WorldWideScience

Sample records for accelerator irradiation issledovaniya

  1. Electron accelerator technology research in food irradiation

    International Nuclear Information System (INIS)

    Jin Jianqiao; Ye Mingyang; Zhang Yue; Yang Bin; Xu Tao; Kong Xiangshan

    2014-01-01

    Electronic accelerator was applied to instead of cobalt sources for food irradiation, to keep food quality and to improve the effect of the treatment. Appropriate accelerator parameters lead to optimal technique. The irradiation effect is associated with the relationship between uniformity and irradiating speed, the effect of cargo size on radiation penetration, as well as other factors that affect the irradiation effects. Industrialization of electron accelerator irradiation will be looked to the future. (authors)

  2. Accelerated irradiation growth of zirconium alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Fidleris, V.

    1989-01-01

    This paper discusses how sponge zirconium and Zr-2.5 wt% Nb, Zircaloy, or Excel alloys all exhibit accelerated irradiation growth compared with high-purity crystal-bar zirconium for irradiation temperatures between 550 to 710 K and fluences between 0.1 to 10 x 10 25 n · m -2 (E > 1 MeV). There is generally an incubation period or fluence before the onset of accelerated or breakaway growth, which is dependent on the particular material being irradiated, its metallurgical condition before irradiation, and the irradiation temperature. Transmission electron microscopy has shown that there is a correlation between accelerated irradiation growth and the appearance of c-component vacancy loops on basal planes. Measurements in some specimens indicate that a significant fraction of the strain can be directly attributed to the loops themselves. There is considerable evidence to show that their formation is dependent both on the specimen purity and on the irradiation temperature. Materials that have a high interstitial-solute content contain c-component loops and exhibit high growth rates even at low fluences ( 2 :5 n · m -2 , E > 1 MeV). For sponge zirconium and the Zircaloys, c-component loop formation and the associated acceleration of growth (breakaway) during irradiation occurs because the intrinsic interstitial solute (mainly, oxygen, carbon and nitrogen) in the zirconium matrix is supplemented by interstitial iron, chromium, and nickel from the radiation-induced dissolution of precipitates. (author)

  3. Irradiated accelerated corrosion of stainless steel

    International Nuclear Information System (INIS)

    Raiman, S.S.; Wang, P.; Was, G.S.

    2015-01-01

    Type 316L stainless steel was exposed to a simulated PWR environment with in-situ proton irradiation to investigate the effect of simultaneous irradiation and corrosion. To enable these experiments, a dedicated beamline was constructed to transport a 3.2 MeV proton beam from a tandem accelerator, through the sample that also acts as the window between the beamline vacuum and a corrosion cell designed to flow primary water at 320 C. degrees and 13.1 MPa. Experiments were conducted on 316L stainless steel samples which were irradiated for 24 hours in 320 C. degrees water with 3 ppm H 2 , at dose rates of 7*10 -6 dpa/s and 7*10 -7 dpa/s, for 4, 24, and 72 hours. A dual-layer oxide formed on the samples, with an inner layer rich in Cr with Fe and Ni content, and an outer layer of Fe oxides. Samples were characterized with TEM (Transmission Electron Microscopy), EDS, and Raman spectroscopy to determine the effect of irradiation. Irradiated samples were found to have a thinner and more porous inner oxide which was deficient in chromium. The outer oxide was found to have significant hematite content, suggesting that irradiation led to an increase in ECP (Electro-Chemical Potential) at the oxide-solution interface, causing accelerated dissolution of the oxide under irradiation. (authors)

  4. First symposium accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    2012-01-01

    The First symposium accelerated partial breast irradiation, was organized by the Marie Curie Foundation, between the 14 to 16 june 2012, in the Cordoba city of Argentina. In this event were presented some papers on the following topics: radiotherapy in breast cancer; interaction between systemic treatments and radiotherapy; interstitial brachytherapy.

  5. Recent Research on the Irradiation of Fruits and Vegetables; Recherches Recentes sur l'Irradiation des Fruits et Legumes; Poslednie issledovaniya po oblucheniyu fruktov i ovoshchej; Investigaciones Recientes Sobre la Irradiacion de Frutas y Verduras

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, N. F.; Maxie, E. C. [University of California, Davis, CA (United States)

    1966-11-15

    Radiation treatments of fruits and vegetables after harvest have evoked much interest for the control of market diseases, insect infestation, delay of ripening and prevention of growth. Radiation as a fungicidal treatment is of special interest because of its therapeutic action. Unfortunately, the dose is often severely limited by host sensitivity. The tolerance to irradiation varies; among species and varieties and is influenced by ripeness at time of treatment. If destined for storage, commodities may be limited to a low dose because of delayed adverse effects. The suppression of a pathogen depends primarily on its sensitivity and the extent of lesion development. Commonly a large portion of small fungus lesions are inactivated while others are delayed. To date, radiation treatments have been most promising where disease problems were most serious, as in the treatment of highly perishable commodities that are harvested when ripe and contain established disease lesions when picked. Presumably the fungicidal effect of radiation treatments could be greatly improved if pathogens could be made more sensitive, the host more resistant, or both. Use of a localized oxygen effect, chemical sensitization of pathogens, or shallow irradiation have presented formidable difficulties. More promise has been shown by combinations of radiation and heat which provide a striking synergism when used to inactivate fungi. Gamma-irradiation inhibits ripening of some fruits but is stimulatory to others. In those fruits which are caused to ripen more rapidly by irradiation, ethylene production is stimulated. Fruits in which ripening is inhibited by irradiation apparently have a reduced sensitivity to the ripening action of ethylene, and also produce less ethylene before ripening. At doses of 20 to 35 krad, ripening is inhibited in bananas for 4 to 15 days depending on maturity and the amount of mechanical injury to the fruit. Irradiated fruits ripen to good quality when given a standard

  6. Use of electron accelerators in food irradiation

    International Nuclear Information System (INIS)

    Sanyal, Bhaskar

    2013-01-01

    Preservation of food by ionizing radiations involves controlled application of energy of radiation to agricultural commodities, foods and food ingredients, for improving storage life, hygiene and safety. Insects and microbes cause major economic losses to stored crops. Many of our food products are contaminated with diseases causing germs and toxin producing molds. Without improvement in microbial quality and getting properly treated to overcome quarantine barriers our agricultural products cannot get international markets. In this respect electron accelerators have immense potential in commercial radiation processing of foods. Both low and high dose applications with increased process rates can be achieved using accelerators to cover a wide spectrum of food commodities approved for commercial radiation processing as per the recent gazette notification under Atomic Energy (Radiation Processing of Food and Allied Products) Rule, 2012. The effectiveness of processing of food by ionizing radiation depends on proper delivery of absorbed dose and its reliable measurement. For food destined for international trade, it is important that the dosimetry used for dose determination is carried out accurately and that the process is monitored in accordance with the internationally accepted procedures. Experiments using alanine-EPR system were carried out to optimize the process parameters of 10 MeV electron beam for commercial irradiation of food. Different food commodities namely, mango, potato and rawa (semolina) were irradiated to measure the absorbed dose distribution. The actual depth dose profile in food products and useful scan width of the electron beam were determined for commercial radiation processing of food using electron beam. (author)

  7. Cost evaluation of irradiation system with electron accelerator

    International Nuclear Information System (INIS)

    Kashiwagi, M.

    2003-01-01

    The features of electron beam irradiation system using electron accelerator are direct energy pour into the irradiated material, no third material mixture such as catalyst, suitable for mass production and easy operation and maintenance work available. These features can bring the various applications such as cross-linking action, graft polymerization, radical polymerization and others. The selection of electron accelerator ratings is made under consideration of quality, width and thickness of irradiated material, production amount, dose required for reaction and irradiation atmosphere. Especially in a case of irradiation of wire with high insulation material such as polyethylene, the consideration of maximum thickness toward irradiation direction is necessary to avoid the discharge (Lichtenberg discharge) by charged-up electrons inside insulation material. Therefore, the acceleration voltage should be selected to make the maximum penetration larger than maximum irradiation thickness. The actual model case of estimate the irradiation cost was selected that the irradiation object was polyethylene insulated wire up to AWG no.14, irradiation amount was 5,000 km/month, necessary dose was 200 kGy, operation time was 22 d/month and 8 h/day and actual operation efficiency was considered loss time such as bobbin changing as 80%. The selected ratings of electron accelerator were acceleration voltage of 800 kV, beam current of 100 mA and irradiation width of 180 cm with irradiation pulleys stand of 60 turns x 3 lanes. The initial total cost was estimated as 3 M$(US) and operation cost was evaluated as 215 k$(US). Therefore, the irradiation cost of wire was evaluated as 0.0036 $/m. (author)

  8. Container for gaseous samples for irradiation at accelerators

    International Nuclear Information System (INIS)

    Kupsch, H.; Riemenschneider, J.; Leonhardt, J.

    1985-01-01

    The invention concerns a container for gaseous samples for the irradiation at accelerators especially to generate short-lived radioisotopes. The container is also suitable for storage and transport of the target gas and can be multiply reused

  9. Modulation of accelerated repopulation in mouse skin during daily irradiation

    International Nuclear Information System (INIS)

    Trott, K.-R.; Shirazi, A.; Heasman, F.

    1999-01-01

    Background and purpose: The timing of acceleration of repopulation in the epidermis during daily irradiation is related to the development of skin erythema and epidermal hypoplasia. Therefore, the relationship between impairment of the epidermal barrier function, the dermal inflammatory response and epidermal hypoplasia with the acceleration of repopulation was investigated.Materials and purpose: Skin fields of approximately 1 cm 2 on the thighs of TUC mice were given five daily fractions of 3 Gy in each week followed by top-up doses at the end of the first, the second, or the third week to determine residual epidermal tolerance and to calculate repopulation rates in weeks 1, 2, or 3. Systemic modulation of repopulation was attempted by daily indomethacine during fractionated irradiation whereas tape stripping or UV-B exposure before the start of fractionated irradiation attempted local modulation. In parallel experiments, the water permeability coefficient of the epidermis was determined ex vivo by studying transepidermal transport of tritiated water.Results: Without modulation, no repopulation was found in the first week of daily fractionation but repopulation compensated 30% of the dose given in week two and 70% of the dose given in week three. Only tape stripping before the start of fractionated irradiation accelerated repopulation in week one. UV-B had no effect on repopulation although it stimulated proliferation as much as tape stripping. Indomethacin did not suppress acceleration of repopulation. A significant increase in transepidermal water loss was found but only after repopulation had already accelerated.Conclusions: Acceleration of repopulation in mouse epidermis during daily-fractionated irradiation is not related to the simultaneous development of an inflammatory response. Also, the loss of the epidermal barrier function is not involved in the development of the acceleration response, which rather seems to be triggered directly by the decreased

  10. The use of electron accelerators for fresh fruit irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.

    2000-01-01

    There are presented the results of tests concerning the effects of accelerated electron-beam to some early fresh fruits like strawberries, cherries, sour-cherries and apples. The irradiation were performed on common varieties, in normal conditions, to the NILPRP-Electron Accelerator Laboratory facility consisting in electron-beam accelerators which have the following parameters: - mean beam current, 5 μA; - electron mean energy approximately, 7 MeV; - pulse period, 3.5 μs. The doses varied between 0.5-3.0 kGy and the dose rate was about 1500 Gy/min. It was determined the fruit shelf life and there were analysed the main organoleptic and nutritional properties, as: size, shape, colour, dry weight, acidity, total and reducing sugars, ascorbic acid content and other. For the electron-beam treated fruits it was pointed out an increase in freshness and shelf life extension by 5-7 days for strawberries and more than two weeks for cherries. Otherwise, for the applied doses, the electron-beam irradiation did not produce any significant changes in the fruit characteristic values. These results lead to the conclusion that the electron accelerators could be successfully used as a technological solution for the fresh fruits processing, in view of shelf life extension. There are presented also some technical and economical considerations on the feasibility of this technology and on the use of electron-beam machines for food irradiation. (authors)

  11. Accelerator conceptual design of the international fusion materials irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Kinsho, M. [Japan Atomic Energy Res. Inst., Tokai, Ibaraki (Japan). Intense Neutron Source Lab.; Jameson, R.A.; Blind, B. [Los Alamos National Lab., NM (United States); Teplyakov, V. [Institute for High Energy Physics, Moscow (Russian Federation); Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J. [Northrop Grumman Corp., Bethpage, NY (United States); Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K. [Johann Wolfgang Goethe Univ., Frankfurt (Germany). Inst. fur Angewandte Phys.; Ferdinand, R.; Lagniel, J.-M. [CEA Saclay LNS, Gif-sur-Yvette (France); Miyahara, A. [Teikyo Univ., Tokyo (Japan); Olivier, M. [CEA DSM, Saclay, Gif-sur-Yvette (France); Piechowiak, E. [Northrop Grumman Corp., Baltimore, MD (United States); Tanabe, Y. [Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    1998-10-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.) 8 refs.

  12. Accelerator conceptual design of the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, M.; Kinsho, M.; Teplyakov, V.; Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J.; Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K.; Miyahara, A.; Olivier, M.; Piechowiak, E.; Tanabe, Y.

    1998-01-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.)

  13. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  14. Induction linear accelerators for commercial photon irradiation processing

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1989-01-01

    A number of proposed irradiation processes requires bulk rather than surface exposure with intense applications of ionizing radiation. Typical examples are irradiation of food packaged into pallet size containers, processing of sewer sludge for recycling as landfill and fertilizer, sterilization of prepackaged medical disposals, treatment of municipal water supplies for pathogen reduction, etc. Volumetric processing of dense, bulky products with ionizing radiation requires high energy photon sources because electrons are not penetrating enough to provide uniform bulk dose deposition in thick, dense samples. Induction Linear Accelerator (ILA) technology developed at the Lawrence Livermore National Laboratory promises to play a key role in providing solutions to this problem. This is discussed in this paper

  15. Strain acceleration of the low temperature irradiated zirconium

    International Nuclear Information System (INIS)

    Fortis, Ana M.; Coccoz, Guillermina D. H.

    2003-01-01

    The strain of a Zr-0,06 at.% 235 U specimen irradiated during 4800 h in the RA-3 at a temperature near 40 C degrees is presented. An equivalent neutron fluence of 3.1 x 10 26 n m -2 was achieved by means of the generation of fission fragment within the material. The experimental conditions are described and a sudden strain acceleration independent of the neutron flux variations occurred during irradiation is shown. This behavior is compared with previous data obtained at different temperatures. (author)

  16. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhijie [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-31

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  17. Irradiation system for neutron capture therapy using the small accelerator

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Hoshi, Masaharu

    2002-01-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions 10 B(n, αγ) 7 Li and 7 Li (p, n) 7 Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction 7 Li (p, n) 7 Be. The system devoted to the NCT is awaited in future. (K.H.)

  18. ORR irradiation experiment OF-1: accelerated testing of HTGR fuel

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Long, E.L. Jr.; Kania, M.J.; Thoms, K.R.; Allen, E.J.

    1977-08-01

    The OF-1 capsule, the first in a series of High-Temperature Gas-Cooled Reactor fuel irradiations in the Oak Ridge Research Reactor, was irradiated for more than 9300 hr at full reactor power (30 MW). Peak fluences of 1.08 x 10 22 neutrons/cm 2 (> 0.18 MeV) were achieved. General Atomic Company's magazine P13Q occupied the upper two-thirds of the test space and the ORNL magazine OF-1 the lower one-third. The ORNL portion tested various HTGR recycle particles and fuel bonding matrices at accelerated flux levels under reference HTGR irradiation conditions of temperature, temperature gradient, and fast fluence exposure

  19. Acute tolerance of hyperfractionated accelerated total body irradiation

    International Nuclear Information System (INIS)

    Latz, D.; Schraube, P.; Wannenmacher, M.

    1996-01-01

    Background: Acute side effects of total body irradiation lead to intense molestations of the patients. Therefore, it is desirable to take measures to reduce these side effects. In a retrospective study the frequency on acute side effects of a hyperfractionated accelerated total body irradiation was assessed and compared to frequencies of other exposure schedules published in the literature. Additionally the influence of ondansetron on the frequency of nausea and vormiting was investigated. Patients and Method: From 1989 to 1992, 76 patients (47 male, 29 female; median age 38 years) underwent total body irradiation before autologeous bone marrow transplantation. They received 3 daily doses of 1.20 Gy each every 4 h on 4 successive days to a total dose of 14,40 Gy. Thirty-nine patients received 3x8 mg (daily, intravenous or per os) ondansetron during the whole course of irradiation. Results: The most relevant side effects were nausea and vomiting. Patients, who did not receive ondansetron (n=37) showed a nausea and emesis rate of 73%. With ondansetron (n=39) nausea and emesis were reduced to 38%. Also the grade of severity of these side effects was reduced. Conclusions: Ondansetron proved to be an effective medicament for relieving nausea and vormiting during total body irradiation. The results obtained are in concordance with those published in the literature. (orig.) [de

  20. Accelerated color development of irradiated radiochromic dye films

    International Nuclear Information System (INIS)

    Chappas, W.J.

    1981-01-01

    The radiochromic dye films developed by Chalkley and McLaughlin are quickly becoming one of the principal methods for secondary dosimetry. Their useful dose and dose rate ranges, long-term color stability, small and flexible size, and ease of reading make them ideal for spatial dose distribution measurements in the complex targets often encountered in industry. At room temperature, however, their response is slow, requiring several hours after irradiation for full color development. This work examines the effect of humidity on the film's time response and describes a method for accelerating the film's color development. By keeping the film in a controlled humidity environment or through a simple heating technique, the film can be read in minutes instead of hours after irradiation. The results are shown to be identical to those of films stored for 24 hours at room temperature

  1. Irradiation-accelerated corrosion of reactor core materials

    International Nuclear Information System (INIS)

    Bartels, David; Was, Gary; Jiao, Zhijie

    2012-09-01

    The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, but also applies to most all other GenIV concepts. Of these four drivers, the combination of radiation and corrosion presents a unique and extremely challenging environment for materials, for which an understanding of the fundamental science is essentially absent. Irradiation can affect corrosion or oxidation in at least three different ways. Radiation interaction with water results in the decomposition of water into radicals and oxidizing species that will increase the electrochemical corrosion potential and lead to greater corrosion rates. Irradiation of the solid surface can produce excited states that can alter corrosion, such as in the case of photo-induced corrosion. Lastly, displacement damage in the solid will result in a high flux of defects to the solid-solution interface that can alter and perhaps, accelerate interface reactions. While there exists reasonable understanding of how corrosion is affected by irradiation of the aqueous environment, there is little understanding of how irradiation affects corrosion through its impact on the solid, whether metal or oxide. The reason is largely due to the difficulty of conducting experiments that can measure this effect separately. We have undertaken a project specifically to separate the several effects of irradiation on the mechanisms of corrosion. We seek to answer the question: How does radiation damage to the solution-oxide couple affect the oxidation process differently from radiation damage to either component alone? The approach taken in this work is to closely compare corrosion accelerated by (1) proton irradiation, (2) electron irradiation, and (3) chemical corrosion potential effects alone, under typical PWR operating conditions at 300 deg. C. Both 316 stainless steel and zirconium are to be studied. The proton

  2. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  3. Radiation doses inside industrial irradiation installation with linear electron accelerator

    International Nuclear Information System (INIS)

    Lima, Alexandre R.; Pelegrineli, Samuel Q.; Alo, Gabriel F.; Silva, Francisco C.A. Da

    2015-01-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  4. 2 MeV, 60 kW dual-beam type electron accelerator irradiation facility

    International Nuclear Information System (INIS)

    Yotsumoto, Keiichi; Kanazawa, Takao; Haruyama, Yasuyuki; Agematsu, Takashi; Mizuhashi, Kiyoshi; Sunaga, Hiromi; Washino, Masamitsu; Tamura, Naoyuki

    1984-02-01

    The specification of new irradiation facility which has been constructed from 1978 through 1981 as the replacement of 1st Accelerator of JAERI, TRCRE are described. The accelerator is the Cockcroft-Walton type and both vertical and horizontal accelerating tubes are arranged on a single high voltage generator. Transferring of the high voltage to the horizontal accelerating tube is performed with the high voltage changing system in the pressure vessel. The output ratings of the accelerator are 2 MV of acceleration voltage and 30 mA of beam current. By providing the dual beam system, two irradiation rooms, one for vertical and the other for horizontal beam, are independently operationable. Persons can enter the horizontal irradiation room for experimental setting even when the vertical irradiation room is in operation. The specification of the buildings, the exhaust air treatment system, the irradiation conveyor and the safety observation system are also described. (author)

  5. The application analysis of high energy electron accelerator in food irradiation processing

    International Nuclear Information System (INIS)

    Deng Wenmin; Chen Hao; Feng Lei; Zhang Yaqun; Chen Xun; Li Wenjun; Xiang Chengfen; Pei Ying; Wang Zhidong

    2012-01-01

    Irradiation technology of high energy electron accelerator has been highly concerned in food processing industry with its fast development, especially in the field of food irradiation processing. In this paper, equipment and research situation of high energy electron accelerator were collected, meanwhile, the similarities and differences between high energy electron beam and 60 Co γ-rays were discussed. In order to provide more references of high energy electron beam irradiation, the usages of high energy electron in food irradiation processing was prospected. These information would promote the development of domestic food irradiation industry and give a useful message to irradiation enterprises and researchers. (authors)

  6. Rotational total skin electron irradiation with a linear accelerator

    Science.gov (United States)

    Evans, Michael D.C.; Devic, Slobodan; Parker, William; Freeman, Carolyn R.; Roberge, David; Podgorsak, Ervin B.

    2008-01-01

    The rotational total skin electron irradiation (RTSEI) technique at our institution has undergone several developments over the past few years. Replacement of the formerly used linear accelerator has prompted many modifications to the previous technique. With the current technique, the patient is treated with a single large field while standing on a rotating platform, at a source‐to‐surface distance of 380 cm. The electron field is produced by a Varian 21EX linear accelerator using the commercially available 6 MeV high dose rate total skin electron mode, along with a custom‐built flattening filter. Ionization chambers, radiochromic film, and MOSFET (metal oxide semiconductor field effect transistor) detectors have been used to determine the dosimetric properties of this technique. Measurements investigating the stationary beam properties, the effects of full rotation, and the dose distributions to a humanoid phantom are reported. The current treatment technique and dose regimen are also described. PACS numbers: 87.55.ne, 87.53.Hv, 87.53.Mr

  7. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-01-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  8. Basic Design Study on 1-MV Electrostatic Accelerator for ion irradiation

    International Nuclear Information System (INIS)

    Cho, Yongsub; Kim, Kyeryung; Lee, Chanyoung

    2014-01-01

    The KOMAC (KOrea Multi-purpose Accelerator Complex) has electrostatic ion accelerators whose terminal voltages are less than 100kV. To extend ion beam irradiations with higher energy ions for industrial purposes, an electrostatic accelerator of 1-MV terminal voltage should have been studied. For industrial applications, the most important features of the accelerator are high current and high reliability for high irradiation dose and high through-put with high current and long irradiation time. The basic study on 1-MV electrostatic ion accelerator for industrial applications has been done. The key components are a high voltage power supply, an ion source, and an accelerating column. The feasibility study for fabrication is being performed. Especially the R and D for ion source is required. The 1-MV ion accelerator will be constructed with domestic companies and installed in the beam application research building, which is under construction in the site of KOMAC at Gyeongju

  9. Characteristic lesions in mouse retina irradiated with accelerated iron particles

    International Nuclear Information System (INIS)

    Malachowski, M.J.; Philpott, D.E.; Corbett, R.L.; Tobias, C.A.

    1981-01-01

    A program is underway to determine the radiation hazards of HZE particles using the Bevalac, a heavy-ion accelerator at LBL. Our earlier work with helium, carbon, neon, and argon particles, and exposure to rats to HZE particles in space flight demonstrated some deleterious biological effects. TEM studies have shown that some visual cells were missing and dislocated; these were termed channel lesions. Recently obtained is evidence that a single iron HZE particle may affect a series of cells. Mice were irradiated with 0.1, 0.3, 1, 10, or 25 rad of 590 MeV/amu initial kinetic energy iron particles in groups of 10 animals per dose point. Irradiated and control animals were sacrificed at intervals from one week to two years postirradiation. The eye samples were dehydrated, critical points dried with freon, fractured, and Au-Pd coated for SEM, or plastic embedded, sectioned, and stained for TEM. Additionally, dry fractured samples viewed with the SEM were embedded in plastic, sectioned, and stained for the TEM. Characteristic tunnel shaped lesions were observed with the SEM. Stereo pairs showed tunnels of various lengths up to 100 μm. Light microscopy of serially cut sections from the same material had vacuoles (V) extending the same length. TEM of the same specimen and specimens prepared only for TEM exhibited large vacuoles, greater than or equal to 2 μm, in the inner segment (IS) and outer segment (OS) layers. Severe membrane disruption was found bordering the vacuoles and gross nuclear degeneration (ND) and loose tissue (LT) were seen in the outer nuclear layer (ONL). The number of lesions increased with increasing dose. Microscopy of the control retina failed to demonstrate similar lesions

  10. Intestinal complications following accelerated fractionated X-irradiation

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.; Poulakos, L.; Osborne, J.W.

    1990-01-01

    Due to paucity of suitable animal models, it has been difficult to study the development of long-term intestinal complications following fractionated irradiation. We recently developed a model which allows multiple radiation exposures of a short segment of rat ileum without the need for repeated surgery. In the present series, this model was used to study the influence of shortening the total treatment time (accelerated fractionation) on development of radiation enteropathy. Male rats were orchiectomized and a short segment of distal ileum was transposed to the scrotum. Starting 3 weeks after surgery, the scrotum containing the intestinal segment was X-irradiated with 20 fractions of 2.8 Gy (total dose 56 Gy). Two fractionation schedules were compared: one fraction per day (total treatment time 26 days) and 3 fractions per day (total treatment time 7 days). Actuarial survival curves were obtained, and the degree of radiation injury was assessed 2, 8 and 26 weeks after the last radiation exposure using a semiquantitative histopathologic scoring system. There was no mortality from acute radiation injury in either treatment group. All animals of the 1-fraction/day group survived the observation period (26 weeks). In the 3-fraction/day group, there was significant mortality due to intestinal obstruction, and cumulative mortality at 26 weeks was 100%. Radiation injury, as assessed by the histopathologic scoring system, was also more pronounced in this group than in the 1-fraction/day group. We conclude that shortening the total treatment time significantly increases the severity of late intestinal complications. Our data are suggestive of an association between acute mucosal damage and chronic radiation injury of the small intestine. (orig.)

  11. Linear accelerator: a reproducible, efficacious and cost effective alternative for blood irradiation.

    Science.gov (United States)

    Shastry, Shamee; Ramya, B; Ninan, Jefy; Srinidhi, G C; Bhat, Sudha S; Fernandes, Donald J

    2013-12-01

    The dedicated devices for blood irradiation are available only at a few centers in developing countries thus the irradiation remains a service with limited availability due to prohibitive cost. To implement a blood irradiation program at our center using linear accelerator. The study is performed detailing the specific operational and quality assurance measures employed in providing a blood component-irradiation service at tertiary care hospital. X-rays generated from linear accelerator were used to irradiate the blood components. To facilitate and standardize the blood component irradiation, a blood irradiator box was designed and fabricated in acrylic. Using Elekta Precise Linear Accelerator, a dose of 25 Gy was delivered at the centre of the irradiation box. Standardization was done using five units of blood obtained from healthy voluntary blood donors. Each unit was divided to two parts. One aliquot was subjected to irradiation. Biochemical and hematological parameters were analyzed on various days of storage. Cost incurred was analyzed. Progressive increase in plasma hemoglobin, potassium and lactate dehydrogenase was noted in the irradiated units but all the parameters were within the acceptable range indicating the suitability of the product for transfusion. The irradiation process was completed in less than 30 min. Validation of the radiation dose done using TLD showed less than ± 3% variation. This study shows that that the blood component irradiation is within the scope of most of the hospitals in developing countries even in the absence of dedicated blood irradiators at affordable cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Wear studies in the shearing process by means of irradiated tools; Etudes d'usure dans les operations de cisaillement, au moyen d'outils irradies; Issledovaniya problemy iznosa v protsesse skalyvaniya posredstvom obluchennykh instrumentov; Estudios de desgaste en las operaciones de cizallamiento, realizados con ayuda de herramientas irradiadas

    Energy Technology Data Exchange (ETDEWEB)

    Sata, Toshio; Abe, Kunio; Nakajima, Kiyoshi [Institute of Physical and Chemical Research, Komagome, Bunkyo-Ku, Tokyo (Japan)

    1962-01-15

    Tool wear in the shearing of sheet metals was studied with punches and dies of high-speed steel irradiated in an atomic pile. Circular discs 10 mm in diameter were punched from 0.5-mm-thick low-carbon steel, stainless steel and silicon steel in dry and lubricated states. After punching, the radioactivity of the discs and the holes was measured. When the radioactive die was replaced by a non-active one, little radioactivity was detected on the discs, while the radioactivity of the holes scarcely varied. This proved that the wear of the die can be found from the radioactivity of the discs, and that of the punch from the radioactivity of the holes. By this method the wear of the punch and die was followed by using different lubricants and sheet metals with the following results: (1) At the beginning of punching, the wear rates of both punch and die are very large but rapidly decrease, becoming eventually stationary after punching about four to five hundred pieces. (2) The wear rate of the punch is about 20% greater than that of the die. (3) Lubricants with extreme pressure additives, such as chlorine, phosphorus or sulphur, reduce tool wear, while refined mineral oils give little improvement. (4) The heaviest tool wear occurs when punching the harder sheet metals. Tool wear for stainless steel is about three times, and for silicon steel about six times, as large as for low-carbon steel. (author) [French] On a etudie l'usure des outils utilises pour le cisaillement de plaques de metal en se servant de poincons et de matrices en acier rapide irradies dans line pile atomique. Des pastilles de 10 mm de diametre ont ete decoupees, a sec et avec lubrifiants, dans des toles de 0,5 mm d'epaisseur d'acier pauvre en carbone, d'acier inoxydable et d'acier riche en silicium. Apres le poinconnage, on a mesure la radioactivite des pastilles et des trous. Lorsqu'on remplacait la matrice radioactive par une autre non radioactive, on ne detectait guere de radioactivite sur les

  13. An Economic Analysis of Electron Accelerators and Cobalt-60 for Irradiating Food

    OpenAIRE

    Morrison, Rosanna Mentzer

    1989-01-01

    Average costs per pound of irradiating food are similar for the electron accelerator and cobalt-60 irradiators analyzed in this study, but initial investment costs can vary by $1 million. Irradiation costs range from 0.5 to 7 cents per pound and decrease as annual volumes treated increase. Cobalt-60 is less expensive than electron beams for annual volumes below 50 million pounds. For radiation source requirements above the equivalent of 1 million curies of cobalt-60, electron beams are more e...

  14. Economic efficiency analysis of electron accelerator for irradiation processing

    International Nuclear Information System (INIS)

    Shi Huidong; Chen Ronghui

    2003-01-01

    The fixed assets, running cost and economic efficiency were discussed in this paper. For building electron accelerator of 10 MeV and 3 kW, the running cost is one time higher than building cobalt source at 2.22 x 10 15 Bq, but economic efficiency of building a electron accelerator is much higher than building a cobalt source

  15. Evaluation of some commercial grade polymers as possible dosimeters for technological irradiations in electron accelerators

    CERN Document Server

    Bryl-Sandelewska, T

    2002-01-01

    Dosimetric properties of two kinds of clear polymethylmethacrylate (PMMA)and one kind of polystyrene (PS) sheets in technological accelerator irradiations, are presented. Absorbance of the sheets and its dependence on the dose have been measured at a suitable wavelength using a UV/VIS spectrophotometer. Both kind PMMA can be used for technological dose measurements but each of them in the different range of the doses (approx 3 to approx 30 kGy and approx 30 to above 200 kGy). Heating the samples after irradiation accelerates the stabilization of the absorbance, which change slowly during the storage of the samples if not heated.Absorbance of clear PS sheets decreases very much during the storage after irradiation, and heating of the samples does not accelerate the stabilization of the value. It can be said that the Ps investigated is not suitable for technological dose measurements in accelerator i radiations.

  16. Evaluation of some commercial grade polymers as possible dosimeters for technological irradiations in electron accelerators

    International Nuclear Information System (INIS)

    Bryl-Sandelewska, T.; Panta, P.P.

    2002-01-01

    Dosimetric properties of two kinds of clear polymethylmethacrylate (PMMA)and one kind of polystyrene (PS) sheets in technological accelerator irradiations, are presented. Absorbance of the sheets and its dependence on the dose have been measured at a suitable wavelength using a UV/VIS spectrophotometer. Both kind PMMA can be used for technological dose measurements but each of them in the different range of the doses (∼ 3 to ∼30 kGy and ∼ 30 to above 200 kGy). Heating the samples after irradiation accelerates the stabilization of the absorbance, which change slowly during the storage of the samples if not heated.Absorbance of clear PS sheets decreases very much during the storage after irradiation, and heating of the samples does not accelerate the stabilization of the value. It can be said that the Ps investigated is not suitable for technological dose measurements in accelerator i radiations. (author)

  17. Acceleration of Extractability from Seaweed, Kombu, by Irradiation

    International Nuclear Information System (INIS)

    Suzuki, T.; Yoshie, Y.; Shirai, T.; Hirano, T.

    1993-01-01

    The stock of brown alga, kombu, is used for Japanese dishes. Makombu Laminaria japonica cut into 1×1cm squares was irradiated at dose levels of 1, 10, and 100kGy under moisture contents of 10 or 40%, and then boiled up to 30min. Nitrogen, glutamic acid, and sugars in the kombu extracts were determined. When kombu was irradiated with a dose of 10 and 100kGy at 10% moisture, the amounts of extractive nitrogen boiled for 2 and 5min were about 1.4 times as many as those of non-irradiated control. Glutamic acid, one of the main constituents of delicious taste in kombu, was also highly extracted during 2 and 5min boiling in comparison with that of non-irradiated kombu. However, there were no significant differences in the amounts of either extractive nitrogen or glutamic acid after 30min boiling in any of samples. Sugars which deteriorated the quality of the kombu stock due to viscosity were dissolved in high amounts at a dose level of 100kGy. The amount of solubilized sugars from irradiated samples of 40% moisture was higher than that of 10% moisture, but no significant change was observed in other extracted substances during heating. From these results, the irradiation dose level of 10kGy was appropriate to obtain good kombu stock as a result of increased extractability

  18. Centrifugation after irradiation of red blood cells does not accelerate haemolysis.

    Science.gov (United States)

    Weiss, Dominik R; Goehring, Jasmin; Weisbach, Volker; Strasser, Erwin F; Ringwald, Juergen; Zimmermann, Robert; Eckstein, Reinhold

    2011-01-01

    For intrauterine transfusion and some other rare indications, irradiation and washing or adjustment to an elevated haematocrit is necessary. No data are currently available indicating whether irradiation of red blood cell concentrates (RBCs) might impair the mechanical stability of erythrocytes during centrifugation leading to elevated haemolysis. Consequently, if irradiation and centrifugation of RBCs is necessary, there is no definitive recommendation about the preferred sequence of steps. We divided 20 RBC units that were not older than 9 days into two subunits. These subunits were prepared to yield irradiated RBCs with an elevated haematocrit, as they are used for intrauterine transfusion. One subunit was centrifuged and then irradiated, the other subunit was irradiated and then centrifuged. The units were evaluated in vitro before preparation and on days 1 and 7. We could not find any difference in the haemolysis rate, extracellular LDH or alpha-HBDH between the two groups of RBCs. This observation indicates that centrifugation after irradiation of RBCs does not accelerate haemolysis. A similar ATP content in the two subunits demonstrated no difference in energy metabolism. The extracellular potassium concentration was significantly lower in the subunits washed after irradiation. There is no difference in the haemolysis caused by centrifugation between irradiated and non-irradiated RBCs. However, it is well known that washing RBCs after irradiation significantly lowers the potassium content. Summarising these two findings leads to the conclusion that it is optimal first to irradiate and then to wash RBCs.

  19. Radiosensitivity of chlorella after medium energy accelerated electron irradiation

    International Nuclear Information System (INIS)

    Roux, J.C.

    1966-06-01

    The survival curves (capability of multiplication) of chlorella pyrenoidosa after irradiations can be used for soft electrons (0.65 and 1 MeV), hence penetrating into only 2 to 4 millimeters of water: the algae are laying on porous membranes and the doses are calculated from the power of the electron beam measured by the electric current on a metallic target or by Fricke's dosimetry. With these techniques, it is showed and discussed the part of anoxia in the radioprotection (magnitude or reduction of the dose calculated from the slope of survival curves: 2.5 ) that is more important than the restoration studied by the fractionation of the dose. The 0.65 and 1 MeV electrons have a biologic effect lesser than 180 keV X-rays (RBE - relative biological efficiency - calculated on the slope of survival curves is 0.92 in aerated irradiation, 0.56 in the deoxygenated irradiation). (author) [fr

  20. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  1. Accelerated irradiation test of gundremmingen reactor vessel trepan material

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279 degrees C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed

  2. Accelerated irradiation test of Gundremmingen reactor vessel trepan material

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.R. [Materials Engineering Associates, Inc., Lanham, MD (United States)

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279{degrees}C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed.

  3. Evaluation of the effectiveness of packed red blood cell irradiation by a linear accelerator.

    Science.gov (United States)

    Olivo, Ricardo Aparecido; da Silva, Marcus Vinícius; Garcia, Fernanda Bernadelli; Soares, Sheila; Rodrigues Junior, Virmondes; Moraes-Souza, Helio

    2015-01-01

    Irradiation of blood components with ionizing radiation generated by a specific device is recommended to prevent transfusion-associated graft-versus-host disease. However, a linear accelerator can also be used in the absence of such a device, which is the case of the blood bank facility studied herein. In order to evaluate the quality of the irradiated packed red blood cells, this study aimed to determine whether the procedure currently employed in the facility is effective in inhibiting the proliferation of T lymphocytes without damaging blood components. The proliferation of T lymphocytes, plasma potassium levels, and the degree of hemolysis were evaluated and compared to blood bags that received no irradiation. Packed red blood cell bags were irradiated at a dose of 25Gy in a linear accelerator. For this purpose, a container was designed to hold the bags and to ensure even distribution of irradiation as evaluated by computed tomography and dose-volume histogram. Irradiation was observed to inhibit the proliferation of lymphocytes. The percentage of hemolysis in irradiated bags was slightly higher than in non-irradiated bags (p-value >0.05), but it was always less than 0.4% of the red cell mass. Although potassium increased in both groups, it was more pronounced in irradiated red blood cells, especially after seven days of storage, with a linear increase over storage time. The findings showed that, at an appropriate dosage and under validated conditions, the irradiation of packed red blood cells in a linear accelerator is effective, inhibiting lymphocyte proliferation but without compromising the viability of the red cells. Copyright © 2015 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  4. POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    Directory of Open Access Journals (Sweden)

    Mariapompea Cutroneo

    2015-06-01

    Full Text Available Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer.

  5. SATIF-2 shielding aspects of accelerators, targets and irradiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field

  6. Induction of the Tn10 Precise Excision in E. coli Cells after Accelerated Heavy Ions Irradiation

    CERN Document Server

    Zhuravel, D V

    2003-01-01

    The influence of the irradiation of different kinds on the indication of the structural mutations in the bacteria Escherichia coli is considered. The regularities of the Tn10 precise excision after accelerated ^{4}He and ^{12}C ions irradiations with different linear energy transfer (LET) were investigated. Dose dependences of the survival and relative frequency of the Tn10 precise excision were obtained. It was shown, that the relative frequency of the Tn10 precise excision is the exponential function from the irradiation dose. Relative biological efficiency (RBE), and relative genetic efficiency (RGE) were calculated, and were treated as the function of the LET.

  7. Whole-body X-irradiation of mice accelerates polyploidization of hepatocytes

    International Nuclear Information System (INIS)

    Shima, A.; Egami, N.

    1985-01-01

    Male C57BL/6 mice were whole-body irradiated with 4.75 gy of X-rays at the age of 2 months and killed at 2, 6, 12 and 19 months after irradiation. The percentage survival began to decline earlier and faster in the irradiated group than the controls up to 19 months after exposure when the study was terminated. The nuclear DNA content of individual hepatocytes was measured by a Feulgen-DNA microfluorometric method, and hepatocytes were classified into various ploidy classes. In the irradiated mice, the degree of polyploidization was significantly higher than the controls by 2 months after exposure and steadily increased up to 6 months after exposure. Thereafter, however, a slow return to the control level was found up to 19 months after irradiation. These results appear to support a hypothesis that radiation accelerates the ageing process as judged from hepatocyte polyploidization. (author)

  8. Preliminary research concerning the using of electron accelerator for irradiation of fresh seasonal fruits

    International Nuclear Information System (INIS)

    Ferdes, O.; Stroia, A.L.; Potcoava, A.; Cojocaru, M.; Minea, R.; Oproiu, C.

    1994-01-01

    There were performed preliminary electron-beam irradiation of strawberries, cherries, and sour cherries. The irradiations were carried out with the IPTRD's electron acceleration at 6 MeV, at different dose-rates, particularly at 1-3 kGy for strawberries, and 0.5-2.0 kGy for cherries. The dosimetry was performed using a PTW medical dosemeter. After irradiation the samples were controlled and preserved at 8-10 o C, 75-85% r.h. The fruits were then analysed for organoleptic and nutritional preservation characteristics , sugars, acidity, C-vitamin, etc. They were also examined in order to find criteria for identification of irradiated fruits. The results show a good shelf-life extension for 5-15 days and the suggest the capability of using the electron-beam irradiation technologies in agro-food industry. (Author)

  9. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  10. Radionuclide and electric accelerator sources for food irradiation

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Matthews, S.M.

    1985-01-01

    Radiation processing of food requires radiation sources with high intensity, penetrability, reliability, and the flexibility to be adapted to current food processing techniques. Current proposed regulations limit the radiation sources which can be utilized to radionuclides or electrically-driven accelerators. Therefore, the power, throughput, and use efficiency of these sources are important factors affecting the design, installation, operation, and economics of large-scale food-processing facilities. An analysis of the advantages and disadvantages of these sources is presented here, with special attention to the current status of both technologies, and with emphasis on the needs of the food-processing industry. (author)

  11. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Perks, J; Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States); Lucero, S [UC Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specifically mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.

  12. Calculation of flux density distribution on irradiation field of electron accelerator

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1977-03-01

    The simple equation of flux density distribution in the irradiation field of an ordinary electron accelerator is a function of the physical parameters concerning electron irradiation. Calculation is based on the mean square scattering angle derived from a simple multiple scattering theory, with the correction factors of air scattering, beam scanning and number transmission coefficient. The flux density distribution was measured by charge absorption in a graphite target set in the air. For the calculated mean square scattering angles of 0.089-0.29, the values of calculation agree with those by experiment within about 10% except at large scattering angles. The method is applicable to dose evaluation of ordinary electron accelerators and design of various irradiators for radiation chemical reaction. Applicability of the simple multiple scattering theory in calculation of the scattered flux density and periodical variation of the flux density of scanning beam are also described. (auth.)

  13. A non-invasive method for fractionated steriotactic irradiation of brain tumors with linear accelerator

    International Nuclear Information System (INIS)

    Hariz, M.I.; Laitinen, L.V.; Henriksson, R.; Saeterborg, N.-E.; Loefroth, P.-O.

    1990-01-01

    A new technique for fractionated stereotactic irradiation of intracranial lesions is described. The treatment is based on a versatile, non-invasive interface for stereotactic localization of the brain target imaged by computed tomography (CT), angiography or magnetic resonance tomography (MRT), and subsequent repetitive stereotactic irradiation of the target using a linear accelerator. The fractionation of the stereotactic irradiation was intended to meet the requirements of the basic principles of radiobiology. The radiophysical evaluation using phantoms, and the clinical results in a small number of patients, demonstrated a good reproducibilit between repeated positionings of the target in the isocenter of the accelerator, and a high degree of accuracy in the treatment of brain lesions. (authors). 28 refs.; 11 figs.; 1 tab

  14. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials

    Science.gov (United States)

    Shao, Lin; Gigax, Jonathan; Chen, Di; Kim, Hyosim; Garner, Frank A.; Wang, Jing; Toloczko, Mychailo B.

    2017-10-01

    Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.

  15. A permanent magnet electron beam spread system used for a low energy electron irradiation accelerator

    International Nuclear Information System (INIS)

    Huang Jiang; Xiong Yongqian; Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Yu Tiaoqin; Fan Mingwu; Yang Bo

    2014-01-01

    The development of irradiation processing industry brings about various types of irradiation objects and expands the irradiation requirements for better uniformity and larger areas. This paper proposes an innovative design of a permanent magnet electron beam spread system. By clarifying its operation principles, the author verifies the feasibility of its application in irradiation accelerators for industrial use with the examples of its application in electron accelerators with energy ranging from 300 keV to 1 MeV. Based on the finite element analyses of electromagnetic fields and the charged particle dynamics, the author also conducts a simulation of electron dynamics in magnetic field on a computer. The results indicate that compared with the traditional electron beam scanning system, this system boosts the advantages of a larger spread area, non-power supply, simple structure and low cost, etc., which means it is not only suitable for the irradiation of objects with the shape of tubes, strips and panels, but can also achieve a desirable irradiation performance on irregular constructed objects of large size. (authors)

  16. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  17. 7.5 MeV High Average Power Linear Accelerator System for Food Irradiation Applications

    International Nuclear Information System (INIS)

    Eichenberger, Carl; Palmer, Dennis; Wong, Sik-Lam; Robison, Greg; Miller, Bruce; Shimer, Daniel

    2005-09-01

    In December 2004 the US Food and Drug Administration (FDA) approved the use of 7.5 MeV X-rays for irradiation of food products. The increased efficiency for treatment at 7.5 MeV (versus the previous maximum allowable X-ray energy of 5 MeV) will have a significant impact on processing rates and, therefore, reduce the per-package cost of irradiation using X-rays. Titan Pulse Sciences Division is developing a new food irradiation system based on this ruling. The irradiation system incorporates a 7.5 MeV electron linear accelerator (linac) that is capable of 100 kW average power. A tantalum converter is positioned close to the exit window of the scan horn. The linac is an RF standing waveguide structure based on a 5 MeV accelerator that is used for X-ray processing of food products. The linac is powered by a 1300 MHz (L-Band) klystron tube. The electrical drive for the klystron is a solid state modulator that uses inductive energy store and solid-state opening switches. The system is designed to operate 7000 hours per year. Keywords: Rf Accelerator, Solid state modulator, X-ray processing

  18. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  19. Analysis of uranium and thorium thin targets irradiated at the PSI accelerator

    International Nuclear Information System (INIS)

    Wenger, H.U.; Botta, F.; Chawla, R.; Daum, M.; Gavillet, D.; Hegedues, F.; Ingold, F.; Kopajtic, Z.; Ledergerber, G.; Linder, H.P.; Roellin, S.; Wichser, J.; Wyss, F.

    1997-01-01

    The aim of the ATHENA programme at PSI is to provide experimental data for the validation of theoretical models in nucleon-meson transport codes used for accelerator-based transmutation studies. Emphasis is placed on the mass yield distribution of spallation and fission products for irradiated thin actinide targets. This paper presents results of an irradiation experiment carried out with 238 UO 2 and 232 ThO 2 . Isobaric production cross-sections of fission and spallation products based on mass spectrometric measurements and γ-spectroscopy are compared with calculations carried out using the HETC code and the RAL high-energy fission model. (author) 6 figs., 8 refs

  20. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  1. Water and sludge treatment device provided with a system for irradiating by accelerated charged particles

    International Nuclear Information System (INIS)

    Azam, Guy; Bensussan, Andre; Levaillant, Claude; Huber, Harry; Mevel, Emile; Tronc, Dominique.

    1977-01-01

    Treatment system for a fluid made up of water and sludge, provided with a system for irradiating the fluid by a beam of accelerated charged particles comprising means for obtaining a constant flow of the fluid to be treated, facilities for monitoring this flow, an irradiation channel located on the path of the beam, in which the fluid to be treated can flow, a portion of this channel having at least one window transparent to the beam of accelerated particles. A safety system associated with the system for monitoring the characteristics of the beam and with the system for monitoring the flow of the fluid to be treated, stops the flow of the fluid and the recycling of the fluid defectively treated [fr

  2. Charged-particle acceleration through laser irradiation of thin foils at Prague Asterix Laser System

    International Nuclear Information System (INIS)

    Torrisi, Lorenzo; Cutroneo, Maria; Cavallaro, Salvatore; Musumeci, Paolo; Calcagno, Lucia; Wolowski, Jerzy; Rosinski, Marcin; Zaras-Szydlowska, Agnieszka; Ullschmied, Jiri; Krousky, Eduard; Pfeifer, Miroslav; Skala, Jiri; Velyhan, Andreiy

    2014-01-01

    Thin foils, 0.5–50 μm in thickness, have been irradiated in vacuum at Prague Asterix Laser System in Prague using 10 15–16  W cm −2 laser intensity, 1315 nm wavelength, 300 ps pulse duration and different focal positions. Produced plasmas from metals and polymers films have been monitored in the forward and backward directions. Ion and electron accelerations have been investigated by using Thomson parabola spectrometer, x-ray streak camera, ion collectors and SiC semiconductor detectors, the latter employed in time-of-flight configuration. Ion acceleration up to about 3 MeV per charge state was measured in the forward direction. Ion and electron emissions were detected at different angles as a function of the irradiation conditions. (paper)

  3. Disinfection of sludge and waste-water by irradiation with electrons of low accelerating voltage

    International Nuclear Information System (INIS)

    Holl, P.; Schneider, H.

    1975-01-01

    From the point of view of hygiene, sewage sludge and water accumulating in ever increasing quantities, some of which is used in agriculture, represent a potential threat to the health of man and beast, as well as to the environment. It is known that these chains of infection can be broken up by ionizing radiation. The use of natural ionizing radiation or electron radiation with high accelerating voltage has not been accepted in practice because the radiation cannot be cut off and the investment cost for electron accelerators with an accelerating voltage of more than 1 MV is very high. These disadvantages may be overcome by using an electron accelerator with low accelerating voltage. Complex experiments have shown that it is not necessary to adapt the thickness of sewage sludge or water layer to the range of electrons. The layer to be irradiated may be much thicker if the substrate is revolved during irradiation. The advantages of this method are low accelerating voltage for the electrons and hence less costly radiation shielding, complete absorption of the radiated energy by the substrate, and low investment and operating cost. The sterilizing effect of the process can be explained by the secondary reactions that take place in the water, in addition to the primary reactions, when irradiating with high specific ionizing density. It is known from experiments carried out by Muenzner that water irradiated with electrons of high specific ionization density, when added to bacterial cultures, will destroy them. This is explained by the Weiss radical theory of water, with reaction products such as H 2 , O 2 and H 2 O 2 . The success of this process is shown by experiments with Escherichia coli, tap water to which Salmonella senftenberg were added, and by the content of Enterobacteriaceae in various sludges as a function of the irradiation period, as well as by the rate at which various invariable species of strongilide larvae, eggs of Ascaris suum, Fasciola hepatica and

  4. Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation.

    Science.gov (United States)

    Perks, Julian R; Lucero, Steven; Monjazeb, Arta M; Li, Jian Jian

    2015-03-01

    Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose.

  5. The irradiation induced creep of graphite under accelerated damage produced by boron doping

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.

    1975-01-01

    The presence of boron enhances fast neutron irradiation damage in graphite by providing nucleation sites for interstitial loop formation. Doping with 11 B casues an increase in the irradiation induced macroscopic dimensional changes, which have been shown to result from an acceleration in the differential crystal growth rate for a given carbon atom displacement rate. Models of irradiation induced creep in graphite have centred around those in which creep is induced by internal stresses due to the anisotopic crystal growth, and those in which creep is activated by atomic displacements. A creep test on boron doped graphite has been performed in an attempt to establish which of these mechanisms is the determining factor. An isotropic nuclear graphite was doped to a 11 B concentration of 0.27 wt.%. The irradiation induced volume shrinkage rate at 750 0 C increased by a factor of 3 over that of the virgin graphite, in agreement with predictions from the earlier work, but the total creep strains were comparable in both doped and virgin samples. This observation supports the view that irradiation induced creep is dependent only on the carbon atom displacement rate and not on the internal stress level determined by the differential crystal growth rate. The implications of this result on the irradiation behaviour of graphite containing significant concentrations of boron are briefly discussed. (author)

  6. Localized irradiation of mouse legs using an image-guided robotic linear accelerator.

    Science.gov (United States)

    Kufeld, Markus; Escobar, Helena; Marg, Andreas; Pasemann, Diana; Budach, Volker; Spuler, Simone

    2017-04-01

    To investigate the potential of human satellite cells in muscle regeneration small animal models are useful to evaluate muscle regeneration. To suppress the inherent regeneration ability of the tibialis muscle of mice before transplantation of human muscle fibers, a localized irradiation of the mouse leg should be conducted. We analyzed the feasibility of an image-guided robotic irradiation procedure, a routine treatment method in radiation oncology, for the focal irradiation of mouse legs. After conducting a planning computed tomography (CT) scan of one mouse in its customized mold a three-dimensional dose plan was calculated using a dedicated planning workstation. 18 Gy have been applied to the right anterior tibial muscle of 4 healthy and 12 mice with immune defect in general anesthesia using an image-guided robotic linear accelerator (LINAC). The mice were fixed in a customized acrylic mold with attached fiducial markers for image guided tracking. All 16 mice could be irradiated as prevised without signs of acute radiation toxicity or anesthesiological side effects. The animals survived until scarification after 8, 21 and 49 days as planned. The procedure was straight forward and the irradiation process took 5 minutes to apply the dose of 18 Gy. Localized irradiation of mice legs using a robotic LINAC could be conducted as planned. It is a feasible procedure without recognizable side effects. Image guidance offers precise dose delivery and preserves adjacent body parts and tissues.

  7. Physics design of heavy-ion irradiation beam line on HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Zhu Fei; Peng Zhaohua; Hu Yueming; Jiao Xuesheng; Chen Dongfeng; Cao Yali

    2014-01-01

    Background: Heavy-ion microporous membrane is a new kind of filter material, which has prosperous application in the fields of medical and biological agents, electronic, food, environmental science, materials science, etc. Purpose: Polyester membranes were irradiated with 32 S produced by HI-13 tandem accelerator to develop a microporous membrane at CIAE, and the irradiation uniformity is determined by the beam distribution, also the microporous uniformity is required higher than 90%. Methods: An octupole magnet was used to correct the beam distribution from Gauss to uniform. Meanwhile, main parameters of beam line were given, and the alignment tolerances for optical elements were also analyzed. Results: Alignment tolerance of the optical elements could cause great influence on the beam center deviation in the process of correction, which would destroy the irradiation uniformity. Steering magnet was applied to meet with the design requirements. Conclusion: This study provides a practical and feasible way for industrial production of heavy-ion microporous membrane. (authors)

  8. Evaluation of time-accelerated irradiation method of elastomer by modulus-ultimate elongation profile

    International Nuclear Information System (INIS)

    Ito, Masayuki; Oka, Toshitaka; Hama, Yosimasa

    2009-01-01

    'Generalized modulus-ultimate elongation profile' was induced from the relationship between the modulus and the ultimate elongation of an elastomer that was quantitatively added crosslinking and scission. This profile can be used to evaluate the time-accelerated irradiation methods of ethylene-propylene-diene elastomer. The irradiation under low dose rate (0.33 kGy/h) at room temperature was the reference condition. The short-time irradiation condition was 4.2 kGy/h in 0.5 MPa oxygen at room temperature and 5.0 kGy/h in air at 70 o C. The former tended to bring about the higher ratio of scission than the reference condition; the latter tended to bring about the higher ratio of crosslinking.

  9. Microbiological Studies on the Influence of Combined Processes of Heat and Irradiation on the Survival of Saccharomyces Cerevisiae Var. Ellipsoideus; Etudes Microbiologiques sur l'Influence d'un Traitement Mixte par Chauffage et Irradiation sur la Survie de Saccharomyces Cerevisiae Var. Ellipsoideus; Mikrobiologicheskie issledovaniya vliyaniya sovmestnykh protsessov nagreva i oblucheniya na vyzhivanie saccharomyces Cerevisiae Var. Ellipsoideus; Estudios Microbiologicos de la Influencia del Calentamiento e Irradiacion Combinados Sobre la Supervivencia del Saccharomyces Cerevisiae Var. Ellipsoideus

    Energy Technology Data Exchange (ETDEWEB)

    Stehlik, G.; Kaindl, K. [Institute for Biology and Agriculture, Reaktorzentrum, Seibersdorf (Austria)

    1966-11-15

    In the framework of the Seibersdorf International Programme on Irradiation Preservation of Fruit and Fruit Juices one of the main items of research deals with the problem of the radiosensitization of microorganisms. To study the effect of heat and irradiation treatments on the survival of yeast cells (colony formation), a highly radioresistant strain, Saccharomyces cerevisiae var. ellipsoideus, grown in a semi-synthetic nutrient medium, was given a combined treatment of heating and gamma irradiation ({sup 60}Co source) at the beginning of its log phase. The heat treatment was applied either immediately before, during or immediately after the irradiation process. The temperature was varied between 20 Degree-Sign C and 52.5 Degree-Sign C. The irradiation treatment was carried out with a dose range of up to 0.3 x 10{sup 6} rad in a well-aired glass tube. The inhibiting effect of this combined treatment depends upon the sequence of heating and irradiation and shows the following results: the most effective combination is the simultaneous treatment of heating and irradiation; less effective is this combination wherein irradiation at room temperature follows the heating procedure; and most ineffective is the heating after irradiation at room temperature. The combined heat/irradiation treatment results in survival curves (survival fractions) which are straight lines in relation to the irradiation dose at a semi-logarithmic scale in the temperature range between room temperature and 45 Degree-Sign C. Above 45 Degree-Sign C the curves show, at doses lower than 30 krad, an increase of the survivals compared with the unirradiated sample. By comparing the slopes of the survival curves obtained at different temperatures, one can see that in the case of irradiation at temperatures higher than 40 Degree-Sign C there is a high synergistic effect for the simultaneous treatment, e.g. about 2 orders of magnitude at 150 krad. Based on these results the technological possibilities of

  10. Measurement of volatile evolution from polyurethane induced by accelerated ion beam irradiation

    International Nuclear Information System (INIS)

    Murphy, J.J.

    2003-01-01

    Irradiation of polymer samples using an accelerated beam of He 2+ ions passed through a 10μm thick window of havar foil has been performed. Such irradiation simulates the effects of large α radiation doses, on a vastly reduced time-scale. Analysis of volatiles evolved during irradiation is performed by a residual gas analyser (RGA), which is located close to the sample chamber. Presented in this paper are the results obtained during a radiation study on polyester/MDI based polyurethane materials. During high dose rate irradiation a number of high mass species were observed. A comparison between two similar polyurethanes formulated with slightly different polyesters indicated some differences. They were, however, too minor to link to specific degradation mechanisms. The dominant degradation products evident to the RGA at low dose rates were H 2 , CO and CO 2 . A series of polyurethane samples previously conditioned by γ irradiation at doses between 0 and 5MGy were irradiated in the ion beam. Identification of differences in trends in the rates of volatile evolution between these samples indicated the precise vacuum conditions at the time of irradiation had a major influence. There was also an indication that the surface of the sample had a small effect on rates of volatile evolution. Comparative plots of CO and CO 2 evolution for a series of 1MGy irradiations indicated variations in behaviour between samples with different γ doses. Evolution during the first 1MGy was inhibited for the unirradiated sample, the extent of inhibition diminished with increasing γ dose and was no longer evident in a sample with 1.5MGy γ dose. H 2 does not show an equivalent inhibition. Evidence for a low dose crosslinking reaction is put forward as a reason for the inhibition. Chemical reaction mechanisms are postulated and used to explain differences in the behaviour observed

  11. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  12. Shielding Aspects of Accelerators, Targets and Irradiation Facilities - SATIF-11 Workshop Proceedings Report

    International Nuclear Information System (INIS)

    2013-01-01

    Particle accelerators have evolved over the last decades from simple devices to powerful machines. In recent years, new technological and research applications have helped to define requirements while the number of accelerator facilities in operation, being commissioned, designed or planned has grown significantly. Their parameters, which include the beam energy, currents and intensities, and target composition, can vary widely, giving rise to new radiation shielding issues and challenges. Particle accelerators must be operated in safe ways to protect operators, the public and the environment. As the design and use of these facilities evolve, so must the analytical methods used in the safety analyses. These workshop proceedings review the state of the art in radiation shielding of accelerator facilities and irradiation targets. They also evaluate progress in the development of modelling methods used to assess the effectiveness of such shielding as part of safety analyses. The transport of radiation through shielding materials is a major consideration in the safety design studies of nuclear power plants, and the modelling techniques used may be applied to many other types of scientific and technological facilities. Accelerator and irradiation facilities represent a key capability in R and D, medical and industrial infrastructures, and they can be used in a wide range of scientific, medical and industrial applications. High-energy ion accelerators, for example, are now used not only in fundamental research, such as the search for new super-heavy nuclei, but also for therapy as part of cancer treatment. While the energy of the incident particles on the shielding of these facilities may be much higher than those found in nuclear power plants, much of the physics associated with the behaviour of the secondary particles produced is similar, as are the computer modelling techniques used to quantify key safety design parameters, such as radiation dose and activation levels

  13. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  14. The destruction of parasitic resistant stages in sewage sludge by irradiation with low accelerating voltage electrons

    International Nuclear Information System (INIS)

    Enigk, K.; Holl, P.; Dey-Hazra, A.; Polymer-Physik G.m.b.H. und Co. K.G., Tuebingen

    1975-01-01

    The destroying effect of ionizing radiation on parasitic resistant stages in sludge has been tested. Suitable for that process is an electron beam accelerator which will be provided with energy from the electric power supply network which can be switched on and off according to the requirements. Such modern utilities have an enormous beam capacity and a high operating safety. The process is working according to the continuous flow principle and at room temperature. In a series of 13 experiments the effect of different doses has been tested. A dose of 480 kRad (accelerating voltage: 400 kV, beam current: 10 mA , irradiation time: 24 sec.) can easily obtained in practical work and is economically acceptable. By these means approximately 97% of the following parasitic stages have been destroyed: undeveloped eggs of Ascaris suum, Trichuris suis, Fasciola hepatica and gastrointestinal strongylids of pigs, embryonated eggs of Capillaria obsignata and probably of Taenia spec. A few third-stage larvae of Oesophagostomum (Strongylidae) of pigs survived even 108 sec of irradiation; however, they did not develop to maturity in the definitive host. Approximately 25% of the sporulated oocysts of Eimeria tenella were still infective after 108 sec of irradiation. (orig.) [de

  15. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    Science.gov (United States)

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  16. Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2). 1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundam...

  17. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  18. Radiation recall secondary to adjuvant docetaxel after balloon-catheter based accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Wong, Nathan W.; Wong, William W.; Karlin, Nina J.; Gray, Richard J.

    2010-01-01

    For early stage breast cancer, wide local excision and post-operative whole breast irradiation is a standard treatment. If adjuvant chemotherapy is recommended, radiation is usually given after completion of chemotherapy. In recent years, accelerated partial breast irradiation (APBI) with balloon-cathetered based brachytherapy has become an option for selected patients. For these patients, adjuvant chemotherapy would have to be administered after radiation. The sequence of treatment with radiation followed by chemotherapy results in increased risk of radiation recall reaction (RRD) in these patients. Docetaxel is becoming a more commonly used drug as adjuvant treatment for breast cancer. Here we report a case of docetaxel induced RRD after APBI with balloon-cathetered based brachytherapy. Such reaction would have an adverse impact on the cosmetic outcome and quality of life of the patient. For patients who develop an intense skin reaction after the administration of docetaxel following APBI, RRD should be considered in the differential diagnosis.

  19. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  20. Air-electron stream interactions during magnetic resonance IGRT. Skin irradiation outside the treatment field during accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Park, Jong Min; Shin, Kyung Hwan; Wu, Hong-Gyun; Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho; Jeon, Seung Hyuck; Choi, Noorie

    2018-01-01

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [de

  1. Direct Experimental Evidence of Back-Surface Acceleration from Laser-Irradiated Foils

    International Nuclear Information System (INIS)

    Allen, M; Patel, P; Mackinnon, A; Price, D; Wilks, S; Morse, E

    2004-01-01

    Au foils were irradiated with a 100-TW, 100-fs laser at intensities greater than 10 20 W/cm 2 producing proton beams with a total yield of ∼ 10 11 and maximum proton energy of > 9 MeV. Removing contamination from the back surface of Au foils with an Ar-ion sputter gun reduced the total yield of accelerated protons to less than 1% of the yield observed without removing contamination. Removing contamination the front surface (laser-interaction side) of the target had no observable effect on the proton beam. We present a one-dimensional particle-in-cell simulation that models the experiment. Both experimental and simulation results are consistent with the back-surface acceleration mechanism described in the text

  2. Compact ILU-type electron accelerators as a base for industrial 4-sided irradiation systems for cable and tubes

    International Nuclear Information System (INIS)

    Auslender, V.L.; Nekhaev, V.E.; Panfilov, A.D.; Tuvik, A.A.

    1999-01-01

    The ILU-type industrial electron accelerators are developed in BINP sins 1967. Their energy range is 0.7-4.0 MeV at beam power of 20-50 kW. The comparison of the irradiation results after bilateral and four-sided irradiation of cables and tubes is given. It is shown that the required electron energy and beam power in the case of four-sided irradiation are sufficiently lower than in the case of bilateral irradiation, resulting in an increase of productive rate of the process and improvement of treatment quality. The installations for four-sided irradiation of cables and tubes are based on the industrial electron accelerators type ILU

  3. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions

    International Nuclear Information System (INIS)

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-01-01

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/μm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to 137 Cs γ-rays. The mutation frequency increased up to 105 keV/μm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/μm showed all or partial deletions of exons, while among γ-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not

  4. Accelerated Partial Breast Irradiation Consensus Statement From the American Society for Radiation Oncology (ASTRO)

    International Nuclear Information System (INIS)

    Smith, Benjamin D.; Arthur, Douglas W.; Buchholz, Thomas A.; Haffty, Bruce G.; Hahn, Carol A.; Hardenbergh, Patricia H.; Julian, Thomas B.; Marks, Lawrence B.; Todor, Dorin A. Ph.D.; Vicini, Frank A.; Whelan, Timothy J.; White, Julia; Wo, Jennifer Y.; Harris, Jay R.

    2009-01-01

    Purpose: To present guidance for patients and physicians regarding the use of accelerated partial-breast irradiation (APBI), based on current published evidence complemented by expert opinion. Methods and Materials: A systematic search of the National Library of Medicine's PubMed database yielded 645 candidate original research articles potentially applicable to APBI. Of these, 4 randomized trials and 38 prospective single-arm studies were identified. A Task Force composed of all authors synthesized the published evidence and, through a series of meetings, reached consensus regarding the recommendations contained herein. Results: The Task Force proposed three patient groups: (1) a 'suitable' group, for whom APBI outside of a clinical trial is acceptable, (2) a 'cautionary' group, for whom caution and concern should be applied when considering APBI outside of a clinical trial, and (3) an 'unsuitable' group, for whom APBI outside of a clinical trial is not generally considered warranted. Patients who choose treatment with APBI should be informed that whole-breast irradiation (WBI) is an established treatment with a much longer track record that has documented long-term effectiveness and safety. Conclusion: Accelerated partial-breast irradiation is a new technology that may ultimately demonstrate long-term effectiveness and safety comparable to that of WBI for selected patients with early breast cancer. This consensus statement is intended to provide guidance regarding the use of APBI outside of a clinical trial and to serve as a framework to promote additional clinical investigations into the optimal role of APBI in the treatment of breast cancer.

  5. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  6. Developments on the RF system for the Fusion Materials Irradiation Test Facility accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Riggin, D.M.

    1979-01-01

    The rf system for the Fusion Materials Irradiation Test (FMIT) accelerator is currently in the design phase at the Los Alamos Scientific Laboratory (LASL). The 35-MeV, 100-mA deuteron beam will require approximately 6 MW of rf power at 80 MHz. The EIMAC 8973 power tetrode, capable of a 600-kW cw output, has been chosen as the final amplifier tube for each of 15 amplifier chains. The final power stage of each chain is designed to perform as a linear Class B amplifier. Each low-power rf system (less than or equal to 100W) is to be phase, amplitude, and frequency controlled to provide a drive signal for each high-power amplifier. Beam dynamics for particle acceleration and for minimal beam spill require each rf amplifier output to be phase controlled to +-1 0 . The amplitude of the accelerating field must be held to +-1%. A varactor-tuned electronic phase shifter and a linear phase detector are under development for use in this system. To complement hardware development, analog computer simulations are being performed to optimize the closed-loop control characteristics of the system

  7. Progress report on the accelerator production of tritium materials irradiation program

    International Nuclear Information System (INIS)

    Maloy, S.A.; Sommer, W.F.; Brown, R.D.; Roberts, J.E.

    1997-01-01

    The Accelerator Production of Tritium (APT) project is developing an accelerator and a spoliation neutron source capable of producing tritium through neutron capture on He-3. A high atomic weight target is used to produce neutrons that are then multiplied and moderated in a blanket prior to capture. Materials used in the target and blanket region of an APT facility will be subjected to several different and mixed particle radiation environments; high energy protons (1-2 GeV), protons in the 20 MeV range, high energy neutrons, and low energy neutrons, depending on position in the target and blanket. Flux levels exceed 10 14 /cm 2 s in some areas. The APT project is sponsoring an irradiation damage effects program that will generate the first data-base for materials exposed to high energy particles typical of spallation neutron sources. The program includes a number of candidate materials in small specimen and model component form and uses the Los Alamos Spallation Radiation Effects Facility (LASREF) at the 800 MeV, Los Alamos Neutron Science Center (LANSCE) accelerator

  8. Air-electron stream interactions during magnetic resonance IGRT : Skin irradiation outside the treatment field during accelerated partial breast irradiation.

    Science.gov (United States)

    Park, Jong Min; Shin, Kyung Hwan; Kim, Jung-In; Park, So-Yeon; Jeon, Seung Hyuck; Choi, Noorie; Kim, Jin Ho; Wu, Hong-Gyun

    2018-01-01

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field.

  9. Response of the skin of hamsters to fractionated irradiation with X rays or accelerated carbon ions

    International Nuclear Information System (INIS)

    Leith, J.T.; Powers-Risius, P.; Woodruff, K.H.; McDonald, M.; Howard, J.

    1981-01-01

    The ventral thoracic skin of hamsters was irradiated with either single, split (two fractions given in 24 hr), or multiple (five fractions given daily) exposures of X rays or accelerated carbon ions using a 4-cm spread Bragg peak. Animals were positioned in the heavy-ion beam so that the ventral thoracic skin surface was 1 cm distal to the proximal peak of the modified beam. Early skin reactions from 6 to 30 days postirradiation were assessed. Using the average skin reactions produced in this period, it was found that the relative biological effect (RBE) for single doses of carbon ions was about 1.6 (5-17 Gy per fraction), for two fractions about 1.8 (5-17 Gy perfraction), and for five fractions about 1.9 (2.4-7.2 Gy per fraction). The fractional amount of sublethal damage repaired after carbon ion irradiation was about 0.3 (at dose levels of 2.4-8.0 Gy per fraction) compared to a value of about 0.45 (at dose levels of 60-13.0 Gy per fraction) found for the fractionated X irradiations, indicting about a 33% decrease in the relative amount of sublethal damage repaired after carbon ion irradiation in this position in the spread Bragg curve. Also, data were interpreted using plots of the reciprocal total dose needed to produce a given level of skin damage versus the dose per fraction used in the multifraction experiments, and of the RBE versus dose per fraction obtained from a nonparametric analysis of the responses. These approaches allow estimation of RBE at dose levels relevant to the clinical situation. Also, estimation may be made of the maximum permissible RBE by using the zero dose intercept value from the linear reciprocal dose plot. With this approach, the RBE at a dose level of 2 Gy is about 2.5 and the maximum RBE value is about 2.7

  10. Half-times of irradiation recovery in accelerated partialbreast irradiation: Incomplete recovery as a potentially dangerous enhancer of radiation damage

    Directory of Open Access Journals (Sweden)

    Fowler JF

    2013-12-01

    Full Text Available Purpose: To compare clinical results from accelerated partial breast irradiation with predictions from different half-times of recovery of radiation damage. Method: Three published results of excessive late complications led to an editorial which was a “wake up call” to the possible hazards of fractions spaced close together such as two fractions of 3.85 Gy a day on five consecutive days. These results are re-examined here using linear quadratic modelling with mono-exponential and bi-exponential recovery kinetics. Results: Although clinical results showed rather high proportions of severe complications, only in one of the three studies discussed in reference [1] complications were severe enough to cause it to be terminated. Since then other studies with the same doses have reported acceptable results. However, none of these complication rates are predicted to be tolerable, if mono-exponential kinetics with a single T ½ of ~4 hours is assumed. Conclusions: Better matches to clinical results can be found by assuming bi-exponential recovery with 50%-50% components of 0.3 hand 4 h, and α/β = 3 Gy, for late complications. There is continuing need for data from more clinical results, especially concerning various tumour types.

  11. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P. [IRCC, Candiolo (Italy)

    2011-10-15

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was < 10 mm in 33 patients (53%) and > 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long

  12. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P.

    2011-01-01

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long-term results are needed to assess

  13. Resonant absorption effects induced by polarized laser ligth irradiating thin foils in the tnsa regime of ion acceleration

    International Nuclear Information System (INIS)

    Torrisi, L.; Badziak, J.; Rosinski, M.; Zaras-Szydlowska, A.; Pfeifer, M.; Torrisi, A.

    2016-01-01

    Thin foils were irradiated by short pulsed lasers at intensities of 10 16−19 W/cm 2 in order to produce non-equilibrium plasmas and ion acceleration from the target-normal-sheath-acceleration (TNSA) regime. Ion acceleration in forward direction was measured by SiC detectors and ion collectors used in the time-of-flight configuration. Laser irradiations were employed using p-polarized light at different incidence angles with respect to the target surface and at different focal distances from the target surface. Measurements demonstrate that resonant absorption effects, due to the plasma wave excitations, enhance the plasma temperature and the ion acceleration with respect to those performed without to use of p-polarized light. Dependences of the ion flux characteristics on the laser energy, wavelength, focal distance and incidence angle will be reported and discussed

  14. Monte-Carlo calculation of irradiation dose content beyond shielding of high-energy accelerators

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Frolov, V.V.

    1975-01-01

    The MARS programme, designed for calculating the three-dimensional internuclear cascade in defence of the accelerators by the Monte Carlo method, is described. The methods used to reduce the dispersion and the system of semi-empirical formulas made it possible to exceed the parameters of the existing programmes. By means of a synthesis of the results, registered by MARS and HAMLET programmes, the dosage fields for homogeneous and heterogeneous defence were evaluated. The results of the calculated absorbed and equivalent dose behind the barrier, irradiated by a proton beam, having the energy of Esub(o)=1/1000 GeV are exposed. The dependence of the high- and low-energy neutron, proton, pion, kaon, muonium and γ-quantum dosage on the initial energy and thickness, on the material and the composition of the defence is investigated

  15. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    International Nuclear Information System (INIS)

    Todor, D.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  16. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  17. SU-F-T-668: Irradiating Mouse Brain with a Clinical Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Torres, C [N Rancilio Purdue University, West Lafayette, IN (United States)

    2016-06-15

    Purpose: To design and construct a “mouse jig” device that would allow for irradiation of the mouse brain with a clinical Varian 6 MeV Linear Accelerator. This device must serve as a head immobilizer, gaseous anesthesia delivery, and radiation bolus concurrently. Methods: The mouse jig was machined out of nylon given that it is inexpensive, easy to machine, and has similar electron density to water. A cylindrical opening with diameter of 16 mm and 40 mm depth was drilled into a nylon block sized 56×56×50 mm (width, length, depth). Additional slots were included in the block for ear bars and a tooth bar to serve as a three-point immobilization device as well as for anesthesia delivery and scavenging. For ease of access when loading the mouse into the holder, there is a removable piece at the top of the block that is 15 mm in depth. This serves a dual purpose, as with the proper extra shielding, the mouse jig could be used with lower linear energy transfer photons with this piece removed. A baseplate was then constructed with five square slots where the mouse jig can securely be inserted plus additional slots that would allow the baseplate to be mounted on a standard lock bar in the treatment couch. This maximizes the reproducibility of placement between imaging and treatment and between treatment sessions. Results: CT imaging and radiation treatment planning was performed that showed acceptable coverage and uniformity of radiation dose in the mouse brain while sparing the throat and eyes. Conclusion: We have designed and manufactured a device that fulfills our criteria allowing us to selectively irradiate the mouse brain with a clinical linear accelerator. This setup will be used for generating mouse models of radiation-induced brain injury.

  18. Outcomes of breast cancer patients with triple negative receptor status treated with accelerated partial breast irradiation.

    Science.gov (United States)

    Wilkinson, J Ben; Reid, Robert E; Shaitelman, Simona F; Chen, Peter Y; Mitchell, Christine K; Wallace, Michelle F; Marvin, Kimberly S; Grills, Inga S; Margolis, Jeffrey M; Vicini, Frank A

    2011-11-01

    Triple negative receptor status (TNRS) of patients undergoing breast-conserving therapy treated with whole-breast irradiation has been associated with increased distant metastasis and decreased disease-free and overall survival. This paper reports the outcomes of TNRS patients treated with accelerated partial breast irradiation (APBI). We studied 455 patients who received APBI at our institution, using interstitial, intracavitary, and three-dimensional conformal radiation therapy. TNRS was assigned if a patient tested negative for all three (ER [estrogen receptor], PR [progesterone receptor], and HER2/neu) receptors. Of 202 patients with all receptor results available, 20 patients were designated TNRS, and 182 patients had at least one receptor positive (RP). We analyzed ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), distant metastasis (DM), and overall survival (OS). Mean follow-up was 4.1 years for the TNRS group and 5.1 years for the RP cohort (p = 0.11). TNRS patients had a higher histologic grade (59% TNRS vs. 13% RP; p 0.52). OS for the RP cohort was 93% at 5 years (p > 0.28). In our patient population, TNRS conferred a clinical outcome similar to that of patients with RP disease treated with APBI. Further investigation with larger patient populations and longer follow-up periods is warranted to confirm that APBI is a safe and effective treatment for patients with localized TNRS breast cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Study of biological effects of accelerated heavy ions irradiation on rices: Pt. 1

    International Nuclear Information System (INIS)

    Liu Zhensheng; Qiu Quanfa; Huang Wenzhong; Mei Mantong; Yang, T.C.H.

    1991-01-01

    The dried rice seeds were irradiated with accelerated 56 Fe and 40 Ar ion beams or 60 Co γ-rays at various doses. The irradiation effects on seeding growth as well as micronuclei and chronosome aberration induction were observed. The results indicated that the seeding height raduction, frequency of micronucleated cells and frequency of chromosome aberrations all appeared to dose dependent for these three types of rediation. The RBE value for seeding height reduction, determined at fifity percent of hight inhibition level, was found to be about 6.3, 1.9 and 1 for 56 Fe, 40 Ar and 60 Co γ-ray respectively. However, the RBE values for the frequency of micronucleated cells were about 11, 4 and 1 for 56 Fe and 40 Ar particles and 60 Co γ-ray. It appeared that the effectiveness of high LET radiation in inducing biological effects at the first generation was higler than that of low LET radiation, especially in inducing the micronuclei formation

  20. Outcomes of Breast Cancer Patients With Triple Negative Receptor Status Treated With Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Wilkinson, J. Ben; Reid, Robert E.; Shaitelman, Simona F.; Chen, Peter Y.; Mitchell, Christine K.; Wallace, Michelle F.; Marvin, Kimberly S.; Grills, Inga S.; Margolis, Jeffrey M.; Vicini, Frank A.

    2011-01-01

    Purpose: Triple negative receptor status (TNRS) of patients undergoing breast-conserving therapy treated with whole-breast irradiation has been associated with increased distant metastasis and decreased disease-free and overall survival. This paper reports the outcomes of TNRS patients treated with accelerated partial breast irradiation (APBI). Methods and Materials: We studied 455 patients who received APBI at our institution, using interstitial, intracavitary, and three-dimensional conformal radiation therapy. TNRS was assigned if a patient tested negative for all three (ER [estrogen receptor], PR [progesterone receptor], and HER2/neu) receptors. Of 202 patients with all receptor results available, 20 patients were designated TNRS, and 182 patients had at least one receptor positive (RP). We analyzed ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), distant metastasis (DM), and overall survival (OS). Results: Mean follow-up was 4.1 years for the TNRS group and 5.1 years for the RP cohort (p = 0.11). TNRS patients had a higher histologic grade (59% TNRS vs. 13% RP; p 0.52). OS for the RP cohort was 93% at 5 years (p > 0.28). Conclusions: In our patient population, TNRS conferred a clinical outcome similar to that of patients with RP disease treated with APBI. Further investigation with larger patient populations and longer follow-up periods is warranted to confirm that APBI is a safe and effective treatment for patients with localized TNRS breast cancer.

  1. [Accelerated partial breast irradiation with multicatheters during breast conserving surgery for cancer].

    Science.gov (United States)

    Rodríguez-Spiteri Sagredo, Natalia; Martínez Regueira, Fernando; Olartecoechea Linaje, Begoña; Arredondo Chaves, Jorge; Cambeiro Vázquez, Mauricio; Pina Insausti, Luis Javier; Elizalde Pérez, Arlette; y García-Lallana, Amaya; Sola Gallego, Jose Javier

    2013-10-01

    Accelerated partial breast irradiation (APBI) with multicatheters after lumpectomy for breast cancer (BC) may be an alternative to whole breast irradiation in selected patients. The aim is to show our 5 year experience. Between June 2007 and June 2012, 87 BC patients have been evaluated for APBI. Inclusion criteria were: age over 40 years, unifocal tumour, infiltrating ductal or intraductal carcinoma, tumour size smaller than 3 cm and no lymph node involvement. Complications, cosmetic results and local and distant recurrences were evaluated. Treatment was completed in 48 patients and contraindicated in 39. The average age of treated patients was 59 years. Operating time was 123 min with 9 implanted catheters in each patient. No complications were observed during surgery or radiotherapy. Patients were discharged from hospital after 4 days. Tumour size was 11 mm. Of these, 35 were infiltrating ductal and 13 intraductal carcinomas. A total of 44 patients received adjuvant treatment. Mean follow-up was 22 months with no evidence of local or distant recurrence. The cosmetic outcome was good or excellent in 66% of cases. APBI with multicatheter placed after lumpectomy for BC is feasible and safe but requires a strict selection of patients. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  2. Tumor bed delineation for external beam accelerated partial breast irradiation: A systematic review

    International Nuclear Information System (INIS)

    Yang, T. Jonathan; Tao, Randa; Elkhuizen, Paula H.M.; Vliet-Vroegindeweij, Corine van; Li, Guang; Powell, Simon N.

    2013-01-01

    In recent years, accelerated partial breast irradiation (APBI) has been considered an alternative to whole breast irradiation for patients undergoing breast-conserving therapy. APBI delivers higher doses of radiation in fewer fractions to the post-lumpectomy tumor bed with a 1–2 cm margin, targeting the area at the highest risk of local recurrence while sparing normal breast tissue. However, there are inherent challenges in defining accurate target volumes for APBI. Studies have shown that significant interobserver variation exists among radiation oncologists defining the lumpectomy cavity, which raises the question of how to improve the accuracy and consistency in the delineation of tumor bed volumes. The combination of standardized guidelines and surgical clips significantly improves an observer’s ability in delineation, and it is the standard in multiple ongoing external-beam APBI trials. However, questions about the accuracy of the clips to mark the lumpectomy cavity remain, as clips only define a few points at the margin of the cavity. This paper reviews the techniques that have been developed so far to improve target delineation in APBI delivered by conformal external beam radiation therapy, including the use of standardized guidelines, surgical clips or fiducial markers, pre-operative computed tomography imaging, and additional imaging modalities, including magnetic resonance imaging, ultrasound imaging, and positron emission tomography/computed tomography. Alternatives to post-operative APBI, future directions, and clinical recommendations were also discussed

  3. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    Science.gov (United States)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  4. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shang Jing [National Synchrotron Radiation Lab, University of Science and Technology of China (China); Li Juexin, E-mail: juexin@ustc.edu.cn [National Synchrotron Radiation Lab, University of Science and Technology of China (China); Xu Bing; Li Yuxiong [National Synchrotron Radiation Lab, University of Science and Technology of China (China)

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the {sup 60}Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  5. Characterization of solvents containing CyMe4-BTPhen in selected cyclohexanone-based diluents after irradiation by accelerated electrons

    Czech Academy of Sciences Publication Activity Database

    Distler, P.; Kondé, J.; John, J.; Hájková, Zuzana; Švehla, Jaroslav; Grüner, Bohumír

    2015-01-01

    Roč. 60, č. 4 (2015), s. 885-891 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) 7G13003 EU Projects: European Commission(XE) 323282 - SACSESS Institutional support: RVO:61388980 Keywords : accelerated electrons * CyMe4-BTPhen * irradiation * radiation stability * solvent extraction Subject RIV: CA - Inorganic Chemistry Impact factor: 0.546, year: 2015

  6. Air-electron stream interactions during magnetic resonance IGRT. Skin irradiation outside the treatment field during accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Robotics Research Laboratory for Extreme Environments, Suwon (Korea, Republic of); Shin, Kyung Hwan; Wu, Hong-Gyun [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of); Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Jeon, Seung Hyuck [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Choi, Noorie [Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2018-01-15

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm{sup 2}, respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [German] Beim Einsatz eines Magnetresonanztomographie(MRT)-gefuehrten Bestrahlungsgeraets kann durch die Wechselwirkung von Magnetfeld und Strahlenquelle unerwuenscht

  7. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to 0.75 (>0.85 preferred), V 150  < 45 cc, and V 200  < 14 cc. Using an optimal implant technique coupled with optimal planning and appropriate dose constraints, a low rate of toxicity and a good-to-excellent cosmetic outcome of ≥90% is expected. IMB is an effective technique to deliver APBI for appropriately selected women with early-stage breast cancer. This consensus report has been created to assist clinicians in the appropriate practice of APBI using IMB. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. In vivo dosimetry with MOSFETs and GAFCHROMIC films during electron IORT for Accelerated Partial Breast Irradiation.

    Science.gov (United States)

    Petoukhova, Anna; Rüssel, Iris; Nijst-Brouwers, Julienne; van Wingerden, Ko; van Egmond, Jaap; Jacobs, Daphne; Marinelli, Andreas; van der Sijp, Joost; Koper, Peter; Struikmans, Henk

    2017-12-01

    The purpose of this study was to compare the delivered dose to the expected intraoperative radiation therapy (IORT) dose with in vivo dosimetry. For IORT using electrons in accelerated partial breast irradiation, this is especially relevant since a high dose is delivered in a single fraction. For 47 of breast cancer patients, in vivo dosimetry was performed with MOSFETs and/or GAFCHROMIC EBT2 films. A total dose of 23.33 Gy at d max was given directly after completing the lumpectomy procedure with electron beams generated with an IORT dedicated mobile accelerator. A protection disk was used to shield the thoracic wall. The results of in vivo MOSFET dosimetry for 27 patients and GAFROMIC film dosimetry for 20 patients were analysed. The entry dose for the breast tissue, measured with MOSFETs, (mean value 22.3 Gy, SD 3.4%) agreed within 1.7% with the expected dose (mean value 21.9 Gy). The dose in breast tissue, measured with GAFCHROMIC films (mean value 23.50 Gy) was on average within 0.7% (SD = 3.7%, range -5.5% to 5.6%) of the prescribed dose of 23.33 Gy. The dose measured with MOSFETs and GAFROMIC EBT2 films agreed well with the expected dose. For both methods, the dose to the thoracic wall, lungs and heart for left sided patents was lower than 2.5 Gy even when 12 MeV was applied. The positioning time of GAFCHROMIC films is negligible and based on our results we recommend its use as a standard tool for patient quality assurance during breast cancer IORT. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Cone Beam Computed Tomography Guidance for Setup of Patients Receiving Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    White, Elizabeth A.; Cho, John; Vallis, Katherine A.; Sharpe, Michael B.; Lee, Grace B.Sc.; Blackburn, Helen; Nageeti, Tahani; McGibney, Carol; Jaffray, David A.

    2007-01-01

    Purpose: To evaluate the role of cone-beam CT (CBCT) guidance for setup error reduction and soft tissue visualization in accelerated partial breast irradiation (APBI). Methods and Materials: Twenty patients were recruited for the delivery of radiotherapy to the postoperative cavity (3850 cGy in 10 fractions over 5 days) using an APBI technique. Cone-beam CT data sets were acquired after an initial skin-mark setup and before treatment delivery. These were registered online using the ipsilateral lung and external contours. Corrections were executed for translations exceeding 3 mm. The random and systematic errors associated with setup using skin-marks and setup using CBCT guidance were calculated and compared. Results: A total of 315 CBCT data sets were analyzed. The systematic errors for the skin-mark setup were 2.7, 1.7, and 2.4 mm in the right-left, anterior-posterior, and superior-inferior directions, respectively. These were reduced to 0.8, 0.7, and 0.8 mm when CBCT guidance was used. The random errors were reduced from 2.4, 2.2, and 2.9 mm for skin-marks to 1.5, 1.5, and 1.6 mm for CBCT guidance in the right-left, anterior-posterior, and superior-inferior directions, respectively. Conclusion: A skin-mark setup for APBI patients is sufficient for current planning target volume margins for the population of patients studied here. Online CBCT guidance minimizes the occurrence of large random deviations, which may have a greater impact for the accelerated fractionation schedule used in APBI. It is also likely to permit a reduction in planning target volume margins and provide skin-line visualization and dosimetric evaluation of cardiac and lung volumes

  10. ASPIRE: An automated sample positioning and irradiation system for radiation biology experiments at Inter University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Kothari, Ashok; Barua, P.; Archunan, M.; Rani, Kusum; Subramanian, E.T.; Pujari, Geetanjali; Kaur, Harminder; Satyanarayanan, V.V.V.; Sarma, Asitikantha; Avasthi, D.K.

    2015-01-01

    An automated irradiation setup for biology samples has been built at Inter University Accelerator Centre (IUAC), New Delhi, India. It can automatically load and unload 20 biology samples in a run of experiment. It takes about 20 min [2% of the cell doubling time] to irradiate all the 20 samples. Cell doubling time is the time taken by the cells (kept in the medium) to grow double in numbers. The cells in the samples keep growing during entire of the experiment. The fluence irradiated to the samples is measured with two silicon surface barrier detectors. Tests show that the uniformity of fluence and dose of heavy ions reaches to 2% at the sample area in diameter of 40 mm. The accuracy of mean fluence at the center of the target area is within 1%. The irradiation setup can be used to the studies of radiation therapy, radiation dosimetry and molecular biology at the heavy ion accelerator. - Highlights: • Automated positioning and irradiation setup for biology samples at IUAC is built. • Loading and unloading of 20 biology samples can be automatically carried out. • Biologicals cells keep growing during entire experiment. • Fluence and dose of heavy ions are measured by two silicon barrier detectors. • Uniformity of fluence and dose of heavy ions at sample position reaches to 2%

  11. Ion irradiation studies of construction materials for high-power accelerators

    Science.gov (United States)

    Mustafin, E.; Seidl, T.; Plotnikov, A.; Strašík, I.; Pavlović, M.; Miglierini, M.; Stanćek, S.; Fertman, A.; Lanćok, A.

    The paper reviews the activities and reports the current results of GSI-INTAS projects that are dealing with investigations of construction materials for high-power accelerators and their components. Three types of materials have been investigated, namely metals (stainless steel and copper), metallic glasses (Nanoperm, Finemet and Vitrovac) and organic materials (polyimide insulators and glass fiber reinforced plastics/GFRP). The materials were irradiated by different ion beams with various fluencies and energies. The influence of radiation on selected physical properties of these materials has been investigated with the aid of gamma-ray spectroscopy, transmission Mössbauer spectroscopy (TMS), conversion electrons Mössbauer spectroscopy (CEMS), optical spectroscopy (IR and UV/VIS) and other analytical methods. Some experiments were accompanied with computer simulations by FLUKA, SHIELD and SRIM codes. Validity of the codes was verified by comparison of the simulation results with experiments. After the validation, the codes were used to complete the data that could not be obtained experimentally.

  12. Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator

    International Nuclear Information System (INIS)

    Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.

    2010-01-01

    A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributions using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.

  13. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  14. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schüler, Emil; Trovati, Stefania; King, Gregory; Lartey, Frederick; Rafat, Marjan; Villegas, Manuel; Praxel, A. Joe [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G., E-mail: PMaxim@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2017-01-01

    Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlo and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.

  15. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator.

    Science.gov (United States)

    Schüler, Emil; Trovati, Stefania; King, Gregory; Lartey, Frederick; Rafat, Marjan; Villegas, Manuel; Praxel, A Joe; Loo, Billy W; Maxim, Peter G

    2017-01-01

    A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, "FLASH") potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlo and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Predictors of Local Recurrence Following Accelerated Partial Breast Irradiation: A Pooled Analysis

    International Nuclear Information System (INIS)

    Shah, Chirag; Wilkinson, John Ben; Lyden, Maureen; Beitsch, Peter; Vicini, Frank A.

    2012-01-01

    Purpose: To analyze a pooled set of nearly 2,000 patients treated on the American Society of Breast Surgeons (ASBS) Mammosite Registry Trial and at William Beaumont Hospital (WBH) to identify factors associated with local recurrence following accelerated partial breast irradiation (APBI). Methods and Materials: A total of 1,961 women underwent partial breast irradiation between April 1993 and November 2010 as part of the ASBS Registry Trial or at WBH. Rates of ipsilateral breast tumor recurrence (IBTR), regional recurrence (RR), distant metastases (DM), disease-free survival (DFS), cause-specific survival (CSS), and overall survival (OS) were analyzed for each group and for the pooled cohort. Clinical, pathologic, and treatment-related variables were analyzed including age, tumor stage/size, estrogen receptor status, surgical margins, and lymph node status to determine their association with IBTR. Results: The two groups weres similar, but WBH patients were more frequently node positive, had positive margins, and were less likely to be within the American Society for Radiation Oncology-unsuitable group. At 5 years, the rates of IBTR, RR, DM, DFS, CSS, and OS for the pooled group of patients were 2.9%, 0.5%, 2.4%, 89.1%, 98.5%, and 91.8%, respectively. The 5-year rate of true recurrence/marginal miss was 0.8%. Univariate analysis of IBTR found that negative estrogen receptor status (odds ratio [OR], 2.83, 95% confidence interval 1.55–5.13, p = 0.0007) was the only factor significantly associated with IBTR, while a trend was seen for age less than 50 (OR 1.80, 95% confidence interval 0.90–3.58, p = 0.10). Conclusions: Excellent 5-year outcomes were seen following APBI in over 1,900 patients. Estrogen receptor negativity was the only factor associated with IBTR, while a trend for age less than 50 was noted. Significant differences in factors associated with IBTR were noted between cohorts, suggesting that factors driving IBTR may be predicated based on the risk

  17. The problems of the usage of powerful electrons accelerators for the irradiation of nuclear power stations' equipment and materials

    International Nuclear Information System (INIS)

    Kovalinska, T.V.; Khalova, N.V.; Ostapenko, I.A.; Sakhno, V.I.; Zelinsky, A.G.; Shlapatska, V.V.

    2012-01-01

    The possibilities of making the qualification of the materials and equipment of nuclear power stations on modern electrons accelerators of high power are researched. The problems of using this powerful sources of radiation for modern methods of nondestructive control of functional characteristics of the equipment and materials are discussed. The purpose of researches is the determination of the possibility of such works from the point of view of radiation safety of the personnel and the environment. First of all, this problem is connected with the increase of the intensity of secondary irradiation in such processes. The character of secondary irradiation is researched, as well as the dynamics of its energetic spectrum in rooms of powerful industrial accelerator (with beam power of more than 20 kW and average energy of electrons of 1.6 MeV) in regimes of irradiation of the equipment with contents of heavy elements. The original way of solving this problem is suggested. Experimentally proved, that during the usage of the set of compensatory measures, it is also possible to make tests of NPPs' materials and equipment on industrial accelerators of high power

  18. A comparison of effects between accelerated heavy ion irradiation and X-irradiation on the development of rat cerebellum

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Murata, Yoshiharu; Takahashi, Sentaro; Kubota, Yoshihisa

    1999-01-01

    The purpose of this experiment is to compare the effects of 290 MeV/u carbon-ion irradiation and X-irradiation on the development of rat cerebellum. Pregnant rats were exposed to carbon-ion beams at a single dose of 1.5 Gy on day 19.0 of gestation. Other groups of pregnant rats were exposed to X-rays on day 19.0 at single doses of 1.5, 2.0 and 2.5 Gy. Their fetuses were removed 8 hr after exposure, and an acute effect examined microscopically for cell death in the external granular layer of the cerebellum. Other dams were allowed to give birth and rear their litters. The offspring were sacrificed at 6 weeks of age, and their cerebella were examined for foliar malformation. The results showed that the effect of 1.5 Gy carbon-ion irradiation on the development of cerebellum was stronger than that of 1.5 Gy X-irradiation and similar to 2.0-2.5 Gy X-irradiation. (author)

  19. Energetic heavy ions accelerate differentiation in the descendants of irradiated normal human diploid fibroblasts

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Funayama, Tomoo; Sakashita, Tetsuya; Kobayashi, Yasuhiko

    2008-01-01

    Ionizing radiation-induced genomic instability has been demonstrated in a variety of endpoints such as delayed reproductive death, chromosome instability and mutations, which occurs in the progeny of survivors many generations after the initial insult. Dependence of these effects on the linear energy transfer (LET) of the radiation is incompletely characterized; however, our previous work has shown that delayed reductions in clonogenicity can be most pronounced at LET of 108 keV/μm. To gain insight into potential cellular mechanisms involved in LET-dependent delayed loss of clonogenicity, we investigated morphological changes in colonies arising from normal human diploid fibroblasts exposed to γ-rays or energetic carbon ions (108 keV/μm). Exposure of confluent cultures to carbon ions was 4-fold more effective at inactivating cellular clonogenic potential and produced more abortive colonies containing reduced number of cells per colony than γ-rays. Second, colonies were assessed for clonal morphotypic heterogeneity. The yield of differentiated cells was elevated in a dose- and LET-dependent fashion in clonogenic colonies, whereas differentiated cells predominated to a comparable extent irrespective of radiation type or dose in abortive colonies. The incidence of giant or multinucleated cells was also increased but much less frequent than that of differentiated cells. Collectively, our results indicate that carbon ions facilitate differentiation more effectively than γ-rays as a major response in the progeny of irradiated fibroblasts. Accelerated differentiation may account, at least in part, for dose- and LET-dependent delayed loss of clonogenicity in normal human diploid cells, and could be a defensive mechanism that minimizes further expansion of aberrant cells

  20. Phase II trial of proton beam accelerated partial breast irradiation in breast cancer

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Lee, Nam Kwon; Kim, Ja Young; Kim, Yeon-Joo; Moon, Sung Ho; Kim, Tae Hyun; Kim, Joo-Young; Kim, Dae Yong; Cho, Kwan Ho; Shin, Kyung Hwan

    2013-01-01

    Background and purpose: Here, we report the results of our phase II, prospective study of proton beam accelerated partial breast irradiation (PB-APBI) in patients with breast cancer after breast conserving surgery (BCS). Materials and methods: Thirty patients diagnosed with breast cancer were treated with PB-APBI using a single-field proton beam or two fields after BCS. The treatment dose was 30 cobalt gray equivalent (CGE) in six CGE fractions delivered once daily over five consecutive working days. Results: All patients completed PB-APBI. The median follow-up time was 59 months (range: 43–70 months). Of the 30 patients, none had ipsilateral breast recurrence or regional or distant metastasis, and all were alive at the last follow-up. Physician-evaluated toxicities were mild to moderate, except in one patient who had severe wet desquamation at 2 months that was not observed beyond 6 months. Qualitative physician cosmetic assessments of good or excellent were noted in 83% and 80% of the patients at the end of PB-APBI and at 2 months, respectively, and decreased to 69% at 3 years. A good or excellent cosmetic outcome was noted in all patients treated with a two-field proton beam at any follow-up time point except for one. For all patients, the mean percentage breast retraction assessment (pBRA) value increased significantly during the follow-up period (p = 0.02); however, it did not increase in patients treated with two-field PB-APBI (p = 0.3). Conclusions: PB-APBI consisting of 30 CGE in six CGE fractions once daily for five consecutive days can be delivered with excellent disease control and tolerable skin toxicity to properly selected patients with early-stage breast cancer. Multiple-field PB-APBI may achieve a high rate of good-to-excellent cosmetic outcomes. Additional clinical trials with larger patient groups are needed

  1. Outcomes After Accelerated Partial Breast Irradiation in Patients With ASTRO Consensus Statement Cautionary Features

    International Nuclear Information System (INIS)

    McHaffie, Derek R.; Patel, Rakesh R.; Adkison, Jarrod B.; Das, Rupak K.; Geye, Heather M.; Cannon, George M.

    2011-01-01

    Purpose: To evaluate outcomes among women with American Society for Radiation Oncology (ASTRO) consensus statement cautionary features treated with brachytherapy-based accelerated partial breast irradiation (APBI). Methods and Materials: Between March 2001 and June 2006, 322 consecutive patients were treated with high-dose-rate (HDR) APBI at the University of Wisconsin. A total of 136 patients were identified who met the ASTRO cautionary criteria. Thirty-eight (27.9%) patients possessed multiple cautionary factors. All patients received 32 to 34 Gy in 8 to 10 twice-daily fractions using multicatheter (93.4%) or Mammosite balloon (6.6%) brachytherapy. Results: With a median follow-up of 60 months, there were 5 ipsilateral breast tumor recurrences (IBTR), three local, and two loco-regional. The 5-year actuarial rate of IBTR was 4.8% ± 4.1%. The 5-year disease-free survival was 89.6%, with a cause-specific survival and overall survival of 97.6% and 95.3%, respectively. There were no IBTRs among 32 patients with ductal carcinoma in situ (DCIS) vs. 6.1% for patients with invasive carcinoma (p = 0.24). Among 104 patients with Stage I or II invasive carcinoma, the IBTR rate for patients considered cautionary because of age alone was 0% vs. 12.7% in those deemed cautionary due to histopathologic factors (p = 0.018). Conclusions: Overall, we observed few local recurrences among patients with cautionary features. Women with DCIS and patients 50 to 59 years of age with Stage I/II disease who otherwise meet the criteria for suitability appear to be at a low risk of IBTR. Patients with tumor-related cautionary features will benefit from careful patient selection.

  2. Intrafractional Target Motions and Uncertainties of Treatment Setup Reference Systems in Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Yue, Ning J.; Goyal, Sharad; Zhou Jinghao; Khan, Atif J.; Haffty, Bruce G.

    2011-01-01

    Purpose: This study investigated the magnitude of intrafractional motion and level of accuracy of various setup strategies in accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy. Methods and Materials: At lumpectomy, gold fiducial markers were strategically sutured to the surrounding walls of the cavity. Weekly fluoroscopy imaging was conducted at treatment to investigate the respiration-induced target motions. Daily pre- and post-RT kV imaging was performed, and images were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion magnitudes over the course of treatment. The positioning differences of the laser tattoo- and the bony anatomy-based setups compared with those of the marker-based setup (benchmark) were also determined. The study included 21 patients. Results: Although lung exhibited significant motion, the average marker motion amplitude on the fluoroscopic image was about 1 mm. Over a typical treatment time period, average intrafractional motion magnitude was 4.2 mm and 2.6 mm based on the marker and bony anatomy matching, respectively. The bony anatomy- and laser tattoo-based interfractional setup errors, with respect to the fiducial marker-based setup, were 7.1 and 9.0 mm, respectively. Conclusions: Respiration has limited effects on the target motion during APBI. Bony anatomy-based treatment setup improves the accuracy relative to that of the laser tattoo-based setup approach. Since fiducial markers are sutured directly to the surgical cavity, the marker-based approach can further improve the interfractional setup accuracy. On average, a seroma cavity exhibits intrafractional motion of more than 4 mm, a magnitude that is larger than that which is otherwise derived based on bony anatomy matching. A seroma-specific marker-based approach has the potential to improve treatment accuracy by taking the true inter

  3. Radiosensitivity of chlorella after medium energy accelerated electron irradiation; Radiosensibilite des chlorelles aux electrons acceleres de moyenne energie

    Energy Technology Data Exchange (ETDEWEB)

    Roux, J C [commissariat a L' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-06-01

    The survival curves (capability of multiplication) of chlorella pyrenoidosa after irradiations can be used for soft electrons (0.65 and 1 MeV), hence penetrating into only 2 to 4 millimeters of water: the algae are laying on porous membranes and the doses are calculated from the power of the electron beam measured by the electric current on a metallic target or by Fricke's dosimetry. With these techniques, it is showed and discussed the part of anoxia in the radioprotection (magnitude or reduction of the dose calculated from the slope of survival curves: 2.5 ) that is more important than the restoration studied by the fractionation of the dose. The 0.65 and 1 MeV electrons have a biologic effect lesser than 180 keV X-rays (RBE - relative biological efficiency - calculated on the slope of survival curves is 0.92 in aerated irradiation, 0.56 in the deoxygenated irradiation). (author) [French] Les courbes de survie clonale (capacite de multiplication) de chlorella pyrenoidosa apres irradiation sont realisables meme avec des electrons peu energetiques (0.65 et 1 MeV), donc peu penetrants, par l'irradiation d'algues deposees sur membrane filtrante et grace au calcul de la dose a partir de l'energie du faisceau mesure par le courant que celui-ci cree dans une cible metallique ou par dosimetrie de Fricke. Par ces techniques, on a montre et discute le role de l'anoxie dans la radioprotection des chlorelles (facteur de reduction de la dose calcule sur la pente des courbes de survie de 2.5) qui est plus important que le pouvoir de restauration etudie par le fractionnement de la dose. Les electrons utilises ont un effet biologique moins grand que les rayons X de 180 keV (l'efficacite biologique relative - EBR - calculee sur la pente des courbes de survie est de 0.9 en presence d'air, 0.6 en presence d'azote)

  4. The present situation and prospect of industrial irradiation accelerator industry in China

    International Nuclear Information System (INIS)

    Zhao Wenyan; Wang Chuanzhen; Hou Fuzhen

    2005-01-01

    Accelerator technology and the machines are an important part of the nuclear technology and also are the system integration of modern science technology. The application of accelerator technology has made the important breakthrough in many science research fields, in the development course of particle physics, several milestone developments are closely related to accelerator developments. In 1960s, accelerators gradually transferred from the science research to the national economy and society application fields. In 1970s, accelerators applied in many fields involved the industry, medical hygiene, agriculture, environmental protection, and proceed the development of new technique, new craft, new product, and developed lots of newly arisen edge industries, such as the medical equipments, no damage examination, ion injecting, radiation processing. Now accelerators have become a firmly established industry. This paper primarily reviewed the application of industrial radiation accelerators by the 20 years developments of accelerators in China. (author)

  5. Accelerated partial breast irradiation for elderly women with early breast cancer: A compromise between whole breast irradiation and omission of radiotherapy.

    Science.gov (United States)

    Sumodhee, Shakeel; Levy, Johan; Chamorey, Emmanuel; Lam Cham Kee, Daniel; Chand, Marie-Eve; Gautier, Mathieu; Peyrottes, Isabelle; Barranger, Emmanuel; Hannoun-Levi, Jean-Michel

    Regarding adjuvant radiation therapy making decision for elderly women, Albert (2013) published a nomogram predicting the mastectomy-free survival (MFS) rate with or without adjuvant irradiation. Based on this approach, we proposed to investigate the use of accelerated partial breast irradiation (APBI) vs. whole breast irradiation (WBI) or endocrine therapy alone in elderly low-risk breast cancer patients. For each elderly woman treated by conserving surgery and APBI (multicatheter interstitial high-dose-rate brachytherapy), 5- and 10-year MFS rates were calculated. For each treated patient, using the Albert nomogram, we calculated the estimated MFS rates at 5 and 10 years, with and without WBI. Then, we compared the estimated MFS rates after no irradiation and WBI vs. observed MFS rates after APBI. From 2005 to 2016, 79 patients were treated. Median followup was 96.8 months [68.6-104.9], median age was 77 years [66-89]. Expected 5- and 10-year mastectomy rates calculated with the Albert nomogram without WBI were 2.95% and 7.25%, respectively, leading to a 10-year MFS rate of 92.7%. Expected 5- and 10-year mastectomy rates after WBI were 1.41% and 3.66%, respectively, leading to a 10-year MFS rate of 96.3%. Regarding observed MFS rate, 1 pt (1.3%) experienced a salvage mastectomy. The 10-year MFS rate after APBI was 97.4% vs. 96.3% after WBI (p = 1) and 92.7% after no irradiation (p = 0.27). No toxicity Grade 3 or more was observed. APBI seems to be an attractive compromise between WBI and no irradiation for elderly women with early stage breast cancer as far as local control, quality of life and cost benefit is concerned. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Monte Carlo simulation of neutron irradiation facility developed for accelerator based in vivo neutron activation measurements in human hand bones

    International Nuclear Information System (INIS)

    Aslam; Prestwich, W.V.; McNeill, F.E.; Waker, A.J.

    2006-01-01

    The neutron irradiation facility developed at the McMaster University 3 MV Van de Graaff accelerator was employed to assess in vivo elemental content of aluminum and manganese in human hands. These measurements were carried out to monitor the long-term exposure of these potentially toxic trace elements through hand bone levels. The dose equivalent delivered to a patient during irradiation procedure is the limiting factor for IVNAA measurements. This article describes a method to estimate the average radiation dose equivalent delivered to the patient's hand during irradiation. The computational method described in this work augments the dose measurements carried out earlier [Arnold et al., 2002. Med. Phys. 29(11), 2718-2724]. This method employs the Monte Carlo simulation of hand irradiation facility using MCNP4B. Based on the estimated dose equivalents received by the patient hand, the proposed irradiation procedure for the IVNAA measurement of manganese in human hands [Arnold et al., 2002. Med. Phys. 29(11), 2718-2724] with normal (1 ppm) and elevated manganese content can be carried out with a reasonably low dose of 31 mSv to the hand. Sixty-three percent of the total dose equivalent is delivered by non-useful fast group (>10 keV); the filtration of this neutron group from the beam will further decrease the dose equivalent to the patient's hand

  7. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    Science.gov (United States)

    Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.

    2018-05-01

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.

  8. Investigation of carbohydrate and protein metabolism in the digestive organs of the rabbit under the combined influence of vibration, acceleration and irradiation

    Science.gov (United States)

    Yuy, R. I.

    1975-01-01

    During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.

  9. Impact of Lymph Node Status on Clinical Outcomes After Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chirag; Wilkinson, J. Ben; Shaitelman, Simona [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Grills, Inga S.; Chen, Peter Y. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Oakland University William Beaumont School of Medicine, Royal Oak, MI (United States); Dekhne, Nayana [Breast Care Center, Beaumont Health System, William Beaumont Hospital, Royal Oak, MI (United States); Jaiyesimi, Ishmael [Department of Medical Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Wallace, Michelle; Mitchell, Christina K. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Vicini, Frank A., E-mail: fvicini@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Oakland University William Beaumont School of Medicine, Royal Oak, MI (United States)

    2012-03-01

    Purpose: To compare outcomes after accelerated partial breast irradiation (APBI) between node-negative and node-positive patients. Methods and Materials: A total of 534 patients with early-stage breast cancer received APBI including 39 node-positive (N+) cases. Clinical, pathologic, and treatment-related factors were compared between node-negative (N-) and N+ cohorts. Local recurrence (LR), regional recurrence (RR), axillary failure (AF), distant metastases (DM), disease-free survival (DFS), cause-specific survival (CSS), and overall survival (OS) were analyzed. Results: N+ patients were younger (p = 0.04), had larger tumors (p < 0.001), and were more likely to receive chemotherapy (p < 0.001). Mean follow-up was 7.8 years for N+ patients and 6.3 years for N- patients (p = 0.06). No differences were seen in 5-year actuarial rates of LR (2.2% vs. 2.6%, p = 0.86), AF (0% vs. 0%, p = 0.69), DFS (90.0% vs. 88.0%, p = 0.79), or OS (91.0 vs. 84.0%, p = 0.65) between the two groups, whereas higher rates of RR (0% vs. 6.1%, p < 0.001) and DM (2.2% vs. 8.9%, p = 0.005) were noted in N+ patients. A trend for improved CSS (p = 0.06), was seen in N- patients. Age, tumor size, receptor status, T-stage, chemotherapy, APBI technique, and nodal status (p = 0.86) were not associated with LR, while a trend for an association with LR was noted with close/positive margins, (p = 0.07), and failure to receive adjuvant hormonal therapy (p = 0.06). Conclusions: No differences were seen in the rates of LR or AF between N- and N+ patients after APBI. These results support the continued enrollment of node-positive patients in Phase III trials evaluating the efficacy of APBI including the National Surgical Adjuvant Breast and Bowel Project-B39/Radiation Therapy Oncology Group 0413.

  10. Clinical Outcomes Using Accelerated Partial Breast Irradiation in Patients With Invasive Lobular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chirag; Wilkinson, J. Ben; Shaitelman, Simona; Grills, Inga; Wallace, Michelle; Mitchell, Christina [Department of Radiation Oncology, Beaumont Cancer Institute, Oakland University William Beaumont School of Medicine, Royal Oak, MI (United States); Vicini, Frank, E-mail: fvicini@beaumont.edu [Department of Radiation Oncology, Beaumont Cancer Institute, Oakland University William Beaumont School of Medicine, Royal Oak, MI (United States)

    2011-11-15

    Purpose: We compared clinical outcomes of women diagnosed with either invasive lobular carcinoma (ILC) or invasive ductal carcinoma (IDC) treated with accelerated partial breast irradiation (APBI). Methods and Materials: A total of 16 patients with ILC received APBI as part of their breast-conservation therapy (BCT) and were compared with 410 patients with IDC that received APBI as part of their BCT. Clinical, pathologic, and treatment related variables were analyzed including age, tumor size, hormone receptor status, surgical margins, lymph node status, adjuvant hormonal therapy, adjuvant chemotherapy, and APBI modality. Clinical outcomes including local recurrence (LR), regional recurrence (RR), disease-free survival (DFS), cause-specific survival (CSS), and overall survival (OS) were analyzed. Results: Median follow-up was 3.8 years for the ILC patients and 6.0 years for the IDC patients. ILC patients were more likely to have positive margins (20.0% vs. 3.9%, p = 0.006), larger tumors (14.1 mm vs. 10.9 mm, p = 0.03) and less likely to be node positive (0% vs. 9.5%, p < 0.001) when compared with patients diagnosed with IDC. The 5-year rate of LR was 0% for the ILC cohort and 2.5% for the IDC cohort (p = 0.59). No differences were seen in the rates of RR (0% vs. 0.7%, p = 0.80), distant metastases (0% vs. 3.5%, p = 0.54), DFS (100% vs. 94%, p = 0.43), CSS (100% vs. 97%, p = 0.59), or OS (92% vs. 89%, p = 0.88) between the ILC and IDC patients, respectively. Additionally, when node-positive patients were excluded from the IDC cohort, no differences in the rates of LR (0% vs. 2.2%, p = 0.62), RR (0% vs. 0%), DFS (100% vs. 95%, p = 0.46), CSS (100% vs. 98%, p = 0.63), or OS (92% vs. 89%, p = 0.91) were noted between the ILC and IDC patients. Conclusion: Women with ILC had excellent clinical outcomes after APBI. No difference in local control was seen between patients with invasive lobular versus invasive ductal histology.

  11. Clinical Outcomes Using Accelerated Partial Breast Irradiation in Patients With Invasive Lobular Carcinoma

    International Nuclear Information System (INIS)

    Shah, Chirag; Wilkinson, J. Ben; Shaitelman, Simona; Grills, Inga; Wallace, Michelle; Mitchell, Christina; Vicini, Frank

    2011-01-01

    Purpose: We compared clinical outcomes of women diagnosed with either invasive lobular carcinoma (ILC) or invasive ductal carcinoma (IDC) treated with accelerated partial breast irradiation (APBI). Methods and Materials: A total of 16 patients with ILC received APBI as part of their breast-conservation therapy (BCT) and were compared with 410 patients with IDC that received APBI as part of their BCT. Clinical, pathologic, and treatment related variables were analyzed including age, tumor size, hormone receptor status, surgical margins, lymph node status, adjuvant hormonal therapy, adjuvant chemotherapy, and APBI modality. Clinical outcomes including local recurrence (LR), regional recurrence (RR), disease-free survival (DFS), cause-specific survival (CSS), and overall survival (OS) were analyzed. Results: Median follow-up was 3.8 years for the ILC patients and 6.0 years for the IDC patients. ILC patients were more likely to have positive margins (20.0% vs. 3.9%, p = 0.006), larger tumors (14.1 mm vs. 10.9 mm, p = 0.03) and less likely to be node positive (0% vs. 9.5%, p < 0.001) when compared with patients diagnosed with IDC. The 5-year rate of LR was 0% for the ILC cohort and 2.5% for the IDC cohort (p = 0.59). No differences were seen in the rates of RR (0% vs. 0.7%, p = 0.80), distant metastases (0% vs. 3.5%, p = 0.54), DFS (100% vs. 94%, p = 0.43), CSS (100% vs. 97%, p = 0.59), or OS (92% vs. 89%, p = 0.88) between the ILC and IDC patients, respectively. Additionally, when node-positive patients were excluded from the IDC cohort, no differences in the rates of LR (0% vs. 2.2%, p = 0.62), RR (0% vs. 0%), DFS (100% vs. 95%, p = 0.46), CSS (100% vs. 98%, p = 0.63), or OS (92% vs. 89%, p = 0.91) were noted between the ILC and IDC patients. Conclusion: Women with ILC had excellent clinical outcomes after APBI. No difference in local control was seen between patients with invasive lobular versus invasive ductal histology.

  12. Accelerated partial-breast irradiation with interstitial implants. Analysis of factors affecting cosmetic outcome

    International Nuclear Information System (INIS)

    Ott, Oliver J.; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav

    2009-01-01

    Purpose: To analyze patient-, disease-, and treatment-related factors for their impact on cosmetic outcome (CO) after interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 171 patients with early breast cancer were recruited in Erlangen for this subanalysis of the German-Austrian APBI phase II-trial. 58% (99/171) of the patients received pulsed-dose-rate (PDR), and 42% (72/171) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy each hour. Total treatment time was 3-4 days. Endpoint of this evaluation was the CO, graded as excellent, good, fair, or poor. Patients were divided in two groups with an excellent (n = 102) or nonexcellent (n = 69) cosmetic result. Various factors were analyzed for their impact on excellent CO. Results: The median follow-up time was 52 months (range: 21-91 months). Cosmetic results were rated as excellent in 59.6% (102/171), good in 29.8% (51/171), fair in 9.9% (17/171), and poor in 0.6% (1/171). The initial cosmetic status was significantly worse for the nonexcellent CO group (p = 0.000). The percentage of patients who received PDR brachytherapy APBI was higher in the nonexcellent CO group (68.1% vs. 51%; p = 0.026). Acute toxicity was higher in the nonexcellent CO group (24.6% vs. 12.7%; p = 0.045). Furthermore, the presence of any late toxicity was found to be associated with a worse cosmetic result (65.2% vs. 18.6%; p = 0.000). In detail, the appearance of skin hyperpigmentation (p 0.034), breast tissue fibrosis (p = 0.000), and telangiectasia (p = 0.000) had a negative impact on CO. Conclusion: The initial, surgery-associated cosmetic status, brachytherapy modality, and the presence of acute and late toxicities were found to have an impact on overall CO. Our data have proven that

  13. Electron acceleration by electromagnetic irradiation of a weakly-collisional plasma

    International Nuclear Information System (INIS)

    Karfidov, D.M.; Lukina, N.A.; Sergeychev, K.F.

    1989-01-01

    In this paper, electron acceleration is investigated experimentally in both a homogeneous and an inhomogeneous plasma. In the first case acceleration is produced by development of a parametric instability, while in the second case acceleration in a plasma resonance field is used. It is demonstrated that multiple electron passes through a resonant field will produce and accelerated electron energy spectrum characterized by the effective temperature. It is established that the electron replacement current flowing in the interaction region between the plasma and a spatially-limited microwave field excites ion-acoustic turbulence in plasma and also produces an anomalously low thermal conductivity and an anomalously high resistivity

  14. Modelling of post-irradiation accelerated repopulation in squamous cell carcinomas

    International Nuclear Information System (INIS)

    Marcu, L; Doorn, T van; Olver, I

    2004-01-01

    The mechanisms postulated to be responsible for the accelerated repopulation of squamous cell carcinomas during radiotherapy are the loss of asymmetry of stem cell division, acceleration of stem cell division, abortive division and/or recruitment of the non-cycling cell with proliferative capacity. Although accelerated repopulation was observed with recruitment and accelerated cell cycles, it was not sufficient to cause an observable change to the survival curve. However, modelling the loss of asymmetry in stem cell division has reshaped the curve with a 'growth' shoulder. Cell recruitment was not found to be a major contributor to accelerated tumour repopulation. A more significant contribution was provided through the multiplication of surviving tumour stem cells during radiotherapy, by reducing their cell cycle time, and due to loss of asymmetry of stem cell division

  15. Accelerated partial breast irradiation with external beam radiotherapy. First results of the German phase 2 trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Oliver J.; Strnad, Vratislav; Stillkrieg, Wilhelm; Fietkau, Rainer [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Uter, Wolfgang [University Erlangen-Nuremberg, Dept. of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Beckmann, Matthias W. [University Hospital Erlangen, Dept. of Gynecology, Erlangen (Germany)

    2017-01-15

    To evaluate the feasibility and efficacy of external beam three-dimensional (3D) conformal accelerated partial breast irradiation (APBI) for selected patients with early breast cancer. Between 2011 and 2016, 72 patients were recruited for this prospective phase 2 trial. Patients were eligible for APBI if they had histologically confirmed breast cancer or pure ductal carcinoma in situ (DCIS), a tumor diameter ≤3 cm, clear resection margins ≥2 mm, no axillary lymph node involvement, no distant metastases, tumor bed clips, and were aged ≥50 years. Patients were excluded if mammography showed a multicentric invasive growth pattern, or if they had residual diffuse microcalcifications postoperatively, an extensive intraductal component, or vessel invasion. Patients received 3D conformal external beam APBI with a total dose of 38 Gy in 10 fractions in 1-2 weeks. The trial had been registered at the German Clinical Trials Register, DRKS-ID: DRKS00004417. Median follow-up was 25.5 months (range 1-61 months). Local control was maintained in 71 of 72 patients. The 3-year local recurrence rate was 2.1% (95% confidence interval, CI: 0-6.1%). Early toxicity (grade 1 radiodermatitis) was seen in 34.7% (25/72). Late side effects ≥ grade 3 did not occur. Cosmetic results were rated as excellent/good in 96.7% (59/61). APBI with external beam radiotherapy techniques is feasible with low toxicity and, according to the results of the present and other studies, on the way to becoming a standard treatment option for a selected subgroup of patients. (orig.) [German] Untersuchung der Vertraeglichkeit und Sicherheit der externen, 3-D-konformalen akzelerierten Teilbrustbestrahlung (APBI) fuer ausgewaehlte Patientinnen mit einem fruehen Mammakarzinom. Von 2011 bis 2016 wurden 72 Patientinnen in diese prospektive Phase-2-Studie eingebracht. Einschlusskriterien waren ein histologisch gesichertes Mammakarzinom oder DCIS, ein Tumordurchmesser ≤ 3 cm, tumorfreie Resektionsraender ≥ 2

  16. Initial dosimetric experience using simple three-dimensional conformal external-beam accelerated partial-breast irradiation

    International Nuclear Information System (INIS)

    Taghian, Alphonse G.; Kozak, Kevin R.; Doppke, Karen P.; Katz, Angela; Smith, Barbara L.; Gadd, Michele; Specht, Michelle; Hughes, Kevin; Braaten, Kristina; Kachnic, Lisa A.; Recht, Abram; Powell, Simon N.

    2006-01-01

    Purpose: Several accelerated partial-breast irradiation (APBI) techniques are being investigated in patients with early-stage breast cancer. We present our initial experience using three-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Sixty-one patients with tumors of 2 cm or less and negative axillary nodes were treated with 3D-CRT accelerated partial-breast irradiation (APBI) between August 2003 and March 2005. The prescribed radiation dose was 32 Gy in 4-Gy fractions given twice daily. Efforts were made to minimize the number of beams required to achieve adequate planning target volume (PTV) coverage. Results: A combination of photons and electrons was used in 85% of patients. A three-field technique that consisted of opposed, conformal tangential photons and enface electrons was employed in 43 patients (70%). Nine patients (15%) were treated with a four-field arrangement, which consisted of three photon fields and enface electrons. Mean PTV volumes that received 100%, 95%, and 90% of the prescribed dose were 93% ± 7%, 97% ± 4%, and 98% ± 2%, respectively. Dose inhomogeneity exceeded 10% in only 7 patients (11%). Mean doses to the ipsilateral lung and heart were 1.8 Gy and 0.8 Gy, respectively. Conclusions: Simple 3D-CRT techniques of APBI can achieve appropriate PTV coverage while offering significant normal-tissue sparing. Therefore, this noninvasive approach may increase the availability of APBI to patients with early-stage breast cancer

  17. Prone Accelerated Partial Breast Irradiation After Breast-Conserving Surgery: Compliance to the Dosimetry Requirements of RTOG-0413

    Energy Technology Data Exchange (ETDEWEB)

    Wen Bixiu [Department of Radiation Oncology, New York University Medical Center, New York, New York (United States); Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Hsu, Howard; Formenti-Ujlaki, George F.; Lymberis, Stella; Magnolfi, Chiara; Zhao Xuan; Chang Jenghwa; DeWyngaert, J. Keith; Jozsef, Gabor [Department of Radiation Oncology, New York University Medical Center, New York, New York (United States); Formenti, Silvia C., E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University Medical Center, New York, New York (United States)

    2012-11-15

    Purpose: The dosimetric results from our institution's trials of prone accelerated partial breast irradiation are compared with the dosimetric requirements of RTOG-0413. Methods and Materials: Trial 1 and Trial 2 are 2 consecutive trials of prone-accelerated partial breast irradiation. Eligible for both trials were stage I breast cancer patients with negative margins after breast-conserving surgery. The planning target tumor volume (PTV) was created by extending the surgical cavity 2.0 cm for Trial 1 and 1.5 cm for Trial 2, respectively. Contralateral breast, heart, lungs, and thyroid were contoured. Thirty Gray was delivered in five daily fractions of 6 Gy by a three-dimensional conformal radiation therapy technique in Trial 1 and were by image-guided radiation therapy/intensity-modulated radiation therapy in Trial 2. Dosimetric results from the trials are reported and compared with RTOG 0413 requirements. Results: One hundred forty-six consecutive plans were analyzed: 67 left and 79 right breast cancers. The plans from the trials complied with the required >90% of prescribed dose covering 90% of PTV{sub E}VAL (=generated from the PTV by cropping 0.5 cm from the skin edge and excluding the chest wall): V90% was 98.1 {+-} 3.0% (with V100% and V95%, 89.4 {+-} 12.8%, 96.4 {+-} 5.1%, respectively). No significant difference between laterality was found (Student's t test). The dose constraints criteria of the RTOG-0413 protocol for ipsilateral and contralateral lung (V30 <15% and Dmax <3%), heart (V5 <40%), and thyroid (Dmax <3%) were satisfied because the plans showed an average V5% of 0.6% (range, 0-13.4) for heart, an average V30% of 0.6% (range, 0-9.1%) for ipsilateral lung, and <2% maximum dose to the thyroid. However, our partial breast irradiation plans demonstrated a higher dose to contralateral breast than that defined by RTOG constraints, with a median value of maximum doses of 4.1% (1.2 Gy), possibly as a result of contouring differences

  18. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    Science.gov (United States)

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  19. Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Background and purpose: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the interaction of irradiation with such cardiovascular risk factors in radiation-induced damage to the heart and coronary arteries. Material and methods: Hypercholesterolemic and atherosclerosis-prone ApoE −/− mice received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological changes, microvascular damage and functional alterations were assessed after 20 and 40 weeks. Results: Inflammatory cells were significantly increased in the left ventricular myocardium at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase activity (2–16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks. Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, gated SPECT and ultrasound measurements showed only minor changes in functional cardiac parameters at 20 weeks. Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced an inflammatory response, microvascular and endocardial damage, and accelerated the development of coronary atherosclerosis. Despite these pronounced effects, cardiac function of ApoE −/− mice was maintained.

  20. Dosimetric comparison of proton and photon three-dimensional, conformal, external beam accelerated partial breast irradiation techniques

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Katz, Angela; Adams, Judith C.; Crowley, Elizabeth M.; Nyamwanda, Jacqueline A.C.; Feng, Jennifer K.C.; Doppke, Karen P.; DeLaney, Thomas F.; Taghian, Alphonse G.

    2006-01-01

    Purpose: To compare the dosimetry of proton and photon-electron three-dimensional, conformal, external beam accelerated partial breast irradiation (3D-CPBI). Methods and Materials: Twenty-four patients with fully excised, Stage I breast cancer treated with adjuvant proton 3D-CPBI had treatment plans generated using the mixed-modality, photon-electron 3D-CPBI technique. To facilitate dosimetric comparisons, planning target volumes (PTVs; lumpectomy site plus 1.5-2.0 cm margin) and prescribed dose (32 Gy) were held constant. Plans were optimized for PTV coverage and normal tissue sparing. Results: Proton and mixed-modality plans both provided acceptable PTV coverage with 95% of the PTV receiving 90% of the prescribed dose in all cases. Both techniques also provided excellent dose homogeneity with a dose maximum exceeding 110% of the prescribed dose in only one case. Proton 3D-CPBI reduced the volume of nontarget breast tissue receiving 50% of the prescribed dose by an average of 36%. Statistically significant reductions in the volume of total ipsilateral breast receiving 100%, 75%, 50%, and 25% of the prescribed dose were also observed. The use of protons resulted in small, but statistically significant, reductions in the radiation dose delivered to 5%, 10%, and 20% of ipsilateral and contralateral lung and heart. The nontarget breast tissue dosimetric advantages of proton 3D-CPBI were not dependent on tumor location, breast size, PTV size, or the ratio of PTV to breast volume. Conclusions: Compared to photon-electron 3D-CPBI, proton 3D-CPBI significantly reduces the volume of irradiated nontarget breast tissue. Both approaches to accelerated partial breast irradiation offer exceptional lung and heart sparing

  1. Effects of Gamma Irradiation on Shelf-Life and Sensory Scores of Squid Sundae under Accelerated Storage Conditions

    International Nuclear Information System (INIS)

    Kim, H.J.; Kim, K.B.W.R.; Kim, D.H.; Sunwoo, C.; Jung, S.A.; Jeong, D.H.; Jung, H.Y.; Ahn, D.H.; Kim, J.H.; Lee, J.W.; Do, S.R.; Byun, M.W.

    2012-01-01

    This study was conducted to examine the effects of gamma irradiation on the shelf-life and sensory scores of squid Sundae under accelerated storage conditions. Squid Sundae was stored at 37°C for 35 days following gamma irradiation at doses of 0, 10, and 20 kGy. For total viable cell counts, control and gamma-irradiated (GI) (10 kGy) squid Sundae were already spoiled in 4 days, whereas GI (20 kGy) squid Sundae showed complete suppression of bacterial growth during storage. There were no significant changes in pH values compared to the control. The VBN and TBARS (thiobarbituric acid reactive substance) values of GI (20 kGy) squid Sundae were significantly lower than those of the control. In addition, the induction period of GI (20 kGy) squid Sundae as measured by a Rancimat showed a higher level compared to that of the control. In the sensory evaluation, there were no significant changes between the control and GI samples. These results suggest that a dose of 20 kGy is the optimum and effective dose for preservation of squid Sundae. (author)

  2. Subtotal body irradiation with linear accelerator as preparation for marrow engraftment in aplastic anemia

    International Nuclear Information System (INIS)

    Walbom-Joergensen, S.; Ernst, P.

    1979-01-01

    Two cases of multitransfused severe aplastic anemia were retransplanted with bone marrow from the same HLA compatible sibling donors after subtotal body irradiation (800 r). Only minor non hematologic toxicity was observed. No permanent take was seen in relation to this procedure. During the survival time of the patients (78-120 days) no signs of interstitial pneumonia were observed

  3. Study of accelerated diffusion in gold and aluminium under neutron irradiation

    International Nuclear Information System (INIS)

    Acker, Denis.

    1977-09-01

    The speed-up of diffusion under neutron irradiation was studied. The experiments concern the self-diffusion of gold as a function of temperature and the heterodiffusion of copper and gold in aluminium against flux and temperature. In each of these systems the coefficients measured were 10 6 times higher than the expected extra-irradiation values for a flux of 6.10 12 n/cm 2 /s and at a temperature 0.33 Tsub(f), Tsub(f) being the matting point of the matrix expressed in Kelvins. The results obtained can be explained satisfactorily by assuming that, under irradiation: the activation energy of the diffusion coefficient is equal to half the hole migration energy (corrected for the hole-impurity interaction terms in the case of heterodiffusion); the diffusion coefficient under irradiation varies with the square root of the flux; defect wells eliminate interstitials much more efficient by than holes. The first two points agree well with theoretical predictions if the holes and interstitials are assumed to disappear essentially by mutual recombination, whereas the third can be interpreted in terms of a low efficiency of wells for holes and by supposing that the interstitial elimination reaction is limited only by the diffusion rate of these interstitials [fr

  4. Ion irradiation studies of construction materials for high-power accelerators

    Czech Academy of Sciences Publication Activity Database

    Mustafin, E.; Seidl, T.; Plotnikov, A.; Strašík, I.; Pavlovič, M.; Miglierini, M.; Stanček, S.; Fertman, A.; Lančok, Adriana

    2009-01-01

    Roč. 164, 7-8 (2009), s. 460-469 ISSN 1042-0150 R&D Projects : GA AV ČR KAN400100653 Institutional research plan: CEZ:AV0Z40320502 Keywords : particle accelerator * activation * metallic glasses Subject RIV: CA - Inorganic Chemistry Impact factor: 0.550, year: 2009

  5. Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Calcagno, L.; Giulietti, D.; Cutroneo, Mariapompea; Zimbone, M.; Skála, Jiří

    2015-01-01

    Roč. 355, JUL (2015), s. 221-226 ISSN 0168-583X Institutional support: RVO:68378271 ; RVO:61389005 Keywords : "p"-polarization * laser-generated plasma * TNSA regtime * ion acceleration in plasma Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BH - Optics, Masers, Lasers (FZU-D) Impact factor: 1.389, year: 2015

  6. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications

    International Nuclear Information System (INIS)

    Guignot, C.

    2002-11-01

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  7. Experimental destruction of Ascarid ova in sewage sludge by accelerated electron irradiation

    International Nuclear Information System (INIS)

    Horak, Petr

    1994-01-01

    Aerobically-treated sewage sludge containing eggs of the nematode Ascaris suum was processed using accelerated electrons. After 8 weeks of incubation the morphological and developmental status of eggs was determined. Inhibition of development and the destruction of nematode embryos within eggs were observed at doses over 1.1 kGy. (author)

  8. 12 MeV, 4.3 kW electron linear accelerator irradiation application

    International Nuclear Information System (INIS)

    Hang Desheng; Lai Qiji

    2000-01-01

    Characteristics of an electron linear accelerator, which has 6-12 MeV energy, 4.2 kW average beam power is introduced. Results show that it has advantages on improving the characteristics of semiconductor devices such as diodes, triodes, SCR, preventing garlic from sprout, preservation of food, and so on

  9. Linear accelerator-based intensity-modulated total marrow irradiation technique for treatment of hematologic malignancies: a dosimetric feasibility study.

    Science.gov (United States)

    Yeginer, Mete; Roeske, John C; Radosevich, James A; Aydogan, Bulent

    2011-03-15

    To investigate the dosimetric feasibility of linear accelerator-based intensity-modulated total marrow irradiation (IM-TMI) in patients with hematologic malignancies. Linear accelerator-based IM-TMI treatment planning was performed for 9 patients using the Eclipse treatment planning system. The planning target volume (PTV) consisted of all the bones in the body from the head to the mid-femur, except for the forearms and hands. Organs at risk (OAR) to be spared included the lungs, heart, liver, kidneys, brain, eyes, oral cavity, and bowel and were contoured by a physician on the axial computed tomography images. The three-isocenter technique previously developed by our group was used for treatment planning. We developed and used a common dose-volume objective method to reduce the planning time and planner subjectivity in the treatment planning process. A 95% PTV coverage with the 99% of the prescribed dose of 12 Gy was achieved for all nine patients. The average dose reduction in OAR ranged from 19% for the lungs to 68% for the lenses. The common dose-volume objective method decreased the planning time by an average of 35% and reduced the inter- and intra- planner subjectivity. The results from the present study suggest that the linear accelerator-based IM-TMI technique is clinically feasible. We have demonstrated that linear accelerator-based IM-TMI plans with good PTV coverage and improved OAR sparing can be obtained within a clinically reasonable time using the common dose-volume objective method proposed in the present study. Copyright © 2011. Published by Elsevier Inc.

  10. Persistent seroma after intraoperative placement of MammoSite for accelerated partial breast irradiation: Incidence, pathologic anatomy, and contributing factors

    International Nuclear Information System (INIS)

    Evans, Suzanne B.; Kaufman, Seth A.; Price, Lori Lyn; Cardarelli, Gene; Dipetrillo, Thomas A.; Wazer, David E.

    2006-01-01

    Purpose: To investigate the incidence of, and possible factors associated with, seroma formation after intraoperative placement of the MammoSite catheter for accelerated partial breast irradiation. Methods and Materials: This study evaluated 38 patients who had undergone intraoperative MammoSite catheter placement at lumpectomy or reexcision followed by accelerated partial breast irradiation with 34 Gy in 10 fractions. Data were collected regarding dosimetric parameters, including the volume of tissue enclosed by the 100%, 150%, and 200% isodose shells, dose homogeneity index, and maximal dose at the surface of the applicator. Clinical and treatment-related factors were analyzed, including patient age, patient weight, history of diabetes and smoking, use of reexcision, interval between surgery and radiotherapy, total duration of catheter placement, total excised specimen volume, and presence or absence of postprocedural infection. Seroma was verified by clinical examination, mammography, and/or ultrasonography. Persistent seroma was defined as seroma that was clinically detectable >6 months after radiotherapy completion. Results: After a median follow-up of 17 months, the overall rate of any detectable seroma was 76.3%. Persistent seroma (>6 months) occurred in 26 (68.4%) of 38 patients, of whom 46% experienced at least modest discomfort at some point during follow-up. Of these symptomatic patients, 3 required biopsy or complete cavity excision, revealing squamous metaplasia, foreign body giant cell reaction, fibroblasts, and active collagen deposition. Of the analyzed dosimetric, clinical, and treatment-related variables, only body weight correlated positively with the risk of seroma formation (p = 0.04). Postprocedural infection correlated significantly (p = 0.05) with a reduced risk of seroma formation. Seroma was associated with a suboptimal cosmetic outcome, because excellent scores were achieved in 61.5% of women with seroma compared with 83% without seroma

  11. The Influence of Irradiation and Accelerated Aging on the Mechanical and Tribological Properties of the Graphene Oxide/Ultra-High-Molecular-Weight Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guodong Huang

    2016-01-01

    Full Text Available Graphene oxide/ultra-high-molecular-weight polyethylene (GO/UHMWPE nanocomposite is a potential and promising candidate for artificial joint applications. However, after irradiation and accelerated aging, the mechanical and tribological behaviors of the nanocomposites are still unclear and require further investigation. GO/UHMWPE nanocomposites were successfully fabricated using ultrasonication dispersion, ball-milling, and hot-pressing process. Then, the nanocomposites were irradiated by gamma ray at doses of 100 kGy. Finally, GO/UHMWPE nanocomposites underwent accelerated aging at 80°C for 21 days in air. The mechanical and tribological properties of GO/UHMWPE nanocomposites have been evaluated after irradiation and accelerated aging. The results indicated that the incorporation of GO could enhance the mechanical, wear, and antiscratch properties of UHMWPE. After irradiation, these properties could be further enhanced, compared to unirradiated ones. After accelerated aging, however, these properties have been significantly reduced when compared to unirradiated ones. Moreover, GO and irradiation can synergistically enhance these properties.

  12. Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure.

    Science.gov (United States)

    Li, Li Jun; Hong, Peng; Jiang, Ze Dong; Yang, Yuan Fan; Du, Xi Ping; Sun, Hao; Wu, Li Ming; Ni, Hui; Chen, Feng

    2018-01-15

    d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Wholesomeness and Public Health Research in the United States Atomic Energy Commission Food Irradiation Programme; Recherches sur la Comestibilite et la Sante Publique au Titre du Programme d'Irradiation des Produits Alimentaires de la Commission de l'Energie Atomique des Etats-Unis; Issledovaniya bezvrednosti obluchennykh pishchevykh produktov i svyazannykh s nimi problem zdravookhraneniya po programme komissii po atomnoj ehnergii ssha v oblasti oblucheniya pishchevykh produktov; Programa de Irradiacion de Alimentos de la Comision de Energia Atomica de los Estados Unidos: Investigaciones Sobre Comestibilidad u Sanidad Publica

    Energy Technology Data Exchange (ETDEWEB)

    Whitehair, L. A. [Division of Biology and Medicine, United States Atomic Energy Commission, Washington, DC (United States)

    1966-11-15

    To assess the biological safety of foods which are of interest to the Atomic Energy Commission's irradiated food program, studies have been sponsored by the Commission's Division of Biology and Medicine since 1961. Wholesomeness, microbiological and biochemical studies have been undertaken with a view to complementing data derived from developmental, economic and technological research studies sponsored by the Commission's Division of Isotopes Development. When these aspects appear feasible for specific low-dose irradiated foods, studies are initiated to provide relevant data required by the United States Food and Drug Administration before final judgements can be made on petitions for unlimited human consumption. Toxicity studies on several species of animals which are fed diets containing up to 35 Degree-Sign (dry solids basis) of the irradiated food in question have been included in this program. Investigations of two years duration on animals (rats, dogs and chickens) provide data concerning food consumption, growth rate, enzyme systems, haematology, gross pathology and histopathology. Shorter-term studies of a confirmatory nature on two animal species (rat and dog) are employed in certain cases when the irradiated food in question is sufficiently related to foods which have previously undergone long-term toxicity studies. Results to date of chronic toxicity studies on soft-shell clams and subacute toxicity studies on strawberries, apples, pears, sweet cherries, apricots, plums and onions are discussed. Microbiological studies have been concentrated primarily on potentially pathogenic organisms. Studies have been in progress to evaluate carefully the conditions governing radiation and heat resistance, sporulation, outgrowth and toxin production of Clostridium botulinum Type E. The natural incidence of Type E organisms in certain marine products and ocean environments is being investigated. Findings in the microbiological studies are discussed. Studies to date

  14. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    Science.gov (United States)

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  15. A treatment planning study comparing whole breast radiation therapy against conformal, IMRT and tomotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Oliver, Mike; Chen, Jeff; Wong, Eugene; Van Dyk, Jake; Perera, Francisco

    2007-01-01

    Purpose and background: Conventional early breast cancer treatment consists of a lumpectomy followed by whole breast radiation therapy. Accelerated partial breast irradiation (APBI) is an investigational approach to post-lumpectomy radiation for early breast cancer. The purpose of this study is to compare four external beam APBI techniques, including tomotherapy, with conventional whole breast irradiation for their radiation conformity index, dose homogeneity index, and dose to organs at risk. Methods and materials: Small-field tangents, three-dimensional conformal radiation therapy, intensity-modulated radiation therapy and helical tomotherapy were compared for each of 15 patients (7 right, 8 left). One radiation conformity and two dose homogeneity indices were used to evaluate the dose to the target. The mean dose to organs at risk was also evaluated. Results: All proposed APBI techniques improved the conformity index significantly over whole breast tangents while maintaining dose homogeneity and without a significant increase in dose to organs at risk. Conclusion: The four-field IMRT plan produced the best dosimetric results; however this technique would require appropriate respiratory motion management. An alternative would be to use a four-field conformal technique that is less sensitive to the effects of respiratory motion

  16. Cryptoendolithic Antarctic Black Fungus Cryomyces antarcticus Irradiated with Accelerated Helium Ions: Survival and Metabolic Activity, DNA and Ultrastructural Damage

    Directory of Open Access Journals (Sweden)

    Claudia Pacelli

    2017-10-01

    Full Text Available Space represents an extremely harmful environment for life and survival of terrestrial organisms. In the last decades, a considerable deal of attention was paid to characterize the effects of spaceflight relevant radiation on various model organisms. The aim of this study was to test the survival capacity of the cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 to space relevant radiation, to outline its endurance to space conditions. In the frame of an international radiation campaign, dried fungal colonies were irradiated with accelerated Helium ion (150 MeV/n, LET 2.2 keV/μm, up to a final dose of 1,000 Gy, as one of the space-relevant ionizing radiation. Results showed that the fungus maintained high survival and metabolic activity with no detectable DNA and ultrastructural damage, even after the highest dose irradiation. These data give clues on the resistance of life toward space ionizing radiation in general and on the resistance and responses of eukaryotic cells in particular.

  17. Double use of focused microwave irradiation for accelerated matrix hydrolysis and lipid extraction in milk samples

    International Nuclear Information System (INIS)

    Garcia-Ayuso, L.E.; Luque de Castro, M.D.; Velasco, J.; Dobarganes, M.C.

    1999-01-01

    Irradiation with microwave energy has allowed to carry out the extraction of lipids from milk samples (namely, cow, goat and sheep) with quantitative results similar to the Weibull–Berntrop extraction procedure but milk fat obtained by microwave assisted extraction undergoes lesser chemical transformation of triglycerides during the whole process. A considerable reduction of the procedure time (50 min versus 10 h) is achieved with similar reproducibility to that provided by the conventional method. An in situ’ solvent recycling step makes the method environmentally clean

  18. Accelerated partial breast irradiation in the elderly: 5-year results of high-dose rate multi-catheter brachytherapy

    International Nuclear Information System (INIS)

    Genebes, Caroline; Hannoun-Levi, Jean-Michel; Chand, Marie-Eve; Gal, Jocelyn; Gautier, Mathieu; Raoust, Ines; Ihrai, Tarik; Courdi, Adel; Ferrero, Jean-Marc; Peyrottes, Isabelle

    2014-01-01

    To evaluate clinical outcome after accelerated partial breast irradiation (APBI) in the elderly after high-dose-rate interstitial multi-catheter brachytherapy (HIBT). Between 2005 and 2013, 70 patients underwent APBI using HIBT. Catheter implant was performed intra or post-operatively (referred patients) after lumpectomy and axillary sentinel lymph node dissection. Once the pathological results confirmed the indication of APBI, planification CT-scan was performed to deliver 34 Gy/10f/5d or 32 Gy/8f/4d. Dose-volume adaptation was manually achieved (graphical optimization). Dosimetric results and clinical outcome were retrospectively analyzed. Physician cosmetic evaluation was reported. With a median follow-up of 60.9 months [4.6 – 90.1], median age was 80.7 years [62 – 93.1]. Regarding APBI ASTRO criteria, 61.4%, 18.6% and 20% were classified as suitable, cautionary and non-suitable respectively. Axillary sentinel lymph node dissection was performed in 94.3%; 8 pts (11.5%) presented an axillary involvement. A median dose of 34 Gy [32 – 35] in 8 to 10 fractions was delivered. Median CTV was 75.2 cc [16.9 – 210], median D90 EQD2 was 43.3 Gy [35 – 72.6] and median DHI was 0.54 [0.19 – 0.74]. One patient experienced ipsilateral recurrence (5-year local free recurrence rate: 97.6%. Five-year specific and overall survival rates were 97.9% and 93.2% respectively. Thirty-four patients (48%) presented 47 late complications classified grade 1 (80.8%) and grade 2 (19.2%) with no grade ≥ 3. Cosmetic results were considered excellent/good for 67 pts (95.7%). APBI using HIBT and respecting strict rules of implantation and planification, represents a smart alternative between no post-operative irradiation and whole breast irradiation delivered over 6 consecutive weeks

  19. Role of pigmentation in protecting bacterial cells against irradiation generated by accelerated charged particles

    International Nuclear Information System (INIS)

    Tiwary, Bhupendra Nath; Das, Reena

    2013-01-01

    Beams of high-energy particles are useful for both fundamental and applied research in the sciences, and also in many technical and industrial fields unrelated to fundamental research. It has been estimated that there are approximately 26,000 accelerators world. Of these, only about 1% are research machines with energies above 1 GeV, while about 44% are for radiotherapy, 41% for ion implantation, 9% for industrial processing and research, and 4% for biomedical and other low-energy research. One aspect of these radiations can be studied for examining their effect in altering the viability of bacterial cells. The radiations generated by the simple technology of a single static high voltage to accelerate charged particles are known to produce reactive oxygen intermediates such as hydrogen peroxide or superoxide anions and target several cellular components of bacterial cells including the DNA. As a result of this interaction with the DNA the phosphodiester backbone of the DNA may break leading to single or double strand fission. Endogenous pigments, such as carotenoids and melanins, might provide a selective advantage to these microorganisms by photoprotection or shielding from UV radiation, including the UV-C and full UV-B range. The pigment, as an antioxidant scavenges reactive oxygen species generated by UV-A radiation and protect various microorganisms against oxidative damage caused by UV or ionizing radiation by scavenging free radicals. Environmental UV radiation is polychromatic and comprises the full spectrum of UV-A and UV-B radiation at wavelengths of λ > 290 nm. Accelerators, solar simulators and natural insulation can also prove to be a better alternate for understanding the responses of bacterial cells to the terrestrial UV radiation climate. (author)

  20. Analysis of mutations in the human HPRT gene induced by accelerated heavy-ion irradiation

    International Nuclear Information System (INIS)

    Kagawa, Yasuhiro; Yatagai, Fumio; Hanaoka, Fumio; Suzuki, Masao; Kase, Youko; Kobayashi, Akiko; Hirano, Masahiko; Kato, Takesi; Watanabe, Masami.

    1995-01-01

    Multiplex PCR analysis of HPRT(-) mutations in human embryo (HE) cells induced by 230 keV/μm carbon-ion irradiation showed no large deletion around the exon regions of the locus gene in contrast to the irradiations at different LETs. To identify these mutations, the sequence alterations in a cDNA of hprt gene were determined for 18 mutant clones in this study. Missing of exon 6 was the most frequent mutational event (10 clones), and missing of both exons 6 and 8 was next most frequent event (6 clones), then base substitutions (2 clones). These characteristics were not seen in a similar analysis of spontaneous mutations, which showed base substitution (5 clones), frameshift (2 clones), missing of both exons 2 and 3 (2 clones), and a single unidentified clone. Direct sequencing and restriction enzyme digestion of the genomic DNA of the mutants which showed missing of exons 6 and 8 in the cDNA, supports the possibility that they were induced by aberrant mRNA splicing. (author)

  1. Accelerated repopulation of mouse tongue epithelium during fractionated irradiations or following single doses

    International Nuclear Information System (INIS)

    Doerr, W.; Kummermehr, J.

    1990-01-01

    Mouse tongue mucosa was established as an animal model to study repopulation after large single doses or during continuous irradiation. A top-up irradiation technique was used employing priming doses or fractionated treatment to the whole snout (300 kV X-rays) followed by local test doses (25 kV X-rays) to elicit denudation in a confined field of the inferior tongue surface. Clearcut quantal dose-response curves of ulcer incidence were obtained to all protocols; animal morbidity, i.e. body weight loss was minimal. Repopulation following priming doses of 10 and 13 Gy started with a delay of at least 3 days and then progressed rapidly to nearly restore original tissue tolerance by day 11. During continuous fractionation over 1 to 3 weeks with 5 fractions/week and doses per fraction of 2.5, 3 and 3.5 Gy, repopulation was small in week one but subsequently increased to fully compensate the weekly dose at all dose levels. Additional measurements of cell density during a 4 weeks course of 5 x 3 Gy or 5 x 4 Gy per week showed only moderate depletion to 67% of the control figures. The fact that rapid repopulation is achieved at relatively moderate damage levels should be taken into account when the timing of a treatment split is considered. (author). 18 refs.; 7 figs.; 1 tab

  2. Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore,” Via delle Olimpiadi, 94100 Enna (Italy); Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Tudisco, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Muoio, A. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F. D’Alcontres 31, 98166 Messina (Italy)

    2016-02-15

    In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.

  3. Interobserver variations of target volume delineation and its impact on irradiated volume in accelerated partial breast irradiation with intraoperative interstitial breast implant

    Directory of Open Access Journals (Sweden)

    Ritu Raj Upreti

    2017-02-01

    Full Text Available Purpose: To investigate the interobserver variations in delineation of lumpectomy cavity (LC and clinical target volume (CTV, and its impact on irradiated volume in accelerated partial breast irradiation using intraoperative multicatheter brachytherapy. Material and methods : Delineation of LC and CTV was done by five radiation oncologists on planning computed tomography (CT scans of 20 patients with intraoperative interstitial breast implant. Cavity visualization index (CVI, four-point index ranging from (0 = poor to (3 = excellent was created and assigned by observers for each patient. In total, 200 contours for all observers and 100 treatment plans were evaluated. Spatial concordance (conformity index, CI common , and CIgen, average shift in the center of mass (COM, and ratio of maximum and minimum volumes (V max /V min of LC and CTV were quantified among all observers and statistically analyzed. Variation in active dwell positions (0.5 cm step for each catheter, total reference air kerma (TRAK, volume enclosed by prescription isodose (V100% among observers and its spatial concordance were analyzed. Results : The mean ± SD CI common of LC and CTV was 0.54 ± 0.09, and 0.58 ± 0.08, respectively. Conformity index tends to increase, shift in COM and V max /V min decrease significantly (p < 0.05, as CVI increased. Out of total 309 catheters, 29.8% catheters had no change, 29.8% and 17.5% catheters had variations of 1 and 2 dwell positions (0.5 cm and 1 cm, respectively. 9.3% catheters shown variations ≥ 10 dwell positions (5 cm. The mean ± SD CI common of V100% was 0.75 ± 0.11. The mean observed V max /V min of prescription isodose and TRAK was 1.18 (range, 1.03 to 1.56 and 1.11 (range, 1.03 to 1.35, respectively. Conclusions : Interobserver variability in delineation of target volume was found to be significantly related to CVI. Smaller variability was observed with excellent visualization of LC. Interobserver variations showed dosimetric

  4. Chapter 2: Irradiators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    The chapter 2 presents the subjects: 1) gamma irradiators which includes: Category-I gamma irradiators (self-contained); Category-II gamma irradiators (panoramic and dry storage); Category-III gamma irradiators (self-contained in water); Category-IV gamma irradiators (panoramic and wet storage); source rack for Category-IV gamma irradiators; product transport system for Category-IV gamma irradiators; radiation shield for gamma irradiators; 2) accelerators which includes: Category-I Accelerators (shielded irradiator); Category-II Accelerators (irradiator inside a shielded room); Irradiation application examples.

  5. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy; Puesta en marcha de la tecnica de irradiacion parcial acelerada de la mama con braquterapia de alta tasa de dosis (HDR)

    Energy Technology Data Exchange (ETDEWEB)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-07-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  6. Increased detection of lymphatic vessel invasion by D2-40 (podoplanin) in early breast cancer: possible influence on patient selection for accelerated partial breast irradiation.

    NARCIS (Netherlands)

    Debald, M.; Polcher, M.; Flucke, U.E.; Walgenbach-Brunagel, G.; Walgenbach, K.J.; Holler, T.; Wolfgarten, M.; Rudlowski, C.; Buttner, R.; Schild, H.; Kuhn, W.; Braun, M.

    2010-01-01

    PURPOSE: Several international trials are currently investigating accelerated partial breast irradiation (APBI) for patients with early-stage breast cancer. According to existing guidelines, patients with lymphatic vessel invasion (LVI) do not qualify for APBI. D2-40 (podoplanin) significantly

  7. Ponderomotive ion acceleration in dense magnetized laser-irradiated thick target plasmas

    Science.gov (United States)

    Sinha, Ujjwal; Kaw, Predhiman

    2012-03-01

    When a circularly polarized laser pulse falls on an overdense plasma, it displaces the electrons via ponderomotive force creating a double layer. The double layer constitutes of an ion and electron sheath with in which the electrostatic field present is responsible for ion acceleration. In this paper, we have analyzed the effect a static longitudinal magnetic field has over the ion acceleration mechanism. The longitudinal magnetic field changes the plasma dielectric constant due to cyclotron effects which in turn enhances or reduces the ponderomotive force exerted by the laser depending on whether the laser is left or right circularly polarized. Also, the analysis of the ion space charge region present behind the ion sheath of the laser piston that undergoes coulomb explosion has been explored for the first time. We have studied the interaction of an incoming ion beam with the laser piston and the ion space charge. It has been found that the exploding ion space charge has the ability to act as an energy amplifier for incoming ion beams.

  8. A theoretical model of accelerated irradiation creep at low temperatures by transient interstitial absorption

    International Nuclear Information System (INIS)

    Stoller, R.E.; Grossbeck, M.L.; Mansur, L.K.

    1990-01-01

    A theoretical model has been developed using the reaction rate theory of radiation effects to explain experimental results that showed higher than expected values of irradiation creep at low temperatures in the Oak Ridge Research Reactor. The customary assumption that the point defect concentrations are at steady state was not made; rather, the time dependence of the vacancy and interstitial concentrations and the creep rate were explicitly calculated. For temperatures below about 100 to 200 degree C, the time required for the vacancy concentration to reach steady state exceeds the duration of the experiment. For example, if materials parameters typical of austenitic stainless steel are used, the calculated vacancy transient dose at 100 degree C is about 100 dpa. At 550 degree C this transient is over by 10 -8 dpa. During the time that the vacancy population remains lower than its steady state value, dislocation climb is increased since defects of primarily one type are being absorbed. Using the time-dependent point defect concentrations, the dislocation climb velocity has been calculated as a function of time and a climb-enabled glide creep model had been invoked. The extended transient time for the vacancies leads to high creep rates at low temperatures. In agreement with the experimental observations, a minimum in the temperature dependence of creep is predicted at a temperature between 50 and 350 degree C. The temperature at which the minimum occurs decreases as the irradiation dose increases. Predicted values of creep at 8 dpa are in good agreement with the results of the ORR-MFE-6J/7J experiment

  9. Strategy Selection of Film Irradiation by Accelerated ^{40}Ar^{8+} Ions for Manufacturing of Track Membranes

    CERN Document Server

    Denisov, Yu N; Kalinichenko, V V; Karamysheva, G A; Fedorenko, S B

    2004-01-01

    The industrial cyclotron CYTRACK is dedicated to the production of the track membranes. It is the basic instrument for the industry of membrane products to be consumed in medicine, biotechnology, pharmacology, microelectronics and many other industries. The cyclotron CYTRACK started working in the August of 2002. Argon ions were accelerated to a project energy of 2.4 MeV/nucleon, the extracted beam intensity was about 200 nA, the extraction efficiency totaled \\sim 50 %. In starting up operation the film was exposed in various controlled ways to charged particles with a view to achieving the values of parameters required for production of "Rosa" membranous plasmafilters. The pore uniformity in transverse direction was provided by beam scanning with a scanning magnet voltage of 73 V, the one in the longitudinal direction was provided by constancy of the film motion rate and stability of beam intensity during all the time of exposition.

  10. Effects of accelerated electron beam irradiation on surface hardening and fatigue properties in an AISI 4140 steel used for automotive crankshaft

    Energy Technology Data Exchange (ETDEWEB)

    Choo, S.-H.; Lee, S. [Pohang Univ. of Sci. and Technol. (Korea). Center for Adv. Aerospace Mater.; Golkovski, M.G. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    2000-11-30

    This study is concerned with the effects of high-energy accelerated electron beam irradiation on surface hardening and improvement of fatigue properties in an AISI 4140 steel currently used for automotive crankshaft. The 4140 steel specimens were irradiated in air by using a high-energy electron beam accelerator, and then microstructure, hardness, and fatigue properties were examined. Beam power was varied in the range of 5.2{proportional_to}7.7 kW by changing beam current. Upon irradiation, the unirradiated microstructure containing band structure was changed to martensite and bainite in the carbon-rich zone or ferrite, bainite, and martensite in the carbon-depleted zone. This microstructural modification improved greatly surface hardness and fatigue properties due to transformation of martensite whose amount and type were determined by heat input during irradiation. Thus, high-energy electron beam irradiation can be effectively applied to the surface hardening process of automotive parts. In order to investigate the thermal cycle during electron beam irradiation of quickly rotating specimens, the thermal analysis was also carried out using an analytical computer simulation. Analytical solutions gave information about the peak temperature, heating and cooling rate, and hardened depth to correlate with the overall microstructural modification. (orig.)

  11. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  12. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  13. Technique and dosimetry for total body irradiation with an 8-MV linear accelerator

    International Nuclear Information System (INIS)

    Svahn-Tapper, G.; Nilsson, P.; Jonsson, C.; Alvegard, T.A.

    1987-01-01

    The aim of the study was to develop a method for calculation of the absorbed dose at an arbitrary point in the patient (adults and children). The method should be accurate but simple to use in clinical routine and it should as far as possible follow the recommendations by ICRU for conventional radiotherapy. An 8-MV linear accelerator is used with a diamond-shaped field and an isocentric technique at a focus-axis distance of 430 cm. The dose rate in an arbitrary point in the patient is calculated from the absorbed dose rate in dose maximum for a phantom size of 30 x 30 x 30 cm 3 in the TBI field, an inverse square law factor, the tissue-maximum ratio, an equivalent field size correction factor determined from the patient contour using the Clarkson method, a factor correcting for lack of backscattering material, an off-axis output correction factor, and a factor that corrects for off-axis variations in effective photon beam energy and for oblique beam penetration of the patient. A personal computer is used for the dose calculations. The formula was tested with TLD measurements in a RT Humanoid (adult) phantom and in a Pedo-RT Humanoid (child) phantom. In vivo dose measurements are also presented

  14. Continuous Arc Rotation of the Couch Therapy for the Delivery of Accelerated Partial Breast Irradiation: A Treatment Planning Analysis

    International Nuclear Information System (INIS)

    Shaitelman, Simona F.; Kim, Leonard H.; Yan Di; Martinez, Alvaro A.; Vicini, Frank A.; Grills, Inga S.

    2011-01-01

    Purpose: We present a novel form of arc therapy: continuous arc rotation of the couch (C-ARC) and compare its dosimetry with three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT) for accelerated partial breast irradiation (APBI). C-ARC, like VMAT, uses a modulated beam aperture and dose rate, but with the couch, not the gantry, rotating. Methods and Materials: Twelve patients previously treated with APBI using 3D-CRT were replanned with (1) C-ARC, (2) IMRT, and (3) VMAT. C-ARC plans were designed with one medial and one lateral arc through which the couch rotated while the gantry was held stationary at a tangent angle. Target dose coverage was normalized to the 3D-CRT plan. Comparative endpoints were dose to normal breast tissue, lungs, and heart and monitor units prescribed. Results: Compared with 3D-CRT, C-ARC, IMRT, and VMAT all significantly reduced the ipsilateral breast V50% by the same amount (mean, 7.8%). Only C-ARC and IMRT plans significantly reduced the contralateral breast maximum dose, the ipsilateral lung V5Gy, and the heart V5%. C-ARC used on average 40%, 30%, and 10% fewer monitor units compared with 3D-CRT, IMRT, and VMAT, respectively. Conclusions: C-ARC provides improved dosimetry and treatment efficiency, which should reduce the risks of toxicity and secondary malignancy. Its tangent geometry avoids irradiation of critical structures that is unavoidable using the en face geometry of VMAT.

  15. Patient-reported outcomes of catheter-based accelerated partial breast brachytherapy and whole breast irradiation, a single institution experience.

    Science.gov (United States)

    Jethwa, Krishan R; Kahila, Mohamed M; Mara, Kristin C; Harmsen, William S; Routman, David M; Pumper, Geralyn M; Corbin, Kimberly S; Sloan, Jeff A; Ruddy, Kathryn J; Hieken, Tina J; Park, Sean S; Mutter, Robert W

    2018-05-01

    Accelerated partial breast irradiation (APBI) and whole breast irradiation (WBI) are treatment options for early-stage breast cancer. The purpose of this study was to compare patient-reported-outcomes (PRO) between patients receiving multi-channel intra-cavitary brachytherapy APBI or WBI. Between 2012 and 2015, 131 patients with ductal carcinoma in situ (DCIS) or early stage invasive breast cancer were treated with adjuvant APBI (64) or WBI (67) and participated in a PRO questionnaire. The linear analog scale assessment (LASA), harvard breast cosmesis scale (HBCS), PRO-common terminology criteria for adverse events- PRO (PRO-CTCAE), and breast cancer treatment outcome scale (BCTOS) were used to assess quality of life (QoL), pain, fatigue, aesthetic and functional status, and breast cosmesis. Comparisons of PROs were performed using t-tests, Wilcoxon rank-sum, Chi square, Fisher exact test, and regression methods. Median follow-up from completion of radiotherapy and questionnaire completion was 13.3 months. There was no significant difference in QoL, pain, or fatigue severity, as assessed by the LASA, between treatment groups (p > 0.05). No factors were found to be predictive of overall QoL on regression analysis. BCTOS health-related QoL scores were similar between treatment groups (p = 0.52).The majority of APBI and WBI patients reported excellent/good breast cosmesis, 88.5% versus 93.7% (p = 0.37). Skin color change (p = 0.011) and breast elevation (p = 0.01) relative to baseline were more common in the group receiving WBI. APBI and WBI were both associated with favorable patient-reported outcomes in early follow-up. APBI resulted in a lesser degree of patient-reported skin color change and breast elevation relative to baseline.

  16. SU-F-T-213: Commissioning Results of the Prototype Active Scanning Irradiation System of Korea Heavy Ion Medical Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C; Seduk, J; Yang, T [Korea Institute of Radiological And Medical Sciences, Seoul, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: A prototype actives scanning beam delivery system was designed, manufactured and installed as a part of the Korea Heavy Ion Medical Accelerator Project. The prototype system includes the most components for steering, modulating, detecting incident beam to patient. The system was installed in MC-50 cyclotron beam line and tested to extract the normal operation conditions. Methods: The commissioning process was completed by using 45 MeV of proton beam. To measure the beam position accuracy along the scanning magnet power supply current, 25 different spots were scanning and measured. The scanning results on GaF film were compared with the irradiation plan. Also, the beam size variation and the intensity reduction using range shifter were measured and analyzed. The results will be used for creating a conversion factors for asymmetric behavior of scanning magnets and a dose compensation factor for longitudinal direction. Results: The results show asymmetry operations on both scanning × and y magnet. In case of scanning magnet × operation, the current to position conversion factors were measured 1.69 mm/A for positive direction and 1.74 mm/A for negative direction. The scanning magnet y operation shows 1.38mm/A and 1.48 mm/A for both directions. The size of incoming beam which was 18 mm as sigma becomes larger up to 55 mm as sigma while using 10 mm of the range shifter plate. As the beam size becomes large, the maximum intensity of the was decreased. In case of using 10 mm of range shifter, the maximum intensity was only 52% compared with no range shifter insertion. Conclusion: For the appropriate operation of the prototype active scanning system, the commissioning process were performed to measure the beam characteristics variation. The obtained results would be applied on the irradiation planning software for more precise dose delivery using the active scanning system.

  17. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial.

    Science.gov (United States)

    Livi, Lorenzo; Meattini, Icro; Marrazzo, Livia; Simontacchi, Gabriele; Pallotta, Stefania; Saieva, Calogero; Paiar, Fabiola; Scotti, Vieri; De Luca Cardillo, Carla; Bastiani, Paolo; Orzalesi, Lorenzo; Casella, Donato; Sanchez, Luis; Nori, Jacopo; Fambrini, Massimiliano; Bianchi, Simonetta

    2015-03-01

    Accelerated partial breast irradiation (APBI) has been introduced as an alternative treatment method for selected patients with early stage breast cancer (BC). Intensity-modulated radiotherapy (IMRT) has the theoretical advantage of a further increase in dose conformity compared with three-dimensional techniques, with more normal tissue sparing. The aim of this randomised trial is to compare the local recurrence and survival of APBI using the IMRT technique after breast-conserving surgery to conventional whole-breast irradiation (WBI) in early stage BC. This study was performed at the University of Florence (Florence, Italy). Women aged more than 40years affected by early BC, with a maximum pathological tumour size of 25mm, were randomly assigned in a 1:1 ratio to receive either WBI or APBI using IMRT. Patients in the APBI arm received a total dose of 30 Gy to the tumour bed in five daily fractions. The WBI arm received 50Gy in 25 fractions, followed by a boost on the tumour bed of 10Gy in five fractions. The primary end-point was occurrence of ipsilateral breast tumour recurrences (IBTRs); the main analysis was by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT02104895. A total of 520 patients were randomised (260 to external WBI and 260 to APBI with IMRT) between March 2005 and June 2013. At a median follow-up of 5.0 years (Interquartile Range (IQR) 3.4-7.0), the IBTR rate was 1.5% (three cases) in the APBI group (95% confidence interval (CI) 0.1-3.0) and in the WBI group (three cases; 95% CI 0.0-2.8). No significant difference emerged between the two groups (log rank test p=0.86). We identified seven deaths in the WBI group and only one in the APBI group (p=0.057). The 5-year overall survival was 96.6% for the WBI group and 99.4% for the APBI group. The APBI group presented significantly better results considering acute (p=0.0001), late (p=0.004), and cosmetic outcome (p=0.045). To our knowledge, this is the first randomised

  18. Accelerated partial-breast irradiation using proton beams: Initial clinical experience

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Smith, Barbara L.; Adams, Judith C.; Kornmehl, Ellen; Katz, Angela; Gadd, Michele; Specht, Michelle; Hughes, Kevin; Gioioso, Valeria; Lu, H.-M.; Braaten, Kristina; Recht, Abram; Powell, Simon N.; DeLaney, Thomas F.; Taghian, Alphonse G.

    2006-01-01

    Purpose: We present our initial clinical experience with proton, three-dimensional, conformal, external beam, partial-breast irradiation (3D-CPBI). Methods and Materials: Twenty patients with Stage I breast cancer were treated with proton 3D-CPBI in a Phase I/II clinical trial. Patients were followed at 3 to 4 weeks, 6 to 8 weeks, 6 months, and every 6 months thereafter for recurrent disease, cosmetic outcome, toxicity, and patient satisfaction. Results: With a median follow-up of 12 months (range, 8-22 months), no recurrent disease has been detected. Global breast cosmesis was judged by physicians to be good or excellent in 89% and 100% of cases at 6 months and 12 months, respectively. Patients rated global breast cosmesis as good or excellent in 100% of cases at both 6 and 12 months. Proton 3D-CPBI produced significant acute skin toxicity with moderate to severe skin color changes in 79% of patients at 3 to 4 weeks and moderate to severe moist desquamation in 22% of patients at 6 to 8 weeks. Telangiectasia was noted in 3 patients. Three patients reported rib tenderness in the treated area, and one rib fracture was documented. At last follow-up, 95% of patients reported total satisfaction with proton 3D-CPBI. Conclusions: Based on our study results, proton 3D-CPBI offers good-to-excellent cosmetic outcomes in 89% to 100% of patients at 6-month and 12-month follow-up and nearly universal patient satisfaction. However, proton 3D-CPBI, as used in this study, does result in significant acute skin toxicity and may potentially be associated with late skin (telangiectasia) and rib toxicity. Because of the dosimetric advantages of proton 3D-CPBI, technique modifications are being explored to improve acute skin tolerance

  19. The Influence of Accelerated UV-A and Q-SUN Irradiation on the Antibacterial Properties of Hydrophobic Coatings Containing Eucomis comosa Extract

    Directory of Open Access Journals (Sweden)

    Małgorzata Mizielińska

    2018-04-01

    Full Text Available The purpose of this research was to examine the antimicrobial properties against Gram-positive bacteria, as well as the water vapour characteristic of polylactic acid (PLA films covered with a methyl–hydroxypropyl–cellulose (MHPC/cocoa butter carrier containing Eucomis comosa extract as an active substance. The second purpose of the study was to evaluate the influence of accelerated UV-A and Q-SUN irradiation (UV-aging on the antimicrobial properties and the barrier characteristic of the coatings. The results of the study revealed that MHPC/cocoa butter coatings had no influence on the growth of Staphylococcus aureus, Bacillus cereus, and Bacillus atrophaeus. MHPC/cocoa butter coatings containing E. comosa extract reduced the number of bacterial strains. MHPC/cocoa butter coatings also decreased the water vapour permeability of PLA. It was shown that accelerated UV-A and Q-SUN irradiations altered the chemical composition of the coatings containing cocoa butter. Despite the alteration of the chemical composition of the layers, the accelerated Q-SUN and UV-A irradiation had no influence on the antimicrobial properties of E. comosa extract coatings against S. aureus and B. cereus. It was found that only Q-SUN irradiation decreased the coating activity with an extract against B. atrophaeus, though this was to a small degree.

  20. Analysis of 14C-bearing compounds released by the corrosion of irradiated steel using accelerator mass spectrometry.

    Science.gov (United States)

    Cvetković, B Z; Salazar, G; Kunz, D; Szidat, S; Wieland, E

    2018-06-25

    The combination of ion chromatography (IC) with accelerator mass spectrometry (AMS) was developed to determine the speciation of 14C-(radiocarbon) bearing organic compounds in the femto to pico molar concentration range. The development of this compound-specific radiocarbon analysis (CSRA) of carboxylic acids is reported and the application of the method on a leaching solution from neutron-irradiated steel is demonstrated. The background and the dynamic range of the AMS-based method were quantified. On using 14C-labelled standards, the measurements demonstrate the repeatability of the analytical method and the reproducible recovery of the main target carboxylic acids (i.e., acetate, formate, malonate, and oxalate). The detection limit was determined to be in the mid fmol 14C per L level while the dynamic range of the analytical method covers three orders of magnitude from the low fmol to the mid pmol 14C per L level. Cross contamination was found to be negligible during IC fractionation and was accounted for during eluate processing and 14C detection by AMS. The 14C-bearing carboxylates released from an irradiated steel nut into an alkaline leaching solution were analysed using the CSRA-based analytical method with the aim to check the applicability of the approach and develop appropriate sample preparation. The concentrations of 14C-bearing formate and acetate, the main organic corrosion products, were at a low pmol 14C per L level for convenient dimensions of the alkaline leaching experiment which demonstrates that compound-specific 14C AMS is an extremely sensitive analytical method for analysing 14C-bearing compounds. The content of total organic 14C in solution (TO14C) determined by the direct measurement of an aliquot of the leaching solution agrees well with the sum of the 14C concentrations of the individual carboxylates within the uncertainty of the data. Furthermore, the TO14C content is in good agreement with the calculated value using the corrosion rate

  1. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Arun, E-mail: arun.azad@bccancer.bc.ca [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Pathology, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Bukczynska, Patricia; Jackson, Susan [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Haput, Ygal; Cullinane, Carleen [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia); McArthur, Grant A.; Solomon, Benjamin [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Medicine, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia)

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  2. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    International Nuclear Information System (INIS)

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-01-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination

  3. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    Science.gov (United States)

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Phase II trial of 3D-conformal accelerated partial breast irradiation: Lessons learned from patients and physicians’ evaluation

    International Nuclear Information System (INIS)

    Azoury, Fares; Heymann, Steve; Acevedo, Catalina; Spielmann, Marc; Vielh, Philippe; Garbay, Jean-Rémi; Taghian, Alphonse G.; Marsiglia, Hugo; Bourgier, Céline

    2012-01-01

    Introduction: The present study prospectively reported both physicians’ and patients’ assessment for toxicities, cosmetic assessment and patients’ satisfaction after 3D-conformal accelerated partial breast irradiation (APBI). Materials and Methods: From October 2007 to September 2009, 30 early breast cancer patients were enrolled in a 3D-conformal APBI Phase II trial (40 Gy/10 fractions/5 days). Treatment related toxicities and cosmetic results were assessed by both patients and physicians at each visit (at 1, 2, 6 months, and then every 6 months). Patient satisfaction was also scored. Results: After a median follow-up of 27.7 months, all patients were satisfied with APBI treatment, regardless of cosmetic results or late adverse events. Good/excellent cosmetic results were noticed by 80% of patients versus 92% of cases by radiation oncologists. Breast pain was systematically underestimated by physicians (8–20% vs. 16.6–26.2%; Kappa coefficient KC = 0.16–0.44). Grade 1 and 2 fibrosis and/or breast retraction occurred in 7–12% of patients and were overestimated by patients (KC = 0.14–0.27). Conclusions: Present results have shown discrepancies between patient and physician assessments. In addition to the assessment of efficacy and toxicity after 3D-conformal APBI, patients’ cosmetic results consideration and satisfaction should be also evaluated.

  5. Fat necrosis in women with early-stage breast cancer treated with accelerated partial breast irradiation (APBI) using interstitial brachytherapy

    International Nuclear Information System (INIS)

    Budrukkar, Ashwini; Jagtap, Vikas; Kembhavi, Seema; Munshi, Anusheel; Jalali, Rakesh; Seth, Tanuja; Parmar, Vani; Raj Upreti, Ritu; Badwe, Rajendra; Sarin, Rajiv

    2012-01-01

    Purpose: To report the incidence of clinical, pathological and radiological fat necrosis (FN) in women treated with accelerated partial breast irradiation (APBI) using interstitial brachytherapy (BRT) for early-stage breast cancer and to study certain variables associated with it. Methods and materials: Between May 2000 and August 2008, 171 women were treated with APBI using high dose rate (HDR) BRT. Patients were treated to a dose of 34 Gy/10 fractions/1 week with two fractions/day after intraoperative/postoperative placement of catheters. Results: At a median follow up of 48 months (SD: 28) 20 women developed FN with median time to detection being 24 months (range: 4–62 months, SD: 20). Actuarial 5 and 7 year FN rate was 18% and 23%, respectively. Grade 1 FN was seen in 4, grade 2 in 8 and grade 4 in 8 women. Additional investigations such as aspiration/biopsy were done in 9 patients. Volume of excision was the only significant factor affecting FN (p = 0.04). Conclusions: Actuarial FN rate of 18% at 5 years in our study was comparable to other reported series of FN. Median time of detection of FN was 24 months. Higher volume of excision resulted in an increased incidence of fat necrosis.

  6. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Evans, J.F.; Blue, T.E.

    1996-01-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h -1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  7. Preoperative Accelerated Partial Breast Irradiation for Early-Stage Breast Cancer: Preliminary Results of a Prospective, Phase 2 Trial

    International Nuclear Information System (INIS)

    Nichols, Elizabeth; Kesmodel, Susan B.; Bellavance, Emily; Drogula, Cynthia; Tkaczuk, Katherine; Cohen, Randi J.; Citron, Wendla; Morgan, Michelle; Staats, Paul; Feigenberg, Steven; Regine, William F.

    2017-01-01

    Purpose: To assess the feasibility of utilizing 3-dimensional conformal accelerated partial-breast irradiation (APBI) in the preoperative setting followed by standard breast-conserving therapy. Patients and Methods: This was a prospective trial testing the feasibility of preoperative APBI followed by lumpectomy for patients with early-stage invasive ductal breast cancer. Eligible patients had T1-T2 ( 21 days after radiation therapy. Adjuvant therapy was given as per standard of care. Results: Twenty-seven patients completed treatment. With a median follow-up of 3.6 years (range, 0.5-5 years), there have been no local or regional failures. A complete pathologic response according to hematoxylin and eosin stains was seen in 4 patients (15%). There were 4 grade 3 seromas. Patient-reported cosmetic outcome was rated as good to excellent in 79% of patients after treatment. Conclusions: Preoperative 3-dimensional conformal radiation therapy−APBI is feasible and well tolerated in select patients with early-stage breast cancer, with no reported local recurrences and good to excellent cosmetic results. The pathologic response rates associated with this nonablative APBI dose regimen are particularly encouraging and support further exploration of this paradigm.

  8. Preoperative Accelerated Partial Breast Irradiation for Early-Stage Breast Cancer: Preliminary Results of a Prospective, Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth, E-mail: Enichols1@umm.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Kesmodel, Susan B.; Bellavance, Emily; Drogula, Cynthia [Department of Surgical Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Tkaczuk, Katherine [Department of Medical Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Cohen, Randi J.; Citron, Wendla; Morgan, Michelle [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Staats, Paul [Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Feigenberg, Steven; Regine, William F. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2017-03-15

    Purpose: To assess the feasibility of utilizing 3-dimensional conformal accelerated partial-breast irradiation (APBI) in the preoperative setting followed by standard breast-conserving therapy. Patients and Methods: This was a prospective trial testing the feasibility of preoperative APBI followed by lumpectomy for patients with early-stage invasive ductal breast cancer. Eligible patients had T1-T2 (<3 cm), N0 tumors. Patients received 38.5 Gy in 3.85-Gy fractions delivered twice daily. Surgery was performed >21 days after radiation therapy. Adjuvant therapy was given as per standard of care. Results: Twenty-seven patients completed treatment. With a median follow-up of 3.6 years (range, 0.5-5 years), there have been no local or regional failures. A complete pathologic response according to hematoxylin and eosin stains was seen in 4 patients (15%). There were 4 grade 3 seromas. Patient-reported cosmetic outcome was rated as good to excellent in 79% of patients after treatment. Conclusions: Preoperative 3-dimensional conformal radiation therapy−APBI is feasible and well tolerated in select patients with early-stage breast cancer, with no reported local recurrences and good to excellent cosmetic results. The pathologic response rates associated with this nonablative APBI dose regimen are particularly encouraging and support further exploration of this paradigm.

  9. Weekly bi-fractionated 40 Gy three-dimensional conformational accelerated partial irradiation of breast: results of a phase II French pilot study

    International Nuclear Information System (INIS)

    Bourgier, C.; Pichenot, C.; Verstraet, R.; Heymann, S.; Biron, B.; Delaloge, S.; Garbay, J.R.; Marsiglia, H.; Bourhis, J.; Taghian, A.; Marsiglia, H.

    2010-01-01

    The authors report the first French experience of three-dimensional conformational and accelerated partial irradiation of breast. Twenty five patients have been concerned by this phase II trial. The prescribed total dose was 40 Gy, was delivered over 5 days in two daily fractions. Irradiation was performed with two 6 MV tangential mini-beams and a 6-22 MeV front electron beams. The planning target volume coverage was very good. Toxicity has been assessed. Healthy tissues (heart, lungs) are considerably protected. The acute and late toxicity is correct. Short communication

  10. Dedicated Tool for Irradiation and Electrical Measurement of Large Surface Samples on the Beamline of a 2.5 Mev Pelletron Electron Accelerator: Application to Solar Cells

    OpenAIRE

    Lefèvre Jérémie; Le Houedec Patrice; Losco Jérôme; Cavani Olivier; Boizot Bruno

    2017-01-01

    We designed a tool allowing irradiation of large samples over a surface of A5 size dimension by means of a 2.5 MeV Pelletron electron accelerator. in situ electrical measurements (I-V, conductivity, etc.) can also be performed, in the dark or under illumination, to study radiation effects in materials. Irradiations and electrical measurements are achievable over a temperature range from 100 K to 300 K. The setup was initially developed to test real-size triple junction solar cells at low t...

  11. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  12. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy.

    Science.gov (United States)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-02-27

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  13. Accelerated partial breast irradiation using once-daily fractionation: analysis of 312 cases with four years median follow-up

    Directory of Open Access Journals (Sweden)

    Shaikh Arif Y

    2012-02-01

    Full Text Available Abstract Background There are limited data on accelerated partial breast irradiation (APBI using external beam techniques. Moreover, there are recent reports of increased fibrosis and unacceptable cosmesis with APBI using external beam with BID fractionation. We adopted a once daily regimen of APBI with fractionation similar to that shown to be effective in a Canadian randomized trial of whole breast irradiation. It is unclear whether patients with DCIS or invasive lobular carcinoma (ILC are suitable for APBI. Methods The retrospective cohort included 310 patients with 312 tumors of T1-T2N0-N1micM0 invasive ductal carcinoma (IDC, ILC, or Tis (DCIS treated with APBI via external beam. Most patients were treated using IMRT with 16 daily fractions of 270 cGy to a dose of 4320 cGy. The target volume included the lumpectomy cavity plus 1.0 cm to account for microscopic disease and an additional 0.5 to 1.0 cm for setup uncertainty and breathing motion. Ipsilateral breast failure (IBF was pathologically confirmed as a local failure (LF or an elsewhere failure (EF. Results Median follow-up was 49 months. Among the 312 cases, 213 were IDC, 31 ILC, and 68 DCIS. Median tumor size was 1.0 cm. There were 9 IBFs (2.9% including 5 LFs and 4 EFs. The IBF rates among patients with IDC, ILC, and DCIS were 2.4%, 3.2%, and 4.4%, respectively, with no significant difference between histologies. When patients were analyzed by the ASTRO APBI consensus statement risk groups, 32% of treated cases were considered suitable, 50% cautionary, and 18% unsuitable. The IBF rates among suitable, cautionary, and unsuitable patients were 4.0%, 2.6%, and 1.8%, respectively, with no significant difference between risk groups. Acute skin reactions were rare and long-term cosmetic outcome was very good to excellent. Conclusions External beam APBI with once daily fractionation has a low rate of IBF consistent with other published APBI studies. The ASTRO risk stratification did not

  14. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-01-01

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  15. Accelerated partial breast irradiation using intensity modulated radiotherapy versus whole breast irradiation: Health-related quality of life final analysis from the Florence phase 3 trial.

    Science.gov (United States)

    Meattini, Icro; Saieva, Calogero; Miccinesi, Guido; Desideri, Isacco; Francolini, Giulio; Scotti, Vieri; Marrazzo, Livia; Pallotta, Stefania; Meacci, Fiammetta; Muntoni, Cristina; Bendinelli, Benedetta; Sanchez, Luis Jose; Bernini, Marco; Orzalesi, Lorenzo; Nori, Jacopo; Bianchi, Simonetta; Livi, Lorenzo

    2017-05-01

    Accelerated partial breast irradiation (APBI) represents a valid option for selected early breast cancer (BC). We recently published the 5-year results of the APBI-IMRT-Florence phase 3 randomised trial (NCT02104895), showing a very low rate of disease failure, with acute and early-late toxicity in favour of APBI. We present the early and 2-year follow-up health-related quality of life (HRQoL) results. Eligible patients were women aged more than 40 years with early BC suitable for breast-conserving surgery. APBI consisted of 30 Gy in five fractions delivered with IMRT technique. Standard whole breast irradiation (WBI) consisted of 50 Gy in 25 fractions plus a 10 Gy in five fractions boost on tumour bed. A total of 520 patients were enrolled in the phase 3 trial. Overall, 205 patients (105 APBI and 100 WBI) fully completed all the given questionnaires and were therefore included in the present analysis. As HRQoL assessment, patients were asked to complete the European Organisation for Research and Treatment of Cancer QLQ-C30, and the BR23 questionnaires at the beginning (T0), at the end (T1) and after 2 years from radiation (T2). No significant difference between the two arms at QLQ-C30 and BR23 scores emerged at T0. Global health status (p = 0.0001), and most scores of the functional and symptom scales of QLQ-C30 at T1 showed significant differences in favour of the APBI arm. Concerning the BR23 functional and symptom scales, the body image perception, future perspective and breast and arm symptoms were significantly better in the APBI group. Similar significant results emerged at T2: significant differences in favour of APBI emerged for GHS (p = 0.0001), and most functional and symptom QLQ-C30 scales. According to QLQ-BR23 module, among the functional scales, the body image perception and the future perspective were significantly better in the APBI group (p = 0.0001), whereas among the symptom scales significant difference emerged by breast and arm

  16. Three-Year Outcomes of a Canadian Multicenter Study of Accelerated Partial Breast Irradiation Using Conformal Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berrang, Tanya S., E-mail: tberrang@bccancer.bc.ca [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Olivotto, Ivo [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Kim, Do-Hoon [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Nichol, Alan [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Cho, B.C. John [Princess Margaret Hospital, Ontario (Canada); University of Toronto, Ontario (Canada); Mohamed, Islam G. [British Columbia Cancer Agency-Southern Interior, BC (Canada); University of British Columbia, BC (Canada); Parhar, Tarnjit [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Wright, J.R. [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Truong, Pauline [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Tyldesley, Scott [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Sussman, Jonathan [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Wai, Elaine [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Whelan, Tim [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada)

    2011-12-01

    Purpose: To report 3-year toxicity, cosmesis, and efficacy of a multicenter study of external beam, accelerated partial breast irradiation (APBI) for early-stage breast cancer. Methods and Materials: Between March 2005 and August 2006, 127 women aged {>=}40 years with ductal carcinoma in situ or node-negative invasive breast cancer {<=}3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study involving five Canadian cancer centers. Women meeting predefined dose constraints were treated with APBI using 3 to 5 photon beams, delivering 35 to 38.5 Gy in 10 fractions, twice a day, over 1 week. Patients were assessed for treatment-related toxicities, cosmesis, and efficacy before APBI and at specified time points for as long as 3 years after APBI. Results: 104 women had planning computed tomography scans showing visible seromas, met dosimetric constraints, and were treated with APBI to doses of 35 Gy (n = 9), 36 Gy (n = 33), or 38.5 Gy (n = 62). Eighty-seven patients were evaluated with minimum 3-year follow-up after APBI. Radiation dermatitis, breast edema, breast induration, and fatigue decreased from baseline levels or stabilized by the 3-year follow-up. Hypopigmentation, hyperpigmentation, breast pain, and telangiectasia slightly increased from baseline levels. Most toxicities at 3 years were Grade 1. Only 1 patient had a Grade 3 toxicity with telangiectasia in a skin fold inside the 95% isodose. Cosmesis was good to excellent in 86% (89/104) of women at baseline and 82% (70/85) at 3 years. The 3-year disease-free survival was 97%, with only one local recurrence that occurred in a different quadrant away from the treated site and two distant recurrences. Conclusions: At 3 years, toxicity and cosmesis were acceptable, and local control and disease-free survival were excellent, supporting continued accrual to randomized APBI trials.

  17. Comparison of Dose Distributions With TG-43 and Collapsed Cone Convolution Algorithms Applied to Accelerated Partial Breast Irradiation Patient Plans

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Sara L., E-mail: slloupot@mdanderson.org [The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shaitelman, Simona F.; Bloom, Elizabeth [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Salehpour, Mohammad; Gifford, Kent [Department of Radiation Physics, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-08-01

    Purpose: To compare the treatment plans for accelerated partial breast irradiation calculated by the new commercially available collapsed cone convolution (CCC) and current standard TG-43–based algorithms for 50 patients treated at our institution with either a Strut-Adjusted Volume Implant (SAVI) or Contura device. Methods and Materials: We recalculated target coverage, volume of highly dosed normal tissue, and dose to organs at risk (ribs, skin, and lung) with each algorithm. For 1 case an artificial air pocket was added to simulate 10% nonconformance. We performed a Wilcoxon signed rank test to determine the median differences in the clinical indices V90, V95, V100, V150, V200, and highest-dosed 0.1 cm{sup 3} and 1.0 cm{sup 3} of rib, skin, and lung between the two algorithms. Results: The CCC algorithm calculated lower values on average for all dose-volume histogram parameters. Across the entire patient cohort, the median difference in the clinical indices calculated by the 2 algorithms was <10% for dose to organs at risk, <5% for target volume coverage (V90, V95, and V100), and <4 cm{sup 3} for dose to normal breast tissue (V150 and V200). No discernable difference was seen in the nonconformance case. Conclusions: We found that on average over our patient population CCC calculated (<10%) lower doses than TG-43. These results should inform clinicians as they prepare for the transition to heterogeneous dose calculation algorithms and determine whether clinical tolerance limits warrant modification.

  18. Long-Term Efficacy and Patterns of Failure After Accelerated Partial Breast Irradiation: A Molecular Assay-Based Clonality Evaluation

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Antonucci, J. Vito; Wallace, Michelle R.N.; Gilbert, Samuel; Goldstein, Neal S.; Kestin, Larry; Chen, Peter; Kunzman, Jonathan; Boike, Thomas; Benitez, Pamela; Martinez, Alvaro

    2007-01-01

    Purpose: To determine the long-term efficacy and cosmetic results of accelerated partial breast irradiation (APBI) by reviewing our institution's experience. Methods and Materials: A total of 199 patients with early-stage breast cancer were treated prospectively with adjuvant APBI after lumpectomy using interstitial brachytherapy. All patients had negative margins, 82% had Stage I disease, median tumor size was 1.1 cm, and 12% had positive lymph nodes. The median follow-up for surviving patients was 8.6 years. Fifty-three patients (27%) have been followed for ≥10 years. Results: Six ipsilateral breast tumor recurrences (IBTRs) were observed, for a 5-year and 10-year actuarial rate of 1.6% and 3.8%, respectively. A total of three regional nodal failures were observed, for a 10-year actuarial rate of 1.6%. Five contralateral breast cancers developed, for a 5- and 10-year actuarial rate of 2.2% and 5.2%, respectively. The type of IBTR (clonally related vs. clonally distinct) was analyzed using a polymerase chain reaction-based loss of heterozygosity assay. Eighty-three percent of IBTRs (n = 5) were classified as clonally related. Multiple clinical, pathologic, and treatment-related factors were analyzed for an association with the development of an IBTR, regional nodal failure, or contralateral breast cancer. On multivariate analysis, no variable was associated with any of these events. Cosmetic results were rated as excellent/good in 99% of patients. Conclusions: Long-term results with APBI using interstitial brachytherapy continue to demonstrate excellent long-term local and regional control rates and cosmetic results. According to a polymerase chain reaction-based loss of heterozygosity assay, 83% of recurrences were classified as clonally related

  19. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kühr, Marietta; Wolfgarten, Matthias; Stölzle, Marco; Leutner, Claudia; Höller, Tobias; Schrading, Simone; Kuhl, Christiane; Schild, Hans; Kuhn, Walther; Braun, Michael

    2011-01-01

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size ≤3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget’s disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  20. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuehr, Marietta, E-mail: marietta.kuehr@ukb.uni-bonn.de [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Wolfgarten, Matthias; Stoelzle, Marco [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Leutner, Claudia [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Hoeller, Tobias [Department of Medical Statistics and Epidemiology, University of Bonn, Bonn (Germany); Schrading, Simone; Kuhl, Christiane; Schild, Hans [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Kuhn, Walther; Braun, Michael [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany)

    2011-11-15

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size {<=}3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget's disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  1. Optimal application of the Contura multilumen balloon breast brachytherapy catheter vacuum port to deliver accelerated partial breast irradiation.

    Science.gov (United States)

    Tokita, Kenneth M; Cuttino, Laurie W; Vicini, Frank A; Arthur, Douglas W; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R

    2011-01-01

    The impact of using the Contura multilumen balloon (MLB) (SenoRx, Inc., Irvine, CA) breast brachytherapy catheter's vacuum port in patients treated with accelerated partial breast irradiation (APBI) was analyzed. Data from 32 patients at two sites were reviewed. Variables analyzed included the seroma fluid (SF):air volume around the MLB before and after vacuum port use and on its ability to improve (1) the eligibility of patients for APBI and (2) dose coverage of the planning target volume for evaluation (PTV_EVAL) in eligible patients. The median SF/air volume before vacuum removal was 6.8 cc vs. 0.8 cc after vacuum removal (median reduction in SF/air volume was 90.5%). Before vacuum port use, the median SF/air volume expressed as percentage of the PTV_EVAL was 7.8% (range, 1.9-26.6) in all patients. After application of the vacuum, this was reduced to 1.2%. Before vacuum port use, 10 (31.3%) patients were not considered acceptable candidates for APBI because the SF/air volume:PTV_EVAL ratio (SF:PTV) was greater than 10% (range, 10.1-26.6%; median, 15.2%). After vacuum port use, the median SF:PTV ratio was 1.6% for a median reduction of 91.5%. In addition, the percentage of the prescribed dose covering greater than or equal to 90% of the PTV_EVAL proportionally increased a median of 8% (range, 3-10%) in eligible patients. Use of the Contura MLB vacuum port significantly improved the conformity of the target tissue to the balloon surface, leading to reproducible dose delivery and increased target volume coverage. In addition, application of the vacuum allowed the safe treatment of unacceptable patients with APBI. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Nomogram for Predicting the Risk of Locoregional Recurrence in Patients Treated With Accelerated Partial-Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wobb, Jessica L. [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Chen, Peter Y., E-mail: PChen@beaumont.edu [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Shah, Chirag [Department of Radiation Oncology, Summa Health System, Akron, Ohio (United States); Moran, Meena S. [Department of Therapeutic Radiology, Yale School of Medicine, Norwich, Connecticut (United States); Shaitelman, Simona F. [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Vicini, Frank A. [Department of Radiation Oncology, Michigan Healthcare Professionals/21st Century Oncology, Farmington, Michigan (United States); Mbah, Alfred K.; Lyden, Maureen [Biostat International Inc, Tampa, Florida (United States); Beitsch, Peter [Department of Surgery, Dallas Breast Center, Dallas, Texas (United States)

    2015-02-01

    Purpose: To develop a nomogram taking into account clinicopathologic features to predict locoregional recurrence (LRR) in patients treated with accelerated partial-breast irradiation (APBI) for early-stage breast cancer. Methods and Materials: A total of 2000 breasts (1990 women) were treated with APBI at William Beaumont Hospital (n=551) or on the American Society of Breast Surgeons MammoSite Registry Trial (n=1449). Techniques included multiplanar interstitial catheters (n=98), balloon-based brachytherapy (n=1689), and 3-dimensional conformal radiation therapy (n=213). Clinicopathologic variables were gathered prospectively. A nomogram was formulated utilizing the Cox proportional hazards regression model to predict for LRR. This was validated by generating a bias-corrected index and cross-validated with a concordance index. Results: Median follow-up was 5.5 years (range, 0.9-18.3 years). Of the 2000 cases, 435 were excluded because of missing data. Univariate analysis found that age <50 years, pre-/perimenopausal status, close/positive margins, estrogen receptor negativity, and high grade were associated with a higher frequency of LRR. These 5 independent covariates were used to create adjusted estimates, weighting each on a scale of 0-100. The total score is identified on a points scale to obtain the probability of an LRR over the study period. The model demonstrated good concordance for predicting LRR, with a concordance index of 0.641. Conclusions: The formulation of a practical, easy-to-use nomogram for calculating the risk of LRR in patients undergoing APBI will help guide the appropriate selection of patients for off-protocol utilization of APBI.

  3. Accelerated partial-breast irradiation using high-dose-rate interstitial brachytherapy: 12-year update of a prospective clinical study

    International Nuclear Information System (INIS)

    Polgar, Csaba; Major, Tibor; Fodor, Janos; Sulyok, Zoltan; Somogyi, Andras; Loevey, Katalin; Nemeth, Gyoergy; Kasler, Miklos

    2010-01-01

    Background and purpose: To report the 12-year updated results of accelerated partial-breast irradiation (APBI) using multicatheter interstitial high-dose-rate (HDR) brachytherapy (BT). Patients and methods: Forty-five prospectively selected patients with T1N0-N1mi, nonlobular breast cancer without the presence of an extensive intraductal component and with negative surgical margins were treated with APBI after breast-conserving surgery (BCS) using interstitial HDR BT. A total dose of 30.3 Gy (n = 8) and 36.4 Gy (n = 37) in seven fractions within 4 days was delivered to the tumour bed plus a 1-2 cm margin. The median follow-up time was 133 months for surviving patients. Local and regional control, disease-free (DFS), cancer-specific (CSS), and overall survival (OS), as well as late side effects, and cosmetic results were assessed. Results: Four (8.9%) ipsilateral breast tumour recurrences were observed, for a 5-, 10-, and 12-year actuarial rate of 4.4%, 9.3%, and 9.3%, respectively. A total of two regional nodal failures were observed for a 12-year actuarial rate of 4.4%. The 12-year DFS, CSS, and OS was 75.3%, 91.1%, and 88.9%, respectively. Grade 3 fibrosis was observed in one patient (2.2%). No patient developed grade 3 teleangiectasia. Fat necrosis requiring surgical intervention occurred in one woman (2.2%). Cosmetic results were rated excellent or good in 35 patients (77.8%). Conclusions: Twelve-year results with APBI using HDR multicatheter interstitial implants continue to demonstrate excellent long-term local tumour control, survival, and cosmetic results with a low-rate of late side effects.

  4. Accelerated partial breast irradiation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Whole breast radiotherapy afier tumor lumpectomy is based on the premise that that the breast cancer recurrence rate is reduced through the elimination of residual cancer foci in the remaining tissue immediately adjacent to the lumpectomy site and occult multicentric areas of in situ or infiltrating cancer in remote areas of the breast. The relevance of remote foci to ipsilateral breast failure rates after breast conserving treatment is debatable, because 65%~100% of recurrences develop in the same quadrant as the initial tumor. This has led several investigators to question whether radiotherapy must be administered to the entire breast.

  5. Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

    Directory of Open Access Journals (Sweden)

    Guo Xiao-Mao

    2010-10-01

    Full Text Available Abstract Background The cone beam CT (CBCT guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT guided accelerated partial breast irradiation (APBI. Methods Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. Results A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR, 3.1 mm and 2.3 mm in the superior-inferior (SI, and 2.3 mm and 2.0 mm in the anterior-posterior (AP directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10

  6. Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Cai, Gang; Hu, Wei-Gang; Chen, Jia-Yi; Yu, Xiao-Li; Pan, Zi-Qiang; Yang, Zhao-Zhi; Guo, Xiao-Mao; Shao, Zhi-Min; Jiang, Guo-Liang

    2010-01-01

    The cone beam CT (CBCT) guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF) errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT) guided accelerated partial breast irradiation (APBI). Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR), 3.1 mm and 2.3 mm in the superior-inferior (SI), and 2.3 mm and 2.0 mm in the anterior-posterior (AP) directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10.1 mm and 12.7 mm in the AP direction

  7. Design, construction, and in vivo feasibility of a positioning device for irradiation of mice brains using a clinical linear accelerator and intensity modulated radiation therapy.

    Science.gov (United States)

    Rancilio, Nicholas J; Dahl, Shaun; Athanasiadi, Ilektra; Perez-Torres, Carlos J

    2017-12-01

    The goal of this study was to design a positioning device that would allow for selective irradiation of the mouse brain with a clinical linear accelerator. We designed and fabricated an immobilization fixture that incorporates three functions: head stabilizer (through ear bars and tooth bar), gaseous anesthesia delivery and scavenging, and tissue mimic/bolus. Cohorts of five mice were irradiated such that each mouse in the cohort received a unique dose between 1000 and 3000 cGy. DNA damage immunohistochemistry was used to validate an increase in biological effect as a function of radiation dose. Mice were then followed with hematoxylin and eosin (H&E) and anatomical magnetic resonance imaging (MRI). There was evidence of DNA damage throughout the brain proportional to radiation dose. Radiation-induced damage at the prescribed doses, as depicted by H&E, appeared to be constrained to the white matter consistent with radiological observation in human patients. The severity of the damage correlated with the radiation dose as expected. We have designed and manufactured a device that allows us to selectively irradiate the mouse brain with a clinical linear accelerator. However, some off-target effects are possible with large prescription doses.

  8. SU-F-P-46: Comparative Study Between Two Normalization Prescriptions for Accelerated Partial Breast Irradiation: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, P; Sharma, D; Gandhi, A; Binjola, A; Subramani, V; Chander, S [All India Institute of Medical Sciences, New Delhi, New Delhi, Delhi (India)

    2016-06-15

    Purpose: To compare the Accelerated Partial Breast Irradiation (APBI) plan with the normalized basal dose points and 5mm box prescription. Methods: Five patients of APBI were planned twice in Oncentra Master planning TPS (Version 4.3) using TG-43 algorithm. The number of catheters for all the patients was 10 to 16 and implant plane 2 to 3. For planning all catheters were reconstructed. Source loading was done as per HR-CTV contoured. The HR-CTV volume range was from 75cc to 182cc. Plans were normalized in two methods. First all plans were normalized on Basal dose points (PlanA) and second all the plan were normalized on 5mm box (PlanB). The prescription dose (PD) was 35Gy in 10 fractions. All the plans were completely based on normalization and without optimization. Plan evaluation was based on certain parameters coverage Index (CI), dose homogeneity index (DHI), conformity index (COIN), over dose volume index (OI). Results: The average and median of CI for planA was 0.835 and 0.8154, for planB 0.82 and 0.799 respectively. The median and average of DHI for planA was 0.66 and 0.6062, for planB 0.67 and 0.62 respectively. The range of COIN for planA and planB was from 0.58 to 0.65 respectively. The range of OI was from 0.083 to 0.169 for planA and planB. The treatment time in planA was in average 1.13 times more than planB as V150% of HR-CTV in planA was 4–6% more. The ipsilateral lung was getting 30% of PD which was 0.6% to 3.5%. Conclusion: Treatment Planning should be individualized based on implants characteristics. Planning with prescription to basal dose points should be preferred to 5mm box prescription, in order to achieve better DHI and less treatment time.

  9. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin Theodore [The Ohio State Univ., Columbus, OH (United States)

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  10. Accelerated partial-breast irradiation with interstitial implants. The clinical relevance of the calculation of skin doses

    International Nuclear Information System (INIS)

    Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V.

    2007-01-01

    Purpose: To describe relative skin dose estimations and their impact on cosmetic outcome in interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 105 consecutive patients with early breast cancer were recruited in Erlangen, Germany, for this substudy of the German-Austrian APBI phase II trial. 51% (54/105) received pulsed-dose-rate (PDR), and 49% (51/105) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy every hour. Total treatment time was 3-4 days. With a wire cross on the skin surface during the brachytherapy-planning procedure the minimal, mean and maximal relative skin doses (SD min% , SD max% , SD mean% ) were recorded. Endpoint of this evaluation was the cosmetic outcome in relation to the relative skin doses. Results: Median follow-up time was 38 months (range, 19-65 months). Cosmetic results for all patients were excellent in 57% (60/105), good in 36% (38/105), and fair in 7% (7/105). The SD min% (27.0% vs. 31.7%; p = 0.032), SD mean% (34.2% vs. 38.1%; p 0.008), and SD max% (38.2% vs. 46.4%; p 0.003) were significantly lower for patients with excellent cosmetic outcome compared to patients with a suboptimal outcome. SD mean% (37.6% vs. 34.2%; p = 0.026) and SD max% (45.4% vs. 38.2%; p = 0.008) were significantly higher for patients with good cosmetic outcome compared with the patients with excellent results. Conclusion: The appraisal of skin doses has been shown to be relevant to the achievement of excellent cosmetic outcome. Further investigations are necessary, especially on the basis of CT-based brachytherapy planning, to further improve the treatment results of multicatheter APBI. (orig.)

  11. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Mulchandani, J.; Mohania, P.; Baxy, D.; Wanmode, Y.; Hannurkar, P.R.

    2005-01-01

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  12. Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Wang, Lumin; Was, Gary

    2010-01-01

    Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

  13. All-Optical Method to Assess Stromal Concentration of Riboflavin in Conventional and Accelerated UV-A Irradiation of the Human Cornea.

    Science.gov (United States)

    Lombardo, Giuseppe; Micali, Norberto Liborio; Villari, Valentina; Serrao, Sebastiano; Lombardo, Marco

    2016-02-01

    We investigated the concentration of riboflavin in human donor corneas during corneal cross-linking using two-photon optical microscopy and spectrophotometry. Eight corneal tissues were de-epithelialized and soaked with 20% dextran-enriched 0.1% riboflavin solution for 30 minutes. After stromal soaking, three tissues were irradiated using a 3 mW/cm2 UV-A device for 30 minutes and three tissues irradiated using a 10 mW/cm2 device for 9 minutes. Two additional tissues were used as positive controls. A Ti:sapphire laser at 810 nm was used to perform two-photon emission fluorescence (TPEF) and second harmonic generation axial scanning measurements in all specimens before and after stromal soaking and after UV-A irradiation. In addition, spectrophotometry was used to collect the absorbance spectra of each tissue at the same time intervals. Analysis of the absorbance spectra and TPEF signals provided measures of the concentration depth profile of riboflavin in corneal stroma. After stromal soaking, the average peak concentration of riboflavin (0.020% ± 0.001%) was found between a stromal depth of 100 and 250 μm; the concentration of riboflavin was almost constant up to 320 ± 53 μm depth, then decreased toward the endothelium, though riboflavin was still enriched in the posterior stroma (0.016%% ± 0.001%). After conventional and accelerated UV-A irradiation, the concentration of riboflavin decreased uniformly 87% ± 2% and 67% ± 3% (P riboflavin in corneal stroma. The method can assist with the assessment of novel riboflavin formulations and different UV-A irradiation protocols.

  14. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  15. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  16. Dosimetric considerations and early clinical experience of accelerated partial breast irradiation using multi-lumen applicators in the setting of breast augmentation

    Science.gov (United States)

    Akhtari, Mani; Pino, Ramiro; Scarboro, Sarah B.; Bass, Barbara L.; Miltenburg, Darlene M.; Butler, E. Brian

    2015-01-01

    Purpose Accelerated partial breast irradiation (APBI) is an accepted treatment option in breast-conserving therapy for early stage breast cancer. However, data regarding outcomes of patients treated with multi-lumen catheter systems who have existing breast implants is limited. The purpose of this study was to report treatment parameters, outcomes, and possible dosimetric correlation with cosmetic outcome for this population of patients at our institution. Material and methods We report the treatment and outcome of seven consecutive patients with existing breast implants and early stage breast cancer who were treated between 2009 and 2013 using APBI following lumpectomy. All patients were treated twice per day for five days to a total dose of 34 Gy using a high-dose-rate 192Ir source. Cosmetic outcomes were evaluated using the Harvard breast cosmesis scale, and late toxicities were reported using the Radiation Therapy Oncology Group (RTOG) late radiation morbidity schema. Results After a mean follow-up of 32 months, all patients have remained cancer free. Six out of seven patients had an excellent or good cosmetic outcome. There were no grade 3 or 4 late toxicities. The average total breast implant volume was 279.3 cc, received an average mean dose of 12.1 Gy, and a maximum dose of 234.1 Gy. The average percentage of breast implant volume receiving 50%, 75%, 100%, 150%, and 200% of the prescribed dose was 15.6%, 7.03%, 4.6%, 1.58%, and 0.46%, respectively. Absolute volume of breast implants receiving more than 50% of prescribed dose correlated with worse cosmetic outcomes. Conclusions Accelerated partial breast irradiation using a multi-lumen applicator in patients with existing breast implants can safely be performed with promising early clinical results. The presence of the implant did not compromise the ability to achieve dosimetric criteria; however, dose to the implant and the irradiated implant volume may be related with worse cosmetic outcomes. PMID:26816499

  17. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications; Irradiation de polyurethannes par electrons acceleres: evolution moleculaire et supramoleculaire, incidence sur les extractibles et implications biomedicales

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, C

    2002-11-15

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  18. Stereotactic Accelerated Partial Breast Irradiation (SAPBI for Early Stage Breast Cancer: Rationale, Feasibility and Early Experience using the CyberKnife Radiosurgery Delivery Platform

    Directory of Open Access Journals (Sweden)

    Olusola eOBAYOMI-DAVIES

    2016-05-01

    Full Text Available Purpose: The efficacy of accelerated partial breast irradiation (APBI utilizing brachytherapy or conventional external beam radiation has been studied in early stage breast cancer treated with breast conserving surgery. Data regarding stereotactic treatment approaches are emerging. The CyberKnife linear accelerator enables excellent dose conformality to target structures while adjusting for target and patient motion. We report our institutional experience on the technical feasibility and rationale for SAPBI delivery using the CyberKnife radiosurgery system.Methods: Ten patients completed CyberKnife SAPBI in 2013 at Georgetown University Hospital. Four gold fiducials were implanted around the lumpectomy cavity prior to treatment under ultrasound guidance. The synchrony system tracked intrafraction motion of the fiducials. The clinical target volume (CTV was defined on contrast enhanced CT scans using surgical clips and post-operative changes. A 5 mm expansion was added to create the planning treatment volume (PTV. A total dose of 30 Gy was delivered to the PTV in 5 consecutive fractions. Target and critical structure doses were assessed as per the National Surgical Adjuvant Breast and Bowel Project B-39 study.Results: At least 3 fiducials were tracked in 100% of cases. The Mean treated PTV was 70 cm3 and the mean prescription isodose line was 80%. Mean dose to target volumes and constraints are as follows: 100% of the PTV received the prescription dose (PTV30. The volume of the ipsilateral breast receiving 30 Gy (V30 and above 15 Gy (V>15 was 14% and 31% respectively. The ipsilateral lung volume receiving 9 Gy (V9 was 3% and the contralateral lung volume receiving 1.5 Gy (V1.5 was 8%. For left sided breast cancers, the volume of heart receiving 1.5 Gy (V1.5 was 31%. Maximum skin dose was 36 Gy. At a median follow up of 1.3 years, all patients have experienced excellent/good breast cosmesis outcomes, and no breast events have been recorded

  19. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Freer, Phoebe [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Lawenda, Brian [21st Century Oncology, Las Vegas, NV (United States); Alm El-Din, Mohamed A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Clinical Oncology, Tanta University Hospital, Tanta (Egypt); Gadd, Michele A.; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall's tau ({tau}{sub {beta}}) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4-14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome ({tau}{sub {beta}} 0.6, p < .0001), lower patient satisfaction ({tau}{sub {beta}} 0.5, p < .001), and worse fibrosis ({tau}{sub {beta}} 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias {>=}1 cm{sup 2}. Grade 3-4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose ({tau}{sub {beta}} 0.3-0.5, p {<=} .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence

  20. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

  1. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    International Nuclear Information System (INIS)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

    2014-01-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT

  2. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    International Nuclear Information System (INIS)

    Hattangadi, Jona A.; Powell, Simon N.; MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek; Freer, Phoebe; Lawenda, Brian; Alm El-Din, Mohamed A.; Gadd, Michele A.; Smith, Barbara L.; Taghian, Alphonse G.

    2012-01-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall’s tau (τ β ) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4–14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome (τ β 0.6, p β 0.5, p β 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias ≥1 cm 2 . Grade 3–4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose (τ β 0.3–0.5, p ≤ .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence-free survival, and overall survival rate was 85% (95% confidence interval, 70–97%), 72% (95% confidence interval, 54–86%), and 87% (95

  3. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male

  4. Accelerated hyperfractionated hepatic irradiation in the management of patients with liver metastases: Results of the RTOG dose escalating protocol

    International Nuclear Information System (INIS)

    Russell, A.H.; Clyde, C.; Wasserman, T.H.; Turner, S.S.; Rotman, M.

    1993-01-01

    This study was prepared to address two objectives: (a) to determine whether progressively higher total doses of hepatic irradiation can prolong survival in a selected population of patients with liver metastases and (b) to refine existing concepts of liver tolerance for fractionated external radiation. One hundred seventy-three analyzable patients with computed tomography measurable liver metastases from primary cancers of the gastrointestinal tract were entered on a dose escalating protocol of twice daily hepatic irradiation employing fractions of 1.5 Gy separated by 4 hr or longer. Sequential groups of patients received 27 Gy, 30 Gy, and 33 Gy to the entire liver and were monitored for acute and late toxicities, survival, and cause of death. Dose escalation was implemented following survival of 10 patients at each dose level for a period of 6 months or longer without clinical or biochemical evidence of radiation hepatitis. The use of progressively larger total doses of radiation did not prolong median survival or decrease the frequency with which liver metastases were the cause of death. None of 122 patients entered at the 27 Gy and 30 Gy dose levels revealed clinical or biochemical evidence of radiation induced liver injury. Five of 51 patients entered at the 33 Gy level revealed clinical or biochemical evidence of late liver injury with an actuarial risk of severe (Grade 3) radiation hepatitis of 10.0% at 6 months, resulting in closure of the study to patient entry. The study design could not credibly establish a safe dose for hepatic irradiation, however, it did succeed in determining that 33 Gy in fractions of 1.5 Gy is unsafe, carrying a substantial risk of delayed radiation injury. The absence of apparent late liver injury at the 27 Gy and 30 Gy dose levels suggests that a prior clinical trial of adjuvant hepatic irradiation in patients with resected colon cancer may have employed an insufficient radiation dose (21 Gy) to fully test the question

  5. Satif-3: Shielding aspects of accelerators, targets, and irradiation facilities. Tohoku University, Sendai, Japan, 12--13 May 1997

    International Nuclear Information System (INIS)

    1998-01-01

    Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today, they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, evaluate advancements and discuss further developments needed with respect to international co-operation in this field

  6. Industrial applications of electron beam accelerators

    International Nuclear Information System (INIS)

    Braid, W.G. Jr.

    1976-01-01

    The use of electron beam accelerators for crosslinking polyolefins for shrinking food packaging is discussed. Irradiation procedures, accelerator characteristics, and industrial operations are described

  7. Mitigation of solid waste and reuse of effluent from paint and varnish automotive and industrial treated by irradiation at electron beam accelerator

    International Nuclear Information System (INIS)

    Nascimento, Fernando C.; Ribeiro, Marcia A.; Duarte, Celina Lopes; Minamidani, Pedro T.; Guzella, Catia C.

    2011-01-01

    One of the most representative industrial segments is the polymeric coatings for house paint, automotive, industrial, marine, maintenance, and repainting markets. The general consumption of paint market in 2010 was 438,364 10 3 gallons of paint, in Brazil. However, when produce paints and varnishes, various kinds of solid wastes and liquid effluent are generated. The present research focus on the effluent from resins, water base paint and paint for electrophoresis, automotive industry, and general industrial coatings. The goal of this study is to use ionizing radiation to destroy the pollutants allowing the use of part of effluent as reuse water, and the rest discarded within the specified requirements. Actual industrial effluent samples were irradiated at Electron beam Accelerator applying absorbed doses of 10 kGy, 30 kGy and 50 kGy. The results, in this preliminary stage, showed a reduction of organic compounds and suspended solids. (author)

  8. Decursin was Accelerated Human Lung Cancer Cell Death Caused by Proton Beam Irradiation via Blocking the p42/44 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Ra, Se Jin; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Decursin, which is one of the extract of Angelica gigas Nakai root, has been traditionally used in Korean folk medicine as a tonic and for treatment of anemia and other common diseases. There are some reports about the pharmacological properties of decursin showing anti-bacterial and anti-amnestic effect, depression of cardiac contraction, antitumor and anti-angiogenic activity. Cell death induced by proton beam is identified as apoptosis. The study investigated that genes involved in apoptosis are checked by RT-PCR and used LET instead of SPBP of proton beam. Apoptosis is the tight regulated by multi-protein action in physiological cell death program. Proton therapy is an attractive approach for the treatment of deep-seated tumor. Recently, many researchers tried to new therapeutic strategy, combination of proton therapy and chemotherapy, in order to increase therapeutic effect. In this study, we investigate whether decursin can accelerate effect of human lung cell apoptosis in proton irradiated cancer cells

  9. Long-term outcome of accelerated partial breast irradiation using a multilumen balloon applicator in a patient with existing breast implants.

    Science.gov (United States)

    Akhtari, Mani; Nitsch, Paige L; Bass, Barbara L; Teh, Bin S

    2015-01-01

    Accelerated partial breast irradiation is now an accepted component of breast-conserving therapy. However, data regarding long-term outcomes of patients treated with multilumen catheter systems who have existing breast implants are limited. We report the treatment and outcome of our patient who had existing bilateral silicone subpectoral implants at the time of presentation. Ultrasound-guided core needle biopsy of the right breast showed infiltrating mucinous carcinoma. Right breast lumpectomy revealed an 8 mm area of infiltrating ductal carcinoma with mucinous features and nuclear grade 1. A 4-5 cm Contura (Bard Biopsy Systems, Tempe, AZ) device was placed, and she was treated over the course of 5 days twice daily to a dose of 34 Gy using a high-dose-rate iridium-192 source. The planning target volume for evaluation was 73.9 cc. The percentage of the planning target volume for evaluation receiving 90%, 95%, and 100% of the prescribed dose was 99.9%, 99.3%, and 97.8%, respectively. The total implant volume was 234.5 cc and received a mean dose of 15.4 Gy and a maximum dose of 72.8 Gy. The percentage of implant volume receiving 50%, 75%, 100%, and 200% of the prescribed dose was 31.1%, 16.5%, 8.6%, 2.0%, and 0%, respectively. Maximum skin dose was 97% of the prescribed dose. With a followup of nearly 5 years, she continues to be cancer free with minimal late toxicities and good to excellent cosmetic outcome. Accelerated partial breast irradiation using a multilumen balloon applicator in patients with existing breast implants can safely be performed with excellent long-term cosmetic outcome. Further studies are needed to establish the absolute dosimetric tolerance of breast implants. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Accelerated Partial Breast Irradiation With IMRT: New Technical Approach and Interim Analysis of Acute Toxicity in a Phase III Randomized Clinical Trial

    International Nuclear Information System (INIS)

    Livi, Lorenzo; Buonamici, Fabrizio Banci; Simontacchi, Gabriele; Scotti, Vieri; Fambrini, Massimiliano; Compagnucci, Antonella; Paiar, Fabiola; Scoccianti, Silvia; Pallotta, Stefania; Detti, Beatrice; Agresti, Benedetta; Talamonti, Cinzia; Mangoni, Monica; Bianchi, Simonetta; Cataliotti, Luigi; Marrazzo, Livia; Bucciolini, Marta; Biti, Giampaolo

    2010-01-01

    Purpose: To evaluate with a randomized clinical trial the possibility of treating the index quadrant with external intensity-modulated radiotherapy (IMRT) in a selected group of patients with early-stage breast cancer and to analyze the acute toxicity. Methods and Materials: From September 2005, a randomized Phase III clinical trial has been conducted to compare conventional (tangential field) fractionated whole breast treatment (Arm A) with accelerated partial breast irradiation plus intensity-modulated radiotherapy (Arm B). For intensity-modulated radiotherapy, the clinical target volume was drawn with a uniform 1-cm margin around the surgical clips in three dimensions. The ipsilateral and contralateral breast, ipsilateral and contralateral lung, heart, and spinal cord were contoured as organs at risk. All the regions of interest were contoured according to the International Commission on Radiation Units and Measurements reports 50 and 62 recommendations. Results: In September 2008, 259 patients were randomized and treated. The mean clinical target volume in Arm B was 44 cm 3 and the mean planning target volume was 123 cm 3 . The mean value of the ratio between the planning target volume and the ipsilateral breast volume was 21%. The rate of Grade 1 and Grade 2 acute skin toxicity was 22% and 19% in Arm A (Radiation Therapy Oncology Group scale), respectively. The tolerance in Arm B was excellent with only 5% Grade 1 and 0.8% Grade 2 acute skin toxicity. The planning constraints were fully satisfied in most patients. In a very few cases, this was not possible because of very unfavorable anatomy. Quality assurance procedures were performed according to our internal quality assurance protocol, with excellent results. Conclusion: In the present preliminary analysis, we have demonstrated that accelerated partial breast irradiation is feasible, with very low acute toxicity.

  11. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    Science.gov (United States)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  12. Research on the dose of the tissues located outside the treatment field when breast cancer was irradiated by linear accelerator

    International Nuclear Information System (INIS)

    Tu Yu; Zhou Juying; Jiang Dezhi; Qin Songbing

    1999-10-01

    The purpose of study was to determine the dose of the tissues which located outside the treatment field, when breast cancer was irradiated by 9 MeV electron-beam and 6 MV-X ray after operation. A search for decreasing the dose of the tissues outside the treatment field was made. Clinically relevant treatment fields were simulated on a tissue-equivalent material phantom and subsequently irradiated with 9 MeV electron-beam and 6 MV-X ray. TLD were used to measure absorbed doses. The prescribed dose of breast cancer region was 50.0 Gy, region-lymph-nodes were 60.0 Gy, each exposure dose was 2.0 Gy. In breast cancer region, if only with 9 MeV electron-beam, the dose of the tissues located outside the treatment field were from 29.0 cGy to 295.5 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field may descended 9.4%-53.6%; if only with 6 MV-X ray, the doses of aforementioned tissues were from 32.0 cGy to 206.7 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field descended 19.7%-56.6%. In region-lymph-nodes, with 6 MV-X ray, the doses of aforementioned tissues were from 22.5 cGy to 1650.9 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field descended 19.7-65.6%. If mix-irradiation (9 MeV electron-beam vs. 6 MV-X ray 2:3) was used, the doses outside field would be lower than only used 9 MeV electron-beam or 6 MV-X ray were used

  13. Glycogen synthase kinase-3β facilitates cell apoptosis induced by high fluence low-power laser irradiation through acceleration of Bax translocation

    Science.gov (United States)

    Huang, Lei; Wu, Shengnan; Xing, Da

    2011-03-01

    Glycogen synthase kinase-3β (GSK-3β) is a critical activator of cell apoptosis induced by a diverse array of insults. However, the effects of GSK-3β on the human lung adenocarcinoma cell (ASTC-a-1) apoptosis induced by high fluence low-power laser irradiation (HF-LPLI) are not clear. Here, we showed that GSK-3β was constantly translocated from cytoplasm to nucleus and activated during HF-LPLI-induced cell apoptosis. In addition, we found that co-overexpression of YFP-GSK-3β and CFP-Bax in ASTC-a-1 cells accelerated both Bax translocations to mitochondria and cell apoptosis, compared to the cells expressed CFP-Bax only under HF-LPLI treatment, indicating that GSK-3β facilitated ASTC-a-1 cells apoptosis through acceleration mitochondrial translocation of Bax. Our results demonstrate that GSK-3β exerts some of its pro-apoptotic effects in ASTC-a-1 cells by regulating the mitochondrial localization of Bax, a key component of the intrinsic apoptotic cascade.

  14. Design Study and Optimization of Irradiation Facilities for Detector and Accelerator Equipment Testing in the SPS North Area at CERN

    CERN Document Server

    AUTHOR|(CDS)2079748; Stekl, Ivan

    Due to increasing performance of LHC during the last years, the strong need of new detector and electronic equipment test areas at CERN appeared from user communities. This thesis reports on two test facilities: GIF++ and H4IRRAD. GIF++, an upgrade of GIF facility, is a combined high-intensity gamma and particle beam irradiation facility for testing detectors for LHC. It combines a high-rate 137Cs source, providing photons with energy of 662 keV, together with the high-energy secondary particle beam from SPS. H4IRRAD is a new mixed-field irradiation area, designed for testing LHC electronic equipment for radiation damage effects. In particular, large volume assemblies such as full electronic racks of high current power converters can be tested. The area uses alternatively an attenuated primary 400 GeV/c proton beam from SPS, or a secondary, mainly proton, beam of 280 GeV/c directed towards a copper target. Different shielding layers are used to reproduce a radiation field similar to the LHC “tunnel” and �...

  15. Three-year outcomes of a once daily fractionation scheme for accelerated partial breast irradiation (APBI) using 3-D conformal radiotherapy (3D-CRT)

    International Nuclear Information System (INIS)

    Goyal, Sharad; Daroui, Parima; Khan, Atif J; Kearney, Thomas; Kirstein, Laurie; Haffty, Bruce G

    2013-01-01

    The aim of this study was to report 3-year outcomes of toxicity, cosmesis, and local control using a once daily fractionation scheme (49.95 Gy in 3.33 Gy once daily fractions) for accelerated partial breast irradiation (APBI) using three-dimensional conformal radiotherapy (3D-CRT). Between July 2008 and August 2010, women aged ≥40 years with ductal carcinoma in situ or node-negative invasive breast cancer ≤3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study. Women were treated with APBI using 3–5 photon beams, delivering 49.95 Gy over 15 once daily fractions over 3 weeks. Patients were assessed for toxicities, cosmesis, and local control rates before APBI and at specified time points. Thirty-four patients (mean age 60 years) with Tis 0 (n = 9) and T1N0 (n = 25) breast cancer were treated and followed up for an average of 39 months. Only 3% (1/34) patients experienced a grade 3 subcutaneous fibrosis and breast edema and 97% of the patients had good/excellent cosmetic outcome at 3 years. The 3-year rate of ipsilateral breast tumor recurrence (IBTR) was 0% while the rate of contralateral breast events was 6%. The 3-year disease-free survival (DFS), overall survival (OS), and breast cancer-specific survival (BCSS) was 94%, 100%, and 100%, respectively. Our novel accelerated partial breast fractionation scheme of 15 once daily fractions of 3.33 Gy (49.95 Gy total) is a remarkably well-tolerated regimen of 3D-CRT-based APBI. A larger cohort of patients is needed to further ascertain the toxicity of this accelerated partial breast regimen

  16. Accelerated Total Lymphoid Irradiation-containing Salvage Regimen for Patients With Refractory and Relapsed Hodgkin Lymphoma: 20 Years of Experience

    Energy Technology Data Exchange (ETDEWEB)

    Rimner, Andreas; Lovie, Shona [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Hsu, Meier [Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Chelius, Monica [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Zhang, Zhigang [Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Chau, Karen [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Moskowitz, Alison J.; Matasar, Matthew; Moskowitz, Craig H. [Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-04-01

    Purpose: We report the long-term results of integrated accelerated involved field radiation therapy (IFRT) followed by total lymphoid irradiation (TLI) as part of the high-dose salvage regimen followed by autologous bone marrow transplantation or autologous stem cell transplantation in patients with relapsed or refractory Hodgkin lymphoma (HL). Methods and Materials: From November 1985 to July 2008, 186 previously unirradiated patients with relapsed or refractory HL underwent salvage therapy on 4 consecutive institutional review board–approved protocols. All patients had biopsy-proven primary refractory or relapsed HL. After standard-dose salvage chemotherapy (SC), accelerated IFRT (18-20 Gy) was given to relapsed or refractory sites, followed by TLI (15-18 Gy) and high-dose chemotherapy. Overall survival (OS) and event-free survival (EFS) were analyzed by Cox analysis and disease-specific survival (DSS) by competing-risk regression. Results: With a median follow-up period of 57 months among survivors, 5- and 10-year OS rates were 68% and 56%, respectively; 5- and 10-year EFS rates were 62% and 56%, respectively; and 5- and 10-year cumulative incidences of HL-related deaths were 21% and 29%, respectively. On multivariate analysis, complete response to SC was independently associated with improved OS and EFS. Primary refractory disease and extranodal disease were independently associated with poor DSS. Eight patients had grade 3 or higher cardiac toxicity, with 3 deaths. Second malignancies developed in 10 patients, 5 of whom died. Conclusions: Accelerated IFRT followed by TLI and high-dose chemotherapy is an effective, feasible, and safe salvage strategy for patients with relapsed or refractory HL with excellent long-term OS, EFS, and DSS. Complete response to SC is the most important prognostic factor.

  17. Accelerated Total Lymphoid Irradiation-containing Salvage Regimen for Patients With Refractory and Relapsed Hodgkin Lymphoma: 20 Years of Experience

    International Nuclear Information System (INIS)

    Rimner, Andreas; Lovie, Shona; Hsu, Meier; Chelius, Monica; Zhang, Zhigang; Chau, Karen; Moskowitz, Alison J.; Matasar, Matthew; Moskowitz, Craig H.; Yahalom, Joachim

    2017-01-01

    Purpose: We report the long-term results of integrated accelerated involved field radiation therapy (IFRT) followed by total lymphoid irradiation (TLI) as part of the high-dose salvage regimen followed by autologous bone marrow transplantation or autologous stem cell transplantation in patients with relapsed or refractory Hodgkin lymphoma (HL). Methods and Materials: From November 1985 to July 2008, 186 previously unirradiated patients with relapsed or refractory HL underwent salvage therapy on 4 consecutive institutional review board–approved protocols. All patients had biopsy-proven primary refractory or relapsed HL. After standard-dose salvage chemotherapy (SC), accelerated IFRT (18-20 Gy) was given to relapsed or refractory sites, followed by TLI (15-18 Gy) and high-dose chemotherapy. Overall survival (OS) and event-free survival (EFS) were analyzed by Cox analysis and disease-specific survival (DSS) by competing-risk regression. Results: With a median follow-up period of 57 months among survivors, 5- and 10-year OS rates were 68% and 56%, respectively; 5- and 10-year EFS rates were 62% and 56%, respectively; and 5- and 10-year cumulative incidences of HL-related deaths were 21% and 29%, respectively. On multivariate analysis, complete response to SC was independently associated with improved OS and EFS. Primary refractory disease and extranodal disease were independently associated with poor DSS. Eight patients had grade 3 or higher cardiac toxicity, with 3 deaths. Second malignancies developed in 10 patients, 5 of whom died. Conclusions: Accelerated IFRT followed by TLI and high-dose chemotherapy is an effective, feasible, and safe salvage strategy for patients with relapsed or refractory HL with excellent long-term OS, EFS, and DSS. Complete response to SC is the most important prognostic factor.

  18. Belgian class II nuclear facilities such as irradiators and accelerators. Regulatory Body attention points and operating experience feedback

    Energy Technology Data Exchange (ETDEWEB)

    Minne, Etienne; Peters, Christelle; Mommaert, Chantal; Kennes, Christian; Cortenbosch, Geert; Schmitz, Frederic; Haesendonck, Michel van [Bel V, Brussels (Belgium); Carlier, Pascal; Schrayen, Virginie; Wertelaers, An [Federal Agency for Nuclear Control, Brussels (Belgium)

    2016-11-15

    The aim of this paper is to present the Regulatory Body attention points and the operating experience feedback from Belgian ''class IIA'' facilities such as industrial and research irradiators, bulk radionuclides producers and conditioners. Reinforcement of the nuclear safety and radiation protection has been promoted by the Federal Agency for Nuclear Control (FANC) since 2009. This paper is clearly a continuation of the former paper [1] presenting the evolution in the regulatory framework relative to the creation of Bel V, the subsidiary of the FANC, and to the new ''class IIA'' covering heavy installations such as those mentioned above. Some lessons learnt are extracted from the operating experience feedback based on the events declared to the authorities. Even though a real willingness to meet the new safety requirements is observed among the ''class IIA'' licensees, promoting the safety culture, the nuclear safety and radiation protection remains an endless challenge for the Regulatory Body.

  19. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  20. Patterns of Recurrence in Electively Irradiated Lymph Node Regions After Definitive Accelerated Intensity Modulated Radiation Therapy for Head and Neck Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, Sven van den, E-mail: sven.vandenbosch@radboudumc.nl; Dijkema, Tim; Verhoef, Lia C.G.; Zwijnenburg, Ellen M.; Janssens, Geert O.; Kaanders, Johannes H.A.M.

    2016-03-15

    Purpose: To provide a comprehensive risk assessment on the patterns of recurrence in electively irradiated lymph node regions after definitive radiation therapy for head and neck cancer. Methods and Materials: Two hundred sixty-four patients with stage cT2-4N0-2M0 squamous cell carcinoma of the oropharynx, larynx, or hypopharynx treated with accelerated intensity modulated radiation therapy between 2008 and 2012 were included. On the radiation therapy planning computed tomography (CT) scans from all patients, 1166 lymph nodes (short-axis diameter ≥5 mm) localized in the elective volume were identified and delineated. The exact sites of regional recurrences were reconstructed and projected on the initial radiation therapy planning CT scan by performing coregistration with diagnostic imaging of the recurrence. Results: The actuarial rate of recurrence in electively irradiated lymph node regions at 2 years was 5.1% (95% confidence interval 2.4%-7.8%). Volumetric analysis showed an increased risk of recurrence with increasing nodal volume. Receiver operating characteristic analysis demonstrated that the summed long- and short-axis diameter is a good alternative for laborious volume calculations, using ≥17 mm as cut-off (hazard ratio 17.8; 95% confidence interval 5.7-55.1; P<.001). Conclusions: An important risk factor was identified that can help clinicians in the pretreatment risk assessment of borderline-sized lymph nodes. Not overtly pathologic nodes with a summed diameter ≥17 mm may require a higher than elective radiation therapy dose. For low-risk elective regions (all nodes <17 mm), the safety of dose de-escalation below the traditional 45 to 50 Gy should be investigated.

  1. Limitations of the American Society of Therapeutic Radiology and Oncology Consensus Panel Guidelines on the Use of Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Vicini, Frank; Arthur, Douglas; Wazer, David; Chen, Peter; Mitchell, Christina; Wallace, Michelle; Kestin, Larry; Ye, Hong

    2011-01-01

    Purpose: We applied the American Society of Therapeutic Radiology and Oncology (ASTRO) Consensus Panel (CP) guidelines for the use of accelerated partial breast irradiation (APBI) to patients treated with this technique to determine the ability of the guidelines to differentiate patients with significantly different clinical outcomes. Methods and Materials: A total of 199 patients treated with APBI and 199 with whole-breast irradiation (WBI) (matched for tumor size, nodal status, age, margins, receptor status, and tamoxifen use) were stratified into the three ASTRO CP levels of suitability ('suitable,' 'cautionary,' and 'unsuitable') to assess rates of ipsilateral breast tumor recurrence (IBTR), regional nodal failure, distant metastases, disease-free survival, cause-specific survival, and overall survival based on CP category. Median follow-up was 11.1 years. Results: Analysis of the APBI and WBI patient groups, either separately or together (n = 398), did not demonstrate statistically significant differences in 10-year actuarial rates of IBTR when stratified by the three ASTRO groups. Regional nodal failure and distant metastasis were generally progressively worse when comparing the suitable to cautionary to unsuitable CP groups. However, when analyzing multiple clinical, pathologic, or treatment-related variables, only patient age was associated with IBTR using WBI (p = 0.002). Conclusions: The ASTRO CP suitable group predicted for a low risk of IBTR; however, the cautionary and unsuitable groups had an equally low risk of IBTR, supporting the need for continued refinement of patient selection criteria as additional outcome data become available and for the continued accrual of patients to Phase III trials.

  2. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Rodríguez, Núria; Sanz, Xavier; Dengra, Josefa; Foro, Palmira; Membrive, Ismael; Reig, Anna; Quera, Jaume; Fernández-Velilla, Enric; Pera, Óscar; Lio, Jackson; Lozano, Joan; Algara, Manuel

    2013-01-01

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P 75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with conventional WBI

  3. A Japanese prospective multi-institutional feasibility study on accelerated partial breast irradiation using interstitial brachytherapy: treatment planning and quality assurance

    International Nuclear Information System (INIS)

    Otani, Yuki; Nose, Takayuki; Dokiya, Takushi; Saeki, Toshiaki; Kumazaki, Yu

    2015-01-01

    In Japan, breast-conserving surgery with closed cavity has generally been performed for breast cancer patients, and accelerated partial breast irradiation (APBI) is considered difficult because Asian females generally have smaller breast sizes than Western females. Therefore, common identification of target and treatment plan method in APBI is required. A prospective multicenter study was conducted in Japan to determine institutional compliance with APBI using high-dose-rate interstitial brachytherapy (ISBT) designed for Japanese female patients. For this study, 46 patients were recruited at eight institutions from January 2009 to December 2011. The reproducibility of the ISBT–APBI plan was evaluated using three criteria: (1) minimum clinical target volume dose with a clip dose ≥ 6 Gy/fraction, (2) irradiated volume constraint of 40-150 cm 3 , and (3) uniformity of dose distribution, expressed as the dose non-uniformity ratio (DNR, V150/V100) < 0.35. The ISBT–APBI plan for each patient was considered reproducible when all three criteria were met. When the number of non-reproducible patients was ≤ 4 at study completion, APBI at this institution was considered statistically reproducible. Half of the patients (52 %) had a small bra size (A/B cup). The mean values of the dose-constrained parameters were as follows: Vref, 117 cm 3 (range, 40-282), DNR, 0.30 (range, 0.22-0.51), and clip dose, 784 cGy (range, 469-3146). A total of 43/46 treatment plans were judged to be compliant and ISBT–APBI was concluded to be reproducible. This study showed that multi-institutional ISBT–APBI treatment plan was reproducible for small breast patient with closed cavity

  4. Accelerated partial breast irradiation using intensity-modulated radiotherapy technique compared to whole breast irradiation for patients aged 70 years or older: subgroup analysis from a randomized phase 3 trial.

    Science.gov (United States)

    Meattini, Icro; Saieva, Calogero; Marrazzo, Livia; Di Brina, Lucia; Pallotta, Stefania; Mangoni, Monica; Meacci, Fiammetta; Bendinelli, Benedetta; Francolini, Giulio; Desideri, Isacco; De Luca Cardillo, Carla; Scotti, Vieri; Furfaro, Ilaria Francesca; Rossi, Francesca; Greto, Daniela; Bonomo, Pierluigi; Casella, Donato; Bernini, Marco; Sanchez, Luis; Orzalesi, Lorenzo; Simoncini, Roberta; Nori, Jacopo; Bianchi, Simonetta; Livi, Lorenzo

    2015-10-01

    The purpose of this study was to report the efficacy and the safety profile on the subset of selected early breast cancer (BC) patients aged 70 years or older from a single-center phase 3 trial comparing whole breast irradiation (WBI) to accelerated partial breast irradiation (APBI) using intensity-modulated radiation therapy technique. Between 2005 and 2013, 520 patients aged more than 40 years old were enrolled and randomly assigned to receive either WBI or APBI in a 1:1 ratio. Eligible patients were women with early BC (maximum diameter 2.5 cm) suitable for breast conserving surgery. This study is registered with ClinicalTrials.gov, NCT02104895. A total of 117 patients aged 70 years or more were analyzed (58 in the WBI arm, 59 in the APBI arm). At a median follow-up of 5-years (range 3.4-7.0), the ipsilateral breast tumor recurrence (IBTR) rate was 1.9 % in both groups. No significant difference between the two groups was identified (log-rank test p = 0.96). The 5-year disease-free survival (DFS) rates in the WBI group and APBI group were 6.1 and 1.9 %, respectively (p = 0.33). The APBI group presented significantly better results in terms of acute skin toxicity, considering both any grade (p = 0.0001) and grade 2 or higher (p = 0.0001). Our subgroup analyses showed a very low rate and no significant difference in terms of IBTR, using both WBI and APBI. A significant impact on patients compliance in terms of acute and early late toxicity was shown, which could translate in a consistent improvement of overall quality of life.

  5. TH-C-12A-09: Planning and Delivery of the Fully Dynamic Trajectory Modulated Arc Therapy: Application to Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Liang, J; Atwood, T; Fahimian, B; Chin, E; Hristov, D; Otto, K

    2014-01-01

    Purpose: A novel trajectory modulated arc therapy (TMAT) system was developed that uses source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement. MLC motion and dose rate were fully optimized for dynamic beam delivery. This work presents a platform for planning deliverable TMAT on a collision free coronal trajectory and evaluates its benefit for accelerated partial breast irradiation (APBI) in a prone position. Methods: The TMAT algorithm was built on VMAT with modifications (physical properties on couch movement were defined) and enhancements (pencil beam dose calculation engine to support extended SSDs) to make it feasible for TMAT delivery. A Matlab software environment for TMAT optimization and dose calculation was created to allow any user specified motion axis. TMAT delivery was implemented on Varian TrueBeamTM STx via XML scripts. 10 prone breast irradiation cases were evaluated in VMAT and compared with a 6- field non-coplanar IMRT plan. Patient selection/exclusion criteria and structure contouring followed the guidelines of NSABP B-39/RTOG 0413 protocol. Results: TMAT delivery time was ∼4.5 minutes. 251.5°±7.88° of non-isocentric couch arc was achieved by the optimized trajectory with 180– 210 control points at 1°–2° couch increments. The improved dose distribution by TMAT was most clearly observed by the marked reduction in the volume of irradiated normal breast tissue in the high dose region. The ratios of the normal breast tissue volume receiving more than 50%, 80% and 100% of the prescription dose for TMAT versus IMRT were: V50%(TMAT/IMRT) = 78.38%±13.03%, V80%(TMAT/IMRT) = 44.19%±9.04% and V100% (TMAT/IMRT) = 9.96%±7.55%, all p≤0.01. Conclusion: The study is the first demonstration of planning and delivery implementation of a fully dynamic APBI TMAT system with continuous couch motion. TMAT achieved significantly improved dosimetry over noncoplanar IMRT on dose volume parameters

  6. TH-C-12A-09: Planning and Delivery of the Fully Dynamic Trajectory Modulated Arc Therapy: Application to Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J; Atwood, T; Fahimian, B; Chin, E; Hristov, D [Department of Radiation Oncology, Stanford University, CA (United States); Otto, K [Department of Physics, University of British Columbia, BC (Canada)

    2014-06-15

    Purpose: A novel trajectory modulated arc therapy (TMAT) system was developed that uses source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement. MLC motion and dose rate were fully optimized for dynamic beam delivery. This work presents a platform for planning deliverable TMAT on a collision free coronal trajectory and evaluates its benefit for accelerated partial breast irradiation (APBI) in a prone position. Methods: The TMAT algorithm was built on VMAT with modifications (physical properties on couch movement were defined) and enhancements (pencil beam dose calculation engine to support extended SSDs) to make it feasible for TMAT delivery. A Matlab software environment for TMAT optimization and dose calculation was created to allow any user specified motion axis. TMAT delivery was implemented on Varian TrueBeamTM STx via XML scripts. 10 prone breast irradiation cases were evaluated in VMAT and compared with a 6- field non-coplanar IMRT plan. Patient selection/exclusion criteria and structure contouring followed the guidelines of NSABP B-39/RTOG 0413 protocol. Results: TMAT delivery time was ∼4.5 minutes. 251.5°±7.88° of non-isocentric couch arc was achieved by the optimized trajectory with 180– 210 control points at 1°–2° couch increments. The improved dose distribution by TMAT was most clearly observed by the marked reduction in the volume of irradiated normal breast tissue in the high dose region. The ratios of the normal breast tissue volume receiving more than 50%, 80% and 100% of the prescription dose for TMAT versus IMRT were: V50%(TMAT/IMRT) = 78.38%±13.03%, V80%(TMAT/IMRT) = 44.19%±9.04% and V100% (TMAT/IMRT) = 9.96%±7.55%, all p≤0.01. Conclusion: The study is the first demonstration of planning and delivery implementation of a fully dynamic APBI TMAT system with continuous couch motion. TMAT achieved significantly improved dosimetry over noncoplanar IMRT on dose volume parameters

  7. A Dosimetric Comparison of Accelerated Partial Breast Irradiation Techniques: Multicatheter Interstitial Brachytherapy, Three-Dimensional Conformal Radiotherapy, and Supine Versus Prone Helical Tomotherapy

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Becker, Stewart J.; Das, Rupak K.; Mackie, Thomas R.

    2007-01-01

    Purpose: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. Methods and Materials: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD mean ) values were compared. Results: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value mean dose of 1.3 Gy 3 and 1.2 Gy 3 , respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. Conclusions: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals

  8. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  9. Use of accelerators in the national economy

    International Nuclear Information System (INIS)

    Skrinskij, A.

    1984-01-01

    Accelerators generating beams of accelerated particles are the basic component of apparatus used in irradiation technologies. One of the basic trends in irradiation is the improvement of materials, mainly polyethylene and other plastics. Irradiation with accelerated electrons improves their mechanical properties and chemical and heat resistance. Accelerated beams are also used in cement production and in grain disinfestation. The use is being developed of synchrotron radiation for rapid analysis of mineral samples, the manufacture of integrated circuits and for other applications. (Ha)

  10. Dedicated Tool for Irradiation and Electrical Measurement of Large Surface Samples on the Beamline of a 2.5 Mev Pelletron Electron Accelerator: Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Lefèvre Jérémie

    2017-01-01

    After a brief description of the SIRIUS irradiation facility hosted at Laboratoire des Solides Irradiés (LSI, this paper gives detailed information about the Large Surface Irradiated-Cell (LSIC device. Preliminary results obtained during the ongoing qualification phase of the setup are also discussed.

  11. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  12. TU-F-CAMPUS-T-01: Dose and Energy Spectra From Neutron Induced Radioactivity in Medical Linear Accelerators Following High Energy Total Body Irradiation

    International Nuclear Information System (INIS)

    Keehan, S; Taylor, M; Franich, R; Smith, R; Dunn, L; Kron, T

    2015-01-01

    Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI) treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as 187 W, 56 Mn, 24 Na and 28 Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws

  13. External Beam Accelerated Partial-Breast Irradiation Using 32 Gy in 8 Twice-Daily Fractions: 5-Year Results of a Prospective Study

    International Nuclear Information System (INIS)

    Pashtan, Itai M.; Recht, Abram; Ancukiewicz, Marek; Brachtel, Elena; Abi-Raad, Rita F.; D'Alessandro, Helen A.; Levy, Antonin; Wo, Jennifer Y.; Hirsch, Ariel E.; Kachnic, Lisa A.; Goldberg, Saveli; Specht, Michelle; Gadd, Michelle; Smith, Barbara L.; Powell, Simon N.; Taghian, Alphonse G.

    2012-01-01

    Purpose: External beam accelerated partial breast irradiation (APBI) is an increasingly popular technique for treatment of patients with early stage breast cancer following breast-conserving surgery. Here we present 5-year results of a prospective trial. Methods and Materials: From October 2003 through November 2005, 98 evaluable patients with stage I breast cancer were enrolled in the first dose step (32 Gy delivered in 8 twice-daily fractions) of a prospective, multi-institutional, dose escalation clinical trial of 3-dimensional conformal external beam APBI (3D-APBI). Median age was 61 years; median tumor size was 0.8 cm; 89% of tumors were estrogen receptor positive; 10% had a triple-negative phenotype; and 1% had a HER-2-positive subtype. Median follow-up was 71 months (range, 2-88 months; interquartile range, 64-75 months). Results: Five patients developed ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial IBTR rate of 5% (95% confidence interval [CI], 1%-10%). Three of these cases occurred in patients with triple-negative disease and 2 in non-triple-negative patients, for 5-year actuarial IBTR rates of 33% (95% CI, 0%-57%) and 2% (95% CI, 0%-6%; P<.0001), respectively. On multivariable analysis, triple-negative phenotype was the only predictor of IBTR, with borderline statistical significance after adjusting for tumor grade (P=.0537). Conclusions: Overall outcomes were excellent, particularly for patients with estrogen receptor-positive disease. Patients in this study with triple-negative breast cancer had a significantly higher IBTR rate than patients with other receptor phenotypes when treated with 3D-APBI. Larger, prospective 3D-APBI clinical trials should continue to evaluate the effect of hormone receptor phenotype on IBTR rates.

  14. External Beam Accelerated Partial-Breast Irradiation Using 32 Gy in 8 Twice-Daily Fractions: 5-Year Results of a Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Pashtan, Itai M. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Brachtel, Elena [Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (United States); Abi-Raad, Rita F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); D' Alessandro, Helen A. [Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Levy, Antonin; Wo, Jennifer Y. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Kachnic, Lisa A. [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Goldberg, Saveli [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michelle; Smith, Barbara L. [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2012-11-01

    Purpose: External beam accelerated partial breast irradiation (APBI) is an increasingly popular technique for treatment of patients with early stage breast cancer following breast-conserving surgery. Here we present 5-year results of a prospective trial. Methods and Materials: From October 2003 through November 2005, 98 evaluable patients with stage I breast cancer were enrolled in the first dose step (32 Gy delivered in 8 twice-daily fractions) of a prospective, multi-institutional, dose escalation clinical trial of 3-dimensional conformal external beam APBI (3D-APBI). Median age was 61 years; median tumor size was 0.8 cm; 89% of tumors were estrogen receptor positive; 10% had a triple-negative phenotype; and 1% had a HER-2-positive subtype. Median follow-up was 71 months (range, 2-88 months; interquartile range, 64-75 months). Results: Five patients developed ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial IBTR rate of 5% (95% confidence interval [CI], 1%-10%). Three of these cases occurred in patients with triple-negative disease and 2 in non-triple-negative patients, for 5-year actuarial IBTR rates of 33% (95% CI, 0%-57%) and 2% (95% CI, 0%-6%; P<.0001), respectively. On multivariable analysis, triple-negative phenotype was the only predictor of IBTR, with borderline statistical significance after adjusting for tumor grade (P=.0537). Conclusions: Overall outcomes were excellent, particularly for patients with estrogen receptor-positive disease. Patients in this study with triple-negative breast cancer had a significantly higher IBTR rate than patients with other receptor phenotypes when treated with 3D-APBI. Larger, prospective 3D-APBI clinical trials should continue to evaluate the effect of hormone receptor phenotype on IBTR rates.

  15. Patterns of intrafractional motion and uncertainties of treatment setup reference systems in accelerated partial breast irradiation for right- and left-sided breast cancer.

    Science.gov (United States)

    Yue, Ning J; Goyal, Sharad; Kim, Leonard H; Khan, Atif; Haffty, Bruce G

    2014-01-01

    This study investigated the patterns of intrafractional motion and accuracy of treatment setup strategies in 3-dimensional conformal radiation therapy of accelerated partial breast irradiation (APBI) for right- and left-sided breast cancers. Sixteen right-sided and 17 left-sided breast cancer patients were enrolled in an institutional APBI trial in which gold fiducial markers were strategically sutured to the surgical cavity walls. Daily pre- and postradiation therapy kV imaging were performed and were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion. The positioning differences of the laser-tattoo and the bony anatomy-based setups with respect to the marker-based setup (benchmark) were determined to evaluate their accuracy. Statistical differences were found between the right- and left-sided APBI treatments in vector directions of intrafractional motion and treatment setup errors in the reference systems, but less in their overall magnitudes. The directional difference was more pronounced in the lateral direction. It was found that the intrafractional motion and setup reference systems tended to deviate in the right direction for the right-sided breast treatments and in the left direction for the left-sided breast treatments. It appears that the fiducial markers placed in the seroma cavity exhibit side dependent directional intrafractional motion, although additional data may be needed to further validate the conclusion. The bony anatomy-based treatment setup improves the accuracy over laser-tattoo. But it is inadequate to rely on bony anatomy to assess intrafractional target motion in both magnitude and direction. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. Increased Detection of Lymphatic Vessel Invasion by D2-40 (Podoplanin) in Early Breast Cancer: Possible Influence on Patient Selection for Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Debald, Manuel; Poelcher, Martin; Flucke, Uta; Walgenbach-Bruenagel, Gisela

    2010-01-01

    Purpose: Several international trials are currently investigating accelerated partial breast irradiation (APBI) for patients with early-stage breast cancer. According to existing guidelines, patients with lymphatic vessel invasion (LVI) do not qualify for APBI. D2-40 (podoplanin) significantly increases the frequency of LVI detection compared with conventional hematoxylin and eosin (HE) staining in early-stage breast cancer. Our purpose was to retrospectively assess the hypothetical change in management from APBI to whole breast radiotherapy with the application of D2-40. Patients and Methods: Immunostaining with D2-40 was performed on 254 invasive breast tumors of 247 patients. The following criteria were used to determine the eligibility for APBI: invasive ductal adenocarcinoma of ≤3 cm, negative axillary node status (N0), and unifocal disease. Of the 247 patients, 74 with available information concerning LVI, as detected by D2-40 immunostaining and routine HE staining, formed our study population. Results: Using D2-40, our results demonstrated a significantly greater detection rate (p = .031) of LVI compared with routine HE staining. LVI was correctly identified by D2-40 (D2-40-positive LVI) in 10 (13.5%) of 74 tumors. On routine HE staining, 4 tumors (5.4%) were classified as HE-positive LVI. Doublestaining of these specimens with D2-40 unmasked false-positive LVI status in 2 (50%) of the 4 tumors. According to the current recommendations for APBI, immunostaining with D2-40 would have changed the clinical management from APBI to whole breast radiotherapy in 8 (10.8%) of 74 patients and from whole breast radiotherapy to APBI in 2 patients (2.7%). Conclusion: These data support the implementation of D2-40 immunostaining in the routine workup to determine a patient's eligibility for APBI.

  17. The influence of quantitative tumor volume measurements on local control in advanced head and neck cancer using concomitant boost accelerated superfractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher R; Khandelwal, Shiv R; Schmidt-Ullrich, Rupert K; Ravalese, Joseph; Wazer, David E

    1995-06-15

    Purpose: Current methods to clinically define head and neck tumor bulk are qualitative and imprecise. Although the American Joint Committee on Cancer (AJCC) staging system is important for this purpose, limitations exist. This study will investigate the prognostic value of computed tomography (CT) derived tumor volume measurements in comparison to AJCC stage and other significant variables. Materials and Methods: Seventy-six patients with advanced head and neck squamous cell carcinoma were treated with concomitant boost accelerated superfractionated irradiation. Doses ranged from 68.4-73.8 Gy (median 70.2 Gy). Good quality pretherapy CT scans were available in 51 patients. Total tumor volume (TTV) estimates were derived from these scans using digital integration of primary tumor and metastatic lymphadenopathy. Actuarial and multivariate statistical techniques were applied to analyze local control. Results: Thirty-six-month local control was 63%. TTV ranged from 5-196 cm{sup 3} (median 35 cm{sup 3}) for all cases, 5-142 cm{sup 3} (median 17 cm{sup 3}) for those controlled, and 16-196 cm{sup 3} (median 47 cm{sup 3}) for local failures. There was a significant increase in failures above 35 cm{sup 3}. Univariate analysis found that TTV, T-stage, N-stage, and primary site were each significant prognostic variables. Local control for TTV {<=}35 cm{sup 3} was 92% at 36 months vs. 34% for TTV >35 cm{sup 3} (p = 0.0001). Multivariate analysis, however, found that TTV, primary site, and sex were important as independent variables; T and N stage were not independently significant unless TTV was removed from the model. Conclusions: This study demonstrates the prognostic significance of TTV in advanced carcinoma of the head and neck. This variable appears to be a more predictive than AJCC clinical stage. Quantitative tumor volume measurements may prove to be a useful parameter in future analyses of head and neck cancer.

  18. Improvements in critical dosimetric endpoints using the Contura multilumen balloon breast brachytherapy catheter to deliver accelerated partial breast irradiation: preliminary dosimetric findings of a phase iv trial.

    Science.gov (United States)

    Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R

    2011-01-01

    Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Accelerated partial-breast irradiation vs conventional whole-breast radiotherapy in early breast cancer: A case-control study of disease control, cosmesis, and complications

    Directory of Open Access Journals (Sweden)

    Wadasadawala Tabassum

    2009-01-01

    Full Text Available Context: Accelerated partial-breast irradiation (APBI using various approaches is being increasingly employed for selected women with early breast cancer (EBC. Aims: To conduct a case-control study comparing disease control, cosmesis, and complications in patients with EBC undergoing APBI using multicatheter interstitial brachytherapy vs those receiving conventional whole breast radiotherapy (WBRT. Settings and Design: Women with EBC fulfilling the American Brachytherapy Society (ABS criteria were selected as ′cases′ if treated with APBI or as ′controls′ if offered WBRT during the period from May 2000 to December 2004. Materials and Methods: APBI patients were treated with high-dose-rate brachytherapy (HDR to a dose of 34 Gy/10#/6-8 days. WBRT was delivered to the whole breast to a dose of 45 Gy/25# followed by tumor bed boost, either with electrons (15 Gy/6# or interstitial brachytherapy (HDR 10 Gy/1#. Results: At the median follow-up of 43.05 months in APBI and 51.08 months in WBRT there was no difference in overall survival (OS, disease-free survival (DFS, late arm edema, and symptomatic fat necrosis between the two groups. However, APBI resulted in increase in mild breast fibrosis at the tumor bed. Telangiectasias were observed in three patients of the APBI group. The cosmetic outcome was significantly better in the APBI group as compared to the WBRT group (P = 0.003. Conclusions: This study revealed equivalent locoregional and distant disease control in the two groups. APBI offered better overall cosmetic outcome, though at the cost of a slight increase in mild breast fibrosis and telangiectasias.

  20. Clinical outcomes of prospectively treated 140 women with early stage breast cancer using accelerated partial breast irradiation with 3 dimensional computerized tomography based brachytherapy

    International Nuclear Information System (INIS)

    Budrukkar, Ashwini; Gurram, Lavanya; Upreti, Ritu Raj; Munshi, Anusheel; Jalali, Rakesh; Badwe, Rajendra; Parmar, Vani; Shet, Tanuja; Gupta, Sudeep; Wadasadawala, Tabassum; Sarin, Rajiv

    2015-01-01

    Purpose: To study the clinical outcomes of women with early breast cancer (EBC) treated with accelerated partial breast irradiation (APBI) with multicatheter interstitial brachytherapy (MIB) using 3 dimensional computerized tomography (3DCT) based planning. Materials and methods: During August 2005 to January 2013, 140 women with EBC were treated prospectively with APBI using high dose rate (HDR) MIB. After 3DCT based planning patients were treated to a dose of 34 Gy/10 #/1 week with bid regimen. Results: Median age was 57 years and tumor size 2 cm (range: 0.6–3.2 cm). Infiltrating duct carcinoma (IDC) was the most common histology; grade III tumors were seen in 82%. Median dose homogeneity index (DHI) was 0.76 (range: 0.49–0.85). The median coverage index (CI) of the cavity was 90% (61.4–100) and 80.5% (53.6–97.4) for planning target volume (PTV). Median follow up was 60 months (1–102 months). The 5 and 7 year local control rates (LC) were 97% and 92% respectively. Her2 positivity was the only prognostic factor which had an adverse impact on LC (p = 0.01). Five and 7 year disease free survival (DFS) and overall survival (OAS) were 93%, 84%, 97.5% and 89% respectively. Good to excellent cosmetic outcomes at last follow up were seen in 87 (77%) women. Conclusions: 3DCT based MIB results in excellent long term outcomes and good to excellent cosmesis. Her2 positivity has an adverse impact on LC rates

  1. Factors Associated With Optimal Long-Term Cosmetic Results in Patients Treated With Accelerated Partial Breast Irradiation Using Balloon-Based Brachytherapy

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Keisch, Martin; Shah, Chirag; Goyal, Sharad; Khan, Atif J.; Beitsch, Peter D.; Lyden, Maureen; Haffty, Bruce G.

    2012-01-01

    Purpose: To evaluate factors associated with optimal cosmetic results at 72 months for early-stage breast cancer patients treated with Mammosite balloon-based accelerated partial breast irradiation (APBI). Methods and Materials: A total of 1,440 patients (1,449 cases) with early-stage breast cancer undergoing breast-conserving therapy were treated with balloon-based brachytherapy to deliver APBI (34 Gy in 3.4-Gy fractions). Cosmetic outcome was evaluated at each follow-up visit and dichotomized as excellent/good (E/G) or fair/poor (F/P). Follow-up was evaluated at 36 and 72 months to establish long-term cosmesis, stability of cosmesis, and factors associated with optimal results. Results: The percentage of evaluable patients with excellent/good (E/G) cosmetic results at 36 months and more than 72 months were 93.3% (n = 708/759) and 90.4% (n = 235/260). Factors associated with optimal cosmetic results at 72 months included: larger skin spacing (p = 0.04) and T1 tumors (p = 0.02). Using multiple regression analysis, the only factors predictive of worse cosmetic outcome at 72 months were smaller skin spacing (odds ratio [OR], 0.89; confidence interval [CI], 0.80–0.99) and tumors greater than 2 cm (OR, 4.96, CI, 1.53–16.07). In all, 227 patients had both a 36-month and a 72-month cosmetic evaluation. The number of patients with E/G cosmetic results decreased only slightly from 93.4% at 3 years to 90.8% (p = 0.13) at 6 years, respectively. Conclusions: APBI delivered with balloon-based brachytherapy produced E/G cosmetic results in 90.4% of cases at 6 years. Larger tumors (T2) and smaller skin spacing were found to be the two most important independent predictors of cosmesis.

  2. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    International Nuclear Information System (INIS)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek; Hirsch, Ariel E.; Kachnic, Lisa A.; Specht, Michelle; Gadd, Michele; Smith, Barbara L.; Powell, Simon N.; Recht, Abram; Taghian, Alphonse G.

    2014-01-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity

  3. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E.; Kachnic, Lisa A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michele; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.

  4. Industrial irradiation

    International Nuclear Information System (INIS)

    Stirling, Andrew

    1995-01-01

    Production lines for rubber gloves would not appear to have much in common with particle physics laboratories, but they both use accelerators. Electron beam irradiation is often used in industry to improve the quality of manufactured goods or to reduce production cost. Products range from computer disks, shrink packaging, tyres, cables, and plastics to hot water pipes. Some products, such as medical goods, cosmetics and certain foodstuffs, are sterilized in this way. In electron beam irradiation, electrons penetrate materials creating showers of low energy electrons. After many collisions these electrons have the correct energy to create chemically active sites. They may either break molecular bonds or activate a site which promotes a new chemical linkage. This industrial irradiation can be exploited in three ways: breaking down a biological molecule usually renders it useless and kills the organism; breaking an organic molecule can change its toxicity or function; and crosslinking a polymer can strengthen it. In addition to traditional gamma irradiation using isotopes, industrial irradiation uses three accelerator configurations, each type defining an energy range, and consequently the electron penetration depth. For energies up to 750 kV, the accelerator consists of a DC potential applied to a simple wire anode and the electrons extracted through a slot in a coaxially mounted cylindrical cathode. In the 1-5 MeV range, the Cockcroft-Walton or Dynamitron( R ) accelerators are normally used. To achieve the high potentials in these DC accelerators, insulating SF6 gas and large dimension vessels separate the anode and cathode; proprietary techniques distinguish the various commercial models available. Above 5 MeV, the size of DC accelerators render them impractical, and more compact radiofrequency-driven linear accelerators are used. Irradiation electron beams are actually 'sprayed' over the product using a magnetic deflection system. Lower energy beams of

  5. Irradiation of goods

    International Nuclear Information System (INIS)

    Huebner, G.

    1992-01-01

    The necessary dose and the dosage limits to be observed depend on the kind of product and the purpose of irradiation. Product density and density distribution, product dimensions, but also packaging, transport and storage conditions are specific parameters influencing the conditions of irradiation. The kind of irradiation plant - electron accelerator or gamma plant - , its capacity, transport system and geometric arrangement of the radiation field are factors influencing the irradiation conditions as well. This is exemplified by the irradiation of 3 different products, onions, deep-frozen chicken and high-protein feed. Feasibilities and limits of the irradiation technology are demonstrated. (orig.) [de

  6. Radiation-Free Weekend Rescued! Continuous Accelerated Irradiation of 7-Days per Week Is Equal to Accelerated Fractionation With Concomitant Boost of 7 Fractions in 5-Days per Week: Report on Phase 3 Clinical Trial in Head-and-Neck Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Skladowski, Krzysztof, E-mail: skladowski@io.gliwice.pl [Maria Sklodowska-Curie Memorial Cancer Center and the Institute of Oncology, Branch in Gliwice (Poland); Hutnik, Marcin; Wygoda, Andrzej; Golen, Maria; Pilecki, Boleslaw; Przeorek, Wieslawa; Rutkowski, Tomasz; Lukaszczyk-Widel, Beata; Heyda, Alicja; Suwinski, Rafal; Tarnawski, Rafal; Maciejewski, Boguslaw [Maria Sklodowska-Curie Memorial Cancer Center and the Institute of Oncology, Branch in Gliwice (Poland)

    2013-03-01

    Purpose: To report long-term results of randomized trial comparing 2 accelerated fractionations of definitive radiation therapy assessing the need to irradiate during weekend in patients with head and neck squamous cell carcinoma. Methods and Materials: A total of 345 patients with SCC of the oral cavity, larynx, and oro- or hypo-pharynx, stage T2-4N0-1M0, were randomized to receive continuous accelerated irradiation (CAIR: once per day, 7 days per week) or concomitant accelerated boost (CB: once per day, 3 days per week, and twice per day, 2 days per week). Total dose ranged from 66.6-72 Gy, dose per fraction was 1.8 Gy, number of fractions ranged from 37-40 fractions, and overall treatment time ranged from 37-40 days. Results: No differences for all trial end-points were noted. At 5 and 10 years, the actuarial rates of local-regional control were 63% and 60% for CAIR vs 65% and 60% for CB, and the corresponding overall survival were 40% and 25% vs 44% and 25%, respectively. Confluent mucositis was the main acute toxicity, with an incidence of 89% in CAIR and 86% in CB patients. The 5-year rate of grade 3-4 late radiation morbidity was 6% for both regimens. Conclusions: Results of this trial indicate that the effects of accelerated fractionation can be achieve by delivering twice-per-day irradiation on weekday(s). This trial has also confirmed that an accelerated, 6-weeks schedule is a reasonable option for patients with intermediate-stage head-and-neck squamous cell carcinoma because of the associated high cure rate and minimal severe late toxicity.

  7. Sewage sludge irradiation with electrons

    International Nuclear Information System (INIS)

    Tauber, M.

    1976-01-01

    The disinfection of sewage sludge by irradiation has been discussed very intensively in the last few months. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. AEG-Telefunken is building an irradiation plant with a 1.5 MeV, 25 mA electron accelerator, to study the main features of electron irradiation of sewage sludge. (author)

  8. Accelerated partial breast irradiation: An analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy

    International Nuclear Information System (INIS)

    Wazer, David E.; Kaufman, Seth; Cuttino, Laurie; Di Petrillo, Thomas; Arthur, Douglas W.

    2006-01-01

    Purpose: To perform a detailed analysis of variables associated with late tissue effects of high-dose-rate (HDR) interstitial brachytherapy accelerated partial breast irradiation (APBI) in a large cohort of patients with prolonged follow-up. Methods and Materials: Beginning in 1995, 75 women with Stage I/II breast cancer were enrolled in identical institutional trials evaluating APBI as monotherapy after lumpectomy. Patients eligible included those with T1-2, N0-1 (≤3 nodes positive), M0 tumors of nonlobular histology with negative surgical margins, no extracapsular nodal extension, and negative results on postexcision mammogram. All patients underwent surgical excision and postoperative irradiation with HDR interstitial brachytherapy. The planning target volume was defined as the excision cavity plus a 2-cm margin. Treatment was delivered with a high-activity Ir-192 source at 3.4 Gy per fraction twice daily for 5 days to a total dose of 34 Gy. Dosimetric analyses were performed with three-dimensional postimplant dose and volume reconstructions. All patients were evaluated at 3-6-month intervals and assessed with a standardized cosmetic rating scale and according to Radiation Therapy Oncology Group late normal tissue toxicity scoring criteria. Clinical and therapy-related features were analyzed for their relationship to cosmetic outcome and toxicity rating. Clinical features analyzed included age, volume of resection, history of diabetes or hypertension, extent of axillary surgery, and systemic therapies. Therapy-related features analyzed included volume of tissue encompassed by the 100%, 150%, and 200% isodose lines (V100, V150, and V200, respectively), the dose homogeneity index (DHI), number of source dwell positions, and planar separation. Results: The median follow-up of all patients was 73 months (range, 43-118 months). The cosmetic outcome at last follow-up was rated as excellent, good, and fair/poor in 67%, 24%, and 9% of patients, respectively

  9. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    International Nuclear Information System (INIS)

    Kelly, Paul J.; Lin Yijie Brittany; Yu, Alvin Y.; Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E.

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women’s Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1–3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15–18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41–1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective

  10. Local Control, Toxicity, and Cosmesis in Women >70 Years Enrolled in the American Society of Breast Surgeons Accelerated Partial Breast Irradiation Registry Trial

    International Nuclear Information System (INIS)

    Khan, Atif J.; Vicini, Frank A.; Beitsch, Peter; Goyal, Sharad; Kuerer, Henry M.; Keisch, Martin; Quiet, Coral; Zannis, Victor; Keleher, Angela; Snyder, Howard; Gittleman, Mark; Whitworth, Pat; Fine, Richard; Lyden, Maureen; Haffty, Bruce G.

    2012-01-01

    Purpose: The American Society of Breast Surgeons enrolled women in a registry trial to prospectively study patients treated with the MammoSite Radiation Therapy System breast brachytherapy device. The present report examined the outcomes in women aged >70 years enrolled in the trial. Methods and Materials: A total of 1,449 primary early stage breast cancers were treated in 1,440 women. Of these, 537 occurred in women >70 years old. Fisher’s exact test was performed to correlate age (≤70 vs. >70 years) with toxicity and with cosmesis. The association of age with local recurrence (LR) failure times was investigated by fitting a parametric model. Results: Older women were less likely to develop telangiectasias than younger women (7.9% vs. 12.4%, p = 0.0083). The incidence of other toxicities was similar. Cosmesis was good or excellent in 92% of the women >70 years old. No significant difference was found in LR as a function of age. The 5-year actuarial LR rate with invasive disease for the older vs. younger population was 2.79% and 2.92%, respectively (p = 0.5780). In women >70 years with hormone-sensitive tumors ≤2 cm who received hormonal therapy (n = 195), the 5-year actuarial rate of LR, overall survival, disease-free survival, and cause-specific survival was 2.06%, 89.3%, 87%, and 97.5%, respectively. These outcomes were similar in women who did not receive hormonal therapy. Women with small, estrogen receptor-negative disease had worse LR, overall survival, and disease-free survival compared with receptor-positive patients. Conclusions: Accelerated partial breast irradiation with the MammoSite radiation therapy system resulted in low toxicity and produced similar cosmesis and local control at 5 years in women >70 years compared with younger women. This treatment should be considered as an alternative to omitting adjuvant radiotherapy for older women with small-volume, early-stage breast cancer.

  11. Outcomes of Node-positive Breast Cancer Patients Treated With Accelerated Partial Breast Irradiation Via Multicatheter Interstitial Brachytherapy: The Pooled Registry of Multicatheter Interstitial Sites (PROMIS) Experience.

    Science.gov (United States)

    Kamrava, Mitchell; Kuske, Robert R; Anderson, Bethany; Chen, Peter; Hayes, John; Quiet, Coral; Wang, Pin-Chieh; Veruttipong, Darlene; Snyder, Margaret; Demanes, David J

    2018-06-01

    To report outcomes for breast-conserving therapy using adjuvant accelerated partial breast irradiation (APBI) with interstitial multicatheter brachytherapy in node-positive compared with node-negative patients. From 1992 to 2013, 1351 patients (1369 breast cancers) were treated with breast-conserving surgery and adjuvant APBI using interstitial multicatheter brachytherapy. A total of 907 patients (835 node negative, 59 N1a, and 13 N1mic) had >1 year of data available and nodal status information and are the subject of this analysis. Median age (range) was 59 years old (22 to 90 y). T stage was 90% T1 and ER/PR/Her2 was positive in 87%, 71%, and 7%. Mean number of axillary nodes removed was 12 (SD, 6). Cox multivariate analysis for local/regional control was performed using age, nodal stage, ER/PR/Her2 receptor status, tumor size, grade, margin, and adjuvant chemotherapy/antiestrogen therapy. The mean (SD) follow-up was 7.5 years (4.6). The 5-year actuarial local control (95% confidence interval) in node-negative versus node-positive patients was 96.3% (94.5-97.5) versus 95.8% (87.6-98.6) (P=0.62). The 5-year actuarial regional control in node-negative versus node-positive patients was 98.5% (97.3-99.2) versus 96.7% (87.4-99.2) (P=0.33). The 5-year actuarial freedom from distant metastasis and cause-specific survival were significantly lower in node-positive versus node-negative patients at 92.3% (82.4-96.7) versus 97.8% (96.3-98.7) (P=0.006) and 91.3% (80.2-96.3) versus 98.7% (97.3-99.3) (P=0.0001). Overall survival was not significantly different. On multivariate analysis age 50 years and below, Her2 positive, positive margin status, and not receiving chemotherapy or antiestrogen therapy were associated with a higher risk of local/regional recurrence. Patients who have had an axillary lymph node dissection and limited node-positive disease may be candidates for treatment with APBI. Further research is ultimately needed to better define specific criteria for APBI

  12. WE-G-BRE-09: Targeted Radiotherapy Enhancement During Accelerated Partial Breast Irradiation (ABPI) Using Controlled Release of Gold Nanoparticles (GNPs)

    International Nuclear Information System (INIS)

    Cifter, G; Ngwa, W; Chin, J; Cifter, F; Sajo, E; Sinha, N; Bellon, J

    2014-01-01

    Purpose: Several studies have demonstrated low rates of local recurrence with brachytherapy-based accelerated partial breast irradiation (APBI). However, long-term outcomes on toxicity (e.g. telangiectasia), and cosmesis remain a major concern. The purpose of this study is to investigate the dosimetric feasibility of using targeted non-toxic radiosensitizing gold nanoparticles (GNPs) for localized dose enhancement to the planning target volume (PTV) during APBI while reducing dose to normal tissue. Methods: Two approaches for administering the GNPs were considered. In one approach, GNPs are assumed to be incorporated in a micrometer-thick polymer film on the surface of routinely used mammosite balloon applicators, for sustained controlled in-situ release, and subsequent treatment using 50-kVp Xoft devices. In case two, GNPs are administered directly into the lumpectomy cavity e.g. via injection or using fiducials coated with the GNP-loaded polymer film. Recent studies have validated the use of fiducials for reducing the PTV margin during APBI with 6 MV beams. An experimentally determined diffusion coefficient was used to determine space-time customizable distribution of GNPs for feasible in-vivo concentrations of 43 mg/g. An analytic calculational approach from previously published work was employed to estimate the dose enhancement due to GNPs (2 and 10 nm) as a function of distance up to 1 cm from lumpectomy cavity. Results: Dose enhancement due to GNP was found to be about 130% for 50-kVp x-rays, and 110% for 6-MV external beam radiotherapy, 1 cm away from the lumpectomy cavity wall. Higher customizable dose enhancement could be achieved at other distances as a function of nanoparticle size. Conclusion: Our preliminary results suggest that significant dose enhancement can be achieved to residual tumor cells targeted with GNPs during APBI with electronic brachytherapy or external beam therapy. The findings provide a useful basis for developing nanoparticle

  13. Decline of Cosmetic Outcomes Following Accelerated Partial Breast Irradiation Using Intensity Modulated Radiation Therapy: Results of a Single-Institution Prospective Clinical Trial

    International Nuclear Information System (INIS)

    Liss, Adam L.; Ben-David, Merav A.; Jagsi, Reshma; Hayman, James A.; Griffith, Kent A.; Moran, Jean M.; Marsh, Robin B.; Pierce, Lori J.

    2014-01-01

    Purpose: To report the final cosmetic results from a single-arm prospective clinical trial evaluating accelerated partial breast irradiation (APBI) using intensity modulated radiation therapy (IMRT) with active-breathing control (ABC). Methods and Materials: Women older than 40 with breast cancer stages 0-I who received breast-conserving surgery were enrolled in an institutional review board-approved prospective study evaluating APBI using IMRT administered with deep inspiration breath-hold. Patients received 38.5 Gy in 3.85-Gy fractions given twice daily over 5 consecutive days. The planning target volume was defined as the lumpectomy cavity with a 1.5-cm margin. Cosmesis was scored on a 4-category scale by the treating physician. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). We report the cosmetic and toxicity results at a median follow-up of 5 years. Results: A total of 34 patients were enrolled. Two patients were excluded because of fair baseline cosmesis. The trial was terminated early because fair/poor cosmesis developed in 7 of 32 women at a median follow-up of 2.5 years. At a median follow-up of 5 years, further decline in the cosmetic outcome was observed in 5 women. Cosmesis at the time of last assessment was 43.3% excellent, 30% good, 20% fair, and 6.7% poor. Fibrosis according to CTCAE at last assessment was 3.3% grade 2 toxicity and 0% grade 3 toxicity. There was no correlation of CTCAE grade 2 or greater fibrosis with cosmesis. The 5-year rate of local control was 97% for all 34 patients initially enrolled. Conclusions: In this prospective trial with 5-year median follow-up, we observed an excellent rate of tumor control using IMRT-planned APBI. Cosmetic outcomes, however, continued to decline, with 26.7% of women having a fair to poor cosmetic result. These results underscore the need for continued cosmetic assessment for patients treated with APBI by technique

  14. Local Control, Toxicity, and Cosmesis in Women >70 Years Enrolled in the American Society of Breast Surgeons Accelerated Partial Breast Irradiation Registry Trial

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Atif J., E-mail: atif_khan@rwjuh.edu [Robert Wood Johnson University Hospital, Cancer Institute of New Jersey, New Brunswick, NJ (United States); Vicini, Frank A.; Beitsch, Peter [American Society of Breast Surgeons, Columbia, MD (United States); Goyal, Sharad [Robert Wood Johnson University Hospital, Cancer Institute of New Jersey, New Brunswick, NJ (United States); Kuerer, Henry M.; Keisch, Martin; Quiet, Coral; Zannis, Victor; Keleher, Angela; Snyder, Howard; Gittleman, Mark; Whitworth, Pat; Fine, Richard [American Society of Breast Surgeons, Columbia, MD (United States); Lyden, Maureen [BioStat International, Inc., Tampa, FL (United States); Haffty, Bruce G. [Robert Wood Johnson University Hospital, Cancer Institute of New Jersey, New Brunswick, NJ (United States); American Society of Breast Surgeons, Columbia, MD (United States)

    2012-10-01

    Purpose: The American Society of Breast Surgeons enrolled women in a registry trial to prospectively study patients treated with the MammoSite Radiation Therapy System breast brachytherapy device. The present report examined the outcomes in women aged >70 years enrolled in the trial. Methods and Materials: A total of 1,449 primary early stage breast cancers were treated in 1,440 women. Of these, 537 occurred in women >70 years old. Fisher's exact test was performed to correlate age ({<=}70 vs. >70 years) with toxicity and with cosmesis. The association of age with local recurrence (LR) failure times was investigated by fitting a parametric model. Results: Older women were less likely to develop telangiectasias than younger women (7.9% vs. 12.4%, p = 0.0083). The incidence of other toxicities was similar. Cosmesis was good or excellent in 92% of the women >70 years old. No significant difference was found in LR as a function of age. The 5-year actuarial LR rate with invasive disease for the older vs. younger population was 2.79% and 2.92%, respectively (p = 0.5780). In women >70 years with hormone-sensitive tumors {<=}2 cm who received hormonal therapy (n = 195), the 5-year actuarial rate of LR, overall survival, disease-free survival, and cause-specific survival was 2.06%, 89.3%, 87%, and 97.5%, respectively. These outcomes were similar in women who did not receive hormonal therapy. Women with small, estrogen receptor-negative disease had worse LR, overall survival, and disease-free survival compared with receptor-positive patients. Conclusions: Accelerated partial breast irradiation with the MammoSite radiation therapy system resulted in low toxicity and produced similar cosmesis and local control at 5 years in women >70 years compared with younger women. This treatment should be considered as an alternative to omitting adjuvant radiotherapy for older women with small-volume, early-stage breast cancer.

  15. Accelerated partial breast irradiation: Using the CyberKnife as the radiation delivery platform in the treatment of early breast cancer

    Directory of Open Access Journals (Sweden)

    Sandra eVermeulen

    2011-11-01

    Full Text Available We evaluate the CyberKnife (Accuray, Incorporated, Sunnyvale, CA for non-invasive delivery of accelerated partial breast irradiation (APBI in early breast cancer patients. Between 6/2009 and 5/2011, 9 patients were treated with CyberKnife APBI. Normal tissue constraints were imposed as outlined in the National Surgical Adjuvant Breast and Bowel Project B-39/Radiation Therapy Oncology Group 0413 (NSABP/RTOG Protocol (Vicini and White, 2007. Patients received a total dose of 30 Gy in 5 fractions (group 1, n=2 or 34 Gy in 10 fractions (group 2, n=7 delivered to the planning treatment volume (PTV defined as the clinical target volume (CTV + 2 mm. The CTV was defined as either the lumpectomy cavity plus 10 mm (n=2 or 15 mm (n=7. The cavity was defined by a T2-weighted non-contrast breast MRI fused to a planning non-contrast thoracic CT. The CyberKnife Synchrony system tracked gold fiducials sutured into the cavity wall during lumpectomy. Treatments started 4-5 weeks after lumpectomy. The mean PTV was 100 cm3 (range, 92-108 cm3 and 105 cm3 (range, 49-241 cm3 and the mean PTV isodose prescription line was 70% for groups 1 and 2, respectively. The mean percent of whole breast reference volume receiving 100% and 50% of the dose (V100 and V50 for group 1 was 11% (range, 8-13% and 23% (range, 16-30% and for group 2 was 11% (range, 7-14% and 26% (range, 21- 35.0% , respectively. At a median 7 months follow-up (range, 4-26 months, no acute toxicities were seen. Acute cosmetic outcomes were excellent or good in all patients; for those patients with more than 12 months follow-up the late cosmesis outcomes were excellent or good. In conclusion, the lack of observable acute side effects and current excellent/good cosmetic outcomes is promising. We believe this suggests the CyberKnife is a suitable non-invasive radiation platform for delivering APBI with achievable normal tissue constraints.

  16. [Accelerated partial breast irradiation with image-guided intensity-modulated radiotherapy following breast-conserving surgery - preliminary results of a phase II clinical study].

    Science.gov (United States)

    Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba

    2015-06-01

    The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.

  17. SU-F-BRA-14: Optimization of Dosimetric Guidelines for Accelerated Partial Breast Irradiation (APBI) Using the Strut-Adjusted Volume Implant (SAVI)

    International Nuclear Information System (INIS)

    Mooney, K; Altman, M; Garcia-Ramirez, J; Thomas, M; Zoberi, I; Mullen, D; DeWees, T; Esthappan, J

    2015-01-01

    Purpose: Treatment planning guidelines for accelerated partial breast irradiation (ABPI) using the strut-adjusted volume implant (SAVI) are inconsistent between the manufacturer and NSABP B-39/RTOG 0413 protocol. Furthermore neither set of guidelines accounts for different applicator sizes. The purpose of this work is to establish guidelines specific to the SAVI that are based on clinically achievable dose distributions. Methods: Sixty-two consecutive patients were implanted with a SAVI and prescribed to receive 34 Gy in 10 fractions twice daily using high dose-rate (HDR) Ir-192 brachytherapy. The target (PTV-EVAL) was defined per NSABP. The treatments were planned and evaluated using a combination of dosimetric planning goals provided by the NSABP, the manufacturer, and our prior clinical experience. Parameters evaluated included maximum doses to skin and ribs, and volumes of PTV-EVAL receiving 90%, 95%, 100%, 150%, and 200% of the prescription (V90, etc). All target parameters were evaluated for correlation with device size using the Pearson correlation coefficient. Revised dosimetric guidelines for target coverage and heterogeneity were determined from this population. Results: Revised guidelines for minimum target coverage (ideal in parentheses): V90≥95%(97%), V95≥90%(95%), V100≥88%(91%). The only dosimetric parameters that were significantly correlated (p<0.05) with device size were V150 and V200. Heterogeneity criteria were revised for the 6–1 Mini/6-1 applicators to V150≤30cc and V200≤15cc, and unchanged for the other sizes. Re-evaluation of patient plans showed 90% (56/62) met the revised minimum guidelines and 76% (47/62) met the ideal guidelines. All and 56/62 patients met our institutional guidelines for maximum skin and rib dose, respectively. Conclusions: We have optimized dosimetric guidelines for the SAVI applicators, and found that implementation of these revised guidelines for SAVI treatment planning yielded target coverage exceeding

  18. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Paul J., E-mail: pkelly@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States); Lin Yijie Brittany; Yu, Alvin Y. [Harvard Medical School, Boston, MA (United States); Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States)

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women's Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1-3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15-18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41-1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective studies.

  19. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    International Nuclear Information System (INIS)

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil

    2014-01-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate 192 Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy applicators and

  20. The Effect of Dose-Volume Parameters and Interfraction Interval on Cosmetic Outcome and Toxicity After 3-Dimensional Conformal Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Leonard, Kara Lynne; Hepel, Jaroslaw T.; Hiatt, Jessica R.; Dipetrillo, Thomas A.; Price, Lori Lyn; Wazer, David E.

    2013-01-01

    Purpose: To evaluate dose-volume parameters and the interfraction interval (IFI) as they relate to cosmetic outcome and normal tissue effects of 3-dimensional conformal radiation therapy (3D-CRT) for accelerated partial breast irradiation (APBI). Methods and Materials: Eighty patients were treated by the use of 3D-CRT to deliver APBI at our institutions from 2003-2010 in strict accordance with the specified dose-volume constraints outlined in the National Surgical Adjuvant Breast and Bowel Project B39/Radiation Therapy Oncology Group 0413 (NSABP-B39/RTOG 0413) protocol. The prescribed dose was 38.5 Gy in 10 fractions delivered twice daily. Patients underwent follow-up with assessment for recurrence, late toxicity, and overall cosmetic outcome. Tests for association between toxicity endpoints and dosimetric parameters were performed with the chi-square test. Univariate logistic regression was used to evaluate the association of interfraction interval (IFI) with these outcomes. Results: At a median follow-up time of 32 months, grade 2-4 and grade 3-4 subcutaneous fibrosis occurred in 31% and 7.5% of patients, respectively. Subcutaneous fibrosis improved in 5 patients (6%) with extended follow-up. Fat necrosis developed in 11% of women, and cosmetic outcome was fair/poor in 19%. The relative volume of breast tissue receiving 5%, 20%, 50%, 80%, and 100% (V5-V100) of the prescribed dose was associated with risk of subcutaneous fibrosis, and the volume receiving 50%, 80%, and 100% (V50-V100) was associated with fair/poor cosmesis. The mean IFI was 6.9 hours, and the minimum IFI was 6.2 hours. The mean and minimum IFI values were not significantly associated with late toxicity. Conclusions: The incidence of moderate to severe late toxicity, particularly subcutaneous fibrosis and fat necrosis and resulting fair/poor cosmesis, remains high with continued follow-up. These toxicity endpoints are associated with several dose-volume parameters. Minimum and mean IFI values were

  1. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil, E-mail: beriwals@upmc.edu

    2014-02-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate {sup 192}Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy

  2. Decline of Cosmetic Outcomes Following Accelerated Partial Breast Irradiation Using Intensity Modulated Radiation Therapy: Results of a Single-Institution Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ben-David, Merav A. [Department of Radiation Oncology, The Sheba Medical Center, Ramat Gan (Israel); Jagsi, Reshma; Hayman, James A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M.; Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2014-05-01

    Purpose: To report the final cosmetic results from a single-arm prospective clinical trial evaluating accelerated partial breast irradiation (APBI) using intensity modulated radiation therapy (IMRT) with active-breathing control (ABC). Methods and Materials: Women older than 40 with breast cancer stages 0-I who received breast-conserving surgery were enrolled in an institutional review board-approved prospective study evaluating APBI using IMRT administered with deep inspiration breath-hold. Patients received 38.5 Gy in 3.85-Gy fractions given twice daily over 5 consecutive days. The planning target volume was defined as the lumpectomy cavity with a 1.5-cm margin. Cosmesis was scored on a 4-category scale by the treating physician. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). We report the cosmetic and toxicity results at a median follow-up of 5 years. Results: A total of 34 patients were enrolled. Two patients were excluded because of fair baseline cosmesis. The trial was terminated early because fair/poor cosmesis developed in 7 of 32 women at a median follow-up of 2.5 years. At a median follow-up of 5 years, further decline in the cosmetic outcome was observed in 5 women. Cosmesis at the time of last assessment was 43.3% excellent, 30% good, 20% fair, and 6.7% poor. Fibrosis according to CTCAE at last assessment was 3.3% grade 2 toxicity and 0% grade 3 toxicity. There was no correlation of CTCAE grade 2 or greater fibrosis with cosmesis. The 5-year rate of local control was 97% for all 34 patients initially enrolled. Conclusions: In this prospective trial with 5-year median follow-up, we observed an excellent rate of tumor control using IMRT-planned APBI. Cosmetic outcomes, however, continued to decline, with 26.7% of women having a fair to poor cosmetic result. These results underscore the need for continued cosmetic assessment for patients treated with APBI by technique.

  3. Magnetic Resonance Image Guided Radiation Therapy for External Beam Accelerated Partial-Breast Irradiation: Evaluation of Delivered Dose and Intrafractional Cavity Motion

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Mazur, Thomas R.; Curcuru, Austen; Sona, Karl; Kashani, Rojano; Green, Olga; Ochoa, Laura; Mutic, Sasa; Zoberi, Imran; Li, H. Harold; Thomas, Maria A., E-mail: mthomas@radonc.wustl.edu

    2016-11-15

    Purpose: To use magnetic resonance image guided radiation therapy (MR-IGRT) for accelerated partial-breast irradiation (APBI) to (1) determine intrafractional motion of the breast surgical cavity; and (2) assess delivered dose versus planned dose. Methods and Materials: Thirty women with breast cancer (stages 0-I) who underwent breast-conserving surgery were enrolled in a prospective registry evaluating APBI using a 0.35-T MR-IGRT system. Clinical target volume was defined as the surgical cavity plus a 1-cm margin (excluding chest wall, pectoral muscles, and 5 mm from skin). No additional margin was added for the planning target volume (PTV). A volumetric MR image was acquired before each fraction, and patients were set up to the surgical cavity as visualized on MR imaging. To determine the delivered dose for each fraction, the electron density map and contours from the computed tomography simulation were transferred to the pretreatment MR image via rigid registration. Intrafractional motion of the surgical cavity was determined by applying a tracking algorithm to the cavity contour as visualized on cine MR. Results: Median PTV volume was reduced by 52% when using no PTV margin compared with a 1-cm PTV margin used conventionally. The mean (± standard deviation) difference between planned and delivered dose to the PTV (V95) was 0.6% ± 0.1%. The mean cavity displacement in the anterior–posterior and superior–inferior directions was 0.6 ± 0.4 mm and 0.6 ± 0.3 mm, respectively. The mean margin required for at least 90% of the cavity to be contained by the margin for 90% of the time was 0.7 mm (5th-95th percentile: 0-2.7 mm). Conclusion: Minimal intrafractional motion was observed, and the mean difference between planned and delivered dose was less than 1%. Assessment of efficacy and cosmesis of this MR-guided APBI approach is under way.

  4. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  5. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  6. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  7. Food irradiation

    International Nuclear Information System (INIS)

    Migdal, W.

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author)

  8. Use of Isotopes for Investigating the Behaviour and Ecology of Insect Pests in Some Recent Studies; Emploi des radioisotopes dans des recherches recentes sur le comportement et l'ecologie des insectes nuisibles; Ispol'zovanie radioizotopov dlya issledovaniya povedeniya i ehkologii nasekomykh-vreditelej v Irane; Empleo de isotopos en estudios recientes sobre el comportamiento y la ecologia de las plagas insectiles

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi Sayeed, M. [Cento Institute of Nuclear Science, Teheran (Iran, Islamic Republic of)

    1963-09-15

    toujours pose des problemes interessants aux entomologistes. Les radioisotopes constituent un outil efficace, et l'auteur expose les resultats auxquels il est parvenu grace a leur emploi dans l'etude de certains de ces problemes. L'Anopheles stephensi est le principal vecteur du paludisme en Iran meridional. En marquant des moustiques avec {sup 32}P, on a pu determiner la dispersion, le comportement, la digestion du sang, le developpement des ovaires et la duree des cycles gonotrophiques. On a constate que, dans environ 80% des cas, le moustique a besoin de deux repas de sang pour realiser le premier cycle. La duree de ce cycle a ete de 4-5 j selon la temperature. Les moustiques marques qui etaient parvenus a l'etat adulte pendant la nuit ont ete laches sur un village isole. On a calcule tous les jours le pourcentage de moustiques irradies par rapport a la prise totale; en partant de l'hypothese que la population naturelle demeurait constante, on a determine le taux de mortalite et constate que c 'etait une fonction exponentielle pour les six premiers jours. On a egalement etudie le comportement sexuel de la femelle a l'aide de femelles normales qui s'etaient accouplees une fois avec des males marques avec {sup 32}P. On a pu etablir que la femelle s'accouple plus d' une fois et que la spermatotheque devient radioactive apres accouplement avec un male irradie. On a enregiste un nombre de coups pouvant atteindre jusqu'a deux fois le bruit de fond (12 cpm) en utilisant des males donnant environ 15 000 cpm. Avec des moustiques marques avec {sup 32}P, on a egalement etudie l'injection de salive dans une solution de'glucose pendant l'absorption de nourriture. L'Eurygaster integriceps est un insecte tres nuisible au ble en Iran, au Pakistan et au Moyen-Orient. Au moyen de grains marques par {sup 32}P, on a etudie le comportement alimentaire au premier stade nymphal, On a egalement etudie d'autres nourritures marquees et on a constate que la nymphe devait se nourrir, ne serait

  9. Blood irradiation: Rationale and technique

    International Nuclear Information System (INIS)

    Lewis, M.C.

    1990-01-01

    Upon request by the local American Red Cross, the Savannah Regional Center for Cancer Care irradiates whole blood or blood components to prevent post-transfusion graft-versus-host reaction in patients who have severely depressed immune systems. The rationale for blood irradiation, the total absorbed dose, the type of patients who require irradiated blood, and the regulations that apply to irradiated blood are presented. A method of irradiating blood using a linear accelerator is described

  10. Results of four one-day electron-accelerator irradiations of enriched Mo-100 targets for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, V. [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    A series of four one-day irradiations was conducted with 100Mo-enriched disk targets. After irradiation, the enriched disks were removed from the target and dissolved. The resulting solution was processed using a NorthStar RadioGenix™ 99mTc generator either at Argonne National Laboratory or at the NorthStar Medical Radioisotopes facility. Runs on the RadioGenix system produced inconsistent analytical results for 99mTc in the Tc/Mo solution. These inconsistencies were attributed to the impurities in the solution or improper column packing. During the irradiations, the performance of the optic transitional radiation (OTR) and infrared cameras was tested in high radiation field. The OTR cameras survived all irradiations, while the IR cameras failed every time. The addition of X-ray and neutron shielding improved camera survivability and decreased the number of upsets.

  11. Structural and electrical properties of polycrystalline CdSe thin films, before and after irradiation with 6 MeV accelerated electrons

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, V.A.; Tazlaoanu, C.; Antohe, S.; Scarlat, F.

    2004-01-01

    Structural and electrical properties of polycrystalline CdSe thin films irradiated with high-energy electrons are analyzed. The samples were prepared by vacuum deposition of CdSe powder onto optical glass substrate. Their structure and the temperature dependence of the electrical resistance were determined, both before and after irradiation with 6 MeV electrons at fluencies up to 10 16 electrons/cm 2 . There were no measurable changes in the crystalline structure of the films after irradiation. Electrical properties are controlled by the defect level of donor type, possibly a selenium vacancy, with two ionizing states having ionization energies of about 0.40 eV and 0.22 eV, respectively. The major effect of the irradiation is to increase significantly the concentration of these defects. (authors)

  12. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Mozsa, Emoeke [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Landesklinikum Wiener Neustadt, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Meszaros, Norbert; Major, Tibor; Froehlich, Georgina; Stelczer, Gabor; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Sulyok, Zoltan [National Institute of Oncology, Centre of Surgery, Budapest (Hungary)

    2014-05-15

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.) [German] Evaluation der 5-Jahres-Ergebnisse bezueglich Ueberleben, Tumorkontrolle, Nebenwirkungen und Kosmetik nach Teilbrustbestrahlung (APBI) mittels 3-D-konformaler, akzelerierter Radiotherapie (3D-CRT). Zwischen 2006 und 2011 wurden 44 Patienten mit Brustkrebs im Stadium I-II und niedrigem Risikoprofil brusterhaltend operiert. Die adjuvante, 3-D-konformale APBI wurde mittels 3-5 nonkoplanarer Feldern durchgefuehrt. Die Gesamtdosis betrug 36,9 Gy bei 9 -mal 4,1 Gy b.i.d.. Nach

  13. Comparison of the evolution of tumor cells after unique and multiple (accelerated) daily irradiation in mammary carcinoma of C3H mice

    International Nuclear Information System (INIS)

    Pfersdorff, J.; Sack, H.

    1986-01-01

    The comparison of two fractionation schemes, i.e. the usual irradiation once a day with 2 Gy (SDF) and the fractionation with 3 times 1.6 Gy per day (MDF) at intervals of at least four hours shows the stronger action of higher fractionation on the destruction of tumor cells and the inhibition of their proliferation kinetics. So the number of pycnotic cells is considerably increased in case of multiple daily irradiation, and the mitosis rate as well as the labelling index show a more significant decrease. In case of one irradiation per day, the number of pycnotic cells increases during radiotherapy, too, but the mitosis rate and the labelling index only decrease until the fifth or sixth treatment day, remaining then unchanged or increasing slightly. This suggests a recurring multiplication of tumor cells already during radiotherapy. The higher efficacy of multiple daily fractionation in rapidly proliferating tumors is proved by the measurements of changing tumor volumes in the living animal during irradiation as well as by the observation of the survival time after irradiation. (orig.) [de

  14. Neutron double differential distributions, dose rates and specific activities from accelerator components irradiated by 50-400 MeV protons

    International Nuclear Information System (INIS)

    Cerutti, F.; Charitonidis, N.; Silari, M.; Charitonidis, N.

    2010-01-01

    Systematic Monte Carlo simulations with the FLUKA code were performed to estimate the induced radioactivity in five materials commonly used in particle accelerator structures: boron nitride and carbon (dumps and collimators), copper (RF cavities, coils and vacuum chambers), iron and stainless steel (magnets and vacuum chambers). Using a simplified geometry set-up, the five materials were bombarded with protons in the energy range from 50 to 400 MeV. This energy range is typical of intermediate-energy proton accelerators used as injectors to higher-energy machines, as research accelerators for nuclear physics, and in hadron therapy. Ambient dose equivalent rates were calculated at distances up to one meter around the target, for seven cooling times up to six months. A complete inventory of the radionuclides present in the target was calculated for all combinations of target, beam energy and cooling time. The influence of the target size and of self-absorption was investigated. The energy and angular distributions of neutrons escaping from the target were also scored for all materials and beam energies. The influence on the neutron spectra of the presence of concrete walls (the accelerator tunnel) around the target was also estimated. The results of the present study provide a simple database to be used for a first, approximate estimate of the radiological risk to be expected when intervening on activated accelerator components. (authors)

  15. Implementation of image-guided intensity-modulated accelerated partial breast irradiation. Three-year results of a phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Norbert; Major, Tibor; Stelczer, Gabor; Zaka, Zoltan; Takacsi-Nagy, Zoltan; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Center of Radiotherapy, Budapest (Hungary); Mozsa, Emoke [National Institute of Oncology, Center of Radiotherapy, Budapest (Hungary); Landesklinikum, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Pukancsik, David [National Institute of Oncology, Department of Breast and Sarcoma Surgery, Budapest (Hungary)

    2017-01-15

    To report 3-year results of accelerated partial breast irradiation (APBI) using image-guided intensity-modulated radiotherapy (IG-IMRT) following breast conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive breast cancer underwent BCS and were enrolled in this phase II prospective study. The total dose was 36.9 Gy (9 fractions of 4.1 Gy, two fractions/day). Patient setup errors were detected in LAT, LONG and VERT directions. Local tumour control, survival results, early and late side effects and cosmetic outcome were assessed. At a median follow-up of 39 months, all patients were alive and neither locoregional nor distant failure occurred. One contralateral breast cancer and two new primary malignancies outside the breast were observed. No grade (G) 3-4 acute toxicity was detected. G1 and G2 erythema occurred in 21 (35%) and 2 (3.3%) patients, respectively; while G1 oedema was observed in 23 (38.8%) cases. G1 and G2 pain was reported by 6 (10%) and 2 (3.3%) patients, respectively. Among the late radiation side effects, G1 pigmentation or telangiectasia, G1 fibrosis and G1 asymptomatic fat necrosis occurred in 10 (16.7%), 7 (11.7%) and 3 (5%) patients, respectively. No ≥ G2 late toxicity was detected. Cosmetic outcome was excellent in 43 (71.7%) and good in 17 (28.3%) patients. IG-IMRT is a reproducible and feasible technique for delivery of external beam APBI following BCS for treatment of low-risk, early-stage invasive breast carcinoma. In order to avoid toxicity, image guidance performed before each radiation fraction is necessary to minimize the PTV. Three-year results are promising, early and late radiation side-effects are minimal, and cosmetic results are excellent to good. (orig.) [German] Evaluierung der 3-Jahres-Ergebnisse der Teilbrustbestrahlung (APBI) mittels bildgefuehrter intensitaetsmodulierter Strahlentherapie (IG-IMRT) nach brusterhaltender Operation (BCS

  16. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  17. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  18. IFMIF accelerator conceptual design activities

    International Nuclear Information System (INIS)

    Jameson, R.A.; Lagniel, J.M.; Sugimoto, M.; Kein, H.; Piaszczyk, C.; Tiplyakov, V.

    1998-01-01

    A Conceptual Design Evaluation (CDE) for the International Fusion Materials Irradiation Facility (IFMIF) began in 1997 and will be completed in 1998, as an international program of the IEA involving the European Community, Japan, Russia and the United States. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators operating at 175 MHz, is a key element of the IFMIF facility. The objectives and accomplishments of the CDE accelerator studies are outlined

  19. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  20. Reproductive survival and hypoxic protection as a function of radiation ionization density. Further studies with murine leukemia cells irradiated in vitro with monoenergetic accelerated charged particles and assayed in vivo

    International Nuclear Information System (INIS)

    Berry, R.J.

    1977-01-01

    Murine lymphocytic leukemia P-388 cells have been irradiated in vitro under aerobic or hypoxic conditions with monoenergetic track segments of beams of accelerated helium or boron ions, and survival of their reproductive capacity assessed in vivo. These cells showed a maximum cell killing per rad at a relatively low ionization density (ca. 60--80 keV/μm) and their response ceased to depend on the presence or absence of oxygen at all LET values above ea. 100 keV/μm. This is similar to the LET dependence of cell killing reported recently for human lymphocytes which die a nonreproductive interphase death, and differs from the response of human kidney-derived cells which have been studied in vitro by other workers. The significance of these differences in predicting the response of cells and tissues to radiations such as fast neutrons or pi - mesons which produce wide spectra of ionization densities is discussed briefly

  1. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  2. Phase I/II Study Evaluating Early Tolerance in Breast Cancer Patients Undergoing Accelerated Partial Breast Irradiation Treated With the MammoSite Balloon Breast Brachytherapy Catheter Using a 2-Day Dose Schedule

    International Nuclear Information System (INIS)

    Wallace, Michelle; Martinez, Alvaro; Mitchell, Christina; Chen, Peter Y.; Ghilezan, Mihai; Benitez, Pamela; Brown, Eric; Vicini, Frank

    2010-01-01

    Purpose: Initial Phase I/II results using balloon brachytherapy to deliver accelerated partial breast irradiation (APBI) in 2 days in patients with early-stage breast cancer are presented. Materials and Methods: Between March 2004 and August 2007, 45 patients received adjuvant radiation therapy after lumpectomy with balloon brachytherapy in a Phase I/II trial delivering 2800 cGy in four fractions of 700 cGy. Toxicities were evaluated using the National Cancer Institute Common Toxicity Criteria for Adverse Events v3.0 scale and cosmesis was documented at ≥6 months. Results: The median age was 66 years (range, 48-83) and median skin spacing was 12 mm (range, 8-24). The median follow-up was 11.4 months (5.4-48 months) with 21 patients (47%) followed ≥1 year, 11 (24%) ≥2 years, and 7 (16%) ≥3 years. At <6 months (n = 45), Grade II toxicity rates were 9% radiation dermatitis, 13% breast pain, 2% edema, and 2% hyperpigmentation. Grade III breast pain was reported in 13% (n = 6). At ≥6 months (n = 43), Grade II toxicity rates were: 2% radiation dermatitis, 2% induration, and 2% hypopigmentation. Grade III breast pain was reported in 2%. Infection was 13% (n = 6) at <6 months and 5% (n = 2) at ≥6 months. Persistent seroma ≥6 months was 30% (n = 13). Fat necrosis developed in 4 cases (2 symptomatic). Rib fractures were seen in 4% (n = 2). Cosmesis was good/excellent in 96% of cases. Conclusions: Treatment with balloon brachytherapy using a 2-day dose schedule resulted acceptable rates of Grade II/III chronic toxicity rates and similar cosmetic results observed with a standard 5-day accelerated partial breast irradiation schedule.

  3. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  4. Economics of food irradiation

    International Nuclear Information System (INIS)

    Deitch, J.

    1982-01-01

    This article examines the cost competitiveness of the food irradiation process. An analysis of the principal factors--the product, physical plant, irradiation source, and financing--that impact on cost is made. Equations are developed and used to calculate the size of the source for planned product throughput, efficiency factors, power requirements, and operating costs of sources, radionuclides, and accelerators. Methods of financing and capital investment are discussed. A series of tables show cost breakdowns of sources, buildings, equipment, and essential support facilities for both a cobalt-60 and a 10-MeV electron accelerator facility. Additional tables present irradiation costs as functions of a number of parameters--power input, source size, dose, and hours of annual operation. The use of the numbers in the tables are explained by examples of calculations of the irradiation costs for disinfestation of grains and radicidation of feed

  5. Proton-induced accelerated decay of the fungicide, vinclozolin, on TiO2 surface under solar irradiation: Experimental and DFT study.

    Science.gov (United States)

    Osipov, Ivan; Gorbachev, Mikhail Y; Gorinchoy, Natalia N

    2018-04-03

    The photochemical degradation of vinclozolin by addition of titanium dioxide on silica support has been examined both experimental and quantum-chemically. Solar irradiation of vinclozolin on silica with and without addition of titanium dioxide for 6 h resulted in 21% and 97.8% vinclozolin residues, respectively. In both these cases, phototransformation leads to the formation of (3,5-dichlorophenyl isocyanate) and (3,5-dichloroaniline). The presence of the intermediary product resulted from opening of the 2,4-oxazolidine-dione ring is also confirmed by GS-MS and LC-MS chromatography. The proton-induced mechanism of vinclozolin decay at the above experimental conditions is clarified on the base of DFT calculations.

  6. Characterization of Irradiated and Non-Irradiated Rubber from Automotive Scrap Tires

    Science.gov (United States)

    Souza, Clécia Moura; Silva, Leonardo G.

    The aim of this work was to characterize the samples of irradiated and non-irradiated rubber from automotive scrap tires. Rubber samples from scrap tires were irradiated at irradiation doses of 200, 400 and 600kGy in an electron beam accelerator. Subsequently, both the irradiated and non-irradiated samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), tensile strength mechanical test, and Fourier transform infrared (FTIR) spectrophotometry.

  7. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  8. Irradiating strand material

    International Nuclear Information System (INIS)

    Austin, J.R.; Brown, M.J.; Loan, L.D.

    1975-01-01

    Conductors covered with insulation which is to be irradiated are passed between two groups of coaxial sheaves mounted rotatably individually. Successive sections of the conductors are advanced past the window of one accelerator head, around the associated sheave or sheaves, and then past the window of another accelerator head. The accelerators face in substantially opposite directions and are staggered along the paths of the conductors to avoid any substantial overlap of the electron beams associated therewith. The windows extend vertically to encompass all the generally horizontal passes of the conductors as between the two groups of sheaves. Preferably, conductors are strung-up between the sheaves in a modified figure eight pattern. The pattern is a figure eight modified to intermittently include a pass between the sheaves which is parallel to a line joining the axes of the two groups of sheaves. This reverses the direction of travel of the conductors and optimizes the uniformity of exposure of the cross sectional area of the insulation of the conductors to irradiation. The use of a figure eight path for the conductors causes the successive sections of the conductor to turn about the longitudinal axes thereof as they are advanced around the sheaves. In this way the insulation is more uniformly irradiated. In a preferred embodiment, twisted conductor pairs may be irradiated. The twist accentuates the longitudinal turning of the conductor pair. The irradiation of twisted pairs achieves obvious manufacturing economies while avoiding the necessity of having to twist irradiation cross-linked conductors

  9. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    Science.gov (United States)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  10. Application of electron accelerator worldwide

    International Nuclear Information System (INIS)

    Machi, Sueo

    2003-01-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  11. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  12. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  13. Practical Implications of the Publication of Consensus Guidelines by the American Society for Radiation Oncology: Accelerated Partial Breast Irradiation and the National Cancer Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Shaitelman, Simona F., E-mail: sfshaitelman@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Heather Y.; Smith, Benjamin D. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shen, Yu; Bedrosian, Isabelle [Department of Breast Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Marsh, Gary D.; Bloom, Elizabeth S. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, MI (United States); Buchholz, Thomas A. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Babiera, Gildy V. [Department of Breast Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-02-01

    Purpose: To examine utilization trends of accelerated partial breast irradiation (APBI) in the American College of Surgeons' National Cancer Database and changes in APBI use after the 2009 publication of the American Society for Radiation Oncology (ASTRO) guidelines. Methods and Materials: A total of 399,705 women were identified who were diagnosed from 2004 to 2011 with nonmetastatic invasive breast cancer or ductal carcinoma in situ who were treated with breast-conserving surgery and radiation therapy to the breast. Patients were divided by the type of treatment received (whole breast irradiation or APBI) and by suitability to receive APBI as defined by the ASTRO guidelines. Logistic regression was applied to study APBI use overall and within guideline categorization, and a multivariable model was created to determine predictors of treatment with brachytherapy-based APBI based on guideline categorization. Results: For all patients, APBI use increased, from 3.8% in 2004 to 10.6% in 2011 (P<.0001). Overall rates of APBI utilization were higher among “suitable” than “cautionary”/“unsuitable” patients (14.8% vs 7.1%, P<.0001). The majority of APBI treatment was delivered using brachytherapy, for which use peaked in 2008. Starting in 2009, among “suitable” patients, utilization of APBI via brachytherapy plateaued, whereas for “cautionary”/“unsuitable” patients, treatment with brachytherapy-based APBI declined and then plateaued. Conclusion: Use of APBI across all patient groups increased from 2004 through 2008. After publication of the ASTRO APBI guidelines in 2009, rates of brachytherapy-based APBI treatment plateaued among “suitable” patients and declined and then plateaued among “cautionary”/“unsuitable” patients. Our study highlights how large national databases can be used to assess national trends in radiation use in response to the publication of guidelines.

  14. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    Zimek, Z.

    1998-01-01

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO 2 and NO x removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where

  15. Prototype of industrial electrons accelerator

    International Nuclear Information System (INIS)

    Lopez, V.H.; Valdovinos, A.M.

    1992-01-01

    The interest and the necessity of Mexico's industry in the use of irradiation process has been increased in the last years. As examples are the irradiation of combustion gases (elimination of NO x and SO 2 ) and the polymer cross-linking between others. At present time at least twelve enterprises require immediately of them which have been contacted by electron accelerators suppliers of foreign countries. The first project step consisted in to identify the electrons accelerator type that in can be constructed in Mexico with the major number of possible equipment, instruments, components and acquisition materials local and useful for the major number of users. the characteristics of the accelerator prototype are: accelerator type transformer with multiple secondary insulated and rectifier circuits with a potential of 0.8 MV of voltage, the second step it consisted in an economic study that permitted to demonstrate the economic feasibility of its construction. (Author)

  16. Food processing with linear accelerators

    International Nuclear Information System (INIS)

    Wilmer, M.E.

    1987-01-01

    The application of irradiation techniques to the preservation of foods is reviewed. The utility of the process for several important food groups is discussed in the light of work being done in a number of institutions. Recent findings in food chemistry are used to illustrate some of the potential advantages in using high power accelerators in food processing. Energy and dosage estimates are presented for several cases to illustrate the accelerator requirements and to shed light on the economics of the process

  17. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  18. Decease of accelerator size for radiation processing

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi; Sunaga, Hiromi

    2003-01-01

    The decrease of accelerator size is an essential means to improve the market competition power of the radiation processing industry and to expand the wide application. Trials for the decrease or minimization are increasing steadily including development of irradiation equipments for exclusive uses. Compact irradiation systems were outlined for the significance and recent examples of the decrease in radiation processing, the problems in the industrial application, and the future of compact accelerators. (author)

  19. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  20. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  1. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  2. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  3. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  4. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  5. Late Toxicity and Patient Self-Assessment of Breast Appearance/Satisfaction on RTOG 0319: A Phase 2 Trial of 3-Dimensional Conformal Radiation Therapy-Accelerated Partial Breast Irradiation Following Lumpectomy for Stages I and II Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chafe, Susan, E-mail: susan.chafe@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute-University of Alberta, Edmonton, Alberta (Canada); Moughan, Jennifer [Department of Radiation Oncology, RTOG Statistical Center, Philadelphia, Pennsylvania (United States); McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Pass, Helen [Womens' Breast Center, Stamford Hospital, Stamford, Connecticut (United States); Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Petersen, Ivy [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); White, Julia [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States)

    2013-08-01

    Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again.

  6. Five-Year Analysis of Treatment Efficacy and Cosmesis by the American Society of Breast Surgeons MammoSite Breast Brachytherapy Registry Trial in Patients Treated With Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Vicini, Frank; Beitsch, Peter; Quiet, Coral; Gittleman, Mark; Zannis, Vic; Fine, Ricky; Whitworth, Pat; Kuerer, Henry; Haffty, Bruce; Keisch, Martin; Lyden, Maureen

    2011-01-01

    Purpose: To present 5-year data on treatment efficacy, cosmetic results, and toxicities for patients enrolled on the American Society of Breast Surgeons MammoSite breast brachytherapy registry trial. Methods and Materials: A total of 1440 patients (1449 cases) with early-stage breast cancer receiving breast-conserving therapy were treated with the MammoSite device to deliver accelerated partial-breast irradiation (APBI) (34 Gy in 3.4-Gy fractions). Of 1449 cases, 1255 (87%) had invasive breast cancer (IBC) (median size, 10 mm) and 194 (13%) had ductal carcinoma in situ (DCIS) (median size, 8 mm). Median follow-up was 54 months. Results: Thirty-seven cases (2.6%) developed an ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial rate of 3.80% (3.86% for IBC and 3.39% for DCIS). Negative estrogen receptor status (p = 0.0011) was the only clinical, pathologic, or treatment-related variable associated with IBTR for patients with IBC and young age (<50 years; p = 0.0096) and positive margin status (p = 0.0126) in those with DCIS. The percentage of breasts with good/excellent cosmetic results at 60 months (n = 371) was 90.6%. Symptomatic breast seromas were reported in 13.0% of cases, and 2.3% developed fat necrosis. A subset analysis of the first 400 consecutive cases enrolled was performed (352 with IBC, 48 DCIS). With a median follow-up of 60.5 months, the 5-year actuarial rate of IBTR was 3.04%. Conclusion: Treatment efficacy, cosmesis, and toxicity 5 years after treatment with APBI using the MammoSite device are good and similar to those reported with other forms of APBI with similar follow-up.

  7. Objective and Longitudinal Assessment of Dermatitis After Postoperative Accelerated Partial Breast Irradiation Using High-Dose-Rate Interstitial Brachytherapy in Patients With Breast Cancer Treated With Breast Conserving Therapy: Reduction of Moisture Deterioration by APBI

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Yamazaki, Hideya; Yoshida, Ken; Takenaka, Tadashi; Masuda, Norikazu; Kotsuma, Tadayuki; Yoshioka, Yasuo; Inoue, Takehiro

    2011-01-01

    Purpose: To objectively evaluate the radiation dermatitis caused by accelerated partial breast irradiation (APBI) using high-dose-rate interstitial brachytherapy. Patients and Methods: The skin color and moisture changes were examined using a newly installed spectrophotometer and corneometer in 22 patients who had undergone APBI using open cavity implant high-dose-rate interstitial brachytherapy (36 Gy in six fractions) and compared with the corresponding values for 44 patients in an external beam radiotherapy (EBRT) control group (50–60 Gy in 25–30 fractions within 5–6 weeks) after breast conserving surgery. Results: All values changed significantly as a result of APBI. The extent of elevation in a∗ (reddish) and reduction in L∗ (black) values caused by APBI were similar to those for EBRT, with slightly delayed recovery for 6–12 months after treatment owing to the surgical procedure. In contrast, only APBI caused a change in the b∗ values, and EBRT did not, demonstrating that the reduction in b∗ values (yellowish) depends largely on the surgical procedure. The changes in moisture were less severe after APBI than after EBRT, and the recovery was more rapid. The toxicity assessment using the Common Toxicity Criteria, version 3, showed that all dermatitis caused by APBI was Grade 2 or less. Conclusion: An objective analysis can quantify the effects of APBI procedures on color and moisture cosmesis. The radiation dermatitis caused by APBI using the present schedule showed an equivalent effect on skin color and a less severe effect on moisture than the effects caused by standard EBRT.

  8. Summary of Working Group 7 on 'Exotic acceleration schemes'

    International Nuclear Information System (INIS)

    Tajima, T.

    2001-01-01

    Exotic concepts of advanced acceleration technologies have been explored by Group 7 under the leadership of T. Tajima and T. Smith (who could not attend) at the AAC. Explored concepts are: (1) proton (ion) acceleration by laser, (2) additional ion acceleration methods, (3) crystal x-rays and acceleration, (4) vacuum acceleration, (5) active medium acceleration, and (6) some advanced methods in laser wakefield. The first subject of laser photon acceleration was discussed jointly with Group 1 and in the end the participants came to an agreement on the mechanism of proton acceleration by laser irradiation

  9. Electron accelerators for radiosterilization; Akceleratory elektronow dla potrzeb sterylizacji radiacyjnej

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The applications of electron accelerators in commercial plants for radiosterilization have been shown. Advantages of such irradiation source have been presented. The types and parameters of accelerators being installed in worldwide irradiation plants for radiosterilization have been listed as well. 2 tabs.

  10. Industrial applications of electron accelerators

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    The interaction of high-energy radiation with organic systems produces very reactive, short-lived, ionic and free-radical species. The chemical changes brought about by these species are very useful in several systems, and are the basis of the growth of the electron processing industry. Some typical areas of the industrial use of electron accelerators are crosslinking wire and cable insulation, manufacturing heat shrink plastic items, curing coatings, and partially curing rubber products. Electron accelerators are also being considered in other areas such as sewage treatment, sterilizing medical disposables, and food irradiation. An emerging application of industrial electron accelerators is the production of advanced composites for the aerospace and other industries. Traditionally, the carbon-, aramid- and glass-fibre-reinforced composites with epoxy matrices are produced by thermal curing. However, equivalent composites with acrylated-epoxy matrices can be made by electron curing. Cost estimates suggest that electron curing could be more economical than thermal curing. Food irradiation has traditionally been an application for 60 Co γ-radiation. With the increasing demand for food irradiation in various countries, it may become necessary to use electron accelerators for this purpose. Since the dose rate during gamma and electron irradiation are generally very different, a review of the relevant work on the effect of dose rates has been done. This paper presents an overview of the industrial applications of electron accelerator for radiation processing, emphasises the electron curing of advanced composites and, briefly reviews the dose-rate effects in radiation processing of advanced composites and food irradiation. (author). 84 refs., 8 tabs

  11. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  12. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  13. Irradiation induced effects in zirconium (A review)

    International Nuclear Information System (INIS)

    Madden, P.K.

    1975-06-01

    Irradiation creep in zirconium and its alloys is comprehensively discussed. The main theories are outlined and the gaps between them and the observed creep behaviour, indicated. Although irradiation induced point defects play an important role, effects due to irradiation induced dislocation loops seem insignificant. The experimental results suggest that microstructural variations due to prior cold-working or hydrogen injection perturb the irradiation growth and the irradiation creep of zircaloy. Further investigations into these areas are required. One disadvantage of creep experiments lies in their duration. The possibility of accelerated experiments using ion implantation or electron irradiation is examined in the final section, and its possible advantages and disadvantages are outlined. (author)

  14. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  15. Food irradiation

    International Nuclear Information System (INIS)

    Soothill, R.

    1987-01-01

    The issue of food irradiation has become important in Australia and overseas. This article discusses the results of the Australian Consumers' Association's (ACA) Inquiry into food irradiation, commissioned by the Federal Government. Issues discussed include: what is food irradiation; why irradiate food; how much food is consumer rights; and national regulations

  16. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  17. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  18. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  19. Food irradiation

    International Nuclear Information System (INIS)

    Lindqvist, H.

    1996-01-01

    This paper is a review of food irradiation and lists plants for food irradiation in the world. Possible applications for irradiation are discussed, and changes induced in food from radiation, nutritional as well as organoleptic, are reviewed. Possible toxicological risks with irradiated food and risks from alternative methods for treatment are also brought up. Ways to analyze weather food has been irradiated or not are presented. 8 refs

  20. Radiation facilities and irradiation technology for food irradiation

    International Nuclear Information System (INIS)

    Sunaga, Hiromi

    2005-01-01

    Progress made during these 30 years in the field of radiation treatment of food is reviewed by describing features of the process including elementary processes, quality control of the products and the dosimetric techniques widely employed. The Co-60 gamma-ray irradiation facilities to be used for radiation-sterilization of medical supplies and food preservation are presented. For electron beam irradiation, accelerators for processing with the energy from 0.3 to 10 MeV are generally employed. The electron-guns, the method of acceleration such as rectification, types of acceleration as Cockcroft-Walton, dynamitron, or linear acceleration and X-ray producing facility, with various countermeasures for safety management, are briefly explained. The concepts of dose and traceability are given. The dosimeters including reference dosimeter and routine ones with validation are explained. (S. Ohno)

  1. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  2. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gruenewald, T

    1985-01-01

    Food irradiation has become a matter of topical interest also in the Federal Republic of Germany following applications for exemptions concerning irradiation tests of spices. After risks to human health by irradiation doses up to a level sufficient for product pasteurization were excluded, irradiation now offers a method suitable primarily for the disinfestation of fruit and decontamination of frozen and dried food. Codex Alimentarius standards which refer also to supervision and dosimetry have been established; they should be adopted as national law. However, in the majority of cases where individual countries including EC member-countries so far permitted food irradiation, these standards were not yet used. Approved irradiation technique for industrial use is available. Several industrial food irradiation plants, partly working also on a contractual basis, are already in operation in various countries. Consumer response still is largely unknown; since irradiated food is labelled, consumption of irradiated food will be decided upon by consumers.

  3. Long-Term Cancer Outcomes From Study NRG Oncology/RTOG 9517: A Phase 2 Study of Accelerated Partial Breast Irradiation With Multicatheter Brachytherapy After Lumpectomy for Early-Stage Breast Cancer

    International Nuclear Information System (INIS)

    White, Julia; Winter, Kathryn; Kuske, Robert R.; Bolton, John S.; Arthur, Douglas W.; Scroggins, Troy; Rabinovitch, Rachel A.; Kelly, Tracy; Toonkel, Leonard M.; Vicini, Frank A.; McCormick, Beryl

    2016-01-01

    Purpose: To examine 10-year rates of local, regional, and distant recurrences, patterns of recurrence, and survival rates for breast cancer patients enrolled on Study NRG Oncology/Radiation Therapy Oncology Group 9517, a multi-institutional prospective trial that studied one of the earliest methods of accelerated partial breast irradiation (APBI), multicatheter brachytherapy (MCT). Methods and Materials: Eligibility included stage I/II unifocal breast cancer <3 cm in size after lumpectomy with negative surgical margins and 0 to 3 positive axillary nodes without extracapsular extension. The APBI dose delivered was 34 Gy in 10 twice-daily fractions over 5 days for high-dose-rate (HDR); and 45 Gy in 3.5 to 5 days for low-dose-rate (LDR) brachytherapy. The primary endpoint was HDR and LDR MCT reproducibility. This analysis focuses on long-term ipsilateral breast recurrence (IBR), contralateral breast cancer events (CBE), regional recurrence (RR), and distant metastases (DM), disease-free, and overall survival. Results: The median follow-up was 12.1 years. One hundred patients were accrued from 1997 to 2000; 98 were evaluable; 65 underwent HDR and 33 LDR MCT. Median age was 62 years; 88% had T1 tumors; 81% were pN0. Seventy-seven percent were estrogen receptor and/or progesterone receptor positive; 33% received adjuvant chemotherapy and 64% antiendocrine therapy. There have been 4 isolated IBRs and 1 IBR with RR, for 5.2% 10-year IBR without DM. There was 1 isolated RR, 1 with IBR, and 1 with a CBE, for 3.1% 10-year RR without DM. The 10-year CBE rate was 4.2%, with 5 total events. Eleven patients have developed DM, 8 have died of breast cancer, and 22 have died from other causes. The 10-year DFS and OS rates are 69.8% and 78.0%, respectively. Conclusion: This multi-institutional, phase 2 trial studying MCT-APBI continues to report durable in-breast cancer control rates with long-term follow-up.

  4. Long-Term Cancer Outcomes From Study NRG Oncology/RTOG 9517: A Phase 2 Study of Accelerated Partial Breast Irradiation With Multicatheter Brachytherapy After Lumpectomy for Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia, E-mail: Julia.White@osumc.edu [Department of Radiation Oncology, The James, Ohio State University, Columbus, Ohio (United States); Winter, Kathryn [NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania (United States); Kuske, Robert R. [Department of Radiation Oncology, Arizona Breast Cancer Specialists, Scottsdale, Arizona (United States); Bolton, John S. [Department of Radiation Oncology, Oschner Clinic, New Orleans, Louisiana (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Scroggins, Troy [Department of Radiation Oncology, Oschner Clinic, New Orleans, Louisiana (United States); Rabinovitch, Rachel A. [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Kelly, Tracy [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Toonkel, Leonard M. [Mount Sinai Comprehensive Cancer Center, Miami, Florida (United States); Vicini, Frank A. [Department of Radiation Oncology, Botsford Hospital, Farmington Hills, Michigan (United States); McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2016-08-01

    Purpose: To examine 10-year rates of local, regional, and distant recurrences, patterns of recurrence, and survival rates for breast cancer patients enrolled on Study NRG Oncology/Radiation Therapy Oncology Group 9517, a multi-institutional prospective trial that studied one of the earliest methods of accelerated partial breast irradiation (APBI), multicatheter brachytherapy (MCT). Methods and Materials: Eligibility included stage I/II unifocal breast cancer <3 cm in size after lumpectomy with negative surgical margins and 0 to 3 positive axillary nodes without extracapsular extension. The APBI dose delivered was 34 Gy in 10 twice-daily fractions over 5 days for high-dose-rate (HDR); and 45 Gy in 3.5 to 5 days for low-dose-rate (LDR) brachytherapy. The primary endpoint was HDR and LDR MCT reproducibility. This analysis focuses on long-term ipsilateral breast recurrence (IBR), contralateral breast cancer events (CBE), regional recurrence (RR), and distant metastases (DM), disease-free, and overall survival. Results: The median follow-up was 12.1 years. One hundred patients were accrued from 1997 to 2000; 98 were evaluable; 65 underwent HDR and 33 LDR MCT. Median age was 62 years; 88% had T1 tumors; 81% were pN0. Seventy-seven percent were estrogen receptor and/or progesterone receptor positive; 33% received adjuvant chemotherapy and 64% antiendocrine therapy. There have been 4 isolated IBRs and 1 IBR with RR, for 5.2% 10-year IBR without DM. There was 1 isolated RR, 1 with IBR, and 1 with a CBE, for 3.1% 10-year RR without DM. The 10-year CBE rate was 4.2%, with 5 total events. Eleven patients have developed DM, 8 have died of breast cancer, and 22 have died from other causes. The 10-year DFS and OS rates are 69.8% and 78.0%, respectively. Conclusion: This multi-institutional, phase 2 trial studying MCT-APBI continues to report durable in-breast cancer control rates with long-term follow-up.

  5. Transforming Growth Factor β-1 (TGF-β1) Is a Serum Biomarker of Radiation Induced Fibrosis in Patients Treated With Intracavitary Accelerated Partial Breast Irradiation: Preliminary Results of a Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Boothe, Dustin L. [Weill Cornell Medical College of Cornell University, New York, New York (United States); Coplowitz, Shana [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Greenwood, Eleni [Weill Cornell Medical College of Cornell University, New York, New York (United States); Barney, Christian L. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Christos, Paul J. [Division of Biostatistics and Epidemiology, Department of Public Health, Weill Cornell Medical College of Cornell University, New York, New York (United States); Parashar, Bhupesh; Nori, Dattatreyudu; Chao, K. S. Clifford [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Wernicke, A. Gabriella, E-mail: gaw9008@med.cornell.edu [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States)

    2013-12-01

    Purpose: To examine a relationship between serum transforming growth factor β -1 (TGF-β1) values and radiation-induced fibrosis (RIF). Methods and Materials: We conducted a prospective analysis of the development of RIF in 39 women with American Joint Committee on Cancer stage 0-I breast cancer treated with lumpectomy and accelerated partial breast irradiation via intracavitary brachytherapy (IBAPBI). An enzyme-linked immunoassay (Quantikine, R and D, Minneapolis, MN) was used to measure serum TGF-β1 before surgery, before IBAPBI, and during IBAPBI. Blood samples for TGF-β1 were also collected from 15 healthy, nontreated women (controls). The previously validated tissue compliance meter (TCM) was used to objectively assess RIF. Results: The median time to follow-up for 39 patients was 44 months (range, 5-59 months). RIF was graded by the TCM scale as 0, 1, 2, and 3 in 5 of 20 patients (25%), 6 of 20 patients (30%), 5 of 20 patients (25%), and 4 of 20 patients (20%), respectively. The mean serum TGF-β1 values were significantly higher in patients before surgery than in disease-free controls, as follows: all cancer patients (30,201 ± 5889 pg/mL, P=.02); patients with any type of RIF (32,273 ± 5016 pg/mL, P<.0001); and women with moderate to severe RIF (34,462 ± 4713 pg/mL, P<0.0001). Patients with moderate to severe RIF had significantly elevated TGF-β1 levels when compared with those with none to mild RIF before surgery (P=.0014) during IBAPBI (P≤0001), and the elevation persisted at 6 months (P≤.001), 12 months (P≤.001), 18 months (P≤.001), and 24 months (P=.12). A receiver operating characteristic (ROC) curve of TGF-β1 values predicting moderate to severe RIF was generated with an area under the curve (AUC){sub ROC} of 0.867 (95% confidence interval 0.700-1.000). The TGF-β1 threshold cutoff was determined to be 31,000 pg/mL, with associated sensitivity and specificity of 77.8% and 90.0%, respectively. Conclusions: TGF-β1 levels correlate with

  6. Evaluation of Current Consensus Statement Recommendations for Accelerated Partial Breast Irradiation: A Pooled Analysis of William Beaumont Hospital and American Society of Breast Surgeon MammoSite Registry Trial Data

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, J. Ben [Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan (United States); Beitsch, Peter D. [Dallas Surgical Group, Dallas, Texas (United States); Shah, Chirag [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Arthur, Doug [Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (United States); Haffty, Bruce G. [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Camden, New Jersey (United States); Wazer, David E. [Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts and Rhode Island Hospital/Brown University, Providence, Rhode Island (United States); Keisch, Martin [Department of Radiation Oncology, Cancer Healthcare Associates, Miami, Florida (United States); Shaitelman, Simona F. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lyden, Maureen [Biostat International, Inc, Tampa, Florida (United States); Chen, Peter Y. [Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan (United States); Vicini, Frank A., E-mail: fvicini@pol.net [Department of Radiation Oncology, Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States)

    2013-04-01

    Purpose: To determine whether the American Society for Radiation Oncology (ASTRO) Consensus Statement (CS) recommendations for accelerated partial breast irradiation (APBI) are associated with significantly different outcomes in a pooled analysis from William Beaumont Hospital (WBH) and the American Society of Breast Surgeons (ASBrS) MammoSite® Registry Trial. Methods and Materials: APBI was used to treat 2127 cases of early-stage breast cancer (WBH, n=678; ASBrS, n=1449). Three forms of APBI were used at WBH (interstitial, n=221; balloon-based, n=255; or 3-dimensional conformal radiation therapy, n=206), whereas all Registry Trial patients received balloon-based brachytherapy. Patients were divided according to the ASTRO CS into suitable (n=661, 36.5%), cautionary (n=850, 46.9%), and unsuitable (n=302, 16.7%) categories. Tumor characteristics and clinical outcomes were analyzed according to CS group. Results: The median age was 65 years (range, 32-94 years), and the median tumor size was 10.0 mm (range, 0-45 mm). The median follow-up time was 60.6 months. The WBH cohort had more node-positive disease (6.9% vs 2.6%, P<.01) and cautionary patients (49.5% vs 41.8%, P=.06). The 5-year actuarial ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), and distant metastasis (DM) for the whole cohort were 2.8%, 0.6%, 1.6%. The rate of IBTR was not statistically higher between suitable (2.5%), cautionary (3.3%), or unsuitable (4.6%) patients (P=.20). The nonsignificant increase in IBTR for the cautionary and unsuitable categories was due to increased elsewhere failures and new primaries (P=.04), not tumor bed recurrence (P=.93). Conclusions: Excellent outcomes after breast-conserving surgery and APBI were seen in our pooled analysis. The current ASTRO CS guidelines did not adequately differentiate patients at an increased risk of IBTR or tumor bed failure in this large patient cohort.

  7. Phase 2 Trial of Accelerated, Hypofractionated Whole-Breast Irradiation of 39 Gy in 13 Fractions Followed by a Tumor Bed Boost Sequentially Delivering 9 Gy in 3 Fractions in Early-Stage Breast Cancer

    International Nuclear Information System (INIS)

    Kim, Ja Young; Jung, So-Youn; Lee, Seeyoun; Kang, Han-Sung; Lee, Eun Sook; Park, In Hae; Lee, Keun Seok; Ro, Jungsil; Lee, Nam Kwon; Shin, Kyung Hwan

    2013-01-01

    Purpose: To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Methods and Materials: Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks. Results: After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). Conclusions: AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery

  8. Evaluation of Current Consensus Statement Recommendations for Accelerated Partial Breast Irradiation: A Pooled Analysis of William Beaumont Hospital and American Society of Breast Surgeon MammoSite Registry Trial Data

    International Nuclear Information System (INIS)

    Wilkinson, J. Ben; Beitsch, Peter D.; Shah, Chirag; Arthur, Doug; Haffty, Bruce G.; Wazer, David E.; Keisch, Martin; Shaitelman, Simona F.; Lyden, Maureen; Chen, Peter Y.; Vicini, Frank A.

    2013-01-01

    Purpose: To determine whether the American Society for Radiation Oncology (ASTRO) Consensus Statement (CS) recommendations for accelerated partial breast irradiation (APBI) are associated with significantly different outcomes in a pooled analysis from William Beaumont Hospital (WBH) and the American Society of Breast Surgeons (ASBrS) MammoSite® Registry Trial. Methods and Materials: APBI was used to treat 2127 cases of early-stage breast cancer (WBH, n=678; ASBrS, n=1449). Three forms of APBI were used at WBH (interstitial, n=221; balloon-based, n=255; or 3-dimensional conformal radiation therapy, n=206), whereas all Registry Trial patients received balloon-based brachytherapy. Patients were divided according to the ASTRO CS into suitable (n=661, 36.5%), cautionary (n=850, 46.9%), and unsuitable (n=302, 16.7%) categories. Tumor characteristics and clinical outcomes were analyzed according to CS group. Results: The median age was 65 years (range, 32-94 years), and the median tumor size was 10.0 mm (range, 0-45 mm). The median follow-up time was 60.6 months. The WBH cohort had more node-positive disease (6.9% vs 2.6%, P<.01) and cautionary patients (49.5% vs 41.8%, P=.06). The 5-year actuarial ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), and distant metastasis (DM) for the whole cohort were 2.8%, 0.6%, 1.6%. The rate of IBTR was not statistically higher between suitable (2.5%), cautionary (3.3%), or unsuitable (4.6%) patients (P=.20). The nonsignificant increase in IBTR for the cautionary and unsuitable categories was due to increased elsewhere failures and new primaries (P=.04), not tumor bed recurrence (P=.93). Conclusions: Excellent outcomes after breast-conserving surgery and APBI were seen in our pooled analysis. The current ASTRO CS guidelines did not adequately differentiate patients at an increased risk of IBTR or tumor bed failure in this large patient cohort

  9. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  10. The PIREX proton irradiation facility

    International Nuclear Information System (INIS)

    Victoria, M.

    1995-01-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons

  11. The PIREX proton irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  12. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  13. Effect of irradiation spectrum on the microstructure of ion-irradiated Al2O3

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1994-01-01

    Polycrystalline samples of alpha-alumina have been irradiated with various ions ranging from 3.6 MeV Fe + to 1 MeV H + ions at 650 C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructure of the irradiated specimens. The microstructure following irradiation was observed to be dependent on the irradiation spectrum. In particular, defect cluster nucleation was effectively suppressed in specimens irradiated with light ions such as 1 MeV H + ions. On the other hand, light ion irradiation tended to accelerate the growth rate of dislocation loops. The microstructural observations are discussed in terms of ionization enhanced diffusion processes

  14. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  15. Food irradiation

    International Nuclear Information System (INIS)

    Sato, Tomotaro; Aoki, Shohei

    1976-01-01

    Definition and significance of food irradiation were described. The details of its development and present state were also described. The effect of the irradiation on Irish potatoes, onions, wiener sausages, kamaboko (boiled fish-paste), and mandarin oranges was evaluated; and healthiness of food irradiation was discussed. Studies of the irradiation equipment for Irish potatoes in a large-sized container, and the silo-typed irradiation equipment for rice and wheat were mentioned. Shihoro RI center in Hokkaido which was put to practical use for the irradiation of Irish potatoes was introduced. The state of permission of food irradiation in foreign countries in 1975 was introduced. As a view of the food irradiation in the future, its utilization for the prevention of epidemics due to imported foods was mentioned. (Serizawa, K.)

  16. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  17. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  18. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  19. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  20. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  1. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  2. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  3. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  4. Gamma irradiator

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    Fiability of devices set around reactors depends on material resistance under irradiation noticeably joints, insulators, which belongs to composition of technical, safety or physical incasurement devices. The irradiated fuel elements, during their desactivation in a pool, are an interesting gamma irradiation device to simulate damages created in a nuclear environment. The existing facility at Osiris allows to generate an homogeneous rate dose in an important volume. The control of the element distances to irradiation box allows to control this dose rate [fr

  5. Food irradiation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The article explains what radiation does to food to preserve it. Food irradiation is of economic importance to Canada because Atomic Energy of Canada Limited is the leading world supplier of industrial irradiators. Progress is being made towards changing regulations which have restricted the irradiation of food in the United States and Canada. Examples are given of applications in other countries. Opposition to food irradiation by antinuclear groups is addressed

  6. Food irradiation

    International Nuclear Information System (INIS)

    Beyers, M.

    1977-01-01

    The objectives of food irradiation are outlined. The interaction of irradiation with matter is then discussed with special reference to the major constituents of foods. The application of chemical analysis in the evaluation of the wholesomeness of irradiated foods is summarized [af

  7. Irradiation as a quarantine treatment

    International Nuclear Information System (INIS)

    Burditt, A.K. Jr.

    1991-01-01

    The use of irradiation as an alternative treatment for commodities subject to infestation by pests of quarantine importance is outlined in this article. A dose of 300 Gy or less has been found to prevent adult emergence when insect eggs or larvae are irradiated and research has shown that such doses will not affect the quality of most commodities. The use of gamma rays from cobalt-60 or caesium-137 sources, as well as electrons or X-rays from linear accelerators, has been approved for food irradiation. Irradiation facilities must meet regulations promulgated by nuclear, health and agricultural quarantine agencies with regard to location, facility design, sources, operation, personnel, dosimetry and other requirements. Education of industry operators and the general public is needed in order to gain acceptance of irradiation as a quarantine treatment. (author). 21 refs, 1 tab

  8. Food irradiation

    International Nuclear Information System (INIS)

    Macklin, M.

    1987-01-01

    The Queensland Government has given its support the establishment of a food irradiation plant in Queensland. The decision to press ahead with a food irradiation plant is astonishing given that there are two independent inquiries being carried out into food irradiation - a Parliamentary Committee inquiry and an inquiry by the Australian Consumers Association, both of which have still to table their Reports. It is fair to assume from the Queensland Government's response to date, therefore, that the Government will proceed with its food irradiation proposals regardless of the outcomes of the various federal inquiries. The reasons for the Australian Democrats' opposition to food irradiation which are also those of concerned citizens are outlined

  9. Food irradiation

    International Nuclear Information System (INIS)

    Duchacek, V.

    1989-01-01

    The ranges of doses used for food irradiation and their effect on the processed foods are outlined. The wholesomeness of irradiated foods is discussed. The present food irradiation technology development in the world is described. A review of the irradiated foods permitted for public consumption, the purposes of food irradiaton, the doses used and a review of the commercial-scale food irradiators are tabulated. The history and the present state of food processing in Czechoslovakia are described. (author). 1 fig., 3 tabs., 13 refs

  10. Irradiated foods

    International Nuclear Information System (INIS)

    Darrington, Hugh

    1988-06-01

    This special edition of 'Food Manufacture' presents papers on the following aspects of the use of irradiation in the food industry:- 1) an outline view of current technology and its potential. 2) Safety and wholesomeness of irradiated and non-irradiated foods. 3) A review of the known effects of irradiation on packaging. 4) The problems of regulating the use of irradiation and consumer protection against abuse. 5) The detection problem - current procedures. 6) Description of the Gammaster BV plant in Holland. 7) World outline review. 8) Current and future commercial activities in Europe. (U.K.)

  11. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  12. Vacuum design for the disk-and-washer accelerator structure

    International Nuclear Information System (INIS)

    Ruhe, J.R.; Hansborough, L.D.

    1982-02-01

    The disk-and-washer (DAW) accelerator structure is being developed for several applications. Because of its complicated geometry and newness, vacuum calculations for the DAW accelerator structure are not yet formalized. The applicable vacuum equations for this structure are presented and correlations for it have been made with the vacuum data from the Clinton P. Anderson Meson Physics Facility side-coupled accelerator structure. A calculation is presented for the DAW structure proposed for the Pion Generator for Medical Irradiations (PIGMI) accelerator

  13. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  14. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  15. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  16. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  17. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  18. Safety of industrial irradiation plants

    International Nuclear Information System (INIS)

    1992-01-01

    Radiation is nowadays used in many applications in industry and medicine; accidental exposure, however, can have grave consequences as large doses of radiation occur in the 600 accelerator or gamma source plants in use around the world. This film explains the operation of irradiation plants and the safety procedures that must be followed to prevent accidents and to ensure safe use

  19. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  20. The individual health physics at Saclay accelerators

    International Nuclear Information System (INIS)

    Brochen, J.C.; Delsaut, R.; Drouet, J.; Vialettes, H.; Zerbib, J.C.

    1981-11-01

    After giving a brief description of the Saturne synchrotron and the linear accelerator located on the Saclay site, the risks of irradiation in operation and on shut-down are reviewed and a description is given of the arrangements made for protection against radiation such as the shielding, access safety and the central monitoring of radiation. The irradiation statistics for the last few years are given [fr

  1. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  2. Accelerators and the Accelerator Community

    International Nuclear Information System (INIS)

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  3. Startup of the Whiteshell irradiation facility

    International Nuclear Information System (INIS)

    Barnard, J.W.; Stanley, F.W.

    1989-01-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation. (orig.)

  4. Startup of the whiteshell irradiation facility

    Science.gov (United States)

    Barnard, J. W.; Stanley, F. W.

    1989-04-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation.

  5. Characterization Study of Accelerator for Application in Biotechnology

    International Nuclear Information System (INIS)

    Yazid-M; Muryono, H.

    2000-01-01

    The characterization of accelerator for application in biotechnology was studied. Accelerator is a machine to produce ion beam particles. Accelerator can be used for biotechnology experiments. Ion beam particles irradiation on the biological material will produced variabilities of genetics and induced mutations. In general, new varieties were found by hybridization method or mutation breeding method by gamma rays irradiation. Ion beam particles can be used for biological material irradiation to find variabilities of genetics and induced mutations. The high percentage of mutation rate and LET value by ion beam particles irradiation was found higher than by gamma rays irradiation. Ion beam particle irradiation can also be controlled and foewed to target in biological material. The characterization of accelerator needed for biotechnology experiments are types of accelerator (Tandem Van de Graff, AVF Cyclotron, Synchrotron, Rilac), types of ion particles (C, He, electron, Ar, Ne, Ni, Al, Xe and Au), range of energy (5 - 2.090 MeV), range of dose irradiation (10 - 250 Gy), range of ion current (0.02 - 20 nA), range of ion beam particles diameter (10 - 100 μm), range of LET value (300 - 1.800 keV/μm ) and irradiation time (5 - 30 seconds/samples). (author)

  6. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    International Nuclear Information System (INIS)

    Farah, K.; Kuntz, F.; Kadri, O.; Ghedira, L.

    2004-01-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage

  7. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farah, K. E-mail: k.farah@cnstn.rnrt.tn; Kuntz, F.; Kadri, O.; Ghedira, L

    2004-10-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  8. Foodstuff irradiation

    International Nuclear Information System (INIS)

    1982-01-01

    Report written on behalf of the Danish Food Institute summarizes national and international rules and developments within food irradiation technology, chemical changes in irradiated foodstuffs, microbiological and health-related aspects of irradiation and finally technological prospects of this conservation form. Food irradiatin has not been hitherto applied in Denmark. Radiation sources and secondary radiation doses in processed food are characterized. Chemical changes due to irradiation are compared to those due to p.ex. food heating. Toxicological and microbiological tests and their results give no unequivocal answer to the problem whether a foodstuff has been irradiated. The most likely application fields in Denmark are for low radiation dosis inhibition of germination, riping delay and insecticide. Medium dosis (1-10 kGy) can reduce bacteria number while high dosis (10-50 kGy) will enable total elimination of microorganisms and viruses. Food irradiation can be acceptable as technological possibility with reservation, that further studies follow. (EG)

  9. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    There is considerable recent interest in the use of high energy heavy ions to irradiate deuterium-tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. This paper discusses how the technology of linear induction accelerators - well known to be matched to high current and short pulse length - may offer significant advantages for this application. (author)

  10. Unlimited ion acceleration by radiation pressure.

    Science.gov (United States)

    Bulanov, S V; Echkina, E Yu; Esirkepov, T Zh; Inovenkov, I N; Kando, M; Pegoraro, F; Korn, G

    2010-04-02

    The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

  11. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  12. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  13. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  14. Hemibody irradiation

    International Nuclear Information System (INIS)

    Schen, B.C.; Mella, O.; Dahl, O.

    1992-01-01

    In a large number of cancer patients, extensive skeletal metastases or myelomatosis induce vast suffering, such as intolerable pain and local complications of neoplastic bone destruction. Analgetic drugs frequently do not yield sufficient palliation. Irradiation of local fields often has to be repeated, because of tumour growth outside previously irradiated volumes. Wide field irradiation of the lower or upper half of the body causes significant relief of pain in most patients. Adequate pretreatment handling of patients, method of irradiation, and follow-up are of importance to reduce side effects, and are described as they are carried out at the Department of Oncology, Haukeland Hospital, Norway. 16 refs., 2 figs

  15. Radiation protection in large linear accelerators

    International Nuclear Information System (INIS)

    Oliva, Jose de Jesus Rivero

    2013-01-01

    The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)

  16. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  17. Residual γH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells.

    Science.gov (United States)

    Pustovalova, Margarita; Astrelina, Тatiana A; Grekhova, Anna; Vorobyeva, Natalia; Tsvetkova, Anastasia; Blokhina, Taisia; Nikitina, Victoria; Suchkova, Yulia; Usupzhanova, Daria; Brunchukov, Vitalyi; Kobzeva, Irina; Karaseva, Тatiana; Ozerov, Ivan V; Samoylov, Aleksandr; Bushmanov, Andrey; Leonov, Sergey; Izumchenko, Evgeny; Zhavoronkov, Alex; Klokov, Dmitry; Osipov, Andreyan N

    2017-11-21

    Mechanisms underlying the effects of low-dose ionizing radiation (IR) exposure (10-100 mGy) remain unknown. Here we present a comparative study of early (less than 24h) and delayed (up to 11 post-irradiation passages) radiation effects caused by low (80 mGy) vs intermediate (1000 mGy) dose X-ray exposure in cultured human bone marrow mesenchymal stem cells (MSCs). We show that γН2АХ foci induced by an intermediate dose returned back to the control value by 24 h post-irradiation. In contrast, low-dose irradiation resulted in residual γН2АХ foci still present at 24 h. Notably, these low dose induced residual γН2АХ foci were not co-localized with рАТМ foci and were observed predominantly in the proliferating Кi67 positive (Кi67+) cells. The number of γН2АХ foci and the fraction of nonproliferating (Кi67-) and senescent (SA-β-gal+) cells measured at passage 11 were increased in cultures exposed to an intermediate dose compared to unirradiated controls. These delayed effects were not seen in the progeny of cells that were irradiated with low-dose X-rays, although such exposure resulted in residual γН2АХ foci in directly irradiated cells. Taken together, our results support the hypothesis that the low-dose IR induced residual γH2AХ foci do not play a role in delayed irradiation consequences, associated with cellular senescence in cultured MSCs.

  18. Food irradiation

    International Nuclear Information System (INIS)

    Mercader, J.P.; Emily Leong

    1985-01-01

    The paper discusses the need for effective and efficient technologies in improving the food handling system. It defines the basic premises for the development of food handling. The application of food irradiation technology is briefly discussed. The paper points out key considerations for the adoption of food irradiation technology in the ASEAN region (author)

  19. Food irradiation

    International Nuclear Information System (INIS)

    Matsuyama, Akira

    1990-01-01

    This paper reviews researches, commentaries, and conference and public records of food irradiation, published mainly during the period 1987-1989, focusing on the current conditions of food irradiation that may pose not only scientific or technologic problems but also political issues or consumerism. Approximately 50 kinds of food, although not enough to fill economic benefit, are now permitted for food irradiation in the world. Consumerism is pointed out as the major factor that precludes the feasibility of food irradiation in the world. In the United States, irradiation is feasible only for spices. Food irradiation has already been feasible in France, Hollands, Belgium, and the Soviet Union; has under consideration in the Great Britain, and has been rejected in the West Germany. Although the feasibility of food irradiation is projected to increase gradually in the future, commercial success or failure depends on the final selection of consumers. In this respect, the role of education and public information are stressed. Meat radicidation and recent progress in the method for detecting irradiated food are referred to. (N.K.) 128 refs

  20. Irradiation proctitis

    International Nuclear Information System (INIS)

    Minami, Akira

    1977-01-01

    Literatures on late rectal injuries are discussed, referring to two patients with uterine cervical cancer in whom irradiation proctitis occurred after telecobalt irradiation following uterine extirpation. To one patients, a total of 5000 rads was irradiated, dividing into 250 rads at one time, and after 3 months, irradiation with a total of 2000 rads, dividing into 200 rads at one time, was further given. In another one patient, two parallel opposing portal irradiation with a total of 6000 rads was given. About a year after the irradiation, rectal injuries and cystitis, accompanying with hemorrhage, were found in both of the patients. Rectal amputation and proctotoreusis were performed. Cystitis was treated by cystic irradiation in the urological department. Pathohistological studies of the rectal specimen revealed atrophic mucosa, and dilatation of the blood vessels and edema in the colonic submucosa. Incidence of this disease, term when the disease occurs, irradiation dose, type of the disease, treatment and prevention are described on the basis of the literatures. (Kanao, N.)

  1. Irradiation proctitis

    Energy Technology Data Exchange (ETDEWEB)

    Minami, A [Osaka Kita Tsishin Hospital (Japan)

    1977-06-01

    Literatures on late rectal injuries are discussed, referring to two patients with uterine cervical cancer in whom irradiation proctitis occurred after telecobalt irradiation following uterine extirpation. To one patients, a total of 5000 rads was irradiated, dividing into 250 rads at one time, and after 3 months, irradiation with a total of 2000 rads, dividing into 200 rads at one time, was further given. In another one patient, two parallel opposing portal irradiation with a total of 6000 rads was given. About a year after the irradiation, rectal injuries and cystitis, accompanying with hemorrhage, were found in both of the patients. Rectal amputation and proctotoreusis were performed. Cystitis was treated by cystic irradiation in the urological department. Pathohistological studies of the rectal specimen revealed atrophic mucosa, and dilatation of the blood vessels and edema in the colonic submucosa. Incidence of this disease, term when the disease occurs, irradiation dose, type of the disease, treatment and prevention are described on the basis of the literatures.

  2. Food irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko; Kikuchi, Masahiro

    2009-01-01

    Food irradiation can have a number of beneficial effects, including prevention of sprouting; control of insects, parasites, pathogenic and spoilage bacteria, moulds and yeasts; and sterilization, which enables commodities to be stored for long periods. It is most unlikely that all these potential applications will prove commercially acceptable; the extend to which such acceptance is eventually achieved will be determined by practical and economic considerations. A review of the available scientific literature indicates that food irradiation is a thoroughly tested food technology. Safety studies have so far shown no deleterious effects. Irradiation will help to ensure a safer and more plentiful food supply by extending shelf-life and by inactivating pests and pathogens. As long as requirement for good manufacturing practice are implemented, food irradiation is safe and effective. Possible risks of food irradiation are not basically different from those resulting from misuse of other processing methods, such as canning, freezing and pasteurization. (author)

  3. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  4. Irradiation damage

    International Nuclear Information System (INIS)

    Howe, L.M.

    2000-01-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization

  5. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging–linear accelerator

    NARCIS (Netherlands)

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P.; Kok, Jan; Lin, Steven H.; Broekhuizen, Roel; Ang, Kie Kian; Bovenschen, Niels; Raaymakers, Bas W.; Frank, Steven J.

    2016-01-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell

  6. Solar Passive Modification Increase Radiation Safety Standards Inside Accelerator Building

    International Nuclear Information System (INIS)

    Eid, A. F.; Keshk, A. B.

    2010-01-01

    Irradiation processing by accelerated electrons is considering one of the most important and useful industrial irradiation treatments. It is depending on two principle attachment elements which are architecture of irradiation building and the accelerator characteristic that was arranged inside irradiation building. Negative environmental measurements were recorded inside the main building and were exceeded the international standards (humidity, air speed, high thermal effects and ozone concentration). The study showed that it is essential to improve the natural environmental standards inside the main irradiation building in order to improve the work environment and to reduce ozone concentration from 220 ppb to international standard. The main goals and advantages were achieved by using environmental architecture (desert architecture) indoor the irradiation building. The work depends on passive solar system which is economic, same architectural elements, comfort / health, and radiation safety, and without mechanical means. The experimental work was accomplished under these modifications. The registered results of various environmental concentrations have proved their normal standards.

  7. Cw operation of the FMIT RFQ accelerator

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1985-01-01

    Recently, we have achieved reliable cw operation of the Fusion Materials Irradiation Test (FMIT) radio-frequency quadrupole (RFQ) accelerator. In addition to the operational experiences in achieving this status, some of the modifications of the vacuum system, cooling system, and rf structure are discussed. Preliminary beam-characterization results are presented. 10 refs., 8 figs

  8. Nuclear data for designing the IFMIF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The objective of the International Fusion Materials Irradiation Facility (IFMIF) and the design concept of the IFMIF accelerator system are described. The status of the nuclear data, especially for the deuteron-induced reactions, to qualify the system design is reviewed. The requests for the nuclear data compilation and/or evaluation are summarized. (author)

  9. Food irradiation

    International Nuclear Information System (INIS)

    Hetherington, M.

    1989-01-01

    This popular-level article emphasizes that the ultimate health effects of irradiated food products are unknown. They may include vitamin loss, contamination of food by botulism bacteria, mutations in bacteria, increased production of aflatoxins, changes in food, carcinogenesis from unknown causes, presence of miscellaneous harmful chemicals, and the lack of a way of for a consumer to detect irradiated food. It is claimed that the nuclear industry is applying pressure on the Canadian government to relax labeling requirements on packages of irradiated food in order to find a market for its otherwise unnecessary products

  10. Food irradiation

    International Nuclear Information System (INIS)

    Luecher, O.

    1979-01-01

    Limitations of existing preserving methods and possibilities of improved food preservation by application of nuclear energy are explained. The latest state-of-the-art in irradiation technology in individual countries is described and corresponding recommendations of FAO, WHO and IAEA specialists are presented. The Sulzer irradiation equipment for potato sprout blocking is described, the same equipment being suitable also for the treatment of onions, garlic, rice, maize and other cereals. Systems with a higher power degree are needed for fodder preserving irradiation. (author)

  11. Medical waste irradiation study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.J.; Stein, J. [North Star Research Corp., Albuquerque, NM (United States); Nygard, J. [Advance Bio-Control (United States)

    1998-07-25

    The North Star Research Corporation Medical Waste project is described in this report, with details of design, construction, operation, and results to date. The project began with preliminary design of the accelerator. The initial design was for a single accelerator chamber with a vacuum tube cavity driver built into the chamber itself, rather than using a commercial tube separate from the RF accelerator. The authors believed that this would provide more adjustability and permit better coupling to be obtained. They did not have sufficient success with that approach, and finally completed the project using a DC accelerator with a unique new scanning system to irradiate the waste.

  12. Medical waste irradiation study. Final report

    International Nuclear Information System (INIS)

    Adler, R.J.; Stein, J.; Nygard, J.

    1998-01-01

    The North Star Research Corporation Medical Waste project is described in this report, with details of design, construction, operation, and results to date. The project began with preliminary design of the accelerator. The initial design was for a single accelerator chamber with a vacuum tube cavity driver built into the chamber itself, rather than using a commercial tube separate from the RF accelerator. The authors believed that this would provide more adjustability and permit better coupling to be obtained. They did not have sufficient success with that approach, and finally completed the project using a DC accelerator with a unique new scanning system to irradiate the waste

  13. Development of 350 keV electron accelerator

    International Nuclear Information System (INIS)

    Qin Jiuchang; Cui Shan; Zhou Wenzhen; Cui Zhipeng; Shi Zhenghu; Lu Zhongcheng; Chen Shangwen; Zhang Lifeng; Cui Zongwei; Huang Jun; Yin Meng

    2007-01-01

    The 350 keV electron accelerator is used for irradiation and production of plas- tic film of the medical infusion bags. The body structure of Van de Graft accelerator and the high voltage power supply of Cockcrof-Walton accelerator are adopted in the electron accelerator. The 350 keV DC power supply is supplied by the high frequency power supply with 14 kHz and 35 kW. The body and DC power supply of the electron accelerator are installed in the tank filled with 0.3 MPa SF 6 . The electron accelerator is compact, self-shielding and suitable for on-line electron beam processing. The main characteristics of the facility are terminal voltage 370 kV, electron beam power 7 kW (350 keV/20 mA), scaning width 70 cm, irradiation dose inuniformity ≤7%. (authors)

  14. Railgun-type two step accelerator

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Maeda, Hikosuke; Onozuka, Masanori; Oda, Yasutsugu; Azuma, Kingo.

    1995-01-01

    In the two step-type railgun accelerator used in an experimental nuclear fusion device of the present invention, energy of laser beams to be irradiated in an acceleration gas behind a flying object can be reduced, and the voltage applied between the rails can be lowered. Charged particles are generated and supplied to the acceleration gas behind the flying object by a charged particle generating and supplying device so as to promote generation of plasmas caused by irradiation of laser beams. As a result, dielectric break down is caused between the rails by a Paschen's law by application of voltage lower than dielectric breakdown voltage, thereby enabling to generate plasmas easily. Accordingly, the energy of laser beams can be suppressed and the voltage applied between the rails can be lowered. (I.S.)

  15. Railgun-type two step accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Satoshi; Maeda, Hikosuke [Japan Atomic Energy Research Inst., Tokyo (Japan); Onozuka, Masanori; Oda, Yasutsugu; Azuma, Kingo

    1995-10-13

    In the two step-type railgun accelerator used in an experimental nuclear fusion device of the present invention, energy of laser beams to be irradiated in an acceleration gas behind a flying object can be reduced, and the voltage applied between the rails can be lowered. Charged particles are generated and supplied to the acceleration gas behind the flying object by a charged particle generating and supplying device so as to promote generation of plasmas caused by irradiation of laser beams. As a result, dielectric break down is caused between the rails by a Paschen`s law by application of voltage lower than dielectric breakdown voltage, thereby enabling to generate plasmas easily. Accordingly, the energy of laser beams can be suppressed and the voltage applied between the rails can be lowered. (I.S.).

  16. Industrial irradiators and their radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Junior, Ary de Araujo (ed.)

    2018-04-01

    In this book you will learn how the gamma irradiators and accelerators for industry and research applications work and all the radioprotection safety items that should be followed when operating them. This book was written mainly for those who intend to become Radiation Safety Officers (RSO) responsible for the operation of gamma irradiators, but it is also useful to business people who plan to embark on this area or for those who are simply curious. This book is only an introduction to the subject and is far from being exhaustive. (author)

  17. Food irradiation

    International Nuclear Information System (INIS)

    Paganini, M.C.

    1991-06-01

    Food treatment by means of ionizing energy, or irradiation, is an innovative method for its preservation. In order to treat important volumes of food, it is necessary to have industrial irradiation installations. The effect of radiations on food is analyzed in the present special work and a calculus scheme for an Irradiation Plant is proposed, discussing different aspects related to its project and design: ionizing radiation sources, adequate civil work, security and auxiliary systems to the installations, dosimetric methods and financing evaluation methods of the project. Finally, the conceptual design and calculus of an irradiation industrial plant of tubercles is made, based on the actual needs of a specific agricultural zone of our country. (Author) [es

  18. Food irradiation

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Food preservation by irradiation is one part of Eisenhower's Atoms for Peace program that is enjoying renewed interest. Classified as a food additive by the Food, Drug, and Cosmetic Act of 1958 instead of a processing technique, irradiation lost public acceptance. Experiments have not been done to prove that there are no health hazards from gamma radiation, but there are new pressures to get Food and Drug Administration approval for testing in order to make commercial use of some radioactive wastes. Irradiation causes chemical reactions and nutritional changes, including the destruction of several vitamins, as well as the production of radiolytic products not normally found in food that could have adverse effects. The author concludes that, lacking epidemiological evidence, willing buyers should be able to purchase irradiated food as long as it is properly labeled

  19. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    International Nuclear Information System (INIS)

    Sanz, J.; Garcia, M.; Sauvan, P.; Lopez, D.; Moreno, C.; Ibarra, A.; Sedano, L.

    2009-01-01

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  20. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, J. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain)], E-mail: jsanz@ind.uned.es; Garcia, M.; Sauvan, P.; Lopez, D. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain); Moreno, C.; Ibarra, A.; Sedano, L. [CIEMAT, 28040 Madrid (Spain)

    2009-04-30

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  1. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  2. Fruit irradiation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Food spoilage is a common problem when marketing agricultural products. Promising results have already been obtained on a number of food irradiating applications. A process is described in this paper where irradiation of sub-tropical fruits, especially mangoes and papayas, combined with conventional heat treatment results in effective insect and fungal control, delays ripening and greatly improves the quality of fruit at both export and internal markets

  3. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  4. Blood irradiation

    International Nuclear Information System (INIS)

    Chandy, Mammen

    1998-01-01

    Viable lymphocytes are present in blood and cellular blood components used for transfusion. If the patient who receives a blood transfusion is immunocompetent these lymphocytes are destroyed immediately. However if the patient is immunodefficient or immunosuppressed the transfused lymphocytes survive, recognize the recipient as foreign and react producing a devastating and most often fatal syndrome of transfusion graft versus host disease [T-GVHD]. Even immunocompetent individuals can develop T-GVHD if the donor is a first degree relative since like the Trojan horse the transfused lymphocytes escape detection by the recipient's immune system, multiply and attack recipient tissues. T-GVHD can be prevented by irradiating the blood and different centers use doses ranging from 1.5 to 4.5 Gy. All transfusions where the donor is a first degree relative and transfusions to neonates, immunosuppressed patients and bone marrow transplant recipients need to be irradiated. Commercial irradiators specifically designed for irradiation of blood and cellular blood components are available: however they are expensive. India needs to have blood irradiation facilities available in all large tertiary institutions where immunosuppressed patients are treated. The Atomic Energy Commission of India needs to develop a blood irradiator which meets international standards for use in tertiary medical institutions in the country. (author)

  5. Food irradiation

    International Nuclear Information System (INIS)

    1991-01-01

    Processing of food with low levels of radiation has the potential to contribute to reducing both spoilage of food during storage - a particular problem in developing countries - and the high incidence of food-borne disease currently seen in all countries. Approval has been granted for the treatment of more than 30 products with radiation in over 30 countries but, in general, governments have been slow to authorize the use of this new technique. One reason for this slowness is a lack of understanding of what food irradiation entails. This book aims to increase understanding by providing information on the process of food irradiation in simple, non-technical language. It describes the effects that irradiation has on food, and the plant and equipment that are necessary to carry it out safely. The legislation and control mechanisms required to ensure the safety of food irradiation facilities are also discussed. Education is seen as the key to gaining the confidence of the consumers in the safety of irradiated food, and to promoting understanding of the benefits that irradiation can provide. (orig.) With 4 figs., 1 tab [de

  6. Unified 1.9...4.0 MeV linear accelerators with interchangeable accelerating structures for customs inspection

    International Nuclear Information System (INIS)

    Budtov, A.A.; Klinov, A.P.; Krestianinov, A.S.

    2004-01-01

    A series of compact linear electron accelerators for 1.9, 2.5 and 4.0 MeV equipped with a local radiation shielding has been designed and constructed in the NPK LUTS, the D.V.Efremov Institute (NIIEFA). The accelerators are intended for mobile facilities used for customs inspection of large-scale containers. Results of optimizing calculations of irradiator parameters and electron dynamics, verified under accelerators testing, are presented in the report. The main design approaches allowing the construction of unified accelerators with interchangeable accelerating structures for energies in the range of 1.9...4.0 MeV are also given

  7. Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Kemp, E.L.; Trego, A.L.

    1979-01-01

    A Fusion Materials Irradiation Test Facility is being designed to be constructed at Hanford, Washington, The system is designed to produce about 10 15 n/cm-s in a volume of approx. 10 cc and 10 14 n/cm-s in a volume of 500 cc. The lithium and target systems are being developed and designed by HEDL while the 35-MeV, 100-mA cw accelerator is being designed by LASL. The accelerator components will be fabricated by US industry. The total estimated cost of the FMIT is $105 million. The facility is scheduled to begin operation in September 1984

  8. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  9. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  10. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  11. HRB-22 irradiation phase test data report

    International Nuclear Information System (INIS)

    Montgomery, F.C.; Acharya, R.T.; Baldwin, C.A.; Rittenhouse, P.L.; Thoms, K.R.; Wallace, R.L.

    1995-03-01

    Irradiation capsule HRB-22 was a test capsule containing advanced Japanese fuel for the High Temperature Test Reactor (HTTR). Its function was to obtain fuel performance data at HTTR operating temperatures in an accelerated irradiation environment. The irradiation was performed in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The capsule was irradiated for 88.8 effective full power days in position RB-3B of the removable beryllium (RB) facility. The maximum fuel compact temperature was maintained at or below the allowable limit of 1300 degrees C for a majority of the irradiation. This report presents the data collected during the irradiation test. Included are test thermocouple and gas flow data, the calculated maximum and volume average temperatures based on the measured graphite temperatures, measured gaseous fission product activity in the purge gas, and associated release rate-to-birth rate (R/B) results. Also included are quality assurance data obtained during the test

  12. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  13. Circular induction accelerator for borehole logging

    International Nuclear Information System (INIS)

    Chen, F.K.; Bertozzi, W.; Corris, G.W.; Diamond, W.; Doucet, J.A.; Schweitzer, J.S.

    1992-01-01

    This patent describes a downhole logging sonde adapted to be moved through a borehole, a source of gamma rays in the sonde for irradiating earth formations traversed by the borehole, one or more gamma ray detectors for detecting gamma rays scattered back to the sonde from the irradiated earth formations, and means for transmitting signals representative of the detected gamma rays to the earth's surface for processing. This patent describes improvement in the gamma ray source comprises a magnetic induction particle accelerator, including: a magnetic circuit having a field magnet, generally circular opposed pole pieces, and a core magnet metal ions from the group consisting of Mn, Zn and Ni; an excitation circuit including a field coil surrounding the field magnet and the core magnet and a core coil surrounding the central axially leg of the core magnet; an annular acceleration chamber interposed between the pole pieces; means for applying time-varying acceleration voltage pulses across the primary excitation circuit; means for injecting charged particles into orbit within the acceleration chamber; means for compressing the particle orbits to trap particles within generally circular orbits within the acceleration chamber; means for generating a particle accelerating magnetic flux in the magnetic circuit; and means for ejecting charged particles from the generally circular orbits and into contact with a target to produce gamma ray photons

  14. Irradiation creep under 60 MeV alpha irradiation

    International Nuclear Information System (INIS)

    Reiley, T.C.; Shannon, R.H.; Auble, R.L.

    1980-01-01

    Accelerator-produced charged-particle beams have advantages over neutron irradiation for studying radiation effects in materials, the primary advantage being the ability to control precisely the experimental conditions and improve the accuracy in measuring effects of the irradiation. An apparatus has recently been built at ORNL to exploit this advantage in studying irradiation creep. These experiments employ a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). The experimental approach and capabilities of the apparatus are described. The damage cross section, including events associated with inelastic scattering and nuclear reactions, is estimated. The amount of helium that is introduced during the experiments through inelastic processes and through backscattering is reported. Based on the damage rate, the damage processes and the helium-to-dpa ratio, the degree to which fast reactor and fusion reactor conditions may be simulated is discussed. Recent experimental results on the irradiation creep of type 316 stainless steel are presented, and are compared to light ion results obtained elsewhere. These results include the stress and temperature dependence of the formation rate under irradiation. The results are discussed in relation to various irradiation creep mechanisms and to damage microstructure as it evolves during these experiments. (orig.)

  15. Irradiation device

    International Nuclear Information System (INIS)

    Suzuki, Toshimitsu.

    1989-01-01

    In an irradiation device for irradiating radiation rays such as electron beams to pharmaceuticals, etc., since the distribution of scanned electron rays was not monitored, the electron beam intensity could be determined only indirectly and irradiation reliability was not satisfactory. In view of the above, a plurality of monitor wires emitting secondary electrons are disposed in the scanning direction near a beam take-out window of a scanning duct, signals from the monitor wires are inputted into a display device such as a cathode ray tube, as well as signals from the monitor wires at the central portion are inputted into counting rate meters to measure the radiation dose as well. Since secondary electrons are emitted when electron beams pass through the monitor wires and the intensity thereof is in proportion with the intensity of incident electron beams, the distribution of the radiation dose can be monitored by measuring the intensity of the emitted secondary electrons. Further, uneven irradiation, etc. can also be monitored to make the radiation of irradiation rays reliable. (N.H.)

  16. Present status of TIARA electrostatic accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)

  17. Ingestion and digestion of erythrocytes by non-irradiated and irradiated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Vorbrodt, A; Grabska, A; Krzyzowska-Gruca, S; Gruca, S

    1975-01-01

    The effect of x rays (1300 R) and gamma irradiation (3000 R) on phagocytic activity of mouse peritoneal macrophages cultivated in vitro was studied using human glutaraldehyde-fixed red blood cells. The peroxidative activity of haemoglobin was cytochemically detected by the DAB method. The obtained results indicate that the applied dose of x irradiation does not affect the phagocytic activity of macrophages. On the contrary, the gamma irradiation (3000 R) causes acceleration of phagocytic activity of macrophages with concomitant impairment of intracellular digestion of ingested material. Weakened cytochemical reaction for acid phosphatase suggests that sufficiently high doses of irradiation cause some disturbances in the biosynthesis of lysosomal enzymes in exposed macrophages.

  18. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  19. Food irradiation

    International Nuclear Information System (INIS)

    Beishon, J.

    1991-01-01

    Food irradiation has been the subject of concern and controversy for many years. The advantages of food irradiation include the reduction or elimination of dangerous bacterial organisms, the control of pests and insects which destroy certain foods, the extension of the shelf-life of many products, for example fruit, and its ability to treat products such as seafood which may be eaten raw. It can also replace existing methods of treatment which are believed to have hazardous side-effects. However, after examining the evidence produced by the proponents of food irradiation, the author questions whether it has any major contribution to make to the problems of foodborne diseases or world food shortages. More acceptable solutions, he suggests, may be found in educating food handlers to ensure that hygienic conditions prevail in the production, storage and serving of food. (author)

  20. Vinca irradiator

    International Nuclear Information System (INIS)

    Eymery, R.

    1976-10-01

    The development programme of the VINCA radiosterilisation centre involves plans for an irradiator capable of working in several ways. Discontinuous operation. The irradiator is loaded for a certain period then runs automatically until the moment of unloading. This method is suitable as long as the treatment capacity is relatively small. Continuous operation with permanent batch loading and unloading carried out either manually or automatically (by means of equipment to be installed later). Otherwise the design of the apparatus is highly conventional. The source is a vertical panel submersible in a pool. The conveyor is of the 'bucket' type, with 4 tiers to each bucket. The batches pass successively through all possible irradiation positions. Transfert into and out of the cell take place through a maze, which also provides access to the cell when the sources are in storage at the bottom of the pool [fr

  1. Van de Graaff Irradiation of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    Through irradiations using our 3 MeV Van de Graaf accelerator, Argonne is testing the radiation stability of components of equipment that are being used to dispense molybdenum solutions for use as feeds to 99mTc generators and in the 99mTc generators themselves. Components have been irradiated by both a direct electron beam and photons generated from a tungsten convertor.

  2. Internal friction in irradiated textolite

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Kozhamkulov, B.A.; Koztaeva, U.P.

    1996-01-01

    Structural relaxation in irradiated textolite of ST and ST-EhTF trade marks presenting pressed material got by method of impregnation of fibreglass by phenole and epoxytriphenole binders relatively. Measuring of temperature dependences of internal friction (TDIF) is carried out in torsional pendulum at oscillation frequency 0.6-1.0 Hz before and after irradiation by stopped gamma-quanta with energy 3 MeV on electron accelerator EhLU-4. α and β peaks, related with segments motion in base and side chains of macromolecular have being observed on TDIF of all textolite. Growth of peaks height after irradiation evident about increase of segments mobility in base chain and about de-freezing of segments in side chains and it could be considered as qualitative measure of radiation destruction rate. Comparison of temperature dependences of internal friction indicates on higher radiation stability of textolite of ST-EhTF trade mark

  3. Irradiance gradients

    International Nuclear Information System (INIS)

    Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques

  4. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  5. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  6. Heavy ion medical accelerator, HIMAC

    International Nuclear Information System (INIS)

    Yamada, Satoru

    1993-01-01

    The heavy ion beam is undoutedly suitable for the cancer treatment. The supriority of the heavy ions over the conventional radiations including protons and neutrons comes mainly from physical characteristics of a heavy particle with multiple charges. A straggling angle due to a multiple Coulomb scattering process in a human body is small for heavy ions, and the small scattering angle results in a good dose localization in a transverse direction. An ionization ratio of the heavy ion beam makes a very sharp peak at the ends of their range. The height of the peak is higher for the heavier ions and shows excellent biomedical effects around Ne ions. In order to apply heavy ion beams to cancer treatment, Heavy Ion Medical Accelerator in Chiba (HIMAC) has been constructed at National Institute of Radiological Sciences. The accelerator complex consists of two ion sources, two successive linac tanks, a pair of synchrotron rings, a beam transport system and an irradiation system. An operation frequency is 100 MHz for two linacs, and the ion energy is 6.0 MeV/u at the output end of the linac. The other four experimental rooms are prepared for basic experiments. The synchrotron accelerates ions up to 800 MeV/u for a charge to mass ratio of 1/2. The long beam transport line provides two vertical beams in addition with two horizontal beams for the treatment. The three treatment rooms are prepared one of which is equipped with both horizontal and vertical beam lines. The whole facility will be open for all scientists who have interests in the heavy ion science as well as the biophysics. The conceptual design study of HIMAC started in 1984, and the construction of the accelerator complex was begun in March 1988. The beam acceleration tests of the injector system was successfully completed in March of this year, and tests of the whole system will be finished throughout this fyscal year. (author)

  7. ion irradiation

    Indian Academy of Sciences (India)

    Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 m, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in ...

  8. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator.

    Science.gov (United States)

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J

    2016-10-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Fish irradiation

    International Nuclear Information System (INIS)

    Kovacs, J.; Tengumnuay, C.; Juangbhanich, C.

    1970-01-01

    Chub-mackerel was chosen for the study because they are the most common fish in Thailand. Preliminary investigations were conducted to determine the maximum radiation dose of gamma-rays by organoleptic tests. The samples were subjected to radiation at various doses up to 4 Mrad. Many experiments were conducted using other kinds of fish. The results showed that 1 Mrad would be the maximum acceptable dose for fish. Later, the influence of the radiation dose from 0.1-1 Mrad was studied in order to find the optimum acceptable dose for preservation of fish without off-flavour. For this purpose, the Hedonic scale was used. It was found that 0.2 and 0.5 Mrad gave the best result on Chub mackerel. The determinations of optimum dose, organoleptic, microbiological and trimethylamine content changes were done. The results showed that Chub mackerel irradiated at 0.2, 0.5 and 1 Mrad stored at 3 0 C for 71 days were still acceptable, on the contrary the untreated samples were found unacceptable at 14 days. The trimethylamine increment was significantly higher in the untreated samples. At 15 days storage, trimethylamine in the non-irradiated Chub-mackerel was about 10 times higher than the irradiated ones. At 51 and 79 days storage, about 13 times higher in the control samples than the irradiated samples except 0.1 Mrad. Only 2 times higher was found for the 0.1 Mrad. The microbiological results showed that the irradiation above 0.2 Mrad gave favorable extension of shelf-life of fish

  10. Sprout inhibition of potatoes by electron irradiation, (2)

    International Nuclear Information System (INIS)

    Furuta, Junichiro; Hiraoka, Eiichi; Okamoto, Shinichi; Fujishiro, Masatoshi; Kanazawa, Tamotsu; Ohnishi, Tokuhiro; Tsujii, Yukio; Hori, Shiro

    1982-01-01

    Sprouting of potatoes are inhibited usually by the gamma-ray irradiation. The buds of potatoes exist in a very thin layer near surface of each tuber. So the inhibition will be performed sufficiently by surface irradiation using electron beams. To irradiate all surfaces of each potato uniformly, the authors prepare a new apparatus which is a conveyer passing under an electron beam scanner of accelerator rotating the potatoes by many rotating rollers. The sprout inhibition experiment of potatoes was performed by following three methods to obtain the performance of this apparatus, and the results were compared. 1) turn over irradiation method --- potatoes were arranged in one layer in plastic baskets and were irradiated on the conveyor. After irradiation, the potatoes were turned over and were irradiated again. 2) rotating irradiation method --- potatoes were rotated on the rotating roller apparatus set on the conveyer and were passed under the electron beam scanner. 3) rotating irradiation method with an improved rotating roller apparatus --- the rotating rollers have many protuberances on their surface to irradiate all of potato surface more uniform. 550 keV electron beams by Cockcroft-Walton type accelerator were used for the irradiation and the irradiated dose was 5 to 20 krad. 40 pieces of potates, ''Danshaku'' variety yielded in June 1981, were irradiated for each dose in the beginning of August. Prior to these irradiation experiments, the dose and dose uniformity were checked by the agar color dosimeters. After the irradiation, potatoes were stored in natural condition and their sprouting was observed. The potatoes irradiated by the improved rotating roller apparatus were almost completely sprout-inhibited by 20 krad irradiation. (author)

  11. Studies on the improvement of irradiation process

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Pyun, Hyung Chick; Yoon, Byung Mok; Nho, Young Chang; Lee, Young Keun; Park, Soon Chul; Na, Bong Joo; Yoo, Young Soo

    1991-01-01

    On the basis of analysis and examination for efficient maintenance and operation of the facility, the method of improving irradiation process was discussed so that we may extend the applicability of irradiation technique to various materials and accelerate nation-wide propagation of radiation processing technology. Preparations have been made for transfer, installation, and operation of the irradiation facilities in radiation application building which will be completed at the headquarter site by the end of 1992. The qualification testing apparatus for nuclear power station cables was conceptually designed to investigate the degradation behavior of the cables under a simulated LOCA(Loss of Coolant Accident) environments. (Author)

  12. A particle accelerator probes artifacts

    CERN Document Server

    Dran, J C; Salomon, J

    2002-01-01

    The AGLAE system is made up of a 2 mega volts electrostatic accelerator and of 3 irradiation lines: one leads to a vacuum enclosure in which targets are irradiated and the 2 others lines are designed to irradiate targets under an air or helium atmosphere. The AGLAE system is located in the premises of the Louvre museum in Paris and is devoted to the study of cultural objects through ion beam analysis (IBA). 4 techniques are used: -) proton-induced X-ray emission (PIXE) -) proton-induced gamma ray (PIGE) -) Rutherford backscattering spectrometry (NRS) and -) nuclear reaction analysis (NRA). A decisive progress has permitted the direct analysis of artifacts without sampling. The object itself is set just a few millimeters away from the exit window of the beam in an air or helium atmosphere. The exit window must be resistant enough to bear the atmospheric pressure and the damages caused by the proton beam but must be thin enough to not deteriorate the quality of the beam. By using a 10 sup - sup 7 m thick exit w...

  13. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    There is considerable recent interest in the use of high energy (γ = 1.1), heavy (A greater than or equal to 100) ions to irradiate deuterium--tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. A discussion is given of how the technology of Linear Induction Accelerators--well known to be matched to high current and short pulse length--may offer significant advantages for this application

  14. IMPELA electron accelerators for industrial radiation processing

    International Nuclear Information System (INIS)

    Hare, G.E.

    1990-01-01

    IMPELA electron accelerators are derived from a common basic design of rf accelerating structure which is capable of handling beams with powers from 20 to 250 kW at 5 to 18 MeV. A prototype has been built which operates at 50 kW and 10 MeV. The paper describes the major elements of the system with particular reference to features which assist in maintaining irradiation quality, simple operation and high reliability. A cost model based on the prototype is used to demonstrate the economies of scale available and the impact of local prices for utilities. (author)

  15. Critical analysis of industrial electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S. E-mail: sergey_korenev@steris.com

    2004-10-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  16. Critical analysis of industrial electron accelerators

    Science.gov (United States)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  17. Critical analysis of industrial electron accelerators

    International Nuclear Information System (INIS)

    Korenev, S.

    2004-01-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed

  18. Heavy ion medical accelerator in chiba

    International Nuclear Information System (INIS)

    Hirao, Y.; Ogawa, H.; Yamada, S.

    1992-12-01

    The HIMAC (Heavy Ion Medical Accelerator in Chiba) construction project has been promoted by NIRS (National Institute of Radiological Sciences) as one of the projects of 'Comprehensive 10 year Strategy for Cancer Control' HIMAC is the first heavy-ion accelerator dedicated to medicine in the world, and its design parameters are based on the radiological requirements. It consists of two types of ion sources, an RFQ and an Alvarez linacs, dual synchrotron rings, high energy beam transport lines, and irradiation facilities for treatment and experiments. This report mainly describes the outline of the structure and performance of each HIMAC subsystem. (J.P.N.)

  19. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  20. Applications of proton and deuteron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Corporate Research Center, Princeton, NJ (United States))

    1993-06-01

    Applications of positive and negative hydrogen and deuterium ion accelerators beyond basic research are increasing. Large scale proposed national laboratory/industrial projects include the Accelerator Production of Tritium (APT) which will utilize protons, and the International Fusion Material Irradiation Facility (IFMIF) which will accelerate a deuteron beam into a lithium target. At the small scale end, radio-frequency quadrupole (RFQ) accelerator based systems have been built for neutron activation analysis and for applications such as explosive detection. At an intermediate scale, the Loma Linda proton therapy accelerator is now successfully treating a full schedule of patients, and more than half a dozen such hospital based units are under active study world-wide. At this same scale, there are also several ongoing negative ion, military accelerator projects which include the Continuous Wave Deuterium Demonstrator (CWDD) and the Neutral Particle Beam Space Experiment (NPBSE). These respective deuterium and hydrogen accelerators, which have not been previously described, are the focus of this paper. (orig.)

  1. New generation of compact electron accelerators for radiation technologies

    International Nuclear Information System (INIS)

    Auslender, V.L.; Balakin, V.E.; Kraynov, G.S.

    1995-01-01

    Compact electron accelerators with energy range 0.25-1.0 MeV and beam power up to 32 kw are described. The feeding high voltage is formed by converter (working frequency 20 khz), coreless step-up transformer and a set of rectifying sections. The rectifying multiplier circuit used in rectifying sections permits to reach voltage gradient along accelerator's axis up to 14 kV/cm. The accelerators with vertical and horizontal position are described. The accelerators can be produced together with local radiation shielding and various underbeam transportation systems for irradiation of different products. Such version can be installed in any room facing general requirements for electric equipment

  2. Microbiological decontamination of natural honey by irradiation

    Science.gov (United States)

    Migdał, W.; Owczarczyk, H. B.; K ȩdzia, B.; Hołderna-K ȩdzia, E.; Madajczyk, D.

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator "Elektronika 10-10" at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  3. Microbiological decontamination of natural honey by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Migdal, W.; Owczarczyk, H.B.; Kedzia, B.; Holderna-Kedzia, E.; Madajczyk, D

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator ''Elektronika 10-10'' at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  4. Microbiological decontamination of natural honey by irradiation

    International Nuclear Information System (INIS)

    Migdal, W.; Owczarczyk, H.B.; Kedzia, B.; Holderna-Kedzia, E.; Madajczyk, D.

    2000-01-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator ''Elektronika 10-10'' at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency

  5. Food irradiation: An update

    International Nuclear Information System (INIS)

    Morrison, Rosanna M.

    1984-01-01

    Recent regulatory and commercial activity regarding food irradiation is highlighted. The effects of irradiation, used to kill insects and microorganisms which cause food spoilage, are discussed. Special attention is given to the current regulatory status of food irradiation in the USA; proposed FDA regulation regarding the use of irradiation; pending irradiation legislation in the US Congress; and industrial applications of irradiation

  6. Analytical use of electron accelerators

    International Nuclear Information System (INIS)

    Kapitsa, S.P.; Chapyzhnikov, B.A.; Firsov, V.I.; Samosyuk, V.N.; Tsipenyuk, Y.M.

    1985-01-01

    After detailed investigation the authors conclude that the newest electron accelerators provide good scope for gamma activation and also for producing neutrons for neutron activation. These accelerators are simpler and safer than reactors, and one can provide fairly homogeneous irradiation of substantial volumes, and the determination speed and sensitivity then constitute the main advantages. The limits of detection and the reproducibility are sufficient to handle a wide range of tasks. Analysts at present face a wide range of unlikely extreme problems, while the selectivity provides exceptional analysis facilities. However, the record examples are not to be taken as exceptions, since activation analysis based on electron accelerators opens up essentially universal scope for analyzing all elements at the concentrations and accuracies currently involved, which will involve its extensive use in analytical practice in the foreseeable future. The authors indicate that the recognition of these possibilities governs the general use of these methods and the employment of current efficient fast-electron sources to implement them

  7. Low dose irradiation facilitates hepatocellular carcinoma genesis involving HULC.

    Science.gov (United States)

    Li, Yuan; Ge, Chang; Feng, Guoxing; Xiao, Huiwen; Dong, Jiali; Zhu, Changchun; Jiang, Mian; Cui, Ming; Fan, Saijun

    2018-03-24

    Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings. © 2018 Wiley Periodicals, Inc.

  8. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Beerens, H [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France); Saint-Lebe, L

    1979-01-01

    Various aspects of food treatment by cobalt 60 or caesium 137 gamma radiation are reviewed. One of the main applications of irradiation on foodstuffs lies in its ability to kill micro-organisms, lethal doses being all the lower as the organism concerned is more complex. The effect on parasites is also spectacular. Doses of 200 to 300 krad are recommended to destroy all parasites with no survival period and no resistance phenomenon has ever been observed. The action of gamma radiation on macromolecules was also investigated, the bactericide treatment giving rise to side effects by transformation of food components. Three examples were studied: starch, nucleic acids and a whole food, the egg. The organoleptic aspect of irradiation was examined for different treated foods, then the physical transformations of unpasteurized, heat-pasteurized and radio-pasteurized eggs were compared. The report ends with a brief analysis of the toxicity and conditions of application of the treatment.

  9. Irradiation device

    International Nuclear Information System (INIS)

    Ransohoff, J.A.

    1984-01-01

    Carriers, after being loaded with product to be irradiated, are transported by an input-output conveyor system into an irradiation chamber where they are received in a horizontal arrangement on racks which may support different sizes and numbers of carriers. The racks are moved by a chamber conveyor system in an endless rectangular path about a radiation source. Packers shift the carriers on the racks to maintain nearest proximity to the radiation source. The carriers are shifted in position on each rack during successive rack cycles to produce even radiation exposure. The carriers may be loaded singly onto successive racks during a first cycle of movement thereof about the source, with loading of additional carriers, and/or unloading of carriers, onto each rack occurring on subsequent rack cycles of movement

  10. Food irradiation

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1997-01-01

    Food can be provided with extra beneficial properties by physical processing. These benefits include a reduced possibility of food poisoning, or an increased life of the food. We are familiar with pasteurisation of milk, drying of vegetables, and canning of fruit. These physical processes work because the food absorbs energy during treatment which brings about the changes needed. The energy absorbed in these examples is heat energy. Food irradiation is a less familiar process. It produces similar benefits to other processes and it can sometimes be applied with additional advantages over conventional processing. For example, because irradiation causes little heating, foods may look and taste more natural. Also, treatment can take place with the food in its final plastic wrappers, reducing the risk of re-contamination. (author). 1 ref., 4 figs., 1 tab

  11. Food irradiation

    International Nuclear Information System (INIS)

    Beerens, H.; Saint-Lebe, L.

    1979-01-01

    Various aspects of food treatment by cobalt 60 or caesium 137 gamma radiation are reviewed. One of the main applications of irradiation on foodstuffs lies in its ability to kill micro-organisms, lethal doses being all the lower as the organism concerned is more complex. The effect on parasites is also spectacular. Doses of 200 to 300 krad are recommended to destroy all parasites with no survival period and no resistance phenomenon has ever been observed. The action of gamma radiation on macromolecules was also investigated, the bactericide treatment giving rise to side effects by transformation of food components. Three examples were studied: starch, nucleic acids and a whole food, the egg. The organoleptic aspect of irradiation was examined for different treated foods, then the physical transformations of unpasteurized, heat-pasteurized and radio-pasteurized eggs were compared. The report ends with a brief analysis of the toxicity and conditions of application of the treatment [fr

  12. Endolymphatic irradiation

    International Nuclear Information System (INIS)

    Galvao, M.M.; Ianhez, L.E.; Sabbaga, E.

    1982-01-01

    The authors analysed the clinical evolution and the result of renal transplantation some years after irradiation in 24 patients (group I) who received endolymphatic 131 I as a pre-transplantation immunesuppresive measure. The control group (group II) consisted of 24 non-irradiated patients comparable to group I in age, sex, primary disease, type of donor and immunesuppressive therapy. Significant differences were observed between the two groups regarding such factors a incidence and reversibility of rejection crises in the first 60 post-transplantation days, loss of kidney due to rejection, and dosage of azathioprine. The authors conclude that this method, besides being harmless, has prolonged immunesuppressive action, its administration being advised for receptores of cadaver kidneys, mainly those who show positive cross-match against HLA antigens for painel. (Author) [pt

  13. Safety guide of the Tandar accelerator

    International Nuclear Information System (INIS)

    1987-01-01

    The safety standards that the installations of the Tandar accelerator have to comply with are presented here. In order to maintain the safety, the knowledge and the accomplishment of these standards are mandatory for all persons. The risks of external irradiation and of contamination are pointed out. The risks at the Tandar are: the calibration standards used at the premises and the irradiation produced by the activity of the accelerator, which can be primary, secondary, induced or X rays. The identification of the different areas of installation are given with their corresponding classification; the rules concerning the manipulation of radioactive materials and the movement of persons in areas of reglamentary access are established. Finally conventional safety and rules for evacuation and fires are presented. (M.E.L.) [es

  14. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  15. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  16. A particle accelerator probes artifacts

    International Nuclear Information System (INIS)

    Dran, J.C.; Calligaro, Th.; Salomon, J.

    2002-01-01

    The AGLAE system is made up of a 2 mega volts electrostatic accelerator and of 3 irradiation lines: one leads to a vacuum enclosure in which targets are irradiated and the 2 others lines are designed to irradiate targets under an air or helium atmosphere. The AGLAE system is located in the premises of the Louvre museum in Paris and is devoted to the study of cultural objects through ion beam analysis (IBA). 4 techniques are used: -) proton-induced X-ray emission (PIXE) -) proton-induced gamma ray (PIGE) -) Rutherford backscattering spectrometry (NRS) and -) nuclear reaction analysis (NRA). A decisive progress has permitted the direct analysis of artifacts without sampling. The object itself is set just a few millimeters away from the exit window of the beam in an air or helium atmosphere. The exit window must be resistant enough to bear the atmospheric pressure and the damages caused by the proton beam but must be thin enough to not deteriorate the quality of the beam. By using a 10 -7 m thick exit window made of Si 3 N 4 we get a beam whose diameter is 10 -5 m. This new technology presents 4 main advantages: 1) any object of any shape can be studied without sampling, 2) the analysis of very fragile artifacts that might be damaged by the vacuum setting is now possible, 3) a reduction of the thermal side-effects of the beam, and 4) the absence of accumulation of charges in isolating material allows to rid of covering the object with a conducting coating before irradiating it. (A.C.)

  17. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility