WorldWideScience

Sample records for accelerator target facilities

  1. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  2. Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro.

    Science.gov (United States)

    Esposito, J; Colautti, P; Fabritsiev, S; Gervash, A; Giniyatulin, R; Lomasov, V N; Makhankov, A; Mazul, I; Pisent, A; Pokrovsky, A; Rumyantsev, M; Tanchuk, V; Tecchio, L

    2009-07-01

    An accelerator-driven thermal neutron source for BNCT, planned to be installed at the INFN Laboratori Nazionali di Legnaro (LNL), is in progress in the framework of the SPES (selective production of exotic species) research program. The most critical element of such a facility is the construction of a reliable neutron converter based on the (9)Be(p,xn) nuclear reaction, working at a high power level (150 kW) and 5 MeV beam energy, due to the SPES driver constraints. Two original, beryllium-based, target concepts have been designed for such a purpose. The present status of the neutron converter, as well as the test results performed so far on prototypes constructed, is reported here.

  3. Commissioning and quality assurance of Calypso four-dimensional target localization system in linear accelerator facility.

    Science.gov (United States)

    Muralidhar, K R; Komanduri, Krishna; Rout, Birendra Kumar; Ramesh, K K D

    2013-07-01

    Four dimensional (4D) target localization system (Calypso System) was installed at our hospital, which is equipped with Beacon Transponders, Console, Electromagnetic Array, Optical System, Tracking Station, Treatment table overlay, and Calypso kVue Couch top. The objective of this presentation is to describe the results of commissioning measurements carried out on the Calypso System to verify the manufacturer specifications and also to evolve a quality assurance (QA) procedure which can be used to test its performance routinely. The QA program consists of a series of tests (QA for checking the calibration or system accuracy, Camera Calibration with L-frame fixture, Camera Calibration with T-frame fixture, System calibration Fixture targets test, Localization, and Tracking). These tests were found to be useful to assess the performance of the Calypso System.

  4. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  5. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  6. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  7. Accelerator design concept for future neutrino facilities

    Energy Technology Data Exchange (ETDEWEB)

    Apollonio, M [Imperial College London, London (United Kingdom); Berg, J S; Fernow, R; Gallardo, J [Brookhaven National Laboratory, Upton, Long Island, NY (United States); Blondel, A [University of Geneva, Geneva (Switzerland); Bogacz, A [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brooks, S; Edgecock, R [Rutherford Appleton Laboratory, Chilton, Didcot Oxon (United Kingdom); Campagne, J-E [LAL, University Paris-Sud, IN2P3/CNRS, Orsay (France); Caspar, D [University of California-Irvine, Irvine, CA (United States); Cavata, C [CEA, CEN Saclay, Gif-sur-Yvette (France); Chimenti, P [University of Trieste and INFN, Trieste (Italy); Cobb, J [University of Oxford, Oxford (United Kingdom); Dracos, M [Institut de Recherches Subatomiques, Universite Louis Pasteur, Strasbourg (France); Efthymiopoulos, I; Fabich, A; Garoby, R [CERN, Geneva (Switzerland); Filthaut, F [NIKHEF, Amsterdam (Netherlands); Geer, S [Fermi National Accelerator Laboratory, Batavia, IL (United States)], E-mail: mszisman@lbl.gov (and others)

    2009-07-15

    This document summarizes the work of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The main goal of the activity was to reach consensus on a baseline design for a Neutrino Factory complex, including proton driver parameters, choice of target, front-end design, acceleration system design, and decay ring geometry. Another goal was to explore the commonality, if any, between the proton driver for a Neutrino Factory and those for a Superbeam or Beta Beam facility. In general, the requirements for either of the latter facilities are less stringent than those for a Neutrino Factory. Here, we discuss concepts, parameters, and expected performance of the required subsystems for our chosen baseline design of a Neutrino Factory. We also give an indication of the main R and D tasks - many of which are already under way - that must be carried out to finalize facility design approaches.

  8. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  9. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  10. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  11. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  12. The GENEPI accelerator operation feedback at the MASURCA reactor facility

    Science.gov (United States)

    Destouches, C.; Fruneau, M.; Belmont, J. L.; Do Pinhal, J.; Albrand, S.; Carreta, J. M.; Chaussonnet, P.; De Conto, J. M.; Fontenille, A.; Fougeras, P.; Garrigue, A.; Guisset, M.; Laurens, J. M.; Loiseaux, J. M.; Marchand, D.; Micoud, R.; Mellier, F.; Perbet, E.; Planet, M.; Ravel, J. C.; Richaud, J. P.

    2006-06-01

    The MUSE-4 experiment, dedicated to the Accelerator Driven System (ADS) development studies, was achieved in the MASURCA nuclear reactor facility from 2000 to 2004. An external neutron source was introduced in a lead buffer zone located at the centre of the reactor core in order to simulate the spallation source. This paper deals with the GENEPI accelerator operation feedback at the MASURCA reactor facility during the MUSE-4 experimental campaign. After a presentation of the MASURCA mock-up facility and of the experimental programme objectives, the different phases of the accelerator design and realization are detailed. Its installation in the MASURCA nuclear facility, achieved in June 2000, is described concerning the technical and administrative topics. Then, the accelerator operation feedback is given concerning maintenance, tritium target management, source monitoring, technical evolutions, etc. The accelerator partial dismantling, achieved in the first part of 2005, is also presented. In addition, the GENEPI contribution to the MUSE-4 programme is presented in terms of experimental results and experimental measurement method improvements. Also, GENEPI 2, an evolution of the GENEPI concept, is described. This accelerator, is coupled to the PEREN facility which is dedicated to the nuclear cross-section measurements. Last, this paper makes a synthesis of the GENEPI operation feedback at the MASURCA facility and proposes recommendations for future projects involving accelerators used in nuclear reactor environment.

  13. Nanostructured targets for TNSA laser ion acceleration

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2016-06-01

    Full Text Available Nanostructured targets, based on hydrogenated polymers with embedded nanostructures, were prepared as thin micrometric foils for high-intensity laser irradiation in TNSA regime to produce high-ion acceleration. Experiments were performed at the PALS facility, in Prague, by using 1315 nm wavelength, 300 ps pulse duration and an intensity of 1016 W/cm2 and at the IPPLM, in Warsaw, by using 800 nm wavelength, 40 fs pulse duration, and an intensity of 1019 W/cm2. Forward plasma diagnostic mainly uses SiC detectors and ion collectors in time of flight (TOF configuration. At these intensities, ions can be accelerated at energies above 1 MeV per nucleon. In presence of Au nanoparticles, and/or under particular irradiation conditions, effects of resonant absorption can induce ion acceleration enhancement up to values of the order of 4 MeV per nucleon.

  14. Accelerator-driven subcritical facility:Conceptual design development

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: gohar@anl.gov; Bolshinsky, Igor [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Naberezhnev, Dmitry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Duo, Jose [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Pennsylvania State University, University Park, PA 16802 (United States); Belch, Henry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Bailey, James [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-06-23

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a K {sub eff} of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  15. Materials considerations in accelerator targets

    Science.gov (United States)

    Peacock, H. B.; Iyer, N. C.; Louthan, M. R.

    1995-09-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  16. Development and testing of a deuterium gas target assembly for neutron production via the H-2(d,n)He-3 reaction at a low-energy accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Feautrier, D.; Smith, D.L.

    1992-03-01

    This report describes the development and testing of a deuterium gas target intended for use at a low-energy accelerator facility to produce neutrons for basic research and various nuclear applications. The principle source reaction is H-2(d,n)He-3. It produces a nearly mono-energetic group of neutrons. However, a lower-energy continuum neutron spectrum is produced by the H-2(d;n,p)H-2 reaction and also by deuterons which strike various components in the target assembly. The present target is designed to achieve the following objectives: (1) minimize unwanted background neutron production from the target assembly, (2) provide a relatively low level of residual long-term activity within the target components, (3) have the capacity to dissipate up to 150 watts of beam power with good target longevity, and (4) possess a relatively modest target mass in order to minimize neutron scattering from the target components. The basic physical principles that have to be considered in designing an accelerator target are discussed and the major engineering features of this particular target design are outlined. The results of initial performance tests on this target are documented and some conclusions concerning the viability of the target design are presented.

  17. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  18. Fixed target facility at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Loken, S.C.; Morfin, J.G.

    1985-01-01

    The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group led by E. Colton whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required. 13 references, 5 figures.

  19. Electron accelerator facilities for food processing

    Energy Technology Data Exchange (ETDEWEB)

    Boaler, V.J.

    1984-01-01

    The basic characteristics of electron and X-ray processing and the main types of accelerator used together with features of facilities for food processing are reviewed. Capital and operating costs are given, with throughput and unit cost calculations for typical examples.

  20. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  1. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    Science.gov (United States)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  2. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    CERN Document Server

    2003-01-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accompli...

  3. National Ignition Facility Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This

  4. Accelerator Design Concept for Future Neutrino Facilities

    Energy Technology Data Exchange (ETDEWEB)

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  5. The Dust Accelerator Facility at CCLDAS

    Science.gov (United States)

    Shu, A. J.; Collette, A.; Drake, K.; Gruen, E.; Horanyi, M.; Leblanc, S.; Munsat, T.; Northway, P.; Robertson, S. H.; Srama, R.; Sternovsky, Z.; Thomas, E.; Wagner, M.; Colorado CenterLunar Dust; Atmospheric Studies

    2010-12-01

    At the Colorado Center for Lunar Dust and Atmospheric Science (CCLDAS) we are in the process of assembling a 3MV macroscopic (~1um) dust particle accelerator. The acceleration unit is being made by the National Electrostatics Corporation (NEC). The accelerator consists of a pelletron generator and potential rings encased in an enclosure held at 6 atm of SF6. A pulsed dust source is used to inject particles into the accelerator. Here we describe advancements in dust accelerator technology at CCLDAS to allow more functionality and ease of use, focusing primarily on dust source control, and the capability to select a precise range in dust mass and velocity. Previously, the dust source was controlled by long plastic rods turning potentiometers inside the SF6 environment providing little to no feedback and repeatability. We describe a fiber optic control system that allows full control of the pulse characteristics being sent to the dust source using a LabVIEW control program to increase usability. An electrostatic Einzel lens is being designed using the ion-optics code SIMION to determine the properties of the electrodes needed for the optimum focusing of the dust beam. Our simulations studies indicate that the dust beam can be directed into a 0.5mm diameter spot. Our planned experiments require a high degree of control over particles size, speed, charge and other characteristics. In order to ensure that only particles of the desired characteristics are allowed to pass into the target chamber, two deflection plates are used to eliminate unwanted particles from the beam. Further simulations are being done to determine the possibility of bending the beamline to allow active selection of particles. The current design of the selection unit uses nuclear accelerator techniques to determine the velocity and charge of each particle and digital timing and logic to choose particles that will be allowed to pass. This requires a high signal to noise ratio due to the need for a well

  6. Enhancing proton acceleration by using composite targets

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Bulanov, S V; Esirkepov, T Zh; Kando, M; Pegoraro, F; Leemans, W P

    2015-01-01

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  7. Enhancing proton acceleration by using composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  8. Folded tandem ion accelerator facility at Trombay

    Indian Academy of Sciences (India)

    P Singh

    2001-08-01

    The folded tandem ion accelerator (FOTIA) project at BARC has been commissioned. The analysed carbon beams of 40 nA(3+) and 25 nA(4+), at terminal voltage of 2.5 MV with N2 + CO2 as insulating gas, were obtained. The beams were characterized by performing the Rutherford back scattering (RBS) on gold, tin and iron targets. The beam energy of 12.5 MeV for 12C4+ was consistent with the terminal voltage of 2.5 MV. The N2 + CO2 mixture is being replaced by SF6 gas in order to achieve 6 MV on the terminal. In this paper, some of the salient features of the FOTIA and its present status are discussed.

  9. AREAL test facility for advanced accelerator and radiation source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Amatuni, G.A.; Amirkhanyan, Z.G.; Aslyan, L.V.; Avagyan, V.Sh.; Danielyan, V.A.; Davtyan, H.D.; Dekhtiarov, V.S.; Gevorgyan, K.L.; Ghazaryan, N.G.; Grigoryan, B.A.; Grigoryan, A.H.; Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutiunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Ivanyan, M.I.; Khachatryan, V.G.; Laziev, E.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Manukyan, P.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Margaryan, I.N.; Markosyan, T.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); and others

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  10. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  11. Target and accelerator developments at CTI

    Science.gov (United States)

    Alvord, C. W.; Mendez, A. J.; Wittner, D. E.

    2001-07-01

    The accelerator products marketed by CTI have exclusively focused on proton-only, low energy (11 MeV) designs. This choice best suited the research customer, interested in producing several doses a day of a variety of positron emitting compounds. The PET cyclotron market has evolved into a high output, cost driven, competitive radiotracer production environment. A thoughtful analysis of the choices of energy and particle reveals that an 11 MeV proton accelerator outfitted with target changers and automated target loading and unloading equipment is still the best choice for FDG distribution. However technological innovations are required to face the challenges of the rapidly growing PET radiotracer business. Modifications to the CTI line of accelerators developed to face this evolving need will be presented.

  12. Fire Control Methodology for an Accelerating Target

    Science.gov (United States)

    1980-04-01

    elde It nmcmmmmry mnd Identify by block number) ensor errors 8 Accelerating target Smoothing technique Launch prediction scheme Gun lead angle...P*GE(Whmt Dmtm Entered) SECURITY CLASSIFICATION OF THIS PAGEfWhen Dmtm Enlmrmd) ACKNOWLEDGMENT The authors wish to thank Messrs. James Bevelock

  13. Economics of electron beam accelerator facilities: Concept vs actual

    Science.gov (United States)

    Minbiole, Paul R.

    1995-02-01

    Electron beam accelerator facilities continue to demonstrate their ability to "add value" to a wide range of industrial products. The power, energy, and reliability of commercially available accelerators have increased steadily over the past several decades. The high throughput potential of modern electron beam facilities, together with the broad spectrum of commercial applications, result in the concept that an electron beam facility is an effective tool for adding economic value to industrial products. However, the high capital costs of such a facility (including hidden costs), together with practical limitations to high throughput (including several layers of inefficiencies), result in profit-and-loss economics which are more tenuous than expected after first analysis.

  14. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Nie, Y. [Deutsche Elektronen-Synchrotron DESY, Hamburg (Germany); Mete, O.; Hanahoe, K. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Dover, M.; Wigram, M.; Wright, J.; Zhang, J. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Smith, J. [Tech-X UK Corporation, Daresbury Innovation Centre, Warrington (United Kingdom); Pacey, T.; Li, Y. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Wei, Y.; Welsch, C. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); University of Liverpool, Liverpool (United Kingdom)

    2016-09-01

    A plasma accelerator research station (PARS) has been proposed to study the key issues in electron driven plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. In this paper, the quasi-nonlinear regime of beam driven plasma wakefield acceleration is analysed. The wakefield excited by various CLARA beam settings are simulated by using a 2D particle-in-cell (PIC) code. For a single drive beam, an accelerating gradient up to 3 GV/m can be achieved. For a two bunch acceleration scenario, simulation shows that a witness bunch can achieve a significant energy gain in a 10–50 cm long plasma cell.

  15. The Utrecht accelerator facility for precision dating with radionuclides

    NARCIS (Netherlands)

    Borg, K. van der; Alderliesten, C.; Haitjema, H.; Hut, G.; Zwol, N.A. van

    1984-01-01

    The Utrecht facility for accelerator mass spectrometry is described. The set-up with an EN tandem accelerator is designed for measurements of a broad range of long-lived radionuclides and of stable trace elements. In particular, dating measurements with 10Be and 14C can be performed with high precis

  16. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  17. Fermilab accelerator control system: Analog monitoring facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  18. The PSI/ETH tandem accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Synal, H.A.; Doebeli, M.; Fuhrmann, H.; Kubik, P.W.; Nebiker, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)] [and others

    1997-09-01

    The 1996 operation of the PSI/ETH tandem accelerator at ETH Hoenggerberg is summarised with a detailed compilation of the beam time statistics and the statistics of AMS samples for the different radioisotopes and for the major fields of research. (author) 2 tab.

  19. Intercepting accelerated moving targets: effects of practice on movement performance.

    Science.gov (United States)

    Fialho, João V A P; Tresilian, James R

    2017-02-14

    When performing a rapid manual interception, targets moving under constant motion are often intercepted with greater accuracy when compared to targets moving under accelerated motion. Usually, accelerated targets are timed too late and decelerating ones too early. The present experiment sought to investigate whether these differences in performance when intercepting targets moving under constant and accelerated motions change after a short period of practice. The task involved striking targets that moved along a straight track by moving forward a manipulandum that moved along a slide perpendicular to the target's motion. Participants were allocated to one of the three experimental groups, defined according to the type of motion of the moving targets: constant speed, constant acceleration, and constant deceleration. Results showed that after some practice participants were able to intercept (positive and negative) accelerating moving targets as accurately as constant speed targets. These results suggest that people might be able to learn how to intercept accelerating targets, corroborating the results of some recent studies.

  20. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  1. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  2. Target Visualization at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel Abraham [Univ. of California, Davis, CA (United States)

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  3. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    OpenAIRE

    Zhaopeng Zhong; Yousry Gohar

    2016-01-01

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nu...

  4. The CASPAR underground accelerator facility for the study of low energy nuclear astrophysics

    Science.gov (United States)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-09-01

    The drive of nuclear astrophysics is to push the limits of reaction measurements into the burning regime of astrophysical interest. As current laboratory experiments approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need for higher intensity accelerators, more robust and isotopically enriched target material and lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to the lower energies needed. The CASPAR facility is the first and only underground accelerator facility in the US, focused on the study of low energy reactions of nuclear astrophysical interest. Support provided by NSF Grant No. PHY 1419765, JINA-CEE Grant No. PHY 1430152 and the South Dakota Science and Technology Authority.

  5. Enhancing Target Normal Sheath Accelerated Ions with Micro-structured Targets

    Science.gov (United States)

    George, Kevin; Snyder, Joseph; Ji, Liangliang; Rubin, Trevor; Handler, Abraham; Poole, Patrick; Willis, Christopher; Daskalova, Rebecca; Cochran, Ginevra; Schumacher, Douglass

    2016-10-01

    Laser driven target normal sheath acceleration (TNSA) of ions has been widely studied due to its fundamental importance, use as a probe, and for possible applications such as cancer therapy and neutron generation. Much of this work has been conducted on thin foils with peak ion energy and yield optimized using laser parameters such as energy and spot size. Micro-structured targets, however, have demonstrated increased peak ion energy and yield by controlling and enhancing mechanisms preferential to TNSA. Novel micro-structured targets were developed using optical lithography techniques on thin substrates at the OSU NanoSystem Laboratory. Variable structure height (0.5-2 micron) and transverse patterning (up to 1 micron resolution) permit the survey of a range of structured target variables in the study of ion acceleration. We describe the development of these targets and an experiment investigating the enhancement of TNSA ions from lithography produced micro-structured targets conducted at the Scarlet Laser Facility. Experimental results show increased proton and Carbon yield >2 MeV and higher peak Carbon energy from structured targets. This work was supported by the Air Force Office of Scientific Research.

  6. Reliability Considerations for the Operation of Large Accelerator User Facilities

    CERN Document Server

    Willeke, F J

    2016-01-01

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. The article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  7. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.; Nickson, R.; Harboe-Sorensen, R. [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W.; Berger, G.

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  8. A Staged Muon Accelerator Facility For Neutrino and Collider Physics

    CERN Document Server

    Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

    2015-01-01

    Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

  9. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs.

  10. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  11. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  12. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  13. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tudisco, S., E-mail: tudisco@lns.infn.it; Cirrone, G. A. P.; Mascali, D.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore,” Via delle Olimpiadi, 94100 Enna (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Brandi, F. [Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cristoforetti, G.; Ferrara, P.; Fulgentini, L.; Koester, P. [Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L.; Gizzi, L. A. [Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-02-15

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  14. FAIR: The accelerator facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Sharkov, Boris [FAIR JCR GSI, Darmstad (Germany)

    2010-07-01

    This presentation outlines the current status of the facility for antiproton and ion research (FAIR). It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction of the accelerator modules in accordance with modularized start version are described. Outstanding research opportunities offered by the modularized start version for all scientific FAIR communities from early on will allow to bridge the time until FAIR's completion with a world-leading research program. The green paper outlining a realistic path to achieve this goal is discussed.

  15. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    CERN Document Server

    McGee, M W; Martinez, A; Pischalnikov, Y; Schappert, W

    2012-01-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule #1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  16. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  17. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  18. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kreiner, A.J., E-mail: kreiner@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina)] [CONICET, Buenos Aires (Argentina); Castell, W. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Di Paolo, H. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Baldo, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina)] [CONICET, Buenos Aires (Argentina)

    2011-12-15

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  19. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    Science.gov (United States)

    Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2016-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  20. Characterization methods for an accelerator based fast-neutron facility

    Science.gov (United States)

    Franklyn, C.; Daniels, G. C.

    2012-02-01

    A fast neutron facility provides a number of complexities in both detection and shielding, the latter arising not only due to uncertainty in the behaviour of the scattered radiation (neutron and gamma-rays) from a fast neutron source, but also on shielding requirements that have to take into account internal and external factors, such as dose limitations, space availability for implementing bulky shielding and secondary interactions of the radiation with materials. This has possible influence on experimental measurements with a low signal to noise ratio. This paper reports on some of the investigations performed at a RFQ accelerator facility generating > 1011 neutrons per second with energies up to 14 MeV, which are used to perform fast neutron radiography studies. Areas highlighted are the neutron cross section libraries, where important data needs to be reviewed or updated.

  1. National Ignition Facility Target Design and Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R C; Kozioziemski, B J; Nikroo, A; Wilkens, H L; Bhandarkar, S; Forsman, A C; Haan, S W; Hoppe, M L; Huang, H; Mapoles, E; Moody, J D; Sater, J D; Seugling, R M; Stephens, R B; Takagi, M; Xu, H W

    2007-12-10

    The current capsule target design for the first ignition experiments at the NIF Facility beginning in 2009 will be a copper-doped beryllium capsule, roughly 2 mm in diameter with 160-{micro}m walls. The capsule will have a 75-{micro}m layer of solid DT on the inside surface, and the capsule will driven with x-rays generated from a gold/uranium cocktail hohlraum. The design specifications are extremely rigorous, particularly with respect to interfaces, which must be very smooth to inhibit Rayleigh-Taylor instability growth. This paper outlines the current design, and focuses on the challenges and advances in capsule fabrication and characterization; hohlraum fabrication, and D-T layering and characterization.

  2. Optimizing laser-driven proton acceleration from overdense targets

    Science.gov (United States)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  3. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  4. Design concept of radiation control system for the high intensity proton accelerator facility

    CERN Document Server

    Miyamoto, Y; Harada, Y; Ikeno, K

    2002-01-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics.

  5. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  6. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    Directory of Open Access Journals (Sweden)

    Zhaopeng Zhong

    2016-06-01

    Full Text Available The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both

  7. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  8. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  9. An accelerator facility for WDM, HEDP, and HIF investigations in Nazarbayev University

    Science.gov (United States)

    Kaikanov, M.; Baigarin, K.; Tikhonov, A.; Urazbayev, A.; Kwan, J. W.; Henestroza, E.; Remnev, G.; Shubin, B.; Stepanov, A.; Shamanin, V.; Waldron, W. L.

    2016-05-01

    Nazarbayev University (NU) in Astana, Kazakhstan, is planning to build a new multi-MV, ∼10 to several hundred GW/cm2 ion accelerator facility which will be used in studies of material properties at extreme conditions relevant to ion-beam-driven inertial fusion energy, and other applications. Two design options have been considered. The first option is a 1.2 MV induction linac similar to the NDCX-II at LBNL, but with modifications, capable of heating a 1 mm spot size thin targets to a few eV temperature. The second option is a 2 - 3 MV, ∼200 kA, single-gap-diode proton accelerator powered by an inductive voltage adder. The high current proton beam can be focused to ∼1 cm spot size to obtain power densities of several hundred GW/cm2, capable of heating thick targets to temperatures of tens of eV. In both cases, a common requirement to achieving high beam intensity on target and pulse length compression is to utilize beam neutralization at the final stage of beam focusing. Initial experiments on pulsed ion beam neutralization have been carried out on a 0.3 MV, 1.5 GW single-gap ion accelerator at Tomsk Polytechnic University with the goal of creating a plasma region in front of a target at densities exceeding ∼1012 cm-3.

  10. Improvement in performance and operational experience of 14 UD Pelletron Accelerator Facility, BARC–TIFR

    Indian Academy of Sciences (India)

    P V Bhagwat

    2002-11-01

    14 UD Pelletron Accelerator Facility at Mumbai has been operational since 1989. The project MEHIA (medium energy heavy ion accelerator) started in 1982 and was formally inaugurated on 30th December 1988. Since then the accelerator has been working round the clock. Improvement in accelerator performance and operational experience are described.

  11. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil

  12. Challenges/issues of NIS used in particle accelerator facilities

    Science.gov (United States)

    Faircloth, Dan

    2013-09-01

    High current, high duty cycle negative ion sources are an essential component of many high power particle accelerators. This talk gives an overview of the state-of-the-art sources used around the world. Volume, surface and charge exchange negative ion production processes are detailed. Cesiated magnetron and Penning surface plasma sources are discussed along with surface converter sources. Multicusp volume sources with filament and LaB6 cathodes are described before moving onto RF inductively coupled volume sources with internal and external antennas. The major challenges facing accelerator facilities are detailed. Beam current, source lifetime and reliability are the most pressing. The pros and cons of each source technology is discussed along with their development programs. The uncertainties and unknowns common to these sources are discussed. The dynamics of cesium surface coverage and the causes of source variability are still unknown. Minimizing beam emittance is essential to maximizing the transport of high current beams; space charge effects are very important. The basic physics of negative ion production is still not well understood, theoretical and experimental programs continue to improve this, but there are still many mysteries to be solved.

  13. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report the resulting neutron and photon dose fields.

  14. Ignition target design for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D. [Los Alamos National Laboratory, NM (United States)] [and others

    1996-06-01

    The goal of inertial confinement fusion (ICF) is to produce significant thermonuclear burn from a target driven with a laser or ion beam. To achieve that goal, the national ICF Program has proposed a laser capable of producing ignition and intermediate gain. The facility is called the National Ignition Facility (NIF). This article describes ignition targets designed for the NIF and their modeling. Although the baseline NIF target design, described herein, is indirect drive, the facility will also be capable of doing direct-drive ignition targets - currently being developed at the University of Rochester.

  15. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  16. Spectral control of laser accelerated ions via deuterium vapour deposition onto cryogenically cooled targets

    Science.gov (United States)

    Scott, Graeme

    2016-10-01

    A widely perceived criticism of the best understood laser driven ion acceleration mechanism, TNSA, is that the energy spectra routinely obtained are Maxwellian in nature, and are non-ideal for some of the long term envisaged applications of a laser accelerated ion source such as ion driven fast ignition or hadrontherapy. We, however, demonstrate a novel method to accelerate a quasi-monoenergetic deuterium beam in the TNSA regime of ion acceleration. This is made possible by recent developments in cryogenic targetry at the Central Laser Facility, and is achieved by cooling a gold target to approximately 7-8 K and introducing overcoats of isotopic deuterium layers on top of the hydrogen contaminant layer present on the original target. The presence of a lower charge to mass ion on top of the high charge to mass hydrogen, alters the sheath dynamics during the acceleration such that the high energy portion of the deuterium beam exhibits a full width at half maximum energy spread of δɛ / ɛ 0.3-0.5. Experimental results and multidimensional numerical modelling will be presented describing this effect. Further than this, experimental results show that the accelerated deuterium beam is found to significantly enhance the number of neutrons produced when fielded in a pitcher/catcher configuration, and provides avenues for investigation on the production of a high brightness neutron source.

  17. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pkb@iuac.res.in [Inter-University Accelerator Center (IUAC), New Delhi (India); Chopra, S. [Inter-University Accelerator Center (IUAC), New Delhi (India); Pattanaik, J.K. [Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, WB (India); Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D. [Inter-University Accelerator Center (IUAC), New Delhi (India)

    2015-10-15

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for {sup 10}Be and {sup 26}Al with all the modern facilities has also been developed for the chemical processing of samples. {sup 10}Be measurements on sediment samples, inter laboratory comparison results and {sup 26}Al measurements on standard samples are presented in this paper. In addition to the {sup 10}Be and {sup 26}Al AMS facilities, a new {sup 14}C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  18. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  19. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    Science.gov (United States)

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  20. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  1. Acceleration Measurement of Projectile High Velocity Penetrating Concrete Target and Acceleration Signal Analysis

    Institute of Scientific and Technical Information of China (English)

    Peng XU; Jing ZU; Jing-biao FAN

    2010-01-01

    A kind of novel on-boand memory acceleratian measure equipment, self-developed, had been employed in recent field test to obtain the acceleration of projectile penetrating many kinds of concrete target. At the same time, the aluminum foam with different density and pore-diameters had been utilized to protect cirruit modules. Fur-thermore, with the theoretical analysis, computer simulation and field test, the high frequency's impact on the tested acceleration of the projectile had been discussed; At last, the analysis on output signal tested the validity of test data.

  2. Status and Plans for an SRF Accelerator Test Facility at Fermilab

    CERN Document Server

    Church, M; Nagaitsev, S

    2012-01-01

    A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  3. Nanodiamond targets for accelerator X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lobko, A., E-mail: lobko@inp.bsu.by [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Golubeva, E. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Kuzhir, P.; Maksimenko, S. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Ryazan State RadioEngineering University, 59/1 Gagarina Street, Ryazan 390005 (Russian Federation); Paddubskaya, A. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Shenderova, O. [International Technology Center, 8100 Brownleigh Dr., S. 120, Raleigh, NC 27617 (United States); Uglov, V. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Valynets, N. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus)

    2015-07-15

    Results of fabrication of a nanodiamond target for accelerator X-ray experiments are reported. Nanodiamond film with dimensions 5 × 7 mm and thickness of 500 nm has been made of the high pressure high temperature nanodiamonds using a filtration method. The average crystallite size of primary nanodiamond particles varies around 100 nm. Source nanodiamonds and fabricated nanodiamond film were characterized using Raman spectroscopy, electron microscopy, and X-ray diffractometry. Preliminary results show that targets made of nanodiamonds are perspective in generating crystal-assisted radiation by the relativistic charged particles, such as parametric X-rays, diffracted transition radiation, diffracted Bremsstrahlung, etc.

  4. Accelerated radioactive nuclear beams: Existing and planned facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, J.M.

    1992-07-01

    An over-view of existing and planned radioactive nuclear beam facilities world-wide. Two types of production methods are distinguished: projectile fragmentation and the on-line isotope separator (ISOL) method. While most of the projectile fragmentation facilities are already in operation, almost all the ISOL-based facilities are in still the planning stage.

  5. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans Jr., James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parten, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  6. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [ORNL; Kiggans Jr, James O [ORNL; Bryan, Chris [ORNL; Nunn, Stephen D [ORNL; Parten, Randy J [ORNL

    2015-12-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  7. Target development for the Munich fission fragment accelerator

    CERN Document Server

    Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P

    2002-01-01

    The target for the Munich Fission Fragment Accelerator (MAFF) consists of typically 1 g of the fission material sup 2 sup 3 sup 5 U in the form of UC sub 2 , dispersed homogeneously in a cylindrical graphite matrix, which is encapsulated in a protective Re container. This special type of target is currently under development. The problems related to its manufacture are discussed. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2700 K during operation. Extensive tests are required to study the long-term behaviour of the involved materials at these conditions. For this purpose a resistively heated high vacuum furnace has been set up, which allows high-temperature heat treatment of target samples for a period of up to 1000 h.

  8. Target conception for the Munich fission fragment accelerator

    CERN Document Server

    Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P

    1999-01-01

    For the new high-flux reactor FRM II, the fission fragment accelerator MAFF is under design. MAFF will supply intense mass-separated radioactive ion beams of very neutron-rich nuclei with energies around the Coulomb barrier. A central part of this accelerator is the ion source with the fission target, which is operated at a neutron flux of 1.5x10 sup 1 sup 4 cm sup - sup 2 s sup - sup 1. The target consists of typically 1 g of sup 2 sup 3 sup 5 U dispersed in a cylindrical graphite matrix, which is encapsulated in a Re container. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2400 deg. C during operation. It has to stand this temperature for at least one reactor cycle of 1250 h. Comprehensive tests are required to study the long-term behaviour of the involved materials at these conditions prior to operation in the reactor. The present paper gives details of the target conception and the projected tests.

  9. Accelerator-based fusion with a low temperature target

    Science.gov (United States)

    Phillips, R. E.; Ordonez, C. A.

    2013-04-01

    Neutron generators are in use in a number of scientific and commercial endeavors. They function by triggering fusion reactions between accelerated ions (usually deuterons) and a stationary cold target (e.g., containing tritium). This setup has the potential to generate energy. It has been shown that if the energy transfer between injected ions and target electrons is sufficiently small, net energy gain can be achieved. Three possible avenues are: (a) a hot target with high electron temperature, (b) a cold non-neutral target with an electron deficiency, or (c) a cold target with a high Fermi energy. A study of the third possibility is reported in light of recent research that points to a new phase of hydrogen, which is hypothesized to be related to metallic hydrogen. As such, the target is considered to be composed of nuclei and delocalized electrons. The electrons are treated as conduction electrons, with the average minimum excitation energy being approximately equal to 40% of the Fermi energy. The Fermi energy is directly related to the electron density. Preliminary results indicate that if the claimed electron densities in the new phase of hydrogen were achieved in a target, the energy transfer to electrons would be small enough to allow net energy gain.

  10. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    Science.gov (United States)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  11. Thermal hydraulics of accelerator driven system windowless targets

    Directory of Open Access Journals (Sweden)

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  12. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    OpenAIRE

    Bargalló Font, Enric; Sureda, Pere Joan; Arroyo Macias, José Manuel; Abal López, Javier; Blas Del Hoyo, Alfredo de; Dies Llovera, Javier; Tapia Fernández, Carlos; Mollá Lorente, Joaquin; Ibarra Sanchez, Angel

    2014-01-01

    Several problems were found when using generic reliability tools to perform RAM! (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility.; AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Neverthel...

  13. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  14. Simulation studies of laser wakefield acceleration based on typical 100 TW laser facilities

    Institute of Scientific and Technical Information of China (English)

    李大章; 高杰; 朱雄伟; 何安

    2011-01-01

    In this paper, 2-D Particle-In-Cell simulations are made for Laser Wakefield Accelerations (LWFA). As in a real experiment, we perform plasma density scanning for typical 100 TW laser facilities. Several basic laws for self-injected acceleration in a bubb

  15. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  16. ACCELERATOR SYSTEMS MODIFICATIONS FOR A SECOND TARGET STATION AT THE OAK RIDGE SPALLATION NEUTRON SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, John D [ORNL; Kim, Sang-Ho [ORNL; Plum, Michael A [ORNL

    2014-01-01

    A second target station is planned for the Oak Ridge Spallation Neutron Source. The ion source will be upgraded to increase the peak current from 38 to 49 mA, additional superconducting RF cavities will be added to the linac to increase the H beam energy from 938 to 1300 MeV, and the accumulator ring will receive modifications to the injection and extraction systems to accommodate the higher beam energy. After pulse compression in the storage ring one sixth of the beam pulses (10 out of 60 Hz) will be diverted to the second target by kicker and septum magnets added to the existing Ring to Target Beam Transport (RTBT) line. No further modifications will be made to the RTBT so that when the kicker and septum magnets are turned off the original beam transport lattice will be unaffected. In this paper we will discuss these and other planned modifications and upgrades to the accelerator facility.

  17. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Science.gov (United States)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  18. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  19. A multiple sampling ionization chamber for the External Target Facility

    Science.gov (United States)

    Zhang, X. H.; Tang, S. W.; Ma, P.; Lu, C. G.; Yang, H. R.; Wang, S. T.; Yu, Y. H.; Yue, K.; Fang, F.; Yan, D.; Zhou, Y.; Wang, Z. M.; Sun, Y.; Sun, Z. Y.; Duan, L. M.; Sun, B. H.

    2015-09-01

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a 239Pu α source and RI beams. A Z resolution (FWHM) of 0.4-0.6 was achieved for nuclear fragments of 18O at 400 AMeV.

  20. Search for Krypton 81 at Alice Accelerator Facility

    Science.gov (United States)

    Sabir, A.; Brissaud, I.; Kalifa, J.; Laurent, H.; Roynette, J. C.

    1982-08-01

    81Kr concentration measurements is a good clock for the old groundwater dating because of its chemical stability and of its atmospheric production. Unfortunately its presence in natural samples is very low. In this paper we report an experiment to measure the 81Kr concentration by means of the ALICE facility.

  1. A multipurpose accelerator facility for Kharkov National Scientific Center

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Dolbnya, A.; Gladkikh, P.; Karnaukhov, I.; Kononenko, S.; Kozin, V.; Lapshin, V.; Mytsykov, A.; Peev, F.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Tarasenko, A.; Telegin, Yu.; Zelinsky, A

    2000-06-21

    The project of the multifunctional accelerator storage ring complex with electron energy of up to 2 GeV is described. The lattice of the complex was chosen taking into account of the existing equipment, layout of the buildings, and infrastructure of the 2 GeV electron linear accelerator, the necessity of obtaining precise parameters of photon and electron beams, and the economic efficiency. The principle parameters of the storage ring are the circumference of 91 m, the energy range 0.3-2.0 GeV, the natural beam emittance 25 nm and the stored beam current 0.5 A. This complex are provided with photon beams (6-7 beam lines at first stage, up to 20 later on) and CW electron beams (energy region 0.3-0.5 GeV) for scientific and industrial application.

  2. Laser acceleration of protons from near critical density targets for application to radiation therapy

    CERN Document Server

    Bulanov, S S; Pirozhkov, A S; Thomas, A G R; Willingale, L; Krushelnick, K; Maksimchuk, A

    2010-01-01

    Laser accelerated protons can be a complimentary source for treatment of oncological diseases to the existing hadron therapy facilities. We demonstrate how the protons, accelerated from near-critical density plasmas by laser pulses having relatively small power, reach energies which may be of interest for medical applications. When an intense laser pulse interacts with near-critical density plasma it makes a channel both in the electron and then in the ion density. The propagation of a laser pulse through such a self-generated channel is connected with the acceleration of electrons in the wake of a laser pulse and generation of strong moving electric and magnetic fields in the propagation channel. Upon exiting the plasma the magnetic field generates a quasi-static electric field that accelerates and collimates ions from a thin filament formed in the propagation channel. Two-dimensional Particle-in-Cell simulations show that a 100 TW laser pulse tightly focused on a near-critical density target is able to acce...

  3. First results of laser-proton acceleration with cryogenic hydrogen targets at the POLARIS laser

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Georg Alexander; Polz, Jens; Kloepfel, Diethard; Ziegler, Wolfgang; Keppler, Sebastian; Liebetrau, Hartmut; Hellwing, Marco [Institut fuer Optik und Quantenelektronik, Friedrich-Schiller-Universitaet, 07743 Jena (Germany); Kalinin, Anton; Costa Fraga, Rui; Grisenti, Robert [Institut fuer Kernphysik, Goethe-Universitaet, 60438 Frankfurt am Main (Germany); Robinson, Alexander [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxon., OX11 0QX (United Kingdom); Kessler, Alexander; Schorcht, Frank; Hornung, Marco [Helmholtz Institut Jena, 07743 Jena (Germany); Kaluza, Malte Christoph [Institut fuer Optik und Quantenelektronik, Friedrich-Schiller-Universitaet, 07743 Jena (Germany); Helmholtz Institut Jena, 07743 Jena (Germany)

    2015-05-01

    For the first time on the POLARIS laser system, a laser-driven proton acceleration experiment with cryogenic hydrogen droplets and filaments has been performed. Most laser-driven proton acceleration experiments use target materials including metals, plastics or diamond-like carbon. Due to the multitude of ion species accelerated from such targets, understanding the acceleration processes becomes quite complicated. The use of liquid or frozen hydrogen targets reduces the accelerated species to protons only and additionally produces, due to the mass limited droplets or filaments, a higher acceleration field. The experimental setup and results, including isolated monoenergetic peaks in the high energy range of the proton spectra, are discussed.

  4. Electron beam accelerator facilities at IPEN-CNEN/SP

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Silveira, Carlos G. da; Paes, Helio; Somessari, Elizabeth S.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: somessar@ipen.br

    2007-07-01

    Electron beam processing is a manufacturing technique, which applies a focused beam of high-energy electrons produced by an electron accelerator to promote chemical changes within a product. At IPEN-CNEN/SP there are two electron beam accelerators Type Dynamitron{sup R} (manufactured by RDI- Radiation Dynamics Inc.) Job 188 and Job 307 models. The technical specifications for the Job 188 energy 1.5 MeV, beam current 25 mA, scan 1.20 m, beam power 37.5 kW and for the Job 307 energy 1.5 MeV, beam current 65 mA, Scan 1.20 m, beam power 97.5 kW. Some applications of the electron beam accelerator for radiation processing are wire and cable insulation crosslinking, rubber vulcanization, sterilization and disinfection of medical products, food preservation, heat shrinkable products, polymer degradation, aseptic packaging, semiconductors and pollution control. For irradiating these materials at IPEN-CNEN/SP, there are some equipment such as, underbeam capstan with speed control from 10 to 700 m/min; a track; a system to roll up and unroll wires and electric cables, polyethylene blankets and other systems to improve the quality of the products. (author)

  5. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  6. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; /SLAC; Vylet, Vashek; /Duke U.; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a

  7. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Y.C., E-mail: yuancun.nie@desy.de [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Assmann, R.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Weikum, M. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); University of Strathclyde, G1 1XQ Glasgow (United Kingdom); Zhu, J.; Hüning, M. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany)

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  8. Direct drive targets for the megajoule facility UFL-2M

    Science.gov (United States)

    Rozanov, V. B.; Gus'kov, S. Yu; Vergunova, G. A.; Demchenko, N. N.; Stepanov, R. V.; Doskoch, I. Ya; Yakhin, R. A.; Zmitrenko, N. V.

    2016-03-01

    Development of direct drive target schemes for the megajoule facility is a topical problem of up-to-date inertial fusion physics. The choice of possible schemes and solutions depends essentially on the irradiation conditions. The installations both running (NIF) and under construction (LMJ) are destined to the 3ω irradiation in PDD (polar direct drive) configuration. The UFL-2M installation that is under construction is based on 2ω irradiation and a symmetrical scheme of direct drive target irradiation. Under these conditions possible schemes for direct drive targets demonstrating the ignition and the achievement of gain G=10÷20 are considered in this report. At the same time, the possibilities are analyzed for the target compression and ignition with a reliability reserve at the conditions that can deviate from the standard ones, and if our understanding of the physics of the processes is not completely adequate to the physics of the real processes.

  9. The Gent University 15 MeV high-current linear electron accelerator facility

    Science.gov (United States)

    Mondelaers, W.; Van Laere, K.; Goedefroot, A.; Van den Bossche, K.

    1996-01-01

    The Gent University 15 MeV 20kW linear electron accelerator facility was initially designed for fundamental nuclear physics research. During the last years a large effort has been devoted to the expansion of the range of machine applications in view of a new extensive experimental programme in the fields of atomic and solid-state physics, biomaterials research, polymer chemistry, space research, food technology, high-dose dosimetry and radiation therapy. The accelerator facility in its present configuration, the peripheral equipment and the experimental programme are described with emphasis on the original features.

  10. A multiple sampling ionization chamber for the External Target Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhxh@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tang, S.W.; Ma, P.; Lu, C.G.; Yang, H.R.; Wang, S.T.; Yu, Y.H.; Yue, K.; Fang, F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yan, D.; Zhou, Y.; Wang, Z.M.; Sun, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Z.Y.; Duan, L.M. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, B.H. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2015-09-21

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a {sup 239}Pu α source and RI beams. A Z resolution (FWHM) of 0.4–0.6 was achieved for nuclear fragments of {sup 18}O at 400 AMeV.

  11. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    CERN Document Server

    Leibfritz, J; Baffes, C M; Carlson, K; Chase, B; Church, M D; Harms, E R; Klebaner, A L; Kucera, M; Martinez, A; Nagaitsev, S; Nobrega, L E; Piot, P; Reid, J; Wendt, M; Wesseln, S J

    2013-01-01

    The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750-MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5-GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF a...

  12. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Science.gov (United States)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  13. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Kalmykov, S.Y., E-mail: skalmykov2@unl.edu [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lifschitz, A. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Shadwick, B.A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Malka, V. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Specka, A. [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France)

    2014-03-11

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 10{sup 18} cm{sup −3}. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  14. Real photon scattering up to 10 MeV: the improved facility at the Darmstadt electron accelerator S-DALINAC

    CERN Document Server

    Mohr, P J; Hartmann, T; Kaiser, H; Schiesser, D; Schmitt, S; Volz, S; Wissel, F; Zilges, A

    1999-01-01

    A new radiator and collimator system has been installed at the photon scattering facility of the superconducting electron accelerator S-DALINAC at the Darmstadt University of Technology. The new set-up allows the high-resolution (gamma,gamma') experiments to be extended to the energy range between 7 and 10 MeV without neutron induced gamma-ray background. First test measurements of sup 1 sup 1 B targets in combination with Ge(HP) detectors have been performed successfully and show the huge potential of the improved set-up.

  15. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  16. Role of laser contrast and foil thickness in target normal sheath acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gizzi, L.A. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Altana, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania (Italy); Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Brandi, F. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, P. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Cristoforetti, G. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan, Milan (Italy); INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Giove, D. [INFN-LASA, Via Fratelli Cervi 201, 20090 Segrate (Italy); Koester, P. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Labate, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Università degli Studi di Enna Kore, Via delle Olimpiadi, 94100 Enna (Italy); Londrillo, P. [INAF–Osservatorio astronomico Bologna (Italy); Mascali, D.; Muoio, A. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Palla, D. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Schillaci, F. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Sinigardi, S. [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN, Sez. di Bologna, Via Irnerio 46, 40126 Bologna (Italy); and others

    2016-09-01

    In this paper we present an experimental investigation of laser driven light-ion acceleration using the ILIL laser at an intensity of 2×10{sup 19} W/cm{sup 2}. In the experiment we focused our attention on the identification of the role of target thickness and resistivity in the fast electron transport and in the acceleration process. Here we describe the experimental results concerning the effect of laser contrast in the laser–target interaction regime. We also show preliminary results on ion acceleration which provide information about the role of bulk target ions and surface ions and target dielectric properties in the acceleration process.

  17. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Andrew [TJNAF; Areti, Hari [TJNAF

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  18. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  19. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  20. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Sureda, Pere Joan [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier; De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • The reason why IFMIF RAMI analyses needs a simulation is explained. • Changes, modifications and software validations done to AvailSim are described. • First IFMIF RAMI results obtained with AvailSim 2.0 are shown. • Implications of AvailSim 2.0 in IFMIF RAMI analyses are evaluated. - Abstract: Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore, some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown.

  1. SINBAD-The accelerator R&D facility under construction at DESY

    Science.gov (United States)

    Dorda, U.; Assmann, R.; Brinkmann, R.; Flöttmann, K.; Hartl, I.; Hüning, M.; Kärtner, F.; Fallahi, A.; Marchetti, B.; Nie, Y.; Osterhoff, J.; Schlarb, H.; Zhu, J.; Maier, A. R.

    2016-09-01

    The SINBAD facility (Short INnovative Bunches and Accelerators at DESY) is a long-term dedicated accelerator research and development facility currently under construction at DESY. It will be located in the premises of the old DORIS accelerator complex and host multiple independent experiments cost-effectively accessing the same central infrastructure like a central high power laser. With the removal of the old DORIS accelerator being completed, the refurbishment of the technical infrastructure is currently starting up. The presently ongoing conversion of the area into the SINBAD facility and the currently foreseen layout is described. The first experiment will use a compact S-band linac for the production of ultra-short bunches at hundred MeV. Once established, one of the main usages will be to externally inject electrons into a laser-driven plasma wakefield accelerator to boost the energy to GeV-level while maintaining a usable beam quality, ultimately aiming to drive an FEL. The second experiment already under planning is the setup of an attosecond radiation source with advanced technology. Further usage of the available space and infrastructure is revised and national and international collaborations are being established.

  2. SINBAD—The accelerator R&D facility under construction at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Dorda, U., E-mail: ulrich.dorda@desy.de [DESY, Hamburg & Zeuthen (Germany); Assmann, R.; Brinkmann, R.; Flöttmann, K.; Hartl, I.; Hüning, M.; Kärtner, F.; Fallahi, A.; Marchetti, B.; Nie, Y.; Osterhoff, J.; Schlarb, H.; Zhu, J. [DESY, Hamburg & Zeuthen (Germany); Maier, A.R. [University Hamburg (Germany)

    2016-09-01

    The SINBAD facility (Short INnovative Bunches and Accelerators at DESY) is a long-term dedicated accelerator research and development facility currently under construction at DESY. It will be located in the premises of the old DORIS accelerator complex and host multiple independent experiments cost-effectively accessing the same central infrastructure like a central high power laser. With the removal of the old DORIS accelerator being completed, the refurbishment of the technical infrastructure is currently starting up. The presently ongoing conversion of the area into the SINBAD facility and the currently foreseen layout is described. The first experiment will use a compact S-band linac for the production of ultra-short bunches at hundred MeV. Once established, one of the main usages will be to externally inject electrons into a laser-driven plasma wakefield accelerator to boost the energy to GeV-level while maintaining a usable beam quality, ultimately aiming to drive an FEL. The second experiment already under planning is the setup of an attosecond radiation source with advanced technology. Further usage of the available space and infrastructure is revised and national and international collaborations are being established.

  3. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    Energy Technology Data Exchange (ETDEWEB)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd [MKS, Deutsches Elektronen Synchrotron DESY, 22607 Hamburg (Germany)

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  4. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Subrata [Los Alamos National Laboratory

    2010-09-07

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer {approx}1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  5. Physics of Double Pulse Irradiation of Targets For Proton Acceleration

    Science.gov (United States)

    Kerr, S.; Mo, M.; Masud, R.; Manzoor, L.; Tiedje, H.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2016-10-01

    Experiments have been carried out on double-pulse irradiation of um-scale foil targets with varying preplasma conditions. Our experiment at the Titan Laser facility utilized two 700 fs, 1054 nm pulses, separated by 1 to 5 ps with a total energy of 100 J, and with 5-20% of the total energy contained within the first pulse. The proton spectra were measured with radiochromic film stacks and magnetic spectrometers. The prepulse energy was on the order of 10 mJ, which appears to have a moderating effect on the double pulse enhancement of proton beam. We have performed LSP PIC simulations to understand the double pulse enhancement mechanism, as well as the role of preplasma in modifying the interaction. A 1D parameter study was done to isolate various aspects of the interaction, while 2D simulations provide more detailed physical insight and a better comparison with experimental data. Work by the Univ. of Alberta was supported by the Natural Sciences and Engineering Research Council of Canada. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  6. Host-based data acquisition system to control pulsed facilities of the accelerator

    Science.gov (United States)

    Zamriy, V. N.

    2016-09-01

    The report discusses development of the host-based system to carry out timed measurements and data acquisition for the control of pulsed facilities of the accelerator. We consider modes of timing and allocation of operations of channels and the system node. The time of any working cycle of the pulsed facilities, rate of a data flow and an amount of serviced channels are coordinated with operation characteristics of the system node. Estimations of the readout rate of the data and the waiting time demonstrate the system efficiency. The technique has been developed to provide checking of groups of pulse parameters and control the facilities of the linear accelerator of electrons LUE-200 of the neutron source IREN.

  7. The National Ignition Facility: Transition to a Target Shooter

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2003-10-07

    The National Ignition Facility (NIP) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light exceeding design requirements. Operation of single beams at the second harmonic (531 nm) and third harmonic (351 nm) at greater than 10 kJ have also exceeded the performance criteria. NIFs target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  8. Enhanced surface acceleration of fast electrons by using sub-wavelength grating targets

    CERN Document Server

    Hu, Guang-yue; Wang, Wen-tao; Wang, Jing-wei; Huang, Lin-gen; Wang, Xin; Xu, Yi; Liu, Jian-sheng; Shen, Bai-fei; Yu, Wei; Li, Ru-xin; Xu, Zhi-zhan

    2010-01-01

    Surface acceleration of fast electrons in intense laser-plasma interaction is improved by using sub-wavelength grating targets. The fast electron beam emitted along the target surface was enhanced by more than three times relative to that by using planar target. The total number of the fast electrons ejected from the front side of target was also increased by about one time. The method to enhance the surface acceleration of fast electron is effective for various targets with sub-wavelength structured surface, and can be applied widely in the cone-guided fast ignition, energetic ion acceleration, plasma device, and other high energy density physics experiments.

  9. A facility for studying irradiation accelerated corrosion in high temperature water

    Science.gov (United States)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  10. A flexible testing facility for high-power targets (Tiara FP7 program)

    CERN Document Server

    Fusco, Y.; Samec, K.; Kadi, Y.

    2014-01-01

    Building on recent experience in the field of applied physics, TIARA Work package n° 9 focuses on target applications for accelerators in Europe. A roadmap for target development has been derived from major achievements in the EU-FP6 and EU-FP7 programs such as the MEGAPIE and EURISOL experiments. The TIARA management board concluded that a worthwhile continuation of such projects would be in the development of a flexible material irradiation facility easily transportable and which could be installed in different laboratories. The power is limited to 100 kW in a very compact arrangement so as to obtain the best neutron economy from a moderate beam power which is more likely to be found in laboratories across Europe. The challenges posed by such a compact design and accompanying calculations are presented in the current work.

  11. Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

    CERN Document Server

    Gold, Steven H; Gai, Wei; Hu, Yuan; Jing, Chunguang; Kinkead, Allen; Konecny, Richard; Lin, Y; Nantista, Christopher D; Power, John G; Tang, C; Tantawi, Sami G

    2006-01-01

    This paper will describe a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by the high-power 11.424-GHz magnicon that was developed by NRL and Omega-P, Inc. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW.* The facility will include a 5-MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ~8 MV/m.** SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure...

  12. Simulation studies of laser wakefield acceleration based on typical 100 TW laser facilities

    Institute of Scientific and Technical Information of China (English)

    LI Da-Zhang; GAO Jie; ZHU Xiong-Wei; HE An

    2011-01-01

    In this paper,2-D Particle-In-Cell simulations are made for Laser Wakefield Accelerations(LWFA).As in a real experiment,we perform plasma density scanning for typical 100 TW laser facilities.Several basic laws for self-injected acceleration in a bubble regime are presented.According to these laws,we choose a proper plasma density and then obtain a high quality quasi-monoenergetic electron bunch with arms energy of more than 650 MeV and a bunch length of less than 1.5 μn.

  13. Facilities for preparing actinide or fission product-based targets

    CERN Document Server

    Sors, M

    1999-01-01

    Research and development work is currently in progress in France on the feasibility of transmutation of very long-lived radionuclides such as americium, blended with an inert medium such as magnesium oxide and pelletized for irradiation in a fast neutron reactor. The process is primarily designed to produce ceramics for nuclear reactors, but could also be used to produce targets for accelerators. The Actinide Development Laboratory is part of the ATALANTE complex at Marcoule, where the CEA investigates reprocessing, liquid and solid waste treatment and vitrification processes. The laboratory produces radioactive sources; after use, their constituents are recycled, notably through R and D programs requiring such materials. Recovered americium is purified, characterized and transformed for an experiment known as ECRIX, designed to demonstrate the feasibility of fabricating americium-based ceramics and to determine the reactor transmutation coefficients.

  14. The Radiological Research Accelerator Facility. Progress report, December 1, 1991--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  15. The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  16. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  17. Development of an In-Situ Radiological Classification Technique for Material from CERN's Accelerator Facilities

    CERN Document Server

    AUTHOR|(CDS)2081300; Froeschl, Robert; Forkel-Wirth, Doris

    CERN, the European Organization for Nuclear Research, operates high energy accelerators for particle physics research. Because of beam losses and subsequent particle interactions, radioactivity can be induced in certain accelerator components. Material and waste taken out of the accelerators facilities as a result of maintenance repair and upgrade actions as well as in case of decommissioning needs to be radiologically classied for future handling. Depending on the level of residual activity, some of these components are candidates for clearance from regulatory control in Switzerland. The Swiss radiation protection ordinance sets as criteria for clearance of material and waste from regulatory control the compliance with radionuclide specic limits for surface contamination and for specic activity as well as an ambient dose equivalent rate criterion. For objects with a mass below 1 kg a radionuclide specic clearance limit for total activity has to be respected. This work is focused on the specic activity criter...

  18. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production

    Science.gov (United States)

    Bessho, K.; Matsumura, H.; Miura, T.; Wang, Q.; Masumoto, K.; Hagura, H.; Nagashima, Y.; Seki, R.; Takahashi, T.; Sasa, K.; Sueki, K.; Matsuhiro, T.; Tosaki, Y.

    2007-06-01

    The thermal neutron fluence that poured into the shielding concrete of proton accelerator facilities was estimated from the in situ production of 36Cl. The thermal neutron fluences at concrete surfaces during 10-30 years of operation were in the range of 1012-1014 n/cm2. The maxima in thermal neutron fluences were observed at ≈5-15 cm in the depths analyzed for 36Cl/35Cl by AMS. These characteristics imply that thermalization of neutrons occurred inside the concrete. Compared to the several tens of MeV cyclotrons, secondary neutrons penetrate deeper into the concrete at the high-energy accelerators possessing acceleration energies of 400 MeV and 12 GeV. The attenuation length of neutrons reflects the energy spectra of secondary neutrons emitted by the nuclear reaction at the beam-loss points. Increasing the energy of secondary neutrons shifts the maximum in the thermal neutron fluences to deeper positions. The data obtained in this study will be useful for the radioactive waste management at accelerator facilities.

  19. The first target experiments on the National Ignition Facility

    Science.gov (United States)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  20. The first target experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P

    2007-08-15

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  1. Laser ion acceleration using a solid target coupled with a low density layer

    CERN Document Server

    Sgattoni, Andrea; Macchi, Andrea; Passoni, Matteo

    2011-01-01

    We investigate by particle-in-cell simulations in two and three dimensions the laser-plasma interaction and the proton acceleration in multilayer targets where a low density "near-critical" layer of a few micron thickness is added on the illuminated side of a thin, high density layer. This target design can be obtained by depositing a "foam" layer on a thin metallic foil. The presence of the near-critical plasma strongly increases both the conversion efficiency and the energy of electrons and leads to enhanced acceleration of proton from a rear side layer via the Target Normal Sheath Acceleration mechanism. The electrons of the foam are strongly accelerated in the forward direction and propagate on the rear side of the target building up a high electric field with a relatively flat longitudinal profile. In these conditions the maximum proton energy is up to three times higher than in the case of the bare solid target.

  2. Neutron research and facility development at the Oak Ridge Electron Linear Accelerator 1970 to 1995

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, R.W.; Harvey, J.A.; Maienschein, F.C.; Weston, L.W.; Olsen, D.K.; Larson, D.C.; Macklin, R.L.

    1982-07-01

    This report reviews the accomplishments of the first decade of operation of the Oak Ridge Electron Linear Accelerator (ORELA) and discusses the plans for the facility in the coming decade. Motivations for scientific and applied research during the next decade are included. In addition, ORELA is compared with competing facilities, and prospects for ORELA's improvement and even replacement are reported. Development efforts for the next few years are outlined that are consistent with the anticipated research goals. Recommendations for hardware development include improving the electron injection system to give much larger short-pulse currents on a reliable basis, constructing an Electron Beam Injector Laboratory to help make this improvement possible, continuing a study of possibly replacing the electron accelerator with a proton machine, and replacing or upgrading the facility's data-acquistion and immediate-analysis computer systems. Increased operating time and more involvement of nuclear theorists are recommended, and an effective staff size for optimum use of this unique facility is discussed. A bibliography of all ORELA-related publications is included.

  3. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  4. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    Science.gov (United States)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  5. Optimization of the combined proton acceleration regime with a target composition scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yao, W. P. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Graduate School, China Academy of Engineering Physics, Beijing 100088 (China); Li, B. W., E-mail: li-baiwen@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Zheng, C. Y.; Liu, Z. J. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yan, X. Q. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Qiao, B. [Center for Applied Physics and Technology, HEDPS, State Key Laboratory of Nuclear Physics and Technology, and School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-01-15

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  6. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, K. D.; Huang, T. W. [Center for Applied Physics and Technology, HEDPS, and School of Physics, Peking University, Beijing 100871 (China); Zhou, C. T., E-mail: zcangtao@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 (China); Qiao, B., E-mail: bqiao@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, and School of Physics, Peking University, Beijing 100871 (China); State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006 (China); Wu, S. Z. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Ruan, S. C. [College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 (China); He, X. T. [Center for Applied Physics and Technology, HEDPS, and School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-01-15

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.

  7. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    Directory of Open Access Journals (Sweden)

    K. D. Xiao

    2016-01-01

    Full Text Available Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA case.

  8. Visualization of Target Inspection data at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, D; Antipa, N

    2012-02-16

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

  9. Conceptual design of the beryllium rotating target for the ESS-Bilbao facility

    Energy Technology Data Exchange (ETDEWEB)

    Terrón, S., E-mail: santiago.terron@essbilbao.org [ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Sordo, F.; Magán, M.; Ghiglino, A.; Martínez, F.; Vicente, P.J. de; Vivanco, R. [ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Thomsen, K. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain); ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Abánades, A. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain)

    2013-10-01

    The ESS-Bilbao facility, hosted by the University of the Basque Country (UPV/EHU), envisages the operation of a high-current proton accelerator delivering beams with energies up to 50 MeV. The time-averaged proton current will be 2.25 mA, delivered by 1.5 ms proton pulses with a repetition rate of 20 Hz. This beam will feed a neutron source based upon the Be (p,n) reaction, which will enable the provision of relevant neutron experimentation capabilities. The neutron source baseline concept consists in a rotating beryllium target cooled by water. The target structure will comprise a rotatable disk made of 6061-T6 aluminium alloy holding 20 beryllium plates. Heat dissipation from the target relies upon a distribution of coolant-flow channels. The practical implementation of such a concept is here described with emphasis put on the beryllium plates thermo-mechanical optimization, the chosen coolant distribution system as well as the mechanical behavior of the assembly. -- Highlights: • The conceptual design of ESS-Bilbao neutron production target has been carried out. • This device is a rotating disk holding Be elements cooled by water. • Thermo-mechanical and lifespan behavior of the Be elements have been analyzed. • Disk structure ensures coolability and a proper mechanical behavior of the assembly.

  10. Targeted Alpha Therapy: The US DOE Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy

    Science.gov (United States)

    John, Kevin

    2017-01-01

    Targeted radiotherapy is an emerging discipline of cancer therapy that exploits the biochemical differences between normal cells and cancer cells to selectively deliver a lethal dose of radiation to cancer cells, while leaving healthy cells relatively unperturbed. A broad overview of targeted alpha therapy including isotope production methods, and associated isotope production facility needs, will be provided. A more general overview of the US Department of Energy Isotope Program's Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy will also be presented focusing on the accelerator-production of 225Ac and final product isolation methodologies for medical applications.

  11. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    Science.gov (United States)

    Bateman, F. B.; Desrosiers, M. F.; Hudson, L. T.; Coursey, B. M.; Bergstrom, P. M.; Seltzer, S. M.

    2003-08-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  12. Nuclear Physics Programs for the Future Rare Isotope Beams Accelerator Facility in Korea

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We present nuclear physics programs based on the planned experiments using rare isotope beams (RIBs) for the future Korean Rare Isotope Beams Accelerator facility; RAON. This ambitious facility has both an Isotope Separation On Line (ISOL) and fragmentation capability for producing RIBs and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. Low energy RIBs at Elab = 5 to 20 MeV per nucleon are for the study of nuclear structure and nuclear astrophysics toward and beyond the drip lines while higher energy RIBs produced by in-flight fragmentation with the re-accelerated ions from the ISOL enable to explore the neutron drip lines in intermediate mass regions. The planned programs have goals for investigating nuclear structures of the exotic nuclei toward and beyond the nucleon drip lines by addressing the following issues: how the shell structure evolves in areas of extreme proton to neutron imbalance; whether the isospin symmetry maintains in isobaric mirror nu...

  13. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  14. Status and Control Requirements of the Planned Heavy Ion Tumor Therapy Accelerator Facility HICAT

    CERN Document Server

    Baer, R C; Haberer, T; Baer, Ralph C.; Eickhoff, Hartmut; Haberer, Thomas

    2001-01-01

    The HICAT project is a Heavy Ion accelerator for light ion Cancer Treatment to be built for the clinics in Heidelberg, Germany. It consists of a 7 MeV/u linac, a compact synchrotron and three treatment places, one of them equipped with a 360 degree gantry beam-line. The facility will implement the intensity controlled raster-scanning technique that was developed and successfully demonstrated at GSI with over 100 patients at present. In order to produce the beams with the characteristics requested by the treatment sequencer, the accelerator must operate on a pulse-to-pulse basis with different settings. This concept imposes strict and challenging demands on the operation of the accelerators and hence the control system of the facility. The control system should be developed, installed and maintained by and under the complete responsibility of an industrial system provider, using a state-of-the-art system and wide-spread industrial components wherever possible. The presentation covers the status of the project ...

  15. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  16. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    Science.gov (United States)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  17. Measurement of depth distributions of (3)H and (14)C induced in concrete shielding of an electron accelerator facility.

    Science.gov (United States)

    Endo, Akira; Harada, Yasunori; Kawasaki, Katsuya; Kikuchi, Masamitsu

    2004-06-01

    The estimation of radioactivity induced in concrete shielding is important for the decommissioning of accelerator facilities. Concentrations of (3)H and (14)C in the concrete shielding of an electron linear accelerator were measured, and the depth distributions of (3)H and (14)C and gamma-ray emitters were discussed in relation to their formation reactions.

  18. Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime

    Institute of Scientific and Technical Information of China (English)

    LU Hai-Yang; WANG Cheng; LIU Jian-Sheng

    2011-01-01

    @@ Acceleration of protons by a circularly polarized laser pulse irradiating on a double-layer target is investigated by a theoretical model and particle-in-cell simulations.The target is made up of a heavy ion layer coated with a proton layer on the rear surface.The results show that when the first layer is transparent induced by the hole-boring effect, the whole proton layer is accelerated by the transmitted laser pulse to high energy with low energy spread.The quality of the proton beam generated from a double-layer target is better than that from a single-layer target.The improvement is attributed to the flat top structure of the electrostatic field caused by the electrons injected into the second layer.It is easier to control the spectrum quality by using a double-layer target rather than using a single-layer one when the radiation pressure acceleration is dominant.

  19. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan [Fermilab; Warner, Arden [Fermilab; Liu, Ning [Fermilab; Neswold, Richard [Fermilab; Carmichael, Linden [Fermilab

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  20. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chitarin, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Department of Engineering and Management, University of Padova, Vicenza (Italy); Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  1. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  2. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Andrew [TJNAF; Areti, Hari [TJNAF

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  3. Construction of material and life science experimental facility under high intensity proton accelerator project

    CERN Document Server

    Ikeda, Y

    2002-01-01

    The outline of construction of 1MW pulse spallation neutron source in the MLF experimental facility is explained in this paper. The object, project activities, project team and construction of group are stated. 1MW pulse nuclear spallation neutron source, neutron source design and technical problems, Hg target, the basic parameters, neutron source station, moderator, reflector, shield, shutter, low temperature system, facility, spectrometer, and neutron experimental device are explained. The nuclear calculation code and nuclear data used as technical support and computer environment are illustrated. (S.Y.)

  4. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  5. European facilities for accelerator neutrino physics: perspectives for the decade to come

    CERN Document Server

    Battiston, R; Migliozzi, P; Terranova, F

    2009-01-01

    Very soon a new generation of reactor and accelerator neutrino oscillation experiments - Double Chooz, Daya Bay, Reno and T2K - will seek for oscillation signals generated by the mixing parameter theta_13. The knowledge of this angle is a fundamental milestone to optimize further experiments aimed at detecting CP violation in the neutrino sector. Leptonic CP violation is a key phenomenon that has profound implications in particle physics and cosmology but it is clearly out of reach for the aforementioned experiments. Since late 90's, a world-wide activity is in progress to design facilities that can access CP violation in neutrino oscillation and perform high precision measurements of the lepton counterpart of the Cabibbo-Kobayashi-Maskawa matrix. In this paper the status of these studies will be summarized, focusing on the options that are best suited to exploit existing European facilities (firstly CERN and the INFN Gran Sasso Laboratories) or technologies where Europe has a world leadership. Similar consid...

  6. Optimization of the Combined Proton Acceleration Regime with a Target Composition Scheme

    CERN Document Server

    Yao, W P; Zheng, C Y; Liu, Z J; Yan, X Q

    2015-01-01

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell (2D PIC) simulations by using an ultra-intense circularly-polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. With an ultra-intense CP laser pulse irradiating an overdense CH target, followed by an underdense tritium plasma gas, protons with higher energies (from about $20$ GeV up to about $30$ GeV) and lower energy spreads (from about $18\\%$ down to about $5\\%$ in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hy...

  7. Uranium target for electron accelerator based neutron source for BNCT

    Science.gov (United States)

    Tonchev, A. P.; Harmon, F.; Collens, T. J.; Kennedy, K.; Sabourov, A.; Harker, Y. D.; Nigg, D. W.; Jones, J. L.

    2001-07-01

    Calculations of the epithermal-neutron yield of photoneutrons from a uranium-beryllium converter using a 27 MeV electron linear accelerator have been investigated. In this concept, relativistic electron beams from a 30 MeV LINAC impinge upon a small uranium sphere surrounded by a cylindrical tank of circulating heavy water (D2O) nested in a beryllium cube. The photo-fission neutron spectrum from the uranium sphere is thermalized in deuterium and beryllium, filtered and moderated in special material (AlF3/Al/LiF), and directed to the patient. The results of these calculations demonstrate that photoneutron devices could offer a promising alternative to nuclear reactors for the production of epithermal neutrons for Neutron Capture Therapy. The predicted parameter for the epithermal flux is more than 108n.cm-2.mA-1.

  8. Computational algorithms for multiphase magnetohydrodynamics and applications to accelerator targets

    Directory of Open Access Journals (Sweden)

    R.V. Samulyak

    2010-01-01

    Full Text Available An interface-tracking numerical algorithm for the simulation of magnetohydrodynamic multiphase/free surface flows in the low-magnetic-Reynolds-number approximation of (Samulyak R., Du J., Glimm J., Xu Z., J. Comp. Phys., 2007, 226, 1532 is described. The algorithm has been implemented in multi-physics code FronTier and used for the simulation of MHD processes in liquids and weakly ionized plasmas. In this paper, numerical simulations of a liquid mercury jet entering strong and nonuniform magnetic field and interacting with a powerful proton pulse have been performed and compared with experiments. Such a mercury jet is a prototype of the proposed Muon Collider/Neutrino Factory, a future particle accelerator. Simulations demonstrate the elliptic distortion of the mercury jet as it enters the magnetic solenoid at a small angle to the magnetic axis, jet-surface instabilities (filamentation induced by the interaction with proton pulses, and the stabilizing effect of the magnetic field.

  9. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi [Department of Fussion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Yutani, Toshiaki [Toshiba Corp., Tokyo (Japan)

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m{sup 2}) up to 200 dpa and a sufficient irradiation volume (500 cm{sup 3}) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  10. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael F. [JLAB

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  11. Development of Tandem Accelerator Mixed Target Cone and Its Application for Single Event Effects Experiments

    Institute of Scientific and Technical Information of China (English)

    CAI; Li; SHEN; Dong-jun; YOU; Qu-bo; WANG; Hui

    2012-01-01

    <正>For carrying out heavy ion single event effects (SEE) test, the tandem accelerator has the advantage of rapid replacement of ion species, making it possible to replace 5 or 6 kinds of ion in one experiment (about 20 h) and get complete cross-section curve for devices under test (DUTs). In order to achieve the purpose of rapid replacement of ion species, multi-element mixed target cone using in tandem accelerator has been developed. In this way variety of ions can be extracted in one target cone, the time of replacing target cone can be saved, thereby further raise efficiency of experiment.

  12. Hollow microspheres as targets for staged laser-driven proton acceleration

    CERN Document Server

    Burza, M; Genoud, G; Persson, A; Svensson, K; Quinn, M; McKenna, P; Marklund, M; Wahlström, C -G; 10.1088/1367-2630/13/1/013030

    2011-01-01

    A coated hollow core microsphere is introduced as a novel target in ultra-intense laser-matter interaction experiments. In particular, it facilitates staged laser-driven proton acceleration by combining conventional target normal sheath acceleration (TNSA), power recycling of hot laterally spreading electrons and staging in a very simple and cheap target geometry. During TNSA of protons from one area of the sphere surface, laterally spreading hot electrons form a charge wave. Due to the spherical geometry, this wave refocuses on the opposite side of the sphere, where an opening has been laser micromachined. This leads to a strong transient charge separation field being set up there, which can post-accelerate those TNSA protons passing through the hole at the right time. Experimentally, the feasibility of using such targets is demonstrated. A redistribution is encountered in the experimental proton energy spectra, as predicted by particle-in-cell simulations and attributed to transient fields set up by oscilla...

  13. Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm

    Directory of Open Access Journals (Sweden)

    O. Ahmed

    2013-01-01

    Full Text Available Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP implementation and two pure Register-Transfer Level (RTL implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor.

  14. Benchmarking study and its application for shielding analysis of large accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Seock; Kim, Dong-hyun; Oranj, Leila Mokhtari; Oh, Joo-Hee; Lee, Arim; Jung, Nam-Suk [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    Shielding Analysis is one of subjects which are indispensable to construct large accelerator facility. Several methods, such as the Monte Carlo, discrete ordinate, and simplified calculation, have been used for this purpose. The calculation precision is overcome by increasing the trial (history) numbers. However its accuracy is still a big issue in the shielding analysis. To secure the accuracy in the Monte Carlo calculation, the benchmarking study using experimental data and the code comparison are adopted fundamentally. In this paper, the benchmarking result for electrons, protons, and heavy ions are presented as well as the proper application of the results is discussed. The benchmarking calculations, which are indispensable in the shielding analysis were performed for different particles: proton, heavy ion and electron. Four different multi-particle Monte Carlo codes, MCNPX, FLUKA, PHITS, and MARS, were examined for higher energy range equivalent to large accelerator facility. The degree of agreement between the experimental data including the SINBAD database and the calculated results were estimated in the terms of secondary neutron production and attenuation through the concrete and iron shields. The degree of discrepancy and the features of Monte Carlo codes were investigated and the application way of the benchmarking results are discussed in the view of safety margin and selecting the code for the shielding analysis. In most cases, the tested Monte Carlo codes give proper credible results except of a few limitation of each codes.

  15. Plasma block acceleration via double targets driven by an ultraintense circularly polarized laser pulse

    Science.gov (United States)

    Xu, Yanxia; Wang, Jiaxiang; Qi, Xin; Li, Meng; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2017-03-01

    By using two-dimensional particle-in-cell simulations, plasma block acceleration via radiation pressure from an ultraintense circularly polarized laser pulse with intensity I ≈ 10 22 W / cm 2 is investigated based on a double-target scheme, in which the targets are composed of a pre-target with a relatively low plasma density and a main target with a high plasma density. It has been demonstrated that an appropriately selected pre-target can help to greatly enhance the charge separation field in the main target, which then leads to generation of a strongly accelerated and well directed plasma block with proton energy in GeV magnitude. This result can have potential applications in the plasma block ignition of proton-born fusion.

  16. Upgrading of the AMS facility at the Koffler 14UD Pelletron accelerator

    CERN Document Server

    Berkovits, D; Bordeanu, C; Ghelberg, S; Hass, M; Heber, O; Paul, M; Shahar, Y; Verri, G; 10.1016/j.nimb.2004.04.033

    2004-01-01

    The AMS facility based on a 14UD Pelletron tandem accelerator has been upgraded in recent years to support an active and diversified research program. A new dedicated AMS ion source beam line merging at 45 degrees with the existing injection line through a 45 degrees electrostatic deflector is in operation. The multi-sample high- intensity Cs sputter ion source stands on a separate 120 kV platform and is remote-controlled through a hybrid infrared-fiber-optics link operated either manually or by the accelerator-control computer, ensuring safe and reliable operation. Independent current preamplifiers are used in Faraday cup current readings down to the pA range. The accelerator computer-control system was upgraded to Lab View 6.1, allowing a PC server to control and read out all hardware components while one or more remote PC clients run the AMS software. Ad hoc sequences of commands, written in a script macro language, are run from a client computer to perform an automated AMS measurement. The present capabil...

  17. Measurements and simulations of wakefields at the Accelerator Test Facility 2

    Science.gov (United States)

    Snuverink, J.; Ainsworth, R.; Boogert, S. T.; Cullinan, F. J.; Lyapin, A.; Kim, Y. I.; Kubo, K.; Kuroda, S.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; White, G. R.

    2016-09-01

    Wakefields are an important factor in accelerator design, and are a real concern when preserving the low beam emittance in modern machines. Charge dependent beam size growth has been observed at the Accelerator Test Facility (ATF2), a test accelerator for future linear collider beam delivery systems. Part of the explanation of this beam size growth is wakefields. In this paper we present numerical calculations of the wakefields produced by several types of geometrical discontinuities in the beam line as well as tracking simulations to estimate the induced effects. We also discuss precision beam kick measurements performed with the ATF2 cavity beam position monitor system for a test wakefield source in a movable section of the vacuum chamber. Using an improved model independent method we measured a wakefield kick for this movable section of about 0.49 V /pC /mm , which, compared to the calculated value from electromagnetic simulations of 0.41 V /pC /mm , is within the systematic error.

  18. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  19. Sequence heterogeneity accelerates protein search for targets on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Alexey A.; Kolomeisky, Anatoly B., E-mail: tolya@rice.edu [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  20. Fostering European Collaborations: EUFRAT and work done at the accelerator facilities of JRC-IRMM

    Science.gov (United States)

    Mondelaers, W.; Hambsch, F.-J.; Heyse, J.; Kopecky, S.; Oberstedt, S.; Plompen, A.; Schillebeeckx, P.; Siegler, P.

    2016-11-01

    The European Commission via the General Directorate RTD in its different Framework Programs supported collaborations of member state institutions dealing with nuclear data. The projects EFNUDAT, ERINDA, CHANDA and EUFRAT all have in common Transnational Access Activities (TAA) to partner institutions. Within the past 10years the collaborations have grown and in CHANDA now 35 partners are involved of which 16 offer TAA to their facilities. Since June 2014 JRC-IRMM, one of the driving forces behind the TAA, launched its own TAA project EUFRAT to foster collaborations with member states institutions. The calls for proposals are open ended with a deadline twice a year. A Project Advisory Committee discusses the proposals and decides on about approval. Financial support is given to approved proposals for two scientists. So far two calls have been evaluated with a request for access totalling more than 5000h. Examples of proposals at the accelerator facilities at the JRC-IRMM are presented showing the multitude of possibilities using the nuclear facilities at the JRC-IRMM.

  1. Requirements for design of accelerator, beam transport, and target in a study of thermonuclear reaction cross section

    Energy Technology Data Exchange (ETDEWEB)

    Itahashi, T.; Takahisa, K.; Ohsumi, H.; Komori, M.; Fujiwara, M.; Toki, H. [Osaka Univ., Suita (Japan)

    1997-02-01

    The process of pp-de{sup +}{nu} is the basic fusion reaction for hydrogen burning in the sun and the prime reaction in chain producing photons and neutrinos. There are many works of the theoretical estimation of the reaction rate in the reaction chain in the sun. The precise measurement of the nutrinos from the sun is one of the most important current physics issues. The rate of the pp-de{sup +}{nu} is too small to be measured in laboratories. The construction of a compact ion accelerator facility with high current, low energy transport and plasma target is planned at the underground laboratory in Otoh Cosmo Observatory of Research Center for Nuclear Physics. The plasma target by using the EBIS type synthesized plasma was proposed as a bare {sup 3}He target. The production of helium ions of each charge state was tested by using the present NEOMAFIOS ECR ion source, and the obtained current is shown. For noncontaminated, high current beam transport, the strong focusing system was introduced. The design of windowless gas target, plasma target, the detection of the energetic reaction particles of protons, digital calorimeter, the couple of ECR ion source and plasma target, and the underground laboratory are reported. (K.I.)

  2. A facile route to accelerate the formation of TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan; Wu Yucheng; Qin Yongqiang; Zheng Hongmei; Cui Jiewu; Hong Yu; Liu Liang; Zheng Yuchun; Huang Xinmin [School of Materials Sciences and Engineering, Hefei University of Technology, Hefei, 230009 (China); Xu Gaobin; Shu Xia, E-mail: ycwu@hfut.edu.cn [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 (China)

    2011-02-01

    Highly ordered TiO{sub 2} nanotube arrays fabricated by electrochemical anodization of titanium have attracted significant attention due to their splendid promising applications. One of the factors limiting the application of TiO{sub 2} nanotube arrays was their long sustaining reaction time by anodic oxidation, usually lasting 6 - 12 h and even longer when systhesizing thicker nanotubular layers. In this paper, we reported for the first time a facile and effective route to accelerate the formation of TiO{sub 2} nanotube arrays by proper proportional addition of sodium carbonate(Na{sub 2}CO{sub 3}) into the anodization electrolyte. In our experiments, we adopted the 0.3 wt% NH{sub 4}F + EG (ethylene glycol) + 3.0 vol% H{sub 2}O electrolyte and we added Na{sub 2}CO{sub 3} with the proportion n(NH{sub 4}F) : n(Na{sub 2}CO{sub 3}) = 1:1, 2:1, 3:1, 4:1 and 5:1. The field-emission scanning electron microscope (FESEM) characterization results suggested the Na{sub 2}CO{sub 3} additives accelerated the growth rate of the TiO{sub 2} nanotubes with the quickest growth rate 1100 nm/min when n(NH{sub 4}F) : n(Na{sub 2}CO{sub 3}) = 2:1. Finally, we investigated the mechanism of the Na{sub 2}CO{sub 3} additives accelerating the growth rate of the TiO{sub 2} nanotubes. It was believed that the hydrolyzation of the Na{sub 2}CO{sub 3} additives in the electrolytes accelerated the formation of the TiO{sub 2} nanotubes and at the same time restrained the chemical dissolution of the formed TiO{sub 2} nanotubes.

  3. Target optimization for desired X-ray spectra produced by laser plasma accelerated electrons

    Science.gov (United States)

    Lobok, Maxim; Brantov, Andrey; Bychenkov, Valery

    2016-10-01

    Different regimes of electron acceleration from low-density targets are investigated using three-dimensional numerical simulations. Multiple spatial target density profiles were examined, including laser pre-pulse modified targets. The size of the plasma corona is shown to be one of the main parameters characterizing the temperature and number of hot electrons, which determine the yield of X-ray radiation and its hardness. The generation of X-ray radiation by laser accelerated electrons, which impact the converter target located behind the laser target, was studied. The X-ray spectra were computed using Monte-Carlo simulations. This work was partially supported by the Russian Foundation for Basic Research 16-02-00088-a.

  4. Enhanced Proton Acceleration by an Ultrashort Laser Interaction with Structured Dynamic Plasma Targets

    CERN Document Server

    Zigler, A; Botton, M; Nahum, E; Schleifer, E; Baspaly, A; Pomerantz, Y; Abicht, F; Branzel, J; Priebe, G; Steinke, S; Andreev, A; Schnuerer, M; Sandner, W; Gordon, D; Sprangle, P; Ledingham, K W D

    2013-01-01

    We experimentally demonstrate a notably enhanced acceleration of protons to high energy by relatively modest ultrashort laser pulses and structured dynamical plasma targets. Realized by special deposition of snow targets on sapphire substrates and using carefully planned pre-pulses, high proton yield emitted in a narrow solid angle with energy above 21MeV were detected from a 5TW laser. Our simulations predict that using the proposed scheme protons can be accelerated to energies above 150MeV by 100TW laser systems.

  5. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    Science.gov (United States)

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  6. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  7. Radiological characterization of targets from the ISOLDE facility at CERN

    CERN Document Server

    Magistris, M; Ulrici, L; Otto, T

    2011-01-01

    The European Laboratory for Particle Physics (CERN, Geneva) has been operating accelerators for high-energy physics both on Swiss and French territory for 50 years. Due to the interaction of the particle beams with matter, part of the accelerator structure and its surroundings become radioactive. Once at the end of their operational lifetime, these materials are defined as waste. The elimination of radioactive waste towards the final repositories in France and Switzerland requires the determination of the radionuclide inventory. The radioactive nuclides generated in accelerators are different from those identified in reactors. With very few exceptions there are no fission products and alpha emitters. One of the requirements for acceptance of an item of waste in a repository is an estimate of the residual long-lived radioactive nuclides with their specific activity. The list should be exhaustive and include also those nuclides which are difficult to be experimentally detected. Different methods for the evaluat...

  8. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  9. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    Science.gov (United States)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  10. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  11. Micron-scale laser-wire scanner for the KEK Accelerator Test Facility extraction line

    Science.gov (United States)

    Boogert, Stewart T.; Blair, Grahame A.; Boorman, Gary; Bosco, Alessio; Deacon, Lawrence C.; Karataev, Pavel; Aryshev, Alexander; Fukuda, Masafumi; Terunuma, Nobihiro; Urakawa, Junji; Corner, Laura; Delerue, Nicolas; Foster, Brian; Howell, David; Newman, Myriam; Senanayake, Rohan; Walczak, Roman; Ganaway, Fred

    2010-12-01

    A laser-wire transverse electron beam size measurement system has been constructed and operated at the Accelerator Test Facility (ATF) extraction line at KEK. The construction of the system is described in detail along with the environment of the ATF related to the laser wire. A special set of electron beam optics was developed to generate an approximately 1μm vertical focus at the laser-wire location. The results of our operation at the ATF extraction line are presented, where a minimum rms electron beam size of 4.8±0.3μm was measured, and smaller electron beam sizes can be measured by developing the method further. The beam size at the laser-wire location was changed using quadrupoles and the resulting electron beam size measured, and vertical emittance extracted.

  12. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    CERN Document Server

    Elzhov, A V; Kaminsky, A K; Kuzikov, S V; Perelshtejn, E A; Peskov, N Yu; Petelin, M I; Sedykh, S N; Sergeev, A P; Sergeev, A S; Syratchev, I V; Zaitsev, N I

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30GHz, is used in the investigation. The experimental setup consists of a wavebeam injector - FEM oscillator (power of similar to 25MW, pulse duration up to 200ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed.

  13. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    Science.gov (United States)

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach.

  14. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    Science.gov (United States)

    Mihalcea, D.; Jacobson, B.; Murokh, A.; Piot, P.; Ruan, J.

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ˜1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  15. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  16. Numerical simulations of flow field in the target region of accelerator-driven subcritical reactor system

    CERN Document Server

    Chen Hai Yan

    2002-01-01

    Numerical simulations of flow field were performed by using the PHOENICS 3.2 code for the proposed spallation target of accelerator-driven subcritical reactor system (ADS). The fluid motion in the target is axisymmetric and is treated as a 2-D steady-state problem. A body-fitted coordinate system (BFC) is then chosen and a two-dimensional mesh of the flow channel is generated. Results are presented for the ADS target under both upward and downward flow, and for the target with diffuser plate installed below the window under downward flow

  17. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, Angela [Change Manager, Decommissioning, Sellafield Ltd, Seascale, Cumbria (United Kingdom)

    2013-07-01

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for the customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)

  18. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Bum Moon

    2014-02-01

    Full Text Available This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL and fragmentation capability to produce rare isotopes beams (RIBs and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  19. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, C., E-mail: c.ullmann@gsi.de; Kester, O. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Berezov, R.; Fils, J.; Hollinger, R.; Vinzenz, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)

    2014-02-15

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms)

  20. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  1. Study of particle transport in a high power spallation target for an accelerator driven transmutation system

    OpenAIRE

    Shetty, Nikhil Vittal

    2013-01-01

    Transmutation of highly radioactive nuclear waste can be performed using an accelerator driven system (ADS), where high energy protons impinge on a spallation target to produce neutrons. These neutrons are multiplied in a subcritical core, while simultaneously fissioning the minor actinides into short lived or stable nuclides. AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled ADS using solid spallation target. Development of the spallation t...

  2. Theory of laser ion acceleration from a foil target of nanometers

    CERN Document Server

    Yan, X Q; Hegelich, M; Yin, L; Habs, D

    2009-01-01

    A theory for laser ion acceleration is presented to evaluate the maximum ion energy in the interaction of ultrahigh contrast (UHC) intense laser with a nanometer-scale foil. In this regime the energy of ions may be directly related to the laser intensity and subsequent electron dynamics. Significantly, higher energies for thin targets than for thicker targets are predicted. Theory is concretized to the details of recent experiments which may find its way to compare with these results.

  3. A simple model for cavity-enhanced laser-driven ion acceleration from thin foil targets

    CERN Document Server

    Rączka, Piotr

    2012-01-01

    A scenario for the laser-driven ion acceleration off a solid target is considered, where the reflected laser pulse is redirected towards the target by reflection at the inner cavity wall, thus recycling to some extent the incident laser energy. This scenario is discussed in the context of sub-wavelength foil acceleration in the radiation pressure regime, when plasma dynamics is known to be reasonably well described by the laser-sail model. A semi-analytic extension of the 1D laser-sail model is constructed, which takes into account the effect of reflections at the inner cavity wall. The effect of cavity reflections on sub-wavelength foil acceleration is then illustrated with two concrete examples of intense laser pulses of picosecond and femtosecond duration.

  4. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    Science.gov (United States)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  5. The Scottish Structural Proteomics Facility: targets, methods and outputs

    DEFF Research Database (Denmark)

    Oke, Muse; Carter, Lester G; Johnson, Kenneth A;

    2010-01-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report ...

  6. Development of high temperature targets at IRIS facility

    CERN Document Server

    Panteleev, V N; Fedorov, D V; Moroz, F V; Orlov, S Y; Poljakov, A G; Seliverstov, D M; Volkov, Y M

    2002-01-01

    High-temperature targets with different kind of target material, as tantalum foils, tungsten foils, NbC powder, TaC powder and UC powder have been developed and off-line and on-line tested. The yield and delay time measurements have been carried out for radioactive isotopes of Li, Rb and Cs.

  7. Accelerator and Technical Sector Seminar: Future neutrino facilities: the neutrino factory

    CERN Multimedia

    2012-01-01

    Thursday 19.January 2012 at 14:15  -  IT Auditorium (bldg. 31 3-004) Future neutrino facilities: the neutrino factory by Gersende Prior / University of Geneva and CERN EN/MEF The neutrino factory is one of the proposed designs for a future intense neutrino beam facility. In its current layout, a high-power proton beam impinges on an Hg jet target producing pions, decaying in turn into muons. In order to reduce the particle beam emittance, the muon transverse momentum is reduced through ionization cooling by a technically demanding set-up made of closely-packed RF cavities alternating with absorbers. In this talk I will present the motivation for building an intense neutrino beam and some of the proposed neutrino facilities' design. I will discuss the challenges inherent to the cooling of muons, possible optimization of the current baseline and the on-going R&D. ________________ ATS Seminars Organisers: H. Burkhardt (BE), S. Sgobba (EN), G. deRijk (TE)

  8. Long Baseline Neutrino Experiment Target Material Radiation Damage Studies Using Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility

    CERN Document Server

    Simos, N; Hurh, P; Mokhov, N; Kotsina, Z

    2014-01-01

    One of the future multi-MW accelerators is the LBNE Experiment where Fermilab aims to produce a beam of neutrinos with a 2.3 MW proton beam as part of a suite of experiments associated with Project X. Specifically, the LBNE Neutrino Beam Facility aims for a 2+ MW, 60 -120 GeV pulsed, high intensity proton beam produced in the Project X accelerator intercepted by a low Z solid target to facilitate the production of low energy neutrinos. The multi-MW level LBNE proton beam will be characterized by intensities of the order of 1.6 e+14 p/pulse, {\\sigma} radius of 1.5 -3.5 mm and a 9.8 microsecond pulse length. These parameters are expected to push many target materials to their limit thus making the target design very challenging. To address a host of critical design issues revealed by recent high intensity beam on target experience a series of experimental studies on radiation damage and thermal shock response conducted at BNL focusing on low-Z materials have been undertaken with the latest one focusing on LBNE.

  9. Two-dimensional numerical research on effects of titanium target bombarded by TEMP Ⅱ accelerator

    Institute of Scientific and Technical Information of China (English)

    Wu Di; Gong Ye; Liu Jin-Yuan; Wang Xiao-Gang; Liu Yue; Ma Teng-Cai

    2006-01-01

    Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.

  10. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  11. Theory of laser ion acceleration from a foil target of nanometer thickness

    Science.gov (United States)

    Yan, X. Q.; Tajima, T.; Hegelich, M.; Yin, L.; Habs, D.

    2010-03-01

    A theory for ion acceleration by ultrashort laser pulses is presented to evaluate the maximum ion energy in the interaction of ultrahigh contrast (UHC) intense laser pulses with a nanometer-scale foil. In this regime, the ion energy may be directly related to the laser intensity and subsequent electron dynamics. This leads to a simple analytical expression for the ion energy gain under the laser irradiation of thin targets. Significantly higher energies for thin targets than for thicker targets are predicted. The theory is concretized with a view to compare with the results and their details of recent experiments.

  12. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  13. Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets

    Science.gov (United States)

    Pugachev, L. P.; Andreev, N. E.; Levashov, P. R.; Rosmej, O. N.

    2016-09-01

    Optimization study for future experiments on interaction of petawatt laser pulses with foam targets was done by 3D PIC simulations. Densities in the range 0.5nc-nc and thicknesses in the range 100 - 500 μm of the targets were considered corresponding to those which are currently available. It is shown that heating of electrons mainly occurs under the action of the ponderomotive force of a laser pulse in which amplitude increases up to three times because of self-focusing effect in underdense plasma. Accelerated electrons gain additional energy directly from the high-frequency laser field at the betatron resonance in the emerging plasma density channels. For thicker targets a higher number of electrons with higher energies are obtained. The narrowing of the angular distribution of electrons for thicker targets is explained by acceleration in multiple narrow filaments. Obtained energies of accelerated electrons can be approximated by Maxwell distribution with the temperature 8.5 MeV. The charge carried by electrons with energies higher than 30 MeV is about 30 nC, that is 3-4 order of magnitude higher than the charge predicted by the ponderomotive scaling for the incident laser amplitude.

  14. Tomographic characterisation of gas-jet targets for laser wakefield acceleration

    CERN Document Server

    Couperus, J.P.; Wolterink, T.A.W.; Jochmann, A.; Zarini, O..; Bastiaens, H.M.J.; Boller, K.J.; Irman, A.; Schramm, U..

    2016-01-01

    Laser wakefield acceleration(LWFA) has emerged as a promising concept for the next generation of high energy electron accelerators. The acceleration medium is provided by a target that creates a local well-defined gas-density profile inside a vacuum vessel. Target development and analysis of the resulting gas-density profiles is an important aspect in the further development of LWFA. Gas-jet targets are widely used in regimes where relatively high electron densities over short interaction lengths are required (up to several millimetres interaction length, plasma densities down to 1018 cm3). In this paper we report a precise characterization of such gas-jet targets by a laser interferometry technique. We show that phase shifts down to 4 mrad can be resolved. Tomographic phase reconstruction enables detection of non-axisymmetrical gas-density profiles which indicates defects in cylindrical nozzles, analysis of slit-nozzles and nozzles with an induced shock-wave density step. In a direct comparison between argon...

  15. Tomographic characterisation of gas-jet targets for laser wakefield acceleration

    Science.gov (United States)

    Couperus, J. P.; Köhler, A.; Wolterink, T. A. W.; Jochmann, A.; Zarini, O.; Bastiaens, H. M. J.; Boller, K. J.; Irman, A.; Schramm, U.

    2016-09-01

    Laser wakefield acceleration (LWFA) has emerged as a promising concept for the next generation of high energy electron accelerators. The acceleration medium is provided by a target that creates a local well-defined gas-density profile inside a vacuum vessel. Target development and analysis of the resulting gas-density profiles is an important aspect in the further development of LWFA. Gas-jet targets are widely used in regimes where relatively high electron densities over short interaction lengths are required (up to several millimetres interaction length, plasma densities down to 1018cm-3). In this paper we report a precise characterisation of such gas-jet targets by a laser interferometry technique. We show that phase shifts down to 4 mrad can be resolved. Tomographic phase reconstruction enables detection of non-axisymmetrical gas-density profiles which indicates defects in cylindrical nozzles, analysis of slit-nozzles and nozzles with an induced shock-wave density step. In a direct comparison between argon and helium jets we show that it cannot automatically be assumed, as is often done, that a nozzle measured with argon will provide the same gas density with helium.

  16. Dynamic imaging and hydrodynamics study of high velocity, laser-accelerated thin foil targets using multiframe optical shadowgraphy

    Indian Academy of Sciences (India)

    S Tripathi; S Chaurasia; P Leshma; L J Dhareshwar

    2012-12-01

    The main aim of the study of thin target foil–laser interaction experiments is to understand the physics of hydrodynamics of the foil acceleration, which is highly relevant to inertial confinement fusion (ICF). This paper discusses a simple, inexpensive multiframe optical shadow-graphy diagnostics developed for dynamic imaging of high velocity laser-accelerated target foils of different thicknesses. The diagnostic has a spatial and temporal resolution of 12 m and 500 ps respectively in the measurements. The target velocity is in the range of 106 - 107 cm/s. Hydrodynamic efficiency of such targets was measured by energy balance experiments together with the measurement of kinetic energy of the laser-driven targets. Effect of target foil thickness on the hydrodynamics of aluminum foils was studied for determining the optimum conditions for obtaining a directed kinetic energy transfer of the accelerated foil. The diagnostics has also been successfully used to study ablatively accelerated targets of other novel materials.

  17. Probing half βy* optics in the Accelerator Test Facility 2

    Science.gov (United States)

    Patecki, M.; Bett, D.; Marin, E.; Plassard, F.; Tomás, R.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2016-10-01

    A nanometer beam size at the interaction point (IP) is required for future linear colliders to achieve the desired rate of particle collisions. KEK Accelerator Test Facility 2 (ATF2), a scaled down implementation of the linear collider beam delivery system, serves for demonstrating the feasibility of the final focus system (FFS). An unprecedented low vertical beam size at the IP of about 40 nm has been already measured in ATF2 using the optics with a nominal βy* . In our study we decrease the βy* value in order to investigate the performance of more chromatic optics and to study the limits of beam focusing at the IP. Stronger beam focusing amplifies the aberrations from the final focus imperfections which cause an increase of the beam size at the IP. Simulations show that the multipolar errors and final doublet fringe fields spoil the IP beam sizes for ultralow βy* optics but can be mitigated either by increasing the value of the horizontal β* or installing a pair of octupole magnets. We report on our first experimental steps towards the ultralow βy* in ATF2. New methods for the beam diagnostics at the IP were developed in order to precisely set the desired optics. βy* value was half the nominal value. The beam tuning was performed and the measured beam size is compared with the simulation results.

  18. High Brightness Gamma-Ray Production at Fermilab Accelerator Science and Technology (FAST) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Daniel [Northern Illinois U.; Jacobson, B. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piiot, P. [Northern Illinois U.; Ruan, J. [Fermilab

    2016-10-10

    Electron beams with energies of the order of a few 100’s of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ∼ 1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  19. The elbe accelerator facility starts operation with the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, C; Schurig, R; Staufenbiel, F; Teichert, J; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2010-01-01

    As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will ...

  20. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Constanzo, J. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne (France); Fallavier, M., E-mail: m.fallavier@ipnl.in2p3.fr [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne (France); Alphonse, G. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); Faculté de Médecine Lyon-Sud, LRCM, F-69921 Oullins (France); Hospices-Civils-de-Lyon, CHLS, F-69495 Pierre-Bénite (France); Bernard, C. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne (France); Battiston-Montagne, P. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); Faculté de Médecine Lyon-Sud, LRCM, F-69921 Oullins (France); Rodriguez-Lafrasse, C. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); Faculté de Médecine Lyon-Sud, LRCM, F-69921 Oullins (France); Hospices-Civils-de-Lyon, CHLS, F-69495 Pierre-Bénite (France); and others

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  1. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT.

  2. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    Science.gov (United States)

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  3. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    Science.gov (United States)

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications.

  4. 0.5MJ Targets for an IFE Fusion Test Facility

    Science.gov (United States)

    Lafortune, K. N.; Perkins, L. J.; Bedrossian, P.; Betti, R.; Schmitt, A.; Obenschain, S.

    2006-10-01

    There has been much recent progress in the development of both the source and targets for laser-driven, inertial confinement fusion (ICF). The next step to apply this approach to inertial fusion energy (IFE) is to build a facility that has all the required components of a reactor and demonstrates the reliability and robustness. The Fusion Test Facility proposed by NRL is one such facility [S.Obenschain, Bull. APS v50, 2005]. The cost, complexity and scale of any fusion test facility are driven by the energy required for the fusion target. As the laser-target physics has become better understood, target geometries that require less drive energy have been found. Using conventional hotspot ignition, rad-hydro-burn simulations using HYDRA of low-drive-energy, direct-drive reactor targets requiring just 0.5 MJ of drive energy to achieve gain of 10's are being studied. 1-D scoping studies have been performed to outline the source requirements. Good agreement with comprehensive, time-dependent 1-D simulations in LASNEX has been obtained for integral quantities such as gain, yield and ignition margins. The robustness of the small targets has been explored with 2-D stability studies. Shock ignition of similar targets could be employed to achieve yet higher gains with similar drive energies.

  5. Using a commercial mathematics software package for on-line analysis at the BNL Accelerator Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.; Wang, X.J.

    1999-06-14

    BY WRITING BOTH A CUSTOM WINDOWS(NTTM) DYNAMIC LINK LIBRARY AND GENERIC COMPANION SERVER SOFTWARE, THE INTRINSIC FUNCTIONS OF MATHSOFT MATHCAD(TM) HAVE BEEN EXTENDED WITH NEW CAPABILITIES WHICH PERMIT DIRECT ACCESS TO THE CONTROL SYSTEM DATABASES OF BROOKHAVEN NATIONAL LABORATORY ACCELERATOR TEST FACILITY. UNDER THIS SCHEME, A MATHCAD WORKSHEET EXECUTING ON A PERSONAL COMPUTER BECOMES A CLIENT WHICH CAN BOTH IMPORT AND EXPORT DATA TO A CONTROL SYSTEM SERVER VIA A NETWORK STREAM SOCKET CONNECTION. THE RESULT IS AN ALTERNATIVE, MATHEMATICALLY ORIENTED VIEW OF CONTROLLING THE ACCELERATOR INTERACTIVELY.

  6. Evaluation and redesign of radiation shielding in a radionuclide production facility at a particle accelerator / Onalenna Kegopotsemang

    OpenAIRE

    Kegopotsemang, Onalenna

    2004-01-01

    iThemba LABS is a particle accelerator facility housing a radionuclide production facility that uses a 66 MeV proton beam to produce radionuclides for medical and industrial use. Ionising radiation is produced by a variety of sources at Themba LABS. Ionising is a health hazard. High doses can cause acute radiation syndrome, i.e. "radiation sickness". Lower doses cannot cause acute symptom, but carry a risk of radiation-related cancer. Ionising radiation is also detrimental to materials, and c...

  7. Assessment of candidates for target window material in accelerator-driven molybdenum-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Strons, Philip [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    NorthStar Medical Technologies is pursuing production of an important medical isotope, Mo-99, through a photo-nuclear reaction of a Mo-100 target using a high-power electron accelerator. The current target utilizes an Inconel 718 window. The purpose of this study was to evaluate other candidate materials for the target window, which separates the high-pressure helium gas inside the target from the vacuum inside the accelerator beamline and is subjected to significant stress. Our initial analysis assessed the properties (density, thermal conductivity, maximum stress, minimum window thickness, maximum temperature, and figure of merit) for a range of materials, from which the three most promising were chosen: Inconel 718, 250 maraging steel, and standard-grade beryllium. These materials were subjected to further analysis to determine the effects of thermal and mechanical strain versus beam power at varying thicknesses. Both beryllium and the maraging steel were calculated to withstand more than twice as high beam power than Inconel 718.

  8. Target Area design basis and system performance for the National Ignition Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, M.; Karpenko, V.; Hagans, K.; Anderson, A.; Latkowski, J.; Warren, R. [Lawrence Livermore National Lab., CA (United States); Wavrik, R.; Garcia, R.; Boyes, J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01

    The NIF Target Area is designed to confine the ICF target experiments leading up to and including fusion ignition and gain. The Target Area will provide appropriate in-chamber conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and emission of fusion energy from targets represents a new challenge in ICF facility design. Prior to a shot, the facility provides proper illumination geometry, target chamber vacuum, and a stable platform for the target and its diagnostics. During a shot, the impact of the energy introduced into the chamber is minimized, and workers and the public are protected from excessive prompt radiation doses. After the shot, the residual radioactivation is managed to allow required accessibility. Tritium and other radioactive wastes are confined and disposed of. Diagnostic data is also retrieved, and the facility is readied for the next shot. The Target Area will accommodate yields up to 20 MJ, and its design lifetime is 30 years. The Target Area provides the personnel access needed to support the use precision diagnostics. The annual shot mix for design purposes is shown. Designing to this experimental envelope ensures the ability and flexibility to move through the experimental campaign to ignition efficiently.

  9. Effect of gold nano-particle layers on ablative acceleration of plastic foil targets

    Energy Technology Data Exchange (ETDEWEB)

    Dhareshwar, L J; Gupta, N K; Chaurasia, S [Bhabha Atomic Research Centre, Mumbai (India); Ayyub, P; Kulkarni, N [Tata Institute of Fundamental Research, Mumbai (India); Badziak, J; Pisarczyk, T; Kasperczuk, A; Parys, P; Rosinski, M; Wolowski, J [Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw (Poland); Krousky, E; Krasa, J; Masek, K; Pfeifer, M; Skala, J; Ullschmied, J; Velyhan, A; Margarone, D [PALS Research Centre ASCR, 1822 Prague 8 (Czech Republic); Mezzasalma, A, E-mail: dharesh@barc.gov.i [University of Messina (Italy)

    2010-08-01

    Presence of nano-particles on target surface has been observed to lead to increased laser absorption of laser pulse in plasma. Therefore, a coating of nano-particles on foil targets could lead to an enhanced ablative acceleration. The work presented in this paper concerns this possibility. The results of experiments performed with PALS laser system (125 J, {approx}250 ps at 1.3 {mu}m) with a focused intensity of about 10{sup 14} W/cm{sup 2} are presented. 15 {mu}m thick Polyethylene teraphthalate (C{sub 10} H{sub 8} O{sub 4}){sub n} or PET foils show an almost 40% increase in target movement when coated with a layer of gold nano-particles. Comparison between targets with coating of bulk gold and nano-gold shows about 15% higher target movement in gold nano-particle coated PET targets as compared to bulk gold coating. This result is a clear indication of enhanced laser energy absorption in targets with nano-structured surface of gold. We also present evidence to show the effect of nano-particle coating on lateral thermal conduction.

  10. Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets

    CERN Document Server

    Weng, S M; Sheng, Z M

    2014-01-01

    The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.

  11. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    Science.gov (United States)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  12. Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination.

    Directory of Open Access Journals (Sweden)

    Chueh-Ling Kuo

    Full Text Available Botulinum neurotoxin (BoNT, a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop 'targeted F-box' (TFB agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS, thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only V(H (VHH domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5 was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10 led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable.

  13. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    Science.gov (United States)

    Cai, Han-Jie; Yang, Guanghui; Vassilopoulos, Nikos; Zhang, Sheng; Fu, Fen; Yuan, Ye; Yang, Lei

    2017-02-01

    A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw) superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  14. Critical Density Target Design for Ion Acceleration on the T-Cubed Laser

    Science.gov (United States)

    Kordell, Peter; Campbell, Paul; Maksimchuk, Anatoly; Willingale, Louise; Krushelnick, Karl

    2016-10-01

    The interaction of an intense laser pulse with a critical density target can form a high Mach number electrostatic shock. Recent experiments on CO2 lasers have demonstrated that such shocks can be used to produce directional, quasi-monoenergetic proton beams. PIC simulations indicate that the our single pulse system, the T-Cubed laser (1.053 μm, 6J in 400fs), is both capable of both producing these shocks and accelerating protons to MeV energies. Shock formation and propagation with our system has challenging target peak density and density gradient requirements. We present our target design, an interferometric characterization of its density profile and preliminary experiments on T-Cubed.

  15. The Multi MegaWatt target station of EURISOL facility and its performance (SATIF9)

    CERN Document Server

    Kharoua, C

    This presentation summarises the work carried out for the Multi Megawatt target station of the EURISOL Design Study with a special attention to the coupled neutronics of the liquid converter and fission target (MAFF/PIAFE design like) and the overall performance of the facility, which will sustain fast neutron fluxes of the order of 1014 n/cm2/s. The production of radionuclides in the actinide targets as well as in the liquid metal are also evaluated, showing that the targeted 1015 fissions/s can be achieved.

  16. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju; Zhong, Zhaopeng; Gohar, Yousry

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-state simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.

  17. Simulation Prediction and Experiment Setup of Vacuum Laser Acceleration at Brookhaven National Lab-Accelerator Test Facility

    CERN Document Server

    Shao, L; Ding, X; Ho, Y K; Kong, Q; Xu, J J; Pogorelsky, I; Yakimenko, V; Kusche, K

    2011-01-01

    This paper presents the pre-experiment plan and prediction of the first stage of Vacuum Laser Acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a Proof-of-Principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions, the electron beam with initial energy of 15MeV can get net energy gain from intense CO2 laser beam. The difference of electron beam energy spread is observable by ATF beam line diagnostics system. Further this energy spread expansion effect increases along with the laser intensity increasing. The proposal has been approved by ATF committee and experiment will be the next project.

  18. Target fabrication for the POLAR experiment on the Orion laser facility

    Institute of Scientific and Technical Information of China (English)

    C.Spindloe; D.Wyatt; D.Haddock; I.East; J.E.Cross; C.N.Danson; E.Falize; J.M.Foster; M.Koenig; G.Gregori

    2015-01-01

    This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on the Orion laser facility(Hopps et al., Appl. Opt. 52, 3597–3601(2013)) at Atomic Weapons Establishment(AWE). This experiment, part of the POLAR project(Falize et al., Astrophys. Space Sci. 336, 81–85(2011); Busschaert et al., New J. Phys. 15, 035020(2013)),studied conditions relevant to the radiation-hydrodynamic processes occurring in a remarkable class of astrophysical star systems known as magnetic cataclysmic variables. A large number of complex fabrication technologies and research and development activities were required to field a total of 80 high-specification targets. Target design and fabrication procedures are described and initial alignment and characterization data are discussed.

  19. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, D. [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Stiebing, K.E., E-mail: stiebing@em.uni-frankfurt.de [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Winters, D.F.A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Quint, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, D-69120, Heidelberg (Germany); Varentsov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Facility for Antiproton and Ion Research in Europe (FAIR), Darmstadt (Germany); Warczak, A.; Malarz, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisch-Astronomische Fakultät der Friedrich-Schiller-Universität Jena, Helmholtz-Institut Jena, Fröbelstieg 3, D-07743, Jena (Germany)

    2014-11-11

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×10{sup 12} atoms/cm{sup 3} for helium and 8.1×10{sup 12} atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  20. Analysis and manufacturing of ShenGuangIII facility target chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingzhi; Chen, Xiaojuan [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Xu, Yuanli, E-mail: xuyl@caep.ac.cn [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Gao, Haiying; Que, Xinghua; Wu, Wenkai [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Liu, Huilin [China Erzhong Group Co., Ltd., Deyang 618000, Sichuan (China); Xiang, Yong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China)

    2014-04-15

    This paper will present a summary of the ShenGuangIII facility target chamber. During the machining the sphericity tolerances were addressed in forming process and numerical control vertical lathe for the individual plates. Procedure was developed for weld groove and welding of individual plates. The two hemispheric shells of the target chamber were welded in China Erzhong Group Co., Ltd. and sent to a temporary enclosure near the target bay for welding together. A drilling machine that can be accurately positioned on the sphere shell was used to bore the holes for the ports. After construction, the target chamber was lifted and placed on the support pedestal. The adjustment system and the precision surveyors with laser trackers were used to accurately position the target chamber on the pedestal support. The helium spray probe was used for the leak testing of the vacuum target chamber. Leak testing and repair of discovered leaks were performed to insure the vacuum integrity of the target chamber. A complete survey of the port flanges and custom contour machining of spacer plates were completed to insure that the devices attached to these port flanges meet the alignment requirement. The target shooting experiment of the sixth bundles of ShenGuangIII facility has shown that the target chamber satisfied the stability and precision criteria.

  1. Design Optimisation of a High Intensity Beam Facility and Feasibility Experiment of a Solid Fragmented Target

    CERN Document Server

    Charitonidis, Nikolaos; Rivkin, Leonid

    2014-06-13

    The present PhD thesis describes the design, execution and results of the HRMT-10 experiment performed at the HiRadMat facility of the CERN/SPS complex. The first part of the thesis covers the design optimization studies of the HiRadMat facility, focusing in particular on the radiation protection issues. A detailed Monte-Carlo model of the facility has been developed and validated through comparison with measurements. A very satisfactory agreement between the simulation and the experimental data is observed. In the second part of this thesis, a novel feasibility experiment of a fragmented solid target for a future Neutrino Factory or a Super Beam facility, able to support high beam powers ( 1 MW) is presented in detail. A solid granular target has been proposed as an interesting alternative to an open Hg jet target, presently considered as the baseline for such facilities, but posing considerable technical challenges. The HRMT-10 experiment seeks to address the lack of experimental data of the feasibility of...

  2. Early Math Coursework and College Readiness: Evidence from Targeted Middle School Math Acceleration

    OpenAIRE

    Shaun Dougherty; Joshua Goodman; Darryl Hill; Erica Litke; Page, Lindsay C.

    2015-01-01

    To better prepare students for college-level math and the demands of the labor market, school systems have tried to increase the rigor of students’ math coursework. The failure of universal “Algebra for All” models has led recently to more targeted approaches. We study one such approach in Wake County, North Carolina, which began using prior test scores to assign middle school students to an accelerated math track culminating in eighth grade algebra. The policy has reduced the role that incom...

  3. Application for the On-line Isotope Mass Separator ISOLDE Facility: the Target Heater

    CERN Document Server

    Sánchez-Conejo, Jorge

    2003-01-01

    The purpose of the Heater Application is to heat and cool the target and line used on the On-Line Isotope Mass Separator ISOLDE facility up to a desired temperature selected by the user. The application has been developed in Java, making use of the Java Development Kit 1.4 and the PS Java environment.

  4. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  5. Nuclear Waste Transmutation in Subcritical Reactors Driven by Target-Distributed Accelerators

    CERN Document Server

    Blanovsky, A

    2004-01-01

    A radioactive waste transmutation system based extensively on existing nuclear power technology is presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform long-lived waste burning in high flux subcritical reactors. The design is based on a small pressurized water reactor, fission electric cell (FEC), target-distributed accelerator (TDA) and power monitoring system with in-core gamma-ray detectors, now under development in several countries. The TDA, in which an FEC electric field compensates for lost beam energy in the target, offers a new approach to obtain large neutron fluxes. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed relativistic phenomena, in-core microwave power source, the FEC with a multistage collector (anode) and layered cathode.

  6. Be aware of neutrons outside short mazes from 10-MV linear accelerators X-rays in radiotherapy facilities.

    Science.gov (United States)

    Brockstedt, S; Holstein, H; Jakobsson, L; Tomaszewicz, A; Knöös, T

    2015-07-01

    During the radiation survey of a reinstalled 10-MV linear accelerator in an old radiation treatment facility, high dose rates of neutrons were observed. The area outside the maze entrance is used as a waiting room where patients, their relatives and staff other than those involved in the actual treatment can freely pass. High fluence rates of neutrons would cause an unnecessary high effective dose to the staff working in the vicinity of such a system, and it can be several orders higher than the doses received due to X-rays at the same location. However, the common knowledge appears to have been that the effect of neutrons at 10-MV X-ray linear accelerator facilities is negligible and shielding calculations models seldom mention neutrons for this operating energy level. Although data are scarce, reports regarding this phenomenon are now emerging. For the future, it is advocated that contributions from neutrons are considered already during the planning stage of new or modified facilities aimed for 10 MV and that estimated dose levels are verified.

  7. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    CERN Document Server

    Zhuikov, B L; Konyakhin, N A; Vincent, J

    1999-01-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 mu A and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial sup 8 sup 2 Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry ...

  8. The French accelerator mass spectrometry facility ASTER after 4 years: Status and recent developments on 36Cl and 129I

    Science.gov (United States)

    Arnold, Maurice; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim; Braucher, Régis; Finkel, Robert C.; Nottoli, Emmanuelle; Benedetti, Lucilla; Merchel, Silke

    2013-01-01

    Since the acceptance tests of the French 5 MV accelerator mass spectrometry facility ASTER in 2007, routine measurement conditions for the long-lived radionuclides 10Be and 26Al have been established. Yearly sample throughput as high as over 3300 unknowns has been reached for 10Be in 2010. Cross-contamination for volatile elements has been largely solved by an ion source upgrade allowing 36Cl measurements at ASTER. However, recent long-term tests using 35Cl/37Cl samples with strongly varying ratios have shown that identical targets lead to different 35Cl/37Cl results at the 2-4% level when being measured after a time gap of 24 h while the source is running other samples. Besides time dependent mass fractionation, another likely reason for this effect might be source memory, thus, asking for sophisticated measurement strategies and improved data evaluation and eventually further ion source improvement. Finally, after establishing quality assurance by cross-calibration of secondary in-house 26Al and 41Ca standards and taking part in round-robin exercises of 10Be and 36Cl, a two-step cross-calibration of secondary in-house 129I standards has been performed. The NIST 3231 standard containing 129I/127I at (0.981 ± 0.012) × 10-6 has been used for step-wise dilution with NaI to produce gram-quantities of lower-level standards for every-day use. The resulting material SM-I-9 (129I/127I: ∼1 × 10-9) has been measured vs. AgI produced using minimum chemistry from the two NIST ampoules containing a solution with a nominal ratio 129I/127I of (0.982 ± 0.012) × 10-8. In a second stage, SM-I-10 and SM-I-11 with ratios of ∼1 × 10-10 and ∼1 × 10-11, respectively, have been cross-calibrated against SM-I-9. Individual uncertainties of the traceable secondary standards are 1.3-1.4% (2σ), mainly originating from the given uncertainty of the primary NIST 3231 at the 10-8 level. The cross-contamination for iodine is in the range of 0.4-0.6% within the first 20 h of running

  9. Energetics Measurements of Silver Halfraum Targets at the National Ignition Facility

    Science.gov (United States)

    May, M. J.; Fournier, K. B.; Brown, C. G.; Dunlop, W. H.; Kane, J. O.; Mirkarimi, P. B.; Patterson, R.; Schneider, M.; Widmann, K.; Guyton, R.; Giraldez, E.

    2013-10-01

    The energetics of silver halfraum targets are presented from laser plasma experiments at the National Ignition Facility (NIF). Four beams from the NIF laser were used to heat the halfraum targets with ~ 10 kJ of energy in a 1 ns square laser pulse. The silver halfraum targets were spheres 2 mm in diameter with an 800 μm laser entrance hole (LEH). Targets with different sphere wall thicknesses (8 to 16 μm) were characterized. The energetics and the laser coupling to the targets were determined to be 0.92 by using the NIF X-ray (Dante) and optical backscatter diagnostics (NBI and FABS). The energy losses from the targets were through X-ray radiation and backscatter from laser plasma instabilities (SRS and SBS) from the LEH. As expected the different wall thickness had different levels of burn through emission. The thickest walled target (~ 15.9 μm) had very low radiative losses through the target wall. The thinnest walled targets (~ 8 μm) radiated about 0.2 of the input energy into the X-ray region. This work was done under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT.

    Science.gov (United States)

    Evans, J F; Blue, T E

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions "How much?" and "What kind?" of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room , patient "scatterer," and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel.

  11. Nike Experiments on Acceleration of Planar Targets Stabilized with a Short Spike Pulse^1

    Science.gov (United States)

    Weaver, J. L.; Velikovich, A. L.; Metzler, N.; Aglitskiy, Y.; Oh, J.; Mostovych, A. N.; Gardner, J. H.

    2005-10-01

    Theoretical work has shown that a low energy spike pulse in front of the drive laser pulse can help mitigate the growth of hydrodynamic instabilities in targets for inertial confinement fusion.[1]^ While other experiments [2] used higher spike pulse energies, this study reports the influence of a lower energy spike and longer spike-main pulse delay on the acceleration of planar CH targets. Time evolution of preimposed sinusoidal ripples on the target surface was observed using a monochromatic x-ray imaging system. Delayed onset and/or suppression of mode growth was found for the spike prepulse shots compared to those with a low intensity foot, in good agreement with predictions from FAST2D simulations. The propagation velocity of the decaying shock wave from the spike pulse was measured with VISAR and was also in good agreement with an analytical prediction.[3] [1] Metzler et al., Phys. Plasmas 6, 3283 (1999); 9, 5050 (2002); 10, 1897 (2003);Goncharov et al., Phys. Plasmas 10, 1906 (2003) ;Betti et al., Phys Plamas 12, 042703 (2005) ;[2]Knauer et al., Phys. Plasmas 12, 056306 (2005) ; [3]Velikovich et al., Phys. Plasmas 10, 3270 (2003). ^1Work supported by U. S. Department of Energy

  12. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    Science.gov (United States)

    Park, John J.; Buksa, John J.

    1995-09-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment. Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  13. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  14. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  15. Debris and shrapnel assessments for National Ignition Facility targets and diagnostics

    Science.gov (United States)

    Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.

    2016-05-01

    High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).

  16. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  17. 160 MeV laser-accelerated protons from CH2 nano-targets for proton cancer therapy

    CERN Document Server

    Hegelich, B M; Albright, B J; Cheung, M; Dromey, B; Gautier, D C; Hamilton, C; Letzring, S; Munchhausen, R; Palaniyappan, S; Shah, R; Wu, H -C; Yin, L; Fernández, J C

    2013-01-01

    Proton (and ion) cancer therapy has proven to be an extremely effective even supe-rior method of treatment for some tumors 1-4. A major problem, however, lies in the cost of the particle accelerator facilities; high procurement costs severely limit the availability of ion radiation therapy, with only ~26 centers worldwide. Moreover, high operating costs often prevent economic operation without state subsidies and have led to a shutdown of existing facilities 5,6. Laser-accelerated proton and ion beams have long been thought of as a way out of this dilemma, with the potential to provide the required ion beams at lower cost and smaller facility footprint 7-14. The biggest challenge has been the achievement of sufficient particle energy for therapy, in the 150-250 MeV range for protons 15,16. For the last decade, the maximum exper-imentally observed energy of laser-accelerated protons has remained at ~60 MeV 17. Here we the experimental demonstration of laser-accelerated protons to energies exceeding 150 MeV, re...

  18. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  19. Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A. (comp.)

    1990-04-01

    The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (second of two) included papers on computer controls, polarized beam, rf, magnet and power supplies, experimental areas, and instabilities. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended.

  20. Comparative study of ion acceleration by linearly polarized laser pulses from optimized targets of solid and near-critical density

    Science.gov (United States)

    Bychenkov, V. Yu; Brantov, A. V.; Govras, E. A.

    2016-03-01

    The results of a 3D optimization study of ion acceleration from ultrathin solid density foils (Brantov et al 2015 Phys. Rev. Spec. Top. Accel. Beams 18 021301) are complemented with an improved analytic model of the directed Coulomb explosion. Similarly to optimizing overdense targets, we also optimize low-density targets to obtain maximum ion energy, motivated by progress in producing a new generation of low-density slab targets whose density can be very homogeneous and as low as the relativistic critical density. Using 3D simulations, we show that for the same laser pulse, the ion energy can be significantly increased with low-density targets. A new acceleration mechanism is responsible for such an increase. This mechanism is described qualitatively, and it explains an advantage of low-density targets for high-energy ion production by lasers.

  1. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  2. Thermal-hydraulic analysis of LBE spallation target for accelerator-driven systems

    Indian Academy of Sciences (India)

    Aniseh Ahmed Atef Abdalla; Jiyang Yu; Yongwel Yang

    2013-01-01

    In an accelerator-driven subcritical system (ADS), a high-performance spallation neutron source is used to feed the subcritical reactor. Neutron generation depends on the proton beam intensity. If the beam intensity is increased by a given factor, the number of generated neutrons will increase. The mechanism yielding a high rate of neutron production per energy is the spallation process, and this mechanism produces very high-energy deposition in the spallation target material. Producing a high rate of neutrons is accompanied by creation of problems of decay heat cooling and radiological protection. As a first step in designing a full-scale industrial ADS, a small-scale experimental ADS, which is similar to the European experimental ADS (XADS) is analysed. The analysis presented in this paper is based on lead–bismuth eutectic (LBE) cooled XADS-type experimental reactors, designed during the European experimental (PDS-XADS) project. Computational fluid dynamics analysis has been carried out for the spallation target. Steady-state behaviour and shear stress transport turbulence model with the automatic wall treatment were applied in the present analysis.

  3. Design of a 3 GHz Accelerator Structure for the CLIC Test Facility (CTF 3) Drive Beam

    CERN Document Server

    Carron, G; Luong, M; Millich, Antonio; Rugo, E; Syratchev, I V; Thorndahl, L

    2000-01-01

    For the CLIC two-beam scheme, a high-current, long-pulse drive beam is required for RF power generation. Taking advantage of the 3 GHz klystrons available at the LEP injector once LEP stops, a 180 MeV electron accelerator is being constructed for a nominal beam current of 3.5 A and 1.5 ms pulse length. The high current requires highly effective suppression of dipolar wakes. Two concepts are investigated for the accelerating structure design: the "Tapered Damped Structure" developed for the CLIC main beam, and the "Slotted Iris - Constant Aperture" structure. Both use 4 SiC loads per cell for effective higher-order mode damping. A full-size prototype of the TDS structure has been built and tested successfully at full power. A first prototype of the SICA structure is being built

  4. Research on interactions of plasma streams with CFC targets in the Rod Plasma Injector facility

    Directory of Open Access Journals (Sweden)

    Zaloga Dobromil R.

    2016-06-01

    Full Text Available This paper present results of optical spectroscopy studies of interactions of intense plasma streams with a solid target made of carbon fibre composite (CFC. The experiments were carried out within the Rod Plasma Injector (RPI IBIS facility. The optical measurements were performed first for a freely propagating plasma stream in order to determine the optimal operational parameters of this facility. Optical emission spectra (OES were recorded for different operational modes of the RPI IBIS device, and spectral lines were identified originating from the working gas (deuterium as well as some lines from the electrode material (molybdenum. Subsequently, optical measurements of plasma interacting with the CFC target were performed. In the optical spectra recorded with the irradiated CFC samples, in addition to deuterium and molybdenum lines, many carbon lines, which enabled to estimate erosion of the investigated targets, were recorded. In order to study changes in the irradiated CFC samples, their surfaces were analysed (before and after several plasma discharges by means of scanning electron microscope (SEM and energy dispersive spectroscopy (EDS techniques. The analysis of the obtained SEM images showed that the plasma irradiation induces noticeable changes in the surface morphology, for example vaporisation of some carbon fibres and formation of microcracks. The obtained EDS images showed that upon the irradiated target surface, some impurity ions are also deposited, particularly molybdenum ions from the applied electrodes.

  5. Facile Synthesis of Biocompatible Fluorescent Nanoparticles for Cellular Imaging and Targeted Detection of Cancer Cells.

    Science.gov (United States)

    Tang, Fu; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2015-11-18

    In this work, we report the facile synthesis of functional core-shell structured nanoparticles with fluorescence enhancement, which show specific targeting of cancer cells. Biopolymer poly-l-lysine was used to coat the silver core with various shell thicknesses. Then, the nanoparticles were functionalized with folic acid as a targeting agent for folic acid receptor. The metal-enhanced fluorescence effect was observed when the fluorophore (5-(and-6)-carboxyfluorescein-succinimidyl ester) was conjugated to the modified nanoparticle surface. Cellular imaging assay of the nanoparticles in folic acid receptor-positive cancer cells showed their excellent biocompatibility and selectivity. The as-prepared functional nanoparticles demonstrate the efficiency of the metal-enhanced fluorescence effect and provide an alternative approach for the cellular imaging and targeting of cancer cells.

  6. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    Science.gov (United States)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  7. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  8. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  9. Test simulation of neutron damage to electronic components using accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    King, D.B., E-mail: dbking@sandia.gov; Fleming, R.M.; Bielejec, E.S.; McDonald, J.K.; Vizkelethy, G.

    2015-12-15

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III–V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  10. Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project

    Directory of Open Access Journals (Sweden)

    E. Wakai

    2016-12-01

    Full Text Available The International Fusion Materials Irradiation Facility (IFMIF, presently in the Engineering Validation and Engineering Design Activities (EVEDA phase was started from 2007 under the frame of the Broader Approach (BA agreement. In the activities, a prototype Li loop with the world's highest flow rate of 3000L/min was constructed in 2010, and it succeeded in generating a 100mm wide and 25mm thick with a free-surface lithium flow along a concave back plate steadily at a high-speed of 15m/s at 250°C for 1300h. In the demonstration operation it was needed to develop the Li flowing measurement system with precious resolution less than 0.1mm, and a new wave height measuring method which is laser-probe method was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the variation in the Li flowing thickness which is required in the IFMIF specification was ±1mm or less as the liquid Li target, and the result was satisfied with it and the feasibility of the long-term stable liquid Li flow was also verified. The results of the other engineering validation tests such as lithium purification tests of lithium target facility have also been evaluated and summarized.

  11. Acceleration of deuterons with suppression of electronic conductance in a vacuum diode with a laser target on the anode

    Science.gov (United States)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2016-12-01

    We report new experimental results on the acceleration of deuterons in a compact coaxial diode with the suppression of electronic conductance by a constant longitudinal magnetic field. Plasma containing deuterons is created on a laser TiD target located on the anode. The pulse of accelerating voltage is formed by means of the Arkad'ev-Marx generator. The cathode symmetrically surrounds the anode and comprises a hollow permanent ring magnet with an inner radius of no more than 0.02 m and an on-axis induction of up to 0.4 T, which provides the magnetic insulation of the accelerating gap. The experiments demonstrate the possibility of obtaining accelerated deuterons with energy of up to 300 keV and a current of up to 0.5 kA with a pulse duration of 0.2 μs.

  12. Effect of plasma inhomogeneity on ion acceleration when an ultra-intense laser pulse interacts with a foil target

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A.; Platonov, K.Yu. [Institute for Laser Physics, SC Vavilov State Optical Institute, St. Petersburg (Russian Federation); Zhidkov, A.G. [University of Tokyo, Graduate School of Engineering, Nuclear Engineering Research Laboratory, Tokai, Naka, Ibaraki (Japan); Sasaki, A. [Advanced Photon Research Center JAERI, Kizu-cho, Soraku-gun, Kyoto (Japan)

    2002-07-01

    Fast electrons generated via the interaction of ultra-intense laser pulses with a solid target can produce multi-MeV ions from laser-induced plasmas. These fast ions can be used for various applications ranging from the ion implantation to the stimulation of nuclear reactions. The most important point here is the efficiency of production of such fast ions. We analyse in detail, with the help of an analytical model and particle-in-cell simulations, the most efficient acceleration mechanisms including the ponderomotive force driving and acceleration by the shock wave, and compare the electrostatic ion acceleration at the front side and at the rear side of a foil target. We also determine the optimal plasma density distribution shaped by the laser pre-pulse. (author)

  13. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Md. Taufique, E-mail: thassan@tulane.edu [Department of Physics, University of Dhaka (Bangladesh); Shariff, Md. Asad [Tandem Accelerator Facilities division, INST, AERE, Savar (Bangladesh); Hossein, Amzad; Abedin, Md. Joynal [Accelerator Facilities division, AECD (Bangladesh); Fazlul Hoque, A.K.M. [Daffodil International University, Dhaka (Bangladesh); Chowdhuri, M.S. [Department of Physics, University of Dhaka (Bangladesh)

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  14. System for Nuclear Waste Transmutation Driven by Target-Distributed Accelerators

    CERN Document Server

    Blanovsky, A

    2004-01-01

    A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could improve safety and perform radioactive waste burning in high flux subcritical reactors (HFSR). To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket operating with solid and liquid fuels. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster where they can provide additional neutrons or all the necessary excitation. With blanket and booster multiplication factors of k=0.95 and 0.98, respectively, an external photoneutron source rate of at least 10.sup.15 n/s (electron beam power 2.5MW) is needed to control the HFSR that produces 300MWt. An inexpensive method of obtaining large neutron fluxes is target-distributed accelerators (TDA), in which a fission electrical cell (FEC) compensates for lost beam energy...

  15. Lithium antineutrino source in the tandem scheme of the accelerator and neutron producting tungsten target

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The antineutrinos of the neutron rich 8Li isotope is characterized by hard and good defined spectrum - averaged energy is 6.5 MeV and maximal - up to 13 MeV. An intensive antineutrino source with such parameters can be unique instrument for neutrino investigations and especially for search of sterile neutrinos. The 8Li can be produced by (n,gamma)-activation of 7Li isotope. The proposed scheme of the antineutrino source is based on the lithium blanket around the accelerator neutron producting target. We propose to use heavy water solution of the lithium hydroxide instead of lithium in metallic state. Such solution for lithium blanket substance ensure the large perspectives in real steps for creation of this installation. An analyses of neutron fields in the blanket and distribution of 8Li creation allows to propose the next principal steps in the construction of the lithium blanket. We propose to enclose the blanket volume isolating it's central part with more high 8Li production. This solution allows to decr...

  16. Studies of timing properties for a TOF counter at an external target facility

    Institute of Scientific and Technical Information of China (English)

    YU Yu-Hong; XU Hua-Gen; XU Hu-Shan; ZHAN Wen-Long; SUN Zhi-Yu; GUO Zhong-Yan; HU Zheng-Guo; CHEN Jun-Ling; TANG Shu-Wen

    2009-01-01

    Timing and amplitude properties of a prototype scintillator TOF counter at an external target facility are studied with a cosmic rays test. The dependence of signal pulse height and time resolution on the coordinate along the scintillator TOF counter is investigated with two different discriminators. A time resolution of 165 ps can be achieved at the center of the counter with a constant fraction discriminator. Time resolution better than 150 ps is obtained at the center with a leading edge discriminator after time walk correction is applied for off-line analysis.

  17. Design and modeling of ignition targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D.; Suter, L.J.; Berger, R.L.; Powers, L.V.; Alley, W.E.; Amendt, P.A.; Futterman, J.A.; Levedahl, W.K.; Rosen, M.D.; Rowley, D.P.; Sacks, R.A.; Shestakov, A.I.; Strobel, G.L.; Tabak, M.; Weber, S.V.; Zimmerman, G.B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Krauser, W.J.; Wilson, D.C.; Coggeshall, S.V.; Harris, D.B.; Hoffman, N.M.; Wilde, B.H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-06-01

    Several targets are described that in simulations give yields of 1--30 MJ when indirectly driven by 0.9--2 MJ of 0.35 {mu}m laser light. The article describes the targets, the modeling that was used to design them, and the modeling done to set specifications for the laser system in the proposed National Ignition Facility. Capsules with beryllium or polystyrene ablators are enclosed in gold hohlraums. All the designs utilize a cryogenic fuel layer; it is very difficult to achieve ignition at this scale with a noncryogenic capsule. It is necessary to use multiple bands of illumination in the hohlraum to achieve sufficiently uniform x-ray irradiation, and to use a low-{ital Z} gas fill in the hohlraum to reduce filling of the hohlraum with gold plasma. Critical issues are hohlraum design and optimization, Rayleigh--Taylor instability modeling, and laser--plasma interactions.

  18. Status of cleanliness maintaining in target beam enclosures in SG III facilities and contamination sources analysis

    Science.gov (United States)

    Wang, Meicong; Wang, Baoxu; Miao, Xinxiang; Cheng, Xiaofeng; Wu, Wenkai

    2014-09-01

    In SGIII lasers there are large number of transport mirrors in target beam enclosures. Surface contaminations could easily introduce optical damage, and increase laser energy loss under high laser influence conditions. It is significant for lasers to control contamination and maintain cleanliness. In SGIII prototype, the target beam enclosures are test to be seriously contaminated after about two years of routine operations. Volume cleanliness in mirror boxes are monitored through 24 hours before, during and after a shot. Ingredients of particle and organics are tested. Reconstructions are performed on the mirror boxes to remove debris and keep cleanliness for upward facing surface of mirrors effectively. In SGIII facility some contaminations are found in beam enclosures and on the mirrors after several months of test running. Contaminations sources are analyzed to further know about the contamination mechanisms. Some engineering countermeasures are introduced for controlling contamination and keeping cleanliness for optics.

  19. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  20. Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry

    OpenAIRE

    Kim, Seung-Hyun; Kelly, Peter B.; Ortalan, Volkan; Browning, Nigel D.; Clifford, Andrew J.

    2010-01-01

    Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target ...

  1. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nikhil Vittal

    2013-01-31

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  2. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: Overview and examples of applications

    Science.gov (United States)

    Taccetti, N.; Giuntini, L.; Casini, G.; Stefanini, A. A.; Chiari, M.; Fedi, M. E.; Mandò, P. A.

    2002-04-01

    An electrostatic chopper has been installed at the KN 3000 accelerator in Florence to obtain short beam pulses with a number of particles per pulse whose average value can be chosen by varying the current intensity at the deflector plates input. Beam pulses can be obtained containing an average number of particles per pulse from less than one to thousands. The transmitted beam pulses can be as short as 200 ps FWHM, at a repetition rate up to about 100 kHz. Among the many applications of the facility, the direct measurement of energy loss and straggling of protons in Kapton and aluminium is reported. In this measurement, the facility has been tuned for transmission of mainly single-proton pulses; the beam energy is directly measured downstream with a good energy-resolution detector, without and with absorbers in front. In general, measurements of this kind can be directed both to study the basic processes of charged particles interactions in materials, or more practically to obtain the effective values of energy parameters useful in many IBA applications, avoiding the need to rely on simulations or theoretical estimates. Also briefly described is an application to Si-detector testing. In this case, the facility has been tuned for transmission of pulses containing many hundreds of protons of energy Ep=2.5 MeV and the detector is directly exposed to the pulses. Spectra containing equally spaced peaks at energies multiple of Ep are obtained and the response linearity of the detector plus electronics system can thus be checked.

  3. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: Overview and examples of applications

    Energy Technology Data Exchange (ETDEWEB)

    Taccetti, N.; Giuntini, L. E-mail: giuntini@fi.infn.it; Casini, G.; Stefanini, A.A.; Chiari, M.; Fedi, M.E.; Mando, P.A

    2002-04-01

    An electrostatic chopper has been installed at the KN 3000 accelerator in Florence to obtain short beam pulses with a number of particles per pulse whose average value can be chosen by varying the current intensity at the deflector plates input. Beam pulses can be obtained containing an average number of particles per pulse from less than one to thousands. The transmitted beam pulses can be as short as 200 ps FWHM, at a repetition rate up to about 100 kHz. Among the many applications of the facility, the direct measurement of energy loss and straggling of protons in Kapton and aluminium is reported. In this measurement, the facility has been tuned for transmission of mainly single-proton pulses; the beam energy is directly measured downstream with a good energy-resolution detector, without and with absorbers in front. In general, measurements of this kind can be directed both to study the basic processes of charged particles interactions in materials, or more practically to obtain the effective values of energy parameters useful in many IBA applications, avoiding the need to rely on simulations or theoretical estimates. Also briefly described is an application to Si-detector testing. In this case, the facility has been tuned for transmission of pulses containing many hundreds of protons of energy E{sub p}=2.5 MeV and the detector is directly exposed to the pulses. Spectra containing equally spaced peaks at energies multiple of E{sub p} are obtained and the response linearity of the detector plus electronics system can thus be checked.

  4. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    Science.gov (United States)

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  5. Shock-Ignited High Gain/Yield Targets for the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K. N.; Bedrosiian, P.; Tabak, M.; Miles, A.; Dixit, S.; Betti, R.; Anderson, K.; Zhou, C.

    2006-10-01

    Shock-ignition, a new concept for ICF ignition [C.Zhou, R.Betti Bull APS, v50, 2005], is being studied as a future option for efficiently achieving high gains in large laser facilities such as NIF. Accordingly, this offers the potential for testing: (1)High yield (up to 200MJ), reactor-relevant targets for inertial fusion energy (2)High fusion yield targets for DOE NNSA stockpile application (3)Targets with appreciable gain at low laser drive energies (gains of 10's at 150kJ) (4)Ignition of simple, non-cryo (room temperature) single shell gas targets at (unity gain). By contrast to conventional hotspot ignition, we separate the assembly and ignition phases by initially imploding a massive cryogenic shell on a low adiabat (alpha 0.7) at low velocity (less than 2e7cm/s) using a direct drive pulse of modest total energy. The assembled fuel is then separately ignited by a strong, spherically convergent shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating and starting to rebound. Like fast ignition, shock ignition can achieve high gains with low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements.

  6. Design Study and Optimization of Irradiation Facilities for Detector and Accelerator Equipment Testing in the SPS North Area at CERN

    CERN Document Server

    Biskup, Bartolomej; Stekl, Ivan

    Due to increasing performance of LHC during the last years, the strong need of new detector and electronic equipment test areas at CERN appeared from user communities. This thesis reports on two test facilities: GIF++ and H4IRRAD. GIF++, an upgrade of GIF facility, is a combined high-intensity gamma and particle beam irradiation facility for testing detectors for LHC. It combines a high-rate 137Cs source, providing photons with energy of 662 keV, together with the high-energy secondary particle beam from SPS. H4IRRAD is a new mixed-field irradiation area, designed for testing LHC electronic equipment for radiation damage effects. In particular, large volume assemblies such as full electronic racks of high current power converters can be tested. The area uses alternatively an attenuated primary 400 GeV/c proton beam from SPS, or a secondary, mainly proton, beam of 280 GeV/c directed towards a copper target. Different shielding layers are used to reproduce a radiation field similar to the LHC “tunnel” and �...

  7. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  8. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  9. Feasibility study for Facility Design Accelerators TechnoFusion; Estudio de viabilidad para el diseno de la instalacion de aceleradores de technofusion

    Energy Technology Data Exchange (ETDEWEB)

    Marqueta, A.; Gonzalez, L.; Gomez, A.; Sanchez, F.; Vila, R.

    2011-07-01

    This paper TechnoFusion included within the project, which aims at developing the technologies required for future commercial fusion reactors. Among the seven areas that divide, one of the most technologically demanding is the Materials Irradiation, which belongs at the Accelerator Facility, reason for this paper.

  10. Study of the measurement of critical parameters in an electron beam radiation facility. Application to the case of the first accelerator dedicated to radiation in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    M' Garrech, S. [Laboratoire de Radio-traitement, Centre National des Sciences et Technologies Nucleaires, 2020 Sidi-Thabet (Tunisia)], E-mail: mgslah@yahoo.fr; Ezzouch, A. [Institut National des Sciences Appliquees et de Technologie, 1080 Tunis (Tunisia)

    2009-02-15

    The Tunisian National Center for Nuclear Sciences and Technologies will acquire the first North African Radio Frequency linear accelerator of electrons in 2009. The facility will be designed primarily for sterilization of medical devices and preservation of foodstuff. The first part of this paper is dedicated to a description of the facility. In order to adjust the treatment conditions and to control the good operation of the accelerator, it is necessary to find out several electron beam parameters. The second part of the paper is devoted to the presentation of the system dedicated to determining several key parameters of the electron beam. The performances and advantages of the diagnostic system cited in this report make it quite suitable for process control application at an electron beam radiation processing facility.

  11. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C. M. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Gray, R. J.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Rosinski, M.; Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw (Poland); Deppert, O. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Batani, D. [Dipartimento di Fisica G. Occhialini, Universita di Milano Bicocca, 20126 Milan (Italy); Davies, J. R. [Laboratory for Laser Energetics, Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Hassan, S. M.; Tatarakis, M. [Department of Electronics Engineering, Centre for Plasma Physics and Lasers, 73133 Chania, 74100 Rethymno, Crete (Greece); and others

    2014-02-24

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.

  12. Ion Acceleration via "Nonlinear Vacuum Heating" by the Laser Pulse Obliquely Incident on a Thin Foil Target

    CERN Document Server

    Yogo, A; Mori, M; Ogura, K; Esirkepov, T Zh; Pirozhkov, A S; Kanasaki, M; Sakaki, H; Fukuda, Y; Bolton, P R; Nishimura, H; Kondo, K

    2015-01-01

    Dependence of the energy of ions accelerated during interaction of the laser pulse obliquelly incident on the thin foil target on the laser polarization is studied experimentally and theoretically. We found that the ion energy being maximal for the p-polarization gradually decreases when the pulse becomes s-polarized. The experimentally found dependences of the ion energy are explained by invoking the anomalous electron heating which results in high electrostatic potential formation at the target surface. Anomalous heating of electrons beyond the energy of quiver motion in the laser field is described within the framework of theoretical model of driven oscillator with a step-like nonlinearity. We have demonstrated that the electron anomalous heating can be realized in two regimes: nonlinear resonance and stochastic heating, depending on the extent of stochasticity. We have found the accelerated ion energy scaling determined by the laser intensity, pulse duration, polarization angle and incident angle.

  13. Role of accelerated segment switch in exons to alter targeting (ASSET in the molecular evolution of snake venom proteins

    Directory of Open Access Journals (Sweden)

    Kini R Manjunatha

    2009-06-01

    Full Text Available Abstract Background Snake venom toxins evolve more rapidly than other proteins through accelerated changes in the protein coding regions. Previously we have shown that accelerated segment switch in exons to alter targeting (ASSET might play an important role in its functional evolution of viperid three-finger toxins. In this phenomenon, short sequences in exons are radically changed to unrelated sequences and hence affect the folding and functional properties of the toxins. Results Here we analyzed other snake venom protein families to elucidate the role of ASSET in their functional evolution. ASSET appears to be involved in the functional evolution of three-finger toxins to a greater extent than in several other venom protein families. ASSET leads to replacement of some of the critical amino acid residues that affect the biological function in three-finger toxins as well as change the conformation of the loop that is involved in binding to specific target sites. Conclusion ASSET could lead to novel functions in snake venom proteins. Among snake venom serine proteases, ASSET contributes to changes in three surface segments. One of these segments near the substrate binding region is known to affect substrate specificity, and its exchange may have significant implications for differences in isoform catalytic activity on specific target protein substrates. ASSET therefore plays an important role in functional diversification of snake venom proteins, in addition to accelerated point mutations in the protein coding regions. Accelerated point mutations lead to fine-tuning of target specificity, whereas ASSET leads to large-scale replacement of multiple functionally important residues, resulting in change or gain of functions.

  14. IRIS : A reaction spectroscopy facility with solid H2 /D2 target

    Science.gov (United States)

    Holl, Matthias; Kanungo, Ritu; Alcorta, Martin; Andreoiu, Corina; Bidaman, Harris; Burbadge, Christina; Burke, Devin; Chen, Alan; Davids, Barry; Diaz Varela, Alejandra; Garrett, Paul; Hackman, Greg; Ishimoto, Shigeru; Kaur, Satbir; Keefe, Matthew; Kruecken, Reiner; Mansour, Iymad; Randhawa, Jaspreet; Sanetullaev, Alisher; Shotter, Alan; Smith, Jenna; Tanaka, Junki; Tanihata, Isao; Turko, Joseph; Workman, Orry

    2016-09-01

    The charged particle reaction spectroscopy station IRIS at TRIUMF is designed to allow studies of inelastic scattering and transfer reactions for low intensity beams. To do so, a novel solid H2 /D2 target is used in combination with a low pressure ionization chamber for the identification of incoming beam particles. The light ejectiles are measured using a ΔE - E telescope consisting of an annular silicon detector followed by CsI(Tl) array. Another ΔE - E telescope, consisting of two segmented silicon detectors, is used to identify the heavy outgoing particles. An overview of the faciltity will be given and examples from recent experiments that illustrate that facility's capability for reaction studies of exotic nuclei will be shown. Support from Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust and NSERC.

  15. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.

    Science.gov (United States)

    Kockmann, Tobias; Trachsel, Christian; Panse, Christian; Wahlander, Asa; Selevsek, Nathalie; Grossmann, Jonas; Wolski, Witold E; Schlapbach, Ralph

    2016-08-01

    Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes.

  16. Evidence of resonant surface wave excitation in the relativistic regime through measurements of proton acceleration from grating targets

    CERN Document Server

    Ceccotti, T; Sgattoni, A; Bigongiari, A; Raynaud, M; Riconda, C; Heron, A; Baffigi, F; Labate, L; Gizzi, L A; Vassura, L; Fuchs, J; Passoni, M; Kveton, M; Novotny, F; Possolt, M; Prokupek, J; Proska, J; Psikal, J; Stolcova, L; Velyhan, A; Bougeard, M; D'Oliveira, P; Tcherbakoff, O; Reau, F; Martin, P; Macchi, A

    2013-01-01

    The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, has been experimentally investigated. Ultrahigh contrast ($\\sim 10^{12}$) pulses allowed to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultra-high intensity $>10^{19} \\mbox{W/cm}^{2}$. A maximum increase by a factor of 2.5 of the cut-off energy of protons produced by Target Normal Sheath Acceleration has been observed with respect to plane targets, around the incidence angle expected for resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.

  17. Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

  18. Physical Design of Critical Experiment Facility for Verifying Characteristics and Effects of Coupling Between Reactor and Spallation Target of ADS

    Institute of Scientific and Technical Information of China (English)

    YIN; Sheng-gui; ZHOU; Qi; LI; Yan

    2013-01-01

    For the purpose of studying and verifying characteristics and effects of coupling between reactor and spallation target of ADS,based on the critical experimental facility design criteria and the availableexperiment condition,physical design of a critical experiment facility with lead coolant is completed,using critical calculation code MONK-9A.The contents of physical designs mainly include nuclear fuel,array of fuel rods,neutron source

  19. Modifications of thick-target model: re-acceleration of electron beams by static and stochastic electric fields

    Science.gov (United States)

    Varady, M.; Karlický, M.; Moravec, Z.; Kašparová, J.

    2014-03-01

    Context. The collisional thick-target model (CTTM) of the impulsive phase of solar flares, together with the famous Carmichael, Sturrock, Hirayama, and Kopp-Pneuman (CSHKP) model, presented for many years a "standard" model, which straightforwardly explained many observational aspects of flares. On the other hand, many critical issues appear when the concept is scrutinised theoretically or with the new generation of hard X-ray (HXR) observations. The famous "electron number problem" or problems related to transport of enormous particle fluxes though the corona represent only two of them. To resolve the discrepancies, several modifications of the CTTM appeared. Aims: We study two of them based on the global and local re-acceleration of non-thermal electrons by static and stochastic electric fields during their transport from the coronal acceleration site to the thick-target region in the chromosphere. We concentrate on a comparison of the non-thermal electron distribution functions, chromospheric energy deposits, and HXR spectra obtained for both considered modifications with the CTTM itself. Methods: The results were obtained using a relativistic test-particle approach. We simulated the transport of non-thermal electrons with a power-law spectrum including the influence of scattering, energy losses, magnetic mirroring, and also the effects of the electric fields corresponding to both modifications of the CTTM. Results: We show that both modifications of the CTTM change the outcome of the chromospheric bombardment in several aspects. The modifications lead to an increase in chromospheric energy deposit, change of its spatial distribution, and a substantial increase in the corresponding HXR spectrum intensity. Conclusions: The re-acceleration in both models reduces the demands on the efficiency of the primary coronal accelerator, on the electron fluxes transported from the corona downwards, and on the total number of accelerated coronal electrons during flares.

  20. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  1. Digitizer architecture analysis for target diagnostics on the National Ignition Facility

    Science.gov (United States)

    Carpenter, A. C.; Clancy, T. J.; Beeman, B.; Bell, P.

    2015-08-01

    This paper covers a systems engineering analysis of existing scope-based Target Diagnostics (TD) on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), for the purpose of selecting a standard digitizer architecture future diagnostics. Key performance criteria and a summary of test results are presented. Currently of the 60+ Target Diagnostics, at least fifteen use a type of high speed electrical signal data read-out device leading to over 200 digitization channels spread over six types of CRT and digital oscilloscopes, each with multiple models and versions. The proposed standard architecture discussed in this paper allows the NIF to efficiently and reliably operate digitizers that meet the required performance metrics for the lifetime of the NIF. The systems engineering analysis identifies key stakeholders for multiple subsets of scope-based diagnostics including but not limited to the nToFs (neutron Time of Flight), DANTE a broadband, time-resolved x-ray spectrometer, SPBT (South Pole Bang Time), GRH (Gamma Reaction History), and FFLEX (Filter Fluorescer Diagnostic). From these stakeholders, key performance metrics are derived and feed into test and evaluation criteria for different digitizers and architectures.

  2. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    CERN Document Server

    Zhao, Qiang; Yang, Lei; Zhang, Xueying; Cui, Wenjuan; Chen, Zhiqiang; Xu, Hushan

    2015-01-01

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron fl...

  3. Thermal hydraulic studies of spallation target for one-way coupled Indian accelerator driven systems with low energy proton beam

    Indian Academy of Sciences (India)

    V Mantha; A K Mohanty; P Satyamurthy

    2007-02-01

    BARC has recently proposed a one-way coupled ADS reactor. This reactor requires typically ∼ 1 GeV proton beam with 2 mA of current. Approximately 8 kW of heat is deposited in the window of the target. Circulating liquid metal target (lead/lead-bismuth-eutectic) has to extract this heat and this is a critical R&D problem to be solved. At present there are very few accelerators, which can give few mA and high-energy proton beam. However, accelerators with low energy and hundreds of micro-ampere current are commercially available. In view of this, it is proposed in this paper to simulate beam window heating of ∼ 8 kW in the target with low-energy proton beam. Detailed thermal analysis in the spallation and window region has been carried out to study the capability of heat extraction by circulating LBE for a typical target loop with a proton beam of 30 MeV energy and current of 0.267 mA. The heat deposition study is carried out using FLUKA code and flow analysis by CFD code. The detailed analysis of this work is presented in this paper.

  4. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  5. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  6. Requirements for design of accelerator, beam transport, and target in a study of thermonuclear reaction cross section

    Energy Technology Data Exchange (ETDEWEB)

    Itahashi, T.; Takahisa, K.; Fujiwara, M.; Toki, H.; Ejiri, H. [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Ohsumi, H.; Komori, M.

    1997-03-01

    A compact accelerator with high current ion source, low energy beam transport elements and windowless gas target was designed to investigate the thermonuclear reaction cross section. The idea of this project focused on the cross section measurement of the fusion reaction data {sup 3}He+{sup 3}He-{sup 4}He+p+p at 25keV. The system will be installed in Otoh Cosmo Observatory (1270m.w.e.) to get rid of the huge cosmic and environmental background. It consists of NANOGUN ECR ion source, focusing elements made of permanent magnets window less {sup 3}He gas target and/or He{sup 3} plasma target and detector telescopes with low noise and low background. Requirements for these were discussed technically and various ideas were proposed. (author)

  7. Characterization of lead-bismuth eutectic target material for accelerator driven transmuters

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry E-mail: gohar@anl.gov

    2003-05-15

    Lead-bismuth eutectic (LBE) is under consideration as a target material with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A characterization has been performed to study the performance of this target material as a function of the main variables and the design selections. The characterization includes the neutron yield, the spatial energy deposition, the neutron spectrum, the beam window performance, and the target buffer requirements. The characterization has also considered high-energy deuteron particles to study the impact on the target neutronic performance. The obtained results quantify the LBE target material performance with proton or deuteron particles as a function of the target variables and selections.

  8. Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry.

    Science.gov (United States)

    Kim, Seung-Hyun; Kelly, Peter B; Ortalan, Volkan; Browning, Nigel D; Clifford, Andrew J

    2010-03-15

    Catalytic graphitization for (14)C-accelerator mass spectrometry ((14)C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 degrees C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe(3)C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 degrees C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise (14)C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental (14)C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals.

  9. The influence of external source intensity in accelerator/target/blanket system on conversion ratio and fuel cycle

    Science.gov (United States)

    Kochurov, Boris P.

    1995-09-01

    The analysis of neutron balance relation for a subcritical system with external source shows that a high ratio of neutron utilization (conversion ratio, breeding ratio) much exceeding similar values for nuclear reactors (both thermal or fast spectrum) is reachable in accelerator/target/blanket system with high external neutron source intensity. An accelerator/target/blanket systems with thermal power in blanket about 1850 Mwt and operating during 30 years have been investigated. Continual feed up by plutonium (fissile material) and Tc-99 (transmuted material) was assumed. Accelerator beam intensity differed 6.3 times (16 mA-Case 1, and 100 mA-Case 2). Conversion ratio (CR) was defined as the ratio of Tc-99 nuclei transmuted to the number of Pu nuclei consumed. The results for two cases are as follows: Case 1Case 2CR 0.77 1.66N(LWR) 8.6 19.1Power MWt(el) 512 225 where N(LWR)-number of LWRs(3000 MWt(th)) from which yearly discharge of Tc-99 is transmuted during 30 years. High value of conversion ratio considerably exceeding 1 (CR=1.66) was obtained in the system with high source intensity as compared with low source system (CR=0.77). Net output of electric power of high source intensity system is about twice lower due to consumption of electric power for accelerator feed up. The loss of energy for Tc-99 transmutation is estimated as 40 Mev(el)/nuclei. Yet high conversion ratio (or breeding ratio) achievable in electronuclear installations with high intensity of external source can effectively be used to close fuel cycle (including incineration of wastes) or to develop growing nuclear power production system.

  10. The André E. Lalonde AMS Laboratory – The new accelerator mass spectrometry facility at the University of Ottawa

    Energy Technology Data Exchange (ETDEWEB)

    Kieser, W.E., E-mail: liam.kieser@uottawa.ca [University of Ottawa, Dept. of Physics and A. E. Lalonde Lab, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L. [University of Ottawa, Dept. of Physics and A. E. Lalonde Lab, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada); Clark, I.D.; Cornett, R.J. [University of Ottawa, Dept. of Earth Sciences and A. E. Lalonde Lab, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada); Litherland, A.E. [University of Toronto, Dept. of Physics, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Klein, M.; Mous, D.J.W. [High Voltage Engineering Europa B.V., 3800 AB Amersfoort (Netherlands); Alary, J.-F. [Isobarex Corp., 32 Nixon Road, Unit 1, Bolton, ON L7E 1W2 (Canada)

    2015-10-15

    The University of Ottawa, Canada, has installed a multi-element, 3 MV tandem AMS system as the cornerstone of their new Advanced Research Complex and the principal analytical instrument of the André E. Lalonde Accelerator Mass Spectrometry Laboratory. Manufactured by High Voltage Engineering Europa B.V., the Netherlands, it is equipped with a 200 sample ion source, a high resolution, 120° injection magnet, a 90° high energy analysis magnet (mass-energy product 350 MeV-AMU), a 65°, 1.7 m radius electric analyzer and a 2 channel gas ionization detector. It is designed to analyze isotopes ranging from tritium to the actinides and to accommodate the use of fluoride target materials. This system is being extended with a second injection line, consisting of selected components from the IsoTrace Laboratory, University of Toronto. This line will contain a pre-commercial version of the Isobar Separator for Anions, manufactured by Isobarex Corp., Bolton, Ontario, Canada. This instrument uses selective ion–gas reactions in a radio-frequency quadrupole cell to attenuate both atomic and molecular isobars. This paper discusses the specifications of the new AMS equipment, reports on the acceptance test results for {sup 10}Be, {sup 14}C, {sup 26}Al and {sup 127}I and presents typical spectra for {sup 10}Be and actinide analyses.

  11. Post-acceleration of sup 7 Be at the Louvain-la-Neuve radioactive ion beam facility

    CERN Document Server

    Gaelens, M; Loiselet, M; Ryckewaert, G

    2003-01-01

    The development of an intense and pure post-accelerated sup 7 Be beam at Louvain-la-Neuve will be discussed. Given its properties (metallic nature, long half-life (53 days)) and the special beam parameters required (multi-charge ions, high purity), a range of special techniques had to be investigated. At Louvain-la-Neuve, sup 7 Be is produced by irradiating a lithium target with 30 mu A of 27 MeV protons and is extracted using offline chemical separation techniques. Because of the large amounts of activity required, the chemistry has to be adapted for use in hotcells. The ionization is performed with an Electron Cyclotron Resonance ion source with the sup 7 Be injected in the source by means of sputtering. Special techniques have to be used to prevent the beryllium atoms from being lost on the plasma chamber walls. A dedicated heated plasma chamber for the ion source was developed. The ionization efficiency was increased by studying the chemistry involved in the ion source. The atoms are ionized to the 1+ or ...

  12. The new external microbeam facility at the 5 MV Tandetron accelerator laboratory in Madrid: beam characterisation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Enguita, Olga E-mail: olga.enguita@uam.es; Fernandez-Jimenez, M.T.; Garcia, G.; Climent-Font, A.; Calderon, T.; Grime, G.W

    2004-06-01

    This paper describes the new external microbeam on the 15 deg. beamline of the 5 MV Tandetron accelerator recently installed at the CMAM in Madrid. The focusing and beam extraction system was supplied by Oxford Microbeams Ltd. and consists of a high precision quadrupole doublet with an interchangeable Kapton window exit nozzle and front-viewing video microscope. The sample is positioned in the beam using a stepper motor stage. The beam current and beam profile have been determined under different experimental conditions. A simple method based on the signal processing of ion-induced luminescence from quartz targets has been used to determine the beam profile in two dimensions simultaneously, without scanning. This is the first step in the development of a real time beam profile monitoring system, which could be used as part of an automated beam focusing procedure. The beam line will be primarily devoted to archaeometry and cultural heritage studies. As an example we report the characterisation of two Tang appearance antique porcelains.

  13. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  14. Robustness studies of ignition targets for the National Ignition Facility in two dimensionsa)

    Science.gov (United States)

    Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.

    2008-05-01

    Inertial confinement fusion capsules are critically dependent on the integrity of their hot spots to ignite. At the time of ignition, only a certain fractional perturbation of the nominally spherical hot spot boundary can be tolerated and the capsule still achieve ignition. The degree to which the expected hot spot perturbation in any given capsule design is less than this maximum tolerable perturbation is a measure of the ignition margin or robustness of that design. Moreover, since there will inevitably be uncertainties in the initial character and implosion dynamics of any given capsule, all of which can contribute to the eventual hot spot perturbation, quantifying the robustness of that capsule against a range of parameter variations is an important consideration in the capsule design. Here, the robustness of the 300eV indirect drive target design for the National Ignition Facility [Lindl et al., Phys. Plasmas 11, 339 (2004)] is studied in the parameter space of inner ice roughness, implosion velocity, and capsule scale. A suite of 2000 two-dimensional simulations, run with the radiation hydrodynamics code LASNEX, is used as the data base for the study. For each scale, an ignition region in the two remaining variables is identified and the ignition cliff is mapped. In accordance with the theoretical arguments of Levedahl and Lindl [Nucl. Fusion 37, 165 (1997)] and Kishony and Shvarts [Phys. Plasmas 8, 4925 (2001)], the location of this cliff is fitted to a power law of the capsule implosion velocity and scale. It is found that the cliff can be quite well represented in this power law form, and, using this scaling law, an assessment of the overall (one- and two-dimensional) ignition margin of the design can be made. The effect on the ignition margin of an increase or decrease in the density of the target fill gas is also assessed.

  15. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    Science.gov (United States)

    Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.

    2016-03-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.

  16. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  17. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    Science.gov (United States)

    Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima

    2016-08-01

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.

  18. W.K.H. Panofsky Prize in Experimental Particle Physics: The design, construction and performance of the B Factory accelerator facilities, PEP-II and KEKB

    Science.gov (United States)

    Dorfan, Jonathan

    2016-03-01

    The discovery and elucidation of CP violation in the B-meson system presented daunting challenges for the accelerator and detector facilities. This talk discusses how these challenges were met and overcome in the electron-positron colliding-beam accelerator facilities PEP-II (at SLAC) and KEKB (at KEK). The key challenge was to produce unprecedentedly large numbers of B-mesons in a geometry that provided high-statistics, low-background samples of decays to CP eigenstates. This was realized with asymmetric collisions at the Γ(4S) at peak luminosities in excess of 3 ×1033 /sq. cm/sec. Specialized optics were developed to generate efficient, low background, multi-bunch collisions in an energy-asymmetric collision geometry. Novel technologies for the RF, vacuum and feedback systems permitted the storage of multi-amp, multi-bunch beams of electrons and positrons, thereby generating high peak luminosities. Accelerator uptimes greater than 95 percent, combined with high-intensity injection systems, ensured large integrated luminosity. Both facilities rapidly attained their design specifications and ultimately far exceeded the projected performance expectations for both peak and integrated luminosity.

  19. Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery

    Science.gov (United States)

    Wang, Guangshuo; Ma, Yingying; Zhang, Lina; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Che, Hongwei; Bai, Yongmei; Hou, Junxian

    2016-03-01

    In this study, manganese ferrite/graphene oxide (MnFe2O4/GO) nanocomposites as controlled targeted drug delivery were prepared by a facile sonochemical method. It was found that GO nanosheets were fully exfoliated and decorated with MnFe2O4 nanoparticles having diameters of 5-13 nm. The field-dependent magnetization curve indicated superparamagnetic behavior of the obtained MnFe2O4/GO with saturation magnetization of 34.9 emu/g at room temperature. The in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared MnFe2O4/GO even at the concentration as high as 150 μg/mL. Doxorubicin hydrochloride (DOX) as an anti-tumor model drug was utilized to explore the application potential of MnFe2O4/GO for controlled drug delivery. The drug loading capacity of this nanocarrier was as high as 0.97 mg/mg and the drug release behavior showed a sustained and pH-responsive way.

  20. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  1. Synchronized ion acceleration by ultraintense slow light and electron source for x-ray production from low-density targets

    Science.gov (United States)

    Brantov, A. V.; Bychenkov, V. Yu

    2017-03-01

    Synchronized proton acceleration by ultraintense slow light in a low-density target Brantov et al (2016 Phys. Rev. Lett. 116 085004) is studied for a circularly polarized laser pulse. This study demonstrates the advantage of circularly polarized light compared with linearly polarized light used for high-energy proton generation. At the same time, high-energy electron production for gamma-ray generation is not sensitive to the polarization of the laser pulse. Both the proton and the electron sources are considered in application to petawatt-class lasers.

  2. Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore,” Via delle Olimpiadi, 94100 Enna (Italy); Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Tudisco, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Muoio, A. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F. D’Alcontres 31, 98166 Messina (Italy)

    2016-02-15

    In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.

  3. Introduction to the overall physics design of CSNS accelerators

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng; FANG Shou-Xian; FU Shi-Nian; LIU Wei-Bin; OUYANG Hua-Fu; QIN Qing; TANG Jing-Yu; WEI Jie

    2009-01-01

    The China Spallation Neutron Source(CSNS)is an accelerator-based facility.The accelerator of CSNS consists of a low energy linac,a Rapid Cycling Synchrotron(RCS)and two beam transport lines.The overall physits design of CSNS accelerator is described,including the design principle,the choice of the main parameters and design of each part of accelerators.The key problems of the physics design,such as beam loss and control,are also discussed.The interface between the different parts of accelerator,as well as between accelerator and target,are introduced.

  4. Modeling of Nike Experiments on Acceleration of Planar Targets Stabilized with a Short Spike

    Science.gov (United States)

    Metzler, N.; Velikovich, A. L.; Gardner, J. H.

    2005-10-01

    A short sub-ns laser pulse (spike) produces a decelerating shock wave and a rarefaction wave immediately behind it, shaping a density gradient in the target. The following main pulse ``rides'' this graded density profile. We have demonstrated how the deceleration of the ablation front following the shock wave suppresses laser imprint and delays perturbation growth in the target [1]. We report the results of 2D numerical modeling of experiments on Nike laser at NRL, with its recently developed short-pulse capability, for a low-energy spike which does not affect the target adiabat. We studied the effect of spike on laser imprint on smooth planar targets and on the growth of perturbations imposed as single-mode ripples on the irradiated surface of the targets. For all cases, delay of the onset and/or suppression of the rate of the mass perturbation growth due to the spike are robust and significant enough to be observable on Nike. [1] N. Metzler et al., Phys. Plasmas 6, 3283 (1999); 9, 5050 (2002); 10, 1897 (2003).

  5. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    Science.gov (United States)

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  6. Biological/biomedical accelerator mass spectrometry targets. 2. Physical, morphological, and structural characteristics.

    Science.gov (United States)

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2008-10-15

    The number of biological/biomedical applications that require AMS to achieve their goals is increasing, and so is the need for a better understanding of the physical, morphological, and structural traits of high quality of AMS targets. The metrics of quality included color, hardness/texture, and appearance (photo and SEM), along with FT-IR, Raman, and powder X-ray diffraction spectra that correlate positively with reliable and intense ion currents and accuracy, precision, and sensitivity of fraction modern ( F m). Our previous method produced AMS targets of gray-colored iron-carbon materials (ICM) 20% of the time and of graphite-coated iron (GCI) 80% of the time. The ICM was hard, its FT-IR spectra lacked the sp (2) bond, its Raman spectra had no detectable G' band at 2700 cm (-1), and it had more iron carbide (Fe 3C) crystal than nanocrystalline graphite or graphitizable carbon (g-C). ICM produced low and variable ion current whereas the opposite was true for the graphitic GCI. Our optimized method produced AMS targets of graphite-coated iron powder (GCIP) 100% of the time. The GCIP shared some of the same properties as GCI in that both were black in color, both produced robust ion current consistently, their FT-IR spectra had the sp (2) bond, their Raman spectra had matching D, G, G', D +G, and D '' bands, and their XRD spectra showed matching crystal size. GCIP was a powder that was easy to tamp into AMS target holders that also facilitated high throughput. We concluded that AMS targets of GCIP were a mix of graphitizable carbon and Fe 3C crystal, because none of their spectra, FT-IR, Raman, or XRD, matched exactly those of the graphite standard. Nevertheless, AMS targets of GCIP consistently produced the strong, reliable, and reproducible ion currents for high-throughput AMS analysis (270 targets per skilled analyst/day) along with accurate and precise F m values.

  7. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    Science.gov (United States)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  8. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    Science.gov (United States)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy; Bronson, Roderick T.; Hornick, Jason L.; Cohen, David E.; Ukomadu, Chinweike

    2015-01-01

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. PMID:26225745

  9. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    Energy Technology Data Exchange (ETDEWEB)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Bronson, Roderick T. [Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115 (United States); Hornick, Jason L. [Department of Pathology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Cohen, David E. [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Ukomadu, Chinweike, E-mail: cukomadu@partners.org [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2015-09-18

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.

  10. Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method.

    Science.gov (United States)

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2009-07-15

    The high-throughput Zn reduction method was developed and optimized for various biological/biomedical accelerator mass spectrometry (AMS) applications of mg of C size samples. However, high levels of background carbon from the high-throughput Zn reduction method were not suitable for sub-mg of C size samples in environmental, geochronology, and biological/biomedical AMS applications. This study investigated the effect of background carbon mass (mc) and background 14C level (Fc) from the high-throughput Zn reduction method. Background mc was 0.011 mg of C and background Fc was 1.5445. Background subtraction, two-component mixing, and expanded formulas were used for background correction. All three formulas accurately corrected for backgrounds to 0.025 mg of C in the aerosol standard (NIST SRM 1648a). Only the background subtraction and the two-component mixing formulas accurately corrected for backgrounds to 0.1 mg of C in the IAEA-C6 and -C7 standards. After the background corrections, our high-throughput Zn reduction method was suitable for biological (diet)/biomedical (drug) and environmental (fine particulate matter) applications of sub-mg of C samples (> or = 0.1 mg of C) in keeping with a balance between throughput (270 samples/day/analyst) and sensitivity/accuracy/precision of AMS measurement. The development of a high-throughput method for examination of > or = 0.1 mg of C size samples opens up a range of applications for 14C AMS studies. While other methods do exist for > or = 0.1 mg of C size samples, the low throughput has made them cost prohibitive for many applications.

  11. A Targeted Inhibitor of the Alternative Complement Pathway Accelerates Recovery From Smoke-Induced Ocular Injury

    Science.gov (United States)

    Woodell, Alex; Jones, Bryan W.; Williamson, Tucker; Schnabolk, Gloriane; Tomlinson, Stephen; Atkinson, Carl; Rohrer, Bärbel

    2016-01-01

    Purpose Morphologic and genetic evidence exists that an overactive complement system driven by the complement alternative pathway (AP) is involved in pathogenesis of age-related macular degeneration (AMD). Smoking is the only modifiable risk factor for AMD. As we have shown that smoke-related ocular pathology can be prevented in mice that lack an essential activator of AP, we ask here whether this pathology can be reversed by increasing inhibition in AP. Methods Mice were exposed to either cigarette smoke (CS) or filtered air (6 hours/day, 5 days/week, 6 months). Smoke-exposed animals were then treated with the AP inhibitor (CR2-fH) or vehicle control (PBS) for the following 3 months. Spatial frequency and contrast sensitivity were assessed by optokinetic response paradigms at 6 and 9 months; additional readouts included assessment of retinal morphology by electron microscopy (EM) and gene expression analysis by quantitative RT-PCR. Results The CS mice treated with CR2-fH showed significant improvement in contrast threshold compared to PBS-treated mice, whereas spatial frequency was unaffected by CS or pharmacologic intervention. Treatment with CR2-fH in CS animals reversed thinning of the retina observed in PBS-treated mice as analyzed by spectral-domain optical coherence tomography, and reversed most morphologic changes in RPE and Bruch's membrane seen in CS animals by EM. Conclusions Taken together, these findings suggest that AP inhibitors not only prevent, but have the potential to accelerate the clearance of complement-mediated ocular injury. Improving our understanding of the regulation of the AP is paramount to developing novel treatment approaches for AMD. PMID:27064393

  12. Target disruption of ribosomal protein pNO40 accelerates aging and impairs osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Lin, Yen-Ming; Wu, Chih-Ching; Chang, Yu-Chen; Wu, Chu-Han; Ho, Hsien Li; Hu, Ji Wei; Chang, Ren-Chi; Wang, Chung-Ta; Ouyang, Pin

    2016-01-22

    pNO40/PS1D, a novel nucleolar protein, has been characterized as a core protein of eukaryotic 60S ribosome and at least two splicing forms of pNO40 mRNAs with alternative starting sites have been identified. Through production of knockout (ko) mice with either exon 2 (△E2), exon 4 (△E4) or △E2+E4 targeted disruption we identified a cryptic splicing product occurring in the ko tissues examined which in general cannot be observed in regular RT-PCR detection of wild-type (wt) animals. Among ko animals, △E4 null embryos exhibited prominent senescence-associated β-galactosidase (SA-β-gal) staining, a marker for senescent cells, in notochord, forelimbs and heart while bone marrow-derived mesenchymal stem cells (MSCs) from △E4 null mice developed accelerated aging and osteogenic differentiation defects compared to those from wt and other isoform mutant mice. Examination of the causal relationship between pNO40 deficiency and MSC-accelerated aging revealed △E4 null disruption in MSCs elicits high levels of ROS and elevated expression levels of p16 and Rb but not p53. Further analysis with iTraq identified CYP1B1, a component of the cytochrome p450 system, as a potential molecule mediating ROS generation in pNO40 deficient MSCs. We herein established a mouse model of MSC aging through pNO40-targeted depletion and demonstrated the effects of loss of pNO40 on bone homeostasis.

  13. The simulations of charged particle acceleration from gas target at 20 TW SOKOL-P laser with intensity of 5⋅1019 W/cm2

    Directory of Open Access Journals (Sweden)

    Lykov V.A.

    2013-11-01

    Full Text Available 2D PIC code simulations have been performed for the optimization of gas jet target parameters to achieve a maximal energy and efficiency of charged particle acceleration in planned experiments at the 20 TW picosecond SOKOL-P laser. These calculations specify an opportunity to obtain energy up to Ee ∼ 200 MeV and efficiency ηe ∼ 10% for accelerated electrons and Ep ∼ 30 − 50 MeV and ηp ∼ 5% for accelerated protons in these experiments at laser intensity I ∼ 5 ⋅ 1019 W/cm2. They show the necessity of providing a formation of hydrogen jets with diameter ∼ 1mm, a gas molecule concentration ∼ 2 ⋅ 1019 cm−3 and steep density gradients ∼ 200 μm at the edge of the gas jet target for achieving these parameters of laser accelerated particle beams.

  14. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  15. National Ignition Facility subsystem design requirements target diagnostics subsystem SSDR 1.8.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.

    1996-10-28

    This SSDR establishes the performance, design, development and test requirements for the Target Experimental System`s Diagnostic, WBS 1.8. 3. This includes the individual diagnostic components, the Target Diagnostic Data Acquisition System (Target DAS), the diagnostic vacuum system, the timing/fiducial system, and the EMI protection system.

  16. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool.

    Science.gov (United States)

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Hansen, Henning Gram; Kallehauge, Thomas Beuchert; Betenbaugh, Michael J; Nielsen, Alex Toftgaard; Kildegaard, Helene Faustrup

    2014-08-01

    Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry as a host for the production of complex pharmaceutical proteins. Thus genome engineering of CHO cells for improved product quality and yield is of great interest. Here, we demonstrate for the first time the efficacy of the CRISPR Cas9 technology in CHO cells by generating site-specific gene disruptions in COSMC and FUT8, both of which encode proteins involved in glycosylation. The tested single guide RNAs (sgRNAs) created an indel frequency up to 47.3% in COSMC, while an indel frequency up to 99.7% in FUT8 was achieved by applying lectin selection. All eight sgRNAs examined in this study resulted in relatively high indel frequencies, demonstrating that the Cas9 system is a robust and efficient genome-editing methodology in CHO cells. Deep sequencing revealed that 85% of the indels created by Cas9 resulted in frameshift mutations at the target sites, with a strong preference for single base indels. Finally, we have developed a user-friendly bioinformatics tool, named "CRISPy" for rapid identification of sgRNA target sequences in the CHO-K1 genome. The CRISPy tool identified 1,970,449 CRISPR targets divided into 27,553 genes and lists the number of off-target sites in the genome. In conclusion, the proven functionality of Cas9 to edit CHO genomes combined with our CRISPy database have the potential to accelerate genome editing and synthetic biology efforts in CHO cells.

  17. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  18. High-contrast laser acceleration of relativistic electrons in solid cone-wire targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sawada, H. [Univ. of California-San Diego, La Jolla, CA (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chawla, S. R. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jarrott, L. C. [Univ. of California-San Diego, La Jolla, CA (United States); Flippo, K. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McLean, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perez, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beg, F. N. [Univ. of California-San Diego, La Jolla, CA (United States); Bartal, T. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wei, M. S. [General Atomics, San Diego, CA (United States)

    2015-12-31

    Optimization of electron coupling into small solid angles is of extreme importance to applications, such as Fast Ignition, that require maximum electron energy deposition within a small volume. To optimize this coupling, we use the ultra-high-contrast Trident laser, which remains below intensity of 1011 W/cm2 until < 0.1 ns before the main pulse, while still attaining high-energy, 75 J, and peak intensity of 5 x 1019 W/cm2. Using a cone-wire target, we find that the coupling into the 40 μm diameter wire is increased by a factor of 2.7x over the low-contrast Titan laser at similar peak intensity. Full-scale simulations are used to model the laser interaction and quantitatively reproduce the experimental results. These show that increase in coupling is due to both a closer interaction, as well as the reduction of laser filamentation and self-focusing.

  19. Biological/biomedical accelerator mass spectrometry targets. 1. optimizing the CO2 reduction step using zinc dust.

    Science.gov (United States)

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2008-10-15

    Biological and biomedical applications of accelerator mass spectrometry (AMS) use isotope ratio mass spectrometry to quantify minute amounts of long-lived radioisotopes such as (14)C. AMS target preparation involves first the oxidation of carbon (in sample of interest) to CO 2 and second the reduction of CO 2 to filamentous, fluffy, fuzzy, or firm graphite-like substances that coat a -400-mesh spherical iron powder (-400MSIP) catalyst. Until now, the quality of AMS targets has been variable; consequently, they often failed to produce robust ion currents that are required for reliable, accurate, precise, and high-throughput AMS for biological/biomedical applications. Therefore, we described our optimized method for reduction of CO 2 to high-quality uniform AMS targets whose morphology we visualized using scanning electron microscope pictures. Key features of our optimized method were to reduce CO 2 (from a sample of interest that provided 1 mg of C) using 100 +/- 1.3 mg of Zn dust, 5 +/- 0.4 mg of -400MSIP, and a reduction temperature of 500 degrees C for 3 h. The thermodynamics of our optimized method were more favorable for production of graphite-coated iron powders (GCIP) than those of previous methods. All AMS targets from our optimized method were of 100% GCIP, the graphitization yield exceeded 90%, and delta (13)C was -17.9 +/- 0.3 per thousand. The GCIP reliably produced strong (12)C (-) currents and accurate and precise F m values. The observed F m value for oxalic acid II NIST SRM deviated from its accepted F m value of 1.3407 by only 0.0003 +/- 0.0027 (mean +/- SE, n = 32), limit of detection of (14)C was 0.04 amol, and limit of quantification was 0.07 amol, and a skilled analyst can prepare as many as 270 AMS targets per day. More information on the physical (hardness/color), morphological (SEMs), and structural (FT-IR, Raman, XRD spectra) characteristics of our AMS targets that determine accurate, precise, and high-hroughput AMS measurement are in the

  20. Laser Coupling to Reduced-Scale Targets at the Early Light Program of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, D E; Schneider, M B; Baldis, H A; Bower, D; Campbell, K M; Celeste, J R; Compton, S; Costa, R; Dewald, E L; Dixit, S; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A; Emig, J; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Holder, J P; Holtmeier, G; James, L; Jancaitis, K S; Kalantar, D H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Kamperschroer, J; Landen, O L; Landon, M; Langdon, A B; Lee, F D; MacGowan, B J; MacKinnon, A J; Manes, K R; May, M J; McDonald, J W; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P T; Still, C H; Suter, L J; Turner, R E; Wallace, R J; Warrick, A; Watts, P; Weber, F; Williams, E A; Young, B K; Young, P E

    2004-11-18

    A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. This hot environment is produced with a laser by depositing maximum energy into a small, high-Z can. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility, under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.

  1. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Yan-nan, Bai [Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province (China); Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, Fujian Province (China); Zhao-yan, Yu; Li-xi, Luo; Jiang, Yi [Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province (China); Qing-jie, Xia [Translational Neuroscience Center, West China Hospital/West China Medical School of Sichuan University, Chengdu 610041, Sichuan Province (China); Yong, Zeng, E-mail: yongzengmd@gmail.com [Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province (China)

    2014-01-17

    Highlights: •miRNAs-expression patterns of primary hepatocytes under proliferative status. •miR-21 expression level peaked at 12 h after stimulated by EGF. •miR-21 drive rapid S phase entry of primary hepatocytes. •PI3K/Akt signaling was modulated via targeting PTEN by miR-21. -- Abstract: MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitro transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.

  2. Computational design of high efficiency release targets for use at ISOL facilities

    CERN Document Server

    Liu, Y

    1999-01-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected t...

  3. The target of the CNGS facility at CERN, which will enable the production of neutrino

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The final target system (base table, alignment table with target magazine and BPKG) was installed in the target chamber on 8 March 2006. The pictures show the material in the test set-up in the laboratory, before transportation. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust.

  4. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    Science.gov (United States)

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  5. Computational Design of High Efficiency Release Targets for Use at ISOL Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Liu, Y.; Middleton, J.W.

    1998-11-04

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived tlom diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  6. Large Dog Relinquishment to Two Municipal Facilities in New York City and Washington, D.C.: Identifying Targets for Intervention

    Directory of Open Access Journals (Sweden)

    Emily Weiss

    2014-07-01

    Full Text Available While the overall trend in euthanasia has been decreasing nationally, large dogs are at a higher risk of euthanasia than other sized dogs in most animal shelters in the United States. We hypothesized one way to increase the lives saved with respect to these large dogs is to keep them home when possible. In order to develop solutions to decrease relinquishment, a survey was developed to learn more about the reasons owners relinquish large dogs. The survey was administered to owners relinquishing their dogs at two large municipal facilities, one in New York City and one in Washington, D.C. There were 157 responses between the two facilities. We found both significant similarities and differences between respondents and their dogs from the two cities. We identified opportunities to potentially support future relinquishers and found that targets for interventions are likely different in each community.

  7. Development of a liquid Pb-Bi target for high-power ISOL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Houngbo, D., E-mail: dhoungbo@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Bernardes, A.P. [CERN, 1211 Geneva 23 (Switzerland); David, J.C. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Delonca, M. [CERN, 1211 Geneva 23 (Switzerland); IRTES-M3M & IRTES-LERMPS, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); Kravalis, K. [Institute of Physics of University of Latvia (IPUL), 32 Miera iela, Salaspils LV-2169 (Latvia); Lahiri, S. [Saha Institute of Nuclear Physics 1/AF Bidhannagar, Kolkata 700064 (India); Losito, R.; Maglioni, C. [CERN, 1211 Geneva 23 (Switzerland); Marchix, A. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Mendonca, T.M. [CERN, 1211 Geneva 23 (Switzerland); Popescu, L. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Schumann, D. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland); Schuurmans, P. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Stora, T.; Vollaire, J. [CERN, 1211 Geneva 23 (Switzerland); Vierendeels, J. [Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2016-06-01

    This paper describes some R&D activities conducted in support of the design and safe operation of a high-power liquid Pb-Bi target within the LIEBE (Liquid Eutectic Lead Bismuth Loop Target for EURISOL) project. The target material is lead bismuth eutectic (LBE) which also acts as a primary coolant. As a consequence of interaction of the highly pulsed 1.4-GeV protons at ISOLDE with the target, heat powers of the order of 2 GW would be instantaneously deposited in the target during a bunch. Considerable R&D effort is thus required to demonstrate its continued coolability and structural integrity. This paper mainly reports on the conjugate flow (CFD) and heat deposition (Monte Carlo) calculations, not accounting for Fluid–Structure Interactions.

  8. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  9. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  10. Research of target uniform illumination on SG-III laser facility

    Science.gov (United States)

    Zhang, Rui; Jia, Huaiting; Geng, Yuanchao; Li, Ping; Liu, Lanqin; Tian, Xiaocheng; Yuan, Haoyu; Fan, Chen; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo

    2016-10-01

    In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and equipped on SG-III laser facility. After using these technologies, the focal spots of SG-III laser facility can be adjusted, controlled and repeated accurately. Experiments on SG-III laser facility indicate when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and the main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, and 0.84 with CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied.

  11. Test of high density UC targets development at Gatchina for neutron rich radioactive beam facilities

    CERN Document Server

    Lhersonneau, G; Lanchais, A; Rizzi, V; Tecchio, L.B; Bajeat, O; Essabaa, S; Lau, C; Cheikh Mhamed, M; Roussière, B; Barzakh, A.E; Fedorov, D.V; lonan, A.M; lvanov, V.S; Mezilev, K.A; Moroz, F.V; Orlov, S.YU; Panteleevc, V.N; Volkovc, YU.M; Dubois, M; Eléon, C; Gaubert, G; Jardin, P; Leroy, R; Saint Laurent, M.G; Villari, A.C.C; Stroe, L

    2008-01-01

    Production of on-line mass separator neutron rich isotopes using fission induced by 1 GeV protons on high density uranium carbide has been investigate and results compared with the low density targets yields.

  12. In-phantom characterisation studies at the Birmingham Accelerator-Generated epIthermal Neutron Source (BAGINS) BNCT facility.

    Science.gov (United States)

    Culbertson, Christopher N; Green, Stuart; Mason, Anna J; Picton, David; Baugh, Gareth; Hugtenburg, Richard P; Yin, Zaizhe; Scott, Malcolm C; Nelson, John M

    2004-11-01

    A broad experimental campaign to validate the final epithermal neutron beam design for the BNCT facility constructed at the University of Birmingham concluded in November 2003. The final moderator and facility designs are overviewed briefly, followed by a summary of the dosimetric methods and presentation of a small subset of the results from this campaign. The dual ionisation chamber technique was used together with foil activation to quantify the fast neutron, photon, and thermal neutron beam dose components in a large rectangular phantom exposed to the beam with a 12 cm diameter beam delimiter in place. After application of a normalisation factor, dose measurements agree with in-phantom MCNP4C predictions within 10% for the photon dose, within 10% for thermal neutron dose, and within 25% for the proton recoil dose along the main beam axis.

  13. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    Science.gov (United States)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  14. Facile Discovery of Cell-Surface Protein Targets of Cancer Cell Aptamers.

    Science.gov (United States)

    Bing, Tao; Shangguan, Dihua; Wang, Yinsheng

    2015-10-01

    Cancer biomarker discovery constitutes a frontier in cancer research. In recent years, cell-binding aptamers have become useful molecular probes for biomarker discovery. However, there are few successful examples, and the critical barrier resides in the identification of the cell-surface protein targets for the aptamers, where only a limited number of aptamer targets have been identified so far. Herein, we developed a universal SILAC-based quantitative proteomic method for target discovery of cell-binding aptamers. The method allowed for distinguishing specific aptamer-binding proteins from nonspecific proteins based on abundance ratios of proteins bound to aptamer-carrying bait and control bait. In addition, we employed fluorescently labeled aptamers for monitoring and optimizing the binding conditions. We were able to identify and validate selectin L and integrin α4 as the protein targets for two previously reported aptamers, Sgc-3b and Sgc-4e, respectively. This strategy should be generally applicable for the discovery of protein targets for other cell-binding aptamers, which will promote the applications of these aptamers.

  15. X-ray laser experiments by using a gas puff target with the ASTERIX IV facility

    Energy Technology Data Exchange (ETDEWEB)

    Fiedorowicz, H.; Bartnik, A.; Fill, E.; Li, Y.; Pretzler, G.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Warsaw (Poland)

    1996-05-01

    We report the first X-ray laser experiments with the use of laser-irradiated gas puff targets. The targets, produced by pulsed injection of a small amount of gas from a high-pressure solenoid valve through a nozzle in a form of a slit, has been characterized by optical interferometry and X-ray backlighting. The formation of elongated hot plasma columns up to 30-mm long is demonstrated. The spatial uniformity of the column was monitored by means of an X-ray pinhole camera. XUV spectra measurements for SF{sub 6} gas puff targets show predominant 3{endash}2 line of hydrogenic fluorine ({lambda}=8.1 nm), however, only linear increasing of its intensity with the target length was observed. An inversion on the lithium-like 4{ital d}-3{ital p} line can be inferred from the relative intensities of the Li-like resonance lines. Results for Kr target indicate that the plasma temperature was too low to create Ne-like ions. {copyright} {ital 1996 American Institute of Physics.}

  16. Optical spectroscopy of free-propagating plasma and its interaction with tungsten targets in PF-1000 facility

    Energy Technology Data Exchange (ETDEWEB)

    Skladnik-Sadowska, E.; Malinowski, K. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Kubkowska, M.; Jakubowska, K.; Paduch, M.; Scholz, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Garkusha, I.E.; Ladygina, M.; Tereshin, V.I. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine)

    2011-07-01

    The paper reports on optical spectroscopy of pulsed plasma streams during their free propagation within a vacuum chamber and their interaction with tungsten targets. Experiments were performed with the PF-1000 facility and particular attention was paid to improvements in spectroscopic diagnostics techniques. In contrary to preliminary studies, the recent spectroscopic measurements of the free plasma streams were carried out perpendicular to the z-axis and at a larger distance from the electrode outlet. The center of the observation quartz-window was located at z = 30 cm in order to observe first a pure deuterium-plasma stream, and later on some heavy impurities which might reach that distance with a delay induced by differences in their production and time-of-flight. The recorded spectral lines were identified by means of a Kurucz database. It was confirmed that at the pure D{sub 2}-filling the PF-1000 facility emits first the deuterium-plasma stream and one can observe intense deuterium Balmer lines, but at a distance z = 30 cm, after about 2 microseconds there appear many impurity lines originating mainly from the Cu-electrodes, i.e. Cu-lines. The second part of the experiment concerned the spectroscopic measurements of metal plasma 'pillow' produced by the plasma stream impinging upon a solid target made of pure tungsten. The described measurements enabled the most intense spectral lines to be identified. This document is composed of an abstract followed by the slides of the presentation

  17. Advanced accelerator test facility-Final report for the period 9/1/2010 - 8/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay [Yale Univ., New Haven, CT (United States)

    2014-10-27

    This final report summarizes results achieved in the Beam Physics Laboratory at Yale University during the period 9/1/2010 – 8/31//2013, under DoE grant DE-FG02-07 ER 41504. During the period covered by this report, notable progress in technical consolidation of facilities in the Yale Beam Physics Laboratory has occurred; and theory, design, and fabrication for future experiments have been carried out. In the period covered by this grant, 29 scientific publications based on this work and related topics have appeared in the archival literature. Titles, authors, and citations are listed in Section V of this report.

  18. Construction of. gamma pi. /sup 0/ spectrometer and photon tagging facility at Bates Linear Accelerator. Final report, July 31, 1979-July 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Booth, E.C.

    1981-08-01

    The funds provided under Contract No. DE-AC02-79ER10486 were totally expended for hardware and supplies required by two related devices at the Bates Linear Accelerator. These were a photon tagging facility and a ..gamma pi../sup 0/ spectrometer in Beam Line C of the new South Experimental Hall. Construction was begun in November of 1979 and both systems became fully operational in the summer of 1981. Preliminary data was taken in 1980 with a prototype ..gamma pi../sup 0/ spectrometer will be carried out in the fall of 1981 and spring of 1982. The photon tagging system has been used successfully to calibrate the ..gamma pi../sup 0/ spectrometer for the BU - MIT collaboration and to test a lead glass detector system for Brandeis University.

  19. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  20. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    Science.gov (United States)

    Alexander, J. Iwan D.

    1998-01-01

    The research accomplishments summarized in this Final Report during the period from 3/95 to 3/98, which included a 12 months no-cost extension granted at the end of the nominal 2 year period of performance. The report has 5 sections, in section 1 the objectives are presented, a task description is given and the background and significance of the work is outlined. In section 2 the research accomplishments are summarized. In section 3 publications and presentations are listed. Student participation is listed in 4. The work is summarized in section 5. and references for sections 1 and 2 are supplied in section 6. The object of this work, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involved using a combination of 2- and 3-D numerical models, scaling analyses, ID models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USW-3 space flight which took place between February 22 through March 6, 199). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification

  1. Improved characterization of the CR-39 efficiency for detecting DD neutrons based on data from OMEGA, NIF and the MIT HEDP Accelerator Facility

    Science.gov (United States)

    Milanese, L. M.; Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Bionta, R.; Yeamans, C.; Hahn, K.; Jones, B.

    2016-10-01

    CR-39 nuclear track detectors are extensively used to measure fluences and spectra of charged particles produced in Inertial Confinement Fusion (ICF) implosions. An accurate determination of the CR-39 response to neutrons is important both to perform direct neutron fluence measurements and to estimate the level of neutron-induced background impacting charged-particle measurements. The CR-39 efficiency for detecting neutrons depends on several factors, including the manufacturing process of the CR-39, etching conditions and characteristics of the scanning system employed to detect the neutron-induced tracks. The CR-39 response to DD neutrons has been characterized using implosions at OMEGA and the NIF as well as a neutron generator at the MIT HEDP Accelerator Facility. A new approach provides significantly better precision than previously demonstrated in the literature. This method will be used to characterize DD fusion isotropy at the Z Facility. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF), LLNL and SNL.

  2. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    Science.gov (United States)

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  3. Multi-keV x-ray sources from HYBRID targets on GEKKO and OMEGA facilities

    Directory of Open Access Journals (Sweden)

    Primout M.

    2013-11-01

    Full Text Available The feasibility of efficient X-ray sources for radiography on the LMJ (Laser MégaJoule in the multi-kJ/ns range was demonstrated on the OMEGA laser facility (Univ. Rochester from 2002 to 2004 [1,2]. We significantly enhanced the conversion efficiency of titanium (4–6 keV, copper (8–10 keV and germanium (9–13 keV foils by using an optimized pre-pulse/pulse combination. Since higher X-ray energy and therefore electronic temperature need hydroconfinement, plastic cylindrical hohlraums internally coated with titanium, copper and germanium with various OMEGA beam configurations were successfully tested from 2005 to 2009 [3–5]. In addition, many shots with metal-doped aerogel (Ti, Fe, Ge were tested on OMEGA [6]. Recently we tested a new concept of “HYBRID sources” based on the combination of a thin titanium foil at the exit hole of a plastic cylinder filled with very low density SiO2 aerogel (2 and 5 mg/cc. The benefit of the underdense medium is, first, to transport the laser energy to the titanium foil after its conversion into a supersonic ionization front and, second, to prevent foil expansion and excessive kinetic energy losses by longitudinal hydroconfinement.

  4. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R T; O' Brien, D W; Kamperschroer, J H; Nelson, J R

    2007-10-03

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics to diagnose fusion ignition implosion and neutron emissions are being planned. Many diagnostics will be developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. An instrument-based controls (I-BC) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the I-BC architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. I-BCs are reusable by replication and reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and better reliability. Collaborators save costs by assembling diagnostics with existing I-BCs. This paper discusses target diagnostic instrumentation used on NIF and presents the I-BC architecture and framework.

  5. Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility

    Science.gov (United States)

    Yang, Jinwen; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Yang, Ming; Yang, Weiming; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-10-01

    Significant electromagnetic pulses (EMP) can be generated by the intensive laser irradiating solid targets in inertial confinement fusion (ICF). To evaluate the EMP intensity and distribution in and outside the laser chamber, we designed and fabricated a discone antenna with ultra-wide bands of over 10 GHz. The return loss (S11 parameter) of this antenna was below -10 dB and could even achieve under -30 dB at 3.1 GHz. The EMP intensity in this study at 80 cm and 40 cm away from the target chamber center (TCC) reached 400 kV/m and 2000 kV/m. The current results are expected to offer preliminary information to study physics regarding laser plasma interactions and will also lay experimental foundation for EMI shielding design to protect various diagnostics. supported by the Fundamental Research Funds for the Central Universities of China (No. ZYGX2015J108) and National Natural Science Foundation of China (Nos. 11575166 and 51581140)

  6. Experiments and analysis of gold disk targets irradiated by smoothing beams of Xingguang II facilities with 350 nm wavelength

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Gold disk targets were irradiated using focusing and beam smoothing methods on Xingguang (XG-II) laser facilities with 350 nm wavelength, 0.6 ns pulse width and 20-80 Joules energies. Laser absorption, light scattering and X-ray conversion were experimentally investigated. The experimental results showed that laser absorption and scattered light were about 90% and 10%, respectively, under focusing irradiation, but the laser absorption increased 5%-10% and the scattered light about 1% under the condition of beam smoothing. Compared with the case of focusing irradiation, the laser absorption was effectively improved and the scattered light remarkably dropped under uniform irradiation; then due to the decrease in laser intensity, X-ray conversion increased. This is highly advantageous to the inertial confinement fusion. However, X-ray conversion mechanism basically did not change and X-ray conversion efficiency under beam smoothing and focusing irradiation was basically the same.

  7. Experiments and analysis of gold disk targets irradiated by smoothing beams of Xingguang II facilities with 350 nm wavelength

    Institute of Scientific and Technical Information of China (English)

    JIANG; ShaoEn

    2007-01-01

    Gold disk targets were irradiated using focusing and beam smoothing methods on Xingguang (XG-II) laser facilities with 350 nm wavelength, 0.6 ns pulse width and 20-80 Joules energies. Laser absorption, light scattering and X-ray conversion were experimentally investigated. The experimental results showed that laser absorption and scattered light were about 90% and 10%, respectively, under focusing irradiation, but the laser absorption increased 5%-10% and the scattered light about 1% under the condition of beam smoothing. Compared with the case of focusing irradiation, the laser absorption was effectively improved and the scattered light remarkably dropped under uniform irradiation; then due to the decrease in laser intensity, X-ray conversion increased. This is highly advantageous to the inertial confinement fusion. However, X-ray conversion mechanism basically did not change and X-ray conversion efficiency under beam smoothing and focusing irradiation was basically the same.……

  8. Belgian class II nuclear facilities such as irradiators and accelerators. Regulatory Body attention points and operating experience feedback

    Energy Technology Data Exchange (ETDEWEB)

    Minne, Etienne; Peters, Christelle; Mommaert, Chantal; Kennes, Christian; Cortenbosch, Geert; Schmitz, Frederic; Haesendonck, Michel van [Bel V, Brussels (Belgium); Carlier, Pascal; Schrayen, Virginie; Wertelaers, An [Federal Agency for Nuclear Control, Brussels (Belgium)

    2016-11-15

    The aim of this paper is to present the Regulatory Body attention points and the operating experience feedback from Belgian ''class IIA'' facilities such as industrial and research irradiators, bulk radionuclides producers and conditioners. Reinforcement of the nuclear safety and radiation protection has been promoted by the Federal Agency for Nuclear Control (FANC) since 2009. This paper is clearly a continuation of the former paper [1] presenting the evolution in the regulatory framework relative to the creation of Bel V, the subsidiary of the FANC, and to the new ''class IIA'' covering heavy installations such as those mentioned above. Some lessons learnt are extracted from the operating experience feedback based on the events declared to the authorities. Even though a real willingness to meet the new safety requirements is observed among the ''class IIA'' licensees, promoting the safety culture, the nuclear safety and radiation protection remains an endless challenge for the Regulatory Body.

  9. Waste zone labelling at the Lure accelerator facility; Etude de zonage dechets de l'accelerateur Lure

    Energy Technology Data Exchange (ETDEWEB)

    Cometto, M.; Damoy, F.; Giacri-Mauborgne, M.L.; Ridikas, D.; Thomas, W

    2005-07-01

    This document describes the method used to compute the activation of the structure components near the electron-positron converter of the Lure accelerator (Orsay). Activation comes from photon and neutron reactions on nuclei belonging to the concrete structure. Only radio-nuclides with a half-life greater than 200 days are considered penalizing for dismantling operations. The main photonuclear reactions produce the following nuclides: Na{sup 22}, Cl{sup 36}, Mn{sup 54}, Nb{sup 92}, Ba{sup 133}, Co{sup 57} and Co{sup 60}. The main neutron reaction generate the following nuclides: H{sup 3}, C{sup 14}, Cl{sup 36}, K{sup 40}, Co{sup 60}, Ni{sup 63}, Zn{sup 65}, Se{sup 79}, Zr{sup 93}, Ag{sup 108}, Ag{sup 110}, Ba{sup 133}, Cs{sup 134}, Eu{sup 152}, Eu{sup 154}, Fe{sup 55}, Ca{sup 41}, Na{sup 22}, Mn{sup 54}, Cs{sup 137}, Nb{sup 92} and Ti{sup 204}. The MCNPX code has been used to compute the values of the photon and neutron fluxes received by the structure components, the activation has been computed with the Cinder code from the flux values. The main contributors for radioactivity on long term basis appear to be Ca{sup 41} and Ni{sup 63}. Calculations have been compared with the measurement of activities of 3 concrete samples drilled out from the structure. The results of the comparison are given for Co{sup 60}, Cs{sup 134}, Eu{sup 152} and Eu{sup 154}. The computed values appear to be greater by a factor varying from 2 to 5 which is consistent with the method used that naturally overestimates the activation. These results are considered as satisfactory for performing waste zone labelling. (A.C.)

  10. Development of a methodology to accelerate a spontaneous grass colonization in a tailings storage facility under semiarid mediterranean climate type

    Science.gov (United States)

    Ginocchio, Rosanna; Arellano, Eduardo; Morales-Ladron de Guevara, Arturo

    2016-04-01

    Phytostabilization of massive mine tailings (>400 he) under semiarid environments is challenging, particularly when no organic amendments are locally available and no irrigation is possible. Increasing tendency for reprocessing old tailings to recover valued metals further pioneer the need for simple but effective plant covers. The choice of plant species and form of management are thus very important. CODELCO-Chile chose the Cauquenes post-operational tailings storage facility (TFS; 700 ha), that will be reprocessed for copper and other elements in the near future, to evaluate efficacy of the phytostabilization technology under semiarid conditions in central Chile. Surface application of a polymer (Soiltac TM) has been used for wind control of tailings but phytostabilization is considered as a best cost-effective alternative. A field study was performed to define a management program to improve the establishment and cover of an annual native grass (Vulpia myuros var. megalura), a spontaneous colonizer of the TSF. Considered management factors were control of macro herbivores (with and without fence), macronutrient improvement (with and without application of N-rich foliar fertilizer), and improvement of seed retention in the substrate (with and without small-scale rugosity; with and without lived wind-breakers; with and without mechanical wind-breakers). Each treatment was replicated three times and established in 2 m x 2 m quadrats. Plant response variables were monitored after 1 and 2 grass growing seasons. Application of N-rich foliar fertilizer and any wind control mechanism for seed retention in the substrate were effective for significantly improving both grass cover and biomass production in time, irrespective of macro-herbivore control. Seed production was significantly improved when macro herbivores were excluded and was positively and significantly correlated to vegetative biomass production. When applying this management program for tailings

  11. A method for targeting air samplers for facility monitoring in an urban environment

    Science.gov (United States)

    Bieringer, Paul E.; Longmore, Scott; Bieberbach, George; Rodriguez, Luna M.; Copeland, Jeff; Hannan, John

    2013-12-01

    /Exceedence spatial maps for prescribed concentration thresholds or standards. The method is flexible and can be tuned to allow the detailed characterization of Probability of Detection (POD) for a given sampler detection threshold and sampling period (e.g. sampling duration, season, time of day). An example of this methodology is illustrated for a single facility in an urban location surrounded by numerous multi-story buildings.

  12. Use of the target diagnostic control system in the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R; Lagin, L; Nelson, J

    2011-07-25

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  13. Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities

    Energy Technology Data Exchange (ETDEWEB)

    Towell, Marcie G. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Bellarby, Jessica; Paton, Graeme I. [Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU (United Kingdom); Coulon, Frederic; Pollard, Simon J.T. [School of Applied Sciences, Sustainable Systems Department, Cranfield University, Cranfield (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.u [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-02-15

    This study investigated the microbial degradation of {sup 14}C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise {sup 14}C-target hydrocarbons was appreciable; {>=}16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of {sup 14}C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon {sup 14}C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community. - Research highlights: Indigenous microbes actively degrade {sup 14}C-hydrocarbons in field contaminated soils. Addition of nutrients or degraders enhance mineralisation in contaminated soils. Biodegradation is related to the presence of hydrocarbons and microbial activity. - Bioremediation strategy, native hydrocarbon concentrations and prior exposure histories of the microbial community influence hydrocarbon degradation in soil.

  14. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities; Analise das condicoes de protecao e seguranca radiologicas das instalacoes com aceleradores de particulas na area de pesquisa no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Manuel Jacinto Martins

    2010-07-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  15. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  16. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  17. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  18. Awakening the potential of plasma acceleration

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Civil engineering has begun for the new AWAKE experiment, which looks to push the boundaries of particle acceleration. This proof-of-principle experiment will harness the power of wakefields generated by proton beams in plasma cells, producing accelerator gradients hundreds of times higher than those used in current RF cavities.   Civil engineering works are currently ongoing at the AWAKE facility. As one of CERN's accelerator R&D experiments, the AWAKE project is rather unique. Like all of CERN's experiments, AWAKE is a collaborative endeavour with institutes and organisations participating around the world. "But unlike fixed-target experiments, where the users take over once CERN has delivered the facility, in AWAKE, the synchronised proton, electron and laser beams provided by CERN are an integral part of the experiment," explains Edda Gschwendtner, CERN AWAKE project leader. "So, of course, CERN's involvement in the project goes well...

  19. Ionization and acceleration of heavy ions in high-Z solid target irradiated by high intensity laser

    Science.gov (United States)

    Kawahito, D.; Kishimoto, Y.

    2016-05-01

    In the interaction between high intensity laser and solid film, an ionization dynamics inside the solid is dominated by fast time scale convective propagation of the internal sheath field and the slow one by impact ionization due to heated high energy electrons coupled with nonlocal heat transport. Furthermore, ionization and acceleration due to the localized external sheath field which co- propagates with Al ions constituting the high energy front in the vacuum region. Through this process, the maximum charge state and then q/A increase in the rear side, so that ions near the front are further accelerated to high energy.

  20. A facile glovebox-free strategy to significantly accelerate the syntheses of well-defined polypeptides by N-carboxyanhydride (NCA) ring opening polymerizations.

    Science.gov (United States)

    Zou, Jiong; Fan, Jingwei; He, Xun; Zhang, Shiyi; Wang, Hai; Wooley, Karen L

    2013-05-28

    A facile N2 flow-accelerated N-carboxyanhydride ring opening polymerization (NCA ROP) is demonstrated, herein, with rigorous kinetic studies to evaluate the methodology in detail. By using n-hexylamine as initiator and γ-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) as monomer, the NCA ROP via a normal amine mechanism (NAM) reached 90% conversion in 2 h under N2 flow at room temperature in a fume hood, much shorter than the time required for the same polymerization conducted in a glove box (14 h). The efficient removal of CO2 from the reaction by N2 flow drove the carbamic acid-amine equilibrium toward the formation of active nucleophilic amino termini and promoted polymerization. The detailed kinetic studies of the polymerization with different feed ratios and N2 flow rates were conducted, demonstrating the living feature of the NCA ROP and the tuning of the polymerization rate by simply changing the flow rate of N2. Maintenance of the reactivity of the amino ω-chain terminus and control during a subsequent polymerization were confirmed by performing chain extension reactions. The N2 flow method provides a new straightforward strategy to synthesize well-defined polypeptides with predictable molecular weights and narrow molecular weight distributions (PDI < 1.19).

  1. ANEM: A rotating composite target to produce an atmospheric-like neutron beam at the LNL SPES facility

    Science.gov (United States)

    Acosta Urdaneta, Gabriela Carolina; Bisello, Dario; Esposito, Juan; Mastinu, Pierfrancesco; Prete, Gianfranco; Silvestrin, Luca; Wyss, Jeffery

    2016-09-01

    A fast neutron (E> MeV) irradiation facility is under development at the 70 MeV SPES proton cyclotron at LNL (Legnaro, Italy) to investigate neutron-induced Single Event Effects (SEE) in microelectronic devices and systems. After an overview on neutron-induced SEE in electronics, we report on the progress in the design of ANEM (Atmospheric Neutron EMulator), a water-cooled rotating target made of Be and W to produce neutrons with an energy spectrum similar to that of neutrons produced by cosmic rays at sea-level. In ANEM, the protons from the cyclotron alternatively impinge on two circular sectors of Be and W of different areas; the effective neutron spectrum is a weighted combination of the spectra from the two sectors. In this contribution, we present the results of thermal-mechanical Finite Element Analysis (ANSYS) calculations of the performance of the ANEM prototype. The calculations at this stage indicate that ANEM can deliver fast neutrons with an atmospheric-like energy spectrum and with an integral flux Φn(1-70 MeV) ˜107 n cm-2s-1 that is 3×109 more intense than the natural one at sea-level: a very competitive flux for SEE testing.

  2. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging.

    Science.gov (United States)

    Zhang, Fei; Kong, Xiu-Qi; Li, Qiong; Sun, Ting-Ting; Chai, Chao; Shen, Wen; Hong, Zhang-Yong; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2016-01-01

    Multimodal imaging has made great contribution for diagnosis and therapy of disease since it can provide more effective and complementary information in comparison to any single imaging modality. The design and fabrication of fluorescent-magnetic nanoparticles for multimodal imaging has rapidly developed over the years. Herein, we demonstrate the facile synthesis of GdS coated CdTe nanoparticles (CdTe@GdS NPs) as multimodal agents for fluorescence (FL) and T1-weighted magnetic resonance (MR) imaging. These nanoparticles obtain both prominent fluorescent and paramagnetic properties by coating the GdS shell on the surface of CdTe core via a simple room-temperature route in aqueous solution directly. It is shown that the as-prepared CdTe@GdS NPs have high quantum yield (QY) value of 12% and outstanding longitudinal relaxation rate (r1) of 11.25 mM s(-1), which allow them to be employed as FL/MR dual-modal imaging contrast agents. They also exhibit small particle size of 5 nm, excellent colloidal stability and low cellular toxicity for concentrations up to 750 μg mL(-1). In addition, with the conjugation of folic acid, the nanoparticles were successfully used for tumor-targeted FL/MR dual-modal imaging in vitro and in vivo.

  3. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  4. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Science.gov (United States)

    Rozanov, V. B.; Vergunova, G. A.

    2017-01-01

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the "failure of ignition" of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  5. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  6. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  7. SNEAP 80: symposium of Northeastern Accelerator personnel

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J.H. (ed.)

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  8. Production yield of produced radioisotopes from 100 MeV proton beam on lead target for shielding analysis of large accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Jung, Nam Suk; Bae, O Ryun; Lee, Hee Seock [Div. of Advanced Nuclear Engineering, POSTECH, Pohang (Korea, Republic of)

    2014-11-15

    In this work, the production yield of major shielding material, a lead, was investigated using 100 MeV protons of KOMAC accelerator facility. For the analysis of the experimental data, the activity has been calculated using the FLUKA Monte Carlo code and analytical methods. The cross section data and the stopping power in the irradiated assembly were calculated by TALYS and SRIM codes in the analytical method, respectively. Consequently, the experimental production yield of produced radioisotopes was compared with the data that are based on Monte Carlo calculations and analytical studies. In this research, the {sup nat}Pb(p, x) reaction was studied using experimental measurements, Monte Carlo simulations and analytical methods. Rereading to the experimental measurements, we demonstrate that both Monte Carlo simulation and analytical methods could be useful tools for the estimation of production yield of this reaction.

  9. CaMKII inhibition targeted to the sarcoplasmic reticulum inhibits frequency dependent acceleration of relaxation and Ca2+ current facilitation

    OpenAIRE

    Picht, Eckard; DeSantiago, Jaime; Huke, Sabine; Kaetzel, Marcia A.; Dedman, John R.; Bers, Donald M.

    2006-01-01

    Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) in heart has been implicated in Ca2+ current (ICa) facilitation, enhanced sarcoplasmic reticulum (SR) Ca2+ release and frequency dependent acceleration of relaxation (FDAR) via enhanced SR Ca2+ uptake. However, questions remain about how CaMKII may work in these three processes. Here we tested the role of CaM-KII in these processes using transgenic mice (SR-AIP) that express four concatenated repeats of the CaMKII inhibitory peptide...

  10. Accelerating target discovery using pre-competitive open science-patients need faster innovation more than anyone else.

    Science.gov (United States)

    Low, Eric; Bountra, Chas; Lee, Wen Hwa

    2016-01-01

    We are experiencing a new era enabled by unencumbered access to high quality data through the emergence of open science initiatives in the historically challenging area of early stage drug discovery. At the same time, many patient-centric organisations are taking matters into their own hands by participating in, enabling and funding research. Here we present the rationale behind the innovative partnership between the Structural Genomics Consortium (SGC)-an open, pre-competitive pre-clinical research consortium and the research-focused patient organisation Myeloma UK to create a new, comprehensive platform to accelerate the discovery and development of new treatments for multiple myeloma.

  11. The thyroxine-containing thyroglobulin peptide (aa 2549-2560) is a target epitope in iodide-accelerated spontaneous autoimmune thyroiditis.

    Science.gov (United States)

    Kolypetri, Panayota; Carayanniotis, Karen; Rahman, Shofiur; Georghiou, Paris E; Magafa, Vassiliki; Cordopatis, Paul; Carayanniotis, George

    2014-07-01

    Enhanced iodide ingestion is known to accelerate the incidence and severity of spontaneous autoimmune thyroiditis [iodide-accelerated spontaneous autoimmune thyroiditis (ISAT)] in NOD.H2(h4) mice. CD4+ cells are required for the development and maintenance of ISAT, but their target epitopes remain unknown. In this study, we show that the previously identified thyroglobulin (Tg) T cell epitope p2549-2560 containing thyroxine at position 2553 (T4p2553) induces thyroiditis as well as strong specific T and B cell responses in NOD.H2(h4) mice. In ISAT, activated CD4+ T cells specific for T4p2553 are detected before the disease onset in thyroid-draining cervical lymph nodes only in mice placed on an iodide-rich diet and not in age-matched controls. In addition, selective enrichment of CD4+ IFN-γ+ T4p2553-specific cells is observed among cervical lymph node cells and intrathyroidal lymphocytes. T4p2553 was equally detectable on dendritic cells obtained ex vivo from cervical lymph node cells of NaI-fed or control mice, suggesting that the iodide-rich diet contributes to the activation of autoreactive cells rather than the generation of the autoantigenic epitope. Furthermore, spontaneous T4p2553-specific IgG are not detectable within the strong Tg-specific autoantibody response. To our knowledge, these data identify for the first time a Tg T cell epitope as a spontaneous target in ISAT.

  12. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Arun, E-mail: arun.azad@bccancer.bc.ca [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Pathology, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Bukczynska, Patricia; Jackson, Susan [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Haput, Ygal; Cullinane, Carleen [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia); McArthur, Grant A.; Solomon, Benjamin [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Medicine, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia)

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  13. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  14. A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.

    Science.gov (United States)

    Tanaka, Kenichi; Endo, Satoru; Yonai, Shunsuke; Baba, Mamoru; Hoshi, Masaharu

    2014-06-01

    The characteristics of moderator assembly dimension was investigated for the usage of (7)Li(p,n) neutrons by 2.3-2.8MeV protons and W(p,n) neutrons by 50MeV protons. The indexes were the treatable protocol depth (TPD) and advantage depth (AD). Consequently, a configuration for W target with the Fe filter, Fluental moderator, Pb reflector showed the TPD of 5.8cm and AD of 9.3cm. Comparable indexes were found for the Li target in a geometry with the MgF2 moderator and Teflon reflector.

  15. Results of four one-day electron-accelerator irradiations of enriched Mo-100 targets for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, V. [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    A series of four one-day irradiations was conducted with 100Mo-enriched disk targets. After irradiation, the enriched disks were removed from the target and dissolved. The resulting solution was processed using a NorthStar RadioGenix 99mTc generator either at Argonne National Laboratory or at the NorthStar Medical Radioisotopes facility. Runs on the RadioGenix system produced inconsistent analytical results for 99mTc in the Tc/Mo solution. These inconsistencies were attributed to the impurities in the solution or improper column packing. During the irradiations, the performance of the optic transitional radiation (OTR) and infrared cameras was tested in high radiation field. The OTR cameras survived all irradiations, while the IR cameras failed every time. The addition of X-ray and neutron shielding improved camera survivability and decreased the number of upsets.

  16. Accelerator mass spectrometry measurement of intracellular concentrations of active drug metabolites in human target cells in vivo.

    Science.gov (United States)

    Chen, J; Garner, R C; Lee, L S; Seymour, M; Fuchs, E J; Hubbard, W C; Parsons, T L; Pakes, G E; Fletcher, C V; Flexner, C

    2010-12-01

    Accelerator mass spectrometry (AMS) is an ultrasensitive technique to detect radiolabeled compounds. We administered a microdose (100 µg) of (14)C-labeled zidovudine (ZDV) with or without a standard unlabeled dose (300 mg) to healthy volunteers. Intracellular ZDV-triphosphate (ZDV-TP) concentration was measured using AMS and liquid chromatography-tandem mass spectrometry (LC/MS/MS). AMS analysis yielded excellent concordance with LC/MS/MS and was 30,000-fold more sensitive. The kinetics of intracellular ZDV-TP formation changed several-fold over the dose range studied (100 µg-300 mg). AMS holds promise as a tool for quantifying intracellular drug metabolites and other biomediators in vivo.

  17. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Grenier, D.; Wollmann, D. [CERN-AB, 1211 Geneva 23 (Switzerland); Blanco Sancho, J. [CERN-AB, 1211 Geneva 23, Switzerland and Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Burkart, F. [CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt (Germany); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A. R. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  19. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    CERN Document Server

    Schmidt, R; Sancho, J Blanco; Burkart, F; Grenier, D; Wollmann, D; Tahir, N A; Shutov, A; Piriz, A R

    2014-01-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  20. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy

    Directory of Open Access Journals (Sweden)

    Jeyamohan P

    2013-07-01

    Full Text Available Prashanti Jeyamohan, Takashi Hasumura, Yutaka Nagaoka, Yasuhiko Yoshida, Toru Maekawa, D Sakthi Kumar Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Japan Abstract: The photothermal effect of single-walled carbon nanotubes (SWCNTs in combination with the anticancer drug doxorubicin (DOX for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX binds at physiological pH (pH 7.4 and is released only at a lower pH, ie, lysosomal pH (pH 4.0, which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light–heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy. Keywords: cancer, nanotherapy, SWCNTs, targeted drug delivery

  1. Accelerator mass spectrometry analysis of ultra-low-level (129)I in carrier-free AgI-AgCl sputter targets.

    Science.gov (United States)

    Liu, Qi; Hou, Xiaolin; Zhou, Weijian; Fu, Yunchong

    2015-05-01

    Separation of carrier-free iodine from low-level iodine samples and accurate measurement of ultra-low-level (129)I in microgram iodine target are essential but a bottleneck in geology and environment research using naturally produced (129)I. This article presents a detection technique of accelerator mass spectrometry (AMS) for accurate determination of ultra-low-level (129)I in carrier-free AgI-AgCl sputter targets. Copper instead of aluminum was selected as the suitable sample holder material to avoid the reaction of AgI-AgCl powder with aluminum. Niobium powder was selected as thermally and electrically conductive matrix to be mixed with AgI-AgCl powder, in order to obtain and maintain a stable and high iodine ion current intensity, as well as less memory effect and low background level of (129)I. The most optimal ratio of the Nb matrix to the AgI-AgCl powder was found to be 5:1 by mass. The typical current of (127)I(5+) using AgI-AgCl targets with iodine content from 5 to 80 μg was measured to be 5 to 100 nA. Four-year AMS measurements of the (129)I/(127)I ratios in standards of low iodine content and the machine blanks showed a good repeatability and stability.

  2. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages.

    Science.gov (United States)

    Redente, Elizabeth F; Keith, Rebecca C; Janssen, William; Henson, Peter M; Ortiz, Luis A; Downey, Gregory P; Bratton, Donna L; Riches, David W H

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve

  3. Aluminum and phosphorus separation: application to preparation of target from brain tissue for {sup 26}Al determination by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Russell D.; Robertson, J. David; Sharma, Pankaj; Yokel, Robert A. E-mail: ryokel1@pop.uky.edu

    1999-04-01

    Acid digested brain containing 4 mg added {sup 27}Al was ashed at 1000 deg. C to prepare an Al{sub 2}O{sub 3} target for accelerator mass spectrometry (AMS) analysis of {sup 26}Al. A glass-like material usually resulted which was thought to be aluminum (Al) oxyphosphate. The separation of Al and phosphate was investigated. Al, but not phosphate, was bound by a cation exchange resin (AG 50-X8). Hydrofluoric acid eluted the Al from the resin. Removal of phosphate from acid digested brain by this method produced an amorphous material after ashing that was easier to recover from the porcelain crucible and had a higher AMS beam current. This procedure to separate Al from phosphate may have utility in other applications.

  4. Project X: Accelerator Reference Design

    CERN Document Server

    Holmes, S D; Chase, B; Gollwitzer, K; Johnson, D; Kaducak, M; Klebaner, A; Kourbanis, I; Lebedev, V; Leveling, A; Li, D; Nagaitsev, S; Ostroumov, P; Pasquinelli, R; Patrick, J; Prost, L; Scarpine, V; Shemyakin, A; Solyak, N; Steimel, J; Yakovlev, V; Zwaska, R

    2013-01-01

    Part 1 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". Part 1 contains the volume Preface and a description of the conceptual design for a high-intensity proton accelerator facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Subjects covered include performance goals, the accelerator physics design, and the technological basis for such a facility.

  5. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  6. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  7. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    Science.gov (United States)

    Badziak, J.; Rosiński, M.; Jabłoński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Rączka, P.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes.

  8. Salvianolic acid B accelerated ABCA1-dependent cholesterol efflux by targeting PPAR-γ and LXRα

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Jianmei [Department of Endocrinology, Shandong Province Hospital Affiliated to Shandong University, 324# Jing 5 Road, Jinan 255021 (China); Department of Endocrinology, The First Hospital of Zibo, 4# E Mei Shan Dong Road, Zibo 255200 (China); Li, Bo, E-mail: libosubmit@163.com [Department of Cardiology, Central Hospital of Zibo, 54# Gong Qing Tuan Xi Road, Zibo, Shandong Province (China); Jing, Qingping [Department of Endocrinology, The First Hospital of Zibo, 4# E Mei Shan Dong Road, Zibo 255200 (China); Guan, Qingbo, E-mail: guanqingbosubmit@163.com [Department of Endocrinology, Shandong Province Hospital Affiliated to Shandong University, 324# Jing 5 Road, Jinan 255021 (China)

    2015-07-03

    Objectives: Cholesterol efflux has been thought to be the main and basic mechanism by which free cholesterol is transferred from extra hepatic cells to the liver or intestine for excretion. Salvianolic acid B (Sal B) has been widely used for the prevention and treatment of atherosclerotic diseases. Here, we sought to investigate the effects of Sal B on the cholesterol efflux in THP-1 macrophages. Methods: After PMA-stimulated THP-1 cells were exposed to 50 mg/L of oxLDL and [{sup 3}H] cholesterol (1.0 μCi/mL) for another 24 h, the effect of Sal B on cholesterol efflux was evaluated in the presence of apoA-1, HDL{sub 2} or HDL{sub 3}. The expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and liver X receptor-alpha (LXRα) was detected both at protein and mRNA levels in THP-1 cells after the stimulation of Sal B. Meanwhile, specific inhibition of PPAR-γ and LXRα were performed to investigate the mechanism. Results: The results showed that Sal B significantly accelerated apoA-I- and HDL-mediated cholesterol efflux in both dose- and time-dependent manners. Meanwhile, Sal B treatment also enhanced the expression of ABCA1 at both mRNA and protein levels. Then the data demonstrated that Sal B increased the expression of PPAR-γ and LXRα. And the application of specific agonists and inhibitors of further confirmed that Sal exert the function through PPAR-γ and LXRα. Conclusion: These results demonstrate that Sal B promotes cholesterol efflux in THP-1 macrophages through ABCA1/PPAR-γ/LXRα pathway. - Highlights: • Sal B promotes the expression of ABCA1. • Sal B promotes cholesterol efflux in macrophages. • Sal B promotes the expression of ABCA1 and cholesterol efflux through PPAR-γ/LXRα signaling pathway.

  9. Accelerator technical design report for J-PARC

    CERN Document Server

    2003-01-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results.

  10. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an e ort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the ow of current up the jet into the nozzle during the interaction, heating the jet and damaging the ori ce. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic lms (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic jets

  11. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  12. Optical Alignment Techniques for Line-Imaging Velocity Interferometry and Line-Imaging Self-Emission of Targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R M; Celeste, J R; Celliers, P M; Frogget, B .; Guyton, R L; Kaufman, M I; Lee, T L; MacGowan, B J; Ng, E W; Reinbachs, I P; Robinson, R B; Tunnell, T W; Watts, P W

    2007-07-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 meters. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  13. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Robert; Celeste, John; Celliers, Peter; Frogget, Brent; Robert Guyton,,; Kaufman, Morris; Lee, Tony; MacGowan, Brian; Ng, Edmend; Reinbachs, Imants; Robinson, Ronald; Tunnell, Thomas; Watts, Phillip

    2007-08-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  14. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  15. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  16. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting.

    Science.gov (United States)

    Li, Yuancheng; Lin, Run; Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-05-07

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of "protein corona" and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers.

  17. Protection Related to High-power Targets

    CERN Document Server

    Plum, M A

    2016-01-01

    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  18. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  19. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    Science.gov (United States)

    Rozanov, V. B.; Vergunova, G. A.

    2015-11-01

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile ("low-foot" and "high-foot" regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  20. Diagnostics improvement in the ABC facility and preliminary tests on laser interaction with light-atom clusters and p+{sup 11}B targets

    Energy Technology Data Exchange (ETDEWEB)

    Consoli, Fabrizio, E-mail: fabrizio.consoli@enea.it [Associazione Euratom - ENEA sulla Fusione, via E. Fermi 45, CP 65-00044 Frascati, Rome (Italy); De Angelis, Riccardo; Andreoli, Pierluigi; Cristofari, Giuseppe; Di Giorgio, Giorgio [Associazione Euratom - ENEA sulla Fusione, via E. Fermi 45, CP 65-00044 Frascati, Rome (Italy); Bonasera, Aldo [INFN - LNS, via S. Sofia 62, I-95123 Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Barbui, Marina [Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Mazzocco, Marco [Dipartimento di Fisica G. Galilei, Università degli Studi di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bang, Woosuk; Dyer, Gilliss; Quevedo, Hernan [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin 78712, TX (United States); Hagel, Kris; Schmidt, Katarzyna [Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Gaul, Erhard; Borger, Ted; Bernstein, Aaron; Martinez, Mikael; Donovan, Michael [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin 78712, TX (United States); Barbarino, Matteo [Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Kimura, Sachie [INFN - LNS, via S. Sofia 62, I-95123 Catania (Italy); and others

    2013-08-21

    The diagnostics of particle flows in Inertial Confinement Fusion experiments is a delicate issue, due to the fast timescales and to the strong radiative electromagnetic contributions. This makes the discrimination of the different particles produced by the laser–plasma interaction not trivial, and requires the use of several diagnostic techniques. We describe here the diagnostics improvement in the ABC facility. They will provide more detailed analysis of microwave fields and particles originating from the interaction of laser with targets foreseen for future experiments.

  1. VP40 of the Ebola Virus as a Target for EboV Therapy: Comprehensive Conformational and Inhibitor Binding Landscape from Accelerated Molecular Dynamics.

    Science.gov (United States)

    Balmith, Marissa; Soliman, Mahmoud E S

    2017-03-01

    The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic "twisting" motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.

  2. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  3. Assessment of Personal Airborne Exposures and Surface Contamination from X-ray Vaporization of Beryllium Targets at the National Ignition Facility.

    Science.gov (United States)

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-02-28

    This study presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 μg/100 cm(2) and 27 results were above the analytical reporting limit of 0.01 μg/100 cm(2), for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  4. Accelerator Production of Tritium Programmatic Environmental Impact Statement Input Submittal

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Boyack, B.E. [Los Alamos National Lab., NM (United States)

    1996-02-01

    The Programmatic Environmental Impact Statement for Tritium Supply and Recycling considers several methods for the production of tritium. One of these methods is the Accelerator Production of Tritium. This report summarizes the design characteristics of APT including the accelerator, target/blanket, tritium extraction facility, and the balance of plant. Two spallation targets are considered: (1) a tungsten neutron-source target and (2) a lead neutron-source target. In the tungsten target concept, the neutrons are captured by the circulating He-3, thus producing tritium; in the lead target concept, the tritium is produced by neutron capture by Li-6 in a surrounding lithium-aluminum blanket. This report also provides information to support the PEIS including construction and operational resource needs, waste generation, and potential routine and accidental releases of radioactive material. The focus of the report is on the impacts of a facility that will produce 3/8th of the baseline goal of tritium. However, some information is provided on the impacts of APT facilities that would produce smaller quantities.

  5. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  6. Reliability Study of the Liquid Target Chamber for 18F Production at the BATAN’s Cyclotron Facilities

    Directory of Open Access Journals (Sweden)

    I. Kambali

    2011-04-01

    Full Text Available The liquid target chamber for 18F production at the Cyclotron Division, Centre for Radioisotopes and Radiopharmaceuticals (PRR of the National Nuclear Energy Agency of Indonesia (BATAN has been analysed for its reliability in enduring high pressures and heat transfer requirements during proton beam bombardment as well as the recommended irradiation parameters for effective 18F production. The target chamber was subject to house the 18O-enriched water bombarded with high energy proton beam to produce 18F. A range of SRIM-computer simulations have also been conducted to calculate the ranges of several energetic proton beams (of up to 20 MeV into pure water target. A study of radioactive impurities which might be produced from the proton-irradiated chamber’s materials was also included based on some references. Due to concern over the heat produced during target irradiation, a heat transfer analysis - particularly for the target’s cavity - was also included in the presented studies to obtain a brief preliminary calculation of the heating impacts prior to irradiation tests. The calculation was performed for various proton beam currents and energies of up to 30 A and 20 MeV respectively. It was found that the chamber was reliable for production of 18F from proton irradiated-18O enriched-water target by maintaining the chamber’s pressure of up to 3.6 bar if the proton beam current was kept below 16 A for all energies or the proton beam energy was kept to or below 10 MeV for any employed beam currents. The overall heat transfer coefficient was also found to depend on the power deposited into the water target

  7. The project SPES at LNL: Accelerator challenges

    Indian Academy of Sciences (India)

    A Facco

    2001-08-01

    The Project SPES (study and production of exotic nuclei) aims at the full design of a facility based on a 100 MeV, 1–30 mA CW proton Linac used for production of fission fragments from a uranium like-target by means of a neutron converter. Neutron rich ion species are extracted, selected, further ionized at high charge state, isotopically purified and then accelerated through a superconducting Linac at energies up to 20 MeV/A. SPES represents INFN’s effort in view of the construction of the European next generation ISOL-type facility, which is expected to be operative by 2010. A conceptual design report of such a European facility is being prepared with the support of the European Commission. R&D activities, covering the most critical parts of the facility, have been partially started in the last two years, triggered by the French–Italian feasibility study of an accelerator driven system for waste transmutation.

  8. 77 FR 16796 - Lead Requirements for Lead-Based Paint Activities in Target Housing and Child-Occupied Facilities...

    Science.gov (United States)

    2012-03-22

    ... AGENCY 40 CFR Part 745 Lead Requirements for Lead-Based Paint Activities in Target Housing and Child... requirements, training program accreditation requirements, and work practice standards for lead-based paint... the Arkansas lead-based paint program and passed a new statute establishing a State lead-based...

  9. The CAS and ALBA Synchrotron Light Facility specialized school on 'Vacuum in Accelerators' members in Platja d'Aro, Spain - 16-24 May, 2006.

    CERN Multimedia

    2006-01-01

    This course is aimed at providing a detailed overview of the topics relevant for the design and operation of accelerator vacuum systems. The lectures will be given by teachers whose expertise is internationally recognised. Specialists from the vacuum industry will also give lectures in the field where their expertise is unique. The topics selected comprise general vacuum questions: e.g. outgassing, gas dynamics, stimulated desorption as well as more practical subjects: gauges, mechanical pumps, getter pumps, sealing technology, or important subjects for the running of accelerators: large systems commissioning, beam-vacuum interactions, control systems. The course will also encourage contacts and informal discussions between participants, teachers and representatives of the vacuum industry as the majority of teachers will be present during the complete duration of the course.

  10. Towards Polarization Measurements of Laser-accelerated Helium-3 Ions

    OpenAIRE

    Engin, Ilhan

    2016-01-01

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of 3He ions from laser-induced plasmas have been performed.Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a 4He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universität Düsseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration proces...

  11. An overview of an accelerator-based neutron spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Lessner, E.S.

    1996-06-01

    An overview of the feasibility study of a 1-MW pulsed spallation source is presented. The machine delivers 1 MW of proton beam power to spallation targets where slow neutrons are produced. The slow neutrons can be used for isotope production, materials irradiation, and neutron scattering research. The neutron source facility is based on a rapid cycling synchrotron (RCS) and consists of a 400-MeV linac, a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV, and two neutron-generating target stations. The RCS accelerates an average proton beam current of 0.5 mA, corresponding to 1.04 x 10{sup 14} protons per pulse. This intensity is about two times higher than that of existing machines. A key feature of this accelerator system design is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance.

  12. Japan Hadron Facility

    CERN Document Server

    Hayano, R S

    1999-01-01

    Japan Hadron Facility (JHF) is a high-intensity proton accelerator complex consisting of a 200 MeV linac, a 3 GeV booster and a 50 GeV main ring. Its status and future possibilities of realizing a versatile antiproton facility at JHF are presented.

  13. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    Science.gov (United States)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  14. Operation of the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Batzka, B.; Billquist, P.J. [and others

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  15. Principal component analysis of soft x-ray signals generated by the PF-1000 facility in experiments with solid targets

    Science.gov (United States)

    Kowalska-Strzęciwilk, Ewa; Skrzeczanowski, Wojciech; Czarnecka, Agata; Kubkowska, Monika; Paduch, Marian; Zielińska, Ewa

    2014-05-01

    The paper presents the analysis of soft x-ray signals generated in the PF-1000 facility equipped with a modified inner electrode with a central tungsten insert of 50 mm diameter in experiments with tungsten and carbon samples. The PF-1000 machine was operated with pure deuterium filling under the initial pressure of 1.3 hPa. The machine was powered using a condenser bank charged initially to 24 kV, corresponding to the stored energy of 380 kJ, with the maximum discharge current amounted to 1.8 MA. For investigation of plasma stream-sample interactions, we applied 16-frame laser interferometry, optical spectroscopy and soft x-ray measurements with the use of a system of four silicon pin-diodes. In this paper, we mainly focus on the principal component analysis (PCA) of the registered x-ray signals to find a corelation between the neutron yield and observed maxima in signals. X-ray signals collected by four pin-diodes covered a 9 cm range in front of the electrode ends. Each diode collected a signal from the circle of 3 cm diameter. The presented PCA analysis is based on 57 PF discharges and 16 parameters are taken into account in the analysis. The study of signals from the pin-diode system showed good correlation between the neutron yield and the maximum in the x-ray signal, which appeared about 1000-1300 ns after the maximum of plasma compression.

  16. Polarization measurement of laser-accelerated protons

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Büscher, Markus, E-mail: m.buescher@fz-juelich.de [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Gibbon, Paul; Karmakar, Anupam [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  17. Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterisation and impact on non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Nicoletti, Marcello; Benelli, Giovanni

    2016-11-01

    Plant-borne compounds have been proposed for extracellular synthesis of mosquitocidal nanoparticles. However, their impact against mosquito natural enemies has been scarcely studied. Here, we synthesised silver nanoparticles (Ag NPs) using Mussaenda glabra leaf extract as reducing and stabilising agent. Biofabricated Ag NPs were characterised by UV-vis spectrophotometry, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compared to the leaf aqueous extract, biosynthesised Ag NPs showed higher toxicity against mosquito vectors Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus with LC50 of 17-19 μg/mL, respectively. Ag NPs were found safer to non-target organisms Diplonychus indicus and Gambusia affinis, with respective LC50 values ranging from 1446 to 8628 μg/mL. Overall, M. glabra-fabricated Ag NPs are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target aquatic organisms.

  18. Targeted Gene Deletion Using DNA-Free RNA-Guided Cas9 Nuclease Accelerates Adaptation of CHO Cells to Suspension Culture.

    Science.gov (United States)

    Lee, Namil; Shin, JongOh; Park, Jin Hyoung; Lee, Gyun Min; Cho, Suhyung; Cho, Byung-Kwan

    2016-11-18

    Chinese hamster ovary (CHO) cells are the preferred host for the production of a wide array of biopharmaceuticals. Thus, efficient and rational CHO cell line engineering methods have been in high demand to improve quality and productivity. Here, we provide a novel genome engineering platform for increasing desirable phenotypes of CHO cells based upon the integrative protocol of high-throughput RNA sequencing and DNA-free RNA-guided Cas9 (CRISPR associated protein9) nuclease-based genome editing. For commercial production of therapeutic proteins, CHO cells have been adapted for suspension culture in serum-free media, which is highly beneficial with respect to productivity and economics. To engineer CHO cells for rapid adaptation to a suspension culture, we exploited strand-specific RNA-seq to identify genes differentially expressed according to their adaptation trajectory in serum-free media. More than 180 million sequencing reads were generated and mapped to the currently available 109,152 scaffolds of the CHO-K1 genome. We identified significantly downregulated genes according to the adaptation trajectory and then verified their effects using the genome editing method. Growth-based screening and targeted amplicon sequencing revealed that the functional deletions of Igfbp4 and AqpI gene accelerate suspension adaptation of CHO-K1 cells. The availability of this strand-specific transcriptome sequencing and DNA-free RNA-guided Cas9 nuclease mediated genome editing facilitates the rational design of the CHO cell genome for efficient production of high quality therapeutic proteins.

  19. Interaction of Super Proton Synchrotron beam with solid copper target: Simulations of future experiments at HiRadMat facility at CERN

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Fortov, V E; Piriz, A R; Deutsch, C; Hoffmann, D H H

    2009-01-01

    In this paper we present numerical simulations of interaction of 450 GeV/c proton beam that is generated by Super Proton Synchrotron (SPS) at CERN, with a solid copper target. These simulations have been carried out using a two-dimensional hydrodynamic computer code, BIG2. This study has been done to assess the damage caused by these highly relativistic protons to equipment including collimators, absorbers and others in case of an uncontrolled accidental release of the beam. In fact a dedicated experimental facility named HiRadMat is under construction at CERN that will allow one to study these problems experimentally. The simulations presented in this paper will be very useful in designing these experiments and later to interpret the experimental results.

  20. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures.

    Science.gov (United States)

    Gu, Shuai; He, Jianqiao; Zhu, Yunlong; Wang, Zhiqiang; Chen, Dongyang; Yu, Guipeng; Pan, Chunyue; Guan, Jianguo; Tao, Kai

    2016-07-20

    The advent of microporous organic polymers (MOPs) has delivered great potential in gas storage and separation (CCS). However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of MOPs in CCS. Herein, facile chemical activation of the single microporous organic polymers (MOPs) resulted in a series of hierarchically porous carbons with hierarchically meso-microporous structures and high CO2 uptake capacities at low pressures. The MOPs precursors (termed as MOP-7-10) with a simple narrow micropore structure obtained in this work possess moderate apparent BET surface areas ranging from 479 to 819 m(2) g(-1). By comparing different activating agents for the carbonization of these MOPs matrials, we found the optimized carbon matrials MOPs-C activated by KOH show unique hierarchically porous structures with a significant expansion of dominant pore size from micropores to mesopores, whereas their microporosity is also significantly improved, which was evidenced by a significant increase in the micropore volume (from 0.27 to 0.68 cm(3) g(-1)). This maybe related to the collapse and the structural rearrangement of the polymer farmeworks resulted from the activation of the activating agent KOH at high temperature. The as-made hierarchically porous carbons MOPs-C show an obvious increase in the BET surface area (from 819 to 1824 m(2) g(-1)). And the unique hierarchically porous structures of MOPs-C significantly contributed to the enhancement of the CO2 capture capacities, which are up to 214 mg g(-1) (at 273 K and 1 bar) and 52 mg g(-1) (at 273 K and 0.15 bar), superior to those of the most known MOPs and porous carbons. The high physicochemical stabilities and appropriate isosteric adsorption heats as well as high CO2/N2 ideal selectivities endow these hierarchically porous carbon materials great potential in gas sorption and separation.

  1. Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) act as vectors of important pathogens and parasites, such as malaria, dengue, chikungunya, Japanese encephalitis and lymphatic filariasis. The use of synthetic mosquitocides often leads to high operational costs and adverse non-target effects. Recently, plant-borne compounds have been proposed for rapid extracellular biosynthesis of mosquitocidal nanoparticles. However, the impact of these nanomosquitocides against biological control agents of mosquito larval populations has been poorly studied. In this research, we biosynthesized silver nanoparticles (Ag NP) using the Barleria cristata leaf extract as a reducing and stabilizing agent. The biosynthesis of Ag NP was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectrophotometry. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the clustered and irregular shapes of Ag NP. The presence of silver was confirmed by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy investigated the identity of secondary metabolites, which may also act as Ag NP capping agents. The acute toxicity of B. cristata leaf extract and biosynthesized Ag NP was evaluated against larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with lethal concentration (LC)50 values of 12.46, 13.49, and 15.01 μg/mL, respectively. Notably, biosynthesized Ag NP were found safer to non-target organisms Diplonychus indicus, Anisops bouvieri, and Gambusia affinis, with respective LC50 values ranging from 633.26 to 866.92 μg/mL. Overall, our results highlight that B. cristata-fabricated Ag NP are a promising and eco-friendly tool against young instar populations of mosquito vectors of medical and veterinary importance.

  2. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  3. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hu; Zou, Yubin, E-mail: zouyubin@pku.edu.cn; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator–based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8–2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8–2.0 ms, especially for materials with strong moderating capability.

  4. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Malone, Brent C. Frogget, Morris I. Kaufman, Thomas W. Tunnell, Robert L. Guyton, Imants P. Reinbachs, Phillip W. Watts, et al.

    2007-08-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  5. Proceedings of the international workshop on hadron facility technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A. (comp.)

    1987-12-01

    The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

  6. Remarkable rate acceleration of SmI3-mediated iodination of acetates of Baylis-Hillman adducts in ionic liquid: facile synthesis of (Z)-allyl iodides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 ℃ within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2.

  7. Physics design of the DARHT 2nd axis accelerator cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y J; Houck, T L; Reginato, L J; Shang, C C; Yu, S S

    1999-08-19

    The next generation of radiographic machines based on induction accelerators require very high brightness electron beams to realize the desired x-ray spot size and intensity. This high brightness must be maintained throughout the beam transport, from source to x-ray converter target. The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility is being designed to accelerate a 4-kA, 2-{micro}s pulse of electrons to 20 MeV. After acceleration, the 2-{micro}s pulse will be chopped into a train of four 50-ns pulses with variable temporal spacing by rapidly deflecting the beam between a beam stop and the final transport section. The short beam pulses will be focused onto an x-ray converter target generating four radiographic pulses within the 2-{micro}s window. Beam instability due to interaction with the accelerator cells can very adversely effect the beam brightness and radiographic pulse quality. This paper describes the various issues considered in the design of the accelerator cell with emphasis on transverse impedance and minimizing beam instabilities.

  8. Neutron Shielding Design for 4π BaF2 Detector Facility

    Institute of Scientific and Technical Information of China (English)

    HUANG; Xing; ZHANG; Qi-wei; HE; Guo-zhu; CHENG; Pin-jing; TANG; Hong-qing; ZHOU; Zu-ying

    2013-01-01

    Neutrons within energy range of 5 to 300 keV can be produced by pulsed proton beam striking thick lithium target,based on the HI-13 tandem accelerator.Neutron shielding is necessary when the Gamma-ray Total Absorption Facility(GTAF)is applied to measured(n,γ)reaction cross sections

  9. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    Science.gov (United States)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  10. Experimental and theoretical study of the yields of residual product nuclei produced in thin targets irradiated by 100-2600 MeV protons

    CERN Document Server

    Titarenko, Y E; Karpikhin, E I

    2003-01-01

    The objective of the project is measurements and computer simulations of independent and cumulative yields of residual product nuclei in thin targets relevant as target materials and structure materials for hybrid accelerator-driven systems coupled to high-energy proton accelerators. The yields of residual product nuclei are of great importance when estimating such basic radiation-technology characteristics of hybrid facility targets as the total target activity, target 'poisoning', buildup of long-lived nuclides that, in turn, are to be transmuted, product nuclide (Po) alpha-activity, content of low-pressure evaporated nuclides (Hg), content of chemically-active nuclides that spoil drastically the corrosion resistance of the facility structure materials, etc. In view of the above, radioactive product nuclide yields from targets and structure materials were determined by an experiment using the ITEP U-10 proton accelerator in 51 irradiation runs for different thin targets: sup 1 sup 8 sup 2 sup , sup 1 sup 8 ...

  11. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D{sup +})-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m{sup 2}, 20 dpa/year for Fe) in a volume of 500 cm{sup 3} for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  12. Proton acceleration using doped Argon plasma density gradient interacting with relativistic CO2 -laser pulse

    Science.gov (United States)

    Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar

    2016-10-01

    We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.

  13. Accelerating News Issue 4

    CERN Document Server

    Szeberenyi, A; Wildner, E

    2012-01-01

    In this winter issue, we are very pleased to announce the approval of EuCARD-2 by the European Commission. We look at the conclusions of EUROnu in proposing future neutrino facilities at CERN, a new milestone reached by CLIC and progress on the SPARC upgrade using C-band technology. We also report on recent events: second Joint HiLumi LHC-LARP Annual Meeting and workshop on Superconducting technologies for the Next Generation of Accelerators aiming at closer collaboration with industry. The launch of the Accelerators for Society brochure is also highlighted.

  14. Determination of nuclide inventories in accelerator radwaste

    Energy Technology Data Exchange (ETDEWEB)

    Weinreich, R.; Argentini, M.; Schumann, D. [Lab. of Radio- and Environmental Chemistry, Paul Scherrer Inst. Villigen-PSI (Switzerland)

    2003-07-01

    In switzerland, the location of two of the largest accelerator facilities, CERN and PSI, the authorities requested for a valuation of the radionuclide inventories in accelerator radwaste. In the first phase, model calculations should be verified by radioanalytical analyses. At PSI, the radioactive contents were measured after a careful chemical separation, by {gamma}-spectrometry, {alpha}-spectrometry, low-level counting and accelerator mass spectrometry, respectively. Examples: (i) The copper beam dump of target E was analyzed; its activities were in the range between 1.10{sup 7} Bq/g for {sup 60}Co and 1.10{sup -5} Bq/g for {sup 60}Fe. (ii) In shielding concrete, more than 30 mBq/g {sup 239,240}Pu were found which is higher than the exemption limit. (iii) In graphite targets, at end of bombardment 2.10{sup 11} Bq/g {sup 7}Be were detected. (iv) In an Eu project, the know-how of the radiochemical separation procedures was used for determination of transmutation-relevant nuclear reaction cross sections. (orig.)

  15. Future HEP Accelerators: The US Perspective

    CERN Document Server

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  16. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  17. Measurement of photoneutron spectrum at Pohang Neutron Facility

    CERN Document Server

    Kim, G N; Lee, Y S; Skoy, V; Cho, M H; Ko, I S; Namkung, W; Lee, D W; Kim, H D; Ko, S K; Park, S H; Kim, D S; Ro, T I; Min, Y G

    2002-01-01

    The Pohang Neutron Facility, an electron linear accelerator (linac) based pulsed neutron facility, was constructed for nuclear data production in Korea. It consists of an electron linac, a water-cooled Ta target with a water moderator, and a time-of-flight path with an 11 m length. The neutron energy spectra are measured for different water levels inside the moderator and compared with calculations by the Monte Carlo N-Particle transport code. The optimum size of the water moderator is determined based on these results.

  18. Beam dynamics in a long-pulse linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  19. Damage diagnosis for bremsstrahlung converter target of Dragon-I linear induction accelerator%神龙一号直线感应加速器X光转换靶破坏诊断

    Institute of Scientific and Technical Information of China (English)

    禹海军; 朱隽; 江孝国; 王远; 陈楠; 张振涛; 戴文华; 刘承俊

    2011-01-01

    The electron beam generated by the Dragon- I linear induction accelerator strikes the bremsstrahlung converter target to generate X-ray and causes tantalum target damage and hydrodynamic expansion, which results in target density decreasing for successive pulses.The time varying target density was measured by applying a low energy X-ray with energy about 450 kev and spot diameter of 1 to 4 mm along with an intensified charge coupled derice(ICCD) camera.The experiment results show that the target density is basically unchanged for 1 μs after beam-target interaction, and no particle ejected from the front side of the target is found at the same time.%利用能量约450 keV、焦斑直径1~4 mm的低能X光对神龙一号直线感应加速器束靶作用后钽靶的破坏进行诊断,利用增强型电荷耦合器件(ICCD)对诊断过程记录,得到束靶作用后数μs时间内钽靶材料密度的变化.结果表明:在束靶作用后约1μs内靶材料密度基本没有变化,且该时间段内ICCD相机没有观察到有靶前钽靶材料的微粒喷射.

  20. 基于4 MV静电加速器的高温辐照装置研制及离子辐照初步实验%A High Temperature Irradiation Facility at SINAP’s 4 MV Electrostatic Accelerator and First Tests of the Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    雷前涛; 叶伯年; 朱德彰; 毛羽; 闫隆; 周兴泰; 包良满; 李健健; 刘哲; 高杰; 曹建清; 邓琦; 王永其; 李晓林

    2015-01-01

    This paper describes the ion beam irradiation facility built up at the 4 MV electrostatic accelerator of Shanghai Institute of Applied Physics (SINAP), CAS for simulating neutron damage to thorium molten salt reactor (TMSR) material studies. The system mainly consists of a beam line containing the magnetic scanning device and the beam monitoring device, and the high temperature high vacuum chamber. H+, He+, Ar+ions(<4 MeV, 2 µA) from the accelerator are used for ion beam irradiation. The range of irradiation temperature is from the liquid nitrogen temperature to 950 ℃. The maximum irradiation field is equal to 30 mm×30 mm. Beam energy degrade with rotating aluminum foils is installed in the chamber, so that the uniformity damage can be obtained within a certain range of the target materials. The preliminary ion irradiation experiments showed that this facility is suitable for exploring radiation effects on the refractory metals as well as other potential TMSR materials.%为了模拟钍基熔盐堆(TMSR)材料的中子辐照损伤,基于中国科学院上海应用物理研究所(SINAP)的4 MV静电加速器,研制了一台专用的离子束辐照装置。装置主要由束流传输线和高温、高真空靶室组成。束流传输线装有用于束流磁场扫描和束流监测的设备。装置可提供H+,He+,Ar+等束流用于离子束辐照,束流最高能量4 MeV,最大流强2µA。辐照温度范围为液氮温度至950℃。辐照面积最大为30 mm×30 mm。装在靶室的由旋转铝片构成的变能器对束流能量进行调制,可以在样品中得到均匀的辐照损伤。初步的实验结果表明,装置适用于高温合金及其他熔盐堆材料的辐照损伤研究。

  1. Parametric study of an ODW scramaccelerator for hypersonic test facilities. [obligation detonation wave

    Science.gov (United States)

    Humphrey, Joseph W.

    1990-01-01

    A parametric study has been conducted for an oblique detonation-wave (ODW) 'scramaccelerator' suitable for projectile aerothermodynamics studies in real gas hypersonic test facilities. The results of the present analytical design evaluation indicate that an ODW scramaccelerator using conventional gaseous propellants can accelerate projectiles of 0.1 to 1000 kg masses to speeds in the 6-10 km/sec range. Potential applications for such an accelerator encompass a hypersonic ballistic test range, kinetic energy weapon accelerators, mass drivers to LEO, projectile terminal ballistics testing, projectile/target interaction studies, inertial welders, and shock compactors.

  2. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for this type of interaction, capable of producing the highest proton energies possible with today’s laser technologies. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis and investigate new, potentially more efficient mechanisms of ion acceleration, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we acheived a pure proton beam with an indiciation of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the

  3. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  4. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  5. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.

  6. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  7. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  8. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  9. Progress toward a prototype recirculating ion induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.; Barnard, J.J.; Cable, M.D. [and others

    1996-06-01

    The U.S. Inertial Fusion Energy (IFE) Program is developing the physics and technology of ion induction accelerators, with the goal of electric power production by means of heavy ion beam-driven inertial fusion (commonly called heavy ion fusion, or HIF). Such accelerators are the principal candidates for inertial fusion power production applications, because they are expected to enjoy high efficiency, inherently high pulse repetition frequency (power plants are expected to inject and burn several fusion targets per second), and high reliability. In addition (and in contrast with laser beams, which are focused with optical lenses) heavy-ion beams will be focused onto the target by magnetic fields, which cannot be damaged by target explosions. Laser beams are used in present-day and planned near-term facilities (such as LLNUs Nova and the National Ignition Facility, which is being designed) because they can focus beams onto very small, intensely illuminated spots for scaled experiments and because the laser technology is already available. An induction accelerator works by passing the beam through a series of accelerating modules, each of which applies an electromotive force to the beam as it goes by; effectively, the beam acts as the secondary winding of a series of efficient one-turn transformers. The authors present plans for and progress toward the development of a small (4.5-m-diam) prototype recirculator, which will accelerate singly charged potassium ions through 15 laps, increasing the ion energy from 80 to 320 keV and the beam current from 2 to 8 mA. Beam confinement and bending are effected with permanent-magnet quadrupoles and electric dipoles, respectively. The design is based on scaling laws and on extensive particle and fluid simulations of the behavior of the space charge-dominated beam.

  10. Heavy ion accelerator and associated developments in India

    Indian Academy of Sciences (India)

    G K Mehta

    2002-11-01

    Developments of ion accelerator and associated facilities in India are presented. Various types of accelerator facilities which are systematically built in the country through sustained development and research programs at various research centres and institutions are highlighted. Impact of accelerator in different interdisciplinary fields of research are highlighted.

  11. Reverse Ballistic Air Gun Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This custom-designed facility houses a suite of three air guns capable of generating accelerations up to 100,000 Gs and velocities up to 2,000 ft/s. In addition to...

  12. Reverse Ballistic Air Gun Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This custom-designed facility houses a suite of three air guns capable of generating accelerations up to 100,000 Gs and velocities up to 2,000 ft/s. In addition to a...

  13. Accelerated Homology-Directed Targeted Integration of Transgenes in Chinese Hamster Ovary Cells Via CRISPR/Cas9 and Fluorescent Enrichment

    DEFF Research Database (Denmark)

    Lee, Jae Seong; Grav, Lise Marie; Pedersen, Lasse Ebdrup

    2016-01-01

    Targeted gene integration into site-specific loci can be achieved in Chinese hamster ovary (CHO) cells via CRISPR/Cas9 genome editing technology and the homology-directed repair (HDR) pathway. The low efficiency of HDR often requires antibiotic selection, which limits targeted integration...

  14. Results of the six-and-a-half day electron-accelerator irradiation of enriched Mo-100 targets for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, V. [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    A six-and-a-half day irradiation of enriched Mo-100 target disks was performed by Argonne’s electron linac. This report describes the irradiation conditions and the means used to process the targets for shipment to NorthStar Medical Isotopes, LLC, for feed to their RadioGenixTM technetium generator.

  15. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-09-30

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ``3/8 Goal`` quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed.

  16. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  17. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  18. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki 311-0193 Japan (Japan)

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  19. Accelerator structure work for NLC

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gluckstern, R. [Maryland Univ., College Park, MD (United States); Ko, K.; Kroll, N. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  20. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Science.gov (United States)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different

  1. Clinical Requirements and Accelerator Concepts for BNCT

    Science.gov (United States)

    Ludewigt, Bernhard A.

    1997-05-01

    Accelerator-driven epithermal neutron sources are an attractive alternative to nuclear reactors for Boron Neutron Capture Therapy (BNCT). In BNCT the goal of delivering a sufficient dose to the tumor without exceeding the dose limits of the surrounding normal tissues is achieved by administering a ^10B-containing compound which is selectively taken up in the tumor cells. Subsequent irradiation with epithermal neutrons leads to the release of short ranged (neutron-capture reaction. By carefully shaping the neutron spectrum the background dose, partially due to recoil protons and external gamma radiation, can be minimized and the depth dose distribution optimized. Excellent epithermal neutron beams for BNCT can be produced by bombarding a Li-target with a high current proton beam at energies ranging from the (p,n) reaction threshold to 2.5 MeV and subsequent moderation and filtering of the primary neutrons. In comparison the use of Be-targets and higher proton or deuteron energies, up to 20 MeV, leads to higher neutron yields but also to higher primary neutron energies requiring more moderation and resulting in less desirable neutron spectra. Accelerator options for possible neutron sources include dc-accelerators, RFQs, LINACs and cyclotrons. An electrostatic quadrupole (ESQ) accelerator has been chosen to provide a 2.5 MeV proton beam for the BNCT facility currently being designed at LBNL. An ESQ-accelerator is ideally suited to provide the high beam currents which are desired for producing high quality neutron beams for BNCT treatments. A novel power supply based on the air-coupled transformer concept is under development. It will enable the accelerator to deliver proton beam currents up to about 50 mA. A Li-target has been designed which can handle beam power in excess of 50 kW establishing the practicability of this approach. Monte Carlo simulation studies have shown that at a proton beam current of 20 mA high quality treatments for brain tumors can be delivered

  2. Current status of Pohang Neutron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.N.; Lee, Y.S.; Cho, M.H. [Pohang Accelerator Laboratory, POSTECH, Pohang (KR)] [and others

    2000-03-01

    We present the current status of Pohang Neutron Facility, which is the pulsed neutron facility, based on the 70-MeV electron linear accelerator completed on Dec.1997. We have prepared the 15-m time-of-flight path, a Ta-target system, and the Data Acquisition System. Meanwhile we have measured the total cross-sections of Dy and Hf samples at the Research Reactor Institute, Kyoto University and the neutron capture cross-sections of {sup 164}Dy isotope at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology both in Japan. We also were participated the experiment at the 122-m flight path of the IBR-30 pulsed neutron source of Joint Institute of Nuclear Research in Dubna, Russia. (author)

  3. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  4. An accelerator worth fighting for

    CERN Multimedia

    1996-01-01

    Financial pressures from member states have upset the calculations of the European Laboratory for Particle Physics's (CERN) major accelerator, the Large Hadron Collider (LHC). Despite preference for domestic high energy programs, CERN members accord high priority to LHC physics. Converting to a global facility can help spread the high annual cost of subscription. But given the political realities, a revision of the LHC project appears more feasible. CERN's management needs to deploy its skills to overcome the financial obstacles to the facility.

  5. Dark Matter Searches at Accelerator Facilities

    CERN Document Server

    Dutta, Bhaskar

    2014-01-01

    About 80 percent of the matter content of the universe is dark matter. However, the particle origin of dark matter is yet to be established. Many extensions of the Standard Model (SM) contain candidates of dark matter. The search for the particle origin is currently ongoing at the large hadron collider (LHC). In this review, I will summarize the different search strategies for this elusive particle.

  6. Specification of the ESS Accelerator Cryoplant

    Science.gov (United States)

    Wang, Xilong; Arnold, Philipp; Fydrych, Jaroslaw; Hees, Wolfgang; Jurns, John M.; Piso, Daniel; Weisend, John

    The European Spallation Source (ESS) is a neutron-scattering facility being built with extensive international collaboration at Lund, Sweden. The ESS accelerator will deliver protons with 5 MW of power to the target at 2.0 GeV, with a nominal current of 62.5 mA. The superconducting part of the accelerator is about 300 meters long and contains 43 cryomodules. The ESS accelerator cryoplant will provide the cooling for the cryomodules and the cryogenic distribution systeminterconnecting cryoplant and cryomodules. The cryoplant will cover three cryogenic circuits: bath cooling for the cavities at 2 K, the thermal shields at around 40-50 K and 4.5 K forced helium cooling for the power couplers. This paper describes project stages,the cryogenic architecture andthe design basis including cooling capacity, operation modes and interfaces. The important design choices comprising no liquid nitrogen pre-cooling,one integrated cold box, waste heat recovery and process control system strategy as well as the principles of evaluation are presented. All the topics above are implemented and addressed in the technical specification, which has been finished and issued in June 2014. That is a very important step in the development of the ESS cryogenics system.

  7. GIC4117串列加速器外束 PIXE/PIGE 分析系统%External Beam PIXE/PIGE Analysis Facility on GIC4117 Tandem Accelerator

    Institute of Scientific and Technical Information of China (English)

    王广甫; 李旭芳; 初钧晗; 于令达; 安坤; 吴冰冰

    2014-01-01

    本文介绍在北京师范大学GIC4117串列加速器上建立的外束PIXE/PIGE分析系统,和基于此系统的薄样品外束PIXE/PIGE定量分析方法。给出了2010年Teflon滤膜采集的361个气溶胶样品外束PIXE分析得到的各元素平均探测限和最低探测限,并同真空 PIXE分析探测限进行了比较。利用标准样品给出了激发曲线不同坪区薄样品外束PIGE分析F和Na的探测限,通过测定19 F(p ,p′γ)19 F激发的197 keV γ射线得到的F的探测限可达73.9 ng · cm -2,Na的探测限可达198.9 ng · cm-2。%At the GIC4117 1.7 MV tandem accelerator of Beijing Normal University ,an external beam PIXE/PIGE analysis facility was established ,and the analysis method of thin samples was developed on the facility .The average and the lowest limits of detec-tion (LOD) of multielement for the external beam PIXE analysis of 361 PM2.5 samples collected on Teflon membrane filters in 2010 were given ,and compared with those of vacuum PIXE analysis .The results of external beam PIGE analysis of standard samples show that the LOD can be as low as 73.9 ng · cm -2 and 198.9 ng · cm -2 for F (using 197 keV γ-ray from 19 F(p ,p′γ) 19 F reaction) and Na ,respectively .

  8. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  9. The ISAC post-accelerator

    Science.gov (United States)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  10. Future HEP Accelerators: The US Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  11. Accelerator Mass Spectrometry Analysis of Ultra-Low-Level 129I in Carrier-Free AgI-AgCl Sputter Targets

    DEFF Research Database (Denmark)

    Liu, Qi; Hou, Xiaolin; Zhou, Weijian;

    2015-01-01

    mass spectrometry (AMS) for accurate determination of ultra-low-level 129I in carrier-free AgI-AgCl sputter targets. Copper instead of aluminum was selected as the suitable sample holder material to avoid the reaction of AgI-AgCl powder with aluminum. Niobium powder was selected as thermally...

  12. 加速器驱动系统的靶物理计算分析%Analysis of Target Physics in Accelerator-Driven System

    Institute of Scientific and Technical Information of China (English)

    王育威; 杨永伟; 崔鹏飞

    2011-01-01

    Through the analysis of requirements of ADS on the target, LBE (lead bismuth eutectic) was selected as the ADS target materials. With different radii and heights of the target, the energy spectrum, the number in different locations and the total number of neutron leakage were calculated by MCNPX. As SSR and SSW cards connected the MCNPX and MCNP, the history of a proton started from the target reaction was simulated. The concept of proton efficiency was put forward. When the total power and keff keep constant, increasing the proton efficiency will solve one of the difficult aspects of ADS. Combining the specific conditions of the target's location and variation of the target's radius in the reactor core, statistics data were obtained by MCNP. The conclusions are drawn to maximize the efficiency of the proton, and then combined with ADS's characteristics, the design optimization program of the target was proposed.%通过分析ADS对靶的要求,选LBE(铅铋共熔体)作为ADS靶材料,采用MCNPX程序计算和分析不同半径的质子束流入射不同半径和高度的靶时中子产生数、靶的中子泄漏能谱、靶不同位置的泄漏中子数以及整个靶的泄漏中子总数.选定靶参数,然后通过SSW卡和SSR卡连接MCNPX和MCNP程序,模拟计算1个质子与靶反应直到被燃料利用的整个过程,并提出质子效率的概念,采用欧洲MUSE-4燃料,对靶在堆芯中的位置和靶在堆芯中的半径大小对质子效率的影响进行了计算研究,给出了最大化质子效率时靶在堆芯中的位置和靶半径大小的方案.

  13. Global particle accelerator gets the big chill

    CERN Multimedia

    Sherriff, Lucy

    2004-01-01

    Scientists at an international symposium in Beijing have recommended that a new global particle accelerator should be based on "cold" or superconducting technology, bringing the construction of the multi-billion dollar facility one step closer to reality (½ page)

  14. ISAC and ARIEL the TRIUMF radioactive beam facilities and the scientific program

    CERN Document Server

    Krücken, Reiner; Merminga, Lia

    2014-01-01

    The TRIUMF Isotope Separator and Accelerator (ISAC) facility uses the isotope separation on-line (ISOL) technique to produce rare-isotope beams (RIB). The ISOL system consists of a primary production beam, a target/ion source, a mass separator, and beam transport system. The rare isotopes produced during the interaction of the proton beam with the target nucleus are stopped in the bulk of the target material. They diffuse inside the target material matrix to the surface of the grain and then effuse to the ion source where they are ionized to form an ion beam that can be separated by mass and then guided to the experimental facilities. Previously published in the journal Hyperfine Interactions.

  15. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...

  16. FAFNIR: Strategy and risk reduction in accelerator driven neutron sources for fusion materials irradiation data

    CERN Document Server

    Surrey, E; Caballero, A; Davenne, T; Findlay, D; Letchford, A; Thomason, J; Marrow, J; Roberts, S; Seryi, A; Connolly, B; Mummery, P; Owen, H

    2014-01-01

    The need to populate the fusion materials engineering data base has long been recognized, the IFMIF facility being the present proposed neutron source for this purpose. Re-evaluation of the regulatory approach for the EU proposed DEMO device shows that the specification of the neutron source can be reduced with respect to IFMIF, allowing lower risk technology solutions to be considered. The justification for this approach is presented and a description of a proposed facility, FAFNIR, is presented with more detailed discussion of the accelerator and target designs.

  17. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  18. Performance specifications for proton medical facility

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  19. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  20. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)