WorldWideScience

Sample records for accelerator-based facility design

  1. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  2. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  3. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  5. CEBAF [Continuous Electron Beam Accelerator Facility] design report

    International Nuclear Information System (INIS)

    1986-05-01

    This book describes the conceptual design of, and the planning for, the Continuous Electron Beam Accelerator Facility (CEBAF), which will be a high-intensity, continuous-wave electron linear accelerator (linac) for nuclear physics. Its principal scientific goal is to understand the quark structure, behavior, and clustering of individual nucleons in the nuclear medium, and simultaneously to understand the forces governing this behavior. The linac will consist of 1 GeV of accelerating structure, split into two antiparallel 0.5-GeV segments. The segments will be connected by a beam transport system to circulate the electron beams from one segment to the other for up to four complete passes of acceleration. The maximum beam energy will be 4 GeV at a design current of 200 microamperes. The accelerator complex will also include systems to extract three continuous beams from the linac and to deliver them to three experimental halls equipped with detectors and instrumentation for nuclear physics research. The accelerating structure will be kept superconducting within insulated cryostats filled with liquid helium produced at a central helium refrigerator and distributed to the cryostats via insulated transfer lines. An injector, instrumentation and controls for the accelerator, radio-frequency power systems, and several support facilities will also be provided. A cost estimate based on the Work Breakdown Structure has been completed. Assuming a five-year construction schedule starting early in FY 1987, the total estimated cost is $236 million (actual year dollars), including contingency

  6. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  7. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  8. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  9. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  10. Qt based control system software for Low Energy Accelerator Facility

    International Nuclear Information System (INIS)

    Basu, A.; Singh, S.; Nagraju, S.B.V.; Gupta, S.; Singh, P.

    2012-01-01

    Qt based control system software for Low Energy Accelerating Facility (LEAF) is operational at Bhabha Atomic Research Centre (BARC), Trombay, Mumbai. LEAF is a 50 keV negative ion electrostatic accelerator based on SNICS ion source. Control system uses Nokia Trolltech's QT 4.x API for control system software. Ni 6008 USB based multifunction cards has been used for control and read back field equipments such as power supplies, pumps, valves etc. Control system architecture is designed to be client server. Qt is chosen for its excellent GUI capability and platform independent nature. Control system follows client server architecture. The paper will describe the control system. (author)

  11. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program

  12. Accelerator conceptual design of the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, M.; Kinsho, M.; Teplyakov, V.; Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J.; Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K.; Miyahara, A.; Olivier, M.; Piechowiak, E.; Tanabe, Y.

    1998-01-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.)

  13. Operation of the Brookhaven national laboratory accelerator test facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; Van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program. (Author) 5 refs., 4 figs., tab

  14. Results of the RAMI analyses performed for the IFMIF accelerator facility in the engineering design phase

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo@esss.se [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier; Dies, Javier; De Blas, Alfredo; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Moya, Joaquin; Ibarra, Angel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • RAMI methodology used for IFMIF accelerator facility is presented. • Availability analyses and results are shown. • Main accelerator design changes are proposed. • Consequences and conclusions of the RAMI analyses are described. - Abstract: This paper presents a summary of the RAMI (Reliability Availability Maintainability Inspectability) analyses done for the IFMIF (International Fusion Materials Irradiation Facility) Accelerator facility in the Engineering Design Phase. The methodology followed, the analyses performed, the results obtained and the conclusions drawn are described. Moreover, the consequences of the incorporation of the RAMI studies in the IFMIF design are presented and the main outcomes of these analyses are shown.

  15. Results of the RAMI analyses performed for the IFMIF accelerator facility in the engineering design phase

    International Nuclear Information System (INIS)

    Bargalló, Enric; Arroyo, Jose Manuel; Abal, Javier; Dies, Javier; De Blas, Alfredo; Tapia, Carlos; Moya, Joaquin; Ibarra, Angel

    2015-01-01

    Highlights: • RAMI methodology used for IFMIF accelerator facility is presented. • Availability analyses and results are shown. • Main accelerator design changes are proposed. • Consequences and conclusions of the RAMI analyses are described. - Abstract: This paper presents a summary of the RAMI (Reliability Availability Maintainability Inspectability) analyses done for the IFMIF (International Fusion Materials Irradiation Facility) Accelerator facility in the Engineering Design Phase. The methodology followed, the analyses performed, the results obtained and the conclusions drawn are described. Moreover, the consequences of the incorporation of the RAMI studies in the IFMIF design are presented and the main outcomes of these analyses are shown.

  16. Accelerator conceptual design of the international fusion materials irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Kinsho, M. [Japan Atomic Energy Res. Inst., Tokai, Ibaraki (Japan). Intense Neutron Source Lab.; Jameson, R.A.; Blind, B. [Los Alamos National Lab., NM (United States); Teplyakov, V. [Institute for High Energy Physics, Moscow (Russian Federation); Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J. [Northrop Grumman Corp., Bethpage, NY (United States); Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K. [Johann Wolfgang Goethe Univ., Frankfurt (Germany). Inst. fur Angewandte Phys.; Ferdinand, R.; Lagniel, J.-M. [CEA Saclay LNS, Gif-sur-Yvette (France); Miyahara, A. [Teikyo Univ., Tokyo (Japan); Olivier, M. [CEA DSM, Saclay, Gif-sur-Yvette (France); Piechowiak, E. [Northrop Grumman Corp., Baltimore, MD (United States); Tanabe, Y. [Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    1998-10-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.) 8 refs.

  17. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  18. Proceedings of the Advanced Hadron Facility accelerator design workshop

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1989-01-01

    The International Workshop on Hadron Facility Technology was held February 22-27, 1988, at the Study Center at Los Alamos National Laboratory. The program included papers on facility plans, beam dynamics, and accelerator hardware. The parallel sessions were particularly lively with discussions of all facets of kaon factory design. The workshop provided an opportunity for communication among the staff involved in hadron facility planning from all the study groups presently active. The recommendations of the workshop include: the need to use h=1 RF in the compressor ring; the need to minimize foil hits in painting schemes for all rings; the need to consider single Coulomb scattering in injection beam los calculations; the need to study the effect of field inhomogeneity in the magnets on slow extraction for the 2.2 Tesla main ring of AHF; and agreement in principle with the design proposed for a joint Los Alamos/TRIUMF prototype main ring RF cavity

  19. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  20. CEBAF [Continuous Electron Beam Accelerator Facility] design overview and project status

    International Nuclear Information System (INIS)

    Leemann, C.

    1988-01-01

    This paper discusses the design and specifications of the Continuous Electron Beam Accelerator Facility. Beam performance objectives are discussed, as well as the recirculating linac concept, the injector, cavities, cryogenic system, beam transport and optics, rf system and construction progress. 19 refs., 10 figs

  1. A design of 3 GeV CW electron accelerator facility

    International Nuclear Information System (INIS)

    Boldyshev, V.F.; Vishnyakov, V.A.; Gladkikh, P.N.

    1987-01-01

    A further progress of high-energy nuclear physics is related to the possibility of obtaining continuous intense polarized beams of 2-4 GeV electrons and gamma-quanta with low emittance and energy spread. A design of the accelerator facility proposed for these purposes is briefly outlined in this report. The design is based on the upgrading of the 2 GeV Kharkov electron linac (ELA) and the construction of a stretcher ring (SR) at its termination. Operation in the beam storage mode is intended also for nuclear physics experiments using internal targets and for producing synchrotron radiation. Reported are general characteristics of the ELA-SR complex, and the results of numerical computer simulation of a slow beam extraction at the third-order resonance of horizontal free oscillations with due regard for the radiation and synchronous oscillations

  2. Development of an accelerator-based BNCT facility at the Berkeley Lab

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

    1998-01-01

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7 Li(p,n) 7 Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  3. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  4. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  5. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  6. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  7. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  8. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  9. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  10. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  11. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  12. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  13. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    International Nuclear Information System (INIS)

    Amann, J.; Bane, K.

    2009-01-01

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  14. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  15. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  16. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    Science.gov (United States)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  17. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  18. The Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Grunder, H.A.; Bisognano, J.J.; Diamond, W.I.; Hartline, B.K.; Leemann, C.W.; Mougey, J.; Sundelin, R.M.; York, R.C.

    1987-01-01

    On February 13, 1987, construction started on the Continuous Electron Beam Accelerator Facility - a 4-GeV, 200-μA, continuous beam, electron accelerator facility designed for nuclear physics research. The machine has a racetrack configuration with two antiparallel, 500-MeV, superconducting linac segments connected by beam lines to allow four passes of recirculation. The accelerating structure consists of 1500-MHz, five-cell niobium cavities developed at Cornell University. A liquid helium cryogenic system cools the cavities to an operating temperature of 2 K. Beam extraction after any three of the four passes allows simultaneous delivery of up to three beams of independently variable currents and different, but correlated, energies to the three experimental areas. Beam breakup thresholds exceed the design current by nearly two orders of magnitude. Project completion and the start of physics operations are scheduled for 1993. The total estimated cost is $255 million

  19. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1990-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  20. IFMIF accelerator conceptual design activities

    International Nuclear Information System (INIS)

    Jameson, R.A.; Lagniel, J.M.; Sugimoto, M.; Kein, H.; Piaszczyk, C.; Tiplyakov, V.

    1998-01-01

    A Conceptual Design Evaluation (CDE) for the International Fusion Materials Irradiation Facility (IFMIF) began in 1997 and will be completed in 1998, as an international program of the IEA involving the European Community, Japan, Russia and the United States. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators operating at 175 MHz, is a key element of the IFMIF facility. The objectives and accomplishments of the CDE accelerator studies are outlined

  1. Hot target assembly at 14 UD Pelletron Accelerator Facility, BARC- TIFR, Mumbai

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ramjilal; Ninawe, N.G.; Bhagwat, P.V.; Ahmeabadhai, P.; Kain, V.

    2005-01-01

    BARC-TIFR 14 UD Pelletron Accelerator Facility at Mumbai is operational since 1989 with progressively increased efficiency. The accelerator has been serving as major facility for heavy ion based research in India. There is an increased demand for high current proton beam, especially on heated targets for reactor physics based experiments. A proton beam setup is commissioned in the tower area of the existing facility itself, which provide proton beam of energy 2 MeV to 26 MeV with maximum 3 μA current. This setup is being used to produce radioisotopes and tracer packets. Proton beam of few MeV in μA current range is also needed to study radiation effects on metals at higher temperature, for use in reactors. For this purpose a hot target assembly has been designed and is being currently used at the Pelletron Accelerator

  2. Accelerator based research facility as an inter university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1995-01-01

    15 UD pelletron has been operating as a user facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic Nuclear Physics, Materials Science, Atomic Physics, Radiobiology and Radiation Chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonator is being developed in Argonne National Laboratory as a joint collaborative effort. All other things such as cryostats, rf instrumentation, cryogenic distribution system, computer control etc are being done indigenously. Research facilities, augmentation plans and the research being conducted by the universities in various disciplines are described. (author)

  3. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  4. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S.; McDonald, K.T.; Russell, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO 2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  5. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  6. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Evans, J.F.; Blue, T.E.

    1996-01-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h -1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  7. The continuous electron beam accelerator facility

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Tunnel construction and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. Prototype accelerating cavities, assembled in cryostats and tested on site, continue to exceed performance specifications. An on-site liquid helium capability supports cryostat development and cavity testing. Major elements of the accelerator instrumentation and control hardware and software are in use in cryogenics, rf, and injector tests. Prototype rf systems have been operated and prototype klystrons have been ordered. The initial, 100-keV, room-temperature region of the 45-MeV injector is operational and meets specifications. CEBAF's end stations have been conceptually designed; experimental equipment conceptual designs will be completed in 1989. 2 refs., 5 figs., 2 tabs

  8. Required performance to the concrete structure of the accelerator facilities

    International Nuclear Information System (INIS)

    Irie, Masaaki; Yoshioka, Masakazu; Miyahara, Masanobu

    2006-01-01

    As for the accelerator facility, there is many a thing which is constructed as underground concrete structure from viewpoint such as cover of radiation and stability of the structure. Required performance to the concrete structure of the accelerator facility is the same as the general social infrastructure, but it has been possessed the feature where target performance differs largely. As for the body sentence, expressing the difference of the performance which is required from the concrete structure of the social infrastructure and the accelerator facility, construction management of the concrete structure which it plans from order of the accelerator engineering works facility, reaches to the design, supervision and operation it is something which expresses the method of thinking. In addition, in the future of material structural analysis of the concrete which uses the neutron accelerator concerning view it showed. (author)

  9. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  10. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  11. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Science.gov (United States)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  12. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  13. Future directions of accelerator-based NP and HEP facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  14. Hardware availability calculations and results of the IFMIF accelerator facility

    International Nuclear Information System (INIS)

    Bargalló, Enric; Arroyo, Jose Manuel; Abal, Javier; Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne; Weber, Moisés; Podadera, Ivan; Grespan, Francesco; Fagotti, Enrico; De Blas, Alfredo; Dies, Javier; Tapia, Carlos; Mollá, Joaquín; Ibarra, Ángel

    2014-01-01

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design

  15. Hardware availability calculations and results of the IFMIF accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne [Commissariat à l’Energie Atomique, Saclay (France); Weber, Moisés; Podadera, Ivan [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Grespan, Francesco; Fagotti, Enrico [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design.

  16. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  17. Reliability Considerations for the Operation of Large Accelerator User Facilities

    CERN Document Server

    Willeke, F.J.

    2016-01-01

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. The article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  18. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Bergueiro, J.; Igarzabal, M.; Suarez Sandin, J.C.; Somacal, H.R.; Thatar Vento, V.; Huck, H.; Valda, A.A.; Repetto, M.

    2011-01-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  19. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  20. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pkb@iuac.res.in [Inter-University Accelerator Center (IUAC), New Delhi (India); Chopra, S. [Inter-University Accelerator Center (IUAC), New Delhi (India); Pattanaik, J.K. [Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, WB (India); Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D. [Inter-University Accelerator Center (IUAC), New Delhi (India)

    2015-10-15

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for {sup 10}Be and {sup 26}Al with all the modern facilities has also been developed for the chemical processing of samples. {sup 10}Be measurements on sediment samples, inter laboratory comparison results and {sup 26}Al measurements on standard samples are presented in this paper. In addition to the {sup 10}Be and {sup 26}Al AMS facilities, a new {sup 14}C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  1. Lessons learned from designing and commissioning a versatile data acquisiting system for an accelerator development facility

    International Nuclear Information System (INIS)

    Langlais, C.E.; Watkins, L.M.; Caissie, L.P.; Wachsmann, W.J.; Andison, C.E.

    1977-01-01

    Achieving reliable operation of digital equipment under extreme noise conditions presents special challenges to system designers. Experience with the design and operation of a data acquisition and control system for an accelerator development facility at the Chalk River Nuclear Laboratories is reviewed. It is concluded that, by adhering to a few rules in developing both the hardware and the software, satisfactory performance can be guaranteed. Methods of producing a reliable design are presented

  2. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  3. Clearance of materials from accelerator facilities

    Directory of Open Access Journals (Sweden)

    Rokni Sayed H.

    2017-01-01

    Full Text Available A new Technical Standard that supports the clearance of materials and equipment (personal property from U.S. Department of Energy (DOE accelerator facilities has been developed. The Standard focuses on personal property that has the potential to be radiologically impacted by accelerator operations. It addresses material clearance programs and protocols for off-site releases without restriction on use. Common metals with potential volumetric activation are of main interest with technical bases provided in Appendices of the Standard. The clearance protocols in the Standard include three elements: 1 clearance criteria, 2 process knowledge, and 3 measurement methods. This paper presents the technical aspects of the new Standard, discusses operational experience gained in clearance of materials and equipment from several accelerator facilities at SLAC and examples as to how this Standard can be applied to benefit the entirety of the DOE Accelerator Complex.

  4. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  5. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Pelletron ion accelerator facilities at Inter University Accelerator Centre

    International Nuclear Information System (INIS)

    Chopra, S.

    2011-01-01

    Inter University Accelerator Centre has two tandem ion accelerators, 15UD Pelletron and 5SDH-2 Pelletron, for use in different areas of research. Recently Accelerator Mass Spectrometry facility has also been added to to the existing experimental facilities of 15UD Pelletron. In these years many modifications and up gradations have been performed to 15UD Pelletron facility. A new MCSNICS ion source has been procured to produce high currents for AMS program. Two foils stripper assemblies ,one each before and after analyzing magnet, have also been added for producing higher charge state beams for LINAC and for experiments requiring higher charge states of accelerated beams. A new 1.7 MV Pelletron facility has also been recently installed at IUAC and it is equipped with RBS and Channelling experimental facility. There are two beam lines installed in the system and five more beam lines can be added to the system. A clean chemistry laboratory with all the modern facilities has also been developed at IUAC for the chemical processing of samples prior to the AMS measurements. The operational description of the Pelletron facilities, chemical processing of samples, methods of measurements and results of AMS measurements are being presented. (author)

  7. New heavy-ion accelerator facility at Oak Ridge

    International Nuclear Information System (INIS)

    Stelson, P.H.

    1974-01-01

    Funds were obtained to establish a new national heavy-ion facility to be located at Oak Ridge. The principal component of this facility is a 25-MW tandem designed specifically for good heavy-ion acceleration, which will provide high quality beams of medium weight ions for nuclear research by itself. The tandem beams will also be injected into ORIC for additional energy gain, so that usable beams for nuclear physics research can be extended to about A = 160. A notable feature of the tandem is that it will be of the ''folded'' type, in which both the negative and positive accelerating tubes are contained in the same column. The accelerator system, the experimental lay-out, and the time schedule for the project are discussed

  8. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  9. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  10. CERN Heavy-Ion Facility design report

    International Nuclear Information System (INIS)

    Warner, D.; Angert, N.; Bourgarel, M.P.; Brouzet, E.; Cappi, R.; Dekkers, D.; Evans, J.; Gelato, G.; Haseroth, H.; Hill, C.E.; Hutter, G.; Knott, J.; Kugler, H.; Lombardi, A.; Lustig, H.; Malwitz, E.; Nitsch, F.; Parisi, G.; Pisent, A.; Raich, U.; Ratzinger, U.; Riccati, L.; Schempp, A.; Schindl, K.; Schoenauer, H.; Tetu, P.; Umstaetter, H.H.; Rooij, M. van; Weiss, M.

    1993-01-01

    The design of the CERN Heavy-Ion Facility is described. This facility will be based on a new ion linear accelerator (Linac 3), together with improvements to the other accelerators of the CERN complex to allow them to cope with heavy ions, i.e. to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). For this reference design, the pure isotope of lead, 208 Pb, is considered. The bulk of the report describes Linac 3, a purpose-built heavy-ion linac mainly designed and constructed in collaboration with several CERN member state laboratories, but also with contributions from non-member states. Modifications and improvements to existing CERN accelerators essentially concern the RF acceleration, beam control and beam monitoring (all machines), beam kickers and septa at the input and output of the PSB, and major vacuum improvements, aiming to reduce the pressure by factors of at least seven and three in the PSB and PS respectively. After injection from the Electron Cyclotron Resonance source at 2.5 keV/u the partially stripped heavy-ion beam is accelerated successively by a Radio Frequency Quadrupole and an Interdigital-H linac to 4.2 MeV/u. After stripping to 208 Pb 53+ , the beam is again accelerated, firstly in the PSB (to 98.5 MeV/u), then in the PS (to 4.25 GeV/u). The final stage of acceleration in the SPS takes the fully stripped 208 Pb 82+ ions to 177 GeV/u, delivering a beam of 4.10 8 ions per SPS supercycle (15.2 s) to the experiments. The first physics run with lead ions is scheduled for the end of 1994. Finally, some requirements for carrying out heavy-ion physics at the Large Hadron Collider are mentioned. (orig.)

  11. KIPT accelerator-driven system design and performance

    International Nuclear Information System (INIS)

    Gohar, Y.; Bolshinsky, I.; Karnaukhov, I.

    2015-01-01

    Argonne National Laboratory (ANL) of the US is collaborating with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine to develop and construct a neutron source facility. The facility is planned to produce medical isotopes, train young nuclear professionals, support Ukraine's nuclear industry and provide capability to perform reactor physics, material research, and basic science experiments. It consists of a subcritical assembly with low-enriched uranium fuel driven with an electron accelerator. The target design utilises tungsten or natural uranium for neutron production through photonuclear reactions from the Bremsstrahlung radiation generated by 100-MeV electrons. The accelerator electron beam power is 100 KW. The neutron source intensity, spectrum, and spatial distribution have been studied as a function of the electron beam parameters to maximise the neutron yield and satisfy different engineering requirements. Physics, thermal-hydraulics, and thermal-stress analyses were performed and iterated to maximise the neutron source strength and to minimise the maximum temperature and the thermal stress in the target materials. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with an effective neutron multiplication factor of <0.98. Different fuel and reflector materials are considered for the subcritical assembly design. The mechanical design of the facility has been developed to maximise its utility and minimise the time for replacing the target, fuel, and irradiation cassettes by using simple and efficient procedures. Shielding analyses were performed to define the dose map around the facility during operation as a function of the heavy concrete shield thickness. Safety, reliability and environmental considerations are included in the facility design. The facility is configured to accommodate future design upgrades and new missions. In addition, it has unique features relative to the other international

  12. Performance of the Argonne Wakefield Accelerator Facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator facility has begun its experimental program. It is designed to address advanced acceleration research requiring very short, intense electron bunches. It incorporates two photocathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. This paper discusses commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator

  13. The SARAF Project - Soreq Applied Research Accelerator Facility

    International Nuclear Information System (INIS)

    Nagler, A.; Mardor, I.; Berkovits, D.; Piel, C.

    2004-01-01

    The relevance of particle accelerators to society, in the use of their primary and secondary beams for the analysis of physical, chemical and biological samples and for modification of properties of materials, is well recognized and documented. Nevertheless, apart of the construction of small accelerators for nuclear research in the 1960's and 70's, Israel has so far neglected this important and growing field. Furthermore, there is an urgent need in Israel for a state of the art research facility to attract and introduce students to current advanced physics techniques and technologies and to train the next generation of experimental scientists in various branches and disciplines. Therefore, Soreq NRC recently initiated the establishment of a new accelerator facility, named SARAF Soreq Applied Research Accelerator Facility. SARAF will be a continuous wave (CW), proton and deuteron RF superconducting linear accelerator with variable energy (5 - 40 MeV) and current (0.04 -2 mA). SARAF is designed to enable hands-on maintenance, which means that its beam loss will be below 10 -5 for the entire accelerator. These specifications will place SARAF in line with the next generation of accelerators world wide. Soreq expects that this fact will attract the Israeli and international research communities to use this facility extensively. Soreq NRC intends to use SARAF for basic, medical and biological research, and non-destructive testing (NDT). Another major activity will be the research and development of radio-isotopes production techniques. Given the availability of high current (up to 2 mA) protons and deuterons, a major activity will be research and development of high power density (up to 80 kW on a few cm 2 ) irradiation targets

  14. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993

  15. The ANTARES accelerator: a facility for environmental monitoring and materials characterisation

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    An analytical facility for Accelerator Mass Spectrometry (AMS) and Ion Beam Analysis (IBA) has been under development since 1989 on the 8-MV tandem accelerator ANTARES at the Lucas Heights Science and Technology Centre. Three beamlines are presently dedicated to the AMS analysis of long-lived radionuclides and one is used for the study of multilayered semiconductor structures by heavy ion recoil spectrometry. Having accomplished the task of transforming the old nuclear physics accelerator from Rutgers University into a world-class analytical facility, ANSTO scientists are now promoting research projects based on the capability of the ANTARES instruments. New instruments are being constructed on the ANTARES accelerator for future programs in environmental monitoring, safeguards, nuclear waste disposal and applications in advanced materials. A new AMS beamline has been designed that is expected to be capable of measuring rare heavy radionuclides, such as 236 U, 229 , 230T h and 244 Pu, in natural samples with ultra-high sensitivity. A novel, heavy ion microprobe will allow IBA of surfaces with a spatial resolution of 10 μm for high-energy ions (20-100 MeV) from chlorine to iodine. These instruments are complementary to other advanced analytical tools developed by ANSTO, such as the synchrotron radiation beamline at the Australian National Beamline Facility

  16. A 1MeV, 1A negative ion accelerator test facility

    International Nuclear Information System (INIS)

    Hanada, M.; Dairaku, M.; Inoue, T.; Miyamoto, K.; Ohara, Y.; Okumura, Y.; Watanabe, K.; Yokoyama, K.

    1995-01-01

    For the Proof-of-Principle test of negative ion acceleration up to 1 MeV, the beam energy required for ITER, a negative ion test facility named MeV Test Facility (MTF) and an ion source/accelerator have been designed and constructed. They are designed to produce a 1 MeV H- beam at a low source pressure of 0.13Pa. The MTF has a power supply system, which constituts of a 1MV, 1A, 60 s Cockcroft-Walton type dc high energy generator and power supplies for negative ion generation and extraction (ion source power supplies). The negative ion source/accelerator is composed of a cesiated volume source and a 5-stage, multi-aperture, electrostatic accelerator. The MTF and the ion source/accelerator have been completed, and the accelertion test up to 1 MeV of the H- ions has started. (orig.)

  17. Linear accelerator for production of tritium: Physics design challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Lawrence, G.P.; Bhatia, T.S.; Billen, J.H.; Chan, K.C.D.; Garnett, R.W.; Guy, F.W.; Liska, D.; Nath, S.; Neuschaefer, G.; Shubaly, M.

    1990-01-01

    In the summer of 1989, a collaboration between Los Alamos National Laboratory and Brookhaven National Laboratory conducted a study to establish a reference design of a facility for accelerator production of tritium (APT). The APT concept is that of a neutron-spallation source, which is based on the use of high-energy protons to bombard lead nuclei, resulting in the production of large quantities of neutrons. Neutrons from the lead are captured by lithium to produce tritium. This paper describes the design of a 1.6-GeV, 250-mA proton cw linear accelerator for APT.

  18. Proposed Brookhaven accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.; Batchelor, K.; Chasman, R.; Rheaume, R.

    1976-01-01

    The d-Li Neutron Source concept, which includes a high-current dueteron linac, is an outgrowth of attempts made to use the BNL, 200-MeV proton linac BLIP facility to do radiation damage studies. It included a 100 mA, 30-MeV deuteron linear accelerator and a fast-flowing liquid lithium jet as the target. The latest design is not very different, except that the current is now 200 mA and the linac energy has been raised to 35 MeV. Both parameters, were changed to optimize the effectiveness of the facility with respect to flux, experimental volume and match to 14 MeV neutron-radiation-damage effects. The proposed Brookhaven Accelerator-based Neutron Generator is described with particular emphasis on the linear accelerator. The proposed facility is a practical and efficient way of producing the intense, high energy neutron beams needed for CTR material studies. The accelerator and liquid-metal technologies are well proven, state-of-the-art technologies. The fact that no new technology is required guarantees the possibility of meeting construction schedules, and more importantly, guarantees a high level of operational reliability

  19. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Castell, W.; Di Paolo, H.; Baldo, M.; Bergueiro, J.

    2011-01-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  20. Architecture and Civil Design Status of the Proton Accelerator Research Center in PEFP

    International Nuclear Information System (INIS)

    Nam, J. M.; Kim, J. Y.; Mun, K. J.; Jeon, G. P.; Cho, J. S.; Lee, S. K.; Min, Y. S.; Joo, H. G.

    2009-01-01

    PEFP (Proton Engineering Frontier Project) is scheduled to administrate the conventional facilities design with Gyeongju and complement its unfit points. When construction work starts according to the construction schedule, a field work office will be installed to supervise the Proton Accelerator Conventional Facilities Construction. In this paper, we describe the geological investigation procedure for the construction of the proton accelerator conventional facilities of PEFP. By the geological investigation, data for the reasonable and economic construction work, such as stratum structure and geotechnical characteristics. In Site Plot Plan for PEFP, we classified center as 2 groups such as main facilities and support facilities. We also designed access road of the Proton Accelerator Research Center of PEFP. In architectural design for PEFP, we described the design procedure of the buildings and landscape architectures of the Proton Accelerator Research Center

  1. Project X: Accelerator Reference Design

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Stephen D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-20

    applications of muon spin rotation techniques provide sensitive probes of the magnetic structure of materials. Goal: Provide MW-class proton beams at 1 GeV, coupled with novel targets required to support a broad range of materials science and energy applications. Platform for Evolution to Future Frontier Facilities: A high-intensity proton source will strengthen and modernize the Fermilab injector complex, providing a robust platform upon which to build future frontier facilities. The Neutrino Factory and Muon Collider are examples that would provide world-leading capabilities at the Intensity and Energy Frontiers for many decades to come. Goal: Provide a straightforward upgrade path for a 4 MW, low-duty-factor source of protons at energies between 5 and 15 GeV. These four elements are expected to form the basis of the Mission Need statement required for the Department of Energy (DOE) Critical Decision 0 (CD-0), and represent the fundamental design criteria for Project X. The following chapters present the Reference Design for the Project X accelerator facility. The Reference Design is based on a continuous wave (CW) superconducting (SC) linac providing up to 1 and 3 MW of beam power at 1 and 3 GeV respectively. A pulsed linac provides acceleration of roughly 4% of the beam delivered from the CW linac to the 8 GeV injection energy of the existing Recycler/Main Injector complex. Upgrades to the Recycler and Main Injector support a factor of three increase, beyond current capabilities, in proton beam power at 60 to 120 GeV. The Reference Design represents a facility that will be unique in the world with unmatched capabilities for the delivery of very high beam power, with flexible beam formats, to multiple users at multiple energies. The utilization of linacs within the Project X facility enables capabilities beyond what is achievable with circular accelerators. It is anticipated that the final configuration and operating parameters of the complex will be further refined through

  2. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Di Paolo, H.; Burlon, A.A.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.

    2009-01-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  3. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    Science.gov (United States)

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  4. Developing a clinical proton accelerator facility: Consortium-assisted technology transfer

    International Nuclear Information System (INIS)

    Slater, J.M.; Miller, D.W.; Slater, J.W.

    1991-01-01

    A hospital-based proton accelerator facility has emerged from the efforts of a consortium of physicists, engineers and physicians from several high-energy physics laboratories, industries and universities, working together to develop the requirements and conceptual design for a clinical program. A variable-energy medical synchrotron for accelerating protons to a prescribed energy, intensity and beam quality, has been placed in a hospital setting at Loma Linda University Medical Center for treating patients with localized cancer. Treatments began in October 1990. Scientists from Fermi National Accelerator Laboratory; Harvard Cyclotron Laboratory; Lawrence Berkeley Laboratories; the Paul Scherrer Institute; Uppsala, Sweden; Argonne, Brookhaven and Los Alamos National Laboratories; and Loma Linda University, all cooperated to produce the conceptual design. Loma Linda University contracted with Fermi National Accelerator Laboratory to design and build a 250 MeV synchrotron and beam transport system, the latter to guide protons into four treatment rooms. Lawrence Berkeley Laboratories consulted with Loma Linda University on the design of the beam delivery system (nozzle). A gantry concept devised by scientists at Harvard Cyclotron Laboratory, was adapted and fabricated by Science Applications International Corporation. The control and safety systems were designed and developed by Loma Linda University Radiation Research Laboratory. Presently, the synchrotron, beam transport system and treatment room hardware have been installed and tested and are operating satisfactorily

  5. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A. [Grumman Research and Development Center, Princeton, NJ (United States)] [and others

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  6. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    International Nuclear Information System (INIS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-01-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities

  7. Accelerator-based research facility of UGC as an inter-university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1994-01-01

    A 15-UD Pelletron has been operating as a users facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic nuclear physics, materials science, atomic physics, radiobiology and radiation chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonators are being developed at Argonne National Laboratory as a joint collaborative effort. All other things such as cryostat, rf-instrumentation, cryogene distribution system, computer control etc. are being done indigenously. Research possibilities are described. (author). 6 refs., 4 figs

  8. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  9. Computing requirements for S.S.C. accelerator design and studies

    International Nuclear Information System (INIS)

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented

  10. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  12. Beam based alignment at the KEK accelerator test facility

    International Nuclear Information System (INIS)

    Ross, M.; Nelson, J.; Woodley, M.; Wolski, A.

    2002-01-01

    The KEK Accelerator Test Facility (ATF) damping ring is a prototype low emittance source for the NLC/JLC linear collider. To achieve the goal normalized vertical emittance gey = 20 nm-rad, magnet placement accuracy better than 30 mm must be achieved. Accurate beam-based alignment (BBA) is required. The ATF arc optics uses a FOBO cell with two horizontally focusing quadrupoles, two sextupoles and a horizontally defocusing gradient dipole, all of which must be aligned with BBA. BBA at ATF uses the quadrupole and sextupole trim windings to find the trajectory through the center of each magnet. The results can be interpreted to assess the accuracy of the mechanical alignment and the beam position monitor offsets

  13. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  14. Evaluation of seismic criteria used in design of INEL facilities

    International Nuclear Information System (INIS)

    Young, G.A.

    1977-01-01

    This report provides the results of an independent evaluation of seismic studies that were made to establish the seismic acceleration levels and the response spectra used in the design of vital facilities at Idaho National Engineering Laboratory. A comparison of the procedures used to define the seismic acceleration values and response spectra at INEL with the requirements of the Nuclear Regulatory Commission showed that additional geologic studies would probably be required in order to fulfill NRC regulations. Recommendations are made on justifiable changes in the acceleration values and response spectra used at INEL. The geologic, geophysical, and seismological studies needed to provide a better understanding of the tectonic processes in the Snake River plains and the surrounding region are identified. Both potential and historical acceleration values are evaluated on a probability basis to permit a risk assessment approach to the design of new facilities and facility modifications. Studies conducted to develop seismic criteria for the design of the Loss of Fluid Test reactor and the New Waste Calcining Facility were selected as typical examples of criteria development previously used in the design of INEL facilities

  15. Radiological Research Accelerator Facility. Progress report, April 1-November 30, 1986

    International Nuclear Information System (INIS)

    1986-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. The experiments run at RARAF are described, and center on neutron dosimetry, mutagenesis, and neutron-induced oncogenic transformations as well as survival of exposed cells. Accelerator utilization, operation, and development of facilities are reviewed

  16. Mechanical engineering and design criteria for the Magnetically Insulated Transmission Experiment Accelerator

    International Nuclear Information System (INIS)

    Staller, G.E.; Hamilton, I.D.; Aker, M.F.; Fifer, H.G.

    1978-02-01

    A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware

  17. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  18. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jin Sam; Lee, Jae Sang

    2008-05-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, audit and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization for adjusting technical issues of overall construction. In this research, We reviewed the basic design and made a detail design of conventional facilities. Preparation for construction license, site improvement and access road construction is fulfilled. Also, we made the technical support for project host as follows : selection of project host organization and host site selection, construction technical work for project host organization and procedure management

  19. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Burlon, A.A.; Di Paolo, H.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J.C.; Castell, W.; Davidson, J.; Davidson, M.; Repetto, M.; Obligado, M.; Nery, J.P.; Huck, H.; Igarzabal, M.; Fernandez Salares, A.

    2008-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  20. Accelerator conceptual design and needs of nuclear data for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Yamanaka, Toshiyuki; Yokobori, Hitoshi

    1999-01-01

    An optimization study has been made on an accelerator-based facility for the boron neutron capture therapy. The energy of the incident proton and the arrangement of the moderator assemblies are optimized. The beam current and the accelerating voltage are determined so that the accelerator power becomes minimum. The proposed facility is equipped with a 2.5 MeV proton accelerator of 10-25 mA, a lithium target, and a heavy water moderator contained in an aluminum tank. Each of these equipment is feasible, if proper R and D works have been done. Our new design requires the beam power of less than a hundred kW for the accelerator, although that of our previous design was 1 MW. The reduction of the beam power makes the cooling system for the target much simpler. The essential issues for realization of this concept are long-life lithium targets under high heat flux and high current proton accelerators with average currents of more than 10 mA. It is necessary for the reasonable design of a small-sized and low cost facility to get good accuracy nuclear reaction data. Especially, the latest Li/Be(p, n) neutron yield data in a range of threshold energy - few MeV are required for exact evaluation of neutron energy spectrum used therapy. And damage data by low energy proton beam are also important to evaluate integrity of target material. (author)

  1. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  2. Design study of prototype accelerator and MeV test facility for demonstration of 1 MeV, 1 A negative ion beam production

    International Nuclear Information System (INIS)

    Inoue, Takashi; Hanada, Masaya; Miyamoto, Kenji; Ohara, Yoshihiro; Okumura, Yoshikazu; Watanabe, Kazuhiro; Maeno, Shuichi.

    1994-08-01

    In fusion reactors such as ITER, a neutral beam injector of MeV class beam energy and several tens MW class power is required as one of candidates of heating and current drive systems. However, the beam energy of existing high power accelerators are one order of magnitude lower than the required value. In order to realize a neutral beam injector for the fusion reactor, 'Proof-of-Principle' of such high energy acceleration is a critical issue at a reactor relevant beam current and pulse length. An accelerator and an accelerator facility which are necessary to demonstrate the Proof-of-Principle acceleration of negative ion beams up to 1 MeV, have been designed in the present study. The accelerator is composed of a cesium-volume type ion source and a multi-stage electrostatic acceleration system [Prototype Accelerator]. A negative hydrogen ion beam with the current of about one ampere (1 A) can be accelerated up to 1 MeV at a low operating pressure. Two types of acceleration system, a multi-multi type and a multi-single type, have been studied. The test facility has sufficient capability for the test of the Prototype Accelerator [MeV Test Facility]. The dc high voltage generator for negative ion acceleration is a Cockcroft-Walton type and capable of delivering 1 A at 1 MV (=1 MW) for 60 s. High voltage components including Prototype Accelerator are installed in a SF 6 vessel pressurized at 6 kg/cm 2 to overcome high voltage gradients. The vessel and the beamline are installed in a X-ray shield. (author)

  3. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  4. Proposed BISOL Facility - a Conceptual Design

    Science.gov (United States)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  5. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jang Hyung; Cho, Sung Won

    2013-01-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works such as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, supervision and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization, Gyeongju city, for adjusting technically interrelated work during construction. In this research, We completed the basic, detail, and field changed design of conventional facilities. Acquisition of necessary construction and atomic license, radiation safety analysis, site improvement, access road construction were successfully done as well. Also, we participated in the project host related work as follows: Project host organization and site selection, construction technical work for project host organization and procedure management, etc. Consequently, we so fulfilled all of the own goals which were set up in the beginning of this construction project that we could made contribution for installing and running PEFP's developed 100MeV 20mA linear accelerator

  6. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  7. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  8. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  9. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  10. Nuclear data for designing the IFMIF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The objective of the International Fusion Materials Irradiation Facility (IFMIF) and the design concept of the IFMIF accelerator system are described. The status of the nuclear data, especially for the deuteron-induced reactions, to qualify the system design is reviewed. The requests for the nuclear data compilation and/or evaluation are summarized. (author)

  11. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  12. Qualitative safety analysis in accelerator based systems

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Chowdhury, Lekha M.

    2006-01-01

    In recent developments connected to high energy and high current accelerators, the accelerator driven systems (ADS) and the Radioactive Ion Beam (RIB) facilities come in the forefront of application. For medical and industrial applications high current accelerators often need to be located in populated areas. These facilities pose significant radiological hazard during their operation and accidental situations. We have done a qualitative evaluation of radiological safety analysis using the probabilistic safety analysis (PSA) methods for accelerator-based systems. The major contribution to hazard comes from a target rupture scenario in both ADS and RIB facilities. Other significant contributors to hazard in the facilities are also discussed using fault tree and event tree methodologies. (author)

  13. A post-accelerator for the US rare isotope accelerator facility

    CERN Document Server

    Ostroumov, P N; Kolomiets, A A; Nolen, J A; Portillo, M; Shepard, K W; Vinogradov, N E

    2003-01-01

    The proposed rare isotope accelerator (RIA) facility includes a post-accelerator for rare isotopes (RIB linac) which must produce high-quality beams of radioactive ions over the full mass range, including uranium, at energies above the Coulomb barrier, and have high transmission and efficiency. The latter requires the RIB linac to accept at injection ions in the 1+ charge state. A concept for such a post accelerator suitable for ions up to mass 132 has been previously described . This paper presents a modified concept which extends the mass range to uranium. A high resolution separator for purifying beams at the isobaric level precedes the RIB linac. The mass filtering process will provide high purity beams while preserving transmission. For most cases a resolution of about m/DELTA m=20 000 is adequate at mass A=100 to obtain a separation between isobars of mass excess difference of 5 MeV. The design for a device capable of purifying beams at the isobaric level includes calculations up to fifth order. The RIB...

  14. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Chechenin, N.G.; Ishkhanov, B.S.; Kulikauskas, V.S.; Novikov, L.S.; Pokhil, G.P.; Romanovskii, E.A.; Shvedunov, V.I.; Spasskii, A.V.

    2004-01-01

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  15. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  16. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  17. Proton-beam window design for a transmutation facility operating with a liquid lead target

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, C.; Lypsch, F.; Lizana, P. [Institute for Safety Research and Reactor Technology, Juelich (Germany)] [and others

    1995-10-01

    The proton beam target of an accelerator-driven transmutation facility can be designed as a vertical liquid lead column. To prevent lead vapor from entering the accelerator vacuum, a proton-beam window has to separate the area above the lead surface from the accelerator tube. Two radiation-cooled design alternatives have been investigated which should withstand a proton beam of 1.6 GeV and 25 mA. Temperature calculations based on energy deposition calculations with the Monte Carlo code HETC, stability analysis and spallation-induced damage calculations have been performed showing the applicability of both designs.

  18. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user's guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented

  19. Discussion on the optimization design on mazes of medical linear accelerator facilities

    International Nuclear Information System (INIS)

    Cao Lei; Zhang Wenyi; Liu Baiqun; Hou Changsong; Zhao Lancai

    2007-01-01

    Objective: To discuss the differences on the design and evaluation between the L-type and Z-type mazes of typical medical electric linear accelerator. Methods: The study is conducted by choosing some typical medical electric linear accelerators used in China, further analyzing on the running conditions of the accelerators in the mode of MV-X-ray, and referring to the late NCRP Report 51 and other references. Results: The radiation levels at the access to therapy room are effectively reduced by Z-type mazes. Conclusions: The Z-type mazes are advisable during the optimization design. (authors)

  20. Present status of TIARA electrostatic accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)

  1. Design of an X-band accelerating structure using a newly developed structural optimization procedure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaoxia [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fang, Wencheng; Gu, Qiang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    An X-band high gradient accelerating structure is a challenging technology for implementation in advanced electron linear accelerator facilities. The present work discusses the design of an X-band accelerating structure for dedicated application to a compact hard X-ray free electron laser facility at the Shanghai Institute of Applied Physics, and numerous design optimizations are conducted with consideration for radio frequency (RF) breakdown, RF efficiency, short-range wakefields, and dipole/quadrupole field modes, to ensure good beam quality and a high accelerating gradient. The designed X-band accelerating structure is a constant gradient structure with a 4π/5 operating mode and input and output dual-feed couplers in a racetrack shape. The design process employs a newly developed effective optimization procedure for optimization of the X-band accelerating structure. In addition, the specific design of couplers providing high beam quality by eliminating dipole field components and reducing quadrupole field components is discussed in detail.

  2. Micro-controller based fiber optic data telemetry system for the ion source of low energy accelerator facility at BARC

    International Nuclear Information System (INIS)

    Padmakumar, Sapna; Ware, Shailaja V.; Subrahmanyam, N.B.V.; Bhatt, J.P.; Singh, S.K.; Gupta, S.K.; Singh, P.; Choudhury, R.K.

    2009-01-01

    The Low Energy Accelerator Facility (LEAF) is a 50 keV, high intensity, negative ion accelerator facility that has been set up indigenously at Nuclear Physics Division, BARC. This facility is capable of delivering a wide range of negative ion beams of both light and heavy ions across the periodic table using a SNICS II (Source of Negative Ion by Caesium Sputtering) source. A micro-controller based control and monitoring system has been developed exclusively for the ion source parameters of LEAF. The data control and monitoring system mainly targets acquiring the data from the field in the terms of parameters such as voltages and currents. There are processes which need to be monitored continuously in order to keep certain parameters under check. The microcontroller based fiber optic data telemetry system allows us to perform the aforesaid task. The voltages can be controlled and monitored by providing the inputs and receiving the feedback through a user friendly graphic user interface. With this system one can control the status as well as analog value of the high voltage power supplies like extractor, cathode, filament, focus line heater and oven. This system consists of Fiber optic transceiver, which is connected on serial port (RS 232C) of microcontroller as well as RS232 port of PC. The whole control system is reliable even in noisy environments including RF and worse EMI conditions. This compact modular design is implemented using low cost devices and allows easy and fast maintainability. In the paper, the details of the system are presented. (author)

  3. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Sureda, Pere Joan [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier; De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • The reason why IFMIF RAMI analyses needs a simulation is explained. • Changes, modifications and software validations done to AvailSim are described. • First IFMIF RAMI results obtained with AvailSim 2.0 are shown. • Implications of AvailSim 2.0 in IFMIF RAMI analyses are evaluated. - Abstract: Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore, some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown.

  4. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    International Nuclear Information System (INIS)

    Bargalló, Enric; Sureda, Pere Joan; Arroyo, Jose Manuel; Abal, Javier; De Blas, Alfredo; Dies, Javier; Tapia, Carlos; Mollá, Joaquín; Ibarra, Ángel

    2014-01-01

    Highlights: • The reason why IFMIF RAMI analyses needs a simulation is explained. • Changes, modifications and software validations done to AvailSim are described. • First IFMIF RAMI results obtained with AvailSim 2.0 are shown. • Implications of AvailSim 2.0 in IFMIF RAMI analyses are evaluated. - Abstract: Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore, some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown

  5. The CSU Accelerator and FEL Facility

    NARCIS (Netherlands)

    Milton, S.V.; Biedron, S.G.; Burleson, T.; Carrico, C.; Edelenbos, J.; Hall, C.; Horovitz, K.; Morin, A.; Rand, L.; Sipahi, N.; Sipahi, T.; van der Slot, P.; Yehudah, H.; Dong, A.; Tanaka, T.; Schaa, V.R.W.

    2013-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode

  6. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  7. The Berkeley Accelerator Space Effects (BASE) Facility - A new mission for the 88-Inch Cyclotron at LBNL

    International Nuclear Information System (INIS)

    McMahan, M.A.

    2005-01-01

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R and D in accelerator technology and a test facility for the National Security Space (NSS) community (the US Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator Space Effects (BASE) Facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 A MeV 'cocktail' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades

  8. Shielding Aspects of Accelerators, Targets and Irradiation Facilities - SATIF-11 Workshop Proceedings Report

    International Nuclear Information System (INIS)

    2013-01-01

    Particle accelerators have evolved over the last decades from simple devices to powerful machines. In recent years, new technological and research applications have helped to define requirements while the number of accelerator facilities in operation, being commissioned, designed or planned has grown significantly. Their parameters, which include the beam energy, currents and intensities, and target composition, can vary widely, giving rise to new radiation shielding issues and challenges. Particle accelerators must be operated in safe ways to protect operators, the public and the environment. As the design and use of these facilities evolve, so must the analytical methods used in the safety analyses. These workshop proceedings review the state of the art in radiation shielding of accelerator facilities and irradiation targets. They also evaluate progress in the development of modelling methods used to assess the effectiveness of such shielding as part of safety analyses. The transport of radiation through shielding materials is a major consideration in the safety design studies of nuclear power plants, and the modelling techniques used may be applied to many other types of scientific and technological facilities. Accelerator and irradiation facilities represent a key capability in R and D, medical and industrial infrastructures, and they can be used in a wide range of scientific, medical and industrial applications. High-energy ion accelerators, for example, are now used not only in fundamental research, such as the search for new super-heavy nuclei, but also for therapy as part of cancer treatment. While the energy of the incident particles on the shielding of these facilities may be much higher than those found in nuclear power plants, much of the physics associated with the behaviour of the secondary particles produced is similar, as are the computer modelling techniques used to quantify key safety design parameters, such as radiation dose and activation levels

  9. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  10. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  11. Accelerator mass spectrometry and associated facilities at Inter-University Accelerator Centre, New Delhi, India

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bohra, Archna; Ojha, S.; Gargari, S.; Joshi, R.; Roonwal, G.S.; Chopra, S.; Pattanaik, J.K.; Balakrishnan, S.

    2011-01-01

    Accelerator Mass Spectrometry (AMS) facility at Inter-University Accelerator Centre (IUAC) is developed by upgrading its existing 15UD Pelletron accelerator. Since last two decades Pelletron is mainly used for nuclear physics, materials science, atomic physics, radiation biology and accelerator mass spectrometry is recent development. In addition, a chemistry laboratory in clean room for the chemical processing of samples for AMS studies has also been established. At present the AMS facility is used for 10 Be, 26 Al measurements and soon other long lived radio-isotopes will also be used

  12. Proceedings of the specialists' meeting on accelerator-based transmutation

    International Nuclear Information System (INIS)

    Wenger, H.U.

    1992-09-01

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  13. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  14. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Chou, T.S.; Fernow, R.C.

    1988-01-01

    The Brookhaven Accelerator Test Facility (ATF) will consist of a 50--100 MeV/c electron linac and a 100 GW CO 2 laser system. A high brightness RF-gun operating at 2856 MHz is to be used as the injector into the linac. The RF-gun contains a Nd:Yag-laser-driven photocathode capable of producing a stream of six ps electron pulses separated by 12.5 ns. The maximum charge in a micropulse will be one nano-Coulomb. The CO 2 laser pulse length will be a few picoseconds and will be synchronized with the electron pulse. The first experimental beam is expected in Fall 89. The design electron beam parameters are given and possible initial experiments are discussed. 9 refs., 1 fig., 3 tabs

  15. Cell design for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Earley, L.; Liska, D.; Mockler, C.; Ruhe, J.; Tucker, H.; Walling, L.

    1991-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility will employ two linear induction accelerators to produce intense, bremsstrahlung x- ray pulses for flash radiography. The accelerator cell design for a 3- kA, 16--20 MeV, 60-ns flattop, high-brightness electron beam is presented. The cell is optimized for high-voltage stand-off while also minimizing the its transverse impedance. Measurements of high- voltage and rf characteristics are summarized. 7 refs., 5 figs

  16. Accelerator facilities and development of physics in Kazakhstan (1992-2002)

    International Nuclear Information System (INIS)

    Shkol'nik, V.S.; Arzumanov, A.A.; Borisenko, A.N.; Gorlachev, I.D.; Kadyrzhanov, K.K.; Kuterbekov, K.A.; Lysukhin, S.N.; Tuleushev, A.Zh.

    2003-01-01

    The monograph is devoted to the use both the isochronous cyclotron U-150M and the accelerator of the heavy ions UKP-2-1, which are the base facilitates of the Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan (INP NNC RK) for scientific researches in the field of nuclear physics of low and middle energies, radiation solid state physics and applied nuclear physics. The history of creation of facilities, some archival documents are given The use of the accelerators of INP NNC RK for the last ten years (1992-2002) is described in detail. The parameters of facilities, photos of the main functional units of the accelerators as well as nuclear and physical methods realized on these basic facilities have been presented. The appendixes present copies of some important historical documents as well as the following materials: a list of on accelerator themes, a list of dissertation works, a list of publications of the Nuclear Physics Department within the period of 1972-2002 and the Solid State Department within the period of 1995-2002 carried out using the accelerators of INP NNC RK. The book is intended for scientists studying actual problems of nuclear physics of low and middle energies, radiation solid state physics as well as students specializing in this field (author)

  17. Indian participation in FAIR accelerator facility

    International Nuclear Information System (INIS)

    Sur, Amitava

    2015-01-01

    India is a founder member of the FAIR-GmbH, the upcoming International Accelerator Facility at Darmstadt, Germany. Indian participation at FAIR is being funded jointly by the Department of Science and Technology (DST) and the Department of Atomic Energy (DAE). Indo- FAIR Coordination Centre at Bose Institute (BI-IFCC) is coordinating the Indian efforts of both in-kind contribution as well as experimental programmes at FAIR. FAIR aims for beams of stable and unstable nuclei as well as antiprotons in a wide range of intensities and energies. A superconducting double-synchrotron SIS100/300 with a circumference of 1,100 meters and with magnetic rigidities of 100 and 300 Tm, respectively, is at the heart of the FAIR accelerator facility. The existing GSI accelerators UNILAC and SIS18 will serve as an injector. Adjacent to the large double- synchrotron is a complex system of storage- cooler rings and experiment stations, including a superconducting nuclear fragment separator (Super-FRS) and an antiproton production target. FAIR will supply rare isotope beams (RIBs) and antiproton beams. In FAIR accelerator facility up to four research programs can be run in a parallel mode. The multidisciplinary research program covers the fields of QCD studies with cooled beams of antiprotons, nucleus nucleus collisions at highest baryon density, nuclear structure and nuclear astrophysics investigations with nuclei far off stability, high density plasma physics, atomic and material science studies, radio-biological and other application-oriented studies will contribute in providing in-kind items both for the accelerator and the experiments. As per current plans Indian in kind contributions include: Power Converters, Superconducting Magnets, Beam Stopper, Vacuum Chamber. A short sample from an Indian Industry has been tested successfully at FAIR. Indian participation in building the accelerator components for FAIR is presented

  18. Conceptual design of multi-purpose accelerator-driven transmutation test facility

    International Nuclear Information System (INIS)

    Hirota, Koichi; Hida, Kenzo; Yokobori, Hitoshi; Kamishima, Yoshio

    1999-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been developing a concept of accelerator-driven transmutation system using a high-power proton linac. To demonstrate the technical feasibility of this concept, accelerator-driven spallation experiments will be necessary. We believe our proposal of a multi-purpose test facility is a promising concept to clarify its feasibility from the basic neutronics and engineering standpoint. The main feature of our initial proposal is using an inclined beam injection. It enables to simplify the head of the test vessel as well as to facilitate easy replacing of the beam window and the testing device containing the test specimen, and also this system will minimize the complexity of the vessel head and surrounding structures. Next proposal is using an ordinary overhead beam injection system and is modified to be simple structural concept of the test vessel from inclined beam injection. At the first step, the basic neutronics experiments will be performed. At this step, the test device and the cooling device are simpler ones, due to only small heat will be generated. Then we plan using a gas cooling. At the following steps, the test device and the vessel internal structures will be remodeled or remade to adjust to the test purposes, if necessary. At these steps, target material tests and thermal hydraulic tests using some liquid metal coolants will be done. In this case, the natural circulation cooling will be done. To verify the transmutation technology, a larger heat will be generated, so a forced coolant circulation system will be installed in the test vessel. This system consists of a heat exchanger and a circulation pump. The vessel internal structure will be remade. Doing such step-wise remaking, initial construction cost of the proposed test facility will be expected to be reasonable. (author)

  19. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  20. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  1. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  2. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  3. Design of the accelerating structures for FMIT

    International Nuclear Information System (INIS)

    Liska, D.; Schamaun, R.; Potter, C.; Fuller, C.; Clark, D.; Greenwood, D.; Frank, J.

    1979-01-01

    Design considerations and concepts are presented for the accelerating structures for the Fusion Materials Irradiation Test (FMIT) Facility. These structures consist of three major units: 0.1- to 2-MeV radio-frequency quadrupole based on the Russian concept, a 2- to 35-MeV drift-tube linac made up of two separate tanks designed to generate either 20- or 35-MeV beams, and an energy dispersion cavity capable of spreading the energy of the beam slightly to ease thermal loading in the target. Because of probable beam activation, the drift-tube linac is designed so that alignment and maintenance do not require manned entry into the tanks. This conservatism also led to the choice of a conventional vacuum system and has influenced the choice of many of the rf interface components. The high-powered FMIT machine is very heavily beam loaded and delivers a 100-mA continuous duty deuteron beam to a flowing liquid lithium target. The power on target is 3.5 MW deposited in a 1 x 3 cm spot. Because of the critical importance of the low energy section of this accelerator on beam spill in the machine, a 5-MeV prototype will be constructed and tested at the Los Alamos Scientific Laboratory

  4. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  5. ISABELLE: a proposal for construction of a proton--proton storage accelerator facility

    International Nuclear Information System (INIS)

    1976-05-01

    The construction of an Intersecting Storage Accelerator Facility (ISA or ISABELLE) at Brookhaven National Laboratory is proposed. ISABELLE will permit the exploration of proton-proton collisions at center-of-mass energies continuously variable from 60 to 400 GeV and with luminosities of 10 32 to 10 33 cm -2 sec -1 over the entire range. An overview of the physics potential of this machine is given, covering the production of charged and neutral intermediate vector bosons, the hadron production at high transverse momentum, searches for new, massive particles, and the energy dependence of the strong interactions. The facility consists of two interlaced rings of superconducting magnets in a common tunnel about 3 km in circumference. The proton beams will collide at eight intersection regions where particle detectors will be arranged for studying the collision processes. Protons of approximately 30 GeV from the AGS will be accumulated to obtain the design current of 10A prior to acceleration to final energy. The design and performance of existing full-size superconducting dipoles and quadrupoles is described. The conceptual design of the accelerator systems and the conventional structures and buildings is presented. A preliminary cost estimate and construction schedule are given. Possible future options such as proton-antiproton, proton-deuteron and electron-proton collisions are discussed

  6. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  7. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Chou, T.S.; Fernow, R.C.; Fischer, J.; Gallardo, J.; Kirk, H.G.; Koul, R.; Palmer, R.B.; Pellegrini, C.; Sheehan, J.; Srinivasan-Rao, T.; Ulc, S.; Woodle, M.; Bigio, I.; Kurnit, N.; McDonald, K.T.

    1989-01-01

    The Brookhaven Accelerator Test Facility ATF will consist of a 50-100 MeV/c electron linac and a 100 GW CO 2 laser system. A high brightness RF-gun operating at 2,856 MHz is to be used as the injector into the linac. The RF-gun contains a Nd:Yag-laser-driven photocathode capable of producing a stream of six ps electron pulses separated by 12.5 ns. The maximum charge in a micropulse will be one nano-Coulomb. The CO 2 laser pulse length will be a few picoseconds and will be synchronized with the electron pulse. The first experimental beam is expected in Fall 89. The design electron beam parameters are given and possible initial experiments are discussed. 9 refs., 1 fig., 3 tabs

  8. On designing a control system for a new generation of accelerators

    International Nuclear Information System (INIS)

    Schaller, S.C.; Schultz, D.E.

    1987-01-01

    A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs

  9. Bulk-shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Johnson, D.L.; Huang, S.T.

    1982-07-01

    The accelerator-based Fusion Materials Irradiation Test (FMIT) facility will provide a high-fluence, fusion-like radiation environment for the testing of materials. While the neutron spectrum produced in the forward direction by the 35 MeV deuterons incident upon a flowing lithium target is characterized by a broad peak around 14 MeV, a high energy tail extends up to about 50 MeV. Some shield design considerations are reviewed

  10. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    International Nuclear Information System (INIS)

    Macek, R.J.

    1994-01-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D)

  11. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    International Nuclear Information System (INIS)

    Buckner, M.; Cappiello, M.; Pitcher, E.; O'Brien, H.

    1998-01-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M ampersand O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project

  12. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  13. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  14. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  15. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    International Nuclear Information System (INIS)

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology

  16. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  17. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year

  18. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  19. Design of a 1 MeV 3He+ RFQ for the SAIC PET accelerator facility

    International Nuclear Information System (INIS)

    Cornelius, W.D.; Young, P.E.

    1993-01-01

    The novel design of a 1 MeV 3 He + radiofrequency quadrupole (RFQ) accelerator is discussed. This RFQ is the first segment of an accelerator for the production of radioisotopes for positron emission tomography (PET) applications. This RFQ is unusual in that two specific innovations were incorporated into the design. The mechanical design is a hybrid of conventional four-vane and four-rod geometries. This hybridization reduces the physical dimensions of the accelerator without sacrificing too much in rf efficiency and has the added benefit of reducing the sensitivity to mechanical alignment errors. In addition, the beam dynamics of the last few cells was modified to tailor the output beam parameters to improve the beam transport through the next accelerator section. The details of the mechanical structure, the mechanical and electrical alignment experiences, and a comparison of the theoretical and experimental performance of this accelerator are also discussed. (orig.)

  20. Development of a distributed control system for the JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Hanashima, Susumu

    2005-01-01

    In the JAERI tandem accelerator facility, we are building accelerator complex aiming generation and acceleration of radio nuclear beam. Several accelerators, ion sources and a charge breeder are installed in the facility. We are developing a distributed control system enabling smooth operation of the facility. We report basic concepts of the control system in this article. We also describe about a control hardware using plastic optical fiber, which is developed for the control system. (author)

  1. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  2. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  3. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  4. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    International Nuclear Information System (INIS)

    Battle, Ronald E.; DeVan, B.; Munro, John K. Jr.

    2006-01-01

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  5. CERN accelerator school: Antiprotons for colliding beam facilities

    International Nuclear Information System (INIS)

    Bryant, P.; Newman, S.

    1984-01-01

    This is a specialized course which addresses a wide spectrum of theoretical and technological problems confronting the designer of an antiproton facility for high-energy-physics research. A broad and profound basis is provided by the lecturers' substantial experience gained over many years with CERN's unique equipment. Topics include beam optics, special lattices for antiproton accumulation and storage rings, antiproton production, stochastic cooling, acceleration and storage, r.f. noise, r.f. beam manipulations, beam-beam interaction, beam stability due to ion accumulation, and diagnostics. The SPS (Super Proton Synchrotron) panti p collider, LEAR (the Low Energy Antiproton Ring at CERN), antiprotons in the ISR (Intersecting Storage Rings), the new antiproton collector (ACOL) and gas jet targets are also discussed. A table is included listing the parameters of all CERN's accelerators and storage rings. See hints under the relevant topics. (orig./HSI)

  6. Conceptual design for an accelerator system for a very high-intensity pulsed neutron source using a linear-induction accelerator

    International Nuclear Information System (INIS)

    Foss, M.H.

    1981-01-01

    Several accelerator-based intense neutron sources have been constructed or designed by various laboratories around the world. All of these facilities have a common scheme of a linac and synchrotron or accumulator ring, and the system produces the proton energy of 500 to 1000 MeV. The average beam currents range from a few mA to a few hundred mA. The protons are then used to generate high-flux neutrons by spallation out of heavy-metal targets. In a synchrotron system, the protons are already bunched, and thus the pulse rate of the neutron beam is that of the repetition rate of the synchrotron. For an accumulator system, the pulse rate is determined by the extraction repetition rate of the accumulator. We have conceptually designed a new system that uses a linear-induction accelerator which can be operated for an average beam current up to a few mA with a repetition rate up to 100 Hz. The details of the design will be given

  7. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  8. Ultra high vacuum activities and required modification at 14 UD BARC-TIFR pelletron accelerator facility

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ninawe, N.G.; Ramjilal; Bhagwat, P.V.; Salvi, S.B.

    2003-01-01

    Full text: The 14 UD pelletron accelerator is working round the clock since 1989. The accelerator is housed inside a tank which is 6 meter in diameter and 25 meter long. The accelerator tank is pressurized with SF 6 at 80 to 100 PSIG in order to achieve 14MV. In pelletron, ions are extracted from SNICS are pre-accelerated up to 300 keV before being injected into low energy accelerator tube. In the terminal which is at high potential (4MV to 14 MV), the ion beam pass through the stripper and positive ions with high charge states are produced. The high energy beams are focussed and analyzed by 90 deg magnet. The analyzed beam is then transported to the various experimental ports. In order to achieve uniform ultra high vacuum (to reduce the loss of intensity and spread in the energy of ions beams) in more than 100 metre and 100 mm diameter beam lines including magnet chambers and various beam diagnostic devices, combination of getter-ion pumps and turbo pumps are being used at Pelletron Accelerator Facility. The 14 UD pelletron is equipped with a combination of foil and gas stripper in high voltage terminal section. The foil and gas stripper in the terminal section are mainly used for stripping of light and heavy ions respectively. The gas stripper plays a great role for stripping of heavy ions and its efficiency depends on gas stripper parameters and supporting pumps. The gas stripper is originally installed with getter pumps. These pumps required periodic replacement of titanium cartridges and slowly the pumping speed used to diminish with time. A new recirculation turbo molecular pumps based system is being designed to improve good beam transmission. Details of design will be presented. Proton beam of tens of MeV energy and μA range current is in demand to carry out specific radiochemistry experiments in this facility. It is proposed to built and accommodate a proton experimental setup in the tower area of the existing facility. Details of required UHV system for

  9. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  10. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; SLAC; Asano, Yoshihiro; JAERI-RIKEN, Hyogo; Casey, William R.; Brookhaven; Donahue, Richard J.

    2005-01-01

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  11. The IFMIF-EVEDA accelerator beam dump design

    International Nuclear Information System (INIS)

    Iglesias, D.; Arranz, F.; Arroyo, J.M.; Barrera, G.; Branas, B.; Casal, N.; Garcia, M.; Lopez, D.; Martinez, J.I.; Mayoral, A.; Ogando, F.; Parro, M.; Oliver, C.; Rapisarda, D.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2011-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 x 10 5 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition.

  12. RF structure design of the China Material Irradiation Facility RFQ

    Science.gov (United States)

    Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan

    2017-10-01

    The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.

  13. Feature-Based Analysis of Plasma-Based Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron G. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cormier-Michel, Estelle [Tech-X Corp., Boulder, CO (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-02-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  14. Establishment of nuclear data system - Feasibility study for neutron-beam= facility at pohang accelerator laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nam Kung, Won; Koh, In Soo; Cho, Moo Hyun; Kim, Kui Nyun; Kwang, Hung Sik; Park, Sung Joo [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    1996-12-01

    Nuclear data which have been produced by a few developed countries in the= past are essential elements to many disciplines, especially to nuclear engineering. As we promote our nuclear industry further to the level of advanced countries, we also have to establish the Nuclear Data System to produce and evaluate nuclear data independently. We have studied the possibility to build a neutron-beam facility utilizing accelerator facilities, technologies and man powers at pohang Accelerator Laboratory. We found specific parameters for the PAL 100-MeV electron linac based on the existing klystron, modulator, accelerating tubes and other facilities in the PAL; the beam energy is 60-100 MeV, the beam current for the short pulse (10 ns) is 2 A and for the long pulse is 500 mA and the pulse repetition rate is 60 Hz. We propose a neutron-beam facility using PAL 100-MeV electron linac where we can use a Ta-target for the neutron generation and three different time-of-flight beam lines (10 m, 20 m, and 100 m). One may find that the proposed neutron-beam facility is comparable with other operating neutron facilities in the world. We conclude that the proposed neutron-beam facility utilizing the existing accelerator facility in the PAL would be an excellent facility for neutron data production in combination with the ` Hanaro` facility in KAERI. 8 refs., 11 tabs., 12 figs. (author)

  15. Colorado State University (CSU) accelerator and FEL facility

    NARCIS (Netherlands)

    Milton, S.; Biedron, S.; Harris, J.; Martinez, J.; D'Audney, A.; Edelen, J.; Einstein, J.; Hall, C.; Horovitz, K.; Morin, A.; Sipahi, N.; Sipahi, T.; Williams, J.; Carrico, C.; Van Der Slot, P. J M

    2014-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory.

  16. The Continuous Electron Beam Accelerator Facility: Project status and physics outlook

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Nuclear physics research program planning, accelerator tunnel construction, and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility, Newport News, Virginia. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. An experimental program is being defined in collaboration with the user community. The experimental halls have been designed, and preliminary experimental equipment conceptual designs have been prepared. Planned for Hall A are two 4-GeV/c high-resolution (δp/p ≤ 10 -4 ) spectrometers (HRS) with moderate acceptance (∼8 msr) for a program of completely exclusive experiments in which the nuclear final state has to be fully specified. A CEBAF large acceptance spectrometer (CLAS) is planned for the program of Hall B, which will include bias-free investigation of hadronic final states in inelastic electron scattering and detection of multiple-particle final states. The CLAS will be a multi-gap device based on a toroidal magnet with six superconducting coils arranged around the beamline to produce an essentially circular magnetic field. Hall C is envisioned as serving a diversity of interests, including form factor measurements, parity violation investigations, form factors of nucleon resonances, and a high-Q 2 baryon resonance program. A moderate-resolution, high-momentum, 6-GeV/c spectrometer (HMS) together with several specialized second arms -- in particular, a symmetric toroidal array spectrometer -- are being planned to carry out Hall C experimentation. 14 figs., 8 tabs

  17. Status of Thomas Jefferson National Accelerator Facility (Jefferson Lab)

    International Nuclear Information System (INIS)

    H.A. Grunder

    1997-01-01

    When first beam was delivered on target in July 1994, the Continuous Electron Beam Accelerator Facility (CEBAF), in Newport News, Virginia realized the return on years of planning and work to create a laboratory devoted to exploration of matter that interacts through the strong force, which holds the quarks inside the proton and binds protons and neutrons into the nucleus. Dedicated this year as the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the completion of construction and beginning of its experimental program has culminated a process that began more than a decade ago with the convening of the Bromley Panel to look at research possibilities for such an electron accelerator

  18. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    Science.gov (United States)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  19. A systematic FPGA acceleration design for applications based on convolutional neural networks

    Science.gov (United States)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  20. Safety in design and operation of low energy particle accelerators

    International Nuclear Information System (INIS)

    Badawy, I.

    1991-01-01

    This paper studies the safety in design and operation of low energy accelerators which produce beams of accelerated charged particles and radiations. As radiation sources, the accelerators are widely used in scientific research, industry, food and medical applications. The risks to human and environment are considered. The safety in accelerators is discussed-particularly-the shielding against ionizing radiations, overexposure to RF radiation fire hazards and power failures. Also the paper studies the emergency response at incidents. Emergency procedures are recommended for each type of emergency. Reporting to the competent Authority is also recommended to be prepared for each incident. The basic principles of regulatory control, licensing and inspections for accelerator facilities are discussed. The relation with the competent authority is pointed out. 4 fig

  1. Overview of the IFMIF test facility design in IFMIF/EVEDA phase

    International Nuclear Information System (INIS)

    Tian, Kuo; Abou-Sena, Ali; Arbeiter, Frederik; García, Ángela; Gouat, Philippe; Heidinger, Roland; Heinzel, Volker; Ibarra, Ángel; Leysen, Willem; Mas, Avelino; Mittwollen, Martin; Möslang, Anton; Theile, Jürgen; Yamamoto, Michiyoshi; Yokomine, Takehiko

    2015-01-01

    Highlights: • This paper summarizes the current design status of IFMIF EVEDA test facility. • The principle functions of the test facility and key components are described. • The brief specifications of the systems and key components are addressed. - Abstract: The test facility (TF) is one of the three major facilities of the International Fusion Material Irradiation Facility (IFMIF). Engineering designs of TF main systems and key components have been initiated and developed in the IFMIF EVEDA (Engineering Validation and Engineering Design Activities) phase since 2007. The related work covers the designs of a test cell which is the meeting point of the TF and accelerator facility and lithium facility, a series of test modules for experiments under different irradiation conditions, an access cell to accommodate remote handling systems, four test module handling cells for test module processing and assembling, and test facility ancillary systems for engineering support on energy, media, and control infrastructure. This paper summarizes the principle functions, brief specifications, and the current design status of the above mentioned IFMIF TF systems and key components.

  2. New scheme for the design and operation of proton--proton storage accelerators

    International Nuclear Information System (INIS)

    Claus, J.; Herrera, J.; Humphrey, J.; Marx, M.; Month, M.

    1977-01-01

    A new system is presented for storage accelerating rings which allows many options for operation. During injection, acceleration, and collision, the beams are maintained in the form of azimuthally long bunches. Current is built up in a low-energy, small circumference accumulator ring. Injection into the storage accelerators is carried out with the bunches phased so that they do not collide. The rf buckets can be matched to the incoming long bunches with only a small dilution. Operation of the storage rings consists of: (1) accelerating the formed bunches to any desired energy; and (2) bringing the bunches into collision by relative phasing of the rf in the two rings. This system provides considerable simplification in the design and operation of high energy p-p facilities. For example, it reduces the beam stacking time, relaxes the impedance tolerances relating to longitudinal stability, reduces the aperture utilization, and avoids radiation background problems associated with beam manipulations. A prototype design is considered, using as a basis the parameters of the ISABELLE facility. Performance characteristics and operational procedures are presented. The many advantages related to the machine and experimental aspects are discussed. In particular, cycling the energy during collisions is an interesting option. Lastly, the significance of extending such a facility to higher energy p-p collisions is outlined

  3. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  4. Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility

    Science.gov (United States)

    Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.

    2016-01-01

    The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.

  5. 6 MV Folded Tandem Ion Accelerator facility at BARC

    International Nuclear Information System (INIS)

    Gupta, S.K.

    2010-01-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) facility is operational round the clock and accelerated beams of both light and heavy ions are being used extensively by various divisions of BARC, Universities, lIT Bombay and other R and D labs across the country. The FOTIA is an upgraded version of the old 5.5 MV single stage Van-de-Graaff accelerator (1962-1992). Since its commissioning in the year 2000, the poor beam transmission through the 180 deg folding magnet was a matter of concern. A systematic study for beam transmission through the accelerator was carried out and progressive modifications in folding magnet chamber, foil stripper holder and improvement in average vacuum level through the accelerator have resulted in large improvement of beam transmission leading to up to 2.0 micro-amp analyzed proton beams on target. Now the utilization of the beams from the accelerator has increased many folds for basic and applied research in the fields of atomic and nuclear physics, material science and radiation biology etc. Few new beam lines after the indigenously developed 5-port switching magnet are added and the experimental setup for PIXE, PIGE, External PIXE, 4 neutron detector, Proton Induced Positron Annihilation Spectroscopy (PIPAS) setup and the general purpose scattering chamber etc have been commissioned in the beam hall. The same team has developed a Low Energy Accelerator Facility (LEAF) which delivers negative ions of light and heavy ions for application in implantation, irradiation damage studies in semiconductor devices and testing of new beam line components being developed for Low Energy High Intensity Proton Accelerator (LEHIPA) programme at BARC. The LEAF has been developed as stand alone facility and can deliver beam quickly with minimum intervention of the operator. Few more features are being planned to deliver uniform scanned beams on large targets. (author)

  6. SINBAD—The accelerator R&D facility under construction at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Dorda, U., E-mail: ulrich.dorda@desy.de [DESY, Hamburg & Zeuthen (Germany); Assmann, R.; Brinkmann, R.; Flöttmann, K.; Hartl, I.; Hüning, M.; Kärtner, F.; Fallahi, A.; Marchetti, B.; Nie, Y.; Osterhoff, J.; Schlarb, H.; Zhu, J. [DESY, Hamburg & Zeuthen (Germany); Maier, A.R. [University Hamburg (Germany)

    2016-09-01

    The SINBAD facility (Short INnovative Bunches and Accelerators at DESY) is a long-term dedicated accelerator research and development facility currently under construction at DESY. It will be located in the premises of the old DORIS accelerator complex and host multiple independent experiments cost-effectively accessing the same central infrastructure like a central high power laser. With the removal of the old DORIS accelerator being completed, the refurbishment of the technical infrastructure is currently starting up. The presently ongoing conversion of the area into the SINBAD facility and the currently foreseen layout is described. The first experiment will use a compact S-band linac for the production of ultra-short bunches at hundred MeV. Once established, one of the main usages will be to externally inject electrons into a laser-driven plasma wakefield accelerator to boost the energy to GeV-level while maintaining a usable beam quality, ultimately aiming to drive an FEL. The second experiment already under planning is the setup of an attosecond radiation source with advanced technology. Further usage of the available space and infrastructure is revised and national and international collaborations are being established.

  7. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    International Nuclear Information System (INIS)

    Wady, P.T.; Draude, A.; Shubeita, S.M.; Smith, A.D.; Mason, N.; Pimblott, S.M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5–6 cm"2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr–25Ni–Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  8. Workshop on Accelerator Magnet Superconductors, Design and Optimization

    CERN Document Server

    WAMSDO Workshop

    2009-01-01

    This report contains the proceedings of the CARE-HHH-AMT Workshop on Accelerator Magnet Superconductors, Design and Optimization (WAMSDO) held at CERN from 19 to 23 May 2008. The needs in terms of superconducting magnets for the accelerator projects were discussed, mainly for the LHC interaction regions and injector upgrades, and for the GSI FAIR complex. The first part of the workshop focused on the development of superconductor and cables, i.e., low-loss Nb-Ti cables, Nb$_{3}$Sn and high-temperature superconductors. An industry session summarized the actual plans and status of the activities in the main European industries. Then, a worldwide status of the high field magnets programme was presented. A special session was devoted to fast cycled magnets, including FAIR facilities and LHC injector upgrades. A final session focused on the optimization methods and numerical tools for magnet design.

  9. Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Mark [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-04-22

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes

  10. Cybermaterials: materials by design and accelerated insertion of materials

    Science.gov (United States)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  11. An Integration Testing Facility for the CERN Accelerator Controls System

    CERN Document Server

    Stapley, N; Bau, J C; Deghaye, S; Dehavay, C; Sliwinski, W; Sobczak, M

    2009-01-01

    A major effort has been invested in the design, development, and deployment of the LHC Control System. This large control system is made up of a set of core components and dependencies, which although tested individually, are often not able to be tested together on a system capable of representing the complete control system environment, including hardware. Furthermore this control system is being adapted and applied to CERN's whole accelerator complex, and in particular for the forthcoming renovation of the PS accelerators. To ensure quality is maintained as the system evolves, and toimprove defect prevention, the Controls Group launched a project to provide a dedicated facility for continuous, automated, integration testing of its core components to incorporate into its production process. We describe the project, initial lessons from its application, status, and future directions.

  12. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Green, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zhang, X. [Shanhai Inst. of Optics and Fine Mechanics, Shanghai (China); Farinella, D. M. [Univ. of California, Irvine, CA (United States); Taborek, P. [Univ. of California, Irvine, CA (United States); Tajima, T. [Univ. of California, Irvine, CA (United States); Wheeler, J. A. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee; Mourou, G. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 1020 – 1023 cm-3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a

  13. Argonne's new Wakefield Test Facility

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1992-01-01

    The first phase of a high current, short bunch length electron beam research facility, the AWA, is near completion at Argonne. At the heart of the facility is a photocathode based electron gun and accelerating sections designed to deliver 20 MeV pulses with up to 100 nC per pulse and with pulse lengths of approximately 15 ps (fw). Using a technique similar to that originated at Argonne's AATF facility, a separate weak probe pulse can be generated and used to diagnose wake effects produced by the intense pulses. Initial planned experiments include studies of plasma wakefields and dielectric wakefield devices, and expect to demonstrate large, useful accelerating gradients (> 100 MeV/m). Later phases of the facility will increase the drive bunch energy to more than 100 MeV to enable acceleration experiments up to the GeV range. Specifications, design details, and commissioning progress are presented

  14. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  15. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  16. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    Science.gov (United States)

    Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.

    2017-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  17. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-01-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R ampersand D plan for ABC are described on the bases of the ''strawman'' or ''point-of-departure'' plant layout that resulted from this study

  18. Fast Extraction Kicker for the Accelerator Test Facility

    International Nuclear Information System (INIS)

    De Santis, Stefano; Urakawa, Junji; Naito, Takashi

    2007-01-01

    We present the results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. This activity is carried on in the framework of the ATF2 project, which will be built on the KEK Tsukuba campus as an extension of the existing ATF, taking advantage of the worlds smallest normalized emittance achieved there. ATF2's primary goal is to operate as a test facility and establish the hardware and beam handling technologies envisaged for the International Linear Collider. In particular, the fast extraction kicker object of the present paper is an important component of the ILC damping rings, since its rise and fall time define the minimum distance between bunches and ultimately the damping rings length itself. Building on the initial results presented at EPAC '06, we report on the present status of the kicker design and define the minimum characteristics for pulsers and other subsystems. In addition to the original scheme with multiple stripline modules producing a total deflection of 5 mrad, we also investigated a scheme with a single kicker module for a reduced deflection of 1 mrad placed inside a closed orbit bump, which takes the electron closer to the extraction septum

  19. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  20. Environmental assessment: Continuous Electron Beam Accelerator Facility, Newport News, Virginia

    International Nuclear Information System (INIS)

    1987-01-01

    This Environmental Assessment has been prepared by the US Department of Energy (DOE) to fulfill its obligations pursuant to Sect. 102 of the National Environmental Policy Act (NEPA) of 1969 (Public Law 91-190). The proposed federal action addressed in this document is DOE's funding of a Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia. DOE intends to contract with the Southeastern Universities Research Association (SURA) for operation of CEBAF, a continuous wave (CW) linear accelerator system (linac) capable of providing high-duty-factor beams throughout the energy range from 0.5 to 4.0 GeV. CEBAF will be the first of its kind worldwide and will offer a multi-GeV energy, high-intensity, high-duty-factor electron beam for use by the US nuclear physics community in research on the states of nuclear matter and the short-distance behavior of nuclei. The CEBAF project is largely in the conceptual design stage, with some components in the preliminary design stage. Construction is anticipated to begin in 1987 and be completed by 1992

  1. Medium energy heavy ion accelerator 14 UD Pelletron- a BARC-TIFR facility: a 5 year progress report 1989-1994

    International Nuclear Information System (INIS)

    Chatterjee, A.; Tandon, P.N.

    1995-01-01

    The medium energy heavy ion accelerator (MEHIA) facility based on 14 UD Pelletron set up under the collaborative project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at the TIFR campus at Bombay has been serving as a joint BARC-TIFR facility for heavy-ion accelerator based research. As this accelerator has just completed five years of its successful operations, it has been thought to be an appropriate time to bring out a report of the research work carried out with the accelerator facility over these last five years. To put the research work in proper perspective, the present report is formatted to provide a short write-up highlighting the work carried out in each area of activity along with a list of the publications which have resulted from these investigations. Some theoretical work related to the experimental activities with the pelletron accelerator has also been included in the list of publications. The research work in the area of nuclear physics, which forms the main thrust of the research activities with the accelerator, covers areas of high spin states, high energy photons, resonances in heavy ion reactions, heavy ion elastic and transfer reactions, heavy ion fusion-fission reactions and radiochemical studies in heavy ion reactions. The interdisciplinary areas of research include condensed matter physics and accelerator based atomic physics. In addition to the above topics the present report also describes the work related to the pelletron accelerator and associated experimental facilities, gas detector development work, data acquisition systems and spectrometer for heavy recoil ions under development. The present status of the superconducting Linac booster project is also briefly described. (author). refs., tabs

  2. Design and construction of the first Iranian powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    AM Poursaleh

    2015-09-01

    Full Text Available In This paper we will introduce the process of design and manufacturing an electron accelerator with 10MeV energy and 100kW power as the first Iranian powerful industrial electron accelerator. This accelerator designed based on modeling of one of the most powerful industrial accelerator called Rhodotron. But the design of the accelerator in a way that can be localize by relying on domestic industries. So although it looks like a Rhodotron accelerator structure but has some different in design and manufacture of components, the results are satisfactory

  3. The first picosecond terawatt CO2 laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO 2 laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse

  4. ILC Reference Design Report Volume 3 - Accelerator

    CERN Document Server

    Phinney, Nan; Walker, Nicholas J.; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Behnke, Ties; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Brau, James E.; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Damerell, Chris; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Djouadi, Abdelhak; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jaros, John; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lykken, Joseph; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyamoto, Akiya; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moenig, Klaus; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okada, Yasuhiro; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oreglia, Mark; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamashita, Satoru; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.

  5. Design of a neutron interrogation cell based on an electron accelerator and performance assessment on 220 liter nuclear waste mock-up drums

    International Nuclear Information System (INIS)

    Sari, A.; Carrel, F.; Laine, F.; Lyoussi, A.

    2013-01-01

    Radiological characterization of nuclear waste drums is an important task for the nuclear industry. The amount of actinides, such as 235 U or 239 Pu, contained in a package can be determined using non-destructive active methods based on the fission process. One of these techniques, known as neutron interrogation, uses a neutron beam to induce fission reactions on the actinides. Optimization of the neutron flux is an important step towards improving this technique. Electron accelerators enable to achieve higher neutron flux intensities than the ones delivered by deuterium-tritium generators traditionally used on neutron interrogation industrial facilities. In this paper, we design a neutron interrogation cell based on an electron accelerator by MCNPX simulation. We carry out photoneutron interrogation measurements on uranium samples placed at the center of 220 liter nuclear waste drums containing different types of matrices. We quantify impact of the matrix on the prompt neutron signal, on the ratio between the prompt and delayed neutron signals, and on the interrogative neutron half-life time. We also show that characteristics of the conversion target of the electron accelerator enable to improve significantly measurement performances. (authors)

  6. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-01-01

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator

  7. Translating DWPF design criteria into an engineered facility design

    International Nuclear Information System (INIS)

    Kemp, J.B.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) takes radioactive defense waste sludge and the radioactive nuclides, cesium and strontium, from the salt solution, and incorporates them in borosilicate glass in stainless steel canisters, for subsequent disposal in a deep geologic repository. The facility was designed by Bechtel National, Inc. under a subcontract from E.I. DuPont de Nemurs and Co., the prime contractor for the Department of Energy, for the design, construction and commissioning of the plant. The design criteria were specified by the DuPont Company, based upon their extensive experience as designer, and operator since the early 1950's, of the existing Savannah River Plant facilities. Some of the design criteria imposed unusual or new requirements on the detailed design of the facilities. This paper describes some of these criteria, encompassing several engineering disciplines, and discusses the solutions and designs which were developed for the DWPF

  8. Design and fabrication of a eccentric wheels based motorised alignment mechanism for cylindrical accelerator components

    International Nuclear Information System (INIS)

    Mundra, G.; Jain, V.; Karmarkar, Mangesh; Kotaiah, S.

    2006-01-01

    Precision alignment mechanisms with long term stability are required for accelerator components. For some of the components motorised and remotely operable alignment mechanism are required. An eccentric wheel mechanism based alignment system is very much suitable for such application. One such alignment system is designed, a prototype is machined/fabricated for SFDTL type accelerating structure and preliminary trial experiments have been done. (author)

  9. Design Study of a Mini Cyclotron for the Application of Biomedical Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Yun, Chong-Chul; Youn, Min-Yong; Wang, Sonjong

    2009-01-01

    A small cyclotron has been considered for the use of biomedical accelerator mass spectrometer (BAMS). Over a decade ago a few cyclotrons had been constructed and tested for AMS, but technical problems of instability and poor transmission efficiency caused to discontinue further developments. The major reason of the demise of cyclotron AMS was the dominance of commercial Tandem-based AMS facilities. Now BAMS may ask for more compact system, and perhaps using positive ions to accelerate isotope tracers is a favorable feature. The design of a cyclotron to meet the requirements of BAMS has been performed by adopting a compact magnet with high stability and a flat-topping rf system to increase transmission efficiency.

  10. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  11. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  12. A microwiggler Free-Electron Laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Kirk, H.; Pellegrini, C.; van Steenbergen, A.; Bhowmik, A.; Rockwell International Corp., Canoga Park, CA

    1989-01-01

    We report the design and status of an FEL experiment at the Brookhaven National Laboratory Accelerator Test Facility. A 50 MeV high brightness electron beam will be utilized for an oscillator experiment in the visible wavelength region. The microwiggler to be used is a superferric planar undulator with a 0.88 cm period, 60 cm length and K = 0.35. The optical cavity is a 368 cm long stable resonator with broadband dielectric coated mirrors. 8 refs., 2 figs., 4 tabs

  13. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    International Nuclear Information System (INIS)

    LOWENSTEIN, D.I.

    2000-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10 10 to 10 11 ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented

  14. Accelerator Based Neutron Beams for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2003-01-01

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  15. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  16. 0,01-5 MeV heavy ion accelerators

    International Nuclear Information System (INIS)

    Golubev, V.P.; Ivanov, A.S.; Nikiforov, S.A.; Svin'in, M.P.; Tarvid, G.V.; Troshikhin, A.G.; Fedotov, M.T.

    1983-01-01

    The results of development of an accelerating complex on the base of the UP-2-1 heavy ion charge exchange accelerator and IMPLANT-500 high-voltage heavy ion accelerator are given. The accelerating complex provides overlapping of the 0.01 MeV to 5 MeV energy range at accelerated beam currents of 10 -3 -10 -6 A order. The structural features of accelerators and their basic units and systems are considered. The UP-2-1 accelerator is designed for researches in the field of experimental physics and applied problem solutions. The IMPLANT-500 accelerator is designed for commercial ion-beam facilities with closed loop of silicon plate treatment

  17. External radiation exposure control system in accelerator facilities

    International Nuclear Information System (INIS)

    Ogawa, Tatsuhiko; Iimoto, Takeshi; Kosako, Toshiso

    2011-01-01

    The external exposure control systems in KEK and CERN are discussed to find out good practices and unreasonableness of radiation control in accelerator facilities, which plays an important role in optimizing national and/or site specific radiological regulations, referring to relevant ICRP publications. Personal dose limits and radiation area classifications were analyzed and their reasonableness were explored. Good example of supervised areas, area classification based on realistic assumptions on working time etc are found. On the other hand, unreasonable systems, that are often attributed to the national regulation or ideas presented in the old publications are also found. (author)

  18. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    Science.gov (United States)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  19. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    OpenAIRE

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were d...

  20. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  1. Report of the Working Group on Far Field Accelerators

    International Nuclear Information System (INIS)

    Cha-Mei Tang

    1992-01-01

    This report describes the accomplishments of the Working Group on Far Field Accelerators. In addition to hearing presentations of current research, the group produced designs for ''100 MeV'' demonstration accelerators, ''1 GeV'' conceptual accelerators and a small electron beam source. Two of the ''100 MeV'' designs, an Inverse Free Electron Laser (IFEL) and an Inverse Cerenkov Accelerator (ICA), use the CO 2 laser and the 50 MeV linac at the Advanced Test Facility (ATF) at Brookhaven National Laboratory (BNL), requiring only modest changes in the current experimental setups. By upgrading the laser, an ICA design demonstrated 1 GeV acceleration in a gas cell about 50 cm in length. For high average power accelerators, examples based on the IFEL concept were also produced utilizing accelerators driven by high average power FELs. The Working Group also designed a small electron beam source based on the inverse electron cyclotron resonance concept. Accelerators based on the IFEL and ICA may be the first to achieve ''100 MeV'' and ''1 GeV'' energy gain demonstration with high accelerating gradients

  2. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, Iraj, E-mail: i_jabbari@ast.ui.ac.ir [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Poursaleh, Ali Mohammad [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of); Khalafi, Hossein [Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of)

    2016-08-21

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  3. Study of Corona Discharge on 160 KeV, 10 mA Electron Accelerator Facility Using FEM

    International Nuclear Information System (INIS)

    Ghazali, Abu Bakar Mhd; Sobri, Rokiah Mohd

    2008-01-01

    This paper describes a method to verify the overall design of our electron accelerator. It is free from corona or spark discharge phenomenon. This locally designed electron accelerator facility is located at Nuclear Malaysia Complex, Bangi, Selangor. In this study, we describe the geometry of the pressure vessel filled with SF 6 gas at 2 atm to enclose the high voltage area of the accelerating tube. The Poisson's equation is used to calculate the contours of the electric field that is created between the cathode of -160 kV maximum and the wall of the vessel. The nearest sharp edge between the cathode and the pressure wall is 163 mm apart. The calculation is based on finite element method (FEM) for electrostatic charges in order to obtain an electric field contour in two-dimensional plane. We found that the surface charge density of the cathode is 1.1x10 -5 C/m 2 for the corona glowing seen at -90 kV. Moreover, the highest electric field near to (about 5 mm from) the sharp edge is about 2.7 MV/m, which is less than the dielectric strength of SF 6 gas, i.e. 6 MV/m and therefore, it proved that our design of the pressure vessel is save from corona or spark discharges

  4. Study of Corona Discharge on 160 KeV, 10 mA Electron Accelerator Facility Using FEM

    Science.gov (United States)

    Ghazali, Abu Bakar Mhd; Sobri, Rokiah Mohd

    2008-05-01

    This paper describes a method to verify the overall design of our electron accelerator. It is free from corona or spark discharge phenomenon. This locally designed electron accelerator facility is located at Nuclear Malaysia Complex, Bangi, Selangor. In this study, we describe the geometry of the pressure vessel filled with SF6 gas at 2 atm to enclose the high voltage area of the accelerating tube. The Poisson's equation is used to calculate the contours of the electric field that is created between the cathode of -160 kV maximum and the wall of the vessel. The nearest sharp edge between the cathode and the pressure wall is 163 mm apart. The calculation is based on finite element method (FEM) for electrostatic charges in order to obtain an electric field contour in two-dimensional plane. We found that the surface charge density of the cathode is 1.1×10-5 C/m2 for the corona glowing seen at -90 kV. Moreover, the highest electric field near to (about 5 mm from) the sharp edge is about 2.7 MV/m, which is less than the dielectric strength of SF6 gas, i.e. 6 MV/m and therefore, it proved that our design of the pressure vessel is save from corona or spark discharges.

  5. Designing of the Low Energy Beam Lines with Achromatic Condition in the RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)

    2017-01-15

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the Korea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  6. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  7. Design of an upgradeable 45-100 mA RFQ accelerator for FAIR

    Science.gov (United States)

    Zhang, Chuan; Schempp, Alwin

    2009-10-01

    A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.

  8. Design of an upgradeable 45-100 mA RFQ accelerator for FAIR

    International Nuclear Information System (INIS)

    Zhang Chuan; Schempp, Alwin

    2009-01-01

    A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.

  9. ''DIANA'' - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    International Nuclear Information System (INIS)

    Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

    2009-01-01

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges

  10. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok

    2013-01-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  11. Design of 9 tesla superconducting solenoid for VECC RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-07-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  12. Design and construction of a pre-injector for the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2015-09-01

    Full Text Available Every synchrotron accelerator requires a pre-injector for primary injection of the electrons into the booster ring. The Iranian Light Source Facility (ILSF pre-injector is a 150 MeV S-band linear accelerator with a thermionic cathode RF gun. The design of the pre-injector lattice and its beam dynamics calculation results together with the design of RF gun, alpha magnet, quadrupole magnets and linear accelerator structures are described in this article. The measurement results of the RF gun prototype fabricated in Iran demonstrate a dimension error less than 20 μm and a surface roughness of less than 0.8 μm

  13. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  14. Health physics manual of good practices for accelerator facilities

    International Nuclear Information System (INIS)

    Casey, W.R.; Miller, A.J.; McCaslin, J.B.; Coulson, L.V.

    1988-04-01

    It is hoped that this manual will serve both as a teaching aid as well as a useful adjunct for program development. In the context of application, this manual addresses good practices that should be observed by management, staff, and designers since the achievement of a good radiation program indeed involves a combined effort. Ultimately, radiation safety and good work practices become the personal responsibility of the individual. The practices presented in this manual are not to be construed as mandatory rather they are to be used as appropriate for the specific case in the interest of radiation safety. As experience is accrued and new data obtained in the application of this document, ONS will update the guidance to assure that at any given time the guidance reflects optimum performance consistent with current technology and practice.The intent of this guide therefore is to: define common health physics problems at accelerators; recommend suitable methods of identifying, evaluating, and managing accelerator health physics problems; set out the established safety practices at DOE accelerators that have been arrived at by consensus and, where consensus has not yet been reached, give examples of safe practices; introduce the technical literature in the accelerator health physics field; and supplement the regulatory documents listed in Appendix D. Many accelerator health physics problems are no different than those at other kinds of facilities, e.g., ALARA philosophy, instrument calibration, etc. These problems are touched on very lightly or not at all. Similarly, this document does not cover other hazards such as electrical shock, toxic materials, etc. This does not in any way imply that these problems are not serious. 160 refs

  15. Moderator Demonstration Facility Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producing target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  16. Design of a beam dump for the IFMIF-EVEDA accelerator

    International Nuclear Information System (INIS)

    Branas, B.; Iglesias, D.; Arranz, F.; Barrera, G.; Casal, N.; Garcia, M.; Gomez, J.; Lopez, D.; Martinez, J.I.; Martin-Fuertes, F.; Ogando, F.; Oliver, C.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2009-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the accelerator design for IFMIF. A beam stop will be used for the RFQ and DTL commissioning as well as for the EVEDA accelerator tests. Therefore, this component must be designed to stop 5 MeV and 9 MeV deuteron beams with a maximum power of 1.13 MW. The first step of the design is the beam-facing material selection. The criteria used for this selection are low neutron production, low activation and good thermomechanical behavior. In this paper, the mechanical analysis and radioprotection calculations that have led to the choice of the main beam dump parameters will be described. The present design is based on a conical beam stop (2.5 m length, 30 cm diameter, and 3.5 mm thickness) made of copper plus a cylindrical 0.5 m long beam scraper. The cooling system is based on an axial high velocity flow of water. This design is compliant with the mechanical design rules during full power stationary operation of the accelerator. The radioprotection calculations performed demonstrate that, with an adequate local shielding, doses during beam on/off phases are below the limits.

  17. Shielding design for the target room of the proton accelerator research center

    International Nuclear Information System (INIS)

    Min, Y. S.; Lee, C. W.; Mun, K. J.; Nam, J.; Kim, J. Y.

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) has been developing a 100-MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center (PARC). In the Accelerator Tunnel and Beam Experiment Hall in PARC, 10 target rooms for the 20- and 100-MeV beamline facilities exist in the Beam Experiment Hall. For the 100-MeV target rooms during 100-MeV proton beam extraction, a number of high energy neutrons, ranging up to 100-MeV, are produced. Because of the high beam current and space limitations of each target room, the shielding design of each target room should be considered seriously. For the shielding design of the 100-MeV target rooms of the PEFP, a permanent and removable local shield structure was adopted. To optimize shielding performance, we evaluated four different shield materials (concrete, HDPE, lead, iron). From the shielding calculation results, we confirmed that the proposed shielding design made it possible to keep the dose rate below the 'as low as reasonably achievable (ALARA)' objective.

  18. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  19. An advanced fusion neutron source facility

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Accelerator-based 14-MeV-neutron sources based on modifications of the original Fusion Materials Irradiation Facility are currently under consideration for investigating the effects of high-fluence high-energy neutron irradiation on fusion-reactor materials. One such concept for a D-Li neutron source is based on recent advances in accelerator technology associated with the Continuous Wave Deuterium Demonstrator accelerator under construction at Argonne National Laboratory, associated superconducting technology, and advances in liquid-metal technology. In this paper a summary of conceptual design aspects based on improvements in technologies is presented

  20. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    Science.gov (United States)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  1. The Design of Compressed air system in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Cho, S. W.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Jo, J. H.

    2012-01-01

    The Compressed Air System (CA) supplies compressed air for all air operated devices and instruments, pneumatic equipment and other miscellaneous air user points in the Conventional Facilities of Proton Engineering Frontier Project. CA System consist of the Instrument Air System and the Service air System. The Instrument Air System supplies oil-free, dried, filtered, and compressed instrument air for the air operated control devices and instruments in the Accelerator and Beam Application Building, Ion Beam Application Building, Utility Building and etc.. The Service air System supplies compressed air for pneumatic equipment and other services

  2. Site layout and balance of plant design for an accelerator-driven materials processing complex

    Energy Technology Data Exchange (ETDEWEB)

    Cunliffe, J.; Taussig, R.; Ghose, S. [Bechtel Corporation, San Francisco, CA (United States)] [and others

    1995-10-01

    High energy proton beam accelerators are under consideration for use in radioisotope production, surplus weapons material destruction, radioactive waste transmutation, and thorium-based energy conversion cycles. While there are unique aspects to each of these applications that must be accommodated in the design of the associated facility, all share a set of fundamental characteristics that in large measure dictate the site layout features and many balance-of-plant (BOP) design requirements found to be common to all. This paper defines these key design determinants and goes on to discuss the manner in which they have been accommodated in the pre-conceptual design for a particular materials production application. An estimate of the costs associated with this BOP design is also presented with the aim of guiding future evaluations where the basic plant designs are similar to that of this specific case.

  3. Work place monitoring in accelerator facilities using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Osima, A.M.; Rodriguez, D.L.; Carvalho, R.N.; Somessari, R.N.

    1998-01-01

    The increase in the use of large amounts of energy and large particles accelerators in development or in industrial processes for the reticulation, polymerization and sterilization of cables and wires allowed to discover and monitor work places in facilities having particle accelerators at the Institute of Energy and Nuclear Inquiries Comissao National de Energy Nuclear. Measures previously taken by technicians in routine monitoring, show that radiation doses found in the beams tube and at the door of the accelerator area is high enough to require routine programs to monitor work places at the installation. That is why, fifteen thermoluminescent dosimeters (TLD) where placed in different points of the facility where doses must be measured along a three month period and at the same time readings must be taken from control dosimeters kept within a shielded container. The monitor had a small double layer with three pellets of TLD CaSO4 Dy inside of a route carrier adopted in routine workers dosimetry usually. Outcomes show that the radiological protection program must be implemented to ameliorate and guarantee safety procedures

  4. Establishment of in situ TEM-implanter/accelerator interface facility at Wuhan University

    International Nuclear Information System (INIS)

    Guo, L.P.; Liu, C.S.; Li, M.; Song, B.; Ye, M.S.; Fu, D.J.; Fan, X.J.

    2008-01-01

    In order to perform in situ investigations on the evolution of microstructures during ion irradiation for the evaluation of irradiation-resistance performance of advanced materials, we have established a transmission electron microscope (TEM)-implanter/accelerator interface facility at Wuhan University, the first of its kind in China. A Hitachi H800 TEM was linked to a 200 kV ion implanter and a 2x1.7 MV tandem accelerator through the interface system designed on the basis of ion beam transportation calculations. Effective steps were taken to isolate the TEM from mechanical vibration transmitted from the ion beam lines, and no significant degradation of microscope resolution was observed when the TEM operated under high zoom modes during the ion implantation. In the test experiments, ion beams of N + , He + , Ar + , and H + were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 80 nA. The amorphisation process of Si crystal irradiated by N + ion beams was successfully observed in the preliminary experiments, demonstrating that this interface facility is capable of in situ study of ion irradiated samples

  5. The radiological research accelerator facility. Progress report, December 1, 1995--November 30, 1996

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1996-08-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory (RRL) - of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. RARAF was conceived in the mid-1960s by Drs. Victor P. Bond of Brookhaven National Laboratory (BNL) and Harald H. Rossi of Columbia University as a research resource dedicated to radiobiology and radiological physics and was officially established on January 1, 1967. The RARAF Van de Graaff accelerator originally served as the injector for the Cosmotron, a 2-GeV accelerator operated at BNL in the 1950s and early 1960s. The immediate aim was to provide a source of monoenergetic neutrons for studies in radiation biology, dosimetry, and microdosimetry. In other major projects the energetic ions produced were utilized directly. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and returned to operation. This report contains the following information on RARAF: RARAF user's guide; scientific advisory committee; research using RARAF; accelerator utilization and operation; and development of the facilities

  6. Economic and education impact of building the Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Hartline, B.

    1996-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) was built in Newport News, Virginia, between 1987 and 1995 and is a new basic research laboratory christened the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Jefferson Lab's science and technology mission has major economic and educational benefits: basic research discoveries, improvement and application of key technologies associated with the accelerator and the experiments, extensive subcontracting with industry, and diverse employment and educational opportunities. The $600 million invested by federal, state, local and international partners to build Jefferson Lab has had substantial economic and educational benefits locally, as well as significant benefits distributed among industries and universities throughout the United States

  7. Thermal-mechanical design of a 150-mA, direct-current, 400-keV accelerator for production of 14-MeV neutrons

    International Nuclear Information System (INIS)

    Hanson, C.L.

    1977-01-01

    Several unique accelerator components were designed and built for the Rotating Target Neutron Source Facility at the Lawrence Livermore Laboratory. Particular consideration was given to material selection and cooling design of components because the facility will have a large steady-state beam energy. Components discussed include the system composed of the ion source and 90-deg double-focusing magnet in the high-voltage terminal, a water-cooled 400-keV acceleration column, a pyrolytic-graphite beam collimator, and quick-disconnect beam-tube couplings

  8. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  9. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  10. Present status of accelerator-based BNCT: Focus on developments in Argentina

    International Nuclear Information System (INIS)

    Cartelli, D.; Capoulat, M.E.; Bergueiro, J.; Gagetti, L.; Suárez Anzorena, M.; Grosso, M.F. del; Baldo, M.; Castell, W.; Padulo, J.; Suárez Sandín, J.C.; Igarzabal, M.; Erhardt, J.; Mercuri, D.

    2015-01-01

    In this work we provide some information on the present status of accelerator-based BNCT (AB-BNCT) worldwide and subsequently concentrate on the recent accelerator technology developments in Argentina. - Highlights: • The current status of projects and associated facilities for AB-BNCT worldwide is shown. • Only low (few MeV) energy accelerators are included. • The recent progress of the Argentine AB-BNCT program is described.

  11. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Herrera, M.S.; González, S.J.; Burlon, A.A.; Minsky, D.M.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

  12. Jacobs Engineering Group Inc. receives architectural and engineering design contract from Stanford Linear Accelerator Centre

    CERN Multimedia

    2004-01-01

    "Jacobs Engineering Group Inc. announced that a subsidiary company won a contract from Stanford Linear Accelerator Center (SLAC), to provide architectural and engineering design services for the Linac Coherent Light Source (LCLS) conventional facilities" (1/2 page)

  13. Beam-envelope calculations of space-charge loaded beams in MeV dc ion-implantation facilities

    International Nuclear Information System (INIS)

    Urbanus, W.H.; Bannenberg, J.G.; Doorn, S.; Saris, F.W.; Koudijs, R.; Dubbelman, P.; Koelewijn, W.

    1989-01-01

    MeV dc ion accelerators are being developed that can deliver a beam current up to several hundred micro-amperes. At the low-energy part of the accelerator, the beam transport is space-charge dominated rather than emittance dominated. A system of differential equations has been derived, based on the Kapchinski-Vladimirski equations, which describe the envelope of a space-charge loaded ion beam, taking a longitudinal electrical field in an accelerating tube into account. The equations have been used to design the accelerator of a high-current 1 MV heavy-ion implantation facility. Furthermore, the design of a 2 MV accelerator is presented, which is used for analyzing techniques such as RBS and PIXE. Both facilities are based on single-ended Van de Graaff accelerators. (orig.)

  14. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    International Nuclear Information System (INIS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-01-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  15. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengjun, E-mail: wufengjun@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Cui, Yuan [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Hongbin [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Zhang, Huajian [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Bin [University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohui [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  16. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    International Nuclear Information System (INIS)

    Parro Albeniz, M.

    2015-01-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  17. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2012-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W PandT) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012

  18. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  19. Workshop on the accelerator for particle therapy

    International Nuclear Information System (INIS)

    Inoue, M.; Ujeno, Y.

    1991-02-01

    A two-day workshop on the accelerator for particle therapy was held on August 22-23, 1990, with the aim of mutual understanding of medical accelerators among investigators. The state-of-the-art facilities in Japan and medical proton accelerators in Japan and other countries were introduced. This is a compilation of papers presented at the workshop: (1) particle radiotherapy at the National Institute of Radiological Sciences (NIRS); (2) proton therapy; (3) treatment planning, especially for photon and electron therapies; (4) heavy ion synchrotron project at the NIRS; (5) medical proton accelerator project of Tsukuba University and recent status of Loma Linda University Medical Center Proton Beam Facility; (6) inspection report on the Loma Linda University Medical Center Proton Beam Facility; (7) accelerator project of Kyoto University; (8) actual conditions of the 7 MeV proton linear accelerator; (9) design study of superconducting compact cyclotron prototype model; (10) medical superconducting prototype cyclotron; (11) RCNP cyclotron cascade project; (12) beam extraction from synchrotron; (13) radiation safety design in high energy particle accelerator facilities. (N.K.)

  20. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  1. Accelerator structure work for NLC

    International Nuclear Information System (INIS)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B.; Gluckstern, R.; Ko, K.; Kroll, N.; California Univ., San Diego, La Jolla, CA

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun

  2. Low-beam-loss design of a compact, high-current deuteron radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2004-10-01

    Full Text Available A 201.5 MHz, 50 mA, 2.0 MeV deuteron radio frequency quadrupole accelerator is proposed as the neutron generator for the neutron experiment facility project at Peking University, China. Based on better understanding of beam losses, some new optimization procedures concerning both longitudinal and transverse dynamics are adopted. Accordingly, the beam transmission efficiency is improved from 91.2% to 98.3% and the electrode length is shortened from 2.91 to 2.71 m. The fundamental physical analyses are performed to look inside the new design recipe and explain why it works.

  3. Design of spheromak injector using conical accelerator for large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Yamada, H.; Yasui, K.; Kato, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukumoto, N.; Nagata, M.; Uyama, T. [Himeji Inst. of Tech., Hyogo (Japan)

    1999-11-01

    Optimization of CT injector for LHD has been carried out and conical electrode for adiabatic CT compression is adopted in the design. Point-model of CT acceleration in a co-axial electrode is solved to optimize the electrode geometry and the power supplies. Large acceleration efficiency of 34% is to be obtained with 3.2 m long conical accelerator and 40 kV - 42 kJ power supply. The operation scenario of a CT injector named SPICA mk. I (SPheromak Injector using Conical Accelerator) consisting of 0.8 m conical accelerator is discussed based on this design. (author)

  4. Economic evaluation of slurry-, sewage-sludge, and crop disinfection facility applications based on industrial accelerator and 60Co radiation source

    International Nuclear Information System (INIS)

    Abelovszky, L.

    1979-01-01

    The degree of the compliance with the requirements of slurry and sewage treatment, the range of use of radiation sterilization procedures in agriculture and food industry, the possibilities of the complex application of radiation methods and factors influencing their economic efficiency, the economic evaluation of the versatile chargeable accelerators, the fixed and semi-mobile radioisotope facilities, the economic efficiency of the multipurpose utilization, the differences in the application of accelerators and radio isotopes as to the power source applied, the penetration, the dose rates and the radiation energy focusing are discussed. The radiation facility costs are compared. Conclusions concerning the choice of the most efficient applications are given. (author)

  5. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    International Nuclear Information System (INIS)

    Zhang, W.; Sandberg, J.; Parson, W.M.; Walstrom, P.; Murray, M.M.; Cook, E.; Hartouni, E.

    2001-01-01

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed

  6. Design aspects of radiological safety in nuclear facilities

    International Nuclear Information System (INIS)

    Patkulkar, D.S.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    In order to keep operational performance of a nuclear facility high and to keep occupational and public exposure ALARA, radiological safety provisions must be reviewed at the time of facility design. Deficiency in design culminates in deteriorated system performance and non adherence to safety standards and could sometimes result in radiological incident. Important radiological aspects relevant to safety were compiled based on operating experiences, design deficiencies brought out from past nuclear incidents, experience gained during maintenance, participation in design review of upcoming nuclear facilities and radiological emergency preparedness

  7. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB injectors

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)], E-mail: piero.agostinetti@igi.cnr.it; Dal Bello, S.; Dalla Palma, M.; Zaccaria, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)

    2007-10-15

    The SINGle Aperture-SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi-Aperture Multi-Grid (MAMuG) reference configuration. The grids have to fulfil specific requirements coming from ion extraction, beam optics and thermo-mechanical issues. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with sensitivity analyses in order to satisfy the grid functional requirements (temperatures, stresses, in plane and out of plane deformations). The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models.

  8. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  9. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Measurement of 36Cl induced in shielding concrete of various accelerator facilities

    International Nuclear Information System (INIS)

    Bessho, K.; Matsumura, H.; Matsuhiro, T.

    2003-01-01

    The concentrations of 36 Cl induced in shielding concrete of the various accelerators has been measured by accelerator mass spectrometry. For three kinds of accelerator facilities, SF cyclotron (Center for Nuclear Study, the University of Tokyo), 300 MeV electron LINAC (Laboratory of Nuclear Science, Tohoku University), and 12 GeV proton synchrotron (High Energy Accelerator Research Organization), the depth profiles of 36 Cl/ 35 Cl ratios in concrete samples near the beam lines were analyzed. The depth profiles of 36 Cl/ 35 Cl are consistent with those of the radioactive concentrations of 152 Eu and 60 Co, which are formed by thermal neutron capture reactions. These results imply that 36 Cl formed in shielding concrete of these accelerators is mainly produced by thermal neutron capture of 35 Cl. The maximum 36 Cl/ 35 Cl ratio of 3x10 -8 (300 MeV electron LINAC, depth of 8 cm) corresponds to the specific radioactivity of 2x10 -3 Bq/g, which is not serious for radioactive waste management in reconstruction or decommissioning of accelerator facilities, compared with specific radioactivity of 3 H, 152 Eu and 60 Co. (author)

  11. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    Science.gov (United States)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  12. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  13. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  14. Evolutionary optimization methods for accelerator design

    Science.gov (United States)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained

  15. Accelerator control systems in China

    International Nuclear Information System (INIS)

    Yao Chihyuan

    1992-01-01

    Three accelerator facilities were built in the past few years, the 2.8 GeV electron positron collider BEPC, the heavy ion SSC cyclotron accelerator HIRFL and the 800 MeV synchrotron radiation storage ring HESYRL. Aimed at different research areas, they represent a new generation of accelerator in China. This report describes the design philosophy, the structure, performance as well as future improvements of the control systems of the these facilities. (author)

  16. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    International Nuclear Information System (INIS)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1994-03-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g o , where g o is acceleration due to gravity

  17. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; SLAC; Vylet, Vashek; Walker, Lawrence S.

    2007-01-01

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference

  18. Preliminary electrostatic and mechanical design of a SINGAP-MAMuG compatible accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Grando, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: luca.grando@igi.cnr.it; Dal Bello, S.; De Lorenzi, A. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Pilan, N. [DIE, Universita di Padova, Via Gradenigo 6A, I-35100 Padova (Italy); Rizzolo, A.; Zaccaria, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2009-06-15

    Each ITER NB injector shall provide 16.5 MW auxiliary power by accelerating a deuterium beam across a voltage of -1 MV. At present two possible alternatives for the accelerator are considered: the reference design, based on MAMuG electrostatic accelerator, where the total voltage is graded using five grids at intermediate steps of 200 kV, and the alternative concept, the SINGAP accelerator, for which the total voltage is held by one single gap. This paper focuses a preliminary feasibility study of integration of SINGAP accelerator grids into the support structure of a MAMuG type accelerator; the review or design of new electrostatic shields to improve the voltage withstanding capability of the system and the preliminary design of electrical and hydraulic connections routing from the bushing to the accelerator are also discussed. Electrostatic and mechanical analyses carried out to support the design are described in detail.

  19. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    Science.gov (United States)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  20. Design of GMP compliance radiopharmaceutical production facility in MINT

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Shaharum Ramli; M Rizal Mamat Ibrahim; Rosli Darmawan; Yusof Azuddin Ali; Jusnan Hashim

    2005-01-01

    In 1985, MINT built the only radiopharmaceutical production facility in Malaysia. The facility was designed based on IAEA (International Atomic Energy Agency) standard guidelines which provide radiation safety to the staff and the surrounding environment from radioactive contamination. Since 1999, BPFK (Biro Pengawalan Farmaseutikal Kebangsaan) has used the guidelines from Pharmaceutical Inspection Convention Scheme (PICS) to meet the requirements of the Good Manufacturing Practice (GMP) for Pharmaceutical Products. In the guidelines, the pharmaceutical production facility shall be designed based on clean room environment. In order to design a radiopharmaceutical production facility, it is important to combine the concept of radiation safety and clean room to ensure that both requirements from GMP and IAEA are met. The design requirement is necessary to set up a complete radiopharmaceutical production facility, which is safe, has high production quality and complies with the Malaysian and International standards. (Author)

  1. Design of a beam shaping assembly for an accelerator-based BNCT system

    International Nuclear Information System (INIS)

    Stichelbaut, F.; Forton, E.; Jongen, Y.

    2006-01-01

    A complete BNCT system based on a high-intensity proton accelerator is developed by the IBA company. The neutron beam is produced via the 7 Li(p,n) 7 Be reaction using a solid lithium target. The neutron energy spectrum is tailored with a beam shaping assembly surrounding the target. This device is the object of an extensive R and D project and is fully designed with the Monte Carlo simulation code MCNPX. The emphasis is put on the treatment quality, notably the radiation dose at the skin level, and the achievable neutron flux. (author)

  2. Facility Description 2012. Summary report of the encapsulation plant and disposal facility designs

    International Nuclear Information System (INIS)

    Palomaeki, J.; Ristimaeki, L.

    2013-10-01

    The purpose of the facility description is to be a specific summary report of the scope of Posiva's nuclear facilities (encapsulation plant and disposal facility) in Olkiluoto. This facility description is based on the 2012 designs and completing Posiva working reports. The facility description depicts the nuclear facilities and their operation as the disposal of spent nuclear fuel starts in Olkiluoto in about 2020. According to the decisions-in-principle of the government, the spent nuclear fuel from Loviisa and Olkiluoto nuclear power plants in operation and in future cumulative spent nuclear fuel from Loviisa 1 and 2, Olkiluoto 1, 2, 3 and 4 nuclear power plants, is permitted to be disposed of in Olkiluoto bedrock. The design of the disposal facility is based on the KBS-3V concept (vertical disposal). Long-term safety concept is based on the multi-barrier principle i.e. several release barriers, which ensure one another so that insufficiency in the performance of one barrier doesn't jeopardize long-term safety of the disposal. The release barriers are the following: canister, bentonite buffer and deposition tunnel backfill, and the host rock around the repository. The canisters are installed into the deposition holes, which are bored to the floor of the deposition tunnels. The canisters are enveloped with compacted bentonite blocks, which swell after absorbing water. The surrounding bedrock and the central and access tunnel backfill provide additional retardation, retention, and dilution. The nuclear facilities consist of an encapsulation plant and of underground final disposal facility including other aboveground buildings and surface structures serving the facility. The access tunnel and ventilation shafts to the underground disposal facility and some auxiliary rooms are constructed as a part of ONKALO underground rock characterization facility during years 2004-2014. The construction works needed for the repository start after obtaining the construction

  3. Improvement in performance and operational experience of 14 UD Pelletron accelerator facility, BARC-TIFR

    International Nuclear Information System (INIS)

    Bhagwat, P.V.

    2002-01-01

    14 UD Pelletron accelerator facility at Mumbai has been operational since 1989. The project MEHIA (Medium Energy Heavy Ion Accelerator) started in 1982 and was formally inaugurated on 30th December 1988. Since then the accelerator has been working round the clock. Improvement in accelerator performance and operational experience are described. (author)

  4. Design of hardware accelerators for demanding applications.

    NARCIS (Netherlands)

    Jozwiak, L.; Jan, Y.

    2010-01-01

    This paper focuses on mastering the architecture development of hardware accelerators. It presents the results of our analysis of the main issues that have to be addressed when designing accelerators for modern demanding applications, when using as an example the accelerator design for LDPC decoding

  5. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  6. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  7. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    Science.gov (United States)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  8. A novel method for designing and optimizing the layout of facilities in bathroom for the elderly in home-based rehabilitation.

    Science.gov (United States)

    Wang, Duojin; Wu, Jing; Lin, Qinglian

    2018-05-01

    The home-based rehabilitation of elderly patients improves their autonomy, independence and reintegration into society. Hence, a suitable environment plays an important role in rehabilitation, as do different assistance technologies. The majority of accidents at home involving elderly people occur in the bathroom. Therefore, the planning of the layout of facilities is important in this potentially dangerous area. This paper proposes an approach towards designing and optimizing the layout of facilities in the bathroom, based on logistical and nonlogistical relationships. A fuzzy-based analytical hierarchical process (fuzzy-AHP) is then proposed for a comprehensive evaluation of the alternatives for this layout plan. This approach was applied to the home of a 71 years old female patient, who was experiencing home-based rehabilitation. After the initial designing and optimizing of the layout of the facilities in her bathroom, a plan could then be created for her particular needs. The results of this research could then enable the home-based rehabilitation of elderly patients to be more effective. Value: This paper develops a new approach to design and optimize the layout of facilities in bathroom for the elderly. Implications for Rehabilitation Develop a new approach to design and optimize the layout of facilities in bathroom. Provide a mathematical and more scientific approach to home layout design for home-based rehabilitation. Provide new opportunities for research, for both the therapist and the patient to analyse the home facility layout.

  9. Design features of isotope production facility at Inshas cyclotron complex. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N [Nuclear Research Center, Atomic Energy Aurhority, Cairo, (Egypt)

    1996-03-01

    The nuclear research center, AEA, Egypt is erecting at its Inshas campus cyclotron complex for multidisciplinary use for research and application. The complex is to utilize a russian made AVF cyclotron accelerator of the type MGC-20 with MeV protons. Among its applications, the accelerator will be used for the production of short lived cyclotron isotopes. This article presents a concise description of the design features of isotope production facility to be annexed to the complex layout, schemes for radio waste, ventilation, and air conditioning systems. 2 figs., 2 tabs.

  10. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  11. Integrated on-line accelerator modeling at CEBAF

    International Nuclear Information System (INIS)

    Bowling, B.A.; Shoaee, H.; Van Zeijts, J.; Witherspoon, S.; Watson, W.

    1995-01-01

    An on-line accelerator modeling facility is currently under development at CEBAF. The model server, which is integrated with the EPICS control system, provides coupled and 2nd-order matrices for the entire accelerator, and forms the foundation for automated model- based control and diagnostic applications. Four types of machine models are provided, including design, golden or certified, live, and scratch or simulated model. Provisions are also made for the use of multiple lattice modeling programs such as DIMAD, PARMELA, and TLIE. Design and implementation details are discussed. 2 refs., 4 figs

  12. Electromagnetic modeling in accelerator designs

    International Nuclear Information System (INIS)

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described

  13. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  14. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    International Nuclear Information System (INIS)

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-01-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources

  15. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  17. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  18. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  19. Technical design report of spallation neutron source facility in J-PARC

    International Nuclear Information System (INIS)

    Sakamoto, Shinichi

    2012-02-01

    One of the experimental facilities in Japan Proton Accelerator Research Complex (J-PARC) is the Materials and Life Science Experimental Facility (MLF), where high-intensity neutron beams are used as powerful probes for basic research on materials and life science, as well as research and development in industrial engineering. Neutrons are generated with nuclear spallation reaction by bombarding a mercury target with high-intensity proton beams. The neutrons are slowed down with supercritical hydrogen moderators and then extracted as beams to each experimental apparatus. The principal design of the spallation neutron source is compiled in this comprehensive report. (author)

  20. Proposal for an accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.

    1975-07-01

    An Accelerator-based Neutron Generator is described that consists of a 30-MeV deuteron linear accelerator using a flowing liquid lithium target. With a continuous deuteron current of 100 milliamperes, a source intensity of more than 10 16 neutrons per second will be produced. The neutrons will be emitted in a roughly collimated beam. The proposed facility can be divided into two areas: the 30-MeV linear accelerator and the multiple-target experimental area. The 30-MeV accelerator will consist of eight rf accelerating cavities in a single vacuum tank, each cavity being powered by its own rf power amplifier operating at 50 MHz. To shield the beam bunches from the rf field when it is in the decelerating direction, 66 ''drift tubes'' will be included; the drift-tube structures will include quadrupole magnets which will keep the beam focused. The accelerator will produce a continuous beam of 100 milliamperes. Beam power will thus be 3.0 megawatts; total power including rf losses in the accelerating cavities will be 4.5 megawatts. The injectors for the linear accelerator will be two 500-kV dc accelerators, one for injection of D + ions and the other for D - ions. They can be used simultaneously or one can serve as a spare in case of breakdown or maintenance of the other. (U.S.)

  1. Selection and design of ion sources for use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Haynes, D.L.; Mills, G.D.; Olsen, D.K.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report

  2. The timing master for the FAIR accelerator facility

    International Nuclear Information System (INIS)

    Baer, R.C.; Fleck, T.; Kreider, M.; Mauro, S.

    2012-01-01

    One central design feature of the FAIR accelerator complex is a high level of parallel beam operation, imposing ambitious demands on the timing and management of accelerator cycles. Several linear accelerators, synchrotrons, storage rings and beam lines have to be controlled and reconfigured for each beam production chain on a pulse-to-pulse basis, with cycle lengths ranging from 20 ms to several hours. This implies initialization, synchronization of equipment on the time scale down to the ns level, inter-dependencies, multiple paths and contingency actions like emergency beam dump scenarios. The FAIR timing system will be based on White Rabbit (WR) network technology, implementing a central Timing Master (TM) unit to orchestrate all machines. The TM is subdivided into separate functional blocks: the Clock Master, which deals with time and clock sources and their distribution over WR, the Management Master, which administrates all WR timing receivers, and the Data Master, which schedules and coordinates machine instructions and broadcasts them over the WR network. The TM triggers equipment actions based on the transmitted execution time. Since latencies in the low μs range are required, this paper investigates the possibilities of parallelization in programmable hardware and discusses the benefits to either a distributed or monolithic timing master architecture. The proposed FPGA based TM will meet said timing requirements while providing fast reaction to interlocks and internal events and offers parallel processing of multiple signals and state machines. (authors)

  3. The EXCYT RIB facility at LNS

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Alba, R. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Calabretta, L. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Cuttone, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Di Bartolo, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Gammino, S. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Migneco, E. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Raia, G. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Rifuggiato, D. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Rovelli, A. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Sura, J. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Vinciguerra, D. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud; Wollnik, H. [Inst. Nazionale di Fisica Nucleare, Catania (Italy). Lab. Nazionale del Sud

    1996-11-11

    EXCYT, a project for a low energy ISOL facility at LNS, has been funded. It is based on two already existing particle accelerators. A K=800 superconducting cyclotron will deliver the primary beam of ions A{<=}48; E=50-80 MeV/amu. After its interaction in a thick target, the negatively ionized radioactive products (A<80) will be post-accelerated to 0.2-8 MeV/amu by a 15 MV SMP tandem. A description of the facility, including the fully redesigned ion optics, an overview of the design problems and the expected secondary beam intensities are presented. (orig.).

  4. The EXCYT RIB facility at LNS

    International Nuclear Information System (INIS)

    Ciavola, G.; Alba, R.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Gammino, S.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Sura, J.; Vinciguerra, D.; Wollnik, H.

    1996-01-01

    EXCYT, a project for a low energy ISOL facility at LNS, has been funded. It is based on two already existing particle accelerators. A K=800 superconducting cyclotron will deliver the primary beam of ions A≤48; E=50-80 MeV/amu. After its interaction in a thick target, the negatively ionized radioactive products (A<80) will be post-accelerated to 0.2-8 MeV/amu by a 15 MV SMP tandem. A description of the facility, including the fully redesigned ion optics, an overview of the design problems and the expected secondary beam intensities are presented. (orig.)

  5. Vacuum design for the disk-and-washer accelerator structure

    International Nuclear Information System (INIS)

    Ruhe, J.R.; Hansborough, L.D.

    1982-02-01

    The disk-and-washer (DAW) accelerator structure is being developed for several applications. Because of its complicated geometry and newness, vacuum calculations for the DAW accelerator structure are not yet formalized. The applicable vacuum equations for this structure are presented and correlations for it have been made with the vacuum data from the Clinton P. Anderson Meson Physics Facility side-coupled accelerator structure. A calculation is presented for the DAW structure proposed for the Pion Generator for Medical Irradiations (PIGMI) accelerator

  6. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  7. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  8. Facility design: introduction

    International Nuclear Information System (INIS)

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  9. Seismic acceleration map expected for Japanese central region

    International Nuclear Information System (INIS)

    Sugiyama, Takeshi; Maeda, Kouji; Ishii, Kiyoshi; Suzuki, Makoto.

    1990-01-01

    Since electric generating and supplying facilities scatter in large areas, the seismic acceleration map, which defines the anticipated earthquake ground motions in a broad region, is very useful information for the design of those facilities against large earthquakes. This paper describes the development of a seismic acceleration map for the Central Japanese Region by incorporating the analytical results based on historical earthquake records and active fault data using probability and statistics. In the region, there have occurred several destructive earthquakes; Anseitokai (1854, M = 8.4) and Tohnankai (1944, M = 7.9) earthquakes along the Nankai trough; Nohbi (1891, M = 8.0) and Fukui (1948, M = 7.1) earthquakes in inland ares. Some of the historical earthquake data were obtained by instrument last one hundred years, whereas others by literary descriptions for nearly 1,000 years. The active fault data, have been collected mainly from the surveys of fault topography and geology, and are considered to indicate the average seismic activity for the past million years. A proposed seismic acceleration map for the return period of 75 years, calculated on the free surface of base stratum, was estimated by the following way. The analytical result based on the historical earthquake records was adopted mainly, because the Japanese seismic design criteria have been developed based on them. The proposed seismic acceleration map was revised by including the result based on the active fault data for the areas, where historical earthquake records lack, and the result was smoothed to evaluate the final seismic acceleration map. (author)

  10. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    International Nuclear Information System (INIS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-01-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit. - Highlights: • A 3/6 MeV electron accelerator equipped with a high energy x-ray target was studied. • Monte Carlo modeling of photon flux was carried out for three accelerator configurations. • Human biological equivalent doses were evaluated within the accelerator facility building.

  11. Laser-plasma accelerators, acceleration of particles through laser-matter interaction at ultra-high intensity

    International Nuclear Information System (INIS)

    Lefebvre, E.

    2010-01-01

    This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)

  12. Accelerator-based intense neutron source for materials R ampersand D

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Accelerator-based neutron sources for R ampersand D of materials in nuclear energy systems, including fusion reactors, can provide sufficient neutron flux, flux-volume, fluence and other attractive features for many aspects of materials research. The neutron spectrum produced from the D-Li reaction has been judged useful for many basic materials research problems, and to be a satisfactory approximation to that of the fusion process. The technology of high-intensity linear accelerators can readily be applied to provide the deuteron beam for the neutron source. Earlier applications included the Los Alamos Meson Physics Facility and the Fusion Materials Irradiation Test facility prototype. The key features of today's advanced accelerator technology are presented to illustrate the present state-of-the-art in terms of improved understanding of basic physical principles and engineering technique, and to show how these advances can be applied to present demands in a timely manner. These features include how to produce an intense beam current with the high quality required to minimize beam losses along the accelerator and transport system that could cause maintenance difficulties, by controlling the beam emittance through proper choice of the operating frequency, balancing of the forces acting on the beam, and realization in practical hardware. A most interesting aspect for materials researchers is the increased flexibility and opportunities for experimental configurations that a modern accelerator-based source could add to the set of available tools. 8 refs., 5 figs

  13. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  14. Radiation shielding technology development for proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Lee, Y. O.; Cho, Y. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, M. H.; Sin, M. W.; Park, B. I. [Kyunghee Univ., Seoul (Korea, Republic of)] [and others

    2005-09-01

    This report was presented as an output of 2-year project of the first phase Proton Engineering Frontier Project(PEFP) on 'Radiation Shielding Technology Development for Proton Linear Accelerator' for 20/100 MeV accelerator beam line and facility. It describes a general design concept, provision and update of basic design data, and establishment of computer code system. It also includes results of conceptual and preliminary designs of beam line, beam dump and beam facilities as well as an analysis of air-activation inside the accelerator equipment. This report will guides the detailed shielding design and production of radiation safety analysis report scheduled in the second phase project.

  15. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

    1991-10-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab

  16. Design of PH-based accelerated life testing plans under multiple-stress-type

    International Nuclear Information System (INIS)

    Elsayed, E.A.; Zhang Hao

    2007-01-01

    Accelerated life testing (ALT) is used to obtain failure time data quickly under high stress levels in order to predict product life performance under design stress conditions. Most of the previous work on designing ALT plans is focused on the application of a single stress. However, as components or products become more reliable due to technological advances, it becomes more difficult to obtain significant amount of failure data within reasonable amount of time using single stress only. Multiple-stress-type ALTs have been employed as a means of overcoming such difficulties. In this paper, we design optimum multiple-stress-type ALT plans based on the proportional hazards model. The optimum combinations of stresses and their levels are determined such that the variance of the reliability estimate of the product over a specified period of time is minimized. The use of the model is illustrated using numerical example, and sensitivity analysis shows that the resultant optimum ALT plan is robust to the deviation in model parameters

  17. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  18. Cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING

    International Nuclear Information System (INIS)

    Tukihashi, Yoshihiro; Yoshida, Tadashi; Takekoshi, Eiko

    1979-03-01

    Measuring cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING were completed recently. Measures are taken to prevent penetration of noises into the measuring systems. The cable systems are described in detail, including power supplies and grounding for the measuring systems. (author)

  19. A provisional study of ADS within Turkic Accelerator Complex project

    International Nuclear Information System (INIS)

    Bilgin, P.S.; Caliskan, A.; Sultansoy, S.

    2011-01-01

    The Turkic Accelerator Complex (TAC) project has been developed with the support of the Turkish State Planning Organization by the collaboration of 10 Turkish universities. The complex is planned to have four main facilities, namely: SASE FEL Facility based on 1 GeV Electron Linac, Third Generation Synchrotron Radiation Facility (SR) based on 3.56 GeV Positron Synchrotron, Super-Charm factory (√s = 3.77 GeV) by colliding the electron beam coming from the linac with an energy of 1 GeV and positron beam coming through the positron ring with an energy of 3.56 GeV, GeV scale proton accelerator. Later has two-fold goal: Neutron Spallation Source (NSS) and ADS. The proton accelerator construction will have 3 MeV, 100 MeV, and 1 GeV phases. The technical design report is planned to be finished in 2013. Since Turkey has essential Thorium reserves the ADS becomes very attractive for our country as emerging energy technology. (author)

  20. Noise countermeasures for accelerator facilities as seen from earth

    Energy Technology Data Exchange (ETDEWEB)

    Yasumoto, Masaru [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    As seen from the viewpoint of noise countermeasures, the earth system for various experimental facilities is generally improper, for example independent earth method. It is considered that only by changing this to the earth system which is suitable to noise countermeasures, the antinoise property can be largely heightened. Also it is important to make earth system into that, to which the countermeasure technology suitable to the features of facilities is applied. The features of large accelerators and their building structures related to noise circulation are explained. As to the basic technology of the earth system that heightens antinoise property, induction shielding, the resistance-dependent and inductance-dependent zones in its frequency characteristics, the lowering of impedance, the shielding characteristics of various cables, the method of realizing low impedance, the method of absorbing same phase noise, the characteristics of superhigh permeability materials, and the restraint of interference noise voltage by reducing common impedance and restraining circulating noise current are discussed. As the concrete countermeasures, the earth system in accelerator buildings and beam lines are shown. (K.I.)

  1. Noise countermeasures for accelerator facilities as seen from earth

    International Nuclear Information System (INIS)

    Yasumoto, Masaru

    1996-01-01

    As seen from the viewpoint of noise countermeasures, the earth system for various experimental facilities is generally improper, for example independent earth method. It is considered that only by changing this to the earth system which is suitable to noise countermeasures, the antinoise property can be largely heightened. Also it is important to make earth system into that, to which the countermeasure technology suitable to the features of facilities is applied. The features of large accelerators and their building structures related to noise circulation are explained. As to the basic technology of the earth system that heightens antinoise property, induction shielding, the resistance-dependent and inductance-dependent zones in its frequency characteristics, the lowering of impedance, the shielding characteristics of various cables, the method of realizing low impedance, the method of absorbing same phase noise, the characteristics of superhigh permeability materials, and the restraint of interference noise voltage by reducing common impedance and restraining circulating noise current are discussed. As the concrete countermeasures, the earth system in accelerator buildings and beam lines are shown. (K.I.)

  2. FMIT: an accelerator-based neutron factory for fusion materials qualification

    International Nuclear Information System (INIS)

    Burke, R.J.; Hagan, J.W.; Trego, A.L.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special-purpose materials in support of fusion-power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high-energy neutrons to ensure materials damage characteristic of the deuterium-tritium power system. The facility, its testing role, the status, and major aspects of its design and supporting system development are described. Emphasis is given to programmatic elements and features incorporated in the accelerator and other systems to assure that the FMIT runs as a highly reliable fusion materials testing installation

  3. 7-MeV electron LINAC based pulse radiolysis facility at RPCD, BARC

    International Nuclear Information System (INIS)

    Naik, C.B.; Nadkarni, S.A.; Toley, M.A.; Shinde, S.J.; Naik, P.D.

    2017-01-01

    7-MeV electron LINAC based pulse radiolysis facility is operational in Chemistry Group of BARC since 1986. The Accelerator is housed in B-132 room in basement of Modular Labs. BARC Accelerator was procured from Radiation Dynamics Inc. UK and its detection system was indigenously developed

  4. Target/Blanket Design for the Accelerator Production of Tritium Plant

    International Nuclear Information System (INIS)

    Cappiello, M. W.

    1997-01-01

    The Accelerator Production of Tritium Target/Blanket (T/B) system is comprised of the T/B assembly and the attendant heat removal systems. The T/B assembly produces tritium using a high energy proton beam, and a spallation neutron source. The supporting heat removal systems safely remove the heat deposited by the proton beam during both normal and off-normal conditions. All systems reside within the T/B building, which is located at the end of a linear accelerator. Protons are accelerated to an energy of 1700 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons interact with tungsten and lead nuclei to produce neutrons through the process of nuclear spallation. Neutron capture in 3 He gas produces tritium which is removed on a continual basis in an adjacent Tritium Separation Facility (TSF). The T/B assembly is modular to allow for replacement of spent components and minimization of waste. Systems and components are designed with safety as a primary consideration to minimize risk to the workers and the public

  5. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  6. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design.

    Science.gov (United States)

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-11-23

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.

  7. Design of commercial dyeing wastewater treatment facility with e-beam (based on the results of pilot plant)

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Sung Myun; Kim, Jin-Kyu; Kim, Yuri; Yang, Mun Ho; Choi, J.S.; Ahn, S.J.; Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.

    2001-01-01

    A pilot plant for a large-scale test of dyeing facility wastewater (flow rate of 1,000m 3 per day from 80,000m 3 /day of total wastewater) was constructed and operated with the electron accelerator of 1MeV, 40kW. The accelerator was installed in February 1998 and the Tower Style Biological treatment facility (TSB) was also installed in October 1998. The wastewater is injected under the e-beam irradiation area through the nozzle type injector to obtain the adequate penetration depth. The speed of injection could be varied upon the dose and dose rate. Performance statistics are given

  8. Dedicated medical ion accelerator design study. Final report

    International Nuclear Information System (INIS)

    1977-12-01

    Results and conclusions are reported from a design study for a dedicated medical accelerator. Basing efforts on the current consensus regarding medical requirements, the resulting demands on accelerator and beam delivery systems were analyzed, and existing accelerator technology was reviewed to evaluate the feasibility of meeting these demands. This general analysis was augmented and verified by preparing detailed preliminary designs for sources of therapeutic beams of neutrons, protons and heavy ions. The study indicates that circular accelerators are the most desirable and economical solutions for such sources. Synchrotrons are clearly superior for beams of helium and heavier ions, while synchrotrons and cyclotrons seem equally well suited for protons although they have different strengths and weaknesses. Advanced techniques of beam delivery are of utmost importance in fully utilizing the advantages of particle beams. Several issues are invloved here. First, multi-treatment room arrangements are essential for making optimal use of the high dose rate capabilities of ion accelerators. The design of corresponding beam switching systems, the principles of which are already developed for physics experimental areas, pose no problems. Second, isocentric beam delivery substantially enhances flexibility of dose delivery. After several designs for such devices were completed, it was concluded that high field magnets are necessary to keep size, bulk and cost acceptable. Third, and most important, is the generation of large, homogeneous radiation fields. This is presently accomplished with the aid of scattering foils, occluding rings, collimators, ridge filters, and boluses. A novel approach, three-dimensional beam scanning, was developed here, and the most demanding components of such a system (fast-scanning magnet and power supply) were built and tested

  9. BEAM LINE DESIGN FOR THE CERN HIRADMAT TEST FACILITY

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×1013 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  10. Beam Line Design for the CERN Hiradmat Test Facility

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2010-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×10**13 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  11. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  12. Design and performance of a 3.3-MeV linear induction accelerator (LIA)

    International Nuclear Information System (INIS)

    Cheng Nianan; Zhang Shouyun; Tao Zucong

    1992-01-01

    A 3.3-MeV linear induction accelerator (LIA) has been designed and constructed at the China Academy of Engineering Physics. The parameters of 3.4 MeV, 2 kA, 80 ns and 1 x 10 4 A/(rad.cm) 2 have been achieved. It has been used for SG-1 FEL experiments. The accelerator is mounted on a movable frame so that , after moving 3 m transversely, it can be assembled with more modules into a 10-MeV LIA. The authors summarize the physics and engineering aspects of the LIA facility and describe the measuring means of characters for the beam

  13. Upgrading of the AMS facility at the Koffler 14UD Pelletron accelerator

    CERN Document Server

    Berkovits, D; Bordeanu, C; Ghelberg, S; Hass, M; Heber, O; Paul, M; Shahar, Y; Verri, G; 10.1016/j.nimb.2004.04.033

    2004-01-01

    The AMS facility based on a 14UD Pelletron tandem accelerator has been upgraded in recent years to support an active and diversified research program. A new dedicated AMS ion source beam line merging at 45 degrees with the existing injection line through a 45 degrees electrostatic deflector is in operation. The multi-sample high- intensity Cs sputter ion source stands on a separate 120 kV platform and is remote-controlled through a hybrid infrared-fiber-optics link operated either manually or by the accelerator-control computer, ensuring safe and reliable operation. Independent current preamplifiers are used in Faraday cup current readings down to the pA range. The accelerator computer-control system was upgraded to Lab View 6.1, allowing a PC server to control and read out all hardware components while one or more remote PC clients run the AMS software. Ad hoc sequences of commands, written in a script macro language, are run from a client computer to perform an automated AMS measurement. The present capabil...

  14. Decontamination/decommissioning of the Princeton Pennsylvania Accelerator Facility

    International Nuclear Information System (INIS)

    Bair, W.A.

    1990-01-01

    The Princeton Pennsylvania Accelerator Facility was a 3 GeV proton synchrotron operated jointly by Princeton University and the University of Pennsylvania from 1962 to 1972 on Princeton University's Forrestal Campus. During synchrotron operations, certain portions of the PPA central accelerator chamber and structural members became neutron activated. Upon termination of accelerator operations due to funding problems, Princeton desired to utilize the PPA site for other purposes, and commissioned a study to investigate Decommissioning and Decontamination options and methodologies. The study investigated several methods for in-place, surgically removing the neutron activated from the uncontaminated concrete. Since each technique produced different volumes of removed concrete all methods investigated were studied from the total economics of the problem and the cost of limiting and clean-up of secondary contamination. The decontamination method selected used a diamond wire cutting technique to sever in-place, the activated concrete from the uncontaminated. Large, intact, activated structural segments were cut and removed from the central accelerator chamber's floor, outer walls, internal columns and ceiling. Nonactivated portions of the structure, and the remainder of the central chamber were subsequently razed by conventional demolition methods. The paper describes the decontamination methodology, its effectiveness, disposal economics and radiological safety problems related thereto

  15. Present status of Accelerator-Based BNCT.

    Science.gov (United States)

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  16. Use of base isolation techniques for the design of high-level waste storage facility enclosure at INEL

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, Chun K.; Beer, M.J.

    1993-08-01

    Current Department of Energy criteria for facilities subjected to natural hazards provide guidelines to place facilities or portions of facilities into usage categories. Usage categories are based on characteristics such as mission dependence, type of hazardous materials involved, and performance goals. Seismic requirements are significantly more stringent for facilities falling into higher ''hazard facility use categories''. A special problem arises in cases where a facility or portion of a facility is dependent on another facility of lower ''hazard facility use category'' for support or protection. Creative solutions can minimize the cost Unpact of ensuring that the lower category item does not compromise the performance of the higher category item. In this paper, a base isolation solution is provided for a ''low hazard facility use category'' weather enclosure designed so it will not collapse onto a ''high hazard facility use category'' high level waste storage facility at INEL. This solution is compared to other more conventional procedures. Details, practical limitations, licensing and regulatory considerations, and cost comparisons are provided

  17. Accelerator-driven neutron sources for materials research

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple directions, time-scheduled dose patterns, and other features can be provided, opening new experimental opportunities. New designs have also been used to ensure hands-on maintenance on the accelerator in these factory-type facilities. Designs suitable for proposals such as the Japanese Energy-Selective Intense Neutron Source, and the international Fusion Materials Irradiation Facility are discussed

  18. The rare isotope accelerator (RIA) facility project

    International Nuclear Information System (INIS)

    Christoph Leemann

    2000-01-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams

  19. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  20. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  1. ASAP - A symbolic algebra package for accelerator design

    International Nuclear Information System (INIS)

    Bozoki, E.; Friedman, A.; Ben-Zvi, I.

    1991-01-01

    The design of a modern accelerator is a complicated task that involves the integration of many devices. As a consequence many parameters must be optimized in order to achieve a satisfactory result. Even the design of a simple subsystem, such as a bending system, requires that the designer will pick a successful choice from a wide range of alternatives. Usually, the task is too large to allow an analytical design, and the designer has to use a computer code (such as MAD or TRANSPORT) to simulate the system and numerically find the desired conditions. The disadvantages of this numerical method are, that (1) the solutions, i.e. the choice of the parameters may or may not be optimal and (2) each change in a parameter requires to recalculate the whole system, thus a detailed design is lengthy and costly. The authors report the conceptual design and primary implementation steps of a symbolic algebra program based on MACSYMA for the design of accelerators, storage rings and transport lines. The motivation for using symbolic algebra is discussed and a design case is presented that shows the advantage of this approach

  2. 78 FR 73144 - Acceleration of Broadband Deployment by Improving Wireless Facilities Siting Policies

    Science.gov (United States)

    2013-12-05

    ... license is required, which in turn extends to any apparatus for the transmission of energy, or... No. 11-59; FCC 13-122] Acceleration of Broadband Deployment by Improving Wireless Facilities Siting... of new wireless facilities and on rules to implement statutory provisions governing State and local...

  3. Breakdowns and solutions in 15 UD pelletron ion accelerator facility at Inter-University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Joshi, R.; Singh, P.; Suraj; Nishal, S.M.; Panwar, N.S.; Singh, M.P.; Kumar, R.; Prasad, J.; Sota, M.; Patel, V.P.; Sharma, R.P.; Kumar, Pankaj; Devi, K.D.; Ojha, S.; Gargari, S.; Chopra, S.; Kanjilal, D.

    2013-01-01

    15UD Pelletron accelerator, installed in Inter-University Accelerator Centre (IUAC), New Delhi, is a tandem ion accelerator and is performing well since its commissioning. Constant efforts have been put to keep high uptime and better performance of the accelerator for more than two decades. In recent years, the facility was improved by many modifications and up gradations. It has also gone through a few major breakdowns related to charging system and fiber optic cables. Out of two charging systems, one system failed and devices housed in tank stopped working due to the damage of fiber optic cables. The reasons for both of these breakdowns were studied thoroughly. The entire charging system and fiber optic cable network have been rebuilt and tested. The diagnostic techniques and maintenance methods for these two breakdowns will be discussed in this paper. (author)

  4. Radiation protection system installation for the accelerator production of tritium/low energy demonstration accelerator project (APT/LEDA)

    CERN Document Server

    Wilmarth, J E; Tomei, T L

    2000-01-01

    The APT/LEDA personnel radiation protection system installation was accomplished using a flexible, modular proven system which satisfied regulatory orders, project design criteria, operational modes, and facility requirements. The goal of providing exclusion and safe access of personnel to areas where prompt radiation in the LEDA facility is produced was achieved with the installation of a DOE-approved Personnel Access Control System (PACS). To satisfy the facility configuration design, the PACS, a major component of the overall radiation safety system, conveniently provided five independent areas of personnel access control. Because of its flexibility and adaptability the Los-Alamos Neutron- Science-Center-(LANSCE)-designed Radiation Security System (RSS) was efficiently configured to provide the desired operational modes and satisfy the APT/LEDA project design criteria. The Backbone Beam Enable (BBE) system based on the LANSCE RSS provided the accelerator beam control functions with redundant, hardwired, ta...

  5. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Science.gov (United States)

    Remec, Igor; Gabriel, Tony A.; Wendel, Mark W.; Conner, David L.; Burgess, Thomas W.; Ronningen, Reginald M.; Blideanu, Valentin; Bollen, Georg; Boles, Jason L.; Reyes, Susana; Ahle, Larry E.; Stein, Werner

    2006-06-01

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power—400 kW—will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions—and produce rare isotopes—in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u 3He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the 3He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  6. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  7. Design for a high intensity slow positron facility using forward scattered radiation from an electron linear accelerator

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Lewis, T.A.; Alsmiller, R.G. Jr.; Peelle, R.; Pendyale, S.; Dale, J.M.; Rosseel, T.M.

    1986-01-01

    A tungsten moderator will be placed behind the target of the Oak Ridge Electron Linear Accelerator (ORELA) to convert gamma radiation to slow positrons. These will be extracted and led through evacuated solenoids to an experiment room. A Penning trap will be used to extend the slow positron pulses to achieve duty factors of 10% or greater. The facility will be used for atomic and molecular physics studies, positron microscopy, and materials research. Operations will be inexpensive and will not interfere with the normal function of ORELA, the measurement of neutron cross sections by flight-time spectrometry

  8. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  9. Design and fabrication of Radio Frequency Quadrupole (RFQ) Accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Ahuja, R.; Kothari, A.; Safvan, C.P.; Kumar, Sugam; Ram Sankar, P.

    2013-01-01

    As part of the accelerator augmentation program at Inter-University Accelerator Centre (IUAC), a high current injector (HCI) is being developed to inject high currents of highly charged ions into the superconducting LINAC. The ion beams produced by the Electron Cyclotron Resonance (ECR) based PKDELIS ion source will be injected into a Radio Frequency Quadrupole Accelerator (RFQ). The RFQ focuses and accelerates the ion beam. For the development of the RFQ Accelerator, a prototype of nearly half length was successfully built at IUAC to test the RF, thermal and mechanical design. The prototype is designed for 30 kW power at 48.5 MHz. This paper presents the mechanical design, fabrication and assembly of the final 2.5 m long RFQ. (author)

  10. Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Kemp, E.L.; Trego, A.L.

    1979-01-01

    A Fusion Materials Irradiation Test Facility is being designed to be constructed at Hanford, Washington, The system is designed to produce about 10 15 n/cm-s in a volume of approx. 10 cc and 10 14 n/cm-s in a volume of 500 cc. The lithium and target systems are being developed and designed by HEDL while the 35-MeV, 100-mA cw accelerator is being designed by LASL. The accelerator components will be fabricated by US industry. The total estimated cost of the FMIT is $105 million. The facility is scheduled to begin operation in September 1984

  11. PXIe-based LLRF architecture and versatile test bench for heavy ion linear acceleration

    OpenAIRE

    Jugo, I. Badillo J.; Portilla, J.; Feutchwanger, J.; Vicente, C. San; Etxebarria, V.

    2014-01-01

    This work describes the architecture of a digital LLRF system for heavy-ion acceleration developed under the specification of the projected future heavy-ion accelerator facility in Huelva, Spain. A prototype LLRF test bench operating at 80MHz in CW mode has been designed and built. The core LLRF control has been digitally implemented on a PXIe chassis, including an FPGA for digital signal processing and a real time controller. The test bench is completed with a good quality signal generator u...

  12. Automation tools for accelerator control a network based sequencer

    International Nuclear Information System (INIS)

    Clout, P.; Geib, M.; Westervelt, R.

    1991-01-01

    In conjunction with a major client, Vista Control Systems has developed a sequencer for control systems which works in conjunction with its realtime, distributed Vsystem database. Vsystem is a network-based data acquisition, monitoring and control system which has been applied successfully to both accelerator projects and projects outside this realm of research. The network-based sequencer allows a user to simply define a thread of execution in any supported computer on the network. The script defining a sequence has a simple syntax designed for non-programmers, with facilities for selectively abbreviating the channel names for easy reference. The semantics of the script contains most of the familiar capabilities of conventional programming languages, including standard stream I/O and the ability to start other processes with parameters passed. The script is compiled to threaded code for execution efficiency. The implementation is described in some detail and examples are given of applications for which the sequencer has been used

  13. Accelerator-TEM interface facility and application

    International Nuclear Information System (INIS)

    Liu Chuansheng; Li Ming; He Jun; Yang Zheng; Zhou Lin; Wang Zesong; Guo Liping; Jiang Changzhong; Yang Shibo; Fu Dejun; Fan Xiangjun; Liu Jiarui; Lee J C

    2010-01-01

    An accelerator-TEM interface facility has been established at Wuhan University in 2008. The system consists of an H800 TEM linked to a 200 kV ion implanter and a 2 x 1.7 MV tandem accelerator. Nitrogen ions at 115 keV were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 180 nA. Structural evolution caused by ion irradiation in Si, GaAs, nanocrystal Ag was observed in situ. The in situ observation showed that the critical implantation dose for amorphization of Si is 10 14 cm -2 . The nuclear material C276 samples implanted with 115 keV Ar + was also studied, and dislocation loops sized at 3-12 nm were clearly observed after implantation to doses of over 1 x 10 15 cm -2 . The density of the loops increased with the dose. Evolution to polycrystalline and amorphous structures were observed at 5 x l0 15 cm -2 and 3 x 10 16 cm -2 , respectively. An in situ RBS/C chamber was installed on the transport line of the accelerator-TEM interface system. This enables in situ measurement of composition and location of the implanted species in lattice of the samples. In addition, a 50 kV low-energy gaseous ion generator was installed close to the TEM chamber, which facilitates in situ TEM observation of helium bubbles formed in helium-implanted materials. (authors)

  14. Accelerator-based atomic physics experiments with photon and ion beams

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1984-01-01

    Accelerator-based atomic physics experiments at Brookhaven presently use heavy-ion beams from the Dual MP Tandem Van de Graaff Accelerator Facility for atomic physics experiments of several types. Work is presently in progress to develop experiments which will use the intense photon beams which will be available in the near future from the ultraviolet (uv) and x-ray rings of the National Synchrotron Light Source (NSLS). Plans are described for experiments at the NSLS and an exciting development in instrumentation for heavy-ion experiments is summarized

  15. Development of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.; Kusano, J.; Hasegawa, K.; Ouchi, N.; Oguri, H.; Kinsho, M.; Touchi, Y.; Honda, Y.; Mukugi, K.; Ino, H.; Noda, F.; Akaoka, N.; Kaneko, H.; Chishiro, E.; Fechner, B.

    1997-01-01

    The high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 5.33mA has been proposed for the Neutron Science Project (NSP) at JAERI. the NSP is aiming at exploring nuclear technologies for nuclear waste transmutation based on a proton induced spallation neutrons. The proposed accelerators facilities will be also used in the various basic research fields such as condensed matter physics in combination with a high intensity proton storage ring. The R and D work has been carried out for the components of the front-end of the proton accelerator. For the high energy portion above 100 MeV, superconducting (SC) accelerator linac has been designed and developed as a major option. (Author) 7 refs

  16. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities

    International Nuclear Information System (INIS)

    Lourenco, Manuel Jacinto Martins

    2010-01-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  17. Bioimaging of cells and tissues using accelerator-based sources.

    Science.gov (United States)

    Petibois, Cyril; Cestelli Guidi, Mariangela

    2008-07-01

    A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.

  18. Ford motor company NDE facility shielding design

    International Nuclear Information System (INIS)

    Metzger, R. L.; Van Riper, K. A.; Jones, M. H.

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations. (authors)

  19. Ford Motor Company NDE facility shielding design.

    Science.gov (United States)

    Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.

  20. Applications of 3-D Maxwell solvers to accelerator design

    International Nuclear Information System (INIS)

    Chou, W.

    1990-01-01

    This paper gives a brief discussion on various applications of 3-D Maxwell solvers to accelerator design. The work is based on our experience gained during the design of the storage ring of the 7-GeV Advanced Photon Source (APS). It shows that 3-D codes are not replaceable in many cases, and that a lot of work remains to be done in order to establish a solid base for 3-D simulations

  1. The ORION Facility

    International Nuclear Information System (INIS)

    Noble, Robert

    2003-01-01

    ORION will be a user-oriented research facility for understanding the physics and developing the technology for future high-energy particle accelerators, as well as for research in related fields. The facility has as its centerpiece the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear Accelerator Center (SLAC). The NLCTA will be modified with the addition of a new, high-brightness photoinjector, its drive laser, an S-band rf power system, a user laser room, a low-energy experimental hall supplied with electron beams up to 60 MeV in energy, and a high-energy hall supplied with beams up to 350 MeV. The facility design and parameters are described here along with highlights from the 2nd ORION Workshop held in February 2003

  2. A beam-profile monitor for the BNL Accelerator Test Facility (ATF)

    International Nuclear Information System (INIS)

    Russell, D.P.; McDonald, K.T.

    1989-01-01

    A beam-profile monitor has been designed to diagnose the 5-MeV high-brightness electron beam from the rf gun of the BNL Accelerator Test Facility (ATF). The monitor consists of a phosphor screen viewed by a CCD camera. The video images are digitized and stored by a framegrabber and analyzed by an IBM PC-AT to extract the emittance. Details of the hardware configuration are presented, along with the spatial resolution of the system measured as a function of phosphor-screen thickness. The strategies which will be used to measure the transverse and longitudinal emittances are briefly mentioned. The system should be capable of measuring a transverse geometric emittance of around 1 mm-mrad, as will be typical of the ATF beam. 6 refs., 2 figs

  3. Injector system design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Harami, T.; Yokomizo, H.; Ohtsuka, H.

    1990-01-01

    The 8 GeV synchrotron radiation facility, named SPring-8, which will be constructed at Nishi-harima in Hyogo-ken, is designed jointly by JAERI (Japan Atomic Energy Research Institute and RIKEN (Institute of Physical and Chemical Research) under the supervision of Science and Technology Agency (STA) of the Japanese government. The facility provides photon in the X-ray and hard X-ray domains with high flux and high brilliance. The major characteristics of the storage ring are the low emittance and the large number of straight sections. Combining the low emittance beam with long insertion devices, several orders of magnitude improvement in intensity and brightness are expected. The injector system of SPring-8 is composed of a linac and a synchrotron. Not only electrons but positrons can be accelerated by the linac. These particles are injected into the synchrotron and further accelerated to 8 GeV. (N.K.)

  4. Radiological Research Accelerator Facility. Progress report, April 1, 1984-March 31, 1985

    International Nuclear Information System (INIS)

    Rossi, H.H.

    1985-01-01

    The aim of the Radiological Research Accelerator Facility (RARAF) was to provide a source of monoenergetic neutrons for studies in radiation biology, dosimetry and microdosimetry. The research has provided insight into the biological action of radiation and its relation to energy distribution in the cell as described by the theory of dual radiation action. This status report on the facility includes descriptions of the capabilities and layout, staffing, radiation safety, and a chronological account of the development and use of the facilities. 5 references, 2 figures

  5. Scaling laws of design parameters for plasma wakefield accelerators

    International Nuclear Information System (INIS)

    Uhm, Han S.; Nam, In H.; Suk, Hyyong

    2012-01-01

    Simple scaling laws for the design parameters of plasma wakefield accelerators were obtained using a theoretical model, which were confirmed via particle simulation studies. It was found that the acceleration length was given by Δx=0.804λ p /(1−β g ), where λ p is the plasma wavelength and β g c the propagation velocity of the ion cavity. The acceleration energy can also be given by ΔE=(γ m −1)mc 2 =2.645mc 2 /(1−β g ), where m is the electron rest mass. As expected, the acceleration length and energy increase drastically as β g approached unity. These simple scaling laws can be very instrumental in the design of better-performing plasma wakefield accelerators. -- Highlights: ► Simple scaling laws for the design parameters of laser wakefield accelerators were obtained using a theoretical model. ► The scaling laws for acceleration length and acceleration energy were compared with particle-in-cell simulation results. ► The acceleration length and the energy increase drastically as β g approaches unity. ► These simple scaling laws can be very instrumental in the design of laser wakefield accelerators.

  6. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D + )-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m 2 , 20 dpa/year for Fe) in a volume of 500 cm 3 for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  7. Unified 1.9...4.0 MeV linear accelerators with interchangeable accelerating structures for customs inspection

    International Nuclear Information System (INIS)

    Budtov, A.A.; Klinov, A.P.; Krestianinov, A.S.

    2004-01-01

    A series of compact linear electron accelerators for 1.9, 2.5 and 4.0 MeV equipped with a local radiation shielding has been designed and constructed in the NPK LUTS, the D.V.Efremov Institute (NIIEFA). The accelerators are intended for mobile facilities used for customs inspection of large-scale containers. Results of optimizing calculations of irradiator parameters and electron dynamics, verified under accelerators testing, are presented in the report. The main design approaches allowing the construction of unified accelerators with interchangeable accelerating structures for energies in the range of 1.9...4.0 MeV are also given

  8. Orientation to pollution prevention for facility design

    Energy Technology Data Exchange (ETDEWEB)

    Raney, E.A.; Whitehead, J.K.; Encke, D.B. [Westinghouse Hanford Co., Richland, WA (United States); Dorsey, J.A. [Kaiser Engineers Hanford Co., Richland, WA (United States)

    1994-01-01

    This material was developed to assist engineers in incorporating pollution prevention into the design of new or modified facilities within the U.S. Department of Energy (DOE). The material demonstrates how the design of a facility can affect the generation of waste throughout a facility`s entire life and it offers guidance on how to prevent the generation of waste during design. Contents include: Orientation to pollution prevention for facility design training course booklet; Pollution prevention design guideline; Orientation to pollution prevention for facility design lesson plan; Training participant survey and pretest; and Training facilitator`s guide and schedule.

  9. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    International Nuclear Information System (INIS)

    Bohn, C.L.

    1997-01-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 μm wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design

  10. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, C.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  11. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    Science.gov (United States)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  12. R and D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Geer, Stephen

    2010-01-01

    This document contains a description of a multi-year national R and amp;D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R and D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R and D and, as the P5 panel has

  13. Design of the 'half-size' ITER neutral beam source for the test facility ELISE

    International Nuclear Information System (INIS)

    Heinemann, B.; Falter, H.; Fantz, U.; Franzen, P.; Froeschle, M.; Gutser, R.; Kraus, W.; Nocentini, R.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D.; Agostinetti, P.; Jiang, T.

    2009-01-01

    In 2007 the radio frequency driven negative hydrogen ion source developed at IPP in Garching was chosen by the ITER board as the new reference source for the ITER neutral beam system. In order to support the design and the commissioning and operating phases of the ITER test facilities ISTF and NBTF in Padua, IPP is presently constructing a new test facility ELISE (Extraction from a Large Ion Source Experiment). ELISE will be operated with the so-called 'half-size ITER source' which is an intermediate step between the present small IPP RF sources (1/8 ITER size) and the full size ITER source. The source will have approximately the width but only half the height of the ITER source. The modular concept with 4 drivers will allow an easy extrapolation to the full ITER size with 8 drivers. Pulsed beam extraction and acceleration up to 60 kV (corresponding to pre-acceleration voltage of SINGAP) is foreseen. The aim of the design of the ELISE source and extraction system was to be as close as possible to the ITER design; it has however some modifications allowing a better diagnostic access as well as more flexibility for exploring open questions. Therefore one major difference compared to the source of ITER, NBTF or ISTF is the possible operation in air. Specific requirements for RF sources as found on IPP test facilities BATMAN and MANITU are implemented [A. Staebler, et al., Development of a RF-driven ion source for the ITER NBI system, SOFT Conference 2008, Fusion Engineering and Design, 84 (2009) 265-268].

  14. Safety design of the international fusion materials irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamaki, Daiju; Katsuta, Hiroji; Moeslang, Anton; Jameson, R.A.; Martone, Marcello; Shannon, T.E.

    1997-11-01

    In the Conceptual Design Activity of the IFMIF, major subsystems, as well as the entire facility is carefully designed to satisfy the safety requirements for any possible construction sites. Each subsystem is qualitatively analyzed to identify possible hazards to the workers, public and environments using Failure Mode and Effect Analysis (FMEA). The results are reflected in the design and operation procedure. Shielding of radiation, particularly neutron around the test cell is one of the most important issue in normal operation. Radiation due to beam halo and activation is a hazard for operation personnel in the accelerator system. For the maintenance, remote handling technology is designed to be applied in various facilities of the IFMIF. Lithium loop and target system hold the majority of the radioactive material in the facility. Tritium and beryllium-7 are generated by the nuclear reaction during operation and thus needed to be removed continuously. They are also the potential hazards of airborne source in off-normal events. Minimization of inventory, separation and immobilization, and multiple confinement are considered in the design. Generation of radioactive waste is anticipated to be minor, but waste treatment systems for gas, liquid and solid wastes are designed to minimize the environmental impact. Lithium leak followed by a fire is a major concern, and extensive prevention plan is made in the target design. One of the design option considered is composed of; primary enclosure of the lithium loop, secondary containment filled with positive pressure argon, and an air tight lithium cell made of concrete with a steel lining. This study will report some technical issues considered in the design of IFMIF. It was concluded that the IFMIF can be designed and constructed to meet or exceed current safely standards for workers, public and the environment with existing technology and reasonable construction cost. (J.P.N.)

  15. Report of the Panel on Electron Accelerator Facilities, DOE/NSF Nuclear Science Advisory Committee

    International Nuclear Information System (INIS)

    1983-04-01

    This Panel finds that the highest priority for new accelerator construction in the US nuclear physics program is for an electron accelerator of high duty factor capable of producing beams at any energy in the range from 500 to 4000 MeV. After detailed study and consideration of the proposals for such facilities submitted to it, the Panel recommends: that the proposal submitted by the Southeastern University Research Association (SURA) be accepted and funded for the construction of a new National Electron Accelerator Laboratory (NEAL) centering on a 4 GeV linear accelerator-stretcher ring system capable of delivering intense, high duty factor, electron beams in the energy range from 500 to 4000 MeV. Additional recommendations relating to this principal one are to be found in the body of this report. As modified by the Panel consequent to its own studies and analyses, the estimated cost (in 1983 dollars) of the accelerator complex is 111.8 million dollars; of the entire laboratory is 146.8 million dollars; and the operating cost averaged over the first five years of operation is 18.1 million dollars per year. The projected 15 year total cost of the project is 418.3 million dollars. The construction period is estimated to be 4.5 years. The NEAL Laboratory, from the outset will be constructed and managed as a national rather than a regional facility and will provide the United States with a truly unique facility for research in electromagnetic physics

  16. An outline of the proton accelerator for the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    A research project has been proposed in JAERI aiming at exploring new basic researches and nuclear energy engineering based on a high intensity proton linac with a 1.5 GeV and 8 MW beam. The research complex will be composed of facilities such as the Neutron Scattering Facility for condensed matter physics and the Nuclear Energy Related Facility for engineering test of nuclear waste transmutation. The R and D has been carried out for the components of the low energy part of the accelerator; ion source, RFQ, DTL and RF source. For the high energy portion above 100 MeV, the development on a superconducting accelerating cavity as a major option has been performed. The paper will present the summary on a development plan to build the accelerator and the results of conceptual design study and the R and D work. (author)

  17. LEGO: A modular accelerator design code

    International Nuclear Information System (INIS)

    Cai, Y.; Donald, M.; Irwin, J.; Yan, Y.

    1997-08-01

    An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and nonlinear case. Currently, the code is used to design and simulate the lattices of the PEP-II. It will also be used for the commissioning

  18. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  19. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 1, contains cost estimate summaries for a monitored retrievable storage (MRS) facility. The cost estimate is based on the engineering performed during the conceptual design phase of the MRS Facility project

  20. Effluent Monitoring System Design for the Proton Accelerator Research Center of PEFP

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Mun, Kyeong Jun; Cho, Jang Hyung; Jo, Jeong Hee

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. Also the IAC recommended maximization of space utilization and construction cost saving. After GA(General Arrangement) is made a decision, it is necessary to evaluate the radiation analysis of every controlled area in the proton accelerator research center such as accelerator tunnel, Klystron gallery, beam experimental hall, target rooms and ion beam application building to keep dose rate below the ALARA(As Low As Reasonably achievable) objective. Our staff has reviewed and made a shielding design of them. In this paper, According to accelerator operation mode and access conditions based on radiation analysis and shielding design, we made the exhaust system configuration of controlled area in the proton accelerator research center. Also, we installed radiation monitor and set its alarm value for each radiation area

  1. Design of a ram accelerator mass launch system

    Science.gov (United States)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  2. Preliminary design of a 10 MV ion accelerator

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Celata, C.M.; Faltens, A.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C + , Al + , or Al ++ ) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented

  3. Mechanical Design of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Toral, F

    2014-01-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques

  4. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, Fernando

    2014-07-17

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  5. Mechanical Design of Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, F [Madrid, CIEMAT (Spain)

    2014-07-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  6. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  7. Use of the TACL [Thaumaturgic Automated Control Logic] system at CEBAF [Continuous Electron Beam Accelerator Facility] for control of the Cryogenic Test Facility

    International Nuclear Information System (INIS)

    Navarro, E.; Keesee, M.; Bork, R.; Grubb, C.; Lahti, G.; Sage, J.

    1989-01-01

    A logic-based control software system, called Thaumaturgic Automated Control Logic (TACL), is under development at the Continuous Electron Beam Accelerator Facility in Newport News, VA. The first version of the software was placed in service in November, 1987 for control of cryogenics during the first superconducting RF cavity tests at CEBAF. In August, 1988 the control system was installed at the Cryogenic Test Facility (CTF) at CEBAF. CTF generated liquid helium in September, 1988 and is now in full operation for the current round of cavity tests. TACL is providing a powerful and flexible controls environment for the operation of CTF. 3 refs

  8. System integration of RF based negative ion experimental facility at IPR

    Science.gov (United States)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  9. System integration of RF based negative ion experimental facility at IPR

    International Nuclear Information System (INIS)

    Bansal, G; Bandyopadhyay, M; Singh, M J; Gahlaut, A; Soni, J; Pandya, K; Parmar, K G; Sonara, J; Chakraborty, A

    2010-01-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ∼5 x 10 12 cm -3 . The source can deliver a negative ion beam of ∼10 A with a current density of ∼30 mA/cm 2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  10. The radiological research accelerator facility: Progress report for the period December 1, 1986-November 30, 1987

    International Nuclear Information System (INIS)

    1987-04-01

    Experiments performed at the Radiological Research Accelerator Facility (RARAF) during the period of July 1986 through April 1987 are listed, as well as experiments run prior to that period and expected to eventually resume. The experiments run since July 1, 1986 or expected to run before November 30, 1987 are briefly described. Accelerator use and operation is summarized, as well as facilities development and activities of the Scientific Advisory Committee

  11. Accelerator technology program. Progress report, July-December 1981

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-08-01

    We report on the major projects of the Los Alamos National Laboratory's Accelerator Technology Division during the last 6 months of calendar year 1981. We have continued work on the radio-frequency quadrupole linear accelerator; we are doing studies of octupole focusing. We have completed the design study on an unusual electron-linear radiographic machine that could obtain x rays of turbine engines operating under simulated flight-maneuver conditions on a centrifuge. In September we completed the 5-y PIon Generator for Medical Irradiation (PIGMI) program to develop the concept and technology for an accelerator-based facility to treat cancer in a hospital environment. The design and construction package for the site, building, and utilities for the Fusion Materials Irradiation Test (FMIT) facility has been completed, and we have begun to concentrate on tests of the rf power equipment and on the design, procurement, and installation of the 2-MeV proto-type accelerator. The Proton Storage Ring project has continued to mature. The main effort on the racetrack microtron (RTM) has been on the design and construction of various components for the demonstration RTM. On the gyrocon radio-frequency generator project, the gyrocon was rebuilt with a new electron gun and new water-cooled gun-focus coil; these new components have performed well. We have initiated a project to produce a klystron analysis code that will be useful in reducing the electrical-energy demand for accelerators. A free-electron laser amplifier experiment to test the performance of a tapered wiggler at high optical power has been successfully completed

  12. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB Injectors

    International Nuclear Information System (INIS)

    Agostinetti, P.; Dal Bello, S.; Palma, M.D.; Zaccaria, P.

    2006-01-01

    The SINGle Aperture - SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi Aperture Multi Grid (MAMuG) reference configuration. Optimized geometry of the SINGAP grids (plasma, extraction, pre-acceleration, and grounded grid) was identified by CEA Association considering specific requirements for ions extraction and beam generation referring to experimental data and code simulations. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB Injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with thermo-hydraulic and thermo-mechanical sensitivity analyses in order to satisfy the grid functional requirements (temperatures, in plane and out of plane deformations). A complete and detailed thermo-structural design assessment of the SINGAP grids was accomplished applying the structural design rules for ITER in-vessel components and considering both the reference load conditions and the maximum load provided by the power supplies. The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models. The grids were finally integrated with the support and cooling systems inside the beam source vessel. The main results of the thermo-hydraulic and thermo-mechanical analyses are presented. The open issues are then reported, mainly regarding the material properties characterization (static and fatigue tests) and the qualification of technologies for OFHC copper electro-deposition, brazing, and welding of heterogeneous materials. (author)

  13. Advanced accelerator research and development

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Research and development on the Positron-Electron Project (PEP), the electron rings, the superconducting accelerator (ESCAR), and the superconductivity program are reported. Efforts relating to the proposed PEP include work on: (1) the injection system; (2) the rf system; (3) the main-ring bend magnets; (4) the magnet power supplies and controls; (5) alignment; (6) radiation and shielding; (7) the vacuum system; and (8) conventional facilities (utilities, etc.). Experimental and theoretical work continued on the development of suitably intense electron rings as vehicles for the collective acceleration of ions. The most difficult problem was found to be the longitudinal (negative mass) instability. Design work was begun for ESCAR (Experimental Superconducting Accelerating Ring), a small proton synchrotron and storage ring using superconducting magnets, which should aid in the design of future large superconducting facilities. Magnet development was largely directed toward the detailed design of the dipole units. A superconducting beam transport line was installed at the Bevatron. (PMA)

  14. Specific features of organizng the computer-aided design of radio-electronic equipment for electrophysical facilities

    International Nuclear Information System (INIS)

    Mozin, I.V.; Vasil'ev, M.P.

    1985-01-01

    Problems of developing systems for computer-aided design (CAD) of radioelectronic equipment for large electrophysical facilities such as charged particle accelerators of new generation are discussed. The PLATA subsystem representing a part of CAD and used for printed circuit design is described. The subsystem PLATA is utilized to design, on the average, up to 150 types of circuits a year, 100-120 of which belong to circuits of increased complexity. In this case labour productivity of a designer at documentation increases almost two times

  15. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States)]. E-mail: remeci@ornl.gov; Gabriel, Tony A. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Wendel, Mark W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Conner, David L. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Burgess, Thomas W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Ronningen, Reginald M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Blideanu, Valentin [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Boles, Jason L. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Reyes, Susana [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power-400 kW-will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions-and produce rare isotopes-in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u {sup 3}He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the {sup 3}He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  16. Operational status of the Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Malone, R.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; van Steenbergen, A.; Woodle, M.; Zhang, R.S.; Bigio, I.; Kurnit, N.; Shimada, T.; McDonald, K.T.; Russel, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    Initial design parameters and early operational results of a 50 MeV high brightness electron linear accelerator are described. The system utilizes a radio frequency electron gun operating at a frequency of 2.856 GHz and a nominal output energy of 4.5 MeV followed by two, 2π/3 mode, disc loaded, traveling wave accelerating sections. The gun cathode is photo excited with short (6 psec) laser pulses giving design peak currents of a few hundred amperes. The system will be utilized to carry out infra-red FEL studies and investigation of new high gradient accelerating structures

  17. Plasma-based and novel accelerators

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Nishida, Yasushi

    1992-05-01

    This publication is a collection of papers presented at Workshop on Plasma-Based and Novel Accelerators held at National Institute for Fusion Science, Nagoya, on December 19-20, 1991. Plasma-based accelerators are attracting considerable attention in these days a new, exciting field of plasma applications. The study gives rise to and spurs study of other unique accelerators like laser-based accelerators. The talks in the Workshop encompassed beat-wave accelerator (BWA), plasma wake field accelerator (PWFA), V p x B accelerator, laser-based accelerators and some novel methods of acceleration. They also covered the topics such as FEL, cluster acceleration and plasma lens. Small scale experiments as those in universities have exhibited brilliant results while larger scale experiments like BWA in Institute of Laser Engineering, Osaka University, and PWFA in KEK start showing significant results as well. (J.P.N.)

  18. A Combined Shielding Design for a Neutron Generator and a Linear Accelerator at Soreq NRC

    International Nuclear Information System (INIS)

    Epstein, L.

    2014-01-01

    A new radiography facility is designed at Soreq NRC. The facility will hold a neutron generator that produces 1.73·109 n/s with an energy of 14 MeV and a linear accelerator that accelerates electrons to an energy of 9 MeV. The two radiation sources will be installed in 2 separate laboratories that will be built in an existing building. Each laboratory will have its own machine and control room. The dose rates around the sources were calculated using the FLUKA Monte Carlo code(1,2). The annual doses were calculated in several regions around the generator and the accelerator laboratories in accordance with the occupancy in each area. The calculated annual doses were compared with the dose limits specified in the Safety at Work Regulations(3) and the IAEC Standard for Protection against Ionizing Radiation. The shielding was designed to comply with the following dose constraints: 0.3 mSv/y for members of the public and 2 mSv/y for radiation workers. Each radiation source is planned to produce radiation for a maximum of 500 hours per year. The dose rate in the direct beam of the accelerator is 30 Gy/min at 1 m from the source and it will be surrounded by a collimator with an opening of 30N-tilde horizontally and 2 mm vertically, 3 m from the radiation source. The leakage radiation dose will not be greater than 1.5 mGy/min (0.005% of the direct beam, according to the manufacturer). The leakage radiation will be produced isotropically. The neutron generator will be surrounded by a shielding made of a 10 cm iron cylinder (density 7.87 g/cm3), surrounded by 50 cm of borated polyethylene (atomic percent: H (13.8%), C (82.2%), B (4%), density: 0.92 g/cm3) and 5 cm of lead (density 11.35 g/cm3). The neutron generator shielding was not designed or required in the present shielding design but was considered in the shielding calculations

  19. Shielding of Medical Facilities. Shielding Design Considerations for PET-CT Facilities

    International Nuclear Information System (INIS)

    Cruzate, J.A.; Discacciatti, A.P.

    2011-01-01

    The radiological evaluation of a Positron Emission Tomography (PET) facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The evaluation embraces the distributions of rooms, the thickness and physical material of walls, floors and ceilings. This work detail the methodology used for making the assessment of a PET facility design taking into account only radioprotection aspects. The assessment results must be compared to the design requirements established by national regulations in order to determine whether or not, the facility complies with those requirements, both for workers and for members of the public. The analysis presented is useful for both, facility designers and regulators. In addition, some guidelines for improving the shielding design and working procedures are presented in order to help facility designer's job. (authors)

  20. Needs of Advanced Safeguards Technologies for Future Nuclear Fuel Cycle (FNFC) Facilities and a Trial Application of SBD Concept to Facility Design of a Hypothetical FNFC Facility

    International Nuclear Information System (INIS)

    Seya, M.; Hajima, R.; Nishimori, N.; Hayakawa, T.; Kikuzawa, N.; Shizuma, T.; Fujiwara, M.

    2010-01-01

    Some of future nuclear fuel cycle (FNFC) facilities are supposed to have the characteristic features of very large throughput of plutonium, low decontamination reprocessing (no purification process; existence of certain amount of fission products (FP) in all process material), full minor actinides (MA) recycle, and treatment of MOX with FP and MA in fuel fabrication. In addition, the following international safeguards requirements have to be taken into account for safeguards approaches of the FNFC facilities. -Application of integrated safeguards (IS) approach; -Remote (unattended) verification; - 'Safeguards by Design' (SBD) concept. These features and requirements compel us to develop advanced technologies, which are not emerged yet. In order to realize the SBD, facility designers have to know important parts of design information on advanced safeguards systems before starting the facility design. The SBD concept requires not only early start of R and D of advanced safeguards technologies (before starting preliminary design of the facility) but also interaction steps between researchers working on safeguards systems and nuclear facility designers. The interaction steps are follows. Step-1; researchers show images of advanced safeguards systems to facility designers based on their research. Step-2; facility designers take important design information on safeguards systems into process systems of demonstration (or test) facility. Step-3; demonstration and improvement of both systems based on the conceptual design. Step-4; Construction of a FNFC facility with the advanced safeguards systems We present a trial application of the SBD concept to a hypothetical FNFC facility with an advanced hybrid K-edge densitometer and a Pu NDA system for spent nuclear fuel assembly using laser Compton scattering (LCS) X-rays and γ-rays and other advanced safeguards systems. (author)

  1. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  2. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  3. Heavy ion medical accelerator in chiba

    International Nuclear Information System (INIS)

    Hirao, Y.; Ogawa, H.; Yamada, S.

    1992-12-01

    The HIMAC (Heavy Ion Medical Accelerator in Chiba) construction project has been promoted by NIRS (National Institute of Radiological Sciences) as one of the projects of 'Comprehensive 10 year Strategy for Cancer Control' HIMAC is the first heavy-ion accelerator dedicated to medicine in the world, and its design parameters are based on the radiological requirements. It consists of two types of ion sources, an RFQ and an Alvarez linacs, dual synchrotron rings, high energy beam transport lines, and irradiation facilities for treatment and experiments. This report mainly describes the outline of the structure and performance of each HIMAC subsystem. (J.P.N.)

  4. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    1986-09-01

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  5. Designing Animation Facilities for gCSP

    NARCIS (Netherlands)

    van der Steen, T.T.J.; Groothuis, M.A.; Broenink, Johannes F.

    To improve feedback on how concurrent CSP-based programs run, the graphical CSP design tool has been extended with animation facilities. The state of processes, constructs, and channel ends are indicated with colours both in the gCSP diagrams and in the composition tree (hierarchical tree showing

  6. Development of cloud-operating platform for detention facility design

    Science.gov (United States)

    Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping

    2017-04-01

    In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.

  7. Optics of beam recirculation in the CEBAF [Continuous Electron Beam Accelerator Facility] cw linac

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1986-01-01

    The use of recirculation in linear accelerator designs requires beam transport systems that will not degrade beam quality. We present a design for the transport lines to be used during recirculation in the CEBAF accelerator. These beam lines are designed to avoid beam degradation through synchrotron radiation excitation or betatron motion mismatch, are insensitive to errors commonly encountered during beam transport, and are optimized for electron beams with energies of 0.5 to 6.0 GeV. Optically, they are linearly isochronous second order achromats based on a ''missing magnet'' FODO structure. We give lattice specifications for, and results of analytic estimates and numerical simulations of the performance of, the beam transport system

  8. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  9. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  10. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    Science.gov (United States)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  11. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D{sup +})-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m{sup 2}, 20 dpa/year for Fe) in a volume of 500 cm{sup 3} for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  12. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  13. Designing Facilities for Collaborative Operations

    Science.gov (United States)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  14. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  15. Particle optics and accelerator modeling software for industrial and laboratory beamline design

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.

    1998-01-01

    The expanding variety of accelerator applications in research and industry places increased demands upon scientists and engineers involved in developing new accelerator and beamline designs. Computer codes for particle optics simulation have always played an important role in the design process and enhanced software tools offer the promise of improved productivity for beamline designers. This paper summarizes recent work on the development of advanced graphic user interface (GUI) software components, that can be linked directly to many of the standard particle optics programs used in the accelerator community, and which are aimed at turning that promise of improved productivity into a reality. An object oriented programming (OOP) approach has been adopted and a number of GUI components have been developed that run on several different operating systems. The emphasis is on assisting users in the setup and running of the optics programs without requiring any knowledge of the format, syntax, or similar requirements of the input. The components are being linked with several popular optics programs, including TRANSPORT, TURTLE, TRACE 3-D and PARMILA, to form integrated easy-to-use applications. Several advanced applications linking the GUI components with Lie algebra and other high-order simulation codes, as well as system level and facility modeling codes, are also under development. An overview of the work completed to date is presented, and examples of the new tools running on the Windows 95 operating system are illustrated. (orig.)

  16. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  17. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Helene Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  18. Probabilistic risk assessment for the Los Alamos Meson Physics Facility worst-case design-basis accident

    International Nuclear Information System (INIS)

    Sharirli, M.; Butner, J.M.; Rand, J.L.; Macek, R.J.; McKinney, S.J.; Roush, M.L.

    1992-01-01

    This paper presents results from a Los Alamos National Laboratory Engineering and Safety Analysis Group assessment of the worse-case design-basis accident associated with the Clinton P. Anderson Meson Physics Facility (LAMPF)/Weapons Neutron Research (WNR) Facility. The primary goal of the analysis was to quantify the accident sequences that result in personnel radiation exposure in the WNR Experimental Hall following the worst-case design-basis accident, a complete spill of the LAMPF accelerator 1L beam. This study also provides information regarding the roles of hardware systems and operators in these sequences, and insights regarding the areas where improvements can increase facility-operation safety. Results also include confidence ranges to incorporate combined effects of uncertainties in probability estimates and importance measures to determine how variations in individual events affect the frequencies in accident sequences

  19. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Shuets, G.

    2004-01-01

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators

  20. Initial operation of the Holifield facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1982-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new Pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  1. Initial operation of the Holifield Facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1983-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  2. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  3. Computer control of large accelerators design concepts and methods

    International Nuclear Information System (INIS)

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references

  4. Computer control of large accelerators design concepts and methods

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references.

  5. Design of the PRIDE Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  6. Physical and Experimental Background of the Design of the ELISE Test Facility

    International Nuclear Information System (INIS)

    Franzen, P.; Fantz, U.; Kraus, W.; Falter, H.; Heinemann, B.; Nocentini, R.

    2009-01-01

    In 2007 the IPP RF driven negative hydrogen ion source was chosen by the ITER board as the new reference source for the ITER neutral beam system. In order to support the design of the Neutral Beam Test Facility in Padua and its commissioning and operating phases, IPP is presently constructing a new test facility ELISE (Extraction from a Large Ion Source Experiment) for a large-scale extraction from a half-size ITER RF source. Plasma operation of up to one hour is foreseen; but due to the limits of the IPP HV system, pulsed extraction only is possible. The extraction system is designed for acceleration of negative ions of up to 60 kV. The start of the ELISE operation is planned for middle of 2010. The aim of the design of the ELISE source and extraction system was to be as close as possible to the ITER design; it has however some modifications allowing a better diagnostic access as well as more flexibility for exploring open questions. The design was also supported by diagnostics and modeling efforts of the processes leading to negative ion production and extraction in a RF source.

  7. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for ...

  8. 2 MeV, 60 kW dual-beam type electron accelerator irradiation facility

    International Nuclear Information System (INIS)

    Yotsumoto, Keiichi; Kanazawa, Takao; Haruyama, Yasuyuki; Agematsu, Takashi; Mizuhashi, Kiyoshi; Sunaga, Hiromi; Washino, Masamitsu; Tamura, Naoyuki

    1984-02-01

    The specification of new irradiation facility which has been constructed from 1978 through 1981 as the replacement of 1st Accelerator of JAERI, TRCRE are described. The accelerator is the Cockcroft-Walton type and both vertical and horizontal accelerating tubes are arranged on a single high voltage generator. Transferring of the high voltage to the horizontal accelerating tube is performed with the high voltage changing system in the pressure vessel. The output ratings of the accelerator are 2 MV of acceleration voltage and 30 mA of beam current. By providing the dual beam system, two irradiation rooms, one for vertical and the other for horizontal beam, are independently operationable. Persons can enter the horizontal irradiation room for experimental setting even when the vertical irradiation room is in operation. The specification of the buildings, the exhaust air treatment system, the irradiation conveyor and the safety observation system are also described. (author)

  9. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  10. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  11. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  12. Explore the design style of oriented facility based on user evaluation

    OpenAIRE

    Zhang, Ye; Liu, Yang; Yu, Hui

    2015-01-01

    This paper employs Kansei engineering to analyze the relationship between user preference and the given architectural design scheme. In this study, we first divide architectural styles into seven different categories. Then we classify the key factors in the oriented facility design into 7 types with 39 subcategories. On that basis, we explore which design factor plays main roles in the harmony and unity between the user-oriented type and the given architectural design among seven different ar...

  13. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2010-01-01

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (Beta Beams), one based on decays of stored muon beams (Neutrino Factory), and one based on the decays of an intense pion beam (Superbeam). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  14. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  15. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F

    2002-04-22

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  16. Organizational transformation: a model for joint optimization of culture change and evidence-based design.

    Science.gov (United States)

    Hamilton, D Kirk; Orr, Robin Diane; Raboin, W Ellen

    2008-01-01

    Healthcare organizations face continuous and accelerating external change and thus must be prepared to manage their own change initiatives proactively. Given that many believe that the U.S. healthcare system is broken and most healthcare organizations are dealing with pervasive problems, some organizations may choose to seek transformational change to achieve the six aims identified by the Institute of Medicine: healthcare that is safe, effective, patient-centered, timely, efficient, and equitable. Transformational change will almost certainly involve organizational culture. Culture change may be most effective when linked to other organizational change initiatives such as organizational strategy, structure, policies, procedures, and recruiting. Significant organizational change often requires accompanying facility change. There is an interdependent relationship between facility design and organizational culture. They affect each other and both impact organizational performance. Sociotechnical theory promotes joint optimization of the social (culture) and technical (facilities) aspects of an organization to achieve sustained positive change. To achieve organizational transformation and to sustain positive change, organizations must be prepared to adopt collaborative efforts in culture change and facility design. The authors propose a model for accomplishing joint optimization of culture change and evidence-based facility design.

  17. Design strategies for the International Space University's variable gravity research facility

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  18. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    Science.gov (United States)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  19. Radiation risk management at DOE accelerator facilities

    International Nuclear Information System (INIS)

    Dyck, O.B. van.

    1997-01-01

    The DOE accelerator contractors have been discussing among themselves and with the Department how to improve radiation safety risk management. This activity-how to assure prevention of unplanned high exposures-is separate from normal exposure management, which historically has been quite successful. The ad-hoc Committee on the Accelerator Safety Order and Guidance [CASOG], formed by the Accelerator Section of the HPS, has proposed a risk- based approach, which will be discussed. Concepts involved are risk quantification and comparison (including with non-radiation risk), passive and active (reacting) protection systems, and probabilistic analysis. Different models of risk management will be presented, and the changing regulatory environment will also be discussed

  20. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  1. Status of the 1 MeV Accelerator Design for ITER NBI

    Science.gov (United States)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  2. Status of the 1 MeV Accelerator Design for ITER NBI

    International Nuclear Information System (INIS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.

    2011-01-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D - at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  3. 40 CFR 60.32c - Designated facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.32c Section 60.32c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Solid Waste Landfills § 60.32c Designated facilities. (a) The designated facility to which the...

  4. New developments in design and applications for Pelletron accelerators

    International Nuclear Information System (INIS)

    Norton, Greg

    2002-01-01

    Most of the developments over the last several years related to Pelletron accelerator are in the field of accelerator mass spectrometry (AMS) and other low beam current applications with the exception of a very high DC electron recirculation Pelletron. High precision AMS systems based on tandem pelletrons from 500 kV to 5 MV terminal potential are now in use for routine high precision AMS measurements. Their performance will be reported. In addition, there has been significant advancement in the design of the multi-cathode SNICS source for the use of both gas and solid samples within a single source. The latest performance of these sources will be discussed. New diagnostics is being developed for very low beam currents. The latest design of the low current beam profile monitor (LCBPM) will also be presented. (author)

  5. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  6. An epithermal neutron source for BNCT based on an ESQ-accelerator

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the 7 Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT RTPE. The simulation studies have shown that a proton beam current of ∼ 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources

  7. A spallation-based irradiation test facility for fusion and future fission materials

    International Nuclear Information System (INIS)

    Samec, K.; Fusco, Y.; Kadi, Y.; Luis, R.; Romanets, Y.; Behzad, M.; Aleksan, R.; Bousson, S.

    2014-01-01

    The EU's FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the proposed DEMO fusion reactor, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550 deg. C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum over a volume occupying one litre. The entire 'TMIF' facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility. (authors)

  8. Specific contributions of the Dutch progamme ''RAS'' towards accelerator-based transmutation

    International Nuclear Information System (INIS)

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H.; Heil, J.A.; Koning, A.J.

    1994-09-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management. (orig.)

  9. SATIF-2 shielding aspects of accelerators, targets and irradiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field

  10. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  11. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    International Nuclear Information System (INIS)

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    One of the IAEA's statutory objectives is to seek to accelerate and enlarge the contribution of nuclear energy to peace, health and prosperity throughout the world. One way the IAEA works to achieve this objective is through the publication of technical series that can provide guidance to Member States. These series include the IAEA Services Series, the IAEA Safety Standard Series, the IAEA Nuclear Security Series and the IAEA Nuclear Energy Series. The Nuclear Energy Series is comprised of publications designed to encourage and assist research and development on, and practical application of, nuclear energy for peaceful purposes. This includes guidance to be used by owners and operators of utilities, academia, vendors and government officials. The IAEA has chosen the Nuclear Energy Series to publish guidance for States regarding the consideration of safeguards in nuclear facility design and construction. Historically, safeguards were often applied after a facility was designed or maybe even after it was built. However, many in the design and construction community would prefer to include consideration of these requirements from the conceptual design phase in order to reduce the need for retro-fits and modifications. One can then also take advantage of possible synergies between safeguards, security, safety and environmental protection and reduce the project risk against cost increments and schedule slippage. The IAEA is responding to this interest with a suite of publications in the IAEA Nuclear Energy Series, developed with the assistance of a number of Member State Support Programmes through a joint support programme task: · International Safeguards in Nuclear Facility Design and Construction (NP-T-2.8, 2013), · International Safeguards in the Design of Nuclear Reactors (NP-T-2.9, 2014), · International Safeguards in the Design of Spent Fuel Management (NF-T-3.1, tbd), · International Safeguards in the Design of Fuel Fabrication Plants (NF-T-4.7, tbd

  12. Research and design of scanning power supply for deep tumor therapy facility with heavy ions accelerator in Lanzhou

    International Nuclear Information System (INIS)

    Huang Yuzhen; Liu Yuntao; Chen Youxin; Gao Daqing; Zhang Shu; Gao Yalin

    2009-01-01

    This paper describes the technique targets and operation principle of the scanning power supply for the deep tumor therapy facility with heavy ions in Cooler-Storage-Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). To ensure the specified accuracy of the current, the hysteresis loop control strategy was adopted, and tracking error was constrained in the specified tolerance. One prototype was designed and installed. And the simulation results and test results were listed in the paper. The results show that all the targets can meet the design requirements, and that the circuit configuration and hysteresis loop control strategy selected are practicable. (authors)

  13. AWAKE Design Report: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Caldwell, A; Lotov, K; Muggli, P; Wing, M

    2013-01-01

    The AWAKE Collaboration has been formed in order to demonstrate proton driven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2015 and this will be followed by an initial 3–4 ye...

  14. High-performance computing in accelerating structure design and analysis

    International Nuclear Information System (INIS)

    Li Zenghai; Folwell, Nathan; Ge Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-01-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R and D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields)

  15. Future HEP Accelerators: The US Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  16. 40 CFR 60.32b - Designated facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.32b Section... facilities. (a) The designated facility to which these guidelines apply is each municipal waste combustor... subpart are not considered in determining whether the unit is a modified or reconstructed facility under...

  17. Accelerating complex for basic researches in the nuclear physics

    NARCIS (Netherlands)

    Dovbnya, A.N.; Guk, I.S.; Kononenko, S.G.; Peev, F.A.; Tarasenko, A.S.; Botman, J.I.M.

    2009-01-01

    In 2003 in NSC KIPT was begun the work on development the project of accelerator, base facility IHEPNP NSC KIPT electron recirculator SALO. The accelerator will be disposed in target hall of accelerator LU 2000 complex. It is projected first of all as facility for basic researches in the field of

  18. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  19. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  20. Status and Prospect of Safeguards By Design for Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Kim, Ho-Dong; Shin, H.S.; Ahn, S.K.

    2010-01-01

    The concept of Safeguards-By-Design (SBD), which is proposed and developed by the United States and the IAEA, is now widely acknowledged as a fundamental consideration for the effective and efficient implementation of safeguards. The application of a SBD concept is of importance especially for developmental nuclear facilities which have new technological features and relevant challenges to their safeguards approach. At this point of time, the examination of the applicability of SBD on a pyroprocessing facility, which has been being developed in the Republic of Korea (ROK), would be meaningful. The ROK developed a safeguards system with the concept of SBD for Advanced spent fuel Conditioning Process Facility (ACPF) and DUPIC Fuel Development Facility (DFDF) before the SBD concept was formally suggested. Currently. The PRIDE (PyRoprocess Integrated Inactive Demonstration) facility for the demonstration of pyroprocess using 10 ton of non-radioactive nuclear materials per year is being constructed in the ROK. The safeguards system for the facility has been designed in cooperation with a facility designer from the design phase, and the safeguards system would be established according to the future construction schedule. In preparing the design of Engineering Scale Pyroprocess Facility (ESPF), which will use spent fuels in an engineering scale and be constructed in 2016, a research on the safeguards system for this facility is also being conducted. In this connection, a project to support for development of safeguards approach for a reference pyroprocessing facility has been carried out by KAERI in cooperation with KINAC and the IAEA through an IAEA Member State Support Program (MSSP). When this MSSP project is finished in August, 2011, a safeguards system model and safeguards approach for a reference pyroprocessing facility would be established. Maximizing these early experiences and results, a safeguards system of ESPF based on the concept of SBD would be designed and

  1. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    Science.gov (United States)

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  2. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility fair at GSI

    International Nuclear Information System (INIS)

    Radon, T.; Gutermuth, F.; Fehrenbacher, G.

    2005-01-01

    The Gesellschaft fuer Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of ∼15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam. (authors)

  3. Design of the PISCES-Upgrade facility

    International Nuclear Information System (INIS)

    Waganer, L.M.; Doerner, R.

    1994-01-01

    The PISCES-Upgrade facility is currently in the design and fabrication phases for the University of California. McDonnell Douglas is under contract to develop this experimental facility in order to enhance the capability for investigation of fusion materials erosion-redeposition and edge plasma behaviors. The advance in facility capability requires innovative design approaches and application of sophisticated analysis techniques

  4. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L. A.; Filho, Josélio S. M., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear. Divisão de Normas e Segurança Física; Fontes, Gladson S.; Fiel, J.C.B., E-mail: gsfontes@hotmail.com, E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (SE-7/IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  5. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L. A.; Filho, Josélio S. M.; Fontes, Gladson S.; Fiel, J.C.B.

    2017-01-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  6. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  7. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    International Nuclear Information System (INIS)

    Westervelt, Robert; Klein, William; Kroupa, Michael; Olsson, Eric; Rothrock, Rick

    1999-01-01

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms

  8. The electron test accelerator safety in design and operation

    International Nuclear Information System (INIS)

    McKeown, J.

    1980-06-01

    The Electron Test Accelerator is being designed as an experiment in accelerator physics and technology. With an electron beam power of up to 200 kW the operation of the accelerator presents a severe radiation hazard as well as rf and electrical hazards. The design of the safety system provides fail-safe protection while permitting flexibility in the mode of operation and minimizing administrative controls. (auth)

  9. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  10. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, V.T. [Institute for High Energy Physics in National Research Centre “Kurchatov Institute”, Protvino 142281 (Russian Federation); Makhov, S.S. [Microprivod Ltd., Moscow 111123 (Russian Federation); Savin, D.A.; Terekhov, V.I. [Institute for High Energy Physics in National Research Centre “Kurchatov Institute”, Protvino 142281 (Russian Federation)

    2016-10-11

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10–20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  11. Startup of the Whiteshell irradiation facility

    International Nuclear Information System (INIS)

    Barnard, J.W.; Stanley, F.W.

    1989-01-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation. (orig.)

  12. Startup of the whiteshell irradiation facility

    Science.gov (United States)

    Barnard, J. W.; Stanley, F. W.

    1989-04-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation.

  13. Cyclotron Development and Technical Aspects on Accelerator Based Laboratory Development

    International Nuclear Information System (INIS)

    Sunarhadijoso

    2000-01-01

    BATAN is planning to establish an accelerator-based laboratory at P3TM Yogyakarta as an effort in the development and use of accelerator technology for improving industrial performance and public welfare. This paper reviews several aspects of cyclotron technology and describes the combination of a linear accelerator - cyclotron system as an alternative to be considered in the planing of the laboratory. The progress of cyclotron technology is discussed covering three generations, i.e. conventional cyclotron, synchrocyclotron and AVF cyclotron generations. The planning should not consider the accelerator application for radioisotope production because it is established in Serpong with the existing negative ion cyclotron. The proposed facility at P3TM may comprise two linear accelerators coupled with a positive ion cyclotron of synchrocyclotron generation. In fact, the attachment of the synchrocyclotron unit is flexible and it can be installed subsequently if the higher energy particle beam, which can not be produced by the linear accelerators, is extremely needed. Some technical aspects related to ion beam application, building construction and infrastructure, human resources, and specification of function test are discussed for additional information in the implementation of the planning. (author)

  14. A study for the fabulously of introducing an acceleration mass spectrometer facility (ABMs) for carbon-14 applications

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Comsan, N.; Sadek, M.

    2004-01-01

    In this work a study was conducted to show the importance and feasibility of introducing an accelerating mass spectrometer facility for carbon-14 analysis in the environmental levels. The different applications of Carbon-14 (e.g. dating and identification of food additives of synthetic origin) are discussed. There are two methods for C- 14 measurements, beta decay counting and accelerator mass spectrometry (AMS). The beta decay method requires gram quantities of the sample carbon, compared to few milligram quantities in case of AMS method. The Central Lab. for Environmental Isotope Hydrology of the National Center for Nuclear Safety and Radiation Control has a Carbon-14 analysis facility based on beta decay counting using a liquid scintillation counter after sample preparation in the form of benzene through rather complicated chemical conversion steps. This strongly limits the capacity of the laboratory to about 100-150 samples per year. Also, the amount of sample required limits our expansion for some very important applications like dating of archaeological small samples and especially old bone samples which normally have a low concentration of organic compounds. These applications are only possible by using the AMS method. For some applications only AMS could be used e.g measuring C-14 in atmospheric gases such as methane and carbon dioxide is virtually impossible using decay counting but quite feasible with AMS. The importance of purchasing an AMS facility or upgrading the existing accelerator is discussed in view of the shortage of such a facility in Africa and the Middle East. Acquiring an AMS in Egypt will make it possible to accurately date the Egyptian antiquities and to act as a regional laboratory and to enter into new applications where the amount of sample is limiting

  15. Design of Power Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Hegner, Jonas Stenbæk; Sindholt, Joakim; Nannarelli, Alberto

    2012-01-01

    Using Field Programmable Gate Arrays (FPGAs) to accelerate financial derivative calculations is becoming very common. In this work, we implement an FPGA-based specific processor for European option pricing using Monte Carlo simulations, and we compare its performance and power dissipation...

  16. Hanford Site waste tank farm facilities design reconstitution program plan

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1994-01-01

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980's has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan

  17. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  18. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  19. Machine protection: availability for particle accelerators

    International Nuclear Information System (INIS)

    Apollonio, A.

    2015-01-01

    Machine availability is a key indicator for the performance of the next generation of particle accelerators. Availability requirements need to be carefully considered during the design phase to achieve challenging objectives in different fields, as e.g. particle physics and material science. For existing and future High-Power facilities, such as ESS (European Spallation Source) and HL-LHC (High-Luminosity LHC), operation with unprecedented beam power requires highly dependable Machine Protection Systems (MPS) to avoid any damage-induced downtime. Due to the high complexity of accelerator systems, finding the optimal balance between equipment safety and accelerator availability is challenging. The MPS architecture, as well as the choice of electronic components, have a large influence on the achievable level of availability. In this thesis novel methods to address the availability of accelerators and their protection systems are presented. Examples of studies related to dependable MPS architectures are given in the thesis, both for Linear accelerators (Linac4, ESS) and circular particle colliders (LHC and HL-LHC). A study of suitable architectures for interlock systems of future availability-critical facilities is presented. Different methods have been applied to assess the anticipated levels of accelerator availability. The thesis presents the prediction of the performance (integrated luminosity for a particle collider) of LHC and future LHC up- grades, based on a Monte Carlo model that allows reproducing a realistic timeline of LHC operation. This model does not only account for the contribution of MPS, but extends to all systems relevant for LHC operation. Results are extrapolated to LHC run 2, run 3 and HL-LHC to derive individual system requirements, based on the target integrated luminosity. (author)

  20. 40 CFR 60.30d - Designated facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.30d Section... Acid Production Units § 60.30d Designated facilities. Sulfuric acid production units. The designated facility to which §§ 60.31d and 60.32d apply is each existing “sulfuric acid production unit” as defined in...

  1. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    International Nuclear Information System (INIS)

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m 2 , 20 dpa/y in Fe, in a volume of 500 cm 3 and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  2. Studies on the construction of a new 80 MeV injector and a new injection scheme for the synchrotron of the Bonn accelerator facility ELSA

    International Nuclear Information System (INIS)

    Raecke, K.

    2001-09-01

    At the ELSA Accelerator Facility exists the opportunity to install a 80 MeV linear accelerator as an injector for the 2,5 GeV Booster Synchrotron. Because of its length the new structure cannot replace one of the linacs used today so possibilities to built up the accelerator and the transfer channels are worked out. Calculations comparing the injection efficiency of the present layout and the possible new layout show a recognizable improvement. The injection efficiency can be further improved using a single turn injection scheme. A septum magnet and a fast kicker for this injection scheme is designed. (orig.)

  3. Review of the Tritium Extraction Facility design

    International Nuclear Information System (INIS)

    Barton, R.W.; Bamdad, F.; Blackman, J.

    2000-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) is an independent executive branch agency responsible for technical safety oversight of the US Department of Energy's (DOE's) defense nuclear facilities. One of DNFSB's responsibilities is the review of design and construction projects for DOE's defense nuclear facilities to ensure that adequate health and safety requirements are identified and implemented. These reviews are performed with the expectation that facility designs are being developed within the framework of a site's Integrated Safety Management (ISM) program. This paper describes the application of ISM principles in DNFSB's ongoing review of the Tritium Extraction Facility (TEF) design/construction project

  4. Review of the Tritium Extraction Facility Design

    International Nuclear Information System (INIS)

    Ronald W. Barton; Farid Bamdad; Joel Blackman

    2000-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) is an independent executive branch agency responsible for technical safety oversight of the U.S. Department of Energy's (DOE's) defense nuclear facilities. One of DNFSB's responsibilities is the review of design and construction projects for DOE's defense nuclear facilities to ensure that adequate health and safety requirements are identified and implemented. These reviews are performed with the expectation that facility designs are being developed within the framework of a site's Integrated Safety Management (ISM) program. This paper describes the application of ISM principles in DNFSB's ongoing review of the Tritium Extraction Facility (TEF) design/construction project

  5. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  6. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  7. The design of the accelerating gaps for the linear induction accelerator RADLAC II

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Miller, R.B.; Poukey, J.W.

    1987-01-01

    In high current (50 kA) linear induction accelerators, the accelerating gaps can excite large radial oscillations. A gap was designed that minimized the radial oscillations and reduced potential depressions. The envelope equation predicted radial oscillation amplitudes of 1 mm which agreed with experimental measurements

  8. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    International Nuclear Information System (INIS)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. (author)

  9. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  10. The target laboratory of the Pelletron Accelerator's facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, Nobuko; Pereira Engel, Wanda Gabriel [Nuclear Physics Department - University of Sao Paulo (Brazil)

    2013-05-06

    A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

  11. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  12. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  13. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India)

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  14. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-01-01

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  15. Evaluation and analysis of the residual radioactivity for the 15UD Pelletron accelerator facility

    International Nuclear Information System (INIS)

    Sonkawade, R. G.

    2007-01-01

    For the assessment of radiological impact of the accelerators, it will be better to have the documented information on activation of metal parts of the accelerator components. It is very much essential to get reliable data on these subjects. During acceleration of light ion, the residual radioactivity in the accelerator facility was found near the Analyzing Magnet, single slit, Beam Profile Monitors (BPM), Faraday Cups (FC), bellows, beginning of switching magnet bellows, at the target and the ladder. Study with HPGE detector gives an insight of the formation of the short or long lived radionuclides. The different targets used in the light ion experiment were also monitored and proper decommissioning and decontamination steps were followed. This paper presents the data of residual radioactivity in the 15UD Pelletron accelerator infrastructure. (author)

  16. Accelerator mass spectrometry - Indian scenario. PD-1-1

    International Nuclear Information System (INIS)

    Kailas, S.

    2007-01-01

    Accelerator based ultra sensitive Mass Spectrometry (AMS) programmes are being vigorously pursued world over for the past three decades. There are more than 50 accelerator facilities devoted to this multidisciplinary activity. Realizing the importance of this programme, the work related to AMS has commenced at three major accelerator facilities in India: Institute of Physics, Bhubaneswar; Interuniversity Accelerator Centre, Delhi; BARC - TIFR Pelletron accelerator facility, Mumbai. At Bhubaneswar, facilities have been set up to carry our high precision 14 C based AMS programmes using the 3 MV Pelletron. A magnetic bouncer, an electrostatic analyzer and a chemistry lab for making samples in graphite form are some of the important features of this AMS facility. A number of users have already got their samples analysed using this AMS facility. The AMS programme has used upto 20 % of beam time available from the 3 MV Pelletron at Bhubaneswar. At Delhi efforts are underway and initial success has been achieved for carrying out 10 Be based AMS programme. Novel method based on simultaneously injecting oxide of Be - ( 9 Be and 17 O) and ( 10 Be and 16 O) has been tried to obtain the ratio of 9 Be / 10 Be. A velocity filter is also available for this programme. Both at Bhubaneswar and Delhi, provision exists in the form of a multi cathode target wheel for carrying out measurements for a number of samples. At Mumbai the emphasis has been in precision measurement of 36 Cl in samples. Segmented anode detector has been developed for the separation of interfering 36 S and 36 Cl isobars

  17. E-4 Test Facility Design Status

    Science.gov (United States)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  18. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-26

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.

  19. JAERI electrostatic accelerators for multiple ion beam application

    International Nuclear Information System (INIS)

    Ishii, Yasuyuki; Tajima, Satoshi; Takada, Isao

    1993-01-01

    An electrostatic accelerators facility of a 3MV tandem accelerator, a 3MV single-ended accelerator and a 400kV ion implanter was completed mainly for materials science and biotechnology research at JAERI, Takasaki. The accelerators can be operated simultaneously for multiple beam application in triple and dual beam modes. The single-ended machine was designed to satisfy an extremely high voltage stability of ±1x10 -5 to provide a submicron microbeam stably. The measured voltage stability and ripple were within the designed value. (author)

  20. Architecture exploration of FPGA based accelerators for bioinformatics applications

    CERN Document Server

    Varma, B Sharat Chandra; Balakrishnan, M

    2016-01-01

    This book presents an evaluation methodology to design future FPGA fabrics incorporating hard embedded blocks (HEBs) to accelerate applications. This methodology will be useful for selection of blocks to be embedded into the fabric and for evaluating the performance gain that can be achieved by such an embedding. The authors illustrate the use of their methodology by studying the impact of HEBs on two important bioinformatics applications: protein docking and genome assembly. The book also explains how the respective HEBs are designed and how hardware implementation of the application is done using these HEBs. It shows that significant speedups can be achieved over pure software implementations by using such FPGA-based accelerators. The methodology presented in this book may also be used for designing HEBs for accelerating software implementations in other domains besides bioinformatics. This book will prove useful to students, researchers, and practicing engineers alike.