WorldWideScience

Sample records for accelerator applications final

  1. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  2. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  3. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  4. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  5. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  6. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  7. Accelerators for Discovery Science and Security applications

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M., E-mail: alan_todd@mail.aesys.net; Bluem, H.P.; Jarvis, J.D.; Park, J.H.; Rathke, J.W.; Schultheiss, T.J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15–50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug–cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  8. Accelerators for Discovery Science and Security applications

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Bluem, H.P.; Jarvis, J.D.; Park, J.H.; Rathke, J.W.; Schultheiss, T.J.

    2015-01-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15–50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug–cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection

  9. Accelerator development for medical applications

    International Nuclear Information System (INIS)

    Tanabe, Eiji

    2007-01-01

    Electron linear accelerators have been widely used in medical applications, especially in radiation therapy for cancer treatment. There are more than 7,000 medical electron linear accelerators in the world, treating over 250,000 patients per day. This paper reviews the current status of accelerator applications and technologies in radiation therapy, and presents the anticipated requirements for advanced radiation therapy technology in the foreseeable future. (author)

  10. Accelerators for research and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  11. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  12. A systematic FPGA acceleration design for applications based on convolutional neural networks

    Science.gov (United States)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  13. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  14. Frontier applications of electrostatic accelerators

    Science.gov (United States)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  15. The use of electromagnetic particle-in-cell codes in accelerator applications

    International Nuclear Information System (INIS)

    Eppley, K.

    1988-12-01

    The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs

  16. Electron accelerators: History, applications, and perspectives

    International Nuclear Information System (INIS)

    Martins, M.N.; Silva, T.F.

    2014-01-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs. - Highlights: ► We present an outlook on sources of radiation, focusing on electron accelerators. ► We review important advances for the development of modern electron accelerators. ► We outline advances that allowed for brighter synchrotron light sources. ► We describe the history of the development of electron accelerators in Brazil

  17. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  18. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-01-01

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  19. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-03-04

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being `Cyclotrons, Linacs and Their Applications`. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.).

  20. Electron accelerators: History, applications, and perspectives

    Science.gov (United States)

    Martins, M. N.; Silva, T. F.

    2014-02-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs.

  1. Advanced Accelerator Applications in Medicine

    International Nuclear Information System (INIS)

    Rimjiaem, Sakhorn

    2015-01-01

    besides the original purpose on development of particle acceleratora as research tools in nuclear and high-energy physics, there are large variety of accelerators used in various fileds from fundamental research to industrial usesand applications chemistry, biology and medicine. Pratical accelators used in various field of medical applications since serveral decades. Even through, a large fraction of applications is emphasized on cancer therappy, the number of accelerators used in midicine for other diagnostics and treatments has increased steady over the years. Several types of accelerated particles are used including electron, proton, neutron and ions. Presently, relativistic electron beams and radiation from linear accelerators (linas) are widely used. A combination of positron emission tomography (PRT) and radiotherapy is an example of excellent invention early detection and treat of cancer tumors. The most developments for proton and heavy ion therapy as well as a modern boron neutron capture therapy (BNCT) are also great incoming effective systems. This talk will focus on developments of the accelrator systems as well as overview on biophysical properties and medical aspects of the diacnostics and treatments.

  2. Applications of proton and deuteron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Corporate Research Center, Princeton, NJ (United States))

    1993-06-01

    Applications of positive and negative hydrogen and deuterium ion accelerators beyond basic research are increasing. Large scale proposed national laboratory/industrial projects include the Accelerator Production of Tritium (APT) which will utilize protons, and the International Fusion Material Irradiation Facility (IFMIF) which will accelerate a deuteron beam into a lithium target. At the small scale end, radio-frequency quadrupole (RFQ) accelerator based systems have been built for neutron activation analysis and for applications such as explosive detection. At an intermediate scale, the Loma Linda proton therapy accelerator is now successfully treating a full schedule of patients, and more than half a dozen such hospital based units are under active study world-wide. At this same scale, there are also several ongoing negative ion, military accelerator projects which include the Continuous Wave Deuterium Demonstrator (CWDD) and the Neutral Particle Beam Space Experiment (NPBSE). These respective deuterium and hydrogen accelerators, which have not been previously described, are the focus of this paper. (orig.)

  3. Permanent-magnet material applications in particle accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.

    1992-01-01

    The modern charged particle accelerator has found application in a wide range of scientific research, industrial, medical, and defense fields. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, which showed that magnetic field could be used to control the transverse envelope of charged particle beams. The history of permanent-magnet use in accelerator physics and technology is outlined, current design methods and material properties of concern for particle accelerator applications are reviewed

  4. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  5. ICT accelerators for radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shiqin; Chen Dali (Research Inst. of Automation for Machine-Building Industry, Beijing (China))

    Several ICT accelerators were designed and constructed during the past two decades and are now in use in some factories and institutes in various parts of China. The specifications, design considerations, construction specialities and information about the applications of these accelerators are given in the present paper. (author).

  6. Final report on the LLNL compact torus acceleration project

    International Nuclear Information System (INIS)

    Eddleman, J.; Hammer, J.; Hartman, C.; McLean, H.; Molvik, A.

    1995-01-01

    In this report, we summarize recent work at LLNL on the compact torus (CT) acceleration project. The CT accelerator is a novel technique for projecting plasmas to high velocities and reaching high energy density states. The accelerator exploits magnetic confinement in the CT to stably transport plasma over large distances and to directed kinetic energies large in comparison with the CT internal and magnetic energy. Applications range from heating and fueling magnetic fusion devices, generation of intense pulses of x-rays or neutrons for weapons effects and high energy-density fusion concepts

  7. Industrial applications of electron accelerators

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    The interaction of high-energy radiation with organic systems produces very reactive, short-lived, ionic and free-radical species. The chemical changes brought about by these species are very useful in several systems, and are the basis of the growth of the electron processing industry. Some typical areas of the industrial use of electron accelerators are crosslinking wire and cable insulation, manufacturing heat shrink plastic items, curing coatings, and partially curing rubber products. Electron accelerators are also being considered in other areas such as sewage treatment, sterilizing medical disposables, and food irradiation. An emerging application of industrial electron accelerators is the production of advanced composites for the aerospace and other industries. Traditionally, the carbon-, aramid- and glass-fibre-reinforced composites with epoxy matrices are produced by thermal curing. However, equivalent composites with acrylated-epoxy matrices can be made by electron curing. Cost estimates suggest that electron curing could be more economical than thermal curing. Food irradiation has traditionally been an application for 60 Co γ-radiation. With the increasing demand for food irradiation in various countries, it may become necessary to use electron accelerators for this purpose. Since the dose rate during gamma and electron irradiation are generally very different, a review of the relevant work on the effect of dose rates has been done. This paper presents an overview of the industrial applications of electron accelerator for radiation processing, emphasises the electron curing of advanced composites and, briefly reviews the dose-rate effects in radiation processing of advanced composites and food irradiation. (author). 84 refs., 8 tabs

  8. Trends for Electron Beam Accelerator Applications in Industry

    Science.gov (United States)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  9. LINAC for ADS application - accelerator technologies

    International Nuclear Information System (INIS)

    Garnett, Robert W.; Sheffreld, Richard L.

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  10. Application accelerator system having bunch control

    Science.gov (United States)

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  11. Ion accelerator applications in medicine and cultural heritage

    International Nuclear Information System (INIS)

    Denker, A.; Cordini, D.; Heufelder, J.; Homeyer, H.; Kluge, H.; Simiantonakis, I.; Stark, R.; Weber, A.

    2007-01-01

    Formerly, accelerator laboratories were mainly dedicated to nuclear physics. Today, they are used in up-coming research fields and applications like material analysis and material science as well as biology, medicine or archaeology. Practical applications have been developed, involving hospitals, industry and even humanists in the use of accelerators. This paper focuses on some medical and analytical applications of the HMI accelerator facility, especially for eye tumour therapy and archaeology. The innovation of techniques to measure the dose distribution, the development of an automated monitoring procedure allowing an improved and accelerated patient positioning, and the implementation of a modern treatment planning system will be presented first. In the second part, the employment of accelerators in better understanding of our cultural heritage will be shown

  12. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    Science.gov (United States)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  13. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  14. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications. Final Report

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Read, Michael; Ferguson, Patrick; Marsden, David

    2011-01-01

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  15. Review of Compact Commercial Accelerator Products and Applications.

    Science.gov (United States)

    Jongen, Y.

    1997-05-01

    Historically, particle accelerators were developed initially for nuclear, then for particle physics research. From this research resulted applications of accelerators in the field of medicine and industry. These application-oriented accelerators are generally built commercially, and they often emphasize other qualities than the accelerators for research. The research applications frequently require energies or beam qualities at the limit of the existing technologies. They offer the largest flexibility in term of particles and beam properties, but are more complex, more expensive and often require large and highly qualified staff to operate and maintain them. In contrast, most applications are done with low to moderate energy protons or electrons, but often with large average beam power. The accelerators are generally specialized for a specific application, and are therefore very simple and inexpensive to operate. The author will review some applications in the field of medicine, such as the production of radio-isotopes for medical diagnostic or the production of electrons, protons or fast neutron beams for cancer therapy. In the industrial field, high power electron beam are used for sterilization and for the modification of materials. Log No. 1001

  16. Application accelerator system having bunch control

    International Nuclear Information System (INIS)

    Wang, D.; Krafft, G.A.

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig

  17. Design of hardware accelerators for demanding applications.

    NARCIS (Netherlands)

    Jozwiak, L.; Jan, Y.

    2010-01-01

    This paper focuses on mastering the architecture development of hardware accelerators. It presents the results of our analysis of the main issues that have to be addressed when designing accelerators for modern demanding applications, when using as an example the accelerator design for LDPC decoding

  18. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  19. Photocathodes in accelerator applications

    International Nuclear Information System (INIS)

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs 3 Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera

  20. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    transverse beam dynamics. The results obtained allow to develop a correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tune non-scaling FFAG that represents a potential candidate for high power applications. As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have to account for space charge effects. In that framework, models have been installed in the tracking code ZGOUBI to account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown. Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In order to establish the accelerator requirements, one compared the performance of ADSR with other conventional critical reactors by means of the levelized cost of energy. A general comparison between the different accelerator technologies that can satisfy these requirements is finally presented. In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy compared to other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper for any industrial application aiming at producing energy (without dealing with the waste problem). Besides, the reactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the target interface between the accelerator and the reactor core.

  1. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory and Astrophysical Applications

    International Nuclear Information System (INIS)

    Matthaeus, W.; Brown, M.

    2006-01-01

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  2. Superconducting rf cavities for accelerator application

    International Nuclear Information System (INIS)

    Proch, D.

    1988-01-01

    The subject of this paper is a review of superconducting cavities for accelerator application (β = 1). The layout of a typical accelerating unit is described and important parameters are discussed. Recent cavity measurements and storage ring beam tests are reported and the present state of the art is summarized

  3. Technology and applications of electron accelerator

    International Nuclear Information System (INIS)

    Natsir, M.

    1998-01-01

    Technology of electron accelerator have been developed so fast in advanced countries. It was applied in the research and development (R and D) and comercially in various industries. The industries applying electron accelerator includes polymers industry, sterilization of medical tools, material surface modification, and environmental management. The radiation process using electron beam is an ionization radiation process. Two facilities of electron accelerator have been established in pilot scale at the Centre for the Application of Isotope and Radiation CAIR-BATAN, Jakarta, for the RandD of radiation process technology and in demonstrating the electron accelerator application in industry in Indonesia. The first has low energy specification of 300 keV, 50 mA, EPS-300 type and the second has medium energy specification of 2 MeV, 10 mA dynamitron model GJ-2 type. Both the electron accelerators have an electron penetration depth capability of 0.6 and 12 mm, respectively, for the double side irradiation in the materials with density of 1 g/cm 3 . They also highly capacity production and electron beam cross-section of 120 cm length and 10 cm width. The beam will go through the atmosphere for irradiation samples or industrial products. The radiation dose can be selected precisely by adjusting the electron beam current and conveyor speed. Both of these facilities were applied in many aspects RandD, for examples dosimetry, wood surface coating, cross-linking of polymer, heatshrincable tube, polymer grafting, plastic degradation, food preservation, sterilization and so on. Engineering factors of radiation design process and general observation of electron accelerator application in RandD for various industries in Indonesia are briefly discussed

  4. Proceedings of a workshop on Applications of Accelerators

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Sessler, A.M.; Alonso, J.R.

    1994-01-01

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited

  5. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  6. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  7. Low energy accelerators for research and applications

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2013-01-01

    Charged particle accelerators are instruments for producing a variety of radiations under controlled conditions for basic and applied research as well as applications. They have helped enormously to study the matter, atoms, nuclei, sub-nuclear particles and their constituents, forces involved in the related phenomena etc. No other man-made instrument has been so effective in such studies as the accelerator. The large accelerator constructed so far is the Large Hadron Collider (LHC) housed in a tunnel of 27 km circumference, while a small accelerator can fit inside a room. Small accelerators accelerate charged particles such as electrons, protons, deuterons, alphas and, in general ions to low energy, generally, below several MeV. These particle beams are used for studies in nuclear astrophysics, atomic physics, material science, surface physics, bio sciences etc. They are used for ion beam analysis such as RBS, PIXE, NRA, AMS, CPAA etc. More importantly, the ion beams have important industrial applications like ion implantation, surface modification, isotope production etc. while electron beams are used for material processing, material modification, sterilization, food preservation, non destructive testing etc. In this talk, role of low energy accelerators in research and industry as well as medicine will be discussed. (author)

  8. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  9. Report of promotion expert commission for radiation application on 'Promotion of accelerator application study'

    International Nuclear Information System (INIS)

    1997-01-01

    This is a report published on June, 1996, by promotion expert commission for radiation application of the Atomic Energy Commission. Japanese research and development in the fields of forming and application techniques of radiation beams using accelerator is at comparatively high level in the world, and it seems to be important for Japan not only to maintain these research and development level but also to contribute to creation of worldwide intelligent welfare due to scientific technology. In this report, some investigations are conducted on present state and future view of the radiation application study using accelerator, accelerator facility necessary to promote such application study and a procedure to execute its smooth application. However, objects of the study are not limited only for physical study on elementary particle and atomic nucleus, but expanded to photon, electron, positron, muon, proton, neutron, various inonic beams and RI beams for radiations, which are widely applied to industries such as materials science, material engineering, bio-and life-science, medical science, technical engineering, and so forth, and which will be expected for large contribution to development of these industries. The following items are discussed here; 1) present state and future view of radiation application study using accelerator, 2) Accelerator to be prepared and its executing method, and 3) Promotion method of the accelerator application study. (G.K.)

  10. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  11. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  12. Application of electron accelerator worldwide

    International Nuclear Information System (INIS)

    Machi, Sueo

    2003-01-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  13. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  14. On the application of low-energy electrostatic accelerators

    International Nuclear Information System (INIS)

    Petkov, I.; Khristov, H.

    1982-01-01

    The scientific and applied problems which can be solved by small electrostatic accelerators have been reviewed. Problems connected with thermonuclear fusion, nuclear astrophysics, element and isotope analysis, and detector calibration have been considered, as well as applications of beams of accelerated microparticles of picogram and nanogram masses. Some particular research examples are presented, and the corresponding experimental setup is descibed. The problems pointed out are of a considerable scientific and practical interest for the application of the 2 MV-electrostatic accelerator which is being developed in INRNE, Sofia. (authors)

  15. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  16. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  17. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  18. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  19. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  20. Neural computation and particle accelerators research, technology and applications

    CERN Document Server

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  1. Ultra-High Intensity Proton Accelerators and their Applications

    International Nuclear Information System (INIS)

    Weng, W. T.

    1997-01-01

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses

  2. Quantum computing accelerator I/O : LDRD 52750 final report

    International Nuclear Information System (INIS)

    Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.

    2003-01-01

    In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work

  3. Optimization and application of electron acceleration in relativistic laser plasmas

    International Nuclear Information System (INIS)

    Koenigstein, Thomas

    2013-01-01

    This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.

  4. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  5. JAERI electrostatic accelerators for multiple ion beam application

    International Nuclear Information System (INIS)

    Ishii, Yasuyuki; Tajima, Satoshi; Takada, Isao

    1993-01-01

    An electrostatic accelerators facility of a 3MV tandem accelerator, a 3MV single-ended accelerator and a 400kV ion implanter was completed mainly for materials science and biotechnology research at JAERI, Takasaki. The accelerators can be operated simultaneously for multiple beam application in triple and dual beam modes. The single-ended machine was designed to satisfy an extremely high voltage stability of ±1x10 -5 to provide a submicron microbeam stably. The measured voltage stability and ripple were within the designed value. (author)

  6. Present Trends In The Configurations And Applications Of Electrostatic Accelerator Systems

    International Nuclear Information System (INIS)

    Norton, Gregory A.; Klody, George M.

    2011-01-01

    Despite the worldwide economic meltdown during the past two years and preceding any stimulus program projects, the market for electrostatic accelerators has increased on three fronts: new applications developed in an expanding range of fields; technical enhancements that increase the range, precision, and sensitivity of existing systems; and new accelerator projects in a growing number of developing countries. From the single application of basic nuclear structure research from the 1930's into the 1970's, the continued expansion of new applications and the technical improvements in electrostatic accelerators have dramatically affected the configurations and capabilities of accelerator systems to meet new requirements. This paper describes examples of recent developments in cosmology, exotic materials, high resolution RBS, compact AMS, dust acceleration, ion implantation, etc.

  7. Database application research in real-time data access of accelerator control system

    International Nuclear Information System (INIS)

    Chen Guanghua; Chen Jianfeng; Wan Tianmin

    2012-01-01

    The control system of Shanghai Synchrotron Radiation Facility (SSRF) is a large-scale distributed real-time control system, It involves many types and large amounts of real-time data access during the operating. Database system has wide application prospects in the large-scale accelerator control system. It is the future development direction of the accelerator control system, to replace the differently dedicated data structures with the mature standardized database system. This article discusses the application feasibility of database system in accelerators based on the database interface technology, real-time data access testing, and system optimization research and to establish the foundation of the wide scale application of database system in the SSRF accelerator control system. Based on the database interface technology, real-time data access testing and system optimization research, this article will introduce the application feasibility of database system in accelerators, and lay the foundation of database system application in the SSRF accelerator control system. (authors)

  8. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology; FINAL

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  9. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  10. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  11. Overview of Accelerator Applications for Security and Defense

    Science.gov (United States)

    Antolak, Arlyn J.

    Particle accelerators play a key role in a broad set of defense and security applications, including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization, and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat to developing a radiological dispersal device, and, can be used to produce isotopes for medical, industrial, and research purposes. An overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security is presented.

  12. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  13. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  14. New applications of particle accelerators in medicine, materials science, and industry

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future

  15. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2014-05-04

    Graphics Processing Units (GPUs) are gradually becoming mainstream in supercomputing as their capabilities to significantly accelerate a large spectrum of scientific applications have been clearly identified and proven. Moreover, with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually requires an in-depth knowledge of the hardware and software specifications. We suggest a prediction-based performance tuning mechanism [3] to quickly tune OpenACC parameters for a given application to dynamically adapt to the execution environment on a given system. This approach is applied to a finite difference kernel to tune the OpenACC gang and vector clauses for mapping the compute kernels into the underlying accelerator architecture. Our experiments show a significant performance improvement against the default compiler parameters and a faster tuning by an order of magnitude compared to the brute force search tuning.

  16. Genetic algorithms and their applications in accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Hofler, Alicia S. [JLAB

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  17. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  18. Report of the consultant's meeting on applications of accelerator based analysis

    International Nuclear Information System (INIS)

    1998-07-01

    At the present meeting, applications of accelerator based analytical methods, often referred as ion beam analysis (IBA) methods, to the following areas have been discussed: materials (including thin films), Earth sciences (including environmental studies), biology and medicine, art and archaeology (cultural heritage), and other applications (including forensic applications). This report gives brief overview of IBA applications in these areas, with short background about accelerators needed and corresponding analytical techniques

  19. Application of electron accelerator for thin film in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto; Darsono, Dadang

    2004-01-01

    Electron accelerator is widely used for the crosslinking of wire and cable insulation, the treatment of heat shrinkable products, precuring of tire components, and the sterilization of medical products. Research and development the use of electron accelerator for thin film in Indonesia covered radiation curing of surface coating, crosslinking of poly (butylenes succinate), crosslinking of wire, cable and heat shrinkable, sterilization of wound dressing, and prevulcanization of tire. In general, comparing with conventional method, electron beam processing have some advantages, such as, less energy consumption, much higher production rate, processing ability at ambient temperature and environmental friendly. Indonesia has a great potential to develop the application of electron accelerator, due to the remarkable growth industrial sector, the abundant of natural resources and the increasing demand of the high quality products. This paper describes the activities concerning with R and D, and application of electron accelerator for processing of thin film. (author)

  20. Architecture exploration of FPGA based accelerators for bioinformatics applications

    CERN Document Server

    Varma, B Sharat Chandra; Balakrishnan, M

    2016-01-01

    This book presents an evaluation methodology to design future FPGA fabrics incorporating hard embedded blocks (HEBs) to accelerate applications. This methodology will be useful for selection of blocks to be embedded into the fabric and for evaluating the performance gain that can be achieved by such an embedding. The authors illustrate the use of their methodology by studying the impact of HEBs on two important bioinformatics applications: protein docking and genome assembly. The book also explains how the respective HEBs are designed and how hardware implementation of the application is done using these HEBs. It shows that significant speedups can be achieved over pure software implementations by using such FPGA-based accelerators. The methodology presented in this book may also be used for designing HEBs for accelerating software implementations in other domains besides bioinformatics. This book will prove useful to students, researchers, and practicing engineers alike.

  1. Some important applications of accelerators in medicine and industry

    International Nuclear Information System (INIS)

    Jongen, Y.

    1996-01-01

    Accelerators, and cyclotrons in particular, have long been dedicated to research. Nowadays, they are industrial devices heavily used in various fields. The Belgian company Ion Beam Applications, probably the largest private company manufacturing cyclotrons, has largely contributed to the dissemination of this technology into the medical and radio-pharmaceutical community. This paper will present different applications of cyclotrons in these fields, from radioisotope production to radiotherapy, based on IBA's experience since 1986, date of construction of the CYCLONE 30 prototype, a cyclotron that revolutionized cyclotron technology for medicine and industry. Possible industrial applications of cyclotrons will also be mentioned, together with applications of another type of accelerator recently introduced in the market by IBA: the Rhodotron. (author)

  2. Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics

    International Nuclear Information System (INIS)

    Dragt, A.J.

    1987-01-01

    A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)

  3. Proceedings of the FNCA workshop on application of electron accelerator

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2003-02-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 28 January to 1 February, 2002. The Workshop was attended by experts on application of electron accelerator from each of the participating countries, i.e. China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam and 16 participants from Japan. A total of 17 papers including invited papers on the current status of application of electron accelerator in the participating countries were presented. The characteristics of various kinds of electron accelerators were introduced. Current research and development on the utilization radiation processing for natural rubber latex, natural polymer solution, polymer films, sterilization of spices and seeds, radiation treatment of flue gases and dioxin in liquid, solid, and gases were reported. Based on the proposed needs from the participating countries, the work plan was discussed and agreed on application of electron accelerator for liquid and for solid (thin films and granules/powder). All manuscripts submitted by every speaker were included in the proceedings. The 16 of the presented papers are indexed individually. (J.P.N.)

  4. Proceedings of the FNCA workshop on application of electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio; Kume, Tamikazu (eds.) [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 28 January to 1 February, 2002. The Workshop was attended by experts on application of electron accelerator from each of the participating countries, i.e. China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam and 16 participants from Japan. A total of 17 papers including invited papers on the current status of application of electron accelerator in the participating countries were presented. The characteristics of various kinds of electron accelerators were introduced. Current research and development on the utilization radiation processing for natural rubber latex, natural polymer solution, polymer films, sterilization of spices and seeds, radiation treatment of flue gases and dioxin in liquid, solid, and gases were reported. Based on the proposed needs from the participating countries, the work plan was discussed and agreed on application of electron accelerator for liquid and for solid (thin films and granules/powder). All manuscripts submitted by every speaker were included in the proceedings. The 16 of the presented papers are indexed individually. (J.P.N.)

  5. Induction linear accelerator technology for SDIO applications

    International Nuclear Information System (INIS)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser

  6. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  7. Applications of accelerator mass spectrometry: advances and innovation

    International Nuclear Information System (INIS)

    Fifield, L.K.

    2004-01-01

    Emerging trends in the applications of accelerator mass spectrometry (AMS) are identified and illustrated with specific examples. Areas of application covered include rapid landscape evolution, calibration of the radiocarbon time scale, compound-specific radiocarbon studies, tracing of nuclear discharges, and searches for extraterrestrial isotopes

  8. Technology and application of two sets of industrial electron accelerators

    International Nuclear Information System (INIS)

    Hua Degen

    2000-01-01

    The radiation industry in China Academy of Engineering Physics (CAEP) has had a big scale, and the two sets of industrial electron accelerators play important roles. The Electron Processing System (E.P.S), which was introduced in 1987, is a powerful electron accelerator. And the 10 MeV Accelerator, which is a traveling wave linear electron accelerator, has the higher electron energy. Both of the stes are equipped the driving devices under the beam, and has made a considerable economic results. This article describes the technology and application of the two electron accelerators. (author)

  9. Proceeding on the Scientific Meeting and Presentation on Accelerator Technology and Its Applications

    International Nuclear Information System (INIS)

    Susilo Widodo; Darsono; Slamet Santosa; Sudjatmoko; Tjipto Sujitno; Pramudita Anggraita; Wahini Nurhayati

    2015-11-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PSTA BATAN on 30 November 2015. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 20 papers about physics and nuclear reactor. (PPIKSN)

  10. Innovative applications of genetic algorithms to problems in accelerator physics

    Directory of Open Access Journals (Sweden)

    Alicia Hofler

    2013-01-01

    Full Text Available The genetic algorithm (GA is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  11. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  12. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  13. Tools for man-machine interface development in accelerator control applications

    International Nuclear Information System (INIS)

    Kopylov, L.; Mikhev, M.; Trofimov, N.; Yurpalov, V.

    1994-01-01

    For the UNK Project a development of the Accelerator Control Applications is in the progress. These applications will use a specific Graphical User Interface for data presentation and accelerator parameter management. A number of tools have been developed based on the Motif Tool Kit. They contain a set of problem oriented screen templates and libraries. Using these tools, full scale prototype applications of the UNK Tune and Orbit measurement and correction were developed and are described, as examples. A subset of these allows the creation of the synoptic control screens from the Autocad pictures files and Oracle DB equipment descriptions. The basic concepts and a few application examples are presented. ((orig.))

  14. The application of accelerator for medical therapy in Indonesia

    International Nuclear Information System (INIS)

    Yunasfi; Mudjiono; Irwati, Dwi; Hanifa

    2003-01-01

    The study of the application of accelerator for medical therapy in Indonesia was carried out. Accelerator that used for therapy is an electron lintier accelerator (Linac) which can radiate electron beam and X-ray. This study shows that there are 8 unit of Linac distributed at 6 big hospitals in Indonesia, especially in Jakarta. This study also shows that radiotherapy facilities in Indonesia is un sufficient of. Therefore, providing radiotherapy facilities for hospitals, especially the big hospitals in Indonesia is necessary

  15. International topical meeting on nuclear research applications and utilization of accelerators. Book of abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    Applications of particle accelerators cover a number of areas, from strategic and applied research, safety and security, environmental applications, materials research and analytical sciences, to radioisotope production and radiation processing. Accelerator based techniques and pulsed neutron sources are expected to lead to new initiatives in materials research of relevance for both the nuclear and non-nuclear fields. Material science studies with the use of accelerators, neutron beams and other nuclear analytical methods are relevant to the development of advanced reactors, nuclear fuel cycle needs and fusion research. In this regard, a better understanding of the irradiation effects in materials for energy and non-energy applications is needed, and is reflected in accelerator techniques for modification and analysis of materials for nuclear technologies. Accelerator applications for innovative nuclear systems aiming at rad-waste transmutation (e.g., accelerator driven systems) are being pursued in many countries. Research and development using accelerators involves a broad spectrum of skills to build a cadre of trained experts in nuclear techniques in IAEA Member States, and to generate knowledge for innovative methodologies and tools. The present conference is also being held in cooperation with the American Nuclear Society (ANS), which successfully organized the series of accelerator applications conferences known as AccApp. The ANS series of topical meetings has provided a forum for the global exchange of scientific and technical knowledge on a wide variety of related topics since the first AccApp took place in 1997 in Albuquerque, USA. The last conference which was held in 2007 in Pocatello, USA, was jointly organized by the ANS and the IAEA. The main objectives of the conference are to promote exchange of information among IAEA Member States representatives/delegates and to discuss new trends in accelerator applications including nuclear materials research

  16. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  17. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  18. High-quality laser-accelerated ion beams for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); American University of Sharjah (United Arab Emirates)

    2009-07-01

    Cancer radiation therapy requires accelerated ion beams of high energy sharpness and a narrow spatial profile. As shown recently, linearly and radially polarized, tightly focused and thus extremely strong laser beams should permit the direct acceleration of light atomic nuclei up to energies that may offer the potentiality for medical applications. Radially polarized beams have better emittance than their linearly polarized counterparts. We put forward the direct laser acceleration of ions, once the refocusing of ion beams by external fields is solved or radially polarized laser pulses of sufficient power can be generated.

  19. Industrial and medical applications of accelerators with energies less than 20 MeV

    International Nuclear Information System (INIS)

    Duggan, J.L.

    1983-01-01

    In this paper the medical and industrial application of small accelerators is reviewed. Most of the material is taken from the Seventh Conference on the Application of Accelerators in Research and Industry, which was held in Denton, Texas in November of 1982. The areas covered include medical linacs, cyclotron design and production of medical radioisotopes, radiation processing, ion implantation for the metallurgical and semiconductor industries, oil and mineral exploration, trace, surface and bulk analysis, and unique accelerators for all of the above applications

  20. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  1. Portable linear accelerator development. Final report

    International Nuclear Information System (INIS)

    Schonberg, R.G.

    1983-01-01

    The final report on Project RP 822-6 describes the MINAC 3 development from the recognition of need for a lightweight, portable high-energy device to the successful completion and field use of the MINAC. MINAC, which represents a substantial improvement in field radiographic capability and in technology, rapidly transitioned from proof-of-principle (1978 to 1980) to field-proven product (1980 to 1981). As a result, the decision has been made to develop this report as a users guide as well as a historic record of design, development, and testing program. The first section of this report has the following principal objectives: to describe the existing MINAC equipment capabilities and achievable modifications; to provide applications information for prospective users; and to provide technical information on high-energy radiography useful for familiarization and planning. The users guide section is followed by sections which describe the design basis, development, and application history of MINAC through the course of EPRI RP822 research projects 1 to 5, inclusively

  2. Applications of electron accelerator in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman Hj. Mohd Dahlan [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Selangor Darul Ehsan (Malaysia)

    2003-02-01

    Current status of radiation processing, as one of the core research programs of the Malaysian Institute for Nuclear Technology Research (MINT), is presented. Industrial applications of six electron accelerators from 150 kV up to 3 MV in Malaysia now in operation are mainly for curing of surface coatings, crosslinking of tubes, heat shrinkable tubes and packaging films, crosslinking of wire insulation. Their performances are listed. New technology now in R and D stage includes natural rubber, sago starch and chitosan for biomedical applications, and radiation curable materials from oil palm for pressure sensitive adhesive and printing ink. (S. Ohno)

  3. Applications of electron accelerator in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj. Mohd Dahlan

    2003-01-01

    Current status of radiation processing, as one of the core research programs of the Malaysian Institute for Nuclear Technology Research (MINT), is presented. Industrial applications of six electron accelerators from 150 kV up to 3 MV in Malaysia now in operation are mainly for curing of surface coatings, crosslinking of tubes, heat shrinkable tubes and packaging films, crosslinking of wire insulation. Their performances are listed. New technology now in R and D stage includes natural rubber, sago starch and chitosan for biomedical applications, and radiation curable materials from oil palm for pressure sensitive adhesive and printing ink. (S. Ohno)

  4. New applications of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Davis, J.C.

    1991-01-01

    Since its invention in the late 70's, and reduction to near-routine practice by the mid-80's, accelerator mass spectrometry (AMS) has become a powerful tool for archaeological and geochemical measurements in which cosmogenic isotopes such as 10 Be, 14 C, 26 Al, 36 Cl and 129 I are used as either tracers or chronometers. The utility of such measurements is demonstrated by the fact that most accelerators having AMS capabilities have significant backlogs of samples awaiting measurement. In designing and justifying a new accelerator facility in which AMS was to be a major feature, we sought to advance the field and increase the resources available for it by two steps: (1) development of new research applications in which intentionally added isotopic labels were used rather than just naturally present ones; and (2) enhancement of spectrometer throughout, making new classes of experiments possible by greatly increasing the number of samples that could be measured in individual experiments. Results of the effort to date suggest that development of a family of very small spectrometers optimized for just tritium and/or radiocarbon will be attractive in the near future

  5. Summary of the Accelerator-Driven Transmutation Technologies and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Wanger, T.P.

    1995-10-01

    During the past 15 years many advances have been made in the technology of high-power accelerators, and in the understanding of the beam-physics issues associated with their high-performance requirements. These developments have contributed significantly to the high level of confidence in the practicality of the applications that were the central point of the international Accelerator-Driven Transmutation Technologies (ADTT) Conference. Even so, there are many accelerator topics that needed to be addressed, and the Conference provided the opportunity to address these issues.

  6. Electron accelerators and applications in Korea

    International Nuclear Information System (INIS)

    Han, Bumsoo

    2006-01-01

    Types of high-energy radiation were discovered more than one hundred years ago. Since then, properties of radiation providing ability to modify physico-chemical properties of materials have found many applications. Radiation technologies applying gamma sources as well as electron accelerators for treatment of materials are well-established processes. Worldwide, there are over 2000 industrial gamma irradiators and 1,300 industrial electron accelerators in operation that are being widely used for sterilization, food irradiation and polymer processing. Indeed, radiation processing is today a well established multi-billion dollar industry world over that is providing unique high value products for mankind in an environmentally friendly manner. Electron accelerators are introduced at late 70s in Korea, firstly for researches and later for insulated wire and cable production, and up to now, over 30 accelerators are used in industries. They are mainly for cable productions, thermo-shrinkable materials, foam sheets, coating and curing and others. While polymerization and polymer modification have proved to be the most widespread applications of radiation processing, many other applications, such as environmental protection is becoming an increasingly important concern in industrialized nations, and wide ranging investigations have identified several areas of waste control to which radiation processing may contribute. In recent years, large metropolitan cities including Seoul, Tokyo and other major cities have been facing the challenge of increasing environmental pollution resulting from ever increasing population and industrial activities. As a result, issues regarding environmental pollution, be it air, liquid or solid, are becoming significant matters of concern. The realization that such pollutants pose a serious threat to human health has necessitated the need for development of cost effective and environmentally friendly technologies to overcome the problem. Radiation

  7. IAEA consultant's meeting on analysis of the present status of low energy accelerators and auxiliary systems. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The interest in the use of low energy accelerators generally has shifted from nuclear structure studies to applications. These applications are in such diverse fields as Biomedicine, Environment, Geological Sciences and Industry. Many of these applications may be directly relevant to problems and needs of developing countries. To promote growth in basic science and education as well as the utilization of the new applications will require new equipment. It is not within the character of this committee to recommend specific equipment for specific applications within a given country. However we will give the characteristics of low energy nuclear accelerators pointing out for which application they might be useful

  8. Fast risetime BLT switches for accelerators applications

    International Nuclear Information System (INIS)

    Kirkman-Amemiya, G.; Reinhardt, N.; Choi, M.S.; Gundersen, M.A.

    1991-01-01

    Several particle accelerator systems require repetitive switches capable to switching peak currents of several kA with short risetimes, in particular kicker magnets used to transfer particle beams from one section of an accelerator to another require current pulses that rise from zero to 100% in a time determined by the separation between particle bunches which can be only 10's of nsec in some applications. One particular application is the injection and extraction kickers for the low energy booster (LEB) of the superconducting super collider (SSC) which requires < 50nsec 0-99% risetime. Another system with similarly strict risetime requirement is the kicker for the Stanford Linear Collider electron damping rings. In this work, a fast risetime BLT switch which has demonstrated 17kA at 30kV with < 60nsec risetime, 1.5kA at 20kV with < 18nsec risetime, and up to 240Hz operation at 20kV, 7kA is reported. A tetrode triggering method is described which reduces risetime by eliminating prepulse behavior

  9. Novel applications of particle accelerators to radiotherapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Universidad Nacional de San Martin, Villa Ballester

    2002-01-01

    Charged hadrons (protons and heavier ions) have very definite advantages over photons as far as radiotherapy applications are concerned. They allow for much better spatial dose localization due to their charge, relatively high mass and nature of the energy deposition process. In the frame of an attempt to promote the introduction of hadrontherapy in Argentina an external beam facility has been installed at our tandem accelerator TANDAR. The advantages of heavy ions can only be fully exploited for tumors of well defined localization. In certain types of malignancies, however, the region infiltrated by tumor cells is diffuse, with no sharp boundaries and with microscopic ramifications. In such cases (particularly in certain brain cancers) a more sophisticated scheme has been suggested called boron neutron capture therapy (BNCT). In this work, the use of the Tandar accelerator to produce neutrons for feasibility studies for BNCT through low-energy proton beams on a thick LiF target is being briefly described. Studies on the 13 C(d,n) reaction and a comparison with other neutron-producing reactions are also mentioned. Simulation work to optimize an accelerator-based neutron production target is discussed. A project is being prepared to develop a small proton accelerator in Argentina. Technical specifications of this machine are briefly discussed. (author)

  10. Application of pulse power technology to ultra high energy electron accelerators

    International Nuclear Information System (INIS)

    Nation, J.A.

    1989-01-01

    The author presents in this paper a review of the application of pulse power technology to the development of high gradient electron accelerators. The technology demands are relatively modest compared to the ultra high power technology used for inertial confinement fusion drivers. With the advent of magnetic switching intense electron beams can be generated with a sufficiently high repetition rate to be of interest for high energy electron accelerator driver applications. Most of the techniques considered rely on the excitation of large amplitude waves on the beams. Within this framework there are two broad categories of accelerator, those in which the waves are directly excited in and supported by the medium and, secondly, those where the waves are used to generate radiofrequency signals which are then coupled via structures to the beam being accelerated. In what follows we shall consider both approaches. Present-day pulse power technology limits pulse durations to about 100 nsec. Consequently, if these sources are to be used, we will need to use high group velocity structures to avoid the need for short accelerator module lengths. An advantage of the short pulse duration is that the available acceleration voltage gradient increases compared to that obtained using conventional rf drivers. 19 references, 9 figures, 1 table

  11. Utilization of pion production accelerators in biomedical applications

    International Nuclear Information System (INIS)

    Rosen, L.

    1979-01-01

    A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed

  12. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb; Feki, Saber

    2014-01-01

    , with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually

  13. Challenges and goals for accelerators in the XXI century

    CERN Document Server

    Brüning, Oliver

    2016-01-01

    The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades.

  14. Characterization Study of Accelerator for Application in Biotechnology

    International Nuclear Information System (INIS)

    Yazid-M; Muryono, H.

    2000-01-01

    The characterization of accelerator for application in biotechnology was studied. Accelerator is a machine to produce ion beam particles. Accelerator can be used for biotechnology experiments. Ion beam particles irradiation on the biological material will produced variabilities of genetics and induced mutations. In general, new varieties were found by hybridization method or mutation breeding method by gamma rays irradiation. Ion beam particles can be used for biological material irradiation to find variabilities of genetics and induced mutations. The high percentage of mutation rate and LET value by ion beam particles irradiation was found higher than by gamma rays irradiation. Ion beam particle irradiation can also be controlled and foewed to target in biological material. The characterization of accelerator needed for biotechnology experiments are types of accelerator (Tandem Van de Graff, AVF Cyclotron, Synchrotron, Rilac), types of ion particles (C, He, electron, Ar, Ne, Ni, Al, Xe and Au), range of energy (5 - 2.090 MeV), range of dose irradiation (10 - 250 Gy), range of ion current (0.02 - 20 nA), range of ion beam particles diameter (10 - 100 μm), range of LET value (300 - 1.800 keV/μm ) and irradiation time (5 - 30 seconds/samples). (author)

  15. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    Science.gov (United States)

    Sawant, M.; Christou, A.

    2012-12-01

    GaInP-MQW-DC, GaN-DH-DC, and GaN-DH-DC. Although the reported testing was carried out at different temperature and current, the reported data was converted to the present application conditions of the medical environment. Comparisons between the model data and accelerated test results carried out in the present are reported. The use of accelerating agent modeling and regression analysis was also carried out. We have used the Inverse Power Law model with the current density J as the accelerating agent and the Arrhenius model with temperature as the accelerating agent. Finally, our reported methodology is presented as an approach for analyzing LED suitability for the target medical diagnostic applications.

  16. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  17. Outline of FNCA project on application of electron accelerator

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2005-01-01

    FNCA (Forum for Nuclear Cooperation in Asia) activities in the field of electron accelerator applications are reported. The paper mainly reports on the achievement of the 3rd workshop to discuss status of utilization of electron accelerator for thin films/hydrogel in the FNCA participating countries, China, Indonesia, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam, held in August, 2003, at Kuala Lumpur. Cross-linking of thin film from sago starch polymer blend using the Cureton (200 keV, 20 mA) and cross-linking of hydrogel for wound dressing and CMC paste-like sheet using the medium energy (3.0 MeV, 30 mA) electron accelerator of MINT (from Malaysia) were successfully demonstrated. Efforts are being made by Vietnam, Thailand and Philippines having no electron accelerator to acquire the machine for R and D and commercial use in the near future. (S. Ohno)

  18. Application of on-line analytical processing technique in accelerator

    International Nuclear Information System (INIS)

    Xie Dong; Li Weimin; He Duohui; Liu Gongfa; Xuan Ke

    2005-01-01

    A method of application of the on-line analytical processing technique in accelerator is described, which includes data pre-processing, the process of constructing of data warehouse and on-line analytical processing. (authors)

  19. The use and potential application of electron accelerator in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2003-01-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  20. The use and potential application of electron accelerator in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  1. Applications of the ARGUS code in accelerator physics

    International Nuclear Information System (INIS)

    Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.

    1993-01-01

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper

  2. Proceeding on the scientific meeting and presentation on accelerator technology and its applications: physics, nuclear reactor

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Sudjatmoko; Darsono; Tri Marji Atmono; Tjipto Sujitno; Wahini Nurhayati

    2012-01-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PTAPB BATAN on 13 December 2011. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 23 papers about physics and nuclear reactor. (PPIKSN)

  3. Very fast kicker for accelerator applications

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1996-11-01

    We describe a very fast counter traveling wave kicker with a full pulse width of about 7 ns. Successful test experiment has been done with hi-tech semiconductor technology FET pulse generator with a MHz- range repetition rates and maximum kick strength of the order of 3 G·m. Further. increase of the strength seems to be quite possible with the FET pursers, that makes the kicker to be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications

  4. CAS Accelerators for Medical Applications in Vösendorf, Austria

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) and MedAustron jointly organised a course on Accelerators for Medical Applications in Vösendorf, Austria between 26 May and 5 June 2015. The course was held at the Eventhotel Pyramide on the outskirts of Vienna, and was attended by 76 participants from 29 countries, coming from as far away as Canada, China, Lithuania, Thailand, Ukraine and Russia.       The intensive programme comprised 37 lectures. The emphasis was on using charged particle beams for cancer therapy and the programme began by covering the way in which particles interact with biological material, how this translates into the dose needed for treatment and how this dose is best delivered. The different accelerator options for providing the particles needed were then presented in some detail. The production of radioisotopes and how these are used for diagnostics and therapy was also covered, together with a look at novel acceleration techniques that may play a role i...

  5. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  6. Development of a two-beam high-current ion accelerator based on Doppler effect. Final report (1994)

    International Nuclear Information System (INIS)

    Ivanov, B.I.; Yegorov, A.M.

    1995-03-01

    This Final Report presents the results of work accomplished in accordance with the Scope of Work to the Purchase Order No 4596310. The amount of works includes the following items: 1. Start of the manufacture of the Experimental Accelerating Stand (EAS)-the section for proton acceleration from 5 MeV to 8 MeV, in which RF fields are excited by an electron beam at the anomalous Doppler effect. 2. Theoretical investigation and computer simulation of field excitation and ion acceleration in the EAS. Under item 1, the EAS manufacturing is begun. To present time, a pedestal for the EAS and a stainless steel vacuum chamber for RF resonator are made (length of the chamber is about 180 cm, diameter is about 40 cm). Besides, parts of the EAS resonator with the acceleration structure are manufactured, and its assembly is begun. Under item 2, it is realized three works: calculation of increment and frequency shift of the EAS resonator excited by electron beam, calculation of the solenoid for creation of magnetic field with required spatial distribution, and theoretical investigation and computer simulation of ion acceleration in the EAS. 14 figs., 16 refs

  7. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  8. A compact, repetitive accelerator for military and industrial applications

    International Nuclear Information System (INIS)

    Zutavern, F.J.; O'Malley, M.W.; Ruebush, M.H.; Rinehart, L.F.; Loubriel, G.M.; Babcock, S.R.; Denison, G.J.

    1998-04-01

    A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser

  9. Outline of application plans of accelerator beams in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has various application plans of accelerators such as; Neutron Science Research Complex (NSRC), Positron Factory, International Fusion Material Irradiation Facility (IFMIF), and Spring-8 Project. Each application plan has its own research program and its own core accelerator. The NSRC is a multi-purpose research complex composed of seven research facilities: slow neutron scattering facility for material science, the nuclear energy research facility like nuclear transmutation and so on. The Positron Factory will be applied to the research of precise analysis of material structure by novel method of positron probing. The IFMIF aims at simulating the wall loading of a demo fusion reactor by producing high intense neutron flux. The SPring-8 is the largest synchrotron radiation source in the world. More than 60 X-ray beam lines will be equipped for the various researches. (author)

  10. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    International Nuclear Information System (INIS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.

    2014-01-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies

  11. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Busold, S., E-mail: s.busold@gsi.de [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Almomani, A. [Institut für angewandte Physik, Johann-Wolfgang-Goethe-Universität Frankfurt, Max von Laue Straße 1, D-60438 Frankfurt (Germany); Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Barth, W. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Bedacht, S. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Boine-Frankenheim, O. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, D-64289 Darmstadt (Germany); and others

    2014-03-11

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  12. ELIMED, future hadrontherapy applications of laser-accelerated beams

    International Nuclear Information System (INIS)

    Cirrone, Giuseppe A.P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-01-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum

  13. ELIMED, future hadrontherapy applications of laser-accelerated beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, Giuseppe A.P. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Carpinelli, Massimo [INFN Sezione di Caglari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, Giacomo; Gammino, Santo [INFN-LNS, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Korn, Georg [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Maggiore, Mario [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); INFN-LNL, Legnaro (Italy); Manti, Lorenzo [University Federico II of Naples, Dip.to di Scienze Fisiche, Naples (Italy); Margarone, Daniele; Prokupek, Jan [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Renis, Marcella [University of Catania, Catania (Italy); Romano, Francesco [INFN-LNS, Catania (Italy); Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Schillaci, Francesco, E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Tomasello, Barbara [University of Catania, Catania (Italy); Torrisi, Lorenzo [INFN-LNS, Catania (Italy); Dip. to di Fisica, University of Messina, Messina (Italy); Tramontana, Antonella [INFN-LNS, Catania (Italy); Velyhan, Andriy [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum.

  14. Some advances in medical applications of low energy accelerators

    Science.gov (United States)

    Valković, V.; Moschini, G.

    1991-05-01

    Medical applications of low energy accelerators include: the use of nuclear analytical methods and procedures for laboratory studies and routine measurements; material productions and modifications to meet special requirements; radioisotope productions and their applications in radiopharmaceuticals as well as in positron emission tomography; and radiotherapy with ions, based on improved understanding of the interaction of charged particles with living tissue. Some of the recent advances in these fields are critically summarized. The plan for an improved charged particle facility in a hospital environment dedicated to applications in biology and medicine is presented.

  15. Panel on accelerators and detectors in the 1950s

    International Nuclear Information System (INIS)

    Jones, L.W.; Amaldi, U.; Hofstadter, R.; Kerst, D.W.; Wilson, R.R.

    1989-01-01

    The article takes the form of a panel of famous particle physics scientists discussing accelerator design and detectors used in the 1950s. The discussion ranges over accelerator energy capacities, the invention of alternating-gradient focusing, and colliding beam machines, beam stacking and the application of digital computers to accelerator calculations. The development of particle beams using strong-focusing lenses and electrostatic separators rounded off the decade. Detectors moved from bubble chambers, the use of plastic and inorganic scintillators, to hadron calorimeters, Cherenkov counters and finally spark chambers. Various discoveries made using sodium iodide scintillation counters are noted. (UK)

  16. Proceeding of the Scientific Meeting and Presentation on Accelerator Technology and its Application

    International Nuclear Information System (INIS)

    Sudjatmoko; Anggraita, P.; Darsono; Sudiyanto; Kusminarto; Karyono

    1999-07-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on Accelerator Technology and Its Application, held in Yogyakarta, 16 january 1996. This proceeding contains papers on accelerator technology, especially electron beam machine. There are 11 papers indexed individually. (ID)

  17. rf quadrupole linac: a new low-energy accelerator

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Fuller, C.W.

    1980-01-01

    A new concept in low-energy particle accelerators, the radio-frequency quadrupole (RFQ) linac, is currently being developed at the Los Alamos National Scientific Laboratory. In this new linear accelerating structure both the focusing and accelerating forces are produced by the rf fields. It can accept a high-current, low-velocity dc ion beam and bunch it with a high capture efficiency. The performance of this structure as a low-energy linear accelerator has been verified with the successful construction of a proton RFQ linac. This test structure has accelerated 38 mA of protons from 100 keV to 640 keV in 1.1 meters with a capture efficiency greater than 80%. In this paper a general description of the RFQ linac and an outline of the basic RFQ linac design procedure are presented in addition to the experimental results from the test accelerator. Finally, several applications of this new accelerator are discussed

  18. Applications of accelerators in industry, medicine, agriculture and environmental protection future trends

    International Nuclear Information System (INIS)

    Soni, H.C.

    2001-01-01

    Due to remarkable development in accelerator related technologies during past two and half decades, it has become possible to construct a tailor made accelerator most suited for a specific application. This in turn has resulted in tremendous advantage in terms of cost of process or quality of process in comparison to conventional techniques

  19. Potential application of electron accelerators in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair; Mohd Dahlan, Khairul Zaman [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing.

  20. Potential application of electron accelerators in Malaysia

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid; Khairul Zaman Mohd Dahlan

    1994-01-01

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing

  1. High current pulsed linear ion accelerators for inertial fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Yonas, G.; Poukey, J.W.

    1978-01-01

    Pulsed ion beams have a number of advantages for use as inertial fusion drivers. Among these are classical interaction with targets and good efficiency of production. As has been pointed out by members of the accelerator community, multistage accelerators are attractive in this context because of lower current requirements, low power flow per energy conversion stage and low beam divergence at higher ion energies. On the other hand, current transport limits in conventional accelerators constrain them to the use of heavy ions at energies much higher than those needed to meet the divergence requirements, resulting in large, costly systems. We have studied methods of neutralizing ion beams with electrons within the accelerator volume to achieve higher currents. The aim is to arrive at an inexpensive accelerator that can advantageously use existing pulsed voltage technology while being conservative enough to achieve a high repetition rate. Typical output parameters for reactor applications would be an 0 + beam of 30 kA at 300 MeV. We will describe reactor scaling studies and the physics of neutralized linear accelerators using magnetic fields to control the electron dynamics. Recent results are discussed from PULSELAC, a five stage multikiloampere device being tested at Sandia Laboratories

  2. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  3. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  4. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  5. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    Directory of Open Access Journals (Sweden)

    Neil O Carragher

    2011-04-01

    Full Text Available Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates.

  6. Atomic Energy of Canada Limited applications of accelerators

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Ungrin, J.

    1988-01-01

    Accelerators have been tools in the physicist's arsenal since the early 1930's, and the requirements of the research laboratory have spawned most of the significant advances in the technology. The characteristics needed in medical and industrial applications frequently differ from those needed by researchers. The authors review a variety of applications in medical therapy; medical isotope production; sterilization of medical supplies, food and water; the production of synthetic materials; industrial radiography; borehole logging; gemstone colour changes; the production of micropore filters; material modifications; long-wavelength radiation generation; sewage treatment; stack gas cleaning; electronuclear breeding; laser weaponry; and rock spalling and tunneling

  7. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Science.gov (United States)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  8. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    International Nuclear Information System (INIS)

    Chen Teng; Central Florida Univ., Orlando, FL; Elias, L.R. R.; Central Florida Univ., Orlando, FL

    1995-01-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  9. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen Teng [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics; Elias, L.R. R. [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics

    1995-01-30

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  10. Radio-frequency quadrupole: a new linear accelerator

    International Nuclear Information System (INIS)

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1981-01-01

    In many Laboratories, great emphasis now is placed on the development of linear accelerators with very large ion currents. To achieve this goal, a primary concern must be the low-velocity part of the accelerator, where the current limit is determined and where most of the emittance growth occurs. The use of magnetic focusing, the conflicting requirements in the choice of linac frequency, and the limitations of high-voltage dc injectors, have tended to produce low-velocity designs that limit overall performance. The radio-frequency quadrupole (RFQ) linear accelerator, invented in the Soviet Union and developed at Los Alamos, offers an attractive solution to many of these low-velocity problems. In the RFQ, the use of RF electric fields for radial focusing, combined with special programming of the bunching, allows high-current dc beams to be captured and accelerated with only small beam loss and low radial emittance growth. Advantages of the RFQ linac include a low injection energy (20 to 50 keV for protons) and a final energy high enough so the beam can be further accelerated with high efficiency in a Wideroee or Alvarez linac. These properties have been confirmed at Los Alamos in a highly successful experimental test performed during the past year. The success of this test and the advances in RFQ design procedures have led to the adoption of this linac for a wide range of applications. The beam-dynamics parameters of three RFQ systems are described. These are the final design for the protytype test of the Fusion Materials Irradiation Test (FMIT) accelerator, the final design for the prototype test of the Pion Generator for Medical Irradiations (PIGMI), and an improved low-velocity linac for heavy ion fusion

  11. Application of accelerator mass spectrometry in nuclear science

    International Nuclear Information System (INIS)

    Wang Xiaobo; Hu Jinjun; Wang Huijuan; Guan Yongjing; Wang Wei

    2013-01-01

    Accelerator mass spectrometry (AMS) is a promising method to provide extreme sensitivity measurements of the production yields of long-lived radioisotopes, which cannot be detected by other methods. AMS technique plays an important role in the research of nuclear physics, as well as the application field of AMS covered nuclear science and technology, life science, earth science, environmental science, archaeology etc. The newest AMS field is that of actinide, particularly U and Pu, isotopic assay with expanding applications in nuclear safeguards and monitoring, and as a modern bomb-fallout tracer for atmospheric transport and surface sediment movement. This paper reviews the applications of AMS in the research of nuclear energy and nuclear security including the research of half life of radionuclides, cross section of nuclear reaction. (authors)

  12. Dedicated medical ion accelerator design study. Final report

    International Nuclear Information System (INIS)

    1977-12-01

    Results and conclusions are reported from a design study for a dedicated medical accelerator. Basing efforts on the current consensus regarding medical requirements, the resulting demands on accelerator and beam delivery systems were analyzed, and existing accelerator technology was reviewed to evaluate the feasibility of meeting these demands. This general analysis was augmented and verified by preparing detailed preliminary designs for sources of therapeutic beams of neutrons, protons and heavy ions. The study indicates that circular accelerators are the most desirable and economical solutions for such sources. Synchrotrons are clearly superior for beams of helium and heavier ions, while synchrotrons and cyclotrons seem equally well suited for protons although they have different strengths and weaknesses. Advanced techniques of beam delivery are of utmost importance in fully utilizing the advantages of particle beams. Several issues are invloved here. First, multi-treatment room arrangements are essential for making optimal use of the high dose rate capabilities of ion accelerators. The design of corresponding beam switching systems, the principles of which are already developed for physics experimental areas, pose no problems. Second, isocentric beam delivery substantially enhances flexibility of dose delivery. After several designs for such devices were completed, it was concluded that high field magnets are necessary to keep size, bulk and cost acceptable. Third, and most important, is the generation of large, homogeneous radiation fields. This is presently accomplished with the aid of scattering foils, occluding rings, collimators, ridge filters, and boluses. A novel approach, three-dimensional beam scanning, was developed here, and the most demanding components of such a system (fast-scanning magnet and power supply) were built and tested

  13. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  14. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  15. Applications toolkit for accelerator control and analysis

    International Nuclear Information System (INIS)

    Borland, M.

    1997-01-01

    The Advanced Photon Source (APS) has taken a unique approach to creating high-level software applications for accelerator operation and analysis. The approach is based on self-describing data, modular program toolkits, and scripts. Self-describing data provide a communication standard that aids the creation of modular program toolkits by allowing compliant programs to be used in essentially arbitrary combinations. These modular programs can be used as part of an arbitrary number of high-level applications. At APS, a group of about 70 data analysis, manipulation, and display tools is used in concert with about 20 control-system-specific tools to implement applications for commissioning and operations. High-level applications are created using scripts, which are relatively simple interpreted programs. The Tcl/Tk script language is used, allowing creating of graphical user interfaces (GUIs) and a library of algorithms that are separate from the interface. This last factor allows greater automation of control by making it easy to take the human out of the loop. Applications of this methodology to operational tasks such as orbit correction, configuration management, and data review will be discussed

  16. Production and applications of quasi-monoenergetic electron bunches in laser-plasma based accelerators

    International Nuclear Information System (INIS)

    Glinec, Y.; Faure, J.; Ewald, F.; Lifschitz, A.; Malka, V.

    2006-01-01

    Plasmas are attractive media for the next generation of compact particle accelerators because they can sustain electric fields larger than those in conventional accelerators by three orders of magnitude. However, until now, plasma-based accelerators have produced relatively poor quality electron beams even though for most practical applications, high quality beams are required. In particular, beams from laser plasma-based accelerators tend to have a large divergence and very large energy spreads, meaning that different particles travel at different speeds. The combination of these two problems makes it difficult to utilize these beams. Here, we demonstrate the production of high quality and high energy electron beams from laser-plasma interaction: in a distance of 3 mm, a very collimated and quasi-monoenergetic electron beam is emitted with a 0.5 nanocoulomb charge at 170 ± 20 MeV. In this regime, we have observed very nonlinear phenomena, such as self-focusing and temporal self-shortenning down to 10 fs durations. Both phenomena increase the excitation of the wakefield. The laser pulse drives a highly nonlinear wakefield, able to trap and accelerate plasma background electrons to a single energy. We will review the different regimes of electron acceleration and we will show how enhanced performances can be reached with state-of-the-art ultrashort laser systems. Applications such as gamma radiography of such electron beams will also be discussed

  17. Left-Handed Metamaterials Studies and their Application to Accelerator Physics

    CERN Document Server

    Antipov, Sergey P; Liu Wan Ming; Power, John G

    2005-01-01

    Recently, there has been a growing interest in applying artificial materials, known as Left-Handed Metamaterials (LHM), to accelerator physics. These materials have both negative permittivity and permeability and therefore possess several unusual properties: the index of refraction is negative and the direction of the group velocity is antiparallel to the direction of the phase velocity (along k). These properties lead to a reverse Cherenkov effect, which has potential beam diagnostic applications, in addition to accelerator applications. Several LHM devices with different configurations are being experimentally and theoretically studied at Argonne. In this paper, we describe permittivity and permeability retrieval techniques that we have developed and applied to these devices. We have also investigated the possibility of building a Cherenkov detector based on LHM and propose an experiment to observe the reverse radiation generated by an electron beam passing through a LHM. The potential advantage of a LHM de...

  18. Current and future industrial application of electron accelerators in Thailand

    International Nuclear Information System (INIS)

    Siri-Upathum, Chyagrit

    2003-01-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  19. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  20. Analysis and design of a slotless tubular permanent magnet actuator for high acceleration applications

    NARCIS (Netherlands)

    Meessen, K.J.; Paulides, J.J.H.; Lomonova, E.A.

    2009-01-01

    This paper presents the design of a linear actuator for high acceleration applications. In the analysis, a slotless tubular permanent magnet actuator is modeled by means of semianalytical field solutions. Several slotless topologies are modeled and compared to achieve the highest acceleration. A

  1. Accelerator beam application in science and industry

    International Nuclear Information System (INIS)

    Hagiwara, M.

    1996-01-01

    Various accelerator beams are being used widely in science and industry. The area of their applications is so wide and rapidly expanding. This paper focuses on recent efforts made in the field of radiation chemistry, especially in materials development using electron and ion beams. Concerning the applications of electron beams, synthesis of SiC fibers, improvement of radiation resistance of polytetrafluoroethylene (PTFE) and preparation of an adsorbent for uranium recovery from sea water were described. In the synthesis of SiC, the electron beams were used effectively to cross-link precursor fibers to prevent their deformation upon heating for their pyrolysis to SiC fibers. The improvement of radiation resistance of PTFE was resulted successfully by its crosslinking. As to the preparation of the adsorbent for uranium recovery, chelating resins containing amidoxime groups were shown to work as a good adsorbent of uranium from sea water. The Takasaki Radiation Chemistry Research Establishment of JAERI completed the accelerator facility named TIARA for R and D of ion beam applications three years ago. Some results were presented on the studies about radiation effects on solar cells and LSIs for space use and synthesis of functional materials. Radiation resistance of solar cells was tested with both electron and proton beams using a beam scanning technique for the irradiation to a wide area, and ultra-fast transient current induced by heavy ion microbeam was measured for studies on mechanisms of single event upset (SEU) in LSIs. In the synthesis of organic functional materials, a temperature responsive particle track membrane was developed. Techniques for RBS and NRA using heavy ion beams were established for analyzing structures of multi-layered materials. Single crystalline thin film of diamond was successfully formed on Si substrate under the deposition of mass separated C-12 ions of 100 eV. (author)

  2. Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, Oscar

    1989-12-15

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology.

  3. Applying the accelerator

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1989-01-01

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology

  4. Highly Productive Application Development with ViennaCL for Accelerators

    Science.gov (United States)

    Rupp, K.; Weinbub, J.; Rudolf, F.

    2012-12-01

    The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support

  5. 3D Metallic Lattices for Accelerator Applications

    CERN Document Server

    Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J

    2005-01-01

    We present the results of research on 3D metallic lattices operating at microwave frequencies for application in (1) accelerator structures with higher order mode suppression, (2) Smith-Purcell radiation beam diagnostics, and (3) polaritonic materials for laser acceleration. Electromagnetic waves in a 3D simple cubic lattice formed by metal wires are calculated using HFSS. The bulk modes in the lattice are determined using single cell calculations with different phase advances in all three directions. The Brillouin diagram for the bulk modes is presented and indicates the absence of band gaps in simple lattices except the band below the cutoff. Lattices with thin wires as well as with thick wires have been analyzed. The Brillouin diagram also indicates the presence of low frequency 3D plasmon mode as well as the two degenerate photon modes analogous to those in a 2D lattice. Surface modes for a semi-infinite cubic lattice are modeled as a stack of cells with different phase advances in the two directions alon...

  6. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  7. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    Science.gov (United States)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator

  8. Accelerator for medical applications and electron acceleration by laser plasma

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Uesaka, Mitsuru

    2006-01-01

    In this article, the current status of radiation therapies in Japan and updated medical accelerators are reviewed. For medical use, there is a strong demand of a compact and flexible accelerator. At present, however, we have only two choices of the S-band linac with one or two rotation axis combined with the multi leaf collimator, or the X-band linac with a rather flexible robotic arm. In addition, the laser plasma cathode that is the second generation of the laser wake-field accelerator (LWFA) is studied as a high-quality electron source for medical use though it is still at the stage of the basic research. The potential of LWFA as medical accelerator near future is discussed based on updated results of laser plasma cathode experiment in Univ. of Tokyo. (author)

  9. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  10. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Science.gov (United States)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  11. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2018-03-01

    Full Text Available A Low-level radio-frequency (LLRF control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  12. LIGHT - from laser ion acceleration to future applications

    Science.gov (United States)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  13. Application of Smalltalk language for accelerator control

    International Nuclear Information System (INIS)

    Mejuev, I.; Abe, I.; Nakahara, K.

    1997-01-01

    This paper describes the results of studies for object-oriented control system creation. Using VisualWorks environment based on Smalltalk we created a set of programs, such as Control Model Editor, Control Model Scanner and Control Views, for developing and running an object-oriented model of an accelerator. Our system allows the user to easily create a class library which can be used to develop a number of control programs. The object model defines the object under control, the control logic and graphics for displaying control objects' states. Our experience shows that object-oriented software development is faster compared with traditional languages, and provides more functionality. VisualWorks is a multiplatform environment, and all applications can be ported to different operating systems with only minor changes. VisualWorks also provides high performance, which is important for time-critical control applications. (orig.)

  14. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  15. Special issue - Applying the accelerator

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    T'he CERN Courier is the international journal of high energy physics, covering current developments in and around this branch of basic science. A recurrent theme is applying the technology developed for particle accelerators, the machines which produce beams of high energy particles for physics experiments. Twentieth-century science is full of similar examples of applications derived from pure research. This special issue of the CERN Courier is given over to one theme - the applications of accelerators. Accelerator systems and facilities are normally associated with highenergy particle physics research, the search for fundamental particles and the quest to understand the physics of the Big Bang. To the layman, accelerator technology has become synonymous with large and expensive machines, exploiting the most modern technology for basic research. In reality, the range of accelerators and their applications is much broader. A vast number of accelerators, usually much smaller and operating for specific applications, create wealth and directly benefit the population, particularly in the important areas of healthcare, energy and the environment. There are well established applications in diagnostic and therapeutic medicine for research and routine clinical treatments. Accelerators and associated technologies are widely employed by industry for manufacturing and process control. In fundamental and applied research, accelerator systems are frequently used as tools. The biennial conference on the Applications of Accelerators in Industry and Research at Denton, Texas, attracts a thousand participants. This special issue of the CERN Courier includes articles on major applications, reflecting the diversity and value of accelerator technology. Under Guest Editor Dewi Lewis of Amersham International, contributions from leading international specialists with experience of the application end of the accelerator chain describe their fields of direct interest. The

  16. Special issue - Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-07-15

    T'he CERN Courier is the international journal of high energy physics, covering current developments in and around this branch of basic science. A recurrent theme is applying the technology developed for particle accelerators, the machines which produce beams of high energy particles for physics experiments. Twentieth-century science is full of similar examples of applications derived from pure research. This special issue of the CERN Courier is given over to one theme - the applications of accelerators. Accelerator systems and facilities are normally associated with highenergy particle physics research, the search for fundamental particles and the quest to understand the physics of the Big Bang. To the layman, accelerator technology has become synonymous with large and expensive machines, exploiting the most modern technology for basic research. In reality, the range of accelerators and their applications is much broader. A vast number of accelerators, usually much smaller and operating for specific applications, create wealth and directly benefit the population, particularly in the important areas of healthcare, energy and the environment. There are well established applications in diagnostic and therapeutic medicine for research and routine clinical treatments. Accelerators and associated technologies are widely employed by industry for manufacturing and process control. In fundamental and applied research, accelerator systems are frequently used as tools. The biennial conference on the Applications of Accelerators in Industry and Research at Denton, Texas, attracts a thousand participants. This special issue of the CERN Courier includes articles on major applications, reflecting the diversity and value of accelerator technology. Under Guest Editor Dewi Lewis of Amersham International, contributions from leading international specialists with experience of the application end of the accelerator chain describe their fields of direct interest. The contributions

  17. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  18. Application of accelerator in the medical aspects

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong; Yang Zhongping

    2014-01-01

    In recent years, the human life span compared with before there is an obvious increase in. With the extension of life, cancer incidence is increasing, at the same time, the diagnosis and treatment of cancer has been the development of. Based on the review of the past and present situation of diagnosis and treatment of cancer, the accelerator and the future to introduce, divided into the accelerator treatment, cancer diagnosis, accelerator accelerator with radioactive isotopes, medical accelerator conditions and medical accelerator built five content. (authors)

  19. New developments in design and applications for Pelletron accelerators

    International Nuclear Information System (INIS)

    Norton, Greg

    2002-01-01

    Most of the developments over the last several years related to Pelletron accelerator are in the field of accelerator mass spectrometry (AMS) and other low beam current applications with the exception of a very high DC electron recirculation Pelletron. High precision AMS systems based on tandem pelletrons from 500 kV to 5 MV terminal potential are now in use for routine high precision AMS measurements. Their performance will be reported. In addition, there has been significant advancement in the design of the multi-cathode SNICS source for the use of both gas and solid samples within a single source. The latest performance of these sources will be discussed. New diagnostics is being developed for very low beam currents. The latest design of the low current beam profile monitor (LCBPM) will also be presented. (author)

  20. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  1. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  2. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  3. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV.

    Science.gov (United States)

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-12-02

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.

  4. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV

    Directory of Open Access Journals (Sweden)

    Huanyu Li

    2016-12-01

    Full Text Available Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs, especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.

  5. Rapid application development by KEKB accelerator operators using EPICS/Python

    International Nuclear Information System (INIS)

    Tanaka, M.; Satoh, Y.; Kitabayashi, T.

    2004-01-01

    In the KEKB accelerator facility, the control system is constructed based on the framework of EPICS. By using EPICS/Python API, which is originated from KEK, we can develop an EPICS channel access application based on simple Python technology with only a few knowledge of EPICS channel access protocols. The operator's new tuning ideas are quickly implemented to the control system. In this paper, we introduce the EPICS/Python API and report the effectiveness of rapid application development by the KEKB operators using the API. (author)

  6. Dissemination and support of ARGUS for accelerator applications. Final report, April 24, 1991--April 14, 1995

    International Nuclear Information System (INIS)

    Kostas, C.; Krueger, W.A.; Mankofsky, A.; Mondelli, A.A.; Petillo, J.J.

    1995-01-01

    The effort has two broad goals, which have been prioritized by DOE, as follows: to enhance the ARGUS code for use in practical accelerator design simulations; to release ARGUS to the accelerator community through the Los Alamos Accelerator Code Group (LAACG). During the contract period, ARGUS versions 24 and 25 have been released. An upgraded version 25 (ARGUS v.25c) will be released in July, 1995, and will include all of the features that are tested and working at the conclusion of the DOE-funded effort. The effort that consolidated version 24 established a set of core capabilities that all ARGUS modules could access. Version 25 incorporated several major improvements: (1) a new frequency-domain module was incorporated into ARGUS that can handle degenerate modes, lossy materials, and periodic boundary conditions with sub-phase specification, and that can utilize the ARGUS data handling machinery for multiblock operation; (2) HDF output was implemented to allow ARGUS to send data to visualization tools; (3) a plasma chemistry capability was included in the steady-state PIC module to allow ionization, stripping, electron attachment, charge exchange, and other ion rate processes to occur within the PIC calculation; (4) new structure input options for figures of translation (extrusion) and figures of revolution were implemented. This ARGUS release is supported on all Cray platforms and on the IBM RS6000 Unix workstation platform. Version 25 was released in February 1994. The ARGUS dissemination and support activities have proceeded in parallel with code enhancement. On-line ARGUS support is available at NERSC through ARGUS man pages, and at the SAIC ftp node at mclapo.saic.com, through the SAIC MOSAIC home page, and through ARGUS bulletin boards maintained at SAIC and at NERSC

  7. Smartphone application for mechanical quality assurance of medical linear accelerators

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; In Park, Jong; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-01

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone’s high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  8. Smartphone application for mechanical quality assurance of medical linear accelerators.

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-07

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone's high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  9. Parametric investigations of target normal sheath acceleration experiments

    International Nuclear Information System (INIS)

    Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo

    2011-01-01

    One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.

  10. Parametric investigations of target normal sheath acceleration experiments

    Science.gov (United States)

    Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo

    2011-10-01

    One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.

  11. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  12. KLYNAC: Compact linear accelerator with integrated power supply

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  13. Industrial applications of electron beam accelerators

    International Nuclear Information System (INIS)

    Braid, W.G. Jr.

    1976-01-01

    The use of electron beam accelerators for crosslinking polyolefins for shrinking food packaging is discussed. Irradiation procedures, accelerator characteristics, and industrial operations are described

  14. Accelerator Technology Program. Progress report, January-June 1980

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1980-03-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H - ion sources and injectors, then with accelerator instrumentation and beam dynamics

  15. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  16. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  17. Applications of FLUKA Monte Carlo code for nuclear and accelerator physics

    CERN Document Server

    Battistoni, Giuseppe; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; Roesler, Stefan; Rollet, Sofia; Sala, Paola R; Santana, Mario; Sarchiapone, Lucia; Sioli, Maximiliano; Smirnov, George; Sommerer, Florian; Theis, Christian; Trovati, Stefania; Villari, R; Vincke, Heinz; Vincke, Helmut; Vlachoudis, Vasilis; Vollaire, Joachim; Zapp, Neil

    2011-01-01

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such top...

  18. Applications of 3-D Maxwell solvers to accelerator design

    International Nuclear Information System (INIS)

    Chou, W.

    1990-01-01

    This paper gives a brief discussion on various applications of 3-D Maxwell solvers to accelerator design. The work is based on our experience gained during the design of the storage ring of the 7-GeV Advanced Photon Source (APS). It shows that 3-D codes are not replaceable in many cases, and that a lot of work remains to be done in order to establish a solid base for 3-D simulations

  19. Application of accelerators in industry, medicine and for environmental research in Almaty Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Lyssukhin, S.N.; Arzumanov, A.A.

    2001-01-01

    Full text: The Institute of Nuclear Physics in Almaty is the only Kazakhstan institution with a significant activity at the national level in the field of physics of accelerators, their application and associated technology. Three accelerators of different type are being used in the Institute: high power electron beam accelerator, isochronous cyclotron and heavy ion electrostatic tandem. Electron beam accelerator ELV-4 - This high power machine is only electron beam irradiation facility of industrial scale in the Republic. It was produced by Budker Institute of Nuclear Physics, Novosibirsk, Russia and installed in Almaty in 1991 for development of radiation technology in Kazakhstan. The accelerator generates electron beams of following parameters: Energy range (MeV) 1.0-1.5; Max. beam power (kW) 40; Max. beam current (mA) 40. The machine is equipped with beam scanning system, extraction device with output window 980x75 mm 2 and chain conveyer for irradiated material supply. Tn the time being the accelerator is regularly used for radiation cross-linking technology and for sterilization. Cross-linking technology is the base of high quality roof material production for building industry. Raw ethylene-propylene rubber mixture is rolled as strip of 50 m length, 1 m width, 1 mm thickness and then irradiated by dose of about 120 kGy. The final product is waterproof flexible material, very stable in hard atmospheric conditions and non sensitive to sun UV radiation. Sterilization of medical materials and items is not traditional application of such low energy installations but due to uniqueness of this accelerator in Kazakhstan and high actuality of the task for the Republic this technology was developed in INP. Hermetically packed items (medical cotton , bandages, syringes, surgical gloves, small plastic bottles) with thickness less than penetration range of 1.5 MeV electrons are put at the conveyer as mono-layer and irradiated by sterilizing dose of 25 kGy. Isochronous

  20. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  1. Continuing studies of the plasma beat wave accelerator

    International Nuclear Information System (INIS)

    Joshi, C.

    1990-01-01

    This is a proposal for the release of third year funds for the ''Plasma Beat Wave Accelerator'' program (PBWA) at UCLA under the direction of Professor C. Joshi. This report is also a summary of progress on this project since March 1990; i.e., the date of the last report to the DOE. Once again we note that although the program is for historical reasons called the Plasma Beat Wave Accelerator Program, our group is active in all areas of applications of lasers and plasmas in future high energy accelerators. These are as follows: heat gradient plasma structures; excited by plasma beat wave technique; laser wake field technique; and plasma wake field technique. Development of a photoinjector-driven, 20 MeV linac; and theoretical studies of the plasma lens and use of plasmas at the final focus

  2. Turn-key Applications for Accelerators with LabVIEW-RADE

    CERN Document Server

    Andreassen, O O; Charrondiere, C; Feniet, T; Kuczerowski, J; Nybo, M; Rijllart, A

    2011-01-01

    In the accelerator domain there is a need of integrating industrial devices and creating control and monitoring applications in an easy and yet structured way. The LabVIEW-RADE framework provides the method and tools to implement these requirements and also provides the essential integration of these applications into the CERN controls infrastructure. We present three examples of applications of different nature to show that the framework provides solutions at all three tiers of the control system, data access, process and supervision. The first example is a remotely controlled alignment system for the LHC collimators. The collimator alignment will need to be checked periodically. Due to limited access for personnel, the instruments are mounted on a small train. The system is composed of a PXI crate housing the instrument interfaces and a PLC for the motor control. We report on the design, development and commissioning of the system. The second application is the renovation of the PS beam spectrum analyzer wh...

  3. Gauging the cosmic acceleration with recent type Ia supernovae data sets

    Science.gov (United States)

    Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.

    2018-04-01

    We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.

  4. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  5. Ohio University tandem Van de Graaff accelerator. Final report

    International Nuclear Information System (INIS)

    Lane, R.O.

    1977-11-01

    A summary is given of the work carried out at the John Edwards Tandem Accelerator Laboratory of Ohio University during the period 1970 to 1977 on studies of neutron-nucleus interactions and nuclear structure using neutrons as probes. This work utilizes the main and unique characteristic of the accelerator: high current, high voltage tandem. Certain applied areas were also studied, such as the production of short-lived isotopes for use in medical diagnoses, production of very high neutron intensity to observe possible sputtering effects, and proton induced x-ray emission with a microprobe beam

  6. The applications of electron accelerator. Liquid, thin film and gases

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan; Kamaruddin Hashim; Zulkafli Ghazali

    2004-01-01

    As indicated by the results of this study, low energy electron beam accelerator of 200 keV to 500 keV can be utilized to irradiate thin hydrogel film in the range of 60 to 500 μm thickness. However, the industrial applications of this technology will depend on its applications. For thin films, cosmetic use such as faced mask is possible. The production of sago hydrogel for cosmetic used is in the process of commercialization in Malaysia. As for electron beam treatment of industrial wastewater in particular the effluent from the textile industry is still at infancy. Further work is necessary in order to have a base line data before the commercialization is taken place. Malaysia has also embarked on the electron beam treatment of flue gases and has completed the semi-pilot scale study by using 1.0 MeV electron accelerator voltage and 400 cum flue gas generated from diesel generator. This study was conducted together with the TNB Research, the research institute belongs to the electrical power company in Malaysia. For technology transfer and commercialization, MINT is planned to promote this technology to Independent Power Producers (IPP) in Malaysia. (author)

  7. Next-generation particle accelerators for frontline research and wide-ranging applications in India - how to realize them?

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Roy, Amit

    2015-01-01

    Several modern accelerator facilities have been set up in India for basic and applied research during the past 5 decades. Indian scientists have been able to carry out excellent accelerator-based research at these as well as international facilities. Applications of accelerators in healthcare and industry have also grown in recent years. There is a strong realization now, at all levels, that a quantum jump needs to be given to the field of accelerator science and technology in India to fulfil the aspirations of the research community to be at par internationally in our areas of strength. Applications in industry and healthcare also have to grow substantially to benefit the common man. In this article an analysis of the methodology and logic behind the evolution of our accelerator programme has been presented. More importantly, recommendations have been given for gainfully implementing a rather ambitious programme that is proposed to be taken up in the next few decades. (author)

  8. Radical Acceleration in Educational Process of Highly Gifted Students and the Situation of Turkey

    Directory of Open Access Journals (Sweden)

    Hasan Said TORTOP

    2012-01-01

    Full Text Available A number of programs are implemented in order to meet cognitive, social and emotional needs of gifted students. One of them is the radical acceleration that ensures gifted students gaining access to university three or more years before than their peers. First performed in 1971, radical acceleration is currently implemented in many universities in United State and Asian and European countries. There are many researches on radical acceleration showing that it has no negative impacts on gifted students, rather it provides important outcomes. This study investigated radical acceleration and its outcomes on gifted students, as well as suggestions regarding to its application. Finally, situation of many countries in terms of radical acceleration, and legal regulations in Turkey's were presented.

  9. Microwave system of the 7-10 MeV electron linear accelerator ALIN for medical applications

    International Nuclear Information System (INIS)

    Martin, D.; Iliescu, E.; Stirbet, M.; Oproiu, C.; Vintan, I.

    1978-01-01

    A detailed description of the Central Institute of Physics 10 MeV linear microwave system and its associated subsystems are presented. Methods of impedance matching to obtain maximum power transfer are described along with broadband design methods for transmission-line impedance transformers. Experimental results for such microwave devices are included. With respect to microwave device performances, simultaneous high efficiency and high power capability with reliability and long life at relatively low unit cost have only recently been achieved as typical device characteristics. Industrial, medical and scientific application of microwave electron accelerators have markedly influenced microwave research progress. Radiographic linear accelerators have grown substantially mainly during the past few years. Following this, the improvements of microwave device performances solicit our attention. The first electron therapy Linear Accelerator ALIN 10 marks a new stage in the development of such instrumentation. Its subsequent ALIN 15 is designed to produce a maximum energy of 18 MeV to widen its applicability in radiotherapy. In addition, a new electron linear accelerator of 8 MeV for nondestructive testing has been started. (author)

  10. Proceedings of the FNCA 2003 workshop on application of electron accelerator. Radiation system for thin film

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2004-06-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and co-hosted by Malaysian Institute for Nuclear Technology Research (MINT) and Japan Atomic Energy Research Institute (JAERI). It was held at the Legend Hotel, Kuala Lumpur, Malaysia from 18 to 22 August 2003. The Workshop was attended by 28 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam, and 5 participants from Japan. On the first day, a National Executive Management Seminar on Application of Electron Accelerator was held and attended by 87 participants. Total of 19 papers including Seminar lectures, invited papers on film treatment by electron beam, and country reports on EB irradiation system were presented. The major areas of interest of FNCA member states for cooperation were identified for application of low energy electron accelerator as liquid, thin film and granules. The flue gas and wastewater treatments were added to the above major areas. Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2004. All manuscripts submitted by every speaker were included in the proceedings. The 19 of the presented papers are indexed individually. (J.P.N.)

  11. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  12. Accelerated optical polymer aging studies for LED luminaire applications

    Science.gov (United States)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  13. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  14. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  15. Application of PIN photodiodes on the detection of X-rays generated in an electron accelerator

    International Nuclear Information System (INIS)

    Mondragon-Contreras, L.; Ramirez-Jimenez, F.J.; Garcia-Hernandez, J.M.; Torres-Bribiesca, M.A.; Lopez-Callejas, R.; Aguilera-Reyes, E.F.; Pena-Eguiluz, R.; Lopez-Valdivia, H.; Carrasco-Abrego, H.

    2009-01-01

    PIN photodiodes are used in a novel application for the determination, within the energy range from 90 to 485 keV, of the intensity of X-rays generated by an experimental electron accelerator. An easily assembled X-ray monitor has been built with a low-cost PIN photodiode and operational amplifiers. The output voltage signal obtained from this device can be related to the electron beam current and the accelerating voltage of the accelerator in order to estimate the dose rate delivered by bremsstrahlung.

  16. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  17. State-of-the-Art developments in accelerator controls at the APS

    International Nuclear Information System (INIS)

    Lenkszus, F.

    1999-01-01

    The performance requirements of the Advanced Photon Source (APS) challenge the control system in a number of areas. This paper will review a few applications of advanced technology in the control and monitoring of the APS. The application of digital signal processors (DSPs) and techniques will be discussed, both from the perspective of a large distributed multiprocessor system and from that of embedded systems. In particular, two embedded applications will be highlighted, a beam position monitor processor and a DSP-based power supply controller. Fast data distribution is often a requirement. The application of a high-speed network based on reflective memory will also be discussed in the context of the APS global orbit feedback system. Timing systems provide opportunities to apply technologies such as high-speed logic and fiber optics. Examples of the use of these technologies will also be included. Finally, every modern accelerator control system of any size requires networking. Features of the APS accelerator controls network will be discussed

  18. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2000-01-01

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  19. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  20. Application of nonlinear Krylov acceleration to radiative transfer problems

    International Nuclear Information System (INIS)

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-01-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  1. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  2. GPU accelerated FDTD solver and its application in MRI.

    Science.gov (United States)

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  3. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    International Nuclear Information System (INIS)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system

  4. The Plasma Window: A Windowless High Pressure-Vacuum Interface for Various Accelerator Applications

    International Nuclear Information System (INIS)

    Hershcovitch, A. I.; Johnson, E. D.; Lanza, R. C.

    1999-01-01

    The Plasma Window is a stabilized plasma arc used as an interface between accelerator vacuum and pressurized targets. There is no solid material introduced into the beam and thus it is also capable of transmitting particle beams and electromagnetic radiation with low loss and of sustaining high beam currents without damage. Measurements on a prototype system with a 3 mm diameter opening have shown that pressure differences of more than 2.5 atmospheres can be sustained with an input pressure of ∼ 10 -6 Torr. The system is capable of scaling to higher-pressure differences and larger apertures. Various plasma window applications for synchrotron light sources, high power lasers, internal targets, high current accelerators such as the HAWK, ATW, APT, DARHT, spallation sources, as well as for a number of commercial applications, is discussed

  5. University Programs of the U.S. Department of Energy Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Beller, Denis E.; Ward, Thomas E.; Bresee, James C.

    2002-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21. Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R and D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R and D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs. (authors)

  6. Studies on HF quadrupole accelerator structures

    International Nuclear Information System (INIS)

    Mueller, J.

    1983-01-01

    The present thesis had the aim to elaborate advantages and disadvantages of existing high frequency resonators in the MHz range regarding their use as RFQ power supply structures and to limit their application ranges. After a short survey over potential and field distributions in the RFQ suitable criteria for the valuation of RFQ resonators are indicated. For the experimentally studied resonators equivalent circuits are presented, in some cases these are theoretically analyzed. Finally the construction of the GSI/Frankfurt proton model as well experiments with the accelerated proton beams are described. (orig.) [de

  7. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  8. Application of Fourier transform to MHD flow over an accelerated plate with partial-slippage

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2014-06-01

    Full Text Available Magneto-Hydrodynamic (MHD flow over an accelerated plate is investigated with partial slip conditions. Generalized Fourier Transform is used to get the exact solution not only for uniform acceleration but also for variable acceleration. The numerical solution is obtained by using linear finite element method in space and One-Step-θ-scheme in time. The resulting discretized algebraic systems are solved by applying geometric-multigrid approach. Numerical solutions are compared with the obtained Fourier transform results. Many interesting results related with slippage and MHD effects are discussed in detail through graphical sketches and tables. Application of Dirac-Delta function is one of the main features of present work.

  9. Gait Phases Recognition from Accelerations and Ground Reaction Forces: Application of Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Rafajlović

    2009-06-01

    Full Text Available The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7% – force sensors; 150 ms (13.6% – nonprocessed acceleration, and 120 ms (11% – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times.

  10. Current status of electron beam processing applications and accelerator technology in India

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Lavale, D.S.; Sabharwal, S.

    2001-01-01

    designed, fabricated and used for irradiating cable insulation. A specially designed 4 channel beam extraction window has been procured from Russia to draw the beam pulse from 4 separate windows. Suitable cable and tube irradiation conveyor has also been installed so that uniform dose can be delivered on all the four sides of the cable. Using this conveyor, cables of 5 mm. insulation thickness can be irradiated. The accelerator is also being used for food irradiation, especially disinfestation of wheat and spices. A variety of product irradiation conveyors were designed and used for these applications. To enable the industry to have free access to the facility, the accelerator which was initially located inside BARC complex, has been shifted to Navi Mumbai, a suburban part of Mumbai and has been put into operation in May 2001. The present facility has been designed to have increased cell and labyrinth area with entry and exit ports, accommodating continuous power roller conveyors in and out of the cell. A linear conveyor and a wire and cable transport gadget could also be placed in the cell so that any one can be brought under irradiation zone on requirement. Substantial expertise has been achieved in the operation and maintenance of the accelerator. Based on the studies, two cable companies are in the process of setting up a 3MeV, 50 kW accelerator in India for processing wire and cables. A 500 keV, 10 kW EB accelerator developed by BARC is in operation and would be used for surface curing applications. Based on the experience gained and the demand for the potential use of such industrial accelerators in India, a comprehensive programme has been chalked out by DAB to develop accelerators of various energies, for different applications. An Electron Beam Centre (EBC) has also been envisaged at Navi Mumbai comprising of 3 MeV, 50 kW and 10MeV, 10 kW accelerators, in order to meet the growing need of various Indian industries in applications such as wire and cables, heat

  11. High and ultra-high vacuum pumping techniques: applications in accelerators and storage rings

    International Nuclear Information System (INIS)

    Schaefer, G.

    1988-01-01

    A survey is given on gas transfer pumps, especially Turbomolecular pumps, and entrapment pumps (cryopumps and getter pumps) mainly with regard to their application in evacuating particle accelerators and storage rings. (A.C.A.S.) [pt

  12. Research of Virtual Accelerator Control System

    Institute of Scientific and Technical Information of China (English)

    DongJinmei; YuanYoujin; ZhengJianhua

    2003-01-01

    A Virtual Accelerator is a computer process which simulates behavior of beam in an accelerator and responds to the accelerator control program under development in a same way as an actual accelerator. To realize Virtual Accelerator, control system should provide the same program interface to top layer Application Control Program, it can make 'Real Accelerator' and 'Virtual Accelerator'use the same GUI, so control system should have a layer to hide hardware details, Application Control Program access control devices through logical name but not through coded hardware address. Without this layer, it is difficult to develop application program which can access both 'Virtual' and 'Real' Accelerators using same program interfaces. For this reason, we can create CSR Runtime Database which allows application program to access hardware devices and data on a simulation process in a unified way. A device 'is represented as a collection of records in CSR Runtime Database. A control program on host computer can access devices in the system only through names of record fields, called channel.

  13. Reliability and Lifetime Prediction of Remote Phosphor Plates in Solid-State Lighting Applications Using Accelerated Degradation Testing

    NARCIS (Netherlands)

    Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q.

    2015-01-01

    A methodology, based on accelerated degradation testing, is developed to predict the lifetime of remote phosphor plates used in solid-state lighting (SSL) applications. Both thermal stress and light intensity are used to accelerate degradation reaction in remote phosphor plates. A reliability model,

  14. Hertzian spectroscopy application to excited states in accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M L

    1974-01-01

    Accelerated ion beams enables the application of optical hertzian spectrometry methods to be extended to research on the excited states of free ionic systems. The photon beat method has proved especially simple to apply in beam foil geometry because of the unidirectional beam velocity while the beam gas device is suitable for experiments of the energy level crossing type. Only the resonance technique involving direct application of high-frequency magnetic fields poses serious problems because of the high HF powers necessary. So far structure intervals have been measured in ions carrying up to three charges (seven in the special case of Lamb shift measurements) with a precision of a few percent. Study of hydrogen-like or helium-like ions of high Z allows the fundamental calculations of quantum electrodynamics to be checked with regard to the Lamb shift or the spontaneous emission theory. In more complex electronic systems, optical spectroscopy of accelerated ion beams gives wavelengths with a resolution reaching 10/sup -5/, lifetimes with an accuracy better than 10% when the cascade effects are properly studied, and Lande factors with a precision of several % under present technical conditions. The photon beat method concerns hyperfine nuclear effects in light atoms of Z < = 20. (FR)

  15. Accelerator requirments for strategic defense

    International Nuclear Information System (INIS)

    Gullickson, R.L.

    1987-01-01

    The authors discuss how directed energy applications require accelerators with high brightness and large gradients to minimize size and weight for space systems. Several major directed energy applications are based upon accelerator technology. The radio-frequency linear accelerator is the basis for both space-based neutral particle beam (NPB) and free electron laser (FEL) devices. The high peak current of the induction linac has made it a leading candidate for ground based free electron laser applications

  16. Proceedings of the FNCA 2005 workshop on application of electron accelerator. EB treatment of wastewater

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2006-08-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The 2005 workshop was jointly organized by the Ministry of Science and Technology (MOST), Korea, Korea Atomic Energy Research Institute and Japan Atomic Energy Agency (JAEA). It was held at the International Nuclear Technology and Education Center (INTEC/KAERI), Daejeon, Korea from 14 to 18 November 2005. The Workshop was attended by 32 experts on application of electron accelerator from each of the participating countries, i.e., China (1), Indonesia (1), Korea (18), Malaysia (2), Philippines (1), Thailand (1) and Vietnam (1), and 7 participants from Japan. On the first day, a National Executive Management Seminar on Application of Electron Accelerator was held and attended by 45 participants. Total of 20 papers including Seminar lectures, invited papers on wastewater treatment by electron beam, and country reports on EB irradiation system were presented. The major areas of interest of FNCA member states for cooperation were identified for application of low energy electron accelerator to liquids (natural polymer, wastewater), solids (hydrogel, thin film) and gases (flue gas). Based on the evaluation and proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project on natural polymers and wastewater for three years until FY 2008. It was agreed the FNCA 2006 workshop on EB crosslinking of natural polymers would be held in Malaysia. All manuscripts submitted by every speaker were included in the proceedings. The 18 presented papers are indexed individually. (J.P.N.)

  17. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  18. Accelerator and spallation target technologies for ADS applications

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radio-active waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia. To address the disposal of transuranics, accelerator-driven systems (ADS), i.e. a sub-critical system driven by an accelerator to sustain the chain reaction, seem to have great potential for transuranic transmutation, though much R and D work is still required in order to demonstrate their desired capability as a whole system. This report describes the current status of accelerator and spallation target technologies and suggests technical issues that need to be resolved for ADS applications. It will be of particular interest to nuclear scientists involved in ADS development and in advanced fuel cycles in general. (author)

  19. Engineering a large application software project: the controls of the CERN PS accelerator complex

    International Nuclear Information System (INIS)

    Benincasa, G.P.; Daneels, A.; Heymans, P.; Serre, Ch.

    1985-01-01

    The CERN PS accelerator complex has been progressively converted to full computer controls without interrupting its full-time operation (more than 6000 hours per year with on average not more than 1% of the total down-time due to controls). The application software amounts to 120 man-years and 450'000 instructions: it compares with other large software projects, also outside the accelerator world: e.g. Skylab's ground support software. This paper outlines the application software structure which takes into account technical requirements and constraints (resulting from the complexity of the process and its operation) and economical and managerial ones. It presents the engineering and management techniques used to promote implementation, testing and commissioning within budget, manpower and time constraints and concludes with experience gained

  20. Proton acceleration: new developments for focusing and energy selection, and applications in plasma physics

    Science.gov (United States)

    Audebert, P.

    2007-11-01

    In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-off, high directionality and laminarity, short burst duration. We have shown that for proton energies >10 MeV, the transverse and longitudinal emittance are respectively example point-projection radiography with unprecedented resolution. We will show example of such time and space-resolved radiography of fast evolving fields, either of associated with the expansion of a plasma in vacuum [*] or with the propagation of a ICF-relevant laser beam in an underdense plasma. These proton sources also open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications.

  1. CERN Accelerator School: Cyclotrons, linacs and applications

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1994-01-01

    When the CERN Accelerator School (CAS) was set up over ten years ago it was expected that its job of training a new generation of accelerator scientists would slacken off after a few years as recruitment eased back. It has therefore been a puzzle to explain why, a decade later, there is still a steady flow of 200 or 300 participants a year coming to CAS Courses. The explanation seems to be that the ''graduates'' are from the many laboratories considerably smaller than CERN and from university physics departments and hospitals where accelerators are used. There are also factories and even production lines where small accelerators are produced

  2. EuCARD2: enhanced accelerator research and development in Europe

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.

  3. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  4. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  5. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  6. Charged particle accelerators for practice

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1988-01-01

    Characteristics of some accelerators operating in the world are given, capabilities of accelerator technique are demonstrated. Examples of wide application of accelerators in radiation-chemical technology as well as for defectoscopy of massive metal products and impurity ion implantation when producing semiconductor elements are presented. Works on nuclear filter production are characterized by high efficiency. Wide application of synchrotron radiation is described. Various accelerators can be applied during element analysis in geology, metallurgy, ecology. Application of accelerators ''in particular, cyclotrons for radioisotope production as well as in radiotherapy in medicine appears to be important. An isochronous cyclotron with controlled ion energy, at which applied works concerning a number of considered trends in the field of radiation physics and radiation physical metallurgy, element analysis, radiation resistance of electronic circuits and components are conducted, is in operation at the IYaPh of the Kazakh Academy of Sciences. Production of tallium-201 for cardiologic invstigations deserves a special attention. An electrostatic heavy ion accelerator which allows one to produce the beams of accelerated ions of elements from hydrogen to uranium is under commissioning

  7. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  8. Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2006-01-01

    A new accelerator LACARA is under construction at ATF, Brookhaven National Laboratory. LACARA is to be powered by a 1 TW CO2 laser, and will utilize a 6-T 2-m long solenoidal magnetic field. For a 50 MeV injected electron bunch, LACARA is expected to produce a 100 MeV 1 ps gyrating beam with ∼ 3% energy spread. Beam electrons advance in phase at the laser frequency, executing one cycle each 35 fs. A beam stop with a small off-axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fs, 1-3 pC microbunches for each laser pulse. One application for this train of microbunches obtained from a LACARA-type device involves focusing a portion of the beam using a magnetic quadrupole into a rectangular cross-section having a narrow dimension of a few microns and a height of a few hundred microns. These microbunches may be injected into a planar dielectric-lined waveguide where cumulative buildup of wake fields can lead to an accelerating gradient > 1 GV/m. This proposed vacuum-based wake field structure is mechanically rigid and capable of accurate microfabrication, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed including bunch spreading and transport, bunch shaping, aperture radiation, dielectric breakdown, and bunch stability in the rectangular wake field structure. In appendices to this report, three supporting documents are attached. These include a set of drawings that show the layout of the beam line and optical line for LACARA at ATF-BNL; and two reprints of recent articles published in PRST-AB. The first article describes measurements of the coherent superposition of wake fields that arise from a periodic train of bunches, with supporting analysis. The second article presents theory that

  9. Co-designed accelerator for homomorphic encryption applications

    Directory of Open Access Journals (Sweden)

    Asma Mkhinini

    2018-02-01

    Full Text Available Fully Homomorphic Encryption (FHE is considered as a key cryptographic tool in building a secure cloud computing environment since it allows computing arbitrary functions directly on encrypted data. However, existing FHE implementations remain impractical due to very high time and resource costs. These costs are essentially due to the computationally intensive modular polynomial multiplication. In this paper, we present a software/hardware co-designed modular polynomial multiplier in order to accelerate homomorphic schemes. The hardware part is implemented through a High-Level Synthesis (HLS flow. Experimental results show competitive latencies when compared with hand-made designs, while maintaining large advantages on resources. Moreover, we show that our high-level description can be easily configured with different parameters and very large sizes in negligible time, generating new designs for numerous applications.

  10. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  11. Proceedings of the FNCA 2004 workshop on application of electron accelerator. EB treatment of flue gases

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2005-06-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The 2004 workshop was jointly organized by China Atomic Energy Authority (CAEA), Institute of Modern Physics/Chinese Academy of Sciences(IMP-CAS) and Japan Atomic Energy Research Institute (JAERI). It was held at Prime Hotel, Beijing, China from 6 to 10 September 2004. The Workshop was attended by 28 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam, and 10 participants from Japan. On the first day, a National Executive Management Seminar on Application of Electron Accelerator was held and attended by 67 participants. Total of 20 papers including Seminar lectures, invited papers on flue gas treatment by electron beam, and country reports on EB irradiation system were presented. The major areas of interest of FNCA member states for cooperation were identified for application of low energy electron accelerator as liquid (natural polymer, wastewater), solid (hydrogel, thin film) and gases (flue gas). Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2005. It was agreed the FNCA 2005 workshop on EB treatment of wastewater will be held in Korea. All manuscripts submitted by every speaker were included in the proceedings. The 20 of the presented papers are indexed individually. (J.P.N.)

  12. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  13. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1998-01-01

    (full text) In the context of general discussions concerning the activity of the Institute, it was important to look critically at current and future directions at the Department's activity. Attention is given to development of basic accelerator knowledge, realized at home and throughout international collaborations. Of importance is a steady improvement of metrological and experimental basis for accelerator research. Apart of this, some development tendencies were formulated during 1997, oriented to application fields of accelerators. As examples should be named: - medical applications: a) A serious effort was given to an idea of using the existing compact cyclotron C-30 as a source for creation of a diagnostic centre in Swierk. The proposition was formulated in contact with the Nuclear Medicine Department of the Medical Academy, and the ''Brodno'' General Hospital. In spite of declared medical interest in such an installation, the project was not approved, due to lack of proper financial support. b) Model measurements and verification of theoretical assumptions and calculations oriented on the design of a very short, high-gradiented acceleration structure for the low energy accelerator COLINE/1000 were done. This project will enable us to achieve ''source - isocentre distance'', of 1000 mm, instead of existing 800 mm. This is important for therapy. In 1998, this work will be supported by the State Committee for Scientific Research. c) Preliminary discussions, and design approach were undertaken in collaboration with the Centre of Oncology, for elaboration of a movable low-energy accelerator with electron beam output, matched to inter operational irradiation during surgical therapy of tumours. - applications in radiation technology: Comparison of isotope and machine radiation sources indicates that, under Polish conditions it is reasonable to use purpose-oriented high power accelerators. The working group composed of specialists from IChTJ and IPJ prepared the

  14. FERMI and Elettra Accelerator Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Cornacchia, M.; Craievich, P.; Di Mitri, S.; Pogorelov, I.; Qiang, J.; Venturini, M.; Zholents, A.; Wang, D.; Warnock, R.

    2006-01-01

    This report describes the accelerator physics aspects, the engineering considerations and the choice of parameters that led to the accelerator design of the FERMI Free-Electron-Laser. The accelerator (also called the ''electron beam delivery system'') covers the region from the exit of the injector to the entrance of the first FEL undulator. The considerations that led to the proposed configuration were made on the basis of a study that explored various options and performance limits. This work follows previous studies of x-ray FEL facilities (SLAC LCLS[1], DESY XFEL [2], PAL XFEL [3], MIT [4], BESSY FEL[5], LBNL LUX [6], Daresbury 4GLS [7]) and integrates many of the ideas that were developed there. Several issues specific to harmonic cascade FELs, and that had not yet been comprehensively studied, were also encountered and tackled. A particularly difficult issue was the need to meet the requirement for high peak current and small slice energy spread, as the specification for the ratio of these two parameters (that defines the peak brightness of the electron beam) is almost a factor of two higher than that of the LCLS's SASE FEL. Another challenging aspect was the demand to produce an electron beam with as uniform as possible peak current and energy distributions along the bunch, a condition that was met by introducing novel beam dynamics techniques. Part of the challenge was due to the fact that there were no readily available computational tools to carry out reliable calculations, and these had to be developed. Most of the information reported in this study is available in the form of scientific publications, and is partly reproduced here for the convenience of the reader

  15. Summary report on large HVEC accelerators

    International Nuclear Information System (INIS)

    Thieberger, P.

    1981-01-01

    The main features are described of the ten presently operating large HVEC tandem accelerators and of four additional HVEC accelerators which are in different stages of testing, construction or planning. Present performance characteristics are discussed as well as available information about long term reliability. Some recent improvements are mentioned and comparisons are drawn for acceleration tube gradients in various different configurations and accelerators. Finally, some possible future developments are indicated

  16. Accelerator structure for a charged particle linear accelerator working in standing wave mode

    International Nuclear Information System (INIS)

    Tran, D.T.; Tronc, Dominique.

    1977-01-01

    Charged particle accelerators generally include a pre-grouping or pre-accelerating structure associated with the accelerator structure itself. But pre-grouping or pre-accelerating structures of known type (Patent application No. 70 39261 for example) present electric and dimensional characteristics that rule them out for accelerators working at high frequencies (C or X bands for example), since the distance separating the interaction spaces becomes very small in this case. The accelerator structure mentioned in this invention can be used to advantage for such accelerators [fr

  17. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration...... of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge...... effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set...

  18. Cosmic acceleration driven by mirage inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Galfard, Christophe [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)

    2006-03-21

    A cosmological model based on an inhomogeneous D3-brane moving in an AdS{sub 5} x S{sub 5} bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities.

  19. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  20. The intense proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1990-01-01

    The Science and Technology Agency of Japan has formulated the OMEGA project, in which incineration of nuclear wastes by use of accelerators is defined as one of the important tasks. Japan Atomic Energy Research Institute (JAERI) has been engaged for several years in basic studies in incineration technology with use of an intense proton linear accelerator. The intense proton accelerator program intends to provide a large scale proton linear accelerator called Engineering Test Accelerator. The principal purpose of the accelerator is to develop nuclear waste incineration technology. The accelerator will also be used for other industrial applications and applied science studies. The present report further outlines the concept of incineration of radio-activities of nuclear wastes, focusing on nuclear reactions and a concept of incineration plant. Features of Engineering Test Accelerator are described focusing on the development of the accelerator, and research and development of incineration technology. Applications of science and technology other than nuclear waste incineration are also discussed. (N.K.)

  1. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  2. Accelerating and focusing structures for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Bush, E.D. Jr.; Holsinger, R.F.; Manca, J.J.; Saito, N.; Stovall, J.E.

    1977-01-01

    The National Cancer Institute is supporting a program of accelerator development at the Los Alamos Scientific Laboratory aimed at the extension of proton linac technologies to produce the most suitable Pion Generator for Medical Irradiations (PIGMI). An optimized design of a pion generator suitable for a radiotherapy program at a major medical center has been established, consisting of a 250-keV injector, followed by a 35-meter-long drift-tube linac that accelerates the proton beam to 150 MeV, and an 85-meter-long coupled-cavity linac that accelerates the beam to its final energy of 650 MeV, where the average beam current of 100 microamperes impinges on one or more targets producing abundant quantities of π - mesons for radiotherapeutic applications. A number of extensions to proton linac technology are being pursued under the PIGMI program at LASL. A discussion is given of recent developments in three areas relevant to the acceleration and focusing of proton beams, namely, the alternating phase focused (APF) linac structure, the disk and washer linac structure, and small permanent magnet quadrupole lenses. The APF linac structure is being developed for the acceleration and focusing role from the injection energy of 250 keV to a few MeV, where a transition is made to a permanent magnet quadrupole focused linac structure. The disk and washer linac structure is under consideration for the high velocity portion of the design

  3. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  4. Analysis of the applicability of acceleration methods for a triangular prism geometry nodal diffusion code

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Okumura, Keisuke

    2002-11-01

    A prototype version of a diffusion code has been developed to analyze the hexagonal core as reduced moderation reactor and the applicability of some acceleration methods have been investigated to accelerate the convergence of the iterative solution method. The hexagonal core is divided into regular triangular prisms in the three-dimensional code MOSRA-Prism and a polynomial expansion nodal method is applied to approximate the neutron flux distribution by a cubic polynomial. The multi-group diffusion equation is solved iteratively with ordinal inner and outer iterations and the effectiveness of acceleration methods is ascertained by applying an adaptive acceleration method and a neutron source extrapolation method, respectively. The formulation of the polynomial expansion nodal method is outlined in the report and the local and global effectiveness of the acceleration methods is discussed with various sample calculations. A new general expression of vacuum boundary condition, derived in the formulation is also described. (author)

  5. Symposium report on frontier applications of accelerators

    International Nuclear Information System (INIS)

    Parsa, Z.

    1993-01-01

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example

  6. Can superhorizon cosmological perturbations explain the acceleration of the universe?

    International Nuclear Information System (INIS)

    Hirata, Christopher M.; Seljak, Uros

    2005-01-01

    We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several 'no go' theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher-order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the variance of the deceleration parameter for the case of single-field inflation using usual coordinates and show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several additional terms not considered in their analysis. Finally, we argue that introducing isocurvature perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be explained by superhorizon modes

  7. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    Science.gov (United States)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  8. Fixed Field Alternating Gradient (FFAG)accelerators and their medical application in proton therapy

    International Nuclear Information System (INIS)

    Fourrier, J.

    2008-10-01

    Radiotherapy uses particle beams to irradiate and kill cancer tumors while sparing healthy tissues. Bragg peak shape of the proton energy loss in matter allows a ballistic improvement of the dose deposition compared with X rays. Thus, the irradiated volume can be precisely adjusted to the tumour. This thesis, in the frame of the RACCAM project, aims to the study and the design of a proton therapy installation based on a fixed field alternating gradient (FFAG) accelerator in order to build a spiral sector FFAG magnet for validation. First, we present proton therapy to define medical specifications leading to the technical specifications of a proton therapy installation. Secondly, we introduce FFAG accelerators through their past and on-going projects which are on their way around the world before developing the beam dynamic theories in the case of invariant focusing optics (scaling FFAG). We describe modelling and simulation tools developed to study the dynamics in a spiral scaling FFAG accelerator. Then we explain the spiral optic parameter search which has leaded to the construction of a magnet prototype. Finally, we describe the RACCAM project proton therapy installation starting from the injector cyclotron and ending with the extraction system. (author)

  9. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  10. On the application of accelerated molecular dynamics to liquid water simulations.

    Science.gov (United States)

    de Oliveira, César Augusto F; Hamelberg, Donald; McCammon, J Andrew

    2006-11-16

    Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.

  11. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    Science.gov (United States)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  12. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    International Nuclear Information System (INIS)

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target

  13. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  14. Limitations of heavy ion synchrotron acceleration for inertial fusion

    International Nuclear Information System (INIS)

    Berley, D.; Danby, G.T.

    1977-01-01

    The potential benefits from heavy ion inertial fusion motivate the rapid development of a program to test the principle. To define the program, accelerator parameters which have not hitherto been commonly considered must be studied interactively with basic questions of space charge limitations and charge exchange. Beam lifetime and power output efficiency may ultimately lead to a linear accelerator as the choice for an ignition device. For proof of principle, however, at power levels way beyond present inertial fusion experience, synchrotrons may have applicability at lower cost. The power and energy which can be delivered by the accelerating system to the reaction chamber are limited by space charge defocussing and intra beam charge exchange scattering, both of which are beam density dependent. These put constraints on linac injector energy, synchrotron aperture, synchrotron magnetic rigidity, acceleration time, ion species and charge to mass ratio. The accelerator system considered is classical. A linear accelerator injects into a synchrotron which accelerates the ion beam to the full energy delivered to the target. The maximum energy deliverable by a synchrotron is treated in section I. The targetting parameters and the energy gained through synchrotron acceleration completely determine the synchrotron aperture. These are discussed in sections II and III. The ion range in material is treated in section IV. The problem of intrabeam scattering is considered in section V. Finally, in section VI is a discussion of examples to meet specified goals

  15. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  16. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  17. PIGMI linear-accelerator technology

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    A new linear-accelerator technology has been developed that makes pi-meson (pion) generation possible for cancer therapy in the setting of a major hospital center. This technology uses several new major inventions in particle accelerator science-such as a new accelerator system called the radio-frequency quadrupole (RFQ), and permanent-magnet drift-tube focusing-to substantially reduce the size, cost, and complexity of a meson factory for this use. This paper describes this technology, discusses other possible uses for these new developments, and finally discusses possible costs for such installations

  18. The new IBA self-shielded dynamitron accelerator for industrial applications

    International Nuclear Information System (INIS)

    Galloway, R.A.; DeNeuter, S.; Lisanti, T.F.; Cleland, M.R.

    2004-01-01

    Radiation Dynamics Inc. (RDI), currently a member of the IBA Group (Ion Beam Applications based Louvain-la-Neuve, Belgium), has been supplying accelerators since its founding in 1958. These systems supplied for both industrial processing and research application for electrons and ions have proven to be reliable and robust. Today's demands in the industrial sector have driven the design and development of a new version of our Dynamitron [reg] . This new system, envisioned to operate at electron energies up to 1.5 MeV, in many cases can be supplied with integral shielding providing a small footprint requirement for placement in a facility. In the majority of these lower energy applications this allows the appropriate material handling system to be installed inside the steel radiation enclosure. Designed to deliver beam power outputs as high as 100 kW, this new system is capable of servicing the high throughput demands of today's manufacturing lines. Still retaining the positive aspects of the industrially proven Dynamitron system, this compact system can be tailored to meet a variety of in-line or off-line processing applications

  19. Survey of electronic safety systems in accelerator applications

    International Nuclear Information System (INIS)

    Mahoney, K.

    1997-01-01

    This paper presents the preliminary results and analysis of a comprehensive survey of the implementation of accelerator safety interlock systems from over 30 international labs. At the present time there is not a self consistent means to evaluate both the experiences and level of protection provided by electronic safety interlock systems. This research is intended to analyze the strength and weaknesses of several different types of interlock system implementation methodologies. Research, medical, and industrial accelerators are compared. Thomas Jefferson National Accelerator Facility (TJNAF) was one of the first large particle accelerators to implement a safety interlock system using programmable logic controllers. Since that time all of the major new U.S. accelerator construction projects plan to use some form of programmable electronics as part of a safety interlock system in some capacity

  20. Application of the personnel photographic monitoring method to determine equivalent radiation dose beyond proton accelerator shielding

    International Nuclear Information System (INIS)

    Gel'fand, E.K.; Komochkov, M.M.; Man'ko, B.V.; Salatskaya, M.I.; Sychev, B.S.

    1980-01-01

    Calculations of regularities to form radiation dose beyond proton accelerator shielding are carried out. Numerical data on photographic monitoring dosemeter in radiation fields investigated are obtained. It was shown how to determine the total equivalent dose of radiation fields beyond proton accelerator shielding by means of the photographic monitoring method by introduction into the procedure of considering nuclear emulsions of division of particle tracks into the black and grey ones. A comparison of experimental and calculational data has shown the applicability of the used calculation method for modelling dose radiation characteristics beyond proton accelerator shielding [ru

  1. Accelerators in Science and Technology

    CERN Document Server

    Kailas, S

    2002-01-01

    Accelerators built for basic research in frontier areas of science have become important and inevitable tools in many areas of science and technology. Accelerators are examples of science driven high technology development. Accelerators are used for a wide ranging applications, besides basic research. Accelerator based multidisciplinary research holds great promise

  2. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    Zimek, Z.

    1998-01-01

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO 2 and NO x removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where

  3. Development and applications of a multi-purpose digital controller with a System-on-Chip FPGA for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, Yoshinori, E-mail: kurimoto@post.j-parc.jp [High Energy Accelerator Research Organization (KEK), Ibaraki 319-1195 (Japan); Nakamura, Keigo [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2016-12-21

    J-PARC Main Ring (MR) is a high intensity proton synchrotron which accelerates protons from 3 GeV to 30 GeV. It has operated at a beam intensity of 390 kW and an upgrade toward the megawatt rating is scheduled. For higher beam intensity, some of the accelerator components require more intelligent and complicated functions. To consolidate such functions among various components, we developed multi-purpose digital boards using a System-on-Chip Field-Programmable Gated Array (SoC FPGA). In this paper, we describe the details of our developed boards as well as their possible applications. As an application of the boards, we have successfully performed the measurement of the betatron amplitude function during beam acceleration in J-PARC MR. The experimental setup and results of the measurement are also described in detail.

  4. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  5. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  6. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    International Nuclear Information System (INIS)

    Niendorf, Thoralf; Sodickson, Daniel K.

    2008-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. (orig.)

  7. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  8. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    International Nuclear Information System (INIS)

    Schroeder, William J.

    2011-01-01

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem

  9. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally

  10. Detection of laser-accelerated protons

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine

    2012-08-08

    applicable for this purpose. Segmentation of the sensitive area into smaller, independent detection units (pixel) allows the measurement of a higher particle flux compared to an unsegmented sensor of the same size-a concept used at the LHC. Within this work, three pixel detectors of different architectures were investigated in extensive experiments with respect to their applicability for laser-accelerated proton detection. The detector response to ultra-short highly-intense proton pulses was studied at a conventional accelerator in view of linearity and saturation effects. All systems allow single proton detection. However, only two of the systems were able to detect a proton flux of up to 10{sup 7} p/cm{sup 2}/ns (20 MeV) without saturation. This was also confirmed at the ATLAS laser for the final selected system. No EMP sensitivity was observed there as well as at the ASTRA-GEMINI laser with up to 6 J pulse energy. The read-out electronic of the detector and a computer system were integrated into a stand-alone system, which was upgraded by an user-friendly software. Hence, a compact online detection system as well as a dosimetry protocol were made available, which fulfil the demands of the momentary state of affairs of the laser-ion-acceleration.

  11. Detection of laser-accelerated protons

    International Nuclear Information System (INIS)

    Reinhardt, Sabine

    2012-01-01

    this purpose. Segmentation of the sensitive area into smaller, independent detection units (pixel) allows the measurement of a higher particle flux compared to an unsegmented sensor of the same size-a concept used at the LHC. Within this work, three pixel detectors of different architectures were investigated in extensive experiments with respect to their applicability for laser-accelerated proton detection. The detector response to ultra-short highly-intense proton pulses was studied at a conventional accelerator in view of linearity and saturation effects. All systems allow single proton detection. However, only two of the systems were able to detect a proton flux of up to 10 7 p/cm 2 /ns (20 MeV) without saturation. This was also confirmed at the ATLAS laser for the final selected system. No EMP sensitivity was observed there as well as at the ASTRA-GEMINI laser with up to 6 J pulse energy. The read-out electronic of the detector and a computer system were integrated into a stand-alone system, which was upgraded by an user-friendly software. Hence, a compact online detection system as well as a dosimetry protocol were made available, which fulfil the demands of the momentary state of affairs of the laser-ion-acceleration.

  12. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  13. The Munich accelerator for fission fragments MAFF

    International Nuclear Information System (INIS)

    Habs, D.; Gross, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.

    2003-01-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (∼3x10 11 s -1 ) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV·A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups

  14. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  15. Overview of SSC accelerator requirements

    International Nuclear Information System (INIS)

    Dugan, G.

    1992-03-01

    This paper will present a general overview of the requirements of the Superconducting Super Collider (SSC) accelerators. Each accelerator in the injector chain will be discussed separately, followed by a discussion of the collider itself. In conclusion, the top level requirements of the overall accelerator system will be presented. For each accelerator, the primary operating parameters will be presented in tabular form. A brief narrative discussion of the principal technical features of each machine will be given. Finally, the principal technical design challenges for the machine will be noted, together with the currently planned solution to these challenges

  16. Accelerated corrosion test for metal drainage pipes : final report.

    Science.gov (United States)

    1987-06-01

    This study represents an attempt to develop an accelerated test which would assist the highway engineer in evaluating the usefulness of a new type of coated steel culvert. The test method was to be short in duration (in the order of days), and the re...

  17. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  18. Organization of the 17th Advanced Accelerator Concepts (AAC16) Workshop by the IEEE. Final Scientific/Technical Report On AWARD NO. DE-SC0015635

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, David F. [Inst. of Electrical and Electronics Engineers Inc., Piscataway, NJ (United States)

    2017-07-15

    The 2016 Workshop on Advanced Accelerator Concepts (AAC) was held at the Gaylord Hotel and Conference Center, National Harbor, Maryland, from July 31 through August 5, 2016. This workshop was the seventeenth in a biennial series that began at Los Alamos National Laboratory in 1982 with a workshop on laser acceleration of particles (see AIP Conf. Proc. 91). AAC16 was organized under the sponsorship of the IEEE Council on Superconductivity with financial support from the U. S. Department of Energy Office of High Energy Physics and the National Science Foundation. The scope of the AAC Workshop has grown since 1982 to encompass a broad range of topics related to advancing accelerator science and technology beyond its current scientific and technical limits and is now an internationally acknowledged forum for interdisciplinary discussions on advanced accelerator and beam physics/technology concepts covering the widest possible range of applications. The Workshop continued the trend of growing worldwide participation, attracting world wide participation. The Workshop had a total of 256 attendees comprising (including the U.S.) representatives from 11 countries representing 65 different institutions. Each day’s schedule began with plenary sessions covering broad, cross disciplinary interests or general tutorial topics as selected by the Program Committee, followed by a break out into more narrowly focused working groups. The Workshop was organized into eight Working Groups each with a published statement of topical focus, scope of discussion and goals. A summary of the Working Group activities and conclusions is included in the American Institute of Physics’ (AIP) Conference Proceedings now available as an on line open source document. It has been a long tradition of the AAC workshops to encourage strong student participation. This is accomplished in part by subsidizing student attendance, done for this work shop by using funds from the DOE and National Science

  19. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target

  20. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, October 1, 1987--March 31, 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification -- both new features in a linac -- without significant dilution of the optical quality of beams; and final bunching, transport, and accurate focusing on a small target

  1. Integration of Transients in Axisymmetrical Cavities for Accelerators: Formulation and applications to BNL Photocathode Gun

    International Nuclear Information System (INIS)

    Parsa, Z.; Serafini, L.

    1992-04-01

    This note provides a sketch of the formalism used for the Integration of Transients in Axisymmetrical Cavities for Accelerators, (ITACA). Application to study the BNL Photocathode Gun via the code ITACA is also included

  2. A software kit for building applications in accelerator control systems: A proposal

    International Nuclear Information System (INIS)

    Daneels, A.

    1990-01-01

    This paper presents the author's view on how application software could be structured into generic packages which, at the cost of limited programming only, could be tailored to suit the needs of daily operation and use of accelerators. The ideas dealt with in this paper are not claimed to be new or original. They result from observation of efforts at CERN, other laboratories and industry to rationalize application software in the quest for higher efficiency and better quality, and under the pressure of ever increasing demand and shrinking resources. The selection of publications to which reference is made illustrates these activities. (orig.)

  3. A Phase Matching, Adiabatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [Hamburg U.; Flöttmann, Klaus [DESY; Kärtner, Franz [CFEL, Hamburg; Piot, Philippe [Northern Illinois U.

    2017-05-01

    Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.

  4. Power accelerators and their applications; Les accelerateurs de puissance et leurs applications

    Energy Technology Data Exchange (ETDEWEB)

    Ollivier, M [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere

    1997-12-31

    Power accelerators are defined as able to deliver particle beam of which power is greater than 1 MW. In most cases, the aim of such beams is to produce an intense neutron flux by spallation reactions. The main european projects using this kind of accelerator are reviewed. Some characteristics of linacs and cyclotrons in the scope of potential power accelerators are presented. (A.C.) 20 refs.

  5. Acceleration sensitivity of micromachined pressure sensors

    Science.gov (United States)

    August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik

    1999-08-01

    Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.

  6. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  7. Theoretical problems in accelerator physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following research on accelerators: computational methods; higher order mode suppression in accelerators structures; overmoded waveguide components and application to SLED II and power transport; rf sources; accelerator cavity design for a B factory asymmetric collider; and photonic band gap cavities

  8. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  9. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    Science.gov (United States)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  10. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    International Nuclear Information System (INIS)

    Koning, A.J.

    1993-06-01

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  11. CAS CERN Accelerator School second advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The advanced course on general accelerator physics given in West Berlin closely followed that organised by the CERN Accelerator School at Oxford in September 1985 and whose proceedings were published as CERN Yellow Report 87-03 (1987). However, certain subjects were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include particle-photon interactions, high-brilliance lattices and single/multiple Touschek effect, while the seminars are on the major accelerators presently under construction or proposed for the near future, applications of synchrotron radiation, free-electron lasers, cosmic accelerators and crystal beams. Also included are errata, and addenda to some of the lectures, of CERN 87-03. (orig.)

  12. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  13. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  14. Claims Procedure for Plans Providing Disability Benefits; 90-Day Delay of Applicability Date. Final rule; delay of applicability

    Science.gov (United States)

    2017-11-29

    This document delays for ninety (90) days--through April 1, 2018--the applicability of a final rule amending the claims procedure requirements applicable to ERISA-covered employee benefit plans that provide disability benefits (Final Rule). The Final Rule was published in the Federal Register on December 19, 2016, became effective on January 18, 2017, and was scheduled to become applicable on January 1, 2018. The delay announced in this document is necessary to enable the Department of Labor to carefully consider comments and data as part of its effort, pursuant to Executive Order 13777, to examine regulatory alternatives that meet its objectives of ensuring the full and fair review of disability benefit claims while not imposing unnecessary costs and adverse consequences.

  15. Technical training: RF superconductivity and accelerator cavity applications

    CERN Multimedia

    Technical Training

    2016-01-01

    We are happy to announce a new training course organised by the TE-VSC group in the field of the physics and applications of superconductors. The course provides an overview and update of the theory of radiofrequency and superconductors:   RF Superconductivity and Accelerator Cavity Applications https://cern.ch/course/?164VAC19 One timetable only:  Tuesday, 8 March 2016: from 2 p.m. to 4 p.m. Wednesday, 9 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 10 March 2016: from 9.30 a.m to 11.30 a.m. Monday, 14 March 2016: from 9.30 a.m to 11.30 a.m. Tuesday, 15 March 2016: from 9.30 a.m to 11.30 a.m. Wednesday, 16 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 17 March 2016: from 9.30 a.m to 11.30 a.m. Target audience: Experts in radiofrequency or solid state physics (PhD level). Pre-requisites: Basic knowledge of quantum physics and superc...

  16. Accelerator-breeder, an application of high-energy accelerators to solving our energy problems

    International Nuclear Information System (INIS)

    Grand, P.; Batchelor, K.; Powell, J.R.; Steinberg, M.

    1977-01-01

    The rising costs of 235 U and other fossil fuels, and the schedule for implementing the breeder reactor have renewed interest in the utilization of accelerators for breeding 233 U or 239 Pu. A discussion is given of some of the basic accelerator parameters and choices to be made in order to meet the technical and economic requirements of such a facility

  17. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  18. Development of accelerator technology for biotechnology and materials science

    International Nuclear Information System (INIS)

    Arakawa, Kazuo; Saitoh, Yuichi; Kurashima, Satoshi; Yokota, Watalu

    2008-01-01

    The TIARA (Takasaki Ion accelerators for Advanced Radiation Application) is a unique worldwide facility for advancing the frontiers of biotechnology and materials science, consisting of four accelerators: a K110 AVF cyclotron, a 3-MV tandem accelerator, a 3-MV single-ended accelerator and a 400-kV ion implanter. The accelerator complex provides a variety of ion species from proton to bismuth in a wide energy range from keV to MeV. This report outlines the facility and the major beam applications, and describes the details of development of accelerator technology for biotechnology and materials science applications at TIARA. (author)

  19. From accelerators to storage rings to

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1983-02-01

    This talk gives a general but highly subjective overview of the expectation for accelerators and colliders for high energy physics, but not extended developments of accelerators and storage rings for application to nuclear structure physics, synchrotron radiation, medical applications or industrial use

  20. Status of current developments and application of two accelerators at Mexico

    International Nuclear Information System (INIS)

    Lopez-Valdivia, H.; Balcazar, M.; Moreno, J.; Tavera, L.; Segovia, N.; Valdovinos-Aguilar, M.; Hernandez-Magadan, V.; Carrasco-Abrego, H.; Colin-Cruz, A.; Vazquez-Polo, G.

    2001-01-01

    Full text: The Instituto Nacional de Investigaciones Nucleares (ININ) is the national laboratory of Mexico. Amongst the irradiation facilities there are three accelerators with the following characteristics: A home made electron accelerator Pelletron type, with a beam energy from 0.15 to I.I MeV, a maximum beam intensity of 50 μA, an scan beam system with a variable frequency from 0 to 200 Hz, which provides an electron beam size of 5 cm wide and 60 cm long; a mixture of 80% Nz and 20% CO 2 is used as dielectric gas. The accelerator has several experimental facilities some of them are an X ray Bremsstrahlung converter, a waste water and sewage sludge irradiation system, and a vertical conveyor system. There is a Tandem Van de Graaff accelerator with a SNICS ion source, a variable voltage at the central terminal from I to 6 MV, an external proton beam which allow PIXE analysis of large samples under atmospheric conditions, a versatile irradiation chamber with the associated electronics to perform RBS, PIGE, ERDA, NRA, a high energy neutron beam from (d,n) and (p,n) nuclear reactions and a micro-beam line. A multipurpose Tandetron accelerator with a maximum terminal voltage of 2 MV, a SNICS and a Duoplasmatron ion sources; at present a PIXE line is fully operating and in the near future all nuclear analytical techniques will be set up. The accelerators are used for biological, material, environmental and industrial applications. The research teams are multidisciplinary and the general objective is the applications on nuclear analytical techniques to the above fields. This paper presents a general panorama of two accelerators and some applications using the electron accelerator Pelletron type. Three studies are presented which were performed with the accelerator Pelletron type: 1) radiation effects on sewage sludge and waste water samples; 2) simulation of both heavy ions and gamma radiation; and 3) basic research in polymers. 1) Test runs were performed to evaluate

  1. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Doche, A.; Beekman, C.; Corde, S.

    2017-01-01

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

  2. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  3. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  4. A computer study of radionuclide production in high power accelerators for medical and industrial applications

    Science.gov (United States)

    Van Riper, K. A.; Mashnik, S. G.; Wilson, W. B.

    2001-05-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  5. A study on the development plan and preliminary design of proton accelerator for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Choi, B H; Park, C K; Chung, K S. and others

    1997-11-01

    A study on the development plan and preliminary design for the realisation of high current proton accelerator to be used as an essential component for the R and D of accelerator-driven system (ADS) for energy production and transmutation of long-lived radionuclides. Various fields of application of the accelerator such as basic nuclear physics, material science, biology, high energy physics, medicine, etc. were also investigated. From the preliminary design study, 1 GeV (20 mA) - Linac is required for the purposed of transmutation and energy production. Specification of injector, RFQ, CCTL and SL was also suggested. For the case study, a duoplasmatron ion source was designed by KAERI and fabricated by a domestic manufacturer, and the performance was also tested. (author). 71 refs., 61 tabs., 131 figs

  6. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  7. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1993-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently the authors used a MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r b < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. The authors' success with the MITL technology led them to investigate the application to higher energy accelerator designs. They have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30-50-ns FWHM output pulse

  8. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r ρ < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs

  9. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    Science.gov (United States)

    Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Poukey, J. W.; Turman, B. N.

    Self Magnetically Insulated Transmission Lines (MITL) adders were used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r(sub rho) less than 2 cm), 11 - 15 MeV, 50 - 100-kA beams with a small transverse velocity v(perpendicular)/c = beta(perpendicular) less than or equal to 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30 - 50 ns FWHM output pulse.

  10. Proceedings of the FNCA 2002 workshop on application of electron accelerator. Radiation system for liquid samples

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2003-10-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 16 to 20 December 2002. The attendants at the workshop were consisted of 13 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, the Philippines, Thailand and Vietnam, and 40 participants from Japan. A total of 18 papers including invited papers on liquid waste treatment by electron beam, reviews of the radiation systems, and designing and cost analysis of EB irradiation system were presented. The major areas of interest of FNCA countries for cooperation were identified for application of low energy electron accelerator as liquid, thin film and granules. The gas and wastewater treatments were added to the above major areas. Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2004. All manuscripts submitted by every speaker were included in the proceedings. The 17 of the presented papers are indexed individually. (J.P.N.)

  11. The final technical report of the CRADA, 'Medical Accelerator Technology'

    International Nuclear Information System (INIS)

    Chu, W.T.; Rawls, J.M.

    2000-01-01

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation

  12. Klystron life results in particle accelerator applications

    International Nuclear Information System (INIS)

    Bohlen, Heinz

    2002-01-01

    Based on reports contributed by various particle accelerator sites, among them DESY, CERN, and LANL, Weibull life time characteristics have been calculated for the klystrons used at these institutions. Supported by evaluations of the technologies and the operational conditions involved, the results, sometimes surprising and unexpected, present material that can be valuable for logistic considerations, the planning of future accelerators, and naturally for the design of future klystrons

  13. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  14. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  15. Accelerators for Medical Applications What is so Special?

    CERN Document Server

    Schippers, J.M.

    2016-01-01

    Specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the requirements of the accelerated beam differ from those in a nuclear physics laboratory. The way of operating such a medical device requires not only operators, but also the possibility to have a safe machine operation by non accelerator specialists at different operating sites (treatment rooms). It will be shown that the organisation and role of the control/interlock system can be considered as being the most dedicated in a particle-therapy providing facility.

  16. Realisation of a linear electron accelerator. Application to the production of millimetre wavelength waves

    International Nuclear Information System (INIS)

    Combe, Rene

    1956-01-01

    In the first part of this research thesis, the author reports the development of a linear electron accelerator with a presentation of charged waveguides which are their main components. He also proposes a recall of the charged waveguide theory, an overview of some experimental guides, a description of the calculation method, and reports the actual realisation of the accelerator waveguide. The apparatus is precisely described, and results obtained during tests are presented. The second part of the thesis addresses the study of millimetre wavelength waves. It reports the study of the electron movement in a sinusoidal inverter, and in a helical inverter (a solenoid in which the electron has a helical trajectory). Then, the author proposes a detailed presentation of electron radiation theory: fundamental wavelength, total radiated power, angular and spectral distribution of radiation. The author finally reports a comparison between radiations obtained with different devices [fr

  17. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    Science.gov (United States)

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  18. Overview of accelerators in medicine

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  19. Preparation of multilayer graphene sheets and their applications for particle accelerators

    Science.gov (United States)

    Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki

    2018-05-01

    Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.

  20. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    Science.gov (United States)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  1. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Bottura, Luca; Yamamoto, Akira; Zlobin, Alexander V

    2016-01-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  2. Development of new electron beam accelerator

    International Nuclear Information System (INIS)

    Tanaka, Jiro

    1976-01-01

    Approximately two decades have elapsed since electron accelerators were first employed in industry. It is widely used in the fields of chemical and food industries and the prevention of pollution. The accelerators for industrial use are limited to those obtainable high current or high output, low cost and easy handling. The low energy (up to 2 or 3 MeV) accelerators applicable to industry include the rectification type (Cockcroft, Dynamitron, Van de Graaff etc.), the AC transformer type (resonance transformer, cascade transformer) and the transformer type. As the accelerators of higher energy (more than 3 MeV), there exist the linear accelerator and the electromagnetic induction type. The linear accelerators are widely employed for industrial and medical uses as the large output can be obtained. Though various types of accelerators are used in industry, more increasing demands in accordance with the diversification of application are not always satisfied. As it seems that the realization of a new accelerator of improved performance and cost requires long time, it may be important to perform the standardization by dividing the energy and output ranges. (Wakatsuki, Y.)

  3. Accelerators in industrial and clinical practice

    International Nuclear Information System (INIS)

    Kulinich, S.

    1983-01-01

    Various possible accelerator applications in the USSR are given, namely the use of a linear electron accelerator in crack detection of thick-walled steel products, the use of accelerators in the radiation-chemical production of antimicrobial fabrics, the use of a pulsed electron accelerator for the disinfection of sewage waters, the use of accelerators for the treatment of tumors. Instruments have been developed on the basis of linear electron accelerators for the activation analysis of ores. (M.D.)

  4. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb$_{3}$Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  5. Manufacturing and Testing of Accelerator Superconducting Magnets

    International Nuclear Information System (INIS)

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process

  6. Manufacturing and Testing of Accelerator Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  7. Accelerator technology program. Progress report, January-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, E.A.; Jameson, R.A. (comps.)

    1980-11-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H/sup -/ ion sources and injectors, and linear accelerator instrumentation and beam dynamics.

  8. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  9. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  10. Monte Carlo based simulation of LIAC intraoperative radiotherapy accelerator along with beam shaper applicator

    Directory of Open Access Journals (Sweden)

    N Heidarloo

    2017-08-01

    Full Text Available Intraoperative electron radiotherapy is one of the radiotherapy methods that delivers a high single fraction of radiation dose to the patient in one session during the surgery. Beam shaper applicator is one of the applicators that is recently employed with this radiotherapy method. This applicator has a considerable application in treatment of large tumors. In this study, the dosimetric characteristics of the electron beam produced by LIAC intraoperative radiotherapy accelerator in conjunction with this applicator have been evaluated through Monte Carlo simulation by MCNP code. The results showed that the electron beam produced by the beam shaper applicator would have the desirable dosimetric characteristics, so that the mentioned applicator can be considered for clinical purposes. Furthermore, the good agreement between the results of simulation and practical dosimetry, confirms the applicability of Monte Carlo method in determining the dosimetric parameters of electron beam  intraoperative radiotherapy

  11. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  12. CONCERT A high power proton accelerator driven multi-application facility concept

    CERN Document Server

    Laclare, J L

    2000-01-01

    A new generation of High Power Proton Accelerator (HPPA) is being made available. It opens new avenues to a long series of scientific applications in fundamental and applied research, which can make use of the boosted flux of secondary particles. Presently, in Europe, several disciplines are preparing their project of dedicated facility, based on the upgraded performances of HPPAs. Given the potential synergies between these different projects, for reasons of cost effectiveness, it was considered appropriate to look into the possibility to group a certain number of these applications around a single HPPA: CONCERT project left bracket 1 right bracket . The ensuing 2-year feasibility study organized in collaboration between the European Spallation Source and the CEA just started. EURISOL left bracket 2 right bracket project and CERN participate in the steering committee.

  13. Superconducting magnets technologies for large accelerator

    International Nuclear Information System (INIS)

    Ogitsu, Toru

    2017-01-01

    The first hadron collider with superconducting magnet technologies was built at Fermi National Accelerator Laboratory as TEVATRON. Since then, the superconducting magnet technologies are widely used in large accelerator applications. The paper summarizes the superconducting magnet technologies used for large accelerators. (author)

  14. 15 CFR 301.7 - Final disposition of an application.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Final disposition of an application. 301.7 Section 301.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS...

  15. Computer study of isotope production for medical and industrial applications in high power accelerators

    Science.gov (United States)

    Mashnik, S. G.; Wilson, W. B.; Van Riper, K. A.

    2001-07-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes. These methods are readily applicable both to accelerator and reactor environments and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements that may be expanded to other reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures, is available on the Web at http://t2.lanl.gov/publications/.

  16. Advanced high brightness ion rf accelerator applications in the nuclear energy

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1991-01-01

    The capability of modern rf linear accelerators to provide intense high quality beams of protons, deuterons, or heavier ions is opening new possibilities for transmuting existing nuclear wastes, for generating electricity from readily available fuels with minimal residual wastes, for building intense neutron sources for materials research, for inertial confinement fusion using heavy ions, and for other new applications. These are briefly described, couched in a perspective of the advances in the understanding of the high brightness beams that has enabled these new programs. 32 refs., 2 figs

  17. Medical uses of accelerators

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1981-01-01

    A variety of particle accelerators have either potential or already demonstrated uses in connection with medically-related research, diagnosis, and treatment. For cancer radiotherapy, nuclear particles including protons, neutrons, heavy ions, and negative pi mesons have advantages compared to conventional radiations in terms of dose localization and/or biological effectiveness. Clinical evaluations of these particles are underway at a number of institutions. Accelerator-produced radionuclides are in widespread use for research and routine diagnostic purposes. Elemental analysis techniques with charged particles and neutrons are being applied to bone, blood, and other tissues. Finally, low-dose medical imaging can be accomplished with accelerated protons and heavy ions. The status and future of these programs are discussed

  18. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  19. Economic evaluation of slurry-, sewage-sludge, and crop disinfection facility applications based on industrial accelerator and 60Co radiation source

    International Nuclear Information System (INIS)

    Abelovszky, L.

    1979-01-01

    The degree of the compliance with the requirements of slurry and sewage treatment, the range of use of radiation sterilization procedures in agriculture and food industry, the possibilities of the complex application of radiation methods and factors influencing their economic efficiency, the economic evaluation of the versatile chargeable accelerators, the fixed and semi-mobile radioisotope facilities, the economic efficiency of the multipurpose utilization, the differences in the application of accelerators and radio isotopes as to the power source applied, the penetration, the dose rates and the radiation energy focusing are discussed. The radiation facility costs are compared. Conclusions concerning the choice of the most efficient applications are given. (author)

  20. Plasma-based and novel accelerators

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Nishida, Yasushi

    1992-05-01

    This publication is a collection of papers presented at Workshop on Plasma-Based and Novel Accelerators held at National Institute for Fusion Science, Nagoya, on December 19-20, 1991. Plasma-based accelerators are attracting considerable attention in these days a new, exciting field of plasma applications. The study gives rise to and spurs study of other unique accelerators like laser-based accelerators. The talks in the Workshop encompassed beat-wave accelerator (BWA), plasma wake field accelerator (PWFA), V p x B accelerator, laser-based accelerators and some novel methods of acceleration. They also covered the topics such as FEL, cluster acceleration and plasma lens. Small scale experiments as those in universities have exhibited brilliant results while larger scale experiments like BWA in Institute of Laser Engineering, Osaka University, and PWFA in KEK start showing significant results as well. (J.P.N.)

  1. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    International Nuclear Information System (INIS)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-01-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant

  2. 805 MHz β = 0.47 Elliptical Accelerating Structure R and D. Final Report

    International Nuclear Information System (INIS)

    Bricker, S.; Compton, C.; Hartung, W.; Johnson, M.; Marti, F.; Popierlarski, J.; York, R.C.

    2008-01-01

    A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q 0 ) were between 7 · 10 9 and 1.4 · 10 10 at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules. A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.

  3. High power electron accelerators for flue gas treatment

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Flue gas treatment process based on electron beam application for SO 2 and NO x removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  4. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  5. A portable accelerator control toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  6. A portable accelerator control toolkit

    International Nuclear Information System (INIS)

    Watson, W.A. III.

    1997-01-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development

  7. High-powered pulsed-ion-beam acceleration and transport

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  8. High-powered pulsed-ion-beam acceleration and transport

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  9. A microwave inverse Cerenkov Accelerator (MICA)

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    1999-01-01

    The objective of this Phase II SBIR research program was to complete the final design originated during Phase I for a prototype Microwave Inverse Cerenkov Accelerator (MICA), to fabricate the-prototype MICA, and to test its performance as an electron accelerator. This report contains details of the design, predictions of accelerator performance, results of cold tests on the MICA structure, and details of the installation of MICA on the Yale Beam Physics Laboratory 6-MeV beamline. Discussion of future work is also included

  10. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  11. Intercampus institute for research at particle accelerators. Final report, March 15, 1992 - September 30, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This is the final report to the DOE for the Intercampus Institute for Research at Particle Accelerators, or IIRPA, at least for the San Diego branch. Over the years that DOE supported IIRPA, we were told that yearly reports (and the final report) were not necessary because the previous year's summary in our annual request for funds constituted those reports. Therefore, it has taken some effort, and a corresponding long time, to put something together, after the fact. The IIRPA was born as an idea that arose during discussions at the 1974 PEP summer study, and began to be funded by DoE during the early stages of PEP detector design and construction. The intent was for the members of the Institute to be responsible for the PEP-9 Facility; all of the PEP experiments were supposed to be facilities, rather than just experimental setups for a particular group or research goal. IIRPA was approved as a Multicampus Research Unit (MRU) in 1977 by the University of California, and it was active on the UCD, UCSB and UCSD campuses for 10 years. This report concentrates on the period of time when the Directorship of IIRPA was once again at the San Diego campus, 1989 to 1995. The collection of yearly reports consisting of research in different areas of particle physics, make up this report in the appendices

  12. Commercialization of a high energy neutral beam ion source. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    This final report summarizes the effort and presents the results of a Phase II fabrication effort to build an industrial prototype of the LBL developed high energy neutral beam source. The effort was primarily concentrated on incorporating hard vacuum dielectric seals and a ceramic high voltage accelerator insulator. Several other design changes were incorporated for cost, reliability or life improvements to include: (1) accelerator grid locating dowel pins to aid final alignment, (2) plasma source to accelerator captive fasteners to aid filament replacement during source maintenance, (3) molybdenum cooling tubes on all accelerator grids, (4) additional fasteners in the plasma generator to facilitate hard seals, (5) modified suppressor grid rails and holders to simplify final grid alignment, (6) adjusting screws on exit grid rail holders to simplify final grid alignment, (7) addition of adjusting screws to the grid end pieces to simplify alignment, and (8) addition of accelerator hat shims to allow two different grid positioning locations

  13. Commercialization of a high energy neutral beam ion source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-21

    This final report summarizes the effort and presents the results of a Phase II fabrication effort to build an industrial prototype of the LBL developed high energy neutral beam source. The effort was primarily concentrated on incorporating hard vacuum dielectric seals and a ceramic high voltage accelerator insulator. Several other design changes were incorporated for cost, reliability or life improvements to include: (1) accelerator grid locating dowel pins to aid final alignment, (2) plasma source to accelerator captive fasteners to aid filament replacement during source maintenance, (3) molybdenum cooling tubes on all accelerator grids, (4) additional fasteners in the plasma generator to facilitate hard seals, (5) modified suppressor grid rails and holders to simplify final grid alignment, (6) adjusting screws on exit grid rail holders to simplify final grid alignment, (7) addition of adjusting screws to the grid end pieces to simplify alignment, and (8) addition of accelerator hat shims to allow two different grid positioning locations.

  14. Applications and technology of electron beam accelerators

    International Nuclear Information System (INIS)

    Sethi, R.C.

    2005-01-01

    Traditionally, accelerators have been employed for pursuing research in basic sciences. But over the last couple of decades their uses have proliferated into the applied fields as well. The major credit for which goes to the electron beams. Electron beams or the radiations generated by them are being extensively used in almost all the applied areas. This article is a brief account of the impact made by the accelerator based electron beams and the attempts initiated by DAE for building a base in this technology. (author)

  15. Advanced Accelerator Applications University Participation Program

    International Nuclear Information System (INIS)

    Chen, Y.; Hechanova, A.

    2007-01-01

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. In the six years of this program, we saw the evolution of the national transmutation concepts go from the use of accelerators to fast reactors. We also saw an emphasis on gas-cooled reactors for both high temperature heat and deep burn of nuclear fuel. At the local level, we saw a great birth at UNLV of two new academic programs Fall term of 2004 and the addition of 10 academic and research faculty. The Ph.D. program in Radiochemistry has turned into one of the nation's most visible and successful programs; and, the M.S. program in Materials and Nuclear Engineering initiated Nuclear Engineering academic opportunities which took a long time to come. Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability

  16. Development of a New Type of Alkali-Free Liquid Accelerator for Wet Shotcrete in Coal Mine and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2015-01-01

    Full Text Available In order to address issues such as large rebound rate, high dust concentration, and low compressive strength of shotcrete when adding liquid accelerator during wet spraying, the factors influencing the efficiency of liquid accelerator were experimentally analyzed. The single-admixture, combination, and orthogonal tests were conducted on the five fundamental raw materials required to develop the new liquid accelerator. The WT-1 type liquid accelerator, which had better adaptability to different kinds of cement, was developed with the mass concentration ratio of 55% aluminum sulfate octadecahydrate, 4% sodium fluoride, 2.5% triethanolamine, 0.5% polyacrylamide, 5% bentonite, and 33% water. Experimental investigation showed that the initial setting time of the reference cement with 6% mass content of this liquid accelerator was 2 minutes and 15 seconds, and the final setting time was 7 minutes and 5 seconds. The compressive strength after 1 day of curing was 13.6 MPa and the strength ratio after 28 days of curing was 94.8%, which met the first grade product requirements of the China National Standard. Compared with the conventional type liquid accelerator, the proposed type WT-1 accelerator is capable of effectively reducing the rebound rate and dust concentration while significantly increasing the compressive strength of the shotcrete.

  17. Improving Utility of GPU in Accelerating Industrial Applications with User-centred Automatic Code Translation

    DEFF Research Database (Denmark)

    Yang, Po; Dong, Feng; Codreanu, Valeriu

    2018-01-01

    design and hard-to-use. Little attentions have been paid to the applicability, usability and learnability of these tools for normal users. In this paper, we present an online automated CPU-to-GPU source translation system, (GPSME) for inexperienced users to utilize GPU capability in accelerating general...... SME applications. This system designs and implements a directive programming model with new kernel generation scheme and memory management hierarchy to optimize its performance. A web service interface is designed for inexperienced users to easily and flexibly invoke the automatic resource translator...

  18. The IBA rhodotron TT1000: a very high power E-beam accelerator

    International Nuclear Information System (INIS)

    Abs, M.; Jongen, Y.; Poncelet, E.; Bol, J.-L.

    2004-01-01

    Due to the relatively low conversion efficiency of electrons into X-rays, the use of X-rays on an industrial basis requires high-power high-energy electron accelerators. Based on its experience acquired in the development of the Rhodotron (Nucl. Instrum. Methods B 40/41 (1989) 943; Nucl. Instrum. Methods B 79 (1993) 865), IBA has launched a few years ago a vigorous R and D program to develop such high-power electron accelerator devoted to X-ray industrial applications. This research program resulted in the TT1000 Rhodotron aimed at delivering 5 and 7 MeV electron beams with a current intensity of 100 mA. This project is now reaching its final phase with the qualification tests of the first prototype of this new machine

  19. Wake fields and wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e + e - linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures

  20. Accelerator Operators and Software Development

    International Nuclear Information System (INIS)

    April Miller; Michele Joyce

    2001-01-01

    At Thomas Jefferson National Accelerator Facility, accelerator operators perform tasks in their areas of specialization in addition to their machine operations duties. One crucial area in which operators contribute is software development. Operators with programming skills are uniquely qualified to develop certain controls applications because of their expertise in the day-to-day operation of the accelerator. Jefferson Lab is one of the few laboratories that utilizes the skills and knowledge of operators to create software that enhances machine operations. Through the programs written; by operators, Jefferson Lab has improved machine efficiency and beam availability. Because many of these applications involve automation of procedures and need graphical user interfaces, the scripting language Tcl and the Tk toolkit have been adopted. In addition to automation, some operator-developed applications are used for information distribution. For this purpose, several standard web development tools such as perl, VBScript, and ASP are used. Examples of applications written by operators include injector steering, spin angle changes, system status reports, magnet cycling routines, and quantum efficiency measurements. This paper summarizes how the unique knowledge of accelerator operators has contributed to the success of the Jefferson Lab control system. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150

  1. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm 2 ) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-T c superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it

  2. Health physics practices at research accelerators

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-02-01

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators

  3. "small ACCELERATORS" 24 May - 2 June 2005

    CERN Multimedia

    2005-01-01

    CERN Accelerator School and Kernfysisch Versneller Instituut (KVI) Groningen, the Netherlands announce a course on "Small Accelerators", Hotel Golden Tulip Drenthe, Zeegse, the Netherlands, 24 May - 2 June 2005. This specialised course is dedicated to the physics and the main applications of small accelerators. The course will review the different accelerator types as well as their specificities in terms of accelerator physics.

  4. Manipulation of hadron beams with bent crystals in circular accelerators

    CERN Document Server

    Rossi, R; Redaelli, S; Scandale, W

    2016-01-01

    Over the past years the understanding and use of coherent interactions of charged particles with ordered crystal lattices has achieved excellent results. Improving collimation of hadron beams in circular accelerators, like the Large Hadron Collider (LHC) of the European Council for Nuclear Research (CERN), it is one of the possible applications. The aim of the UA9 experiment is to demonstrate the feasibility of a two-stage collimation system in the CERN-SPS : the first stage is a bent crystal oriented for an optimal channeling of the incoming halo particles; the second stage is a massive absorber. Two crystals were installed in the LHC last year and a test of crystal assisted collimation at the highest energy will be possible as early as 2015. Finally, the UA9 Collaboration is investigating extraction of particles from a circular accelerator, based on bent crystals.

  5. Concept for calculating dose rates from activated groundwater at accelerator sites

    CERN Document Server

    Prolingheuer, N; Vanderborght, J; Schlögl, B; Nabbi, R; Moormann, R

    Licensing of particle accelerators requires the proof that the groundwater outside of the site will not be significantly contaminated by activation products formed below accelerator and target. In order to reduce the effort for this proof, a site independent simplified but conservative method is under development. The conventional approach for calculation of activation of soil and groundwater is shortly described on example of a site close to Forschungszentrum Juelich, Germany. Additionally an updated overview of a data library for partition coefficients for relevant nuclides transported in the aquifer at the site is presented. The approximate model for transport of nuclides with ground water including exemplary results on nuclide concentrations outside of the site boundary and of resulting effective doses is described. Further applications and developments are finally outlined.

  6. Automatic generation of application specific FPGA multicore accelerators

    DEFF Research Database (Denmark)

    Hindborg, Andreas Erik; Schleuniger, Pascal; Jensen, Nicklas Bo

    2014-01-01

    High performance computing systems make increasing use of hardware accelerators to improve performance and power properties. For large high-performance FPGAs to be successfully integrated in such computing systems, methods to raise the abstraction level of FPGA programming are required...... to identify optimal performance energy trade-offs points for a multicore based FPGA accelerator....

  7. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  8. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  9. Basics of Accelerator Science and Technology at CERN

    CERN Document Server

    2013-01-01

    This course will provide an introductory level training in General Accelerator Physics for CERN staff (mainly engineers and technical engineers) who have not yet attended one of the regular CERN Accelerator School Introductory courses. This one-week course will review the core topics of accelerator physics with special emphasis on CERN machines and CERN applications, respectively. Application is by invitation only.

  10. High power electron accelerators for flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Flue gas treatment process based on electron beam application for SO{sub 2} and NO{sub x} removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  11. Aerodynamics in arbitrarily accelerating frames: application to high-g turns

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Fifth-generation missilies accelerate up to 100 g in turns, and higher accelerations are expected as agility increases. The authors have developed the theory of aerodynamics for arbitrary accelerations, and have validated modelling in a...

  12. The application package DeCA for calculating cyclic accelerators

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Zelinsky, A.Yu.; Strelkov, M.A.

    1993-01-01

    The application Package DeCA (Design Cyclic Accelerator) is offered to solve a set of problem which arise on designing electron storage rings. The package is based on the block principle. This makes it extremely flexible in designing storage rings and investigating beam dynamics in them. The package is intended for a user not familiar with programming languages, it is arranged so that the user familiar with FORTRAN-77 can easily extend the package functions. This is of particular interest, when the input data are the storage ring or electron bunch parameters. The code allows operation in both the batch and interactive modes. The programming language is FORTRAN-77. The capacity of the total package is 40,000 code lines. The necessary main storage capacity for the total version is 4 Mbytes

  13. Accelerator Physics for ILC and CLIC

    CERN Document Server

    Zimmermann, F

    2010-01-01

    This paper summarizes the second part of the “accelerator physics lectures” delivered at the Ambleside Linear Collider School 2009. It discusses more specific linear-collider issues: superconducting and room-temperature linear accelerators, particle sources for electrons and positrons, synchrotron radiation and damping, intensity limits, beam stability, and beam delivery system – including final focus, collimation, and beam-beam effects. It also presents an overview of the International Linear Collider (ILC), a description of the two beam acceleration scheme of the Compact Linear Collider (CLIC), and a comparison of the ILC and CLIC parameters.

  14. Accelerator and Electrodynamics Capability Review

    International Nuclear Information System (INIS)

    Jones, Kevin W.

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  15. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  16. Aerodynamics in arbitrarily accelerating frames: application to high-g turns

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Fifth-generation missiles accelerate up to 100 g in turns, and higher accelerations are expected as agility increases. The auhtors have developed the theory of aerodynamics for arbitrary accelerations, and have validated modelling in a Computational...

  17. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  18. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  19. Collective accelerator for electron colliders

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1985-01-01

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch

  20. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  1. Linear accelerator use in the nuclear field

    International Nuclear Information System (INIS)

    Lecomte, J.-C.

    Radiography of internal conformity is performed on weldments and thick castings using linear accelerators. The basic principles relating to linear accelerators are outlined and their advantages over Co 60 sources described. Linear accelerator operation related requirements are presented as well as the use of this apparatus as a method for volumetric inspection, during fabrication of French Nuclear Steam Supply Systems (NSSS). Finally the resources needed to use this technique as an inspection method is dealt with [fr

  2. The MOA thruster. A high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2009-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other, terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in Vienna, Austria, which has been set up to further develop and test the Alfven wave technology and its applications. (author)

  3. Computer applications: Automatic control system for high-voltage accelerator

    International Nuclear Information System (INIS)

    Bryukhanov, A.N.; Komissarov, P.Yu.; Lapin, V.V.; Latushkin, S.T.. Fomenko, D.E.; Yudin, L.I.

    1992-01-01

    An automatic control system for a high-voltage electrostatic accelerator with an accelerating potential of up to 500 kV is described. The electronic apparatus on the high-voltage platform is controlled and monitored by means of a fiber-optic data-exchange system. The system is based on CAMAC modules that are controlled by a microprocessor crate controller. Data on accelerator operation are represented and control instructions are issued by means of an alphanumeric terminal. 8 refs., 6 figs

  4. Induction accelerators for the phase rotator system

    International Nuclear Information System (INIS)

    Reginato, Lou; Yu, Simon; Vanecek, Dave

    2001-01-01

    The principle of magnetic induction has been applied to the acceleration of high current beams in betatrons and a variety of induction accelerators. The linear induction accelerator (LIA) consists of a simple nonresonant structure where the drive voltage is applied to an axially symmetric gap that encloses a toroidal ferromagnetic material. The change in flux in the magnetic core induces an axial electric field that provides particle acceleration. This simple nonresonant (low Q) structure acts as a single turn transformer that can accelerate from hundreds of amperes to tens of kiloamperes, basically only limited by the drive impedance. The LIA is typically a low gradient structure that can provide acceleration fields of varying shapes and time durations from tens of nanoseconds to several microseconds. The efficiency of the LIA depends on the beam current and can exceed 50% if the beam current exceeds the magnetization current required by the ferromagnetic material. The acceleration voltage available is simply given by the expression V=A dB/dt. Hence, for a given cross section of material, the beam pulse duration influences the energy gain. Furthermore, a premium is put on minimizing the diameter, which impacts the total weight or cost of the magnetic material. The diameter doubly impacts the cost of the LIA since the power (cost) to drive the cores is proportional to the volume as well. The waveform requirements during the beam pulse makes it necessary to make provisions in the pulsing system to maintain the desired dB/dt during the useful part of the acceleration cycle. This is typically done two ways, by using the final stage of the pulse forming network (PFN) and by the pulse compensation network usually in close proximity of the acceleration cell. The choice of magnetic materials will be made by testing various materials both ferromagnetic and ferrimagnetic. These materials will include the nickel-iron, silicon steel amorphous and various types of ferrites not

  5. Space tug applications. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This article is the final report of the conceptual design efforts for a 'space tug'. It includes preliminary efforts, mission analysis, configuration analysis, impact analysis, and conclusions. Of the several concepts evaluated, the nuclear bimodal tug was one of the top candidates, with the two options being the NEBA-1 and NEBA-3 systems. Several potential tug benefits were identified during the mission analysis. The tug enables delivery of large (>3,500 kg) payloads to the outer planets and it increases the GSO delivery capability by 20% relative to current systems. By providing end of life disposal, the tug can be used to extend the life of existing space assets. It can also be used to reboost satellites which were not delivered to their final orbit by the launch system. A specific mission model is the key to validating the tug concept. Once a mission model can be established, mission analysis can be used to determine more precise propellant quantities and burn times. In addition, the specific payloads can be evaluated for mass and volume capability with the launch systems. Results of the economic analysis will be dependent on the total years of operations and the number of missions in the mission model. The mission applications evaluated during this phase drove the need for large propellant quantities and thus did not allow the payloads to step down to smaller and less expensive launch systems

  6. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  7. Next generation of accelerators

    International Nuclear Information System (INIS)

    Richter, B.

    1979-01-01

    Existing high-energy accelerators are reviewed, along with those under construction or being designed. Finally, some of the physics issues which go into setting machine parameters, and some of the features of the design of next generation electron and proton machines are discussed

  8. A Hardware Framework for on-Chip FPGA Acceleration

    DEFF Research Database (Denmark)

    Lomuscio, Andrea; Cardarilli, Gian Carlo; Nannarelli, Alberto

    2016-01-01

    In this work, we present a new framework to dynamically load hardware accelerators on reconfigurable platforms (FPGAs). Provided a library of application-specific processors, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA-based accele......In this work, we present a new framework to dynamically load hardware accelerators on reconfigurable platforms (FPGAs). Provided a library of application-specific processors, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA......-based accelerator. Results show that significant speed-up can be obtained by the proposed acceleration framework on system-on-chips where reconfigurable fabric is placed next to the CPUs. The speed-up is due to both the intrinsic acceleration in the application-specific processors, and to the increased parallelism....

  9. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  10. Particle production and survival in muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Noble, R.J.

    1992-06-01

    Because of the relative immunity of muons to synchrotron radiation, the idea of using them instead of electrons as probes in high-energy physics experiments has existed for some time, but applications were limited by the short muon lifetime. The production and survival of an adequate supply of low-emittance muons will determine the available luminosity in a high-energy physics collider. In this paper the production of pions by protons, their decay to muons and the survival of muons during acceleration are studied. Based on a combination of the various efficiencies, the number of protons needed at the pion source for every muon required in the final high-energy collider is estimated.

  11. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  12. Reliability of high power electron accelerators for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  13. Reliability of high power electron accelerators for radiation processing

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  14. A study for the fabulously of introducing an acceleration mass spectrometer facility (ABMs) for carbon-14 applications

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Comsan, N.; Sadek, M.

    2004-01-01

    In this work a study was conducted to show the importance and feasibility of introducing an accelerating mass spectrometer facility for carbon-14 analysis in the environmental levels. The different applications of Carbon-14 (e.g. dating and identification of food additives of synthetic origin) are discussed. There are two methods for C- 14 measurements, beta decay counting and accelerator mass spectrometry (AMS). The beta decay method requires gram quantities of the sample carbon, compared to few milligram quantities in case of AMS method. The Central Lab. for Environmental Isotope Hydrology of the National Center for Nuclear Safety and Radiation Control has a Carbon-14 analysis facility based on beta decay counting using a liquid scintillation counter after sample preparation in the form of benzene through rather complicated chemical conversion steps. This strongly limits the capacity of the laboratory to about 100-150 samples per year. Also, the amount of sample required limits our expansion for some very important applications like dating of archaeological small samples and especially old bone samples which normally have a low concentration of organic compounds. These applications are only possible by using the AMS method. For some applications only AMS could be used e.g measuring C-14 in atmospheric gases such as methane and carbon dioxide is virtually impossible using decay counting but quite feasible with AMS. The importance of purchasing an AMS facility or upgrading the existing accelerator is discussed in view of the shortage of such a facility in Africa and the Middle East. Acquiring an AMS in Egypt will make it possible to accurately date the Egyptian antiquities and to act as a regional laboratory and to enter into new applications where the amount of sample is limiting

  15. Accelerating Approximate Bayesian Computation with Quantile Regression: application to cosmological redshift distributions

    Science.gov (United States)

    Kacprzak, T.; Herbel, J.; Amara, A.; Réfrégier, A.

    2018-02-01

    Approximate Bayesian Computation (ABC) is a method to obtain a posterior distribution without a likelihood function, using simulations and a set of distance metrics. For that reason, it has recently been gaining popularity as an analysis tool in cosmology and astrophysics. Its drawback, however, is a slow convergence rate. We propose a novel method, which we call qABC, to accelerate ABC with Quantile Regression. In this method, we create a model of quantiles of distance measure as a function of input parameters. This model is trained on a small number of simulations and estimates which regions of the prior space are likely to be accepted into the posterior. Other regions are then immediately rejected. This procedure is then repeated as more simulations are available. We apply it to the practical problem of estimation of redshift distribution of cosmological samples, using forward modelling developed in previous work. The qABC method converges to nearly same posterior as the basic ABC. It uses, however, only 20% of the number of simulations compared to basic ABC, achieving a fivefold gain in execution time for our problem. For other problems the acceleration rate may vary; it depends on how close the prior is to the final posterior. We discuss possible improvements and extensions to this method.

  16. Improved voltage performance of the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Meigs, M.J.; Jones, C.M.; Haynes, D.L.; Juras, R.C.; Ziegler, N.F.; Raatz, J.E.; Rathmell, R.D.

    1988-01-01

    While voltage performance of the accelerator has been adequate for the experimental program to date, it seemed clear that improvement in voltage performance could be of direct benefit to the experimental program in the future. Therefore, we began, in June 1986, a program of modifications and tests which was designed to improve voltage performance of the accelerator. In this paper, we discuss the final phase of this program and initial tests of the accelerator following completion of this final phase. 11 refs., 4 figs

  17. The electron accelerator in industry - safety aspects

    International Nuclear Information System (INIS)

    Kirthi, K.N.

    1993-01-01

    Electron beam accelerators are being used in increasing numbers in a variety of important applications. Commercial uses include radiography, food preservation, product sterilisation and radiation processing of materials. Since most of the industrial applications involve products, some that can be treated with electrons and others that require photons, electron accelerators serve this dual purpose economically. Although industrial accelerators are now regarded as standard products, finished installations show considerable diversity, reflecting the users, needs and planning. Because of the high radiation output, proper planning regarding safety is warranted. This paper discusses the hazards, safety and planning required during design and operation of the electron beam accelerators. (author). 4 refs., 1 fig

  18. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  19. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society.

  20. High power accelerator for environmental application

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.

    2011-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  1. High power accelerator for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R.; Kim, S. M. [EB-TECH Co., Ltd., Yuseong-gu Daejeon (Korea, Republic of)

    2011-07-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  2. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  3. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  4. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  5. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    Science.gov (United States)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  6. Resent advance in electron linear accelerators

    International Nuclear Information System (INIS)

    Takeda, Seishi; Tsumori, Kunihiko; Takamuku, Setsuo; Okada, Toichi; Hayashi, Koichiro; Kawanishi, Masaharu

    1986-01-01

    In recently constructed electron linear accelerators, there has been remarkable advance both in acceleration of a high-current single bunch electron beam for radiation research and in generation of high accelerating gradient for high energy accelerators. The ISIR single bunch electron linear accelerator has been modified an injector to increase a high-current single bunch charge up to 67 nC, which is ten times greater than the single bunch charge expected in early stage of construction. The linear collider projects require a high accelerating gradient of the order of 100 MeV/m in the linear accelerators. High-current and high-gradient linear accelerators make it possible to obtain high-energy electron beam with small-scale linear accelerators. The advance in linear accelerators stimulates the applications of linear accelerators not only to fundamental research of science but also to industrial uses. (author)

  7. Final report: Compiled MPI. Cost-Effective Exascale Application Development

    Energy Technology Data Exchange (ETDEWEB)

    Gropp, William Douglas [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-12-21

    This is the final report on Compiled MPI: Cost-Effective Exascale Application Development, and summarizes the results under this project. The project investigated runtime enviroments that improve the performance of MPI (Message-Passing Interface) programs; work at Illinois in the last period of this project looked at optimizing data access optimizations expressed with MPI datatypes.

  8. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    International Nuclear Information System (INIS)

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  9. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  10. High technology for radiation application

    International Nuclear Information System (INIS)

    Iida, Toshiyuki

    2005-03-01

    Fundamentals of radiations, radioactivity, and their applications in recent industrial, medical, agricultural and various research fields are reviewed. The book begins with historical description regarding to discovery of radiation at the end of 19th century and the exploration into the inside of an atom utilizing the radiation discovered, discovery of the neutron which finally leaded to nuclear energy liberation. Developments of radiation sources, including nuclear reactors, and charged-particle accelerators follow with simultaneous description on radiation measurement or detection technology. In medical fields, X-ray diagnosis, interventional radiology (IVR), nuclear medicine (PET and others), and radiation therapy are introduced. In pharmaceutical field, synthesis of labeled compounds and tracer techniques are explained. In industrial application, radiation-reinforced wires and heat-resistant cables whose economic effect can be estimated to amount to more than 10 12 yen, radiation mutation, food irradiation, and applied accelerators such as polymer modifications, decomposition of environmentally harmful substances, and ion-implantations important in semiconductor device fabrication. Finally, problems relating to general public such as radiation education and safety concept are also discussed. (S. Ohno)

  11. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ``Superconductivity in Particle Accelerators``. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.).

  12. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  13. Safety and regulatory aspects of accelerators

    International Nuclear Information System (INIS)

    Singh, Pitamber

    2017-01-01

    Particle accelerators are devices that produce beams of energetic ions and electrons which have applications in various fields. Historically, particle accelerators were developed for nuclear physics research. Although the particle physics community is still the main user group, joined by others. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation an many other applications. Accelerators are also being used for nuclear energy generation using Thorium and waste management through incineration of minor actinides using accelerator driven sub-critical reactor system (ADS). This is of great interest to India as it has large resources of good quality thorium. The ADS are considered to be an inherently safe system as the reactor is sub-critical. However, ADS require high energy and high current proton beams which involve complex technologies. Accelerators deliver energy to the charged particles by means of electromagnetic fields. Depending on how the electric and magnetic fields are used, the accelerators can be grouped in three categories namely electrostatic or DC accelerators, RF accelerators and colliding rings. In DC accelerators, particles pass through a high voltage and gain energy given by E= qV where q is the charge of ion and V is the voltage tough which ion pass. In order to sustain high voltage accelerator column section is housed inside a pressure vessel which is filled with gas, normally SF_6, at high pressure (100 -150 psig)

  14. Final report: Accelerated beta decay for disposal of fission fragment wastes

    International Nuclear Information System (INIS)

    Reiss, Howard R.

    2000-01-01

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory

  15. MO-FG-303-04: A Smartphone Application for Automated Mechanical Quality Assurance of Medical Accelerators

    International Nuclear Information System (INIS)

    Kim, H; Lee, H; Choi, K; Ye, S

    2015-01-01

    Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantry and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations

  16. MO-FG-303-04: A Smartphone Application for Automated Mechanical Quality Assurance of Medical Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H [Interdisciplinary Program in Radiation applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lee, H; Choi, K [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ye, S [Interdisciplinary Program in Radiation applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantry and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations.

  17. Benchmarking study and its application for shielding analysis of large accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Seock; Kim, Dong-hyun; Oranj, Leila Mokhtari; Oh, Joo-Hee; Lee, Arim; Jung, Nam-Suk [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    Shielding Analysis is one of subjects which are indispensable to construct large accelerator facility. Several methods, such as the Monte Carlo, discrete ordinate, and simplified calculation, have been used for this purpose. The calculation precision is overcome by increasing the trial (history) numbers. However its accuracy is still a big issue in the shielding analysis. To secure the accuracy in the Monte Carlo calculation, the benchmarking study using experimental data and the code comparison are adopted fundamentally. In this paper, the benchmarking result for electrons, protons, and heavy ions are presented as well as the proper application of the results is discussed. The benchmarking calculations, which are indispensable in the shielding analysis were performed for different particles: proton, heavy ion and electron. Four different multi-particle Monte Carlo codes, MCNPX, FLUKA, PHITS, and MARS, were examined for higher energy range equivalent to large accelerator facility. The degree of agreement between the experimental data including the SINBAD database and the calculated results were estimated in the terms of secondary neutron production and attenuation through the concrete and iron shields. The degree of discrepancy and the features of Monte Carlo codes were investigated and the application way of the benchmarking results are discussed in the view of safety margin and selecting the code for the shielding analysis. In most cases, the tested Monte Carlo codes give proper credible results except of a few limitation of each codes.

  18. Benchmarking study and its application for shielding analysis of large accelerator facilities

    International Nuclear Information System (INIS)

    Lee, Hee-Seock; Kim, Dong-hyun; Oranj, Leila Mokhtari; Oh, Joo-Hee; Lee, Arim; Jung, Nam-Suk

    2015-01-01

    Shielding Analysis is one of subjects which are indispensable to construct large accelerator facility. Several methods, such as the Monte Carlo, discrete ordinate, and simplified calculation, have been used for this purpose. The calculation precision is overcome by increasing the trial (history) numbers. However its accuracy is still a big issue in the shielding analysis. To secure the accuracy in the Monte Carlo calculation, the benchmarking study using experimental data and the code comparison are adopted fundamentally. In this paper, the benchmarking result for electrons, protons, and heavy ions are presented as well as the proper application of the results is discussed. The benchmarking calculations, which are indispensable in the shielding analysis were performed for different particles: proton, heavy ion and electron. Four different multi-particle Monte Carlo codes, MCNPX, FLUKA, PHITS, and MARS, were examined for higher energy range equivalent to large accelerator facility. The degree of agreement between the experimental data including the SINBAD database and the calculated results were estimated in the terms of secondary neutron production and attenuation through the concrete and iron shields. The degree of discrepancy and the features of Monte Carlo codes were investigated and the application way of the benchmarking results are discussed in the view of safety margin and selecting the code for the shielding analysis. In most cases, the tested Monte Carlo codes give proper credible results except of a few limitation of each codes

  19. A study of diagnostics expert system for accelerator applications

    International Nuclear Information System (INIS)

    Tyagi, Y.; Banerji, Anil; Kotaiah, S.

    2003-01-01

    Knowledge based techniques are proving to be useful in a number of problem domains which typically requires human expertise. Expert systems employing knowledge based techniques are a recent product of artificial intelligence. Methods developed in the artificial intelligence area can be applied with success for certain classes of problems in accelerator. Accelerators are complex devices with thousands of components. The number of possible faults or problems that can appear is enormous. A diagnostics expert system can provide great help in finding and diagnosing problems in Indus-II accelerator sub-systems. (author)

  20. Accelerator-TEM interface facility and application

    International Nuclear Information System (INIS)

    Liu Chuansheng; Li Ming; He Jun; Yang Zheng; Zhou Lin; Wang Zesong; Guo Liping; Jiang Changzhong; Yang Shibo; Fu Dejun; Fan Xiangjun; Liu Jiarui; Lee J C

    2010-01-01

    An accelerator-TEM interface facility has been established at Wuhan University in 2008. The system consists of an H800 TEM linked to a 200 kV ion implanter and a 2 x 1.7 MV tandem accelerator. Nitrogen ions at 115 keV were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 180 nA. Structural evolution caused by ion irradiation in Si, GaAs, nanocrystal Ag was observed in situ. The in situ observation showed that the critical implantation dose for amorphization of Si is 10 14 cm -2 . The nuclear material C276 samples implanted with 115 keV Ar + was also studied, and dislocation loops sized at 3-12 nm were clearly observed after implantation to doses of over 1 x 10 15 cm -2 . The density of the loops increased with the dose. Evolution to polycrystalline and amorphous structures were observed at 5 x l0 15 cm -2 and 3 x 10 16 cm -2 , respectively. An in situ RBS/C chamber was installed on the transport line of the accelerator-TEM interface system. This enables in situ measurement of composition and location of the implanted species in lattice of the samples. In addition, a 50 kV low-energy gaseous ion generator was installed close to the TEM chamber, which facilitates in situ TEM observation of helium bubbles formed in helium-implanted materials. (authors)

  1. Accelerator optimization using a network control and acquisition system

    International Nuclear Information System (INIS)

    Geddes, Cameron G.R.; Catravas, P.E.; Faure, Jerome; Toth, Csaba; Tilborg, J. van; Leemans, Wim P.

    2002-01-01

    Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process

  2. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  3. Architecture design of reconfigurable accelerators for demanding apllications.

    NARCIS (Netherlands)

    Jozwiak, L.; Jan, Y.

    2010-01-01

    This paper focuses on mastering the architecture development of reconfigurable hardware accelerators for highly demanding applications. It presents the results of our analysis of the main issues that have to be addressed when designing accelerators for demanding applications, when using as an

  4. CAS CERN Accelerator School: Fourth general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1991-01-01

    The fourth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at KFA, Juelich, from 17 to 28 September 1990. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, and Salamanca 1988, and whose proceedings were published as CERN Reports 85-19, 87-10, and 89-05, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. All of these appear in the present proceedings, which include lectures or seminars on the history and applications of accelerators, phase space and emittance, chromaticity, beam-beam effects, synchrotron radiation, radiation damping, tune measurement, transition, electron cooling, the designs of superconducting magnets, ring lattices, conventional RF cavities and ring RF systems, and an introduction to cyclotrons. (orig.)

  5. UCLA accelerator research ampersand development. Progress report

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications

  6. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  7. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  8. Particle Accelerators: Activities and Developments in the CIEMAT

    International Nuclear Information System (INIS)

    Garcia Tabares, L.; Toral Fernandez, F.

    2010-01-01

    Although they have been in use for many years, particle accelerators are machines in constant evolution with a growing number of applications. They are not only used in basic science to understand the structure of matter, but they also have multiple technological, medical and analytical applications, etc. This fact led the CIEMAT to create the Accelerator Unit in late 2008, as part of the Technology department. Although the group had been carrying out accelerator-related activities for some time, the aim of creating the Unit was to develop not only accelerator components but also complete systems. This article contains a brief introduction to accelerators and also describes the current activities in our Unit. (Author) 8 refs.

  9. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  10. Pelletron accelerator at Panjab University Chandigarh

    International Nuclear Information System (INIS)

    Singh, Nirmal; Mehta, Devinder

    2006-01-01

    The purpose of pelletron accelerator at Panjab University is to develop a low-energy accelerator laboratory within the university infrastructure. It will be housing a tandem electrostatic accelerator. The facility will bring together the available scientific expertise from a wide range of applications, viz. medical, biological and physical sciences and engineering that utilize accelerator-based technologies and techniques. It will play an important role in promoting integrated research and education across scientific disciplines available in the campus. (author)

  11. Low - energy Accelerator - based Nuclear Biotechnology for Applications in Agriculture and Biomedicine

    International Nuclear Information System (INIS)

    Yu, L.D.; Anuntalabhochai, S.; Phanchaisri, B.; Wongkham, W.; Vilaithong, T.

    2014-01-01

    A novel biotechnology based on low-energy-accelerator nuclear technology has recently been rapidly developed internationally. Low-energy ion beams with energy in a range of 10-100 keV generated from ion accelerators bombard plant seeds or tissues for mutation induction and plant or mammalian cells for gene transfection induction to benefit to agriculture and biomedicine. In Thailand, centered at Chiang Mai University, this so-called low-energy ion beam biotechnology has been explored and developed for more than a decade. Bioengineering-specialized ion implanters have been constructed and utilized for both research and applications. Certain Thai local rice mutants have been induced and achieved with improved characters of dwarf, photo-insensitivity, enriched nutrients and higher yields. Mutants of other plants such as flowers, vegetables and microorganisms have also been induced with improved properties. DNA transfer into bacterial and mammalian cells has been induced by ion beams. Particularly, ion-beam-induced gene transfection into human cells succeeded to initiate a new non-viral gene transfection method for potential gene therapy.

  12. Qualitative safety analysis in accelerator based systems

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Chowdhury, Lekha M.

    2006-01-01

    In recent developments connected to high energy and high current accelerators, the accelerator driven systems (ADS) and the Radioactive Ion Beam (RIB) facilities come in the forefront of application. For medical and industrial applications high current accelerators often need to be located in populated areas. These facilities pose significant radiological hazard during their operation and accidental situations. We have done a qualitative evaluation of radiological safety analysis using the probabilistic safety analysis (PSA) methods for accelerator-based systems. The major contribution to hazard comes from a target rupture scenario in both ADS and RIB facilities. Other significant contributors to hazard in the facilities are also discussed using fault tree and event tree methodologies. (author)

  13. Vancouver Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-06-15

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc.

  14. Vancouver Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc

  15. Development of ADS virtual accelerator based on XAL

    International Nuclear Information System (INIS)

    Wang Pengfei; Cao Jianshe; Ye Qiang

    2014-01-01

    XAL is a high level accelerator application framework that was originally developed by the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. It has an advanced design concept and has been adopted by many international accelerator laboratories. Adopting XAL for ADS is a key subject in the long term. This paper will present the modifications to the original XAL applications for ADS. The work includes a proper relational database schema modification in order to better suit the requirements of ADS configuration data, redesigning and re-implementing db2xal application, and modifying the virtual accelerator application. In addition, the new device types and new device attributes for ADS online modeling purpose are also described here. (authors)

  16. FINAL REPORT DE-FG02-04ER41317 Advanced Computation and Chaotic Dynamics for Beams and Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cary, John R [U. Colorado

    2014-09-08

    During the year ending in August 2013, we continued to investigate the potential of photonic crystal (PhC) materials for acceleration purposes. We worked to characterize acceleration ability of simple PhC accelerator structures, as well as to characterize PhC materials to determine whether current fabrication techniques can meet the needs of future accelerating structures. We have also continued to design and optimize PhC accelerator structures, with the ultimate goal of finding a new kind of accelerator structure that could offer significant advantages over current RF acceleration technology. This design and optimization of these requires high performance computation, and we continue to work on methods to make such computation faster and more efficient.

  17. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  18. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  19. [Advanced accelerator R and D program]. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    This proposal requests funding for a 3-year renewal of the DOE advanced accelerator R and D (AARD) program at Texas A and M University. The program to date has focused on the development of the gigatron, a compact high-efficiency microwave driver for future linear colliders. The author reports results and progress in that project, and plans to bring it to a milestone and conclusion by mid-1995. He proposes to initiate a second project, the development of a new technology for ultra-high field superconducting magnets for future hadron colliders. This project builds upon two magnet designs which he has introduced during the past year, which have the potential for a dramatic extension of the achievable field strength for both dipoles and quadrupoles

  20. Vacuum design for the disk-and-washer accelerator structure

    International Nuclear Information System (INIS)

    Ruhe, J.R.; Hansborough, L.D.

    1982-02-01

    The disk-and-washer (DAW) accelerator structure is being developed for several applications. Because of its complicated geometry and newness, vacuum calculations for the DAW accelerator structure are not yet formalized. The applicable vacuum equations for this structure are presented and correlations for it have been made with the vacuum data from the Clinton P. Anderson Meson Physics Facility side-coupled accelerator structure. A calculation is presented for the DAW structure proposed for the Pion Generator for Medical Irradiations (PIGMI) accelerator

  1. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  2. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  3. Control of electron injection and acceleration in laser-wakefield accelerators

    International Nuclear Information System (INIS)

    Guillaume, E.

    2015-01-01

    Laser-plasma accelerators provide a promising compact alternative to conventional accelerators. Plasma waves with extremely strong electric fields are generated when a high intensity laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential, laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility of the beam when electrons are injected in the accelerating structure. In this manuscript, different techniques of electron injection are presented and compared, notably injection in a sharp density gradient and ionization injection. It is shown that combining these two methods allows for the generation of stable and tunable electron beams. We have also studied a way to manipulate the electron bunch in the phase-space in order to accelerate the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic electron beams to enhance their energy. Moreover, the origin of the evolution of the angular momentum of electrons observed experimentally was investigated. Finally, we demonstrated experimentally a new method - the laser-plasma lens - to strongly reduce the divergence of the electron beam. This laser-plasma lens consists of a second gas jet placed at the exit of the accelerator. The laser pulse drives a wakefield in this second jet whose focusing forces take advantage to reduce the divergence of the trailing electron bunch. A simple analytical model describing the principle is presented, underlining the major importance of the second jet length, density and distance from the first jet. Experimental demonstration of the laser-plasma lens shows a divergence reduction by a factor of 2.6 for electrons up to 300 MeV, in accordance with the model predictions

  4. Accelerators in the 1970s

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1980-01-15

    As usual, the advances in our understanding of the nature of matter firing the past decade have leaned heavily on the availability of high energy accelerators which have both revealed new phenomena and enabled theories to be exposed to experiment. There have been many advances in technique, many new approaches, many new ideas on accelerator applications and many splendid new machines brought into operation. We pick out three themes to characterize how accelerators have progressed in ten years.

  5. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  6. Techniques to produce and accelerate radioactive ion beams

    CERN Document Server

    Penescu, Liviu Constantin; Lettry, Jacques; Cata-Danil, Gheorghe

    The production and acceleration of the Radioactive Ion Beams (RIB) continues the long line of nuclear investigations started in the XIXth century by Pierre and Marie Curie, Henri Becquerel and Ernest Rutherford. The contemporary applications of the RIBs span a wide range of physics fields: nuclear and atomic physics, solid-state physics, life sciences and material science. ISOLDE is a world-leading Isotope mass-Separation On-Line (ISOL) facility hosted at CERN in Geneva for more than 40 years, offering the largest variety of radioactive ion beams with, until now, more than 1000 isotopes of more than 72 elements (with Z ranging from 2 to 88), with half-lives down to milliseconds and intensities up to 1011 ions/s. The post acceleration of the full variety of beams allows reaching final energies between 0.8 and 3.0 MeV/u. This thesis describes the development of a new series of FEBIAD (“Forced Electron Beam Induced Arc Discharge”) ion sources at CERN-ISOLDE. The VADIS (“Versatile Arc Discharge Ion Source�...

  7. International meeting on micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies. Abstracts of reports

    International Nuclear Information System (INIS)

    Romanov, V.A.

    2007-01-01

    The collection contains abstracts presented on the International meeting Micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies which took place 16-18 October 2007 in Obninsk (Russian Federation). The potentialities of ion implantation for creation of nanostructures is discussed. The accelerator complexes applied for manufacture of nanostructural materials are considered [ru

  8. Advanced Accelerator Applications University Participation Program

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  9. Dissemination and support of ARGUS for accelerator applications

    International Nuclear Information System (INIS)

    1992-01-01

    The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model. These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms

  10. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator

    International Nuclear Information System (INIS)

    Surendran, P.; Shrivastava, A.; Gupta, A.K.; Nair, J.P.; Yadav, M.L.; Gore, J.A.; Sparrow, H.; Bhagwat, P.V.; Kailas, S.

    2006-01-01

    Accelerator based mass spectrometry (ABMs) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 U D Pelletron Accelerator is an ideal machine to carry out ABMs studies with heavy isotopes like 36 Cl and 129 I. Cosmogenic radio isotope 36 Cl is widely being detected using ABMs as it has got applications in ground water research, radioactive waste management, atmospheric 36 Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing ABMs programme at 14UD Pelletron Accelerator Facility at Mumbai, a segmented gas detector developed for identification of 36 Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. Further progress made in this programme is discussed in this paper. (author)

  11. Prototyping a large field size IORT applicator for a mobile linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rogier W J; Dries, Wim J F [Catharina-Hospital Eindhoven, PO Box 1350, 5602 ZA, Eindhoven (Netherlands); Faddegon, Bruce A [University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, CA 94115-1708 (United States)], E-mail: rogier.janssen@mac.com

    2008-04-21

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron (registered) is often complicated because of the limited field size of the primary collimator and the available applicators (max Oe100 mm). To circumvent this limitation a prototype rectangular applicator of 80 x 150 mm{sup 2} was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron (registered) treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 x 150 mm{sup 2} dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.

  12. Prototyping a large field size IORT applicator for a mobile linear accelerator

    International Nuclear Information System (INIS)

    Janssen, Rogier W J; Dries, Wim J F; Faddegon, Bruce A

    2008-01-01

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron (registered) is often complicated because of the limited field size of the primary collimator and the available applicators (max Oe100 mm). To circumvent this limitation a prototype rectangular applicator of 80 x 150 mm 2 was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron (registered) treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 x 150 mm 2 dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm

  13. Electrostatic field distributions in the Harwell Tandem accelerator

    International Nuclear Information System (INIS)

    Read, P.M.

    1981-11-01

    The electrostatic field distributions in the Harwell Tandem accelerator have been precisely calculated using the electrostatics program FINALE. The results indicate that the accelerator which presently has an upper voltage limit of 6.5 MV has the potential to operate at 8 MV. Such an upgrade could be achieved by a modification to the high voltage terminal. Replacement of the existing accelerator tubes with accelerator tubes capable of a gradient of 1.8 MV/m would also be required. The existing stack may also require replacement. The terminal modification itself would reduce the terminal to tank breakdown frequency. (author)

  14. Hadrons accelerators in the cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1998-01-01

    The use of hadrons accelerators ( protons and light ions) in the cancer therapy is tackled. After shorts introductory words about the medical reasons in favour of using charged heavy particles radiotherapy, an overall idea is given on the accelerators technology and on the guiding and focusing systems. The Italian project of hadron-therapy (the most important project of this kind in Europe) is introduced, with in reference the National Oncological Center of Hadron-therapy and the plans of two kinds of compact protons accelerators in order to introduce the therapy with protons in a great number of hospitals. Finally, the needs in radiation protection are discussed. (N.C.)

  15. Double-negative metamaterial research for accelerator applications

    International Nuclear Information System (INIS)

    Antipov, S.; Spentzouris, L.; Gai, W.; Liu, W.; Power, J.G.

    2007-01-01

    Material properties are central to the design of particle accelerators. One area of advanced accelerator research is to investigate novel materials and structures and their potential use in extending capabilities of accelerator components. Within the past decade a new type of artificially constructed material having the unique property of simultaneously negative permittivity and permeability has been realized, and is under intense investigation, primarily by the optical physics and microwave engineering communities [C.M. Soukoulis, Science 315 (2007) 47; D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305 (2004) 788; J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773]. Although they are typically constructed of arrays of discrete cells, as long as the condition that the wavelength of applied radiation is significantly greater than the cell dimensions is met, the material mimics a continuous medium and can be described with the bulk properties of permittivity, ε, and permeability, μ. When the permittivity and permeability are simultaneously negative in some frequency range, the metamaterial is called double negative (DNM) or left-handed (LHM) and has unusual properties, such as a negative index of refraction. An investigation of these materials in the context of accelerators is being carried out by IIT and the Argonne Wakefield Accelerator Facility [S. Antipov, W. Liu, W. Gai, J. Power, L. Spentzouris, AIP Conf. Proc. 877 (2006); S. Antipov, W. Liu, J. Power, L. Spentzouris, Design, Fabrication, and Testing of Left-Handed Metamaterial, Wakefield Notes at Argonne Wakefield Accelerator, ]. Waveguides loaded with metamaterials are of interest because the DNM can change the dispersion relation of the waveguide significantly. For example, slow backward waves can be produced in a DNM-loaded waveguide without having corrugations. This article begins with a brief introduction of known design principles for realizing a DNM [J.B. Pendry, A

  16. Slow waves in microchannel metal waveguides and application to particle acceleration

    Directory of Open Access Journals (Sweden)

    L. C. Steinhauer

    2003-06-01

    Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6  mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  17. Slow waves in microchannel metal waveguides and application to particle acceleration

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  18. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  19. Special radiation protection aspects of medical accelerators

    CERN Document Server

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  20. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano [ENEA-Centro Ricerche ' Ezio Clementel' , Advanced Physics Technology Division, Via Martiri di Monte Sole, 4, 40129 Bologna (Italy)]. E-mail: burgazzi@bologna.enea.it; Pierini, Paolo [INFN-Sezione di Milano, Laboratorio Acceleratori e Superconduttivita Applicata, Via Fratelli Cervi 201, I-20090 Segrate (MI) (Italy)

    2007-04-15

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well.

  1. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Burgazzi, Luciano; Pierini, Paolo

    2007-01-01

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well

  2. Single-particle dynamics - RF acceleration

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  3. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  4. Single particle dynamics in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  5. Survey of radio-frequency quadrupole accelerators

    International Nuclear Information System (INIS)

    Billen, J.H.

    1984-01-01

    Over the last several years the RFQ has proved to be a very flexible low-energy accelerator for bunching and accelerating both low- and high-current beams. It uses low-voltage dc injectors, has excellent bunching properties and high transmission efficiency. Applications include injectors for higher energy machines, such as drift-tube linacs, cyclotrons, or synchrotrons. The RFQ can also be used alone for applications that require a fixed-energy beam. 41 references, 4 figures, 2 tables

  6. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  7. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    2015-01-01

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  8. Accelerator development programme in India - an outlook

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2011-01-01

    With the construction of the VEC, Indus-1, Indus-2, superconducting cyclotron, superconducting heavy ion linac boosters etc. and implementation of other accelerator R and D programmes, we are now 'equipped' to take a quantum jump in the accelerator field. We have highly trained and skilled manpower that can take up challenges in this rapidly growing field both for research as well as applications. Serious planning is going on in the country to construct accelerator facilities for versatile Rare Ion Beams (RIB), powerful spallation source, advanced synchrotron source, high power beam for ADS etc. There is strong demand by the medical community for a proton/heavy ion cancer therapy facility and for accelerator-produced radioisotopes for medical diagnostics. Proliferation of accelerators in the industry field is long overdue in our country and welcome realization is coming. In this presentation a glimpse of the intended growth of accelerator field in the country will be given. Interesting challenges are there not only for the accelerator community, which has to grow, but also for the industry. Since the general trend is now to construct high intensity and high beam power accelerators - both for research as well as applications - the associated problems of radiation safety will be highlighted. (author)

  9. Medical waste irradiation study. Final report

    International Nuclear Information System (INIS)

    Adler, R.J.; Stein, J.; Nygard, J.

    1998-01-01

    The North Star Research Corporation Medical Waste project is described in this report, with details of design, construction, operation, and results to date. The project began with preliminary design of the accelerator. The initial design was for a single accelerator chamber with a vacuum tube cavity driver built into the chamber itself, rather than using a commercial tube separate from the RF accelerator. The authors believed that this would provide more adjustability and permit better coupling to be obtained. They did not have sufficient success with that approach, and finally completed the project using a DC accelerator with a unique new scanning system to irradiate the waste

  10. Medical waste irradiation study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.J.; Stein, J. [North Star Research Corp., Albuquerque, NM (United States); Nygard, J. [Advance Bio-Control (United States)

    1998-07-25

    The North Star Research Corporation Medical Waste project is described in this report, with details of design, construction, operation, and results to date. The project began with preliminary design of the accelerator. The initial design was for a single accelerator chamber with a vacuum tube cavity driver built into the chamber itself, rather than using a commercial tube separate from the RF accelerator. The authors believed that this would provide more adjustability and permit better coupling to be obtained. They did not have sufficient success with that approach, and finally completed the project using a DC accelerator with a unique new scanning system to irradiate the waste.

  11. Kinetic Simulation of Fast Electron Transport with Ionization Effects and Ion Acceleration

    International Nuclear Information System (INIS)

    Robinson, A. P. L.; Bell, A. R.; Kingham, R. J.

    2005-01-01

    The generation of relativistic electrons and multi-MeV ions is central to ultra intense (> 1018Wcm-2) laser-solid interactions. The production of energetic particles by lasers has a number of potential applications ranging from Fast Ignition ICF to medicine. In terms of the relativistic (fast) electrons the areas of interest can be divided into three areas. Firstly there is the absorption of laser energy into fast electrons and MeV ions. Secondly there is the transport of fast electrons through the solid target. Finally there is a transduction stage, where the fast electron energy is imparted. This may range from being the electrostatic acceleration of ions at a plasma-vacuum interface, to the heating of a compressed core (as in Fast Ignitor ICF).We have used kinetic simulation codes to study the transport stage and electrostatic ion acceleration. (Author)

  12. Developing Use Cases for Evaluation of ADMS Applications to Accelerate Technology Adoption: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Veda, Santosh; Wu, Hongyu; Martin, Maurice; Baggu, Murali

    2017-05-12

    Grid modernization for the distribution systems comprise of the ability to effectively monitor and manage unplanned events while ensuring reliable operations. Integration of Distributed Energy Resources (DERs) and proliferation of autonomous smart controllers like microgrids and smart inverters in the distribution networks challenge the status quo of distribution system operations. Advanced Distribution Management System (ADMS) technologies are being increasingly deployed to manage the complexities of operating distribution systems. The ability to evaluate the ADMS applications in specific utility environments and for future scenarios will accelerate wider adoption of the ADMS and will lower the risks and costs of their implementation. This paper addresses the first step - identify and define the use cases for evaluating these applications. The applications that are selected for this discussion include Volt-VAr Optimization (VVO), Fault Location Isolation and Service Restoration (FLISR), Online Power Flow (OLPF)/Distribution System State Estimation (DSSE) and Market Participation. A technical description and general operational requirements for each of these applications is presented. The test scenarios that are most relevant to the utility challenges are also addressed.

  13. Lithium-polymer batteries for EV applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.O. [Uppsala Univ. (Sweden). Dept. of Inorganic Chemistry

    2000-05-01

    The project initially held a strong 'battery materials' profile, but has moved in its final year into more 'battery engineering' aspects; the performances of a range of potential materials have been screened, and candidates have emerged. It is noteworthy that these same materials have also now become 'best-choice' materials in commercial Japanese Li-ion batteries for mobile-phone, lap-top and, more recently, even electric-vehicle (EV) applications. It is now clear that the Li-ion (polymer) battery offers a genuinely viable option in electric and electric-hybrid vehicle concepts. Specifically, our work has involved synthetic, structural, morphological and electrochemical studies of lithium insertion mechanisms in TMO-based cathodes (LiMn{sub 2}O{sub 4}, V{sub 6}O{sub 13}, LiCoO{sub 2}, LiFePO{sub 4}, etc) and graphitic carbon anodes. Performance has been optimised from cell capacity, power, shelf-life and safety viewpoints. Cost has also emerged as a critical variable. Novel methods have been developed within the project for elevated-temperature battery studies (up to 80 deg C); they have become widely applied internationally. The electrode materials which have been developed have subsequently been incorporated into laboratory-scale lithium-ion battery prototypes, whose performance has then been evaluated. The final phase of the project has focussed on a new cathode material (LiFePO{sub 4}) not in current commercial use and yet ideally suited to EV application by virtue of its cheapness, high capacity (ca 170 mAh/g), high voltage vs. Li (3.5V), and extremely flat discharge curve. This could well prove to be the 'best compromise' Li-ion battery cathode for EV applications in the future.

  14. Neutron activation analysis with a deuteron accelerator. Application to the determination of copper in a Cu-Sn mixture

    International Nuclear Information System (INIS)

    Kodia, A.A.

    1976-01-01

    Neutron activation analysis allows a rapid determination of trace elements. It has many applications in vegetal biology, agronomy, animal biology, medicine and industry. This report presents the different devices used (deuteron accelerator, 3 H-Ti/Zr target, NaI(Tl) scintillation counter, Li-drifted Ge detector), the theory of the method and an application to the determination of copper in a copper-mixture [fr

  15. The CERN accelerator complex

    CERN Multimedia

    Mobs, Esma Anais

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  16. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  17. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  18. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  19. Applications of accelerator mass spectrometry for pharmacological and toxicological research.

    Science.gov (United States)

    Brown, Karen; Tompkins, Elaine M; White, Ian N H

    2006-01-01

    The technique of accelerator mass spectrometry (AMS), known for radiocarbon dating of archeological specimens, has revolutionized high-sensitivity isotope detection in pharmacology and toxicology by allowing the direct determination of the amount of isotope in a sample rather than measuring its decay. It can quantify many isotopes, including 26Al, 14C, 41Ca, and 3H with detection down to attomole (10(-18)) amounts. Pharmacokinetic data in humans have been achieved with ultra-low levels of radiolabel. One of the most exciting biomedical applications of AMS with 14C-labeled potential carcinogens is the detection of modified proteins or DNA in tissues. The relationship between low-level exposure and covalent binding of genotoxic chemicals has been compared in rodents and humans. Such compounds include heterocyclic amines, benzene, and tamoxifen. Other applications range from measuring the absorption of 26Al to monitoring 41Ca turnover in bone. In epoxy-embedded tissue sections, high-resolution imaging of 14C label in cells is possible. The uses of AMS are becoming more widespread with the availability of instrumentation dedicated to the analysis of biomedical samples. Copyright 2005 Wiley Periodicals, Inc.

  20. Reaction effects in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Drury, L.Oc.

    1984-01-01

    The effects of the reaction of accelerated particles back on the shock wave in the diffusive-shock-acceleration model of cosmic-ray generation are investigated theoretically. Effects examined include changes in the shock structure, modifications of the input and output spectra, scattering effects, and possible instabilities in the small-scale structure. It is pointed out that the latter two effects are applicable to any spatially localized acceleration mechanism. 14 references