of Pomeron, describing the existing experimental data, leads to predictions for super high energies of spectra of hadrons produced with small p perpendcular , in particular, the values of (dN ch /dy) y=0 , hadron average multiplicities =N-bar ch (ξ) and even their distributions over multiplicity W(N)=S N /σ in . The results are presented as curves and tables for energies √ s=0.9, 2, 4, 10, 20, 40, 10 2 , 10 3 TeV

  5. Charged particle accelerator

    International Nuclear Information System (INIS)

    Arakawa, Kazuo.

    1969-01-01

    An accelerator is disclosed having a device which permits the electrodes of an accelerator tube to be readily conditioned in an uncomplicated manner before commencing operation. In particle accelerators, it is necessary to condition the accelerator electrodes before a stable high voltage can be applied. Large current accelerators of the cockcroft-walton type require a complicated manual operation which entails applying to the electrodes a low voltage which is gradually increased to induce a vacuum discharge and then terminated. When the discharge attains an extremely low level, the voltage is again impressed and again raised to a high value in low current type accelerators, a high voltage power supply charges the electrodes once to induce discharge followed by reapplying the voltage when the vacuum discharge reaches a low level, according to which high voltage is automatically applied. This procedure, however, requires that the high voltage power supply be provided with a large internal resistance to limit the current to within several milliamps. The present invention connects a high voltage power supply and an accelerator tube through a discharge current limiting resistor wired in parallel with a switch. Initially, the switch is opened enabling the power supply to impress a voltage limited to a prescribed value by a suitably chosen resistor. Conditioning is effected by allowing the voltage between electrodes to increase and is followed by closing the switch through which high voltage is applied directly to the accelerator for operation. (K.J. Owens)

  6. Nested grids ILU-decomposition (NGILU)

    NARCIS (Netherlands)

    Ploeg, A. van der; Botta, E.F.F.; Wubs, F.W.

    1996-01-01

    A preconditioning technique is described which shows, in many cases, grid-independent convergence. This technique only requires an ordering of the unknowns based on the different levels of multigrid, and an incomplete LU-decomposition based on a drop tolerance. The method is demonstrated on a

  7. Vann, see on funktsionaalsus, puhtus ja ilu

    Index Scriptorium Estoniae

    2006-01-01

    AS Balteco vannimudelite valikust. Firma vanne on kujundanud Toomas Kelder, Aivar Habakukk, Matti Õunapuu ja Tiit Liiv. Erineva disainiga vannid on grupeeritud kolme tooteseeriasse: Basic, Forma, Relax

  8. Piero Castiglioni - praktilise ilu looja / Karin Paulus

    Index Scriptorium Estoniae

    Paulus, Karin, 1975-

    2005-01-01

    Itaalia disaineritest Castiglioni'dest, pikemalt Piero Castiglionist (sünd. 1944), kes külastas 2005. aasta märtsis Eestit. Loetletud tema tähtsamad tööd. Kommenteerivad sisearhitekt Hannes Praks, sisearhitekt Juta Lember, valgusdisainer Tarmo Luisk ja EKA professor Toivo Raidmets

  9. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M.; Zent, Roy; Arteaga, Carlos L.

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in

  10. Overview of accelerators in medicine

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  11. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  12. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  13. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  14. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  15. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  16. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  17. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  18. Particle-in-cell simulation for the effect of segmented electrodes near the exit of an aton-type Hall thruster on ion focusing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.R.; Qing, S.W.; Liu, H.; Li, H. [Lab. of Plasma Propulsion, Harbin Institute of Technology (China)

    2011-12-15

    The effect of floating conductive electrodes near the channel exit of an Aton-type Hall thruster on ion focusing acceleration is studied by simulating the two-dimensional plasma flow with a fully kinetic Particle-in-Cell method for the gas flow rate j{sub a} ranged in 1{proportional_to}3 mg/s. Numerical results show that low-emissive electrodes can reduce plume divergence if the electrode length is less than 2 mm due to the low secondary electron emissive characteristic, but widen plume in all the gas flow rate range if the electrode length is greater than 2mm since the conductive property of segmented electrodes trends to make equipotential lines convex toward channel exit and is even parallel to the wall surface in the near-wall region. Further investigation predicts that the combination of high emissive dielectric wall and segmented low-emissive dielectric wall is a promising way to reduce plume divergence (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  20. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  1. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  2. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  3. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  4. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  5. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  6. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Inestrosa, Nibaldo C

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative pathology characterized by aggregates of amyloid-β (Aβ) and phosphorylated tau protein, synaptic dysfunction, and spatial memory impairment. The Wnt signaling pathway has several key functions in the adult brain and has been associated with AD, mainly as a neuroprotective factor against Aβ toxicity and tau phosphorylation. However, dysfunction of Wnt/β-catenin signaling might also play a role in the onset and development of the disease. J20 APPswInd transgenic (Tg) mouse model of AD was treated i.p. with various Wnt signaling inhibitors for 10 weeks during pre-symptomatic stages. Then, cognitive, biochemical and histochemical analyses were performed. Wnt signaling inhibitors induced severe changes in the hippocampus, including alterations in Wnt pathway components and loss of Wnt signaling function, severe cognitive deficits, increased tau phosphorylation and Aβ 1-42 peptide levels, decreased Aβ42/Aβ40 ratio and Aβ 1-42 concentration in the cerebral spinal fluid, and high levels of soluble Aβ species and synaptotoxic oligomers in the hippocampus, together with changes in the amount and size of senile plaques. More important, we also observed severe alterations in treated wild-type (WT) mice, including behavioral impairment, tau phosphorylation, increased Aβ 1-42 in the hippocampus, decreased Aβ 1-42 in the cerebral spinal fluid, and hippocampal dysfunction. Wnt inhibition accelerated the development of the pathology in a Tg AD mouse model and contributed to the development of Alzheimer's-like changes in WT mice. These results indicate that Wnt signaling plays important roles in the structure and function of the adult hippocampus and suggest that inhibition of the Wnt signaling pathway is an important factor in the pathogenesis of AD. Read the Editorial Highlight for this article on page 356. © 2017 International Society for Neurochemistry.

  7. Accelerators for therapy

    International Nuclear Information System (INIS)

    Pohlit, W.

    1994-01-01

    In the past decades circular and linear electron accelerators have been developed for clinical use in radiation therapy of tumors with the aim of achieving a high radiation dose in the tumor and as low as possible dose in the adjacent normal tissues. Today about one thousand accelerators are in medical use throughout the world and many hundred thousand patients are treated every day with accelerator-produced radiation. There exists, however, a large number of patients who cannot be treated satisfactorily in this way. New types of radiations such as neutrons, negative pions, protons and heavy ions were therefore tested recently. The clinical experience with these radiations and with new types of treatment procedures indicate that in future the use of a scanning beam of high energy protons might be optimal for the treatment of tumors. (orig.)

  8. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  9. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  10. Development of heavy ion linear accelerators

    International Nuclear Information System (INIS)

    Bomko, V.A.; Khizhnyak, N.A.

    1981-01-01

    A review of the known heavy ion accelerators is given. It is stated that cyclic and linear accelerators are the most perspective ones in the energy range up to 10 MeV/nucleon according to universality in respect with the possibility of ion acceleration of the wide mass range. However, according to the accelerated beam intensity of the heavier ions the linear accelerators have considerable advantages over any other types of accelerators. The review of the known heavy ion linac structures permits to make the conclusion that a new modification of an accelerating structure of opposite pins excited on a H-wave is the most perspective one [ru

  11. Accelerating tube for the ''EG-1'' electrostatic accelerator

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Krupnov, E.P.; Debin, V.K.; Dudkin, N.I.; Volodin, V.I.

    1980-01-01

    A design of an accelerating tube (AT) for an electrostatic accelerator of the EG-1 type is described. Primary consideration in the development of the AT has been given to increasing the electric strength of accelerating gaps, the vacuum conductivity and better insulator screening from charged particles. After AT vacuum and high-voltage ageing in the accelerator, a hydrogen ions beam of up to 80 μA has been produced. The beam was adequately shaped in the energy range from 1.8 to 5.0 MeV [ru

  12. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  13. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  14. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  15. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  16. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  17. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  18. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  19. Accelerators for research and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  20. Application of preconditioned GMRES to the numerical solution of the neutron transport equation

    International Nuclear Information System (INIS)

    Patton, B.W.; Holloway, J.P.

    2002-01-01

    The generalized minimal residual (GMRES) method with right preconditioning is examined as an alternative to both standard and accelerated transport sweeps for the iterative solution of the diamond differenced discrete ordinates neutron transport equation. Incomplete factorization (ILU) type preconditioners are used to determine their effectiveness in accelerating GMRES for this application. ILU(τ), which requires the specification of a dropping criteria τ, proves to be a good choice for the types of problems examined in this paper. The combination of ILU(τ) and GMRES is compared with both DSA and unaccelerated transport sweeps for several model problems. It is found that the computational workload of the ILU(τ)-GMRES combination scales nonlinearly with the number of energy groups and quadrature order, making this technique most effective for problems with a small number of groups and discrete ordinates. However, the cost of preconditioner construction can be amortized over several calculations with different source and/or boundary values. Preconditioners built upon standard transport sweep algorithms are also evaluated as to their effectiveness in accelerating the convergence of GMRES. These preconditioners show better scaling with such problem parameters as the scattering ratio, the number of discrete ordinates, and the number of spatial meshes. These sweeps based preconditioners can also be cast in a matrix free form that greatly reduces storage requirements

  1. Acceleration of a compact torus

    International Nuclear Information System (INIS)

    Hartmann, C.W.; Eddleman, J.L.; Hammer, J.H.; Kusse, B.

    1987-01-01

    The authors report the first results of a study of acceleration of spheromak-type compact toruses in the RACE experiment (plasma Ring ACceleration Experiment). The RACE apparatus consists of (1) a magnetized, coaxial plasma gun 50 cm long, 35 cm OD, 20 cm ID, (2) 600 cm long coaxial acceleration electrodes 50 cm OD, 20 cm ID, (3) a 250 kJ electrolytic capacitor bank to drive the gun solenoid for initial magnetization, (4) a 200 kJ gun bank, (5) a 260 kJ accelerator bank, and (6) magnetic probes and other diagnostics, and vacuum apparatus. To outer acceleration electrode is an extension, at larger OD, of the gun outer electrode, and the inner acceleration electrode is supported and fed by a coaxial insert in the gun center electrode as shown

  2. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  3. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  4. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  5. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  6. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  7. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  8. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  9. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  10. Accelerators and the Accelerator Community

    International Nuclear Information System (INIS)

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  11. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  12. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  13. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  14. Accelerator structure for a charged particle linear accelerator working in standing wave mode

    International Nuclear Information System (INIS)

    Tran, D.T.; Tronc, Dominique.

    1977-01-01

    Charged particle accelerators generally include a pre-grouping or pre-accelerating structure associated with the accelerator structure itself. But pre-grouping or pre-accelerating structures of known type (Patent application No. 70 39261 for example) present electric and dimensional characteristics that rule them out for accelerators working at high frequencies (C or X bands for example), since the distance separating the interaction spaces becomes very small in this case. The accelerator structure mentioned in this invention can be used to advantage for such accelerators [fr

  15. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  16. Electron cyclotron harmonic wave acceleration

    Science.gov (United States)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  17. Electron cyclotron harmonic wave acceleration

    International Nuclear Information System (INIS)

    Karimabadi, H.; Menyuk, C.R.; Sprangle, P.; Vlahos, L.; Salonika Univ., Greece)

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts. 31 references

  18. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  19. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  20. Prototype of industrial electrons accelerator

    International Nuclear Information System (INIS)

    Lopez, V.H.; Valdovinos, A.M.

    1992-01-01

    The interest and the necessity of Mexico's industry in the use of irradiation process has been increased in the last years. As examples are the irradiation of combustion gases (elimination of NO x and SO 2 ) and the polymer cross-linking between others. At present time at least twelve enterprises require immediately of them which have been contacted by electron accelerators suppliers of foreign countries. The first project step consisted in to identify the electrons accelerator type that in can be constructed in Mexico with the major number of possible equipment, instruments, components and acquisition materials local and useful for the major number of users. the characteristics of the accelerator prototype are: accelerator type transformer with multiple secondary insulated and rectifier circuits with a potential of 0.8 MV of voltage, the second step it consisted in an economic study that permitted to demonstrate the economic feasibility of its construction. (Author)

  1. Teleportation with Multiple Accelerated Partners

    International Nuclear Information System (INIS)

    Sagheer, A.; Hamdoun, H.; Metwally, N.

    2015-01-01

    As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger–Horne–Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network. (paper)

  2. Calculation of the structural shielding of the radiotherapy treatment room equipped with a linear accelerator type Tomo therapy Hi-Art in the Oncology Center of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Caballero G, C. A.; Plascencia, J. C.; Vargas V, M. X.; Toledo J, P.

    2010-09-01

    The helicoid tomo therapy is an external radiotherapy system of modulated intensity, guided by image, in which the radiation is imparted to the patient using a narrow radiation beam in helicoid form, in a similar way to the scanning process with a computerized tomography. The tomo therapy equipment (Tomo Therapy Hi-Art) consists in an electrons linear accelerator with acceleration voltages of 6 MV for treatment and 3.5 MV for image, coupled to a ring that turn around the patient as this is transferred through this ring in perpendicular sense to the radiation beam. The radiation beam is narrow because has the maximum size of 5 x 40 cm 2 in the isocenter. The intensity modulation of the beam is carried out with a binary dynamic collimator of 64 crisscross sheets, and the guide by image though a system of megavoltage computerized tomography. Opposed to the radiation beam, also coupled to the rotational ring, a group of lead plates exists with a total thickness of 13 cm that acts as barrier of the primary radiation beam. The special configuration of the tomography equipment makes to have the following characteristics: 1) the presence of the lead barrier of the equipment reduces the intensity of the primary beam that reaches the bunker walls in considerable way, 2) the disperse and leakage radiations are increased with regard to a conventional accelerator due to the increase in the necessary irradiation time to produce modulated intensity fields by means of the narrow radiation beam. These special characteristics of the tomo therapy equipment make that particularities exist in the application of the formulations for structural shielding calculations that appears in the NCRP reports 49, NCRP 151 and IAEA-SRS-47. For this reason, several researches have development analytic models based on geometric considerations of continuous rotation of the equipment ring to determine the shielding requirements for the primary beam, the dispersed and leakage radiation in tomo therapy

  3. Production of radioisotopes using accelerators

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1990-01-01

    Accelerator produced radioisotopes find applications in many fields. Most of them are ideally suited for in-vivo studies of physiological functions. A brief review of various types of accelerators used for radioisotope production is given. The 'state of art' technology relevant to the production of radioisotopes is briefly discussed. Some of the recent advances in nuclear data measurements, target development, chemical processing and quality control are described. There appears to be a definite shift from multipurpose accelerators to dedicated machines, and greater emphasis is placed now on the production of radioisotopes with high radionuclidic purity by choosing a suitable nuclear reaction in a proper energy range. (author)

  4. Particle acceleration in modified shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.; Axford, W.I.; Summers, D.

    1982-01-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  5. Particle acceleration in modified shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1982-03-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.

  6. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps

    Directory of Open Access Journals (Sweden)

    Guangchuan Yang

    2016-10-01

    Full Text Available This paper investigated the actual truck acceleration capability at metered on-ramps. Truck acceleration performance data were collected through a video-based data collection method. A piecewise constant acceleration model was employed to capture truck acceleration characteristics. It was found that the existing acceleration length will affect truck drivers’ acceleration behavior. At the taper type ramp that has limited acceleration distance, acceleration profile indicated a decreasing trend with distance. While for the ramp with an auxiliary lane that has sufficient acceleration distance, it was found that the acceleration behavior is to have a high acceleration rate in the beginning, then acceleration rate decrease with speed increase, and high acceleration rate again as drivers approach the merging area. Field data show that the truck acceleration performance data documented in the ITE’s (Institute of Transportation Engineers “Traffic Engineering Handbook” are much lower than the field collected data. Also, based on the regression analysis of speed versus distance profiles, it was found that the AASHTO’s (American Association of State Highway and Transportation Officials Green Book acceleration length design guidance is insufficient to accommodate trucks at metered on-ramps. The required acceleration lengths for medium and heavy trucks are approximately 1.3 and 1.6 times of the Green Book design guideline, respectively.

  7. Heart rate acceleration with GLP-1 receptor agonists in type 2 diabetes patients : an acute and 12-week randomised, double-blind, placebo-controlled trial

    NARCIS (Netherlands)

    Smits, Mark M; Tonneijck, Lennart; Muskiet, Marcel H A; Hoekstra, T.; Kramer, Mark H H; Diamant, Michaela; van Raalte, Daniël H

    OBJECTIVE: To examine mechanisms underlying resting heart rate (RHR) increments of GLP-1 receptor agonists in type 2 diabetes patients. DESIGN: Acute and 12-week randomised, placebo-controlled, double-blind, single-centre, parallel-group trial. METHODS: In total, 57 type 2 diabetes patients

  8. Basis of medical accelerator. Synchrotron

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu

    2014-01-01

    On the synchrotron as a medical accelerator, this paper introduces the basic principle, basic techniques and the like. The accelerator, when synchrotron is adopted as an ion beam radiotherapy system, is the composite accelerator composed of ion sources, injector, and synchrotron. This paper introduces the overall structure of synchrotron, and conceptually explains the basic behavior of high-frequency waves and magnetic field of synchrotron, as well as the deflection electromagnet of medical synchrotron and the operation pattern of high-frequency acceleration system. The types of synchrotron can be classified to the function combination type and function separation type, and this paper introduces the features of each type and various types of synchrotrons. It also explains beam dynamics important for ensuring the stability of beams, with a focus on the coordinate system, vertical movement, and lateral movement. In addition, it explains the incidence and outgoing of beams that are important for properly operating the accelerator, with a focus on their techniques. (A.O.)

  9. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  10. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  11. The ATOMKI Accelerator Center

    International Nuclear Information System (INIS)

    Biri, S.; Kormany, Z.; Berzi, I.; Hunyadi, M.

    2009-01-01

    In 2009 a new division was established in our institute: the ATOMKI Accelerator Center (AAC). Before this time the facilities and staff of AAC belonged to other departments of the institute. The re-organization however, was necessary. It was understood that the translocation of all the accelerators into a centralized unit is advantageous in numerous fields. Here we just mention some of them. The submission of any instrumentation type proposal (EU or domestic) will be easier and has a higher chance to be supported. The organization and distribution of the beamtimes will be more equal and optimal. The usage of the maintenance and spare tools can became better and cheaper. The operating staff (cca. 20 person) can serve at more than one accelerator and the teams can help each other. The accelerator center actually became a fourth new basic unit of the institute besides the three traditional scientific divisions (see the Atomki homepage for the organization chart). The following six main facilities belong to the accelerator center: Cyclotron; VdG-5 accelerator; VdG-1 accelerator; ECR ion source; Isotope separator; Tandetron (under installation). In figure 1 the placements of these machines are shown in an artistic 3D map of the Atomki. The table 1 summarizes the main parameters of the accelerators. More detailed technical specification of the machines can be found in the new homepage of the center. In 2009 all the accelerators operated as scheduled, safely and without major breakdowns. After the experiences in the first months it can be concluded that the new center works well both for technical and human point of views. In the next sub-chapters the 2009 operation and development details of the individual accelerators are summarized. Cyclotron operation. The operation of the cyclotron in 2009 was concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 2009 hours; the time

  12. Implementation of metal-friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: A GPU-accelerated molecular dynamics software

    Science.gov (United States)

    Yang, Lin; Zhang, Feng; Wang, Cai-Zhuang; Ho, Kai-Ming; Travesset, Alex

    2018-04-01

    We present an implementation of EAM and FS interatomic potentials, which are widely used in simulating metallic systems, in HOOMD-blue, a software designed to perform classical molecular dynamics simulations using GPU accelerations. We first discuss the details of our implementation and then report extensive benchmark tests. We demonstrate that single-precision floating point operations efficiently implemented on GPUs can produce sufficient accuracy when compared against double-precision codes, as demonstrated in test simulations of calculations of the glass-transition temperature of Cu64.5Zr35.5, and pair correlation function g (r) of liquid Ni3Al. Our code scales well with the size of the simulating system on NVIDIA Tesla M40 and P100 GPUs. Compared with another popular software LAMMPS running on 32 cores of AMD Opteron 6220 processors, the GPU/CPU performance ratio can reach as high as 4.6. The source code can be accessed through the HOOMD-blue web page for free by any interested user.

  13. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  14. Fixed-Target Electron Accelerators

    International Nuclear Information System (INIS)

    Brooks, William K.

    2001-01-01

    A tremendous amount of scientific insight has been garnered over the past half-century by using particle accelerators to study physical systems of sub-atomic dimensions. These giant instruments begin with particles at rest, then greatly increase their energy of motion, forming a narrow trajectory or beam of particles. In fixed-target accelerators, the particle beam impacts upon a stationary sample or target which contains or produces the sub-atomic system being studied. This is in distinction to colliders, where two beams are produced and are steered into each other so that their constituent particles can collide. The acceleration process always relies on the particle being accelerated having an electric charge; however, both the details of producing the beam and the classes of scientific investigations possible vary widely with the specific type of particle being accelerated. This article discusses fixed-target accelerators which produce beams of electrons, the lightest charged particle. As detailed in the report, the beam energy has a close connection with the size of the physical system studied. Here a useful unit of energy is a GeV, i.e., a giga electron-volt. (ne GeV, the energy an electron would have if accelerated through a billion volts, is equal to 1.6 x 10 -10 joules.) To study systems on a distance scale much smaller than an atomic nucleus requires beam energies ranging from a few GeV up to hundreds of GeV and more

  15. SSC accelerator physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Accelerator physicists at LBL began intensive work on the SSC in 1983, in support of the proposed 6.5-T magnet design, which, in turn, became reference design A during the Reference Designs Study. In that same study, LBL physicists formed the core of the accelerator physics group led by Fermilab's Don Edwards. In a period of only a few months, that group established preliminary parameters for a near-optimal design, produced conceptual designs based on three magnet types, addressed all significant beam lifetime and stability issues, and identified areas requiring further R and D. Since the conclusion of the Reference Designs Study, work has focused on the key SSC design issue, namely, single-particle stability in an imperfect magnetic field. At the end of fiscal 1984, much of the LBL accelerator physics group took its place in the SSC Central Design Group, whose headquarters at LBL will be the focus of nationwide SSC R and D efforts over the next several years

  16. Particle Accelerator Focus Automation

    Science.gov (United States)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  17. Particle Accelerator Focus Automation

    Directory of Open Access Journals (Sweden)

    Lopes José

    2017-08-01

    Full Text Available The Laboratório de Aceleradores e Tecnologias de Radiação (LATR at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+ and proton (H+ beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  18. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  19. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  20. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic.

    Directory of Open Access Journals (Sweden)

    Ying Yin

    Full Text Available BACKGROUND: Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4 primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV clearance. PRINCIPAL FINDINGS: Plasmids expressing HBV core protein (HBcAg or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc, CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI of pAAV/HBV1.2. HBV surface antigen (HBsAg and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. CONCLUSION: Viral clearance could be efficiently achieved by Th1/Th2-balanced

  1. ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR 'PROMPT' TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA

    International Nuclear Information System (INIS)

    Thompson, Todd A.

    2011-01-01

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t H ), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t merge H . In principle, Chandrasekhar-mass binaries with P ∼ 300 days can merge in ∼ H if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t merge ∼ H is yet larger. In contrast, P ∼< 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  2. Study of portable particle accelerators used as neutron sources. Report 7-9. Characteristics of accelerators currently available on the market; Etude sur les accelerateurs de particules du type transportable utilises en tant que sources de neutrons. Rapport 7-9. Caracteristiques des accelerateurs actuellement sur le marche

    Energy Technology Data Exchange (ETDEWEB)

    Godar, Serge [Communaute europeenne de l' energie atomique - Euratom, Brussels (Belgium)

    1964-08-15

    This report indicates characteristics of available accelerators adapted to neutron production. Indicated information are for example: brand and type, brief description, maximum high voltage, ion source, ion current, gas introduction system, titanium self-target, beam focusing system, target diameter, reaction used for neutron production, target cooling, generator use temperature, dimensions, weight, manufacturer address, and so on [French] L'ensemble de cette etude bibliographique est traitee dans une serie de huit rapports, chacun ayant trait a un aspect ou un domaine particulier. Ce rapport (No. 7-9) a pour but de donner des renseignements generaux aux chercheurs desirant acquerir un accelerateur de particules adapte a la production de neutrons. Les recherches concernant les caracteristiques des appareils actuellement sur le marche ont ete arretees a la date du 15 octobre 1963. Il n'est malheureusement pas possible de garantir toutes les caracteristiques fournies, etant donne les modifications continuelles apportees a ces generateurs.

  3. Development of new electron beam accelerator

    International Nuclear Information System (INIS)

    Tanaka, Jiro

    1976-01-01

    Approximately two decades have elapsed since electron accelerators were first employed in industry. It is widely used in the fields of chemical and food industries and the prevention of pollution. The accelerators for industrial use are limited to those obtainable high current or high output, low cost and easy handling. The low energy (up to 2 or 3 MeV) accelerators applicable to industry include the rectification type (Cockcroft, Dynamitron, Van de Graaff etc.), the AC transformer type (resonance transformer, cascade transformer) and the transformer type. As the accelerators of higher energy (more than 3 MeV), there exist the linear accelerator and the electromagnetic induction type. The linear accelerators are widely employed for industrial and medical uses as the large output can be obtained. Though various types of accelerators are used in industry, more increasing demands in accordance with the diversification of application are not always satisfied. As it seems that the realization of a new accelerator of improved performance and cost requires long time, it may be important to perform the standardization by dividing the energy and output ranges. (Wakatsuki, Y.)

  4. Quantum random walks using quantum accelerator modes

    International Nuclear Information System (INIS)

    Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.

    2006-01-01

    We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes

  5. 4kV Electrostatic Accelerator Construction

    International Nuclear Information System (INIS)

    Fontaine, M.; Montanno, Luis M.

    2013-01-01

    We design and construct a small one meter linear electron accelerator. It can reach energy up to 4KeV. As a first step we put it in work via electrostatic voltage difference and verifying the acceleration of the electrons with an electrometer. Our plans in the future refer to construct another accelerator of bigger energy and type, for instance, a linear one with resounding cavities. (Author)

  6. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  7. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  8. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  9. Single atom counting with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Woelfli, W [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1984-02-01

    Direct detection of radioisotopes with conventional mass spectrometers is possible when the potential background atoms, in particular stable isotopes of the same mass (isobars) or molecules of similar mass are present in sufficiently low concentrations. Most of the long lived radioisotopes of interest for dating purposes however, occur in such small concentrations that their peak in the mass spectrum is obscured by the stable isobar and molecule distributions. The key idea of the new AMS technique which allows us to measure directly such small concentrations is the acceleration of the sample atoms to MeV energies and to use various filter processes and particle identification techniques developed for nuclear physics research to eliminate the isobaric and molecular interferences. The detection methods used for each radioisotope depend on the dominant background atoms and these in turn depend on the specific accelerator used. The problems encountered in transforming an existing particle accelerator into a high precision dating tool are considerable and have been solved only recently for one type of accelerator, notably the tandem Van de Graaff. For this reason the description of the AMS method and some of its applications is restricted to this type of accelerator only.

  10. Hydroethanolic Extract of Strychnos pseudoquina Accelerates Skin Wound Healing by Modulating the Oxidative Status and Microstructural Reorganization of Scar Tissue in Experimental Type I Diabetes

    Directory of Open Access Journals (Sweden)

    Mariáurea M. Sarandy

    2017-01-01

    Full Text Available The effect of topical application of ointment based on Strychnos pseudoquina hydroethanolic extract in the cutaneous wounds healing in diabetic rats was evaluated. Samples of S. pseudoquina were submitted to phytochemical prospection and in vitro antioxidant assay. Thirty Wistar rats were divided into 5 groups: Sal-wounds treated with 0.9% saline solution; VH-wounds treated with 0.6 g of lanolin cream (vehicle; SS-wounds treated with silver sulfadiazine cream (10 mg/g; ES5- and ES10-wounds treated with an ointment of S. pseudoquina extract, 5% and 10%, respectively. Fragments of wounds were removed for histological and biochemical analysis every 7 days during 21 days. ES showed equivalent levels per gram of extract of total phenols and flavonoids equal to 122.04 mg for TAE and 0.60 mg for RE. The chlorogenic acid was one of the major constituents. S. pseudoquina extract presented high antioxidant potential in vitro. ES5 and ES10 showed higher wound healing rate and higher amount of cells, blood vessels, and type III and I collagen. The oxidative stress markers were lower in the ES5 and ES10 groups, while the antioxidants enzymes levels were higher. Ointment based on S. pseudoquina extract promotes a fast and efficient cutaneous repair in diabetic rats.

  11. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Hao Gong

    Full Text Available Bisphenol A (BPA is a chemical compound widely used in manufacturing plastic products. Recent epidemiological studies suggest BPA exposure is positively associated with the incidence of type 2 diabetes mellitus (T2DM, however the mechanisms underlying this link remain unclear. Human islet amyloid polypeptide (hIAPP is a hormone synthesized and secreted by the pancreatic β-cells. Misfolding of hIAPP into toxic oligomers and mature fibrils can disrupt cell membrane and lead to β-cell death, which is regarded as one of the causative factors of T2DM. To test whether there are any connections between BPA exposure and hIAPP misfolding, we investigated the effects of BPA on hIAPP aggregation using thioflavin-T based fluorescence, transmission electronic microscopy, circular dichroism, dynamic light scattering, size-exclusion chromatography, fluorescence-dye leakage assay in an artificial micelle system and the generation of reactive oxygen species in INS-1 cells. We demonstrated that BPA not only dose-dependently promotes the aggregation of hIAPP and enhances the membrane disruption effects of hIAPP, but also promotes the extent of hIAPP aggregation related oxidative stress. Taken together, our results suggest that BPA exposure increased T2DM risk may involve the exacerbated toxic aggregation of hIAPP.

  12. Ion sources for medical accelerators

    Science.gov (United States)

    Barletta, W. A.; Chu, W. T.; Leung, K. N.

    1998-02-01

    Advanced injector systems for proton synchrotrons and accelerator-based boron neutron capture therapy systems are being developed at the Lawrence Berkeley National Laboratory. Multicusp ion sources, particularly those driven by radio frequency, have been tested for these applications. The use of a radio frequency induction discharge provides clean, reliable, and long-life source operation. It has been demonstrated that the multicusp ion source can provide good-quality positive hydrogen ion beams with a monatomic ion fraction higher than 90%. The extractable ion current densities from this type of source can meet the injector requirements for both proton synchrotron and accelerator-based boron neutron capture therapy projects.

  13. New ideas for accelerating particles

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-01-01

    Many different schemes can be devised for accelerating particles. In recent years several concepts radically different from those in common use have been suggested. Many of these have failed to live up to the hopes of their inventors. Now that we seem near the end of the road for large conventional machines, there is a renewed interest in alternatives, especially those involving lasers. Afte After a brief historical introduction and a discussion on how to classify different types of accelerator, some of these alternative concepts will be reviewed. (author)

  14. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  15. Superconducting magnets for particle large accelerators

    International Nuclear Information System (INIS)

    Kircher, F.

    1994-01-01

    The different accelerator types (linear, circular) and the advantages of using superconductivity in particle accelerator are first reviewed. Characteristics of some large superconducting accelerators (Tevatron, HERA, RHIC, LHC CERN) are presented. The design features related to accelerator magnets are reviewed: magnet reproducibility, stability, field homogeneity, etc. and the selected design characteristics are discussed: manufacturing method, winding, shielding, cryostat. CEA involvement in this domain mainly addressing quadrupoles, is presented together with the Large Hadron Collider (LHC) project at CERN. Characteristics and design of detector magnets are also described. 5 figs., 2 tabs

  16. Electromagnetic acceleration studies with augmented rails

    International Nuclear Information System (INIS)

    Maruo, T.; Fujioka, K.; Nagaoka, K.; Okamoto, A.; Ikuta, K.; Nemoto, K.

    1991-01-01

    A comparative study of electromagnetic acceleration in the rail-type accelerators with two kinds of rail geometry was carried out experimentally. The accelerators were energized by 200kJ capacitor bank and the weight of loaded projectiles was about 1.3 grams with 10mm x 10mm square bore. The attained velocity was 4.3km/s in the augmented accelerator, while it was 3.8km/s in the classical device. In this paper these differences in attained velocity are briefly discussed. A theoretical understanding of the rail erosion is also described

  17. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  18. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  19. The 16-MV pelletron accelerator at NSC

    International Nuclear Information System (INIS)

    Narayanan, M.M.; Chopra, S.; Kanjilal, D.

    1994-01-01

    A 15-UD 16-MV Pelletron accelerator was commissioned at Nuclear Science Centre (NSC) in July 1991. It is a large tandem Van de Graaff type electrostatic accelerator capable of accelerating almost any ion beam from hydrogen to uranium to energies from a few tens of MeV (Million electron Volts) to hundreds of MeV. The availability of the various beams having widely variable energy, good energy resolution and excellent quality makes this accelerator an extremely versatile machine. This gives rise to the possibilities of basic and applied research in various disciplines of science. The principle of operation of a tandem accelerator and the salient features of the accelerator system at NSC are described. (author). 2 refs., 4 figs

  20. Computer control applied to accelerators

    CERN Document Server

    Crowley-Milling, Michael C

    1974-01-01

    The differences that exist between control systems for accelerators and other types of control systems are outlined. It is further indicated that earlier accelerators had manual control systems to which computers were added, but that it is essential for the new, large accelerators to include computers in the control systems right from the beginning. Details of the computer control designed for the Super Proton Synchrotron are presented. The method of choosing the computers is described, as well as the reasons for CERN having to design the message transfer system. The items discussed include: CAMAC interface systems, a new multiplex system, operator-to-computer interaction (such as touch screen, computer-controlled knob, and non- linear track-ball), and high-level control languages. Brief mention is made of the contributions of other high-energy research laboratories as well as of some other computer control applications at CERN. (0 refs).

  1. Accelerators: the large slings of small particles

    International Nuclear Information System (INIS)

    Crozon, M.

    1987-01-01

    This paper reviews the different types of accelerators, of particles or heavy ions, which have been developed or are in project, their performance, their limits, which noting briefly the technologies used [fr

  2. FPGA Acceleration of Information Management Services

    National Research Council Canada - National Science Library

    Linderman, Richard W; Linderman, Mark H; Lin, Chun-Shin

    2005-01-01

    .... The specific core service accelerated by FPGAs is the brokering of XML metadata of publications against the XPATH logical predicates expressing the types of publications that the subscribers wish to receive...

  3. Development of the accelerating system

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jiho; Kwon, H. J.; Kim, D. I.; Kim, H. S.; Ryu, J. Y.; Park, B. S.; Seol, K. T.; Yun, S. P.; Song, Y. G.; Cho, Y. S.

    2013-02-15

    One of the main purposes of the 'Development of the Accelerating System' is developing a 100-MeV proton linac which accelerate proton beams from 20 MeV to 100 MeV by using 7 DTL (drift tube linac) tanks. Two of them were finished in the 2-nd stage of the project. The remaining part was also successfully fabricated and installed at Gyeongju site of KAERI. The MEBT is an essential component to extract and supply 20-MeV proton beams to users, and to match proton beams to the next accelerating structure for 100-MeV acceleration. The development of the MEBT has successfully finished. The project also developed the digital LLRF (low level RF) system which control the accelerating field within 1% in magnitude and 1 degree in phase. This system has been successfully tested in the 20-MeV linac operation at Daejeon site of KAERI. The modified version of the digital LLRF system will be used in the 100-MeV linac operation. The project also developed the beam diagnostic system. They are the strip-line type beam position monitor (BPM), the beam current monitor (CT), the beam loss monitor (BLM), and the emittance measurement system. They are used to measure the characteristics of the 20-MeV proton beams. The project also developed the EPIC-based control system. It is used to monitor the status of the accelerator and components, and to remotely control accelerator components. It has been used and modified in the 20-MeV linac operation. The modified version of the LLRF, diagnostics and control systems will be used in 100-MeV linac operation.

  4. New particle accelerations by magnetized plasma shock waves

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi

    2005-01-01

    Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions

  5. Weapon plutonium in accelerator driven power system

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Murin, B.P.; Kochurov, B.P.; Shubin, Yu.M.; Volk, V.I.; Bogdanov, P.V.

    1997-01-01

    Accelerator Driven Systems are planned to be developed for the use (or destruction) of dozens of tons of weapon-grade Plutonium (W-Pu) resulted from the reducing of nuclear weapons. In the paper are compared the parameters of various types of accelerators, the physical properties of various types of targets and blankets, and the results of fuel cycle simulation. Some economical aspects are also discussed

  6. Other people's accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    The first report from the Washington Accelerator Conference concentrated on news from the particle physics centres. But the bulk of the Conference covered the use of accelerators in other fields, underlining this valuable spinoff from particle physics.

  7. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  8. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  9. Unified accelerator libraries

    International Nuclear Information System (INIS)

    Malitsky, Nikolay; Talman, Richard

    1997-01-01

    A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators

  10. YEREVAN: Acceleration workshop

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Sponsored by the Yerevan Physics Institute in Armenia, a Workshop on New Methods of Charged Particle Acceleration in October near the Nor Amberd Cosmic Ray Station attracted participants from most major accelerator centres in the USSR and further afield

  11. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  12. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  13. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  14. Accelerator-timing system

    International Nuclear Information System (INIS)

    Timmer, E.; Heine, E.

    1985-01-01

    Along the NIKHEF accelerator in Amsterdam (Netherlands), at several places a signal is needed for the sychronisation of all devices with the acceleration process. In this report, basic principles and arrangements of this timing system are described

  15. Linear accelerator: A concept

    Science.gov (United States)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  16. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  17. Accelerators at school

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  18. Accelerators at school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  19. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  20. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  1. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  2. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  3. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  4. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  5. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  6. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  7. Far field acceleration

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  8. Petawatt pulsed-power accelerator

    Science.gov (United States)

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  9. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  10. Makaronivestern ja mängu ilu / Tiit Tuumalu

    Index Scriptorium Estoniae

    Tuumalu, Tiit, 1971-

    2004-01-01

    Sergio Leone ja tema makaronivesternid. Sonatiin OÜ videolevisse paisatud filmist "Peotäis dollareid" ("Per un pugno di dollari"), mis Eestis levitataval kassetil kannab pealkirja "Mõne dollari pärast"

  11. Uue ajastu kaks ilu / Heili Vaus-Tamm

    Index Scriptorium Estoniae

    Vaus-Tamm, Heili, 1961-

    2007-01-01

    Eesti Muusikaakadeemia sügisfestivalist - avakontserdist 25. IX, kus esines EMTA elektronmuusika stuudio Jean Baptiste Favory juhendamisel; konverentsist "Elektronmuusika ja filosoofia" 26. IX Kultuurikatlas; EMTA nüüdismuusika ansambli kontserdist 26. IX, kus esitati kompositsioonitudengite loomingut; lõppkontserdist 28. IX Krzysztof Penderecki muusikaga

  12. Anne-Marie Sargueil: ilu on kasulik / intervjueerinud Emilie Toomela

    Index Scriptorium Estoniae

    Sargueil, Anne-Marie

    2015-01-01

    Prantsuse Disainiinstituudi juht Anne-Marie Sargueil rääkis prantsuse ja skandinaavia disainist, prantslaste disainieelistustest, uutest suundadest disaini valdkonnas, Eesti Tarbekunsti- ja Disainimuuseumis avatud näitusest "20 prantsuse disainiikooni"

  13. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  14. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  15. Acute Kidney Injury in Heart Failure Revisited-The Ameliorating Impact of "Decongestive Diuresis" on Renal Dysfunction in Type 1 Acute Cardiorenal Syndrome: Accelerated Rising Pro B Naturetic Peptide Is a Predictor of Good Renal Prognosis.

    Science.gov (United States)

    Onuigbo, Macaulay Amechi Chukwukadibia; Agbasi, Nneoma; Sengodan, Mohan; Rosario, Karen Flores

    2017-08-29

    There is mounting evidence that forward heart failure as manifested by low cardiac output alone does not define the degree of renal dysfunction in cardiorenal syndrome. As a result, the term "congestive renal failure" was coined in 2012 by Ross to depict the role of renal venous hypertension in type 1 acute cardiorenal syndrome. If so, aggressive decongestive therapies, either through mechanical ultrafiltration with dialysis machines or pharmacologic ultrafiltration with potent diuretics, would lead to improved cardio and renal outcomes. Nevertheless, as recently as 2012, a review of this literature had concluded that a renal venous hypertension-directed approach using diuretics to manage cardio-renal syndrome was yet to be fully investigated. We, in this review, with three consecutive case series, describe our experience with pharmacologic decongestive diuresis in this paradigm of care and argue for studies of such therapeutic interventions in the management of cardiorenal syndrome. Finally, based on our observations in the Renal Unit, Mayo Clinic Health System, in Northwestern Wisconsin, we have hypothesized that patients with cardiorenal syndrome presenting with accelerated rising Pro B Naturetic Peptide levels appear to represent a group that would have good cardio- and renal-outcomes with such decongestive pharmacologic therapies.

  16. Political regime change, economic liberalization and growth accelerations

    NARCIS (Netherlands)

    Jong-A-Pin, Richard; De Haan, Jakob

    We examine whether the type of political regime, regime changes, and economic liberalization are related to economic growth accelerations. Our results show that growth accelerations are preceded by economic liberalizations. We also find that growth accelerations are less likely to happen the longer

  17. Measurement of the radiation in the accelerator-therapy room

    International Nuclear Information System (INIS)

    Zutz, Hayo

    2013-01-01

    The measurement of the scattering radiation in the accelerator-therapy room of the PTB is described. The accelerators are commercial linear accelerators of the firm Elektra of the type ''Precise''. The measurements were performed by means of secondary-normal ionization chambers and a special measurement technique developed in the PTB both with and without the used beam. (HSI)

  18. Accelerations in Flight

    Science.gov (United States)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  19. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  20. Hamiltonian systems in accelerator physics

    International Nuclear Information System (INIS)

    Laslett, L.J.

    1985-06-01

    General features of the design of annular particle accelerators or storage rings are outlined and the Hamiltonian character of individual-ion motion is indicated. Examples of phase plots are presented, for the motion in one spatial degree of freedom, of an ion subject to a periodic nonlinear focusing force. A canonical transformation describing coupled nonlinear motion also is given, and alternative types of graphical display are suggested for the investigation of long-term stability in such cases. 7 figs

  1. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  2. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  3. Advanced Accelerator Applications in Medicine

    International Nuclear Information System (INIS)

    Rimjiaem, Sakhorn

    2015-01-01

    besides the original purpose on development of particle acceleratora as research tools in nuclear and high-energy physics, there are large variety of accelerators used in various fileds from fundamental research to industrial usesand applications chemistry, biology and medicine. Pratical accelators used in various field of medical applications since serveral decades. Even through, a large fraction of applications is emphasized on cancer therappy, the number of accelerators used in midicine for other diagnostics and treatments has increased steady over the years. Several types of accelerated particles are used including electron, proton, neutron and ions. Presently, relativistic electron beams and radiation from linear accelerators (linas) are widely used. A combination of positron emission tomography (PRT) and radiotherapy is an example of excellent invention early detection and treat of cancer tumors. The most developments for proton and heavy ion therapy as well as a modern boron neutron capture therapy (BNCT) are also great incoming effective systems. This talk will focus on developments of the accelrator systems as well as overview on biophysical properties and medical aspects of the diacnostics and treatments.

  4. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  5. 2014 Accelerators meeting, Grenoble

    International Nuclear Information System (INIS)

    Lucotte, Arnaud; Lamy, Thierry; De Conto, Jean-Marie; Fontaine, Alain; Revol, Jean-Luc; Nadolski, Laurent S.; Kazamias, Sophie; Vretenar, Maurizio; Ferrando, Philippe; Laune, Bernard; Vedrine, Pierre

    2014-10-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Laboratory of subatomic physics and cosmology - LPSC-Grenoble (Lucotte, Arnaud; Lamy, Thierry); 2 - Presentation of the Accelerators division of the French Society of Physics (Fontaine, Alain; Revol, Jean-Luc); 3 - Presentation of Grenoble's master diplomas in Accelerator physics (Nadolski, Laurent S.); 4 - Presentation of Paris' master diplomas in big instruments (Kazamias, Sophie); 5 - Particle accelerators and European Union's projects (Vretenar, Maurizio); 6 - French research infrastructures (Ferrando, Philippe); 7 - Coordination of accelerators activity in France (Laune, Bernard; Vedrine, Pierre)

  6. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  7. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  8. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  9. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  10. Japan Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  11. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  12. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  13. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  14. CONFERENCE: Computers and accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-01-15

    In September of last year a Conference on 'Computers in Accelerator Design and Operation' was held in West Berlin attracting some 160 specialists including many from outside Europe. It was a Europhysics Conference, organized by the Hahn-Meitner Institute with Roman Zelazny as Conference Chairman, postponed from an earlier intended venue in Warsaw. The aim was to bring together specialists in the fields of accelerator design, computer control and accelerator operation.

  15. Japan Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-11-15

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation.

  16. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The CERN Accelerator School (CAS) recently held its Advanced Accelerator Physics course in Greece on the island of Rhodes. Complementing the general course in Finland last year, this course was organized together with the University of Athens and NCSR. Demokritos. Accelerator specialists from Europe, CIS, Japan and USA followed two weeks of ''state-of-theart'' lectures designed to complete their education in the field

  17. Acceleration ion focusing (IFR) and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Puokey, J.W.; Bennett, L.F.; Wagner, J.S.; Olson, W.R.; George, M.; Turman, B.N.; Prestwich, K.R.; Struve, K.W.

    1992-01-01

    The focusing and transport of intense relativistic electron beams in the Sandia Laboratories Recirculating Linear Accelerator (RLA) is accomplished with the aid of an ion focusing channel (IFR). We report here experiments evaluating the beam generation in the injector and its subsequent acceleration and transport through the first post-accelerating cavity. Two injectors and one type of post-accelerating cavity were studied. Beams of 6-20 kA current were injected and successfully transported and accelerated through the cavity. The transport efficiencies were 90% - 100%, and the beam Gaussian profile (4 MeV injector) and radius (5 mm) remained the same through acceleration. We describe the RLA, present the experimental results and compare them with numerical simulations. (Author) 3 refs., 7 figs

  18. Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, Oscar

    1989-12-15

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology.

  19. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  20. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  1. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  2. Interacting with accelerators

    International Nuclear Information System (INIS)

    Dasgupta, S.

    1994-01-01

    Accelerators are research machines which produce energetic particle beam for use as projectiles to effect nuclear reactions. These machines along with their services and facilities may occupy very large areas. The man-machine interface of accelerators has evolved with technological changes in the computer industry and may be partitioned into three phases. The present paper traces the evolution of man-machine interface from the earliest accelerators to the present computerized systems incorporated in modern accelerators. It also discusses the advantages of incorporating expert system technology for assisting operators. (author). 8 ref

  3. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  4. Applying the accelerator

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1989-01-01

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology

  5. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  6. Operating Characteristics of the low energy accelerator

    International Nuclear Information System (INIS)

    Abd El-Baki, M.M.; Abd El-Rahman, M.M.

    2000-01-01

    The main purpose of this work is to describe the construction and operation of low energy accelerator with energy in the range from (zero to 100 KeV.). This accelerator includes an ion source of the cold cathode penning type (with pierce geometry for ion beam extraction), an accelerating tube (with 8 electrodes) and faraday cup for measuring ion current. A vacuum system which gives vacuum of the order 3.0 x 10 8 torr is used. A palladium tube is used to supply the source with pure hydrogen atoms. It was possible to operate this accelerator with an energy 50 KeV. at minimum hydrogen pressure. 6.3 x 10 6 torr. The total resistance applied between the accelerating electrodes R T = 31.5 M OMEGA. These data includes the influence of the pressure in the accelerating tube, the magnetic field of the ion source, the extraction potential and the accelerating potential on the collector ion current. It was possible to accelerate protons with an energy 50 KeV with current about 100 MU A at pressure 6.3 x 10 6 Torr, the source magnetic field + 1100 gauss (I B = 2A), the current = 0.4 A and the extraction potential = 10 K. V

  7. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  8. CAS - CERN Accelerator School: Power Converters

    CERN Document Server

    2015-01-01

    These proceedings collate lectures given at the twenty-eighth specialized course organised by the CERN Accelerator School (CAS). The course was held at the Hotel du Parc, Baden, Switzerland from 7 - 14 May 2014, in collaboration with the Paul Scherrer Institute. Following introductory lectures on accelerators and the requirements on power converters, the course covered components and topologies of the different types of power converters needed for particle accelerators. Issues of design, control and exploitation in a sometimes-hostile environment were addressed. Site visits to ABB and PSI provided an insight into state-of-the-art power converter production and operation, while topical seminars completed the programme.

  9. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  10. Architecture of the modern accelerator control system

    International Nuclear Information System (INIS)

    Samardzic, B.; Drndarevic, V.

    2000-01-01

    Well defined concept of the system and construction plan are the important conditions for the successful realization of the accelerator control system. In this paper the modern concept of accelerator control system as well as guidelines for its efficient development have been presented. Described concept could be applied for the design of control systems for other types of facilities for experimental physics and for industrial process control. (author)

  11. Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat / high-cholesterol diet and low-dose streptozotocin.

    Science.gov (United States)

    He, Liang; Hao, Lili; Fu, Xin; Huang, Mingshu; Li, Rui

    2015-04-11

    Hyperlipidemia is thought to be a major risk factor for the progression of renal diseases in diabetes. Recent studies have shown that lipid profiles are commonly abnormal early on type 2 diabetes mellitus (T2DM) with diabetic nephropathy. However, the early effects of triglyceride and cholesterol abnormalities on renal injury in type 1 diabetes mellitus (T1DM) are not fully understood and require reliable animal models for exploration of the underlying mechanisms. Hamster models are important tools for studying lipid metabolism because of their similarity to humans in terms of lipid utilization and high susceptibility to dietary cholesterol and fat. Twenty-four male Golden Syrian hamsters (100-110 g) were rendered diabetes by intraperitoneal injections of streptozotocin (STZ) on consecutive 3 days at dose of 30 mg/kg, Ten days after STZ injections, hamsters with a plasma Glu concentration more than 12 mmol/L were selected as insulin deficient ones and divided into four groups (D-C, D-HF, D-HC, and D-HFHC), and fed with commercially available standard rodent chow, high-fat diet, high-cholesterol diet, high-fat and cholesterol diet respectively, for a period of four weeks. After an induction phase, a stable model of renal injury was established with the aspects of early T1DM kidney disease, These aspects were severe hypertriglyceridemia, hypercholesterolemia, proteinuria with mesangial matrix accumulation, upgraded creatinine clearance, significant cholesterol and triglyceride deposition, and increasing glomerular surface area, thickness of basement membrane and mesangial expansion. The mRNA levels of sterol regulatory element binding protein-1c, transforming growth factors-β, plasminogen activator inhibitor-1, tumor necrosis factor-α and interleukin-6 in the D-HFHC group were significantly up-regulated compared with control groups. This study presents a novel, non-transgenic, non-surgical method for induction of renal injury in hamsters, which is an important

  12. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  13. Remote handling and accelerators

    International Nuclear Information System (INIS)

    Wilson, M.T.

    1983-01-01

    The high-current levels of contemporary and proposed accelerator facilities induce radiation levels into components, requiring consideration be given to maintenance techniques that reduce personnel exposure. Typical components involved include beamstops, targets, collimators, windows, and instrumentation that intercepts the direct beam. Also included are beam extraction, injection, splitting, and kicking regions, as well as purposeful spill areas where beam tails are trimmed and neutral particles are deposited. Scattered beam and secondary particles activate components all along a beamline such as vacuum pipes, magnets, and shielding. Maintenance techniques vary from hands-on to TV-viewed operation using state-of-the-art servomanipulators. Bottom- or side-entry casks are used with thimble-type target and diagnostic assemblies. Long-handled tools are operated from behind shadow shields. Swinging shield doors, unstacking block, and horizontally rolling shield roofs are all used to provide access. Common to all techniques is the need to make operations simple and to provide a means of seeing and reaching the area

  14. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    2002-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  15. Santa Fe Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 10th USA National Particle Accelerator Conference was hosted this year by the Los Alamos National Laboratory in Santa Fe from 21-23 March. It was a resounding success in emphasizing the ferment of activity in the accelerator field. About 900 people registered and about 500 papers were presented in invited and contributed talks and poster sessions

  16. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  17. CERN Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford.

  18. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  19. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  20. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  1. Hamburg Accelerator Conference (2)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-11-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval.

  2. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  3. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  4. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford

  5. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  6. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  7. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  8. Hamburg Accelerator Conference (2)

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  9. Optimization of accelerator control

    International Nuclear Information System (INIS)

    Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.

    1992-01-01

    Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)

  10. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  11. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  12. Brazing techniques for side-coupled electron accelerator structures

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Clark, W.L.; DePaula, R.A.; Martinez, F.A.; Roybal, P.L.; Wilkerson, L.C.; Young, L.M.

    1986-01-01

    The collaboration between the Los Alamos National Laboratory and the National Bureau of Standards (NBS), started in 1979, has led to the development of an advanced c-w microtron accelerator design. The four 2380-MHz NBS accelerating structures, containing a total of 184 accelerating cavities, have been fabricated and delivered. New fabrication methods, coupled with refinements of hydrogen-furnace brazing techniques described in this paper, allow efficient production of side-coupled structures. Success with the NBS RTM led to Los Alamos efforts on similar 2450-MHz accelerators for the microtron accelerator operated by the Nuclear Physics Department of the University of Illinois. Two accelerators (each with 17 cavities) have been fabricated; in 1986, a 45-cavity accelerator is being fabricated by private industry with some assistance from Los Alamos. Further private industry experience and refinement of the described fabrication techniques may allow future accelerators of this type to be completely fabricated by private industry

  13. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  14. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  15. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  16. 2016 Accelerators meeting

    International Nuclear Information System (INIS)

    Spiro, Michel; Revol, Jean-Luc; Biarrotte, Jean-Luc; Napoly, Olivier; Jardin, Pascal; Chautard, Frederic; Thomas, Jean Charles; Petit, Eric

    2016-09-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Ganil - Grand accelerateur national d'ions lourds/Big national heavy-ion accelerator, Caen (Jardin, Pascal); 2 - Presentation of the Accelerators division of the French Society of Physics (Revol, Jean-Luc); 3 - Forward-looking and Prospective view (Napoly, Olivier); 4 - Accelerators at the National Institute of Nuclear and particle physics, situation, Forward-looking and Prospective view (Biarrotte, Jean-Luc); 5 - GANIL-SPIRAL2, missions and goals (Thomas, Jean Charles); 6 - The SPIRAL2 project (Petit, Eric)

  17. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  18. Effective radiological safety program for electron linear accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.

    1980-10-01

    An outline is presented of some of the main elements of an electron accelerator radiological safety program. The discussion includes types of accelerator facilities, types of radiations to be anticipated, activity induced in components, air and water, and production of toxic gases. Concepts of radiation shielding design are briefly discussed and organizational aspects are considered as an integral part of the overall safety program

  19. Electron accelerators: History, applications, and perspectives

    International Nuclear Information System (INIS)

    Martins, M.N.; Silva, T.F.

    2014-01-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs. - Highlights: ► We present an outlook on sources of radiation, focusing on electron accelerators. ► We review important advances for the development of modern electron accelerators. ► We outline advances that allowed for brighter synchrotron light sources. ► We describe the history of the development of electron accelerators in Brazil

  20. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  1. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  2. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  3. Accelerated stress testing of terrestrial solar cells

    Science.gov (United States)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  4. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  5. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  6. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  7. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  8. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  9. New accelerator ideas

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow

  10. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  11. ACCELERATORS: School report

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-12-15

    The expanded 1987 US Particle Accelerator School, held at Fermilab from 20 July to 14 August, included two two-week sessions. In the first, 101 students covered three university-style courses, listed as upper-division University of Chicago physics, covering the fundamentals of particle beams, magnetic optics and acceleration; relativistic electronics; and high energy storage rings. The 180 participants in the second session profited from 24 short courses presented by experts and covering a wide variety of topics in the physics and technology of particle accelerators.

  12. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  13. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    Terebilo, Andrei

    2001-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  14. RF linear accelerators

    CERN Document Server

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  15. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1989-10-01

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  16. New accelerator ideas

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow.

  17. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  18. Accelerators Spanish steps

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    In September, the CERN Accelerator School (CAS) held its third General Accelerator Physics Course, the venue this time being Salamanca, the oldest university in Spain. Spain, which rejoined CERN in 1982, now has a vigorous and steadily growing high energy physics community making substantial contributions to physics detector development and successfully involving Spanish industry. However the embryonic accelerator community cannot yet generate an equivalent level of activity, and this important channel for introducing new high technology into industry has yet to be fully exploited

  19. Electron accelerators: History, applications, and perspectives

    Science.gov (United States)

    Martins, M. N.; Silva, T. F.

    2014-02-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs.

  20. Low voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  1. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  2. Special radiation protection aspects of medical accelerators

    CERN Document Server

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  3. Ultimate-gradient accelerators physics and prospects

    CERN Document Server

    Skrinsky, Aleksander Nikolayevich

    1995-01-01

    As introduction, the needs and ways for ultimate acceleration gradients are discussed briefly. The Plasma Wake Field Acceleration is analized in the most important details. The structure of specific plasma oscillations and "high energy driver beam SP-plasma" interaction is presented, including computer simulation of the process. Some pratical ways to introduce the necessary mm-scale bunching in driver beam and to arrange sequential energy multiplication are dicussed. The influence of accelerating beam particle - plasma binary collisions is considered, also. As applications of PWFA, the use of proton super-colliders beams (LHC and Future SC) to drive the "multi particle types" accelerator, and the arrangements for the electron-positron TeV range collider are discussed.

  4. Reviews of accelerator science and technology

    CERN Document Server

    Chou, Weiren

    2008-01-01

    Particle accelerators are a major invention of the 20th century. In the last eight decades, they have evolved enormously and have fundamentally changed the way we live, think and work. Accelerators are the most powerful microscopes for viewing the tiniest inner structure of cells, genes, molecules, atoms and their constituents such as protons, neutrons, electrons, neutrinos and quarks. This opens up a whole new world for materials science, chemistry and molecular biology.Accelerators with megawatt beam power may ultimately solve a critical problem faced by our society, namely, the treatment of nuclear waste and the supply of an alternative type of energy. There are also tens of thousands of small accelerators all over the world. They are used every day for medical imaging, cancer therapy, radioisotope production, high-density chip-making, mass spectrometry, cargo x-ray/gamma-ray imaging, detection of explosives and illicit drugs, and weapons. This volume provides a comprehensive review of this driving and fas...

  5. Filament supply circuit for particle accelerator

    International Nuclear Information System (INIS)

    Thompson, C.C. Jr.; Malone, H.F.

    1975-01-01

    In a particle accelerator of the type employing ac primary power and a voltage multiplication apparatus to achieve the required high dc accelerating voltage, a filament supply circuit is powered by a portion of the ac primary power appearing at the last stage of the voltage multiplier. This ac power is applied across a voltage regulator circuit in the form of two zener diodes connected back to back. The threshold of the zeners is below the lowest peak-to-peak voltage of the ac voltage, so that the regulated voltage remains constant for all settings of the adjustable acceleration voltage. The regulated voltage is coupled through an adjustable resistor and an impedance-matching transformer to the accelerator filament. (auth)

  6. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  7. Future accelerators: physics issues

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1977-11-01

    High energy physics of the future using future accelerators is discussed. The proposed machines and instruments, physics issues and opportunities including brief sketches of outstanding recent results, and the way the proposed machines address these issues are considered. 42 references

  8. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  9. The accelerator breeder

    International Nuclear Information System (INIS)

    Johansson, E.

    1986-01-01

    Interactions of high-energy particles with atomic nuclei, in particular heavy ones, leads to a strong emission of neutrons. Preferably these high-energy particles are protons or deuterons obtained from a linear accelerator. The neutrons emitted are utilized in the conversion of U238 to Pu239 or of Th232 to U233. The above is the basis of the accelerator breeder, a concept studied abroad in many variants. No such breeder has, however, so far been built, but there exists vast practical experience on the neutron production and on the linear accelerator. Some of the variants mentioned are described in the report, after a presentation of general characteristics for the particle-nucleus interaction and for the linear accelerator. (author)

  10. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  11. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  12. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  13. Accelerated test program

    Science.gov (United States)

    Ford, F. E.; Harkness, J. M.

    1977-01-01

    A brief discussion on the accelerated testing of batteries is given. The statistical analysis and the various aspects of the modeling that was done and the results attained from the model are also briefly discussed.

  14. SSC accelerator availability allocation

    International Nuclear Information System (INIS)

    Dixon, K.T.; Franciscovich, J.

    1991-03-01

    Superconducting Super Collider (SSC) operational availability is an area of major concern, judged by the Central Design Group to present such risk that use of modern engineering tools would be essential to program success. Experience has shown that as accelerator beam availability falls below about 80%, efficiency of physics experiments degrades rapidly due to inability to maintain adequate coincident accelerator and detector operation. For this reason, the SSC availability goal has been set at 80%, even though the Fermi National Accelerator Laboratory accelerator, with a fraction of the SSC's complexity, has only recently approached that level. This paper describes the allocation of the top-level goal to part-level reliability and maintainability requirements, and it gives the results of parameter sensitivity studies designed to help identify the best approach to achieve the needed system availability within funding and schedule constraints. 1 ref., 12 figs., 4 tabs

  15. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  16. Ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.

    1975-01-01

    In a recently proposed linear collective accelerator, ions are accelerated in a steep, moving potential well created at the head of an intense relativistic electron beam. The steepness of the potential well and its motion are controlled by the external ionization of a suitable background gas. Calculations concerning optimum choices for the background gas and the ionization method are presented; a two-step photoionization process employing Cs vapor is proposed. In this process, a super-radiant light source is used to excite the gas, and a UV laser is used to photoionize the excited state. The appropriate line widths and coupled ionization growth rate equations are discussed. Parameter estimates are given for a feasibility experiment, for a 1 GeV proton accelerator, and for a heavy ion accelerator (50 MeV/nucleon uranium). (auth)

  17. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  18. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  19. Top ten accelerating cosmological models

    International Nuclear Information System (INIS)

    Szydlowski, Marek; Kurek, Aleksandra; Krawiec, Adam

    2006-01-01

    Recent astronomical observations indicate that the Universe is presently almost flat and undergoing a period of accelerated expansion. Basing on Einstein's general relativity all these observations can be explained by the hypothesis of a dark energy component in addition to cold dark matter (CDM). Because the nature of this dark energy is unknown, it was proposed some alternative scenario to explain the current accelerating Universe. The key point of this scenario is to modify the standard FRW equation instead of mysterious dark energy component. The standard approach to constrain model parameters, based on the likelihood method, gives a best-fit model and confidence ranges for those parameters. We always arbitrary choose the set of parameters which define a model which we compare with observational data. Because in the generic case, the introducing of new parameters improves a fit to the data set, there appears the problem of elimination of model parameters which can play an insufficient role. The Bayesian information criteria of model selection (BIC) is dedicated to promotion a set of parameters which should be incorporated to the model. We divide class of all accelerating cosmological models into two groups according to the two types of explanation acceleration of the Universe. Then the Bayesian framework of model selection is used to determine the set of parameters which gives preferred fit to the SNIa data. We find a few of flat cosmological models which can be recommend by the Bayes factor. We show that models with dark energy as a new fluid are favoured over models featuring a modified FRW equation

  20. Iteration and accelerator dynamics

    International Nuclear Information System (INIS)

    Peggs, S.

    1987-10-01

    Four examples of iteration in accelerator dynamics are studied in this paper. The first three show how iterations of the simplest maps reproduce most of the significant nonlinear behavior in real accelerators. Each of these examples can be easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of code. The fourth example outlines a general way to iteratively solve nonlinear difference equations, analytically or numerically

  1. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  2. Vancouver Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-06-15

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc.

  3. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  4. Ion optics for accelerators

    International Nuclear Information System (INIS)

    Enge, H.A.

    1974-01-01

    A review is given of ion-optic devices used in particle accelerators, including electrostatic lenses, magnetic quadrupoles, and deflecting magnets. Tube focusing in dc accelerators is also treated, and a novel scheme for shaping the electrodes to produce strong focusing is described. The concepts of emittance (phase space) and emittance conservation are briefly discussed. Chromatic and spatial aberrations are introduced, and it is shown how they can be calculated and sometimes substantially reduced. Some examples are given

  5. An active particle accelerator

    International Nuclear Information System (INIS)

    Goldman, T.

    1991-01-01

    Although a static charge is difficult to maintain on macroscopic particles, it is straightforward to construct a small object with a regularly oscillating electric dipole moment. For objects of a given size, one may then construct an accelerator by appropriately matching the frequency and separations of an external array of electrodes to this size. Physically feasible size ranges, an accelerator design, and possible applications of such systems are discussed. 8 refs., 9 figs

  6. Vancouver Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc

  7. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    Chao, Y C; Drury, M; Hovater, C; Hutton, A; Krafft, G A; Poelker, M; Reece, C; Tiefenback, M

    2011-01-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  8. Collective field accelerator

    International Nuclear Information System (INIS)

    Luce, J.S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a ν/γ of approx. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam

  9. CEBAF: Accelerating cavities look good

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications.

  10. CEBAF: Accelerating cavities look good

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications

  11. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  12. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  13. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  14. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  15. Accelerator business in Japan expanding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  16. High-current proton accelerators-meson factories

    International Nuclear Information System (INIS)

    Dmitrievskij, V.P.

    1979-01-01

    A possibility of usage of accelerators of neutron as well as meson factories is considered. Parameters of linear and cyclic accelerators are given, which are employed as meson factories and as base for developing intense neutron generators. It is emphasized that the principal aim of developing neutron generators on the base of high current proton accelerators is production of intense neutron fluxes with a present energy spectrum. Production of tens-and-hundreds milliampere currents at the energy of 800-1000 MeV is considered at present for two types of accelerating facilities viz. linear accelerators under continuous operating conditions and cyclotrons with strong focusing. Quantitative evaluations of developing high-efficiency linear and cyclic accelerators are considered. The basic parameters of an ccelerating complex are given, viz. linear accelerator-injector and 800 MeV isochronous cyclotron. The main problems associated with their realization are listed [ru

  17. Development of the warm snake and acceleration of polarized protons

    International Nuclear Information System (INIS)

    Takano, Junpei

    2007-01-01

    Acceleration of polarized protons is one of interesting issues of the high energy and accelerator physics. As known as the proton spin crisis, the total of the quark spin is not equal to the proton spin. To explore sources of the proton spin, it has been required to accelerate polarized protons to higher energy as hundreds GeV with higher polarization. However it is difficult to accelerate the polarized protons to higher energy with preserving higher polarization by using circular accelerators since the polarized beam crosses several types of depolarizing resonances. To overcome the depolarizing resonances, unique components are employed to the accelerator chain at the Brookhaven National Laboratory (BNL). On this description, developing a normal conducting helical dipole partial Siberian snake is explained in detail. As the results of upgrading the accelerators, the polarization has been increased recently. (author)

  18. Beam transport through electrostatic accelerators and matching into post accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1986-01-01

    Ion beam transport through electrostatic acceleration is briefly reviewed. Topics discussed include injection, matching into the low-energy acceleration stage, matching from the terminal stripper into the high-energy stage, transport to a post accelerator, space charge, bunching isochronism, dispersion and charge selection. Beam transport plans for the proposed Vivitron accelerator are described. (orig.)

  19. ORNL pellet acceleration program

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.

    1978-01-01

    The Oak Ridge National Laboratory (ORNL) pellet fueling program is centered around developing equipment to accelerate large pellets of solidified hydrogen to high speeds. This equipment will be used to experimentally determine pellet-plasma interaction physics on contemporary tokamaks. The pellet experiments performed on the Oak Ridge Tokamak (ORMAK) indicated that much larger, faster pellets would be advantageous. In order to produce and accelerate pellets of the order of 1 to 6 mm in diameter, two apparatuses have been designed and are being constructed. The first will make H 2 pellets by extruding a filament of hydrogen and mechanically chopping it into pellets. The pellets formed will be mechanically accelerated with a high speed arbor to a speed of 950 m/sec. This technique may be extended to speeds up to 5000 m/sec, which makes it a prime candidate for a reactor fueling device. In the second technique, a hydrogen pellet will be formed, loaded into a miniature rifle, and accelerated by means of high pressure hydrogen gas. This technique should be capable of speeds of the order of 1000 m/sec. While this technique does not offer the high performance of the mechanical accelerator, its relative simplicity makes it attractive for near-term experiments

  20. Accelerator development at Bates

    International Nuclear Information System (INIS)

    Sargent, C.P.

    1983-01-01

    The past year has seen the completion of a major expansion of the Bates Accelerator Laboratory. A second experimental hall, South Hall, and several magnetic spectrometers have been constructed. The accelerator's maximum energy has been raised from 400 to 750 MeV by means of beam recirculation. A current two-year project for the fabrication of an additional RF transmitter plus a 30% increase in RF peak power capability will increase energy further to ca. 1 GeV. During the same period pulse-to-pulse beam sharing between the high-resolution spectrometer area and South Hall will become available. In January 1981 the Laboratory submitted their ''Proposal for a Long-Range Expansion Program'' to DOE-NSF. The proposed development consists of three stages. Stage I calls for the addition of a pulse stretcher ring to furnish a CW beam to the South Hall beam lines. Additional experimental space for internal target experiments and photon tagging research are also included. Stage II increases the accelerator energy to 2.1 GeV (at 140 microamps) by means of a five-pass head-to-tail recirculator. Stage III is, at this time, a plan rather than a proposal. It increases accelerator energy to 4 GeV by extending the accelerator length and power and adds another pulse stretcher ring and three new experimental areas for the higher energy work. This paper discusses each of these stages in detail and recommends their funding and scheduling

  1. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  2. Project of compact accelerator for cancer proton therapy

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1995-04-01

    The status of the sub-projetc 'Compact Accelerator' in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated 'Compact Accelerator' and to the scenario of the fonts of financial resources

  3. Digital Marketing practices amongst start-up accelerators

    OpenAIRE

    Azinheiro, Marisa Filipa Ramos

    2017-01-01

    Digital Marketing (DM) is a vital marketing tool used by all types of companies nowadays. Accelerators are companies that appeared in the last few years to help start-ups grow and, just like any other company, they are using DM as well. This research explored which were the DM strategies used by accelerators. To do so, an online survey was shared amongst more than 300 accelerators across the world, whose results were analyzed by using SPSS Software. Correlation analyses and significance te...

  4. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  5. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  6. Study of a spoke-type superconducting cavity for high power proton accelerators; Etude d'une cavite acceleratrice supraconductrice Spoke pour les accelerateurs de protons de forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Olry, G

    2003-04-01

    Since a few years, a lot of projects (especially dedicated to transmutation, radioactive beams production, spallation neutron sources or neutrinos factories) are based on high power proton linear accelerators. It has been demonstrated, thanks to their excellent RF performances, that superconducting elliptical cavities represent the best technological solution for the high energy part of these linacs (proton energy from typically 100 MeV). On the contrary, between 5 and 100 MeV, nothing is clearly settled and intensive studies on low-beta cavities are under progress. The main objective of this thesis is the study of a new low-beta cavity, called 'spoke', which could be used in the low energy part of European XADS (experimental accelerator driven system) and EURISOL (European isotope separation on-line) accelerators projects. A complete study of a beta 0.35 spoke cavity has been done: from its electromagnetic and mechanical optimization to warm and, above all, cold experimental tests: an accelerating field of 12.2 MV/m has been reached at T=4.2 K, that is to say one of the best value among the spoke cavities performances in the world. It has been shown that the specific ratio of a third, between the spoke bar diameter and the cavity length, led to optimize the surface electromagnetic fields. Moreover, spoke cavities can be used without any trouble, in the low energy part, due to their good rigidity. The experimental measurements performed on the cavity have confirmed the theoretical calculations, especially, concerning the expected frequency and mechanical behavior. Another study, performed on elliptical cavities, gave an explanation of the discrepancies between the measured and calculated frequencies thanks to a precise 3-dimensional geometrical control. (author)

  7. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2007-01-01

    The activities of Department P-10 in 2006 were as follows: - continuation of development of radiographic 5-6 MeV electron accelerator, - study of very compact accelerating standing wave RF structures for electrons and ions, - Monte Carlo simulations applied to ion radiotherapy. The compact 6 MeV electron linac constructed in Department P-10 were further developed. Some equipment (low input impedance amplifier for beam transformer, up-to-date power supplies for beam position steering coils, magnetron frequency control unit) was added or replaced. The old control racks were replaced by a new single more compact control console. This will allow us to introduce a PLC based control system of accelerator (when money for necessary PLCs is granted). After additional amelioration of radiation shielding followed by Radiological Inspection, the permanent permission No D-15917 for routine operation of this accelerator in electron and X-ray mode was issued by the National Atomic Energy Agency. This allows us to render services to external customers. As it was already reported in 2005, two regimes of operation are actually possible: with X ray output beam or electron beam, depending on user demand. The triode gun, originally thought of as a part of the 6/15 MeV medical accelerator is still showing excellent performance on experimental stand; it was opened to air for about 2 hours to repair the broken wire of the beam scanner. This confirms the possibility of repeated formation of gun dispenser cathode. A new pulse modulator was routinely used in these tests. The special set-up, designed and made in our Department for the TiN coating of accelerator components, was routinely used for coating of various types of RF high power vacuum windows for conventional and superconducting 1.3 GHz accelerating structures. Cooperation with foreign enterprises is promising. Accel Instruments GmbH ordered the coating of two sets (in total 18 pieces) of coaxial and cylindrical vacuum windows for

  8. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  9. Accelerators in Science and Technology

    CERN Document Server

    Kailas, S

    2002-01-01

    Accelerators built for basic research in frontier areas of science have become important and inevitable tools in many areas of science and technology. Accelerators are examples of science driven high technology development. Accelerators are used for a wide ranging applications, besides basic research. Accelerator based multidisciplinary research holds great promise

  10. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  11. Design & simulation of a 800 kV dynamitron accelerator by CST studio

    Directory of Open Access Journals (Sweden)

    A M Aghayan

    2015-09-01

    Full Text Available Nowadays, middle energy electrostatic accelerators in industries are widely used due to their high efficiency and low cost compared with other types of accelerators. In this paper, the importance and applications of electrostatic accelerators with 800 keV energy are studied. Design and simulation of capacitive coupling of a dynamitron accelerator is proposed. Furthermore, accelerating tube are designed and simulated by means of CST Suit Studio

  12. Radiation protection in large linear accelerators

    International Nuclear Information System (INIS)

    Oliva, Jose de Jesus Rivero

    2013-01-01

    The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)

  13. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  14. Need for accelerating electrons

    International Nuclear Information System (INIS)

    Kerst, D.W.

    1987-01-01

    Photons for nuclear disintegration experiments were not abundantly available in the early days of nuclear physics, whereas accelerated ions led the way. When electrons could be accelerated into the 20--30 MeV range, they found application not only to nuclear disintegration of the elements of the periodic table but also to x-ray radiography and to deep therapy. Energies of interest for probing nuclear structure by electron scattering and for meson production followed soon after. The elementary nature of the electron has now made it a valuable tool for present day particle physics; and the synchrotron radiation, which is an obstacle for some accelerating processes, has become a much sought after source of photons for experiments at atomic structure energies

  15. Artificial seismic acceleration

    Science.gov (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  16. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  17. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  18. Universality of accelerating change

    Science.gov (United States)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  19. Future accelerators in Japan

    International Nuclear Information System (INIS)

    Toge, Nobu

    1993-01-01

    This paper presents a brief report on the present status of future accelerator projects at the National Laboratory for High Energy Physics (KEK), Japan. The KEK laboratory has been successfully operating the TRISTAN accelerator complex since 1986. It consists of a 2.5 GeV electron/positron linac, an 8 GeV Accumulation Ring (AR) and a 29 GeV Main Ring (MR). Concurrently with this operation, in response to recommendations by the Japanese High Energy Physics Committee, survey studies have been continued on new accelerator facilities at KEK. They have two major future projects, namely, the asymmetric e + e - B-factory based on TRISTAN (TRISTAN-II) and the Japan Linear Collider (JLC). The purpose of this paper is to outline those research activities and to present an update on their status

  20. Medical uses of accelerators

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1981-01-01

    A variety of particle accelerators have either potential or already demonstrated uses in connection with medically-related research, diagnosis, and treatment. For cancer radiotherapy, nuclear particles including protons, neutrons, heavy ions, and negative pi mesons have advantages compared to conventional radiations in terms of dose localization and/or biological effectiveness. Clinical evaluations of these particles are underway at a number of institutions. Accelerator-produced radionuclides are in widespread use for research and routine diagnostic purposes. Elemental analysis techniques with charged particles and neutrons are being applied to bone, blood, and other tissues. Finally, low-dose medical imaging can be accomplished with accelerated protons and heavy ions. The status and future of these programs are discussed

  1. JKJ accelerator timing system

    International Nuclear Information System (INIS)

    Ohmori, C.; Mori, Y.; Yoshii, M.; Yamamoto, M.

    2001-01-01

    The JKJ (JAERl-KEK Joint Project) accelerator complex consists of the linear accelerator, 3 GeV and 50 GeV synchrotrons. To minimize the beam loss during the beam transfer from the 3 GeV synchrotron to the 50 GeV one, the synchronization of the two RF system of the rings is very important. To reduce the background from the high and low momentum neutron, the neutron beam chopper will be employed. The 3 GeV RF will be also synchronized to the chopper timing when the beam goes to the neutron facility. The whole timing control system of these accelerators and chopper will be described. (author)

  2. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  3. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  4. Accelerating the culture change!

    Science.gov (United States)

    Klunk, S W; Panetta, J; Wooten, J

    1996-11-01

    Exide Electronics, a major supplier of uninterruptible power system equipment, embarked on a journey of changing a culture to improve quality, enhance customer responsiveness, and reduce costs. This case study examines the evolution of change over a period of seven years, with particular emphasis on the most recent years, 1992 through 1995. The article focuses on the Raleigh plant operations and describes how each succeeding year built on the successes and fixed the shortcomings of the prior years to accelerate the culture change, including corrective action and continuous improvement processes, organizational structures, expectations, goals, achievements, and pitfalls. The real challenge to changing the culture was structuring a dynamic approach to accelerate change! The presentation also examines how the evolutionary process itself can be created and accelerated through ongoing communication, regular feedback of progress and goals, constant evaluation and direction of the process, and measuring and paying for performance.

  5. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  6. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  7. CERN: Accelerator school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  8. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1999-01-01

    Full text: As presented at the overview seminar held on December 98, the activities of the Department were shared among several directions of accelerator applications, as well as research and development works on new accelerator techniques and technologies. In the group of proton and ion accelerators, two main tasks were advanced. The first was a further step in the optimization of operational parameters of multicusp ion-source, prepared for axial injection system in C-30 cyclotron. Another one is the participation in important modifications of r.f. acceleration system in heavy-ion accelerator C-200 of Warsaw University. In the broad field of electron accelerators our main attention was directed at medical applications. Most important of them was the designing and construction of a full scale technological model of a high-gradient accelerating structure for low-energy radiotherapy unit CO-LINE 1000. Microwave measurements, and tuning were accomplished, and the technical documentation for construction of radiation unit completed. This work was supported by the State Committee for Scientific Research. Preparatory work was continued to undertake in the year 1999 the design of two new medical accelerators. First is a new generation radiotherapy unit, with 15 MeV electron beam and two selected energies of X-ray photons. This accelerator should in future replace the existing Neptun 10 MeV units. The work will be executed in the frame of the Project-Ordered commissioned by the State Committee for Scientific Research. The next type of accelerators in preparation is the mobile, self-shielded electron-beam unit for inter operative irradiation. The specification of parameters was completed and study of possible solutions advanced. The programme of medical accelerator development is critically dependent on the existence of a metrological and experimental basis. Therefore the building of a former proton linear accelerator was adopted to the new function as electron accelerators

  9. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  10. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  11. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  12. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  13. Electrostatic accelerator dielectrics

    International Nuclear Information System (INIS)

    Cooke, C.M.

    1989-05-01

    High voltage insulation problems in electrostatic accelerators are discussed. The aim of the analysis is to broaden the knowledge, highlight the characteristics of insulation technology and design strategies to improve use. The basic geometry of the insulation in accelerators is considered. A detailed description of each of the insulation regions is provided. The gas gap insulation of the terminal voltage is found to be sensitive to regions of high electric stress. In order to obtain satisfactory performance from solid support insulation, the attention is focused on the electric stress value and distribution. Potential subjects for discussion and further investigations are given

  14. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  15. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  16. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  17. Photocathodes in accelerator applications

    International Nuclear Information System (INIS)

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs 3 Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera

  18. "Light sail" acceleration reexamined.

    Science.gov (United States)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  19. 'Light Sail' Acceleration Reexamined

    International Nuclear Information System (INIS)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-01-01

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  20. Accelerating time to benefit

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  1. Plasma wave accelerator. II

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.

    1982-01-01

    It was shown that the insertion of a cross magnetic field prevents the particles from getting out of phase with the electric field of the plasma wave in the beat wave accelerator scheme. Thus, using a CO 2 laser, n/sub c//n/sub e/ = (ω 0 /ω/sub p/) 2 approx. 35, and a 300 kG magnetic field, electrons can be (in principle) accelerated to 100 GeV in 2 meters. For comparison without the magnetic field, the same energies may be obtained in a n/sub c//n/sub e/ approx. 10 5 plasma over a distance of 100 meters

  2. An accelerator technology legacy

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1994-01-01

    Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production

  3. Standard Operating Procedure for Accelerated Corrosion Testing at ARL

    Science.gov (United States)

    2017-11-01

    ARL-TN-0855 ● NOV 2017 US Army Research Laboratory Standard Operating Procedure for Accelerated Corrosion Testing at ARL by... Corrosion Testing at ARL by Thomas A Considine Weapons and Materials Research Directorate, ARL Approved for public...November 2017 2. REPORT TYPE Technical Note 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Standard Operating Procedure for Accelerated

  4. Choosing the optimal parameters of subcritical reactors driven by accelerators

    International Nuclear Information System (INIS)

    Khudaverdyan, A.G.; Zhamkochyan, V.M.

    1998-03-01

    Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)

  5. Electron accelerators for radiosterilization; Akceleratory elektronow dla potrzeb sterylizacji radiacyjnej

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The applications of electron accelerators in commercial plants for radiosterilization have been shown. Advantages of such irradiation source have been presented. The types and parameters of accelerators being installed in worldwide irradiation plants for radiosterilization have been listed as well. 2 tabs.

  6. Observational probes of cosmic acceleration

    International Nuclear Information System (INIS)

    Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; Riess, Adam G.; Rozo, Eduardo

    2013-01-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H 0 . We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever

  7. Observational probes of cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, David H., E-mail: dhw@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Mortonson, Michael J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, Tucson, AZ (United States); Harvard College Observatory, Cambridge, MA (United States); Hirata, Christopher [California Institute of Technology, Pasadena, CA (United States); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL (United States)

    2013-09-10

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H{sub 0}. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over

  8. Accelerators in the sky

    International Nuclear Information System (INIS)

    Setti, G.

    1977-01-01

    The author surveys the large body of evidence showing that there are very efficient mechanisms capable of accelerating particles to high energies under very different astrophysical conditions. The circumstances whereby huge amounts of relativistic and ultrarelativistic particles such as one finds in a) cosmic rays, b) supernova remnants and c) radio galaxies and quasars are produced are considered. (Auth.)

  9. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  10. Accelerating with industry

    International Nuclear Information System (INIS)

    Southworth, Brian

    1992-01-01

    At the end of March, Berlin was the scene of the third biennial European Particle Accelerator Conference (EPAC). It carried the usual news from the front-line machines in the high energy physics Laboratories and reports on progress with the latest technologies

  11. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  12. Hamburg Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-10-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn.

  13. The Bevalac accelerator

    International Nuclear Information System (INIS)

    Dacal, A.

    1989-01-01

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  14. Radioisotope Dating with Accelerators.

    Science.gov (United States)

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  15. The CERN accelerator complex

    CERN Multimedia

    Mobs, Esma Anais

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  16. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  17. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  18. Ion sources for accelerators

    International Nuclear Information System (INIS)

    Alton, G.D.

    1974-01-01

    A limited review of low charge sate positive and negative ion sources suitable for accelerator use is given. A brief discussion is also given of the concepts underlying the formation and extraction of ion beams. Particular emphasis is placed on the technology of ion sources which use solid elemental or molecular compounds to produce vapor for the ionization process

  19. BNL accelerator plans

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1986-01-01

    The Brookhaven National Laboratory plan for high energy and heavy ion physics accelerator use for the next ten-year period is described. The two major initiatives are in the construction of the Relativistic Heavy Ion Collider and the upgrade of the Alternating Gradient Synchrotron to a ''Mini Kaon Factory''

  20. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  1. Accelerating with industry

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Brian

    1992-06-15

    At the end of March, Berlin was the scene of the third biennial European Particle Accelerator Conference (EPAC). It carried the usual news from the front-line machines in the high energy physics Laboratories and reports on progress with the latest technologies.

  2. Accelerating News Issue 5

    CERN Document Server

    Szeberenyi, A

    2013-01-01

    In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

  3. Next generation of accelerators

    International Nuclear Information System (INIS)

    Richter, B.

    1979-01-01

    Existing high-energy accelerators are reviewed, along with those under construction or being designed. Finally, some of the physics issues which go into setting machine parameters, and some of the features of the design of next generation electron and proton machines are discussed

  4. Cockroft Walton accelerator prototype

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1976-01-01

    Prototype of a Cockroft Walton generator using ceramic and plastic capacitors is discussed. Compared to the previous generator, the construction and components are much more improved. Pralon is used for the high voltage insulation column and plastic is used as a dielectric material for the high voltage capacitor. Cockroft Walton generator is used as a high tension supply for an accelerator. (author)

  5. Accelerated product development

    NARCIS (Netherlands)

    Langerak, F.; Seth, J.N.; Malhotra, N.K.

    2011-01-01

    Accelerated product development is a competitive strategy that seeks to reduce the development cycle time of new products. However, there has been little theoretical advancement and empirical model testing in the identification of the conditions under which cycle time reduction is appropriate, the

  6. Wakeless triple soliton accelerator

    International Nuclear Information System (INIS)

    Mima, K.; Ohsuga, T.; Takabe, H.; Nishihara, K.; Tajima, T.; Zaidman, E.; Horton, W.

    1986-09-01

    We introduce and analyze the concept of a wakeless triple soliton accelerator in a plasma fiber. Under appropriate conditions the triple soliton with two electromagnetic and one electrostatic waves in the beat-wave resonance propagates with velocity c leaving no plasma wake behind, while the phase velocity of the electrostatic wave is made also c in the fiber

  7. Hamburg Accelerator Conference

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  8. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  9. Control Infrastructure for a Pulsed Ion Accelerator

    International Nuclear Information System (INIS)

    Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.

    2016-01-01

    We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.

  10. Control Infrastructure for a Pulsed Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.

    2016-10-01

    We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.

  11. Cosmic Accelerators: Engines of the Extreme Universe

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan

    2009-06-23

    The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

  12. Mechanical Design of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Toral, F

    2014-01-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques

  13. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, Fernando

    2014-07-17

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  14. Critical analysis of industrial electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S. E-mail: sergey_korenev@steris.com

    2004-10-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  15. Critical analysis of industrial electron accelerators

    Science.gov (United States)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  16. Critical analysis of industrial electron accelerators

    International Nuclear Information System (INIS)

    Korenev, S.

    2004-01-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed

  17. What can we expect from future accelerators

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    This talk covers a general but highly subjective overview of the expectation for new accelerator development. An updated version of the Livingston chart demonstrates the exponential growth in time of the equivalent laboratory energy of accelerators. A similar Livingston chart pertaining only to electron-positron colliders shows an exponential growth but in the past only one technology - electron-positron storage rings - have been responsible for this development. The question addressed is whether the type of exponential growth reflected by these two charts can be sustained in the future

  18. Mechanical Design of Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, F [Madrid, CIEMAT (Spain)

    2014-07-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  19. Heavy ion medical accelerator in chiba

    International Nuclear Information System (INIS)

    Hirao, Y.; Ogawa, H.; Yamada, S.

    1992-12-01

    The HIMAC (Heavy Ion Medical Accelerator in Chiba) construction project has been promoted by NIRS (National Institute of Radiological Sciences) as one of the projects of 'Comprehensive 10 year Strategy for Cancer Control' HIMAC is the first heavy-ion accelerator dedicated to medicine in the world, and its design parameters are based on the radiological requirements. It consists of two types of ion sources, an RFQ and an Alvarez linacs, dual synchrotron rings, high energy beam transport lines, and irradiation facilities for treatment and experiments. This report mainly describes the outline of the structure and performance of each HIMAC subsystem. (J.P.N.)

  20. A linear accelerator for simulated micrometeors.

    Science.gov (United States)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  1. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  2. Relativity and accelerator engineering

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-09-01

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  3. Menopause accelerates biological aging

    Science.gov (United States)

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  4. Relativity and accelerator engineering

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Schenefeld (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  5. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  6. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  7. Proceeding of the 11th meeting on linear accelerators

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Anami, Shozo; Takasaki, Eiichi

    1986-08-01

    The study group on linear accelerators has attained the period of 10 years. The worldwide change of social structure and economical condition during this period affected also linear accelerators. For a while, the new installation of linear accelerators was limited to Japan and China, and the state of standstill continued in Europe and America. Therefore, the large scale projects of electron-positron collision type accelerators started, and LEP of CERN and HERA of DESY in Europe and Linear Collider of SLAC in USA compete the lead together with TRISTAN in Japan. Large electron rings have become the type connecting CW linear accelerators with electromagnets in circular form unlike the conventional type. The developed type of superconducting CW linacs such as CEBAF in USA is planned. In the large accelerators hereafter of CW or pulse type, the RF system of high accuracy and large power output is the key to the success of projects, instead of individual accelerating spaces, high frequency sources, waveguides or controls. When the scale of projects exceeds a certain limit, those cannot be dealt with merely by the experience and means in the past. In this book, the gists of 62 presented papers and invited lectures are collected. (Kako, I.)

  8. Quality assurance procedure for an industrial radiography linear accelerator

    International Nuclear Information System (INIS)

    Vishwakarma, R.R.; Kannan, R.; Yadav, R.K.

    2001-01-01

    Any radiation generating equipment can be marketed and used in India, only after obtaining specific type approval from the Competent Authority i.e. Chairman, Atomic Energy Regulatory Board (AERB). Generally linear accelerators are allowed to be used in the country based on the type approval issued by the regulatory authority of the country of its origin. So type approval of imported linear accelerators do not involve many parameters to be tested in our country. However for an indigenous accelerator, test procedures are to be defined and the same are to be followed during type approval process. No such protocol is available for linear accelerators used in industrial radiography. Recently some Indian manufacturers have started manufacturing and supplying such accelerators. A need for developing an indigenous protocol for type approval/NOC of such accelerators has arisen and the same has been developed. Various requirements for such protocol are discussed in this paper. Measurements have been performed on one of the 4 MV indigenous unit. Results of such measurements are also presented. Need for a regular periodic quality assurance program is necessary for imported as well as indigenous accelerators. A program for such quality assurance is also listed in the paper. (author)

  9. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  10. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  11. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  12. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  13. High average power linear induction accelerator development

    International Nuclear Information System (INIS)

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  14. Accelerator operation in 1995-1996

    International Nuclear Information System (INIS)

    Loyer, F.

    1998-01-01

    This report presents the operation of the GANIL accelerator between 1995 and 1996. A table is given in which the time distribution of the accelerator operation in the two years is indicated as: beam availability, time devoted to nuclear and non-nuclear physics research, radioactive ion separator operation, industrial irradiation, machine studies and maintenance. A statistics of the accelerated elements and their energy (MeV/u) shows an increase in the number of beam types and new beams from 18 and 9, respectively, in 1995 to 19 and 11 respectively in 1996. The report mentions also the safety incident of June 9, 1995, the failures in operation in 1995-1996 and events connected to SISSI, UGS-R and THI operations

  15. A new electrostatic accelerator: the vivitron

    International Nuclear Information System (INIS)

    1982-07-01

    The 35 MV electrostatic accelerator described in the present document operates according to Van de Graaff tandem type accelerator principles. This new accelerator has appreciable advantages over the classical machines built up to today: 1) reduced radial dimensions, and in consequence, a lower overall cast for identical or even lower limiting electric field values; 2) a significantly reduced stored electrical energy distributed in a homogeneous and better controlled way over the interelectrode space; 3) the use of discrete electrodes rather than classical intermediate screens enabling the advantages of direct electrical vision between the vessel and the high-tension electrode (voltage measurements and regulation by the Corona effect) to be retained. The reduced surface area of these electrodes improving both their characteristics when a voltage is applied and the mechanical behavior of the system; 4) a ''light'' internal structure enabling a horizontal machine to be envisaged [fr

  16. Recent Developments in Hadron Therapy Accelerators

    CERN Document Server

    Klein, Hans-Udo

    2005-01-01

    In the last decade interest and investments in Hadron Therapy Systems have been steadily increasing resulting in a substantial number of projects currently under construction or entering detailed planning stage. Main routes are pure proton therapy systems and Carbon ion therapy systems which can also run on protons. While the basic accelerator concept for hadron therapy systems is well established there are many considerations on the type and layout of the particle delivery system including the accelerator, an energy selection system, either a fixed beam set up or a rotating gantry, the "nozzle" containing either a scattering or a scanning system, the patient positioner, and all associated control systems. The requirements for the accelerator include most stable beams to match the demand of modern fast scanning systems as well as fast switching between treatment rooms. Currently an ion/proton synchrotron, a pure proton synchrotron, a normalconducting proton cyclotron and a newly developed compact superconduct...

  17. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  18. SALOME: An Accelerator for the Practical Course in Accelerator Physics

    OpenAIRE

    Miltchev, Velizar; Riebesehl, Daniel; Roßbach, Jörg; Trunk, Maximilian; Stein, Oliver

    2014-01-01

    SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will ...

  19. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  20. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for ...

  1. Particle acceleration and nonthermal radiation in supernova remnants

    International Nuclear Information System (INIS)

    Zirakashvili, Vladimir

    2013-01-01

    Cosmic ray acceleration and magnetic amplification in shell-type supernova remnants is shortly reviewed. The results on the modeling of broadband electromagnetic emission from supernova remnants are presented and compared with observations.

  2. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  3. Sealed ion accelerator tubes (survey)

    International Nuclear Information System (INIS)

    Voitsik, L.R.

    1985-01-01

    The first publications on developing commercial models of small-scale sealed accelerator tubes in which neutrons are generated appeared in the foreign press in 1954 to 1957; they were very brief and were advertising-oriented. The tubes were designed for neutron logging of oil wells instead of ampule neutron sources (Po + Be, Ra + Be). Later, instruments of this type began to be called neutron tubes from the resulting neutron radiation that they gave off. In Soviet Union a neutron tube was developed in 1958 in connection with the development of the pulsed neutron-neutron method of studying the geological profile of oil wells. At that time the tube developed was intended, in the view of its inventors, to replace standard isotope sources with constant neutron yield. A fairly detailed survey of neutron tubes was made in the studies. 8 refs., 8 figs

  4. Accelerating the life of transistors

    International Nuclear Information System (INIS)

    Qi Haochun; Lü Changzhi; Zhang Xiaoling; Xie Xuesong

    2013-01-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 10 4 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 10 3 . Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation. (semiconductor devices)

  5. Technology and applications of electron accelerator

    International Nuclear Information System (INIS)

    Natsir, M.

    1998-01-01

    Technology of electron accelerator have been developed so fast in advanced countries. It was applied in the research and development (R and D) and comercially in various industries. The industries applying electron accelerator includes polymers industry, sterilization of medical tools, material surface modification, and environmental management. The radiation process using electron beam is an ionization radiation process. Two facilities of electron accelerator have been established in pilot scale at the Centre for the Application of Isotope and Radiation CAIR-BATAN, Jakarta, for the RandD of radiation process technology and in demonstrating the electron accelerator application in industry in Indonesia. The first has low energy specification of 300 keV, 50 mA, EPS-300 type and the second has medium energy specification of 2 MeV, 10 mA dynamitron model GJ-2 type. Both the electron accelerators have an electron penetration depth capability of 0.6 and 12 mm, respectively, for the double side irradiation in the materials with density of 1 g/cm 3 . They also highly capacity production and electron beam cross-section of 120 cm length and 10 cm width. The beam will go through the atmosphere for irradiation samples or industrial products. The radiation dose can be selected precisely by adjusting the electron beam current and conveyor speed. Both of these facilities were applied in many aspects RandD, for examples dosimetry, wood surface coating, cross-linking of polymer, heatshrincable tube, polymer grafting, plastic degradation, food preservation, sterilization and so on. Engineering factors of radiation design process and general observation of electron accelerator application in RandD for various industries in Indonesia are briefly discussed

  6. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  7. Analysis of beam acceleration and instability on TWRR accelerator structure in PNC by beam-cavity interaction

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-07-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up (BBU). The CW electron linac is designed in order to study BBU experimentally. The design is primary on the consideration which type of accelerator structure is suitable to reduce the BBU threshold, and how to observe and control BBU when it appears. The contribution of beam charge for the acceleration characteristics is surveyed by means of the comparison between traveling wave and standing wave structures in this report. At first, the characteristics of both traveling wave and standing wave structures are calculated analytically and the conversion efficiency and accelerator gain are presented. The merits and drawbacks are also mentioned concerning with unit accelerator length. Next, the choice of RF frequency on energy conversion is mentioned as independent matter of the types of accelerator structure. After that, the characteristics of TWRR are described as the advanced accelerator structure compared with above structures. The effect of longitudinal induced field is estimated by means of the loss parameter. The result from the analysis shows that the unit accelerator length is 1 m to get high conversion ratio from RF to beam power and that the BBU for transverse component is small. Therefore, total BBU is expected small in the accelerator, for transverse BBU is already expected small in previous reports. (author)

  8. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  9. The laser accelerator-another unicorn in the garden

    International Nuclear Information System (INIS)

    Hand, L.N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for ''grating-type'' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a ''multi-pass collider'', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range. (author)

  10. Use of the calorimeter in the dosimetry for electron accelerators

    International Nuclear Information System (INIS)

    Chavez B, A.

    1991-02-01

    The measure of different radiation types, with specific dosemeters, requires that the absorbed dose should be measured with accuracy by some common standard. The existent problem around the dosimetry of accelerated electrons has forced to the development of diverse detector types that after having analyzed the characteristics; dependability and reproducibility are used as dosemeters. Recently the calorimeters have been developed, with the purpose of carrying out dosimetry for electron accelerators. The RISO laboratory in Denmark, in it 10 MeV accelerator had been used for the dosimetry those water calorimeters, later on, using the principle of the water calorimeter, it was designing one similar, for the accelerator of 400 keV. Recently manufactured simple calorimeters of graphite have been used, which can be used in both accelerators of 10 MeV and 400 keV. (Author)

  11. The laser accelerator-another unicorn in the garden

    Science.gov (United States)

    Hand, L. N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.

  12. CAS CERN Accelerator School vacuum technology. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1999-01-01

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  13. A LEGO paradigm for virtual accelerator concept

    International Nuclear Information System (INIS)

    Andrianov, S.; Ivanov, A.; Podzyvalov, E.

    2012-01-01

    The paper considers basic features of a Virtual Accelerator concept based on LEGO paradigm. This concept involves three types of components: different mathematical models for accelerator design problems, integrated beam simulation packages (i. e. COSY, MAD, OptiM and others), and a special class of virtual feedback instruments similar to real control systems (EPICS). All of these components should inter-operate for more complete analysis of control systems and increased fault tolerance. The Virtual Accelerator is an information and computing environment which provides a framework for analysis based on these components that can be combined in different ways. Corresponding distributed computing services establish interaction between mathematical models and low level control system. The general idea of the software implementation is based on the Service-Oriented Architecture (SOA) that allows using cloud computing technology and enables remote access to the information and computing resources. The Virtual Accelerator allows a designer to combine powerful instruments for modeling beam dynamics in a friendly way including both self-developed and well-known packages. In the scope of this concept the following is also proposed: the control system identification, analysis and result verification, visualization as well as virtual feedback for beam line operation. The architecture of the Virtual Accelerator system itself and results of beam dynamics studies are presented. (authors)

  14. Results of LIA-10M accelerator investigations

    CERN Document Server

    Gordeev, V S; Filippov, V O

    2001-01-01

    There are presented basic results of experiments on the LIA-10M accelerator since its putting into operation (1994) till today. There were investigated various modes of accelerator operation and its output characteristics depending on the parameters of injected electron beam,number of connected accelerator modules,time program of inductors switch-in etc. There was obtained a large scope of experimental data that are of interest for LIA-10M accelerator practical use and for the development of new facilities of this type. The investigations that have been performed recently make it possible to considerably (half as much again) increase the output dose parameters of the accelerator as compared to the level achieved before:maximal dose(Si) and dose rate on the output flange constitute 400 Gy and 2.5 centre dot 10 Gy/s, while at a 1 meter distance from the target they are equal to 7.5 Gy and 5 centre dot 10 sup 8 Gy/s, respectively.

  15. Adaptive control for accelerators

    International Nuclear Information System (INIS)

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity

  16. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is being used to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. The goal is to produce a 24 MeV, 50 mA device with a 2% duty factor. Specific features of the GTA -- injector, beam optics, rf linac structures, diagnostics, control and rf power systems are described. The first four steps in commissioning have been completed. The RFQ predicted and measured performances are in good agreement; however, the transmission is lower than specifications. Input emittance is larger than design specifications and increases the effects of image charge and multipoles. Displacement of steering magnets in either the horizontal or vertical plane caused beam displacements in both planes. It is suspected that quadrupole rotation is the cause of the coupled motion. 9 figs., 5 tabs., 11 refs

  17. Accelerator research studies

    International Nuclear Information System (INIS)

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  18. Adaptive control for accelerators

    Science.gov (United States)

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  19. Accelerator research studies

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  20. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here