WorldWideScience

Sample records for accelerator applications final

  1. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications. Final Report

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Read, Michael; Ferguson, Patrick; Marsden, David

    2011-01-01

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  2. Dissemination and support of ARGUS for accelerator applications. Final report, April 24, 1991--April 14, 1995

    International Nuclear Information System (INIS)

    Kostas, C.; Krueger, W.A.; Mankofsky, A.; Mondelli, A.A.; Petillo, J.J.

    1995-01-01

    The effort has two broad goals, which have been prioritized by DOE, as follows: to enhance the ARGUS code for use in practical accelerator design simulations; to release ARGUS to the accelerator community through the Los Alamos Accelerator Code Group (LAACG). During the contract period, ARGUS versions 24 and 25 have been released. An upgraded version 25 (ARGUS v.25c) will be released in July, 1995, and will include all of the features that are tested and working at the conclusion of the DOE-funded effort. The effort that consolidated version 24 established a set of core capabilities that all ARGUS modules could access. Version 25 incorporated several major improvements: (1) a new frequency-domain module was incorporated into ARGUS that can handle degenerate modes, lossy materials, and periodic boundary conditions with sub-phase specification, and that can utilize the ARGUS data handling machinery for multiblock operation; (2) HDF output was implemented to allow ARGUS to send data to visualization tools; (3) a plasma chemistry capability was included in the steady-state PIC module to allow ionization, stripping, electron attachment, charge exchange, and other ion rate processes to occur within the PIC calculation; (4) new structure input options for figures of translation (extrusion) and figures of revolution were implemented. This ARGUS release is supported on all Cray platforms and on the IBM RS6000 Unix workstation platform. Version 25 was released in February 1994. The ARGUS dissemination and support activities have proceeded in parallel with code enhancement. On-line ARGUS support is available at NERSC through ARGUS man pages, and at the SAIC ftp node at mclapo.saic.com, through the SAIC MOSAIC home page, and through ARGUS bulletin boards maintained at SAIC and at NERSC

  3. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  4. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  5. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  6. Photocathodes in accelerator applications

    International Nuclear Information System (INIS)

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs 3 Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera

  7. Advanced Accelerator Concepts Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S.

    2014-05-13

    physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  8. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  9. Accelerator development for medical applications

    International Nuclear Information System (INIS)

    Tanabe, Eiji

    2007-01-01

    Electron linear accelerators have been widely used in medical applications, especially in radiation therapy for cancer treatment. There are more than 7,000 medical electron linear accelerators in the world, treating over 250,000 patients per day. This paper reviews the current status of accelerator applications and technologies in radiation therapy, and presents the anticipated requirements for advanced radiation therapy technology in the foreseeable future. (author)

  10. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  11. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  12. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  13. Accelerators for research and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  14. ICT accelerators for radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shiqin; Chen Dali (Research Inst. of Automation for Machine-Building Industry, Beijing (China))

    Several ICT accelerators were designed and constructed during the past two decades and are now in use in some factories and institutes in various parts of China. The specifications, design considerations, construction specialities and information about the applications of these accelerators are given in the present paper. (author).

  15. Frontier applications of electrostatic accelerators

    Science.gov (United States)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  16. Application of electron accelerator worldwide

    International Nuclear Information System (INIS)

    Machi, Sueo

    2003-01-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  17. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  18. Portable linear accelerator development. Final report

    International Nuclear Information System (INIS)

    Schonberg, R.G.

    1983-01-01

    The final report on Project RP 822-6 describes the MINAC 3 development from the recognition of need for a lightweight, portable high-energy device to the successful completion and field use of the MINAC. MINAC, which represents a substantial improvement in field radiographic capability and in technology, rapidly transitioned from proof-of-principle (1978 to 1980) to field-proven product (1980 to 1981). As a result, the decision has been made to develop this report as a users guide as well as a historic record of design, development, and testing program. The first section of this report has the following principal objectives: to describe the existing MINAC equipment capabilities and achievable modifications; to provide applications information for prospective users; and to provide technical information on high-energy radiography useful for familiarization and planning. The users guide section is followed by sections which describe the design basis, development, and application history of MINAC through the course of EPRI RP822 research projects 1 to 5, inclusively

  19. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  20. Advanced Accelerator Applications in Medicine

    International Nuclear Information System (INIS)

    Rimjiaem, Sakhorn

    2015-01-01

    besides the original purpose on development of particle acceleratora as research tools in nuclear and high-energy physics, there are large variety of accelerators used in various fileds from fundamental research to industrial usesand applications chemistry, biology and medicine. Pratical accelators used in various field of medical applications since serveral decades. Even through, a large fraction of applications is emphasized on cancer therappy, the number of accelerators used in midicine for other diagnostics and treatments has increased steady over the years. Several types of accelerated particles are used including electron, proton, neutron and ions. Presently, relativistic electron beams and radiation from linear accelerators (linas) are widely used. A combination of positron emission tomography (PRT) and radiotherapy is an example of excellent invention early detection and treat of cancer tumors. The most developments for proton and heavy ion therapy as well as a modern boron neutron capture therapy (BNCT) are also great incoming effective systems. This talk will focus on developments of the accelrator systems as well as overview on biophysical properties and medical aspects of the diacnostics and treatments.

  1. Industrial applications of electron accelerators

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    The interaction of high-energy radiation with organic systems produces very reactive, short-lived, ionic and free-radical species. The chemical changes brought about by these species are very useful in several systems, and are the basis of the growth of the electron processing industry. Some typical areas of the industrial use of electron accelerators are crosslinking wire and cable insulation, manufacturing heat shrink plastic items, curing coatings, and partially curing rubber products. Electron accelerators are also being considered in other areas such as sewage treatment, sterilizing medical disposables, and food irradiation. An emerging application of industrial electron accelerators is the production of advanced composites for the aerospace and other industries. Traditionally, the carbon-, aramid- and glass-fibre-reinforced composites with epoxy matrices are produced by thermal curing. However, equivalent composites with acrylated-epoxy matrices can be made by electron curing. Cost estimates suggest that electron curing could be more economical than thermal curing. Food irradiation has traditionally been an application for 60 Co γ-radiation. With the increasing demand for food irradiation in various countries, it may become necessary to use electron accelerators for this purpose. Since the dose rate during gamma and electron irradiation are generally very different, a review of the relevant work on the effect of dose rates has been done. This paper presents an overview of the industrial applications of electron accelerator for radiation processing, emphasises the electron curing of advanced composites and, briefly reviews the dose-rate effects in radiation processing of advanced composites and food irradiation. (author). 84 refs., 8 tabs

  2. Accelerators for Discovery Science and Security applications

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M., E-mail: alan_todd@mail.aesys.net; Bluem, H.P.; Jarvis, J.D.; Park, J.H.; Rathke, J.W.; Schultheiss, T.J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15–50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug–cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  3. Accelerators for Discovery Science and Security applications

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Bluem, H.P.; Jarvis, J.D.; Park, J.H.; Rathke, J.W.; Schultheiss, T.J.

    2015-01-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15–50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug–cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection

  4. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  5. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  6. Design of hardware accelerators for demanding applications.

    NARCIS (Netherlands)

    Jozwiak, L.; Jan, Y.

    2010-01-01

    This paper focuses on mastering the architecture development of hardware accelerators. It presents the results of our analysis of the main issues that have to be addressed when designing accelerators for modern demanding applications, when using as an example the accelerator design for LDPC decoding

  7. LINAC for ADS application - accelerator technologies

    International Nuclear Information System (INIS)

    Garnett, Robert W.; Sheffreld, Richard L.

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  8. Final report on the LLNL compact torus acceleration project

    International Nuclear Information System (INIS)

    Eddleman, J.; Hammer, J.; Hartman, C.; McLean, H.; Molvik, A.

    1995-01-01

    In this report, we summarize recent work at LLNL on the compact torus (CT) acceleration project. The CT accelerator is a novel technique for projecting plasmas to high velocities and reaching high energy density states. The accelerator exploits magnetic confinement in the CT to stably transport plasma over large distances and to directed kinetic energies large in comparison with the CT internal and magnetic energy. Applications range from heating and fueling magnetic fusion devices, generation of intense pulses of x-rays or neutrons for weapons effects and high energy-density fusion concepts

  9. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  10. Superconducting rf cavities for accelerator application

    International Nuclear Information System (INIS)

    Proch, D.

    1988-01-01

    The subject of this paper is a review of superconducting cavities for accelerator application (β = 1). The layout of a typical accelerating unit is described and important parameters are discussed. Recent cavity measurements and storage ring beam tests are reported and the present state of the art is summarized

  11. Application accelerator system having bunch control

    International Nuclear Information System (INIS)

    Wang, D.; Krafft, G.A.

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig

  12. Application accelerator system having bunch control

    Science.gov (United States)

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  13. Electron accelerators: History, applications, and perspectives

    International Nuclear Information System (INIS)

    Martins, M.N.; Silva, T.F.

    2014-01-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs. - Highlights: ► We present an outlook on sources of radiation, focusing on electron accelerators. ► We review important advances for the development of modern electron accelerators. ► We outline advances that allowed for brighter synchrotron light sources. ► We describe the history of the development of electron accelerators in Brazil

  14. Electron accelerators: History, applications, and perspectives

    Science.gov (United States)

    Martins, M. N.; Silva, T. F.

    2014-02-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs.

  15. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  16. Low energy accelerators for research and applications

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2013-01-01

    Charged particle accelerators are instruments for producing a variety of radiations under controlled conditions for basic and applied research as well as applications. They have helped enormously to study the matter, atoms, nuclei, sub-nuclear particles and their constituents, forces involved in the related phenomena etc. No other man-made instrument has been so effective in such studies as the accelerator. The large accelerator constructed so far is the Large Hadron Collider (LHC) housed in a tunnel of 27 km circumference, while a small accelerator can fit inside a room. Small accelerators accelerate charged particles such as electrons, protons, deuterons, alphas and, in general ions to low energy, generally, below several MeV. These particle beams are used for studies in nuclear astrophysics, atomic physics, material science, surface physics, bio sciences etc. They are used for ion beam analysis such as RBS, PIXE, NRA, AMS, CPAA etc. More importantly, the ion beams have important industrial applications like ion implantation, surface modification, isotope production etc. while electron beams are used for material processing, material modification, sterilization, food preservation, non destructive testing etc. In this talk, role of low energy accelerators in research and industry as well as medicine will be discussed. (author)

  17. Applications of proton and deuteron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Corporate Research Center, Princeton, NJ (United States))

    1993-06-01

    Applications of positive and negative hydrogen and deuterium ion accelerators beyond basic research are increasing. Large scale proposed national laboratory/industrial projects include the Accelerator Production of Tritium (APT) which will utilize protons, and the International Fusion Material Irradiation Facility (IFMIF) which will accelerate a deuteron beam into a lithium target. At the small scale end, radio-frequency quadrupole (RFQ) accelerator based systems have been built for neutron activation analysis and for applications such as explosive detection. At an intermediate scale, the Loma Linda proton therapy accelerator is now successfully treating a full schedule of patients, and more than half a dozen such hospital based units are under active study world-wide. At this same scale, there are also several ongoing negative ion, military accelerator projects which include the Continuous Wave Deuterium Demonstrator (CWDD) and the Neutral Particle Beam Space Experiment (NPBSE). These respective deuterium and hydrogen accelerators, which have not been previously described, are the focus of this paper. (orig.)

  18. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  19. Induction linear accelerator technology for SDIO applications

    International Nuclear Information System (INIS)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser

  20. Quantum computing accelerator I/O : LDRD 52750 final report

    International Nuclear Information System (INIS)

    Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.

    2003-01-01

    In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work

  1. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  2. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  3. Technology and applications of electron accelerator

    International Nuclear Information System (INIS)

    Natsir, M.

    1998-01-01

    Technology of electron accelerator have been developed so fast in advanced countries. It was applied in the research and development (R and D) and comercially in various industries. The industries applying electron accelerator includes polymers industry, sterilization of medical tools, material surface modification, and environmental management. The radiation process using electron beam is an ionization radiation process. Two facilities of electron accelerator have been established in pilot scale at the Centre for the Application of Isotope and Radiation CAIR-BATAN, Jakarta, for the RandD of radiation process technology and in demonstrating the electron accelerator application in industry in Indonesia. The first has low energy specification of 300 keV, 50 mA, EPS-300 type and the second has medium energy specification of 2 MeV, 10 mA dynamitron model GJ-2 type. Both the electron accelerators have an electron penetration depth capability of 0.6 and 12 mm, respectively, for the double side irradiation in the materials with density of 1 g/cm 3 . They also highly capacity production and electron beam cross-section of 120 cm length and 10 cm width. The beam will go through the atmosphere for irradiation samples or industrial products. The radiation dose can be selected precisely by adjusting the electron beam current and conveyor speed. Both of these facilities were applied in many aspects RandD, for examples dosimetry, wood surface coating, cross-linking of polymer, heatshrincable tube, polymer grafting, plastic degradation, food preservation, sterilization and so on. Engineering factors of radiation design process and general observation of electron accelerator application in RandD for various industries in Indonesia are briefly discussed

  4. Space tug applications. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This article is the final report of the conceptual design efforts for a 'space tug'. It includes preliminary efforts, mission analysis, configuration analysis, impact analysis, and conclusions. Of the several concepts evaluated, the nuclear bimodal tug was one of the top candidates, with the two options being the NEBA-1 and NEBA-3 systems. Several potential tug benefits were identified during the mission analysis. The tug enables delivery of large (>3,500 kg) payloads to the outer planets and it increases the GSO delivery capability by 20% relative to current systems. By providing end of life disposal, the tug can be used to extend the life of existing space assets. It can also be used to reboost satellites which were not delivered to their final orbit by the launch system. A specific mission model is the key to validating the tug concept. Once a mission model can be established, mission analysis can be used to determine more precise propellant quantities and burn times. In addition, the specific payloads can be evaluated for mass and volume capability with the launch systems. Results of the economic analysis will be dependent on the total years of operations and the number of missions in the mission model. The mission applications evaluated during this phase drove the need for large propellant quantities and thus did not allow the payloads to step down to smaller and less expensive launch systems

  5. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  6. Potential application of electron accelerators in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair; Mohd Dahlan, Khairul Zaman [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing.

  7. Potential application of electron accelerators in Malaysia

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid; Khairul Zaman Mohd Dahlan

    1994-01-01

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing

  8. Applications of electron accelerator in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman Hj. Mohd Dahlan [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Selangor Darul Ehsan (Malaysia)

    2003-02-01

    Current status of radiation processing, as one of the core research programs of the Malaysian Institute for Nuclear Technology Research (MINT), is presented. Industrial applications of six electron accelerators from 150 kV up to 3 MV in Malaysia now in operation are mainly for curing of surface coatings, crosslinking of tubes, heat shrinkable tubes and packaging films, crosslinking of wire insulation. Their performances are listed. New technology now in R and D stage includes natural rubber, sago starch and chitosan for biomedical applications, and radiation curable materials from oil palm for pressure sensitive adhesive and printing ink. (S. Ohno)

  9. Applications of electron accelerator in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj. Mohd Dahlan

    2003-01-01

    Current status of radiation processing, as one of the core research programs of the Malaysian Institute for Nuclear Technology Research (MINT), is presented. Industrial applications of six electron accelerators from 150 kV up to 3 MV in Malaysia now in operation are mainly for curing of surface coatings, crosslinking of tubes, heat shrinkable tubes and packaging films, crosslinking of wire insulation. Their performances are listed. New technology now in R and D stage includes natural rubber, sago starch and chitosan for biomedical applications, and radiation curable materials from oil palm for pressure sensitive adhesive and printing ink. (S. Ohno)

  10. Novel applications of particle accelerators to radiotherapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Universidad Nacional de San Martin, Villa Ballester

    2002-01-01

    Charged hadrons (protons and heavier ions) have very definite advantages over photons as far as radiotherapy applications are concerned. They allow for much better spatial dose localization due to their charge, relatively high mass and nature of the energy deposition process. In the frame of an attempt to promote the introduction of hadrontherapy in Argentina an external beam facility has been installed at our tandem accelerator TANDAR. The advantages of heavy ions can only be fully exploited for tumors of well defined localization. In certain types of malignancies, however, the region infiltrated by tumor cells is diffuse, with no sharp boundaries and with microscopic ramifications. In such cases (particularly in certain brain cancers) a more sophisticated scheme has been suggested called boron neutron capture therapy (BNCT). In this work, the use of the Tandar accelerator to produce neutrons for feasibility studies for BNCT through low-energy proton beams on a thick LiF target is being briefly described. Studies on the 13 C(d,n) reaction and a comparison with other neutron-producing reactions are also mentioned. Simulation work to optimize an accelerator-based neutron production target is discussed. A project is being prepared to develop a small proton accelerator in Argentina. Technical specifications of this machine are briefly discussed. (author)

  11. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  12. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-01-01

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  13. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-03-04

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being `Cyclotrons, Linacs and Their Applications`. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.).

  14. Accelerator for medical applications and electron acceleration by laser plasma

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Uesaka, Mitsuru

    2006-01-01

    In this article, the current status of radiation therapies in Japan and updated medical accelerators are reviewed. For medical use, there is a strong demand of a compact and flexible accelerator. At present, however, we have only two choices of the S-band linac with one or two rotation axis combined with the multi leaf collimator, or the X-band linac with a rather flexible robotic arm. In addition, the laser plasma cathode that is the second generation of the laser wake-field accelerator (LWFA) is studied as a high-quality electron source for medical use though it is still at the stage of the basic research. The potential of LWFA as medical accelerator near future is discussed based on updated results of laser plasma cathode experiment in Univ. of Tokyo. (author)

  15. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology; FINAL

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  16. New applications of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Davis, J.C.

    1991-01-01

    Since its invention in the late 70's, and reduction to near-routine practice by the mid-80's, accelerator mass spectrometry (AMS) has become a powerful tool for archaeological and geochemical measurements in which cosmogenic isotopes such as 10 Be, 14 C, 26 Al, 36 Cl and 129 I are used as either tracers or chronometers. The utility of such measurements is demonstrated by the fact that most accelerators having AMS capabilities have significant backlogs of samples awaiting measurement. In designing and justifying a new accelerator facility in which AMS was to be a major feature, we sought to advance the field and increase the resources available for it by two steps: (1) development of new research applications in which intentionally added isotopic labels were used rather than just naturally present ones; and (2) enhancement of spectrometer throughout, making new classes of experiments possible by greatly increasing the number of samples that could be measured in individual experiments. Results of the effort to date suggest that development of a family of very small spectrometers optimized for just tritium and/or radiocarbon will be attractive in the near future

  17. Very fast kicker for accelerator applications

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1996-11-01

    We describe a very fast counter traveling wave kicker with a full pulse width of about 7 ns. Successful test experiment has been done with hi-tech semiconductor technology FET pulse generator with a MHz- range repetition rates and maximum kick strength of the order of 3 G·m. Further. increase of the strength seems to be quite possible with the FET pursers, that makes the kicker to be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications

  18. Industrial applications of electron beam accelerators

    International Nuclear Information System (INIS)

    Braid, W.G. Jr.

    1976-01-01

    The use of electron beam accelerators for crosslinking polyolefins for shrinking food packaging is discussed. Irradiation procedures, accelerator characteristics, and industrial operations are described

  19. Fast risetime BLT switches for accelerators applications

    International Nuclear Information System (INIS)

    Kirkman-Amemiya, G.; Reinhardt, N.; Choi, M.S.; Gundersen, M.A.

    1991-01-01

    Several particle accelerator systems require repetitive switches capable to switching peak currents of several kA with short risetimes, in particular kicker magnets used to transfer particle beams from one section of an accelerator to another require current pulses that rise from zero to 100% in a time determined by the separation between particle bunches which can be only 10's of nsec in some applications. One particular application is the injection and extraction kickers for the low energy booster (LEB) of the superconducting super collider (SSC) which requires < 50nsec 0-99% risetime. Another system with similarly strict risetime requirement is the kicker for the Stanford Linear Collider electron damping rings. In this work, a fast risetime BLT switch which has demonstrated 17kA at 30kV with < 60nsec risetime, 1.5kA at 20kV with < 18nsec risetime, and up to 240Hz operation at 20kV, 7kA is reported. A tetrode triggering method is described which reduces risetime by eliminating prepulse behavior

  20. Application of Smalltalk language for accelerator control

    International Nuclear Information System (INIS)

    Mejuev, I.; Abe, I.; Nakahara, K.

    1997-01-01

    This paper describes the results of studies for object-oriented control system creation. Using VisualWorks environment based on Smalltalk we created a set of programs, such as Control Model Editor, Control Model Scanner and Control Views, for developing and running an object-oriented model of an accelerator. Our system allows the user to easily create a class library which can be used to develop a number of control programs. The object model defines the object under control, the control logic and graphics for displaying control objects' states. Our experience shows that object-oriented software development is faster compared with traditional languages, and provides more functionality. VisualWorks is a multiplatform environment, and all applications can be ported to different operating systems with only minor changes. VisualWorks also provides high performance, which is important for time-critical control applications. (orig.)

  1. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory and Astrophysical Applications

    International Nuclear Information System (INIS)

    Matthaeus, W.; Brown, M.

    2006-01-01

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  2. Applications toolkit for accelerator control and analysis

    International Nuclear Information System (INIS)

    Borland, M.

    1997-01-01

    The Advanced Photon Source (APS) has taken a unique approach to creating high-level software applications for accelerator operation and analysis. The approach is based on self-describing data, modular program toolkits, and scripts. Self-describing data provide a communication standard that aids the creation of modular program toolkits by allowing compliant programs to be used in essentially arbitrary combinations. These modular programs can be used as part of an arbitrary number of high-level applications. At APS, a group of about 70 data analysis, manipulation, and display tools is used in concert with about 20 control-system-specific tools to implement applications for commissioning and operations. High-level applications are created using scripts, which are relatively simple interpreted programs. The Tcl/Tk script language is used, allowing creating of graphical user interfaces (GUIs) and a library of algorithms that are separate from the interface. This last factor allows greater automation of control by making it easy to take the human out of the loop. Applications of this methodology to operational tasks such as orbit correction, configuration management, and data review will be discussed

  3. Ohio University tandem Van de Graaff accelerator. Final report

    International Nuclear Information System (INIS)

    Lane, R.O.

    1977-11-01

    A summary is given of the work carried out at the John Edwards Tandem Accelerator Laboratory of Ohio University during the period 1970 to 1977 on studies of neutron-nucleus interactions and nuclear structure using neutrons as probes. This work utilizes the main and unique characteristic of the accelerator: high current, high voltage tandem. Certain applied areas were also studied, such as the production of short-lived isotopes for use in medical diagnoses, production of very high neutron intensity to observe possible sputtering effects, and proton induced x-ray emission with a microprobe beam

  4. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  5. Electron accelerators and applications in Korea

    International Nuclear Information System (INIS)

    Han, Bumsoo

    2006-01-01

    Types of high-energy radiation were discovered more than one hundred years ago. Since then, properties of radiation providing ability to modify physico-chemical properties of materials have found many applications. Radiation technologies applying gamma sources as well as electron accelerators for treatment of materials are well-established processes. Worldwide, there are over 2000 industrial gamma irradiators and 1,300 industrial electron accelerators in operation that are being widely used for sterilization, food irradiation and polymer processing. Indeed, radiation processing is today a well established multi-billion dollar industry world over that is providing unique high value products for mankind in an environmentally friendly manner. Electron accelerators are introduced at late 70s in Korea, firstly for researches and later for insulated wire and cable production, and up to now, over 30 accelerators are used in industries. They are mainly for cable productions, thermo-shrinkable materials, foam sheets, coating and curing and others. While polymerization and polymer modification have proved to be the most widespread applications of radiation processing, many other applications, such as environmental protection is becoming an increasingly important concern in industrialized nations, and wide ranging investigations have identified several areas of waste control to which radiation processing may contribute. In recent years, large metropolitan cities including Seoul, Tokyo and other major cities have been facing the challenge of increasing environmental pollution resulting from ever increasing population and industrial activities. As a result, issues regarding environmental pollution, be it air, liquid or solid, are becoming significant matters of concern. The realization that such pollutants pose a serious threat to human health has necessitated the need for development of cost effective and environmentally friendly technologies to overcome the problem. Radiation

  6. Optimization and application of electron acceleration in relativistic laser plasmas

    International Nuclear Information System (INIS)

    Koenigstein, Thomas

    2013-01-01

    This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.

  7. Accelerated corrosion test for metal drainage pipes : final report.

    Science.gov (United States)

    1987-06-01

    This study represents an attempt to develop an accelerated test which would assist the highway engineer in evaluating the usefulness of a new type of coated steel culvert. The test method was to be short in duration (in the order of days), and the re...

  8. Dedicated medical ion accelerator design study. Final report

    International Nuclear Information System (INIS)

    1977-12-01

    Results and conclusions are reported from a design study for a dedicated medical accelerator. Basing efforts on the current consensus regarding medical requirements, the resulting demands on accelerator and beam delivery systems were analyzed, and existing accelerator technology was reviewed to evaluate the feasibility of meeting these demands. This general analysis was augmented and verified by preparing detailed preliminary designs for sources of therapeutic beams of neutrons, protons and heavy ions. The study indicates that circular accelerators are the most desirable and economical solutions for such sources. Synchrotrons are clearly superior for beams of helium and heavier ions, while synchrotrons and cyclotrons seem equally well suited for protons although they have different strengths and weaknesses. Advanced techniques of beam delivery are of utmost importance in fully utilizing the advantages of particle beams. Several issues are invloved here. First, multi-treatment room arrangements are essential for making optimal use of the high dose rate capabilities of ion accelerators. The design of corresponding beam switching systems, the principles of which are already developed for physics experimental areas, pose no problems. Second, isocentric beam delivery substantially enhances flexibility of dose delivery. After several designs for such devices were completed, it was concluded that high field magnets are necessary to keep size, bulk and cost acceptable. Third, and most important, is the generation of large, homogeneous radiation fields. This is presently accomplished with the aid of scattering foils, occluding rings, collimators, ridge filters, and boluses. A novel approach, three-dimensional beam scanning, was developed here, and the most demanding components of such a system (fast-scanning magnet and power supply) were built and tested

  9. Accelerator beam application in science and industry

    International Nuclear Information System (INIS)

    Hagiwara, M.

    1996-01-01

    Various accelerator beams are being used widely in science and industry. The area of their applications is so wide and rapidly expanding. This paper focuses on recent efforts made in the field of radiation chemistry, especially in materials development using electron and ion beams. Concerning the applications of electron beams, synthesis of SiC fibers, improvement of radiation resistance of polytetrafluoroethylene (PTFE) and preparation of an adsorbent for uranium recovery from sea water were described. In the synthesis of SiC, the electron beams were used effectively to cross-link precursor fibers to prevent their deformation upon heating for their pyrolysis to SiC fibers. The improvement of radiation resistance of PTFE was resulted successfully by its crosslinking. As to the preparation of the adsorbent for uranium recovery, chelating resins containing amidoxime groups were shown to work as a good adsorbent of uranium from sea water. The Takasaki Radiation Chemistry Research Establishment of JAERI completed the accelerator facility named TIARA for R and D of ion beam applications three years ago. Some results were presented on the studies about radiation effects on solar cells and LSIs for space use and synthesis of functional materials. Radiation resistance of solar cells was tested with both electron and proton beams using a beam scanning technique for the irradiation to a wide area, and ultra-fast transient current induced by heavy ion microbeam was measured for studies on mechanisms of single event upset (SEU) in LSIs. In the synthesis of organic functional materials, a temperature responsive particle track membrane was developed. Techniques for RBS and NRA using heavy ion beams were established for analyzing structures of multi-layered materials. Single crystalline thin film of diamond was successfully formed on Si substrate under the deposition of mass separated C-12 ions of 100 eV. (author)

  10. 3D Metallic Lattices for Accelerator Applications

    CERN Document Server

    Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J

    2005-01-01

    We present the results of research on 3D metallic lattices operating at microwave frequencies for application in (1) accelerator structures with higher order mode suppression, (2) Smith-Purcell radiation beam diagnostics, and (3) polaritonic materials for laser acceleration. Electromagnetic waves in a 3D simple cubic lattice formed by metal wires are calculated using HFSS. The bulk modes in the lattice are determined using single cell calculations with different phase advances in all three directions. The Brillouin diagram for the bulk modes is presented and indicates the absence of band gaps in simple lattices except the band below the cutoff. Lattices with thin wires as well as with thick wires have been analyzed. The Brillouin diagram also indicates the presence of low frequency 3D plasmon mode as well as the two degenerate photon modes analogous to those in a 2D lattice. Surface modes for a semi-infinite cubic lattice are modeled as a stack of cells with different phase advances in the two directions alon...

  11. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    transverse beam dynamics. The results obtained allow to develop a correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tune non-scaling FFAG that represents a potential candidate for high power applications. As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have to account for space charge effects. In that framework, models have been installed in the tracking code ZGOUBI to account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown. Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In order to establish the accelerator requirements, one compared the performance of ADSR with other conventional critical reactors by means of the levelized cost of energy. A general comparison between the different accelerator technologies that can satisfy these requirements is finally presented. In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy compared to other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper for any industrial application aiming at producing energy (without dealing with the waste problem). Besides, the reactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the target interface between the accelerator and the reactor core.

  12. Application of accelerator in the medical aspects

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong; Yang Zhongping

    2014-01-01

    In recent years, the human life span compared with before there is an obvious increase in. With the extension of life, cancer incidence is increasing, at the same time, the diagnosis and treatment of cancer has been the development of. Based on the review of the past and present situation of diagnosis and treatment of cancer, the accelerator and the future to introduce, divided into the accelerator treatment, cancer diagnosis, accelerator accelerator with radioactive isotopes, medical accelerator conditions and medical accelerator built five content. (authors)

  13. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  14. The final technical report of the CRADA, 'Medical Accelerator Technology'

    International Nuclear Information System (INIS)

    Chu, W.T.; Rawls, J.M.

    2000-01-01

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation

  15. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  16. Symposium report on frontier applications of accelerators

    International Nuclear Information System (INIS)

    Parsa, Z.

    1993-01-01

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example

  17. FERMI and Elettra Accelerator Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Cornacchia, M.; Craievich, P.; Di Mitri, S.; Pogorelov, I.; Qiang, J.; Venturini, M.; Zholents, A.; Wang, D.; Warnock, R.

    2006-01-01

    This report describes the accelerator physics aspects, the engineering considerations and the choice of parameters that led to the accelerator design of the FERMI Free-Electron-Laser. The accelerator (also called the ''electron beam delivery system'') covers the region from the exit of the injector to the entrance of the first FEL undulator. The considerations that led to the proposed configuration were made on the basis of a study that explored various options and performance limits. This work follows previous studies of x-ray FEL facilities (SLAC LCLS[1], DESY XFEL [2], PAL XFEL [3], MIT [4], BESSY FEL[5], LBNL LUX [6], Daresbury 4GLS [7]) and integrates many of the ideas that were developed there. Several issues specific to harmonic cascade FELs, and that had not yet been comprehensively studied, were also encountered and tackled. A particularly difficult issue was the need to meet the requirement for high peak current and small slice energy spread, as the specification for the ratio of these two parameters (that defines the peak brightness of the electron beam) is almost a factor of two higher than that of the LCLS's SASE FEL. Another challenging aspect was the demand to produce an electron beam with as uniform as possible peak current and energy distributions along the bunch, a condition that was met by introducing novel beam dynamics techniques. Part of the challenge was due to the fact that there were no readily available computational tools to carry out reliable calculations, and these had to be developed. Most of the information reported in this study is available in the form of scientific publications, and is partly reproduced here for the convenience of the reader

  18. Ultra-High Intensity Proton Accelerators and their Applications

    International Nuclear Information System (INIS)

    Weng, W. T.

    1997-01-01

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses

  19. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  20. [Advanced accelerator R and D program]. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    This proposal requests funding for a 3-year renewal of the DOE advanced accelerator R and D (AARD) program at Texas A and M University. The program to date has focused on the development of the gigatron, a compact high-efficiency microwave driver for future linear colliders. The author reports results and progress in that project, and plans to bring it to a milestone and conclusion by mid-1995. He proposes to initiate a second project, the development of a new technology for ultra-high field superconducting magnets for future hadron colliders. This project builds upon two magnet designs which he has introduced during the past year, which have the potential for a dramatic extension of the achievable field strength for both dipoles and quadrupoles

  1. CERN Accelerator School: Cyclotrons, linacs and applications

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1994-01-01

    When the CERN Accelerator School (CAS) was set up over ten years ago it was expected that its job of training a new generation of accelerator scientists would slacken off after a few years as recruitment eased back. It has therefore been a puzzle to explain why, a decade later, there is still a steady flow of 200 or 300 participants a year coming to CAS Courses. The explanation seems to be that the ''graduates'' are from the many laboratories considerably smaller than CERN and from university physics departments and hospitals where accelerators are used. There are also factories and even production lines where small accelerators are produced

  2. High power accelerator for environmental application

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.

    2011-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  3. High power accelerator for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R.; Kim, S. M. [EB-TECH Co., Ltd., Yuseong-gu Daejeon (Korea, Republic of)

    2011-07-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  4. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  5. Technology and application of two sets of industrial electron accelerators

    International Nuclear Information System (INIS)

    Hua Degen

    2000-01-01

    The radiation industry in China Academy of Engineering Physics (CAEP) has had a big scale, and the two sets of industrial electron accelerators play important roles. The Electron Processing System (E.P.S), which was introduced in 1987, is a powerful electron accelerator. And the 10 MeV Accelerator, which is a traveling wave linear electron accelerator, has the higher electron energy. Both of the stes are equipped the driving devices under the beam, and has made a considerable economic results. This article describes the technology and application of the two electron accelerators. (author)

  6. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  7. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  8. Permanent-magnet material applications in particle accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.

    1992-01-01

    The modern charged particle accelerator has found application in a wide range of scientific research, industrial, medical, and defense fields. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, which showed that magnetic field could be used to control the transverse envelope of charged particle beams. The history of permanent-magnet use in accelerator physics and technology is outlined, current design methods and material properties of concern for particle accelerator applications are reviewed

  9. A systematic FPGA acceleration design for applications based on convolutional neural networks

    Science.gov (United States)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  10. Klystron life results in particle accelerator applications

    International Nuclear Information System (INIS)

    Bohlen, Heinz

    2002-01-01

    Based on reports contributed by various particle accelerator sites, among them DESY, CERN, and LANL, Weibull life time characteristics have been calculated for the klystrons used at these institutions. Supported by evaluations of the technologies and the operational conditions involved, the results, sometimes surprising and unexpected, present material that can be valuable for logistic considerations, the planning of future accelerators, and naturally for the design of future klystrons

  11. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  12. The application of accelerator for medical therapy in Indonesia

    International Nuclear Information System (INIS)

    Yunasfi; Mudjiono; Irwati, Dwi; Hanifa

    2003-01-01

    The study of the application of accelerator for medical therapy in Indonesia was carried out. Accelerator that used for therapy is an electron lintier accelerator (Linac) which can radiate electron beam and X-ray. This study shows that there are 8 unit of Linac distributed at 6 big hospitals in Indonesia, especially in Jakarta. This study also shows that radiotherapy facilities in Indonesia is un sufficient of. Therefore, providing radiotherapy facilities for hospitals, especially the big hospitals in Indonesia is necessary

  13. Overview of Accelerator Applications for Security and Defense

    Science.gov (United States)

    Antolak, Arlyn J.

    Particle accelerators play a key role in a broad set of defense and security applications, including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization, and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat to developing a radiological dispersal device, and, can be used to produce isotopes for medical, industrial, and research purposes. An overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security is presented.

  14. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  15. Ion accelerator applications in medicine and cultural heritage

    International Nuclear Information System (INIS)

    Denker, A.; Cordini, D.; Heufelder, J.; Homeyer, H.; Kluge, H.; Simiantonakis, I.; Stark, R.; Weber, A.

    2007-01-01

    Formerly, accelerator laboratories were mainly dedicated to nuclear physics. Today, they are used in up-coming research fields and applications like material analysis and material science as well as biology, medicine or archaeology. Practical applications have been developed, involving hospitals, industry and even humanists in the use of accelerators. This paper focuses on some medical and analytical applications of the HMI accelerator facility, especially for eye tumour therapy and archaeology. The innovation of techniques to measure the dose distribution, the development of an automated monitoring procedure allowing an improved and accelerated patient positioning, and the implementation of a modern treatment planning system will be presented first. In the second part, the employment of accelerators in better understanding of our cultural heritage will be shown

  16. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  17. Applications and technology of electron beam accelerators

    International Nuclear Information System (INIS)

    Sethi, R.C.

    2005-01-01

    Traditionally, accelerators have been employed for pursuing research in basic sciences. But over the last couple of decades their uses have proliferated into the applied fields as well. The major credit for which goes to the electron beams. Electron beams or the radiations generated by them are being extensively used in almost all the applied areas. This article is a brief account of the impact made by the accelerator based electron beams and the attempts initiated by DAE for building a base in this technology. (author)

  18. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  19. Genetic algorithms and their applications in accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Hofler, Alicia S. [JLAB

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  20. JAERI electrostatic accelerators for multiple ion beam application

    International Nuclear Information System (INIS)

    Ishii, Yasuyuki; Tajima, Satoshi; Takada, Isao

    1993-01-01

    An electrostatic accelerators facility of a 3MV tandem accelerator, a 3MV single-ended accelerator and a 400kV ion implanter was completed mainly for materials science and biotechnology research at JAERI, Takasaki. The accelerators can be operated simultaneously for multiple beam application in triple and dual beam modes. The single-ended machine was designed to satisfy an extremely high voltage stability of ±1x10 -5 to provide a submicron microbeam stably. The measured voltage stability and ripple were within the designed value. (author)

  1. Advanced Accelerator Applications University Participation Program

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  2. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  3. Application of on-line analytical processing technique in accelerator

    International Nuclear Information System (INIS)

    Xie Dong; Li Weimin; He Duohui; Liu Gongfa; Xuan Ke

    2005-01-01

    A method of application of the on-line analytical processing technique in accelerator is described, which includes data pre-processing, the process of constructing of data warehouse and on-line analytical processing. (authors)

  4. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  5. On the application of low-energy electrostatic accelerators

    International Nuclear Information System (INIS)

    Petkov, I.; Khristov, H.

    1982-01-01

    The scientific and applied problems which can be solved by small electrostatic accelerators have been reviewed. Problems connected with thermonuclear fusion, nuclear astrophysics, element and isotope analysis, and detector calibration have been considered, as well as applications of beams of accelerated microparticles of picogram and nanogram masses. Some particular research examples are presented, and the corresponding experimental setup is descibed. The problems pointed out are of a considerable scientific and practical interest for the application of the 2 MV-electrostatic accelerator which is being developed in INRNE, Sofia. (authors)

  6. Accelerated materials evaluation for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M., E-mail: malcolm.griffiths@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Walters, L. [Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0 (Canada); Greenwood, L.R. [Pacific Northwest National Laboratory, Richland, WA, 99352 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA, 99352 (United States)

    2017-05-15

    This paper addresses the opportunities and complexities of using materials test reactors with high neutron fluxes to perform accelerated studies of material aging in power reactors operating at lower neutron fluxes and with different neutron flux spectra. Radiation damage and gas production in different reactors have been compared using the code, SPECTER. This code provides a common standard from which to compare neutron damage data generated by different research groups using a variety of reactors.

  7. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  8. Advanced Accelerator Applications University Participation Program

    International Nuclear Information System (INIS)

    Chen, Y.; Hechanova, A.

    2007-01-01

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. In the six years of this program, we saw the evolution of the national transmutation concepts go from the use of accelerators to fast reactors. We also saw an emphasis on gas-cooled reactors for both high temperature heat and deep burn of nuclear fuel. At the local level, we saw a great birth at UNLV of two new academic programs Fall term of 2004 and the addition of 10 academic and research faculty. The Ph.D. program in Radiochemistry has turned into one of the nation's most visible and successful programs; and, the M.S. program in Materials and Nuclear Engineering initiated Nuclear Engineering academic opportunities which took a long time to come. Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability

  9. Proceedings of a workshop on Applications of Accelerators

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Sessler, A.M.; Alonso, J.R.

    1994-01-01

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited

  10. Neural computation and particle accelerators research, technology and applications

    CERN Document Server

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  11. Trends for Electron Beam Accelerator Applications in Industry

    Science.gov (United States)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  12. Accelerator-TEM interface facility and application

    International Nuclear Information System (INIS)

    Liu Chuansheng; Li Ming; He Jun; Yang Zheng; Zhou Lin; Wang Zesong; Guo Liping; Jiang Changzhong; Yang Shibo; Fu Dejun; Fan Xiangjun; Liu Jiarui; Lee J C

    2010-01-01

    An accelerator-TEM interface facility has been established at Wuhan University in 2008. The system consists of an H800 TEM linked to a 200 kV ion implanter and a 2 x 1.7 MV tandem accelerator. Nitrogen ions at 115 keV were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 180 nA. Structural evolution caused by ion irradiation in Si, GaAs, nanocrystal Ag was observed in situ. The in situ observation showed that the critical implantation dose for amorphization of Si is 10 14 cm -2 . The nuclear material C276 samples implanted with 115 keV Ar + was also studied, and dislocation loops sized at 3-12 nm were clearly observed after implantation to doses of over 1 x 10 15 cm -2 . The density of the loops increased with the dose. Evolution to polycrystalline and amorphous structures were observed at 5 x l0 15 cm -2 and 3 x 10 16 cm -2 , respectively. An in situ RBS/C chamber was installed on the transport line of the accelerator-TEM interface system. This enables in situ measurement of composition and location of the implanted species in lattice of the samples. In addition, a 50 kV low-energy gaseous ion generator was installed close to the TEM chamber, which facilitates in situ TEM observation of helium bubbles formed in helium-implanted materials. (authors)

  13. Review of Compact Commercial Accelerator Products and Applications.

    Science.gov (United States)

    Jongen, Y.

    1997-05-01

    Historically, particle accelerators were developed initially for nuclear, then for particle physics research. From this research resulted applications of accelerators in the field of medicine and industry. These application-oriented accelerators are generally built commercially, and they often emphasize other qualities than the accelerators for research. The research applications frequently require energies or beam qualities at the limit of the existing technologies. They offer the largest flexibility in term of particles and beam properties, but are more complex, more expensive and often require large and highly qualified staff to operate and maintain them. In contrast, most applications are done with low to moderate energy protons or electrons, but often with large average beam power. The accelerators are generally specialized for a specific application, and are therefore very simple and inexpensive to operate. The author will review some applications in the field of medicine, such as the production of radio-isotopes for medical diagnostic or the production of electrons, protons or fast neutron beams for cancer therapy. In the industrial field, high power electron beam are used for sterilization and for the modification of materials. Log No. 1001

  14. Accelerator-tem interface facility and application

    International Nuclear Information System (INIS)

    Li Ming; He Jun; Yang Zheng; Zhou Lin; Liu Chuansheng; Guo Liping; Jiang Changzhong; Yang Shibo; Fu Dejun; Fan Xiangjun; Liu Jiarui; Lee, J.C.

    2010-01-01

    An accelerator-TEM interface facility has been established at Wuhan University. The system consists of an H800 TEM linked to a 200 kV ion implanter and a 2 x 1.7 MV tandetron accelerator. Measures were taken to isolate the TEM from mechanical vibration transmitted from the ion beam lines and good resolution was maintained with the TEM machine when operated under high zoom modes during the ion implantation. Nitrogen ions at 115 keV were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 180 nA. Structural evolution caused by ion irradiation in Si, GaAs, nanocrystal Ag were observed in situ. The TEM sample could be tilted by 52 degree and for low energy ion irradiation, real time observation was realized. The in situ observation showed that the critical implant dose for amorphization of Si is 2 x 10 14 cm -2 and it became fully amorphized at 3 x 10 15 cm -2 . Amorphization of GaAs started at 1 x 10 14 cm -2 , whereas for nanocrystal Ag, the starting dose was 6 x 10 14 cm -2 . The nuclear material C276 samples implanted with 115 keV Ar+ was also studied and dislocation loops with sizes of 3-12 nm were clearly observed after implantation to doses higher than 1 x 10 15 cm -2 . The density of the loops increased with the increase in the implant dose and evolution to polycrystalline and amorphous structures were observed at 5 x 10 15 cm -2 and 3 x 10 16 cm -2 , respectively. An in situ RBS/C chamber has been installed on the transport line of the accelerator-TEM interface system. This makes it possible to in situ measure composition and location of impurities in the lattice of the implanted samples. In addition, a 50 kV low-energy gaseous ion generator was installed close to the TEM chamber, which facilitates in situ TEM observation of helium bubbles formed in materials by helium implantation. (authors)

  15. Linear accelerator modeling: development and application

    International Nuclear Information System (INIS)

    Jameson, R.A.; Jule, W.D.

    1977-01-01

    Most of the parameters of a modern linear accelerator can be selected by simulating the desired machine characteristics in a computer code and observing how the parameters affect the beam dynamics. The code PARMILA is used at LAMPF for the low-energy portion of linacs. Collections of particles can be traced with a free choice of input distributions in six-dimensional phase space. Random errors are often included in order to study the tolerances which should be imposed during manufacture or in operation. An outline is given of the modifications made to the model, the results of experiments which indicate the validity of the model, and the use of the model to optimize the longitudinal tuning of the Alvarez linac

  16. Application of electron accelerator for thin film in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto; Darsono, Dadang

    2004-01-01

    Electron accelerator is widely used for the crosslinking of wire and cable insulation, the treatment of heat shrinkable products, precuring of tire components, and the sterilization of medical products. Research and development the use of electron accelerator for thin film in Indonesia covered radiation curing of surface coating, crosslinking of poly (butylenes succinate), crosslinking of wire, cable and heat shrinkable, sterilization of wound dressing, and prevulcanization of tire. In general, comparing with conventional method, electron beam processing have some advantages, such as, less energy consumption, much higher production rate, processing ability at ambient temperature and environmental friendly. Indonesia has a great potential to develop the application of electron accelerator, due to the remarkable growth industrial sector, the abundant of natural resources and the increasing demand of the high quality products. This paper describes the activities concerning with R and D, and application of electron accelerator for processing of thin film. (author)

  17. Applications of accelerator mass spectrometry: advances and innovation

    International Nuclear Information System (INIS)

    Fifield, L.K.

    2004-01-01

    Emerging trends in the applications of accelerator mass spectrometry (AMS) are identified and illustrated with specific examples. Areas of application covered include rapid landscape evolution, calibration of the radiocarbon time scale, compound-specific radiocarbon studies, tracing of nuclear discharges, and searches for extraterrestrial isotopes

  18. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  19. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  20. Architecture exploration of FPGA based accelerators for bioinformatics applications

    CERN Document Server

    Varma, B Sharat Chandra; Balakrishnan, M

    2016-01-01

    This book presents an evaluation methodology to design future FPGA fabrics incorporating hard embedded blocks (HEBs) to accelerate applications. This methodology will be useful for selection of blocks to be embedded into the fabric and for evaluating the performance gain that can be achieved by such an embedding. The authors illustrate the use of their methodology by studying the impact of HEBs on two important bioinformatics applications: protein docking and genome assembly. The book also explains how the respective HEBs are designed and how hardware implementation of the application is done using these HEBs. It shows that significant speedups can be achieved over pure software implementations by using such FPGA-based accelerators. The methodology presented in this book may also be used for designing HEBs for accelerating software implementations in other domains besides bioinformatics. This book will prove useful to students, researchers, and practicing engineers alike.

  1. Proceedings of the FNCA workshop on application of electron accelerator

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2003-02-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 28 January to 1 February, 2002. The Workshop was attended by experts on application of electron accelerator from each of the participating countries, i.e. China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam and 16 participants from Japan. A total of 17 papers including invited papers on the current status of application of electron accelerator in the participating countries were presented. The characteristics of various kinds of electron accelerators were introduced. Current research and development on the utilization radiation processing for natural rubber latex, natural polymer solution, polymer films, sterilization of spices and seeds, radiation treatment of flue gases and dioxin in liquid, solid, and gases were reported. Based on the proposed needs from the participating countries, the work plan was discussed and agreed on application of electron accelerator for liquid and for solid (thin films and granules/powder). All manuscripts submitted by every speaker were included in the proceedings. The 16 of the presented papers are indexed individually. (J.P.N.)

  2. Proceedings of the FNCA workshop on application of electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio; Kume, Tamikazu (eds.) [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 28 January to 1 February, 2002. The Workshop was attended by experts on application of electron accelerator from each of the participating countries, i.e. China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam and 16 participants from Japan. A total of 17 papers including invited papers on the current status of application of electron accelerator in the participating countries were presented. The characteristics of various kinds of electron accelerators were introduced. Current research and development on the utilization radiation processing for natural rubber latex, natural polymer solution, polymer films, sterilization of spices and seeds, radiation treatment of flue gases and dioxin in liquid, solid, and gases were reported. Based on the proposed needs from the participating countries, the work plan was discussed and agreed on application of electron accelerator for liquid and for solid (thin films and granules/powder). All manuscripts submitted by every speaker were included in the proceedings. The 16 of the presented papers are indexed individually. (J.P.N.)

  3. CAS Accelerators for Medical Applications in Vösendorf, Austria

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) and MedAustron jointly organised a course on Accelerators for Medical Applications in Vösendorf, Austria between 26 May and 5 June 2015. The course was held at the Eventhotel Pyramide on the outskirts of Vienna, and was attended by 76 participants from 29 countries, coming from as far away as Canada, China, Lithuania, Thailand, Ukraine and Russia.       The intensive programme comprised 37 lectures. The emphasis was on using charged particle beams for cancer therapy and the programme began by covering the way in which particles interact with biological material, how this translates into the dose needed for treatment and how this dose is best delivered. The different accelerator options for providing the particles needed were then presented in some detail. The production of radioisotopes and how these are used for diagnostics and therapy was also covered, together with a look at novel acceleration techniques that may play a role i...

  4. Outline of FNCA project on application of electron accelerator

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2005-01-01

    FNCA (Forum for Nuclear Cooperation in Asia) activities in the field of electron accelerator applications are reported. The paper mainly reports on the achievement of the 3rd workshop to discuss status of utilization of electron accelerator for thin films/hydrogel in the FNCA participating countries, China, Indonesia, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam, held in August, 2003, at Kuala Lumpur. Cross-linking of thin film from sago starch polymer blend using the Cureton (200 keV, 20 mA) and cross-linking of hydrogel for wound dressing and CMC paste-like sheet using the medium energy (3.0 MeV, 30 mA) electron accelerator of MINT (from Malaysia) were successfully demonstrated. Efforts are being made by Vietnam, Thailand and Philippines having no electron accelerator to acquire the machine for R and D and commercial use in the near future. (S. Ohno)

  5. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  6. The use of electromagnetic particle-in-cell codes in accelerator applications

    International Nuclear Information System (INIS)

    Eppley, K.

    1988-12-01

    The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs

  7. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb; Feki, Saber

    2014-01-01

    , with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually

  8. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  9. High current pulsed linear ion accelerators for inertial fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Yonas, G.; Poukey, J.W.

    1978-01-01

    Pulsed ion beams have a number of advantages for use as inertial fusion drivers. Among these are classical interaction with targets and good efficiency of production. As has been pointed out by members of the accelerator community, multistage accelerators are attractive in this context because of lower current requirements, low power flow per energy conversion stage and low beam divergence at higher ion energies. On the other hand, current transport limits in conventional accelerators constrain them to the use of heavy ions at energies much higher than those needed to meet the divergence requirements, resulting in large, costly systems. We have studied methods of neutralizing ion beams with electrons within the accelerator volume to achieve higher currents. The aim is to arrive at an inexpensive accelerator that can advantageously use existing pulsed voltage technology while being conservative enough to achieve a high repetition rate. Typical output parameters for reactor applications would be an 0 + beam of 30 kA at 300 MeV. We will describe reactor scaling studies and the physics of neutralized linear accelerators using magnetic fields to control the electron dynamics. Recent results are discussed from PULSELAC, a five stage multikiloampere device being tested at Sandia Laboratories

  10. Biomedical applications of pion-producing accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, L [Los Alamos Scientific Lab., NM (USA)

    1980-01-01

    It was proved by the Los Alamos Scientific Laboratory of the U. S. that applications of pi-mesons in the treatment of cancer could eliminate the problem of dose localization attendant upon conventional radiation therapy. A negative pi-meson, once it is produced from energy, behaves quantum mechanically like an electron and executes orbits around a nucleus. Because its mass is 300 times that of an electron, the orbits are smaller in that ratio. Hence, on achieving the innermost orbit, the pi-meson is captured by the nucleus and causes it to explode. The resultant nuclear shrapnel travel very short distances, about 1 mm on the average, and are very effective in rendering afflicted cells non-productive without causing any damages to healthy cells in the vicinity of the tumor. Given pion therapy, over 100 patients showed encouraging results. The laboratory, sponsored by the National Cancer Institute, is now developing a small facility for pion therapy. Tests on the critical components of the pion generator are expected to be conducted within the next 12 - 16 months.

  11. Some important applications of accelerators in medicine and industry

    International Nuclear Information System (INIS)

    Jongen, Y.

    1996-01-01

    Accelerators, and cyclotrons in particular, have long been dedicated to research. Nowadays, they are industrial devices heavily used in various fields. The Belgian company Ion Beam Applications, probably the largest private company manufacturing cyclotrons, has largely contributed to the dissemination of this technology into the medical and radio-pharmaceutical community. This paper will present different applications of cyclotrons in these fields, from radioisotope production to radiotherapy, based on IBA's experience since 1986, date of construction of the CYCLONE 30 prototype, a cyclotron that revolutionized cyclotron technology for medicine and industry. Possible industrial applications of cyclotrons will also be mentioned, together with applications of another type of accelerator recently introduced in the market by IBA: the Rhodotron. (author)

  12. Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics

    International Nuclear Information System (INIS)

    Dragt, A.J.

    1987-01-01

    A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)

  13. Innovative applications of genetic algorithms to problems in accelerator physics

    Directory of Open Access Journals (Sweden)

    Alicia Hofler

    2013-01-01

    Full Text Available The genetic algorithm (GA is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  14. Applications of the ARGUS code in accelerator physics

    International Nuclear Information System (INIS)

    Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.

    1993-01-01

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper

  15. Current and future industrial application of electron accelerators in Thailand

    International Nuclear Information System (INIS)

    Siri-Upathum, Chyagrit

    2003-01-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  16. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  17. A compact, repetitive accelerator for military and industrial applications

    International Nuclear Information System (INIS)

    Zutavern, F.J.; O'Malley, M.W.; Ruebush, M.H.; Rinehart, L.F.; Loubriel, G.M.; Babcock, S.R.; Denison, G.J.

    1998-04-01

    A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser

  18. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  19. Characterization Study of Accelerator for Application in Biotechnology

    International Nuclear Information System (INIS)

    Yazid-M; Muryono, H.

    2000-01-01

    The characterization of accelerator for application in biotechnology was studied. Accelerator is a machine to produce ion beam particles. Accelerator can be used for biotechnology experiments. Ion beam particles irradiation on the biological material will produced variabilities of genetics and induced mutations. In general, new varieties were found by hybridization method or mutation breeding method by gamma rays irradiation. Ion beam particles can be used for biological material irradiation to find variabilities of genetics and induced mutations. The high percentage of mutation rate and LET value by ion beam particles irradiation was found higher than by gamma rays irradiation. Ion beam particle irradiation can also be controlled and foewed to target in biological material. The characterization of accelerator needed for biotechnology experiments are types of accelerator (Tandem Van de Graff, AVF Cyclotron, Synchrotron, Rilac), types of ion particles (C, He, electron, Ar, Ne, Ni, Al, Xe and Au), range of energy (5 - 2.090 MeV), range of dose irradiation (10 - 250 Gy), range of ion current (0.02 - 20 nA), range of ion beam particles diameter (10 - 100 μm), range of LET value (300 - 1.800 keV/μm ) and irradiation time (5 - 30 seconds/samples). (author)

  20. Some advances in medical applications of low energy accelerators

    Science.gov (United States)

    Valković, V.; Moschini, G.

    1991-05-01

    Medical applications of low energy accelerators include: the use of nuclear analytical methods and procedures for laboratory studies and routine measurements; material productions and modifications to meet special requirements; radioisotope productions and their applications in radiopharmaceuticals as well as in positron emission tomography; and radiotherapy with ions, based on improved understanding of the interaction of charged particles with living tissue. Some of the recent advances in these fields are critically summarized. The plan for an improved charged particle facility in a hospital environment dedicated to applications in biology and medicine is presented.

  1. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  2. Outline of application plans of accelerator beams in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has various application plans of accelerators such as; Neutron Science Research Complex (NSRC), Positron Factory, International Fusion Material Irradiation Facility (IFMIF), and Spring-8 Project. Each application plan has its own research program and its own core accelerator. The NSRC is a multi-purpose research complex composed of seven research facilities: slow neutron scattering facility for material science, the nuclear energy research facility like nuclear transmutation and so on. The Positron Factory will be applied to the research of precise analysis of material structure by novel method of positron probing. The IFMIF aims at simulating the wall loading of a demo fusion reactor by producing high intense neutron flux. The SPring-8 is the largest synchrotron radiation source in the world. More than 60 X-ray beam lines will be equipped for the various researches. (author)

  3. Applications of 3-D Maxwell solvers to accelerator design

    International Nuclear Information System (INIS)

    Chou, W.

    1990-01-01

    This paper gives a brief discussion on various applications of 3-D Maxwell solvers to accelerator design. The work is based on our experience gained during the design of the storage ring of the 7-GeV Advanced Photon Source (APS). It shows that 3-D codes are not replaceable in many cases, and that a lot of work remains to be done in order to establish a solid base for 3-D simulations

  4. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2014-05-04

    Graphics Processing Units (GPUs) are gradually becoming mainstream in supercomputing as their capabilities to significantly accelerate a large spectrum of scientific applications have been clearly identified and proven. Moreover, with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually requires an in-depth knowledge of the hardware and software specifications. We suggest a prediction-based performance tuning mechanism [3] to quickly tune OpenACC parameters for a given application to dynamically adapt to the execution environment on a given system. This approach is applied to a finite difference kernel to tune the OpenACC gang and vector clauses for mapping the compute kernels into the underlying accelerator architecture. Our experiments show a significant performance improvement against the default compiler parameters and a faster tuning by an order of magnitude compared to the brute force search tuning.

  5. Atomic Energy of Canada Limited applications of accelerators

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Ungrin, J.

    1988-01-01

    Accelerators have been tools in the physicist's arsenal since the early 1930's, and the requirements of the research laboratory have spawned most of the significant advances in the technology. The characteristics needed in medical and industrial applications frequently differ from those needed by researchers. The authors review a variety of applications in medical therapy; medical isotope production; sterilization of medical supplies, food and water; the production of synthetic materials; industrial radiography; borehole logging; gemstone colour changes; the production of micropore filters; material modifications; long-wavelength radiation generation; sewage treatment; stack gas cleaning; electronuclear breeding; laser weaponry; and rock spalling and tunneling

  6. Report of promotion expert commission for radiation application on 'Promotion of accelerator application study'

    International Nuclear Information System (INIS)

    1997-01-01

    This is a report published on June, 1996, by promotion expert commission for radiation application of the Atomic Energy Commission. Japanese research and development in the fields of forming and application techniques of radiation beams using accelerator is at comparatively high level in the world, and it seems to be important for Japan not only to maintain these research and development level but also to contribute to creation of worldwide intelligent welfare due to scientific technology. In this report, some investigations are conducted on present state and future view of the radiation application study using accelerator, accelerator facility necessary to promote such application study and a procedure to execute its smooth application. However, objects of the study are not limited only for physical study on elementary particle and atomic nucleus, but expanded to photon, electron, positron, muon, proton, neutron, various inonic beams and RI beams for radiations, which are widely applied to industries such as materials science, material engineering, bio-and life-science, medical science, technical engineering, and so forth, and which will be expected for large contribution to development of these industries. The following items are discussed here; 1) present state and future view of radiation application study using accelerator, 2) Accelerator to be prepared and its executing method, and 3) Promotion method of the accelerator application study. (G.K.)

  7. Utilization of pion production accelerators in biomedical applications

    International Nuclear Information System (INIS)

    Rosen, L.

    1979-01-01

    A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed

  8. The use and potential application of electron accelerator in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2003-01-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  9. The use and potential application of electron accelerator in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  10. New developments in design and applications for Pelletron accelerators

    International Nuclear Information System (INIS)

    Norton, Greg

    2002-01-01

    Most of the developments over the last several years related to Pelletron accelerator are in the field of accelerator mass spectrometry (AMS) and other low beam current applications with the exception of a very high DC electron recirculation Pelletron. High precision AMS systems based on tandem pelletrons from 500 kV to 5 MV terminal potential are now in use for routine high precision AMS measurements. Their performance will be reported. In addition, there has been significant advancement in the design of the multi-cathode SNICS source for the use of both gas and solid samples within a single source. The latest performance of these sources will be discussed. New diagnostics is being developed for very low beam currents. The latest design of the low current beam profile monitor (LCBPM) will also be presented. (author)

  11. IAEA consultant's meeting on analysis of the present status of low energy accelerators and auxiliary systems. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The interest in the use of low energy accelerators generally has shifted from nuclear structure studies to applications. These applications are in such diverse fields as Biomedicine, Environment, Geological Sciences and Industry. Many of these applications may be directly relevant to problems and needs of developing countries. To promote growth in basic science and education as well as the utilization of the new applications will require new equipment. It is not within the character of this committee to recommend specific equipment for specific applications within a given country. However we will give the characteristics of low energy nuclear accelerators pointing out for which application they might be useful

  12. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  13. Call for applications_2013_VA_Final

    International Development Research Centre (IDRC) Digital Library (Canada)

    Lindsay Beck

    2013-04-12

    Apr 12, 2013 ... graduate level field-‐school, taught by UNBC and CoPEH-‐Canada team members1 . Final ... and most of the sessions in the course will be given in English. ... o demonstrated interest in Ecosystem approaches to health.

  14. Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2006-01-01

    A new accelerator LACARA is under construction at ATF, Brookhaven National Laboratory. LACARA is to be powered by a 1 TW CO2 laser, and will utilize a 6-T 2-m long solenoidal magnetic field. For a 50 MeV injected electron bunch, LACARA is expected to produce a 100 MeV 1 ps gyrating beam with ∼ 3% energy spread. Beam electrons advance in phase at the laser frequency, executing one cycle each 35 fs. A beam stop with a small off-axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fs, 1-3 pC microbunches for each laser pulse. One application for this train of microbunches obtained from a LACARA-type device involves focusing a portion of the beam using a magnetic quadrupole into a rectangular cross-section having a narrow dimension of a few microns and a height of a few hundred microns. These microbunches may be injected into a planar dielectric-lined waveguide where cumulative buildup of wake fields can lead to an accelerating gradient > 1 GV/m. This proposed vacuum-based wake field structure is mechanically rigid and capable of accurate microfabrication, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed including bunch spreading and transport, bunch shaping, aperture radiation, dielectric breakdown, and bunch stability in the rectangular wake field structure. In appendices to this report, three supporting documents are attached. These include a set of drawings that show the layout of the beam line and optical line for LACARA at ATF-BNL; and two reprints of recent articles published in PRST-AB. The first article describes measurements of the coherent superposition of wake fields that arise from a periodic train of bunches, with supporting analysis. The second article presents theory that

  15. Application of accelerator mass spectrometry in nuclear science

    International Nuclear Information System (INIS)

    Wang Xiaobo; Hu Jinjun; Wang Huijuan; Guan Yongjing; Wang Wei

    2013-01-01

    Accelerator mass spectrometry (AMS) is a promising method to provide extreme sensitivity measurements of the production yields of long-lived radioisotopes, which cannot be detected by other methods. AMS technique plays an important role in the research of nuclear physics, as well as the application field of AMS covered nuclear science and technology, life science, earth science, environmental science, archaeology etc. The newest AMS field is that of actinide, particularly U and Pu, isotopic assay with expanding applications in nuclear safeguards and monitoring, and as a modern bomb-fallout tracer for atmospheric transport and surface sediment movement. This paper reviews the applications of AMS in the research of nuclear energy and nuclear security including the research of half life of radionuclides, cross section of nuclear reaction. (authors)

  16. Smartphone application for mechanical quality assurance of medical linear accelerators.

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-07

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone's high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  17. ELIMED, future hadrontherapy applications of laser-accelerated beams

    International Nuclear Information System (INIS)

    Cirrone, Giuseppe A.P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-01-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum

  18. ELIMED, future hadrontherapy applications of laser-accelerated beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, Giuseppe A.P. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Carpinelli, Massimo [INFN Sezione di Caglari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, Giacomo; Gammino, Santo [INFN-LNS, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Korn, Georg [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Maggiore, Mario [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); INFN-LNL, Legnaro (Italy); Manti, Lorenzo [University Federico II of Naples, Dip.to di Scienze Fisiche, Naples (Italy); Margarone, Daniele; Prokupek, Jan [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Renis, Marcella [University of Catania, Catania (Italy); Romano, Francesco [INFN-LNS, Catania (Italy); Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Schillaci, Francesco, E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Tomasello, Barbara [University of Catania, Catania (Italy); Torrisi, Lorenzo [INFN-LNS, Catania (Italy); Dip. to di Fisica, University of Messina, Messina (Italy); Tramontana, Antonella [INFN-LNS, Catania (Italy); Velyhan, Andriy [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum.

  19. LIGHT - from laser ion acceleration to future applications

    Science.gov (United States)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  20. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  1. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  2. Application opportunities in wireless communications. Final report

    International Nuclear Information System (INIS)

    Abbott, R.E.; Blevins, R.P.; Olmstead, C.

    1998-07-01

    This report presents the results of examinations of wireless technologies and applications that may offer potential to utilities. Five different wireless technology areas are reviewed. Three areas--Communication Networks, Monitored Security Services, and Home Automation--potentially represent new business ventures for utilities. Two areas--Automatic Vehicle Location and Automated Field-Force Management--represent wireless applications with potential for reduced operating costs and improved customer relations

  3. Intercampus institute for research at particle accelerators. Final report, March 15, 1992 - September 30, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This is the final report to the DOE for the Intercampus Institute for Research at Particle Accelerators, or IIRPA, at least for the San Diego branch. Over the years that DOE supported IIRPA, we were told that yearly reports (and the final report) were not necessary because the previous year's summary in our annual request for funds constituted those reports. Therefore, it has taken some effort, and a corresponding long time, to put something together, after the fact. The IIRPA was born as an idea that arose during discussions at the 1974 PEP summer study, and began to be funded by DoE during the early stages of PEP detector design and construction. The intent was for the members of the Institute to be responsible for the PEP-9 Facility; all of the PEP experiments were supposed to be facilities, rather than just experimental setups for a particular group or research goal. IIRPA was approved as a Multicampus Research Unit (MRU) in 1977 by the University of California, and it was active on the UCD, UCSB and UCSD campuses for 10 years. This report concentrates on the period of time when the Directorship of IIRPA was once again at the San Diego campus, 1989 to 1995. The collection of yearly reports consisting of research in different areas of particle physics, make up this report in the appendices

  4. Application of fusion plasma technology. Final report

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1976-06-01

    This report presents principal findings of studies conducted at Iowa State on Applications of Fusion Plasma Technology. Two tasks were considered. The first was to identify and investigate plasma processes for near term industrial applications of already developed plasma technology. The second was to explore the potential of reprocessing the fuel for fusion test facilities in a closed-cycle system. For the first task, two applications were considered. One was alumina reduction in magnetically confined plasmas, and the other was uranium enrichment using plasma centrifuges. For the second task, in-core and ex-core plasma purification were considered. Separation techniques that are compatible with the plasma state were identified and preliminary analysis of their effectiveness were carried out. The effects of differential ionization of impurities on the separation effectiveness are considered. Possible technical difficulties in both tasks are identified and recommendations for future work are given

  5. Hertzian spectroscopy application to excited states in accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M L

    1974-01-01

    Accelerated ion beams enables the application of optical hertzian spectrometry methods to be extended to research on the excited states of free ionic systems. The photon beat method has proved especially simple to apply in beam foil geometry because of the unidirectional beam velocity while the beam gas device is suitable for experiments of the energy level crossing type. Only the resonance technique involving direct application of high-frequency magnetic fields poses serious problems because of the high HF powers necessary. So far structure intervals have been measured in ions carrying up to three charges (seven in the special case of Lamb shift measurements) with a precision of a few percent. Study of hydrogen-like or helium-like ions of high Z allows the fundamental calculations of quantum electrodynamics to be checked with regard to the Lamb shift or the spontaneous emission theory. In more complex electronic systems, optical spectroscopy of accelerated ion beams gives wavelengths with a resolution reaching 10/sup -5/, lifetimes with an accuracy better than 10% when the cascade effects are properly studied, and Lande factors with a precision of several % under present technical conditions. The photon beat method concerns hyperfine nuclear effects in light atoms of Z < = 20. (FR)

  6. The applications of electron accelerator. Liquid, thin film and gases

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan; Kamaruddin Hashim; Zulkafli Ghazali

    2004-01-01

    As indicated by the results of this study, low energy electron beam accelerator of 200 keV to 500 keV can be utilized to irradiate thin hydrogel film in the range of 60 to 500 μm thickness. However, the industrial applications of this technology will depend on its applications. For thin films, cosmetic use such as faced mask is possible. The production of sago hydrogel for cosmetic used is in the process of commercialization in Malaysia. As for electron beam treatment of industrial wastewater in particular the effluent from the textile industry is still at infancy. Further work is necessary in order to have a base line data before the commercialization is taken place. Malaysia has also embarked on the electron beam treatment of flue gases and has completed the semi-pilot scale study by using 1.0 MeV electron accelerator voltage and 400 cum flue gas generated from diesel generator. This study was conducted together with the TNB Research, the research institute belongs to the electrical power company in Malaysia. For technology transfer and commercialization, MINT is planned to promote this technology to Independent Power Producers (IPP) in Malaysia. (author)

  7. Accelerated optical polymer aging studies for LED luminaire applications

    Science.gov (United States)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  8. GPU accelerated FDTD solver and its application in MRI.

    Science.gov (United States)

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  9. Application of nonlinear Krylov acceleration to radiative transfer problems

    International Nuclear Information System (INIS)

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-01-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  10. Highly Productive Application Development with ViennaCL for Accelerators

    Science.gov (United States)

    Rupp, K.; Weinbub, J.; Rudolf, F.

    2012-12-01

    The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support

  11. Proceeding of the Scientific Meeting and Presentation on Accelerator Technology and its Application

    International Nuclear Information System (INIS)

    Sudjatmoko; Anggraita, P.; Darsono; Sudiyanto; Kusminarto; Karyono

    1999-07-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on Accelerator Technology and Its Application, held in Yogyakarta, 16 january 1996. This proceeding contains papers on accelerator technology, especially electron beam machine. There are 11 papers indexed individually. (ID)

  12. Proceeding on the scientific meeting and presentation on accelerator technology and its applications: physics, nuclear reactor

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Sudjatmoko; Darsono; Tri Marji Atmono; Tjipto Sujitno; Wahini Nurhayati

    2012-01-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PTAPB BATAN on 13 December 2011. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 23 papers about physics and nuclear reactor. (PPIKSN)

  13. Proceeding on the Scientific Meeting and Presentation on Accelerator Technology and Its Applications

    International Nuclear Information System (INIS)

    Susilo Widodo; Darsono; Slamet Santosa; Sudjatmoko; Tjipto Sujitno; Pramudita Anggraita; Wahini Nurhayati

    2015-11-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PSTA BATAN on 30 November 2015. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 20 papers about physics and nuclear reactor. (PPIKSN)

  14. Accelerator and spallation target technologies for ADS applications

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radio-active waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia. To address the disposal of transuranics, accelerator-driven systems (ADS), i.e. a sub-critical system driven by an accelerator to sustain the chain reaction, seem to have great potential for transuranic transmutation, though much R and D work is still required in order to demonstrate their desired capability as a whole system. This report describes the current status of accelerator and spallation target technologies and suggests technical issues that need to be resolved for ADS applications. It will be of particular interest to nuclear scientists involved in ADS development and in advanced fuel cycles in general. (author)

  15. Smartphone application for mechanical quality assurance of medical linear accelerators

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; In Park, Jong; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-01

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone’s high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  16. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  17. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    Y. Renier

    2013-06-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs, it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  18. Co-designed accelerator for homomorphic encryption applications

    Directory of Open Access Journals (Sweden)

    Asma Mkhinini

    2018-02-01

    Full Text Available Fully Homomorphic Encryption (FHE is considered as a key cryptographic tool in building a secure cloud computing environment since it allows computing arbitrary functions directly on encrypted data. However, existing FHE implementations remain impractical due to very high time and resource costs. These costs are essentially due to the computationally intensive modular polynomial multiplication. In this paper, we present a software/hardware co-designed modular polynomial multiplier in order to accelerate homomorphic schemes. The hardware part is implemented through a High-Level Synthesis (HLS flow. Experimental results show competitive latencies when compared with hand-made designs, while maintaining large advantages on resources. Moreover, we show that our high-level description can be easily configured with different parameters and very large sizes in negligible time, generating new designs for numerous applications.

  19. The application package DeCA for calculating cyclic accelerators

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Zelinsky, A.Yu.; Strelkov, M.A.

    1993-01-01

    The application Package DeCA (Design Cyclic Accelerator) is offered to solve a set of problem which arise on designing electron storage rings. The package is based on the block principle. This makes it extremely flexible in designing storage rings and investigating beam dynamics in them. The package is intended for a user not familiar with programming languages, it is arranged so that the user familiar with FORTRAN-77 can easily extend the package functions. This is of particular interest, when the input data are the storage ring or electron bunch parameters. The code allows operation in both the batch and interactive modes. The programming language is FORTRAN-77. The capacity of the total package is 40,000 code lines. The necessary main storage capacity for the total version is 4 Mbytes

  20. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    Science.gov (United States)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  1. Industrial and medical applications of accelerators with energies less than 20 MeV

    International Nuclear Information System (INIS)

    Duggan, J.L.

    1983-01-01

    In this paper the medical and industrial application of small accelerators is reviewed. Most of the material is taken from the Seventh Conference on the Application of Accelerators in Research and Industry, which was held in Denton, Texas in November of 1982. The areas covered include medical linacs, cyclotron design and production of medical radioisotopes, radiation processing, ion implantation for the metallurgical and semiconductor industries, oil and mineral exploration, trace, surface and bulk analysis, and unique accelerators for all of the above applications

  2. Accelerator-breeder, an application of high-energy accelerators to solving our energy problems

    International Nuclear Information System (INIS)

    Grand, P.; Batchelor, K.; Powell, J.R.; Steinberg, M.

    1977-01-01

    The rising costs of 235 U and other fossil fuels, and the schedule for implementing the breeder reactor have renewed interest in the utilization of accelerators for breeding 233 U or 239 Pu. A discussion is given of some of the basic accelerator parameters and choices to be made in order to meet the technical and economic requirements of such a facility

  3. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    Science.gov (United States)

    Sawant, M.; Christou, A.

    2012-12-01

    GaInP-MQW-DC, GaN-DH-DC, and GaN-DH-DC. Although the reported testing was carried out at different temperature and current, the reported data was converted to the present application conditions of the medical environment. Comparisons between the model data and accelerated test results carried out in the present are reported. The use of accelerating agent modeling and regression analysis was also carried out. We have used the Inverse Power Law model with the current density J as the accelerating agent and the Arrhenius model with temperature as the accelerating agent. Finally, our reported methodology is presented as an approach for analyzing LED suitability for the target medical diagnostic applications.

  4. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM); Collings, Edward W. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM)

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  5. Database application research in real-time data access of accelerator control system

    International Nuclear Information System (INIS)

    Chen Guanghua; Chen Jianfeng; Wan Tianmin

    2012-01-01

    The control system of Shanghai Synchrotron Radiation Facility (SSRF) is a large-scale distributed real-time control system, It involves many types and large amounts of real-time data access during the operating. Database system has wide application prospects in the large-scale accelerator control system. It is the future development direction of the accelerator control system, to replace the differently dedicated data structures with the mature standardized database system. This article discusses the application feasibility of database system in accelerators based on the database interface technology, real-time data access testing, and system optimization research and to establish the foundation of the wide scale application of database system in the SSRF accelerator control system. Based on the database interface technology, real-time data access testing and system optimization research, this article will introduce the application feasibility of database system in accelerators, and lay the foundation of database system application in the SSRF accelerator control system. (authors)

  6. Applications of accelerator mass spectrometry for pharmacological and toxicological research.

    Science.gov (United States)

    Brown, Karen; Tompkins, Elaine M; White, Ian N H

    2006-01-01

    The technique of accelerator mass spectrometry (AMS), known for radiocarbon dating of archeological specimens, has revolutionized high-sensitivity isotope detection in pharmacology and toxicology by allowing the direct determination of the amount of isotope in a sample rather than measuring its decay. It can quantify many isotopes, including 26Al, 14C, 41Ca, and 3H with detection down to attomole (10(-18)) amounts. Pharmacokinetic data in humans have been achieved with ultra-low levels of radiolabel. One of the most exciting biomedical applications of AMS with 14C-labeled potential carcinogens is the detection of modified proteins or DNA in tissues. The relationship between low-level exposure and covalent binding of genotoxic chemicals has been compared in rodents and humans. Such compounds include heterocyclic amines, benzene, and tamoxifen. Other applications range from measuring the absorption of 26Al to monitoring 41Ca turnover in bone. In epoxy-embedded tissue sections, high-resolution imaging of 14C label in cells is possible. The uses of AMS are becoming more widespread with the availability of instrumentation dedicated to the analysis of biomedical samples. Copyright 2005 Wiley Periodicals, Inc.

  7. Technical training: RF superconductivity and accelerator cavity applications

    CERN Multimedia

    Technical Training

    2016-01-01

    We are happy to announce a new training course organised by the TE-VSC group in the field of the physics and applications of superconductors. The course provides an overview and update of the theory of radiofrequency and superconductors:   RF Superconductivity and Accelerator Cavity Applications https://cern.ch/course/?164VAC19 One timetable only:  Tuesday, 8 March 2016: from 2 p.m. to 4 p.m. Wednesday, 9 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 10 March 2016: from 9.30 a.m to 11.30 a.m. Monday, 14 March 2016: from 9.30 a.m to 11.30 a.m. Tuesday, 15 March 2016: from 9.30 a.m to 11.30 a.m. Wednesday, 16 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 17 March 2016: from 9.30 a.m to 11.30 a.m. Target audience: Experts in radiofrequency or solid state physics (PhD level). Pre-requisites: Basic knowledge of quantum physics and superc...

  8. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    International Nuclear Information System (INIS)

    Westervelt, Robert; Klein, William; Kroupa, Michael; Olsson, Eric; Rothrock, Rick

    1999-01-01

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms

  9. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  10. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    International Nuclear Information System (INIS)

    Schroeder, William J.

    2011-01-01

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem

  11. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally

  12. Application of electrostatic accelerators for nuclear physics studies

    International Nuclear Information System (INIS)

    Kuz'minov, B.D.; Romanov, V.A.; Usachev, L.N.

    1983-01-01

    The data are reviewed on dynamics of the development of single- and two-stage electrostatic accelerators (ESA) used as a tool or nuclear physics studies in the range of low and medium energies. The ESA wide possibilities are shown on examples of the most specific studies in the field of nuclear physics, work on measurement of nuclear constants to safisfy the nuclear power needs and applied studies on nuclear microanalysis. It is concluded that the contribution of studies performed using ESA to the development of nowadays concepts on nuclear structure and nuclear reaction kinetics is immeasurably higher than of any other nuclear-physics tool. ESA turned out to be also exceptionally useful for solving applied problems and investigations in different fields of knowledge. Carrying over the technique of investigations using ESA and nuclear physics concepts to atomic and molecular problems has found its application in optical spectroscopy in Lamb shift investigations in strongly ionized heavy ions, in various experiments on atom-atom and atom-molecular scattering, in stUdies of collisions and charge exchange. ESA contributed to the progress in such scientific fields as astraphysics, nuclear physics, solid-state physics, material science and biophysics

  13. Monitoring of multiphase flows for superconducting accelerators and others applications

    Science.gov (United States)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  14. Application of permanent magnets in accelerators and electron storage rings

    International Nuclear Information System (INIS)

    Halbach, K.

    1984-09-01

    After an explanation of the general circumstances in which the use of permanent magnets in accelerators is desirable, a number of specific magnets will be discussed. That discussion includes magnets needed for the operation of accelerators as well as magnets that are employed for the utilization of charged particle beams, such as the production of synchrotron radiation. 15 references, 8 figures

  15. Automatic generation of application specific FPGA multicore accelerators

    DEFF Research Database (Denmark)

    Hindborg, Andreas Erik; Schleuniger, Pascal; Jensen, Nicklas Bo

    2014-01-01

    High performance computing systems make increasing use of hardware accelerators to improve performance and power properties. For large high-performance FPGAs to be successfully integrated in such computing systems, methods to raise the abstraction level of FPGA programming are required...... to identify optimal performance energy trade-offs points for a multicore based FPGA accelerator....

  16. Survey of electronic safety systems in accelerator applications

    International Nuclear Information System (INIS)

    Mahoney, K.

    1997-01-01

    This paper presents the preliminary results and analysis of a comprehensive survey of the implementation of accelerator safety interlock systems from over 30 international labs. At the present time there is not a self consistent means to evaluate both the experiences and level of protection provided by electronic safety interlock systems. This research is intended to analyze the strength and weaknesses of several different types of interlock system implementation methodologies. Research, medical, and industrial accelerators are compared. Thomas Jefferson National Accelerator Facility (TJNAF) was one of the first large particle accelerators to implement a safety interlock system using programmable logic controllers. Since that time all of the major new U.S. accelerator construction projects plan to use some form of programmable electronics as part of a safety interlock system in some capacity

  17. Development of a two-beam high-current ion accelerator based on Doppler effect. Final report (1994)

    International Nuclear Information System (INIS)

    Ivanov, B.I.; Yegorov, A.M.

    1995-03-01

    This Final Report presents the results of work accomplished in accordance with the Scope of Work to the Purchase Order No 4596310. The amount of works includes the following items: 1. Start of the manufacture of the Experimental Accelerating Stand (EAS)-the section for proton acceleration from 5 MeV to 8 MeV, in which RF fields are excited by an electron beam at the anomalous Doppler effect. 2. Theoretical investigation and computer simulation of field excitation and ion acceleration in the EAS. Under item 1, the EAS manufacturing is begun. To present time, a pedestal for the EAS and a stainless steel vacuum chamber for RF resonator are made (length of the chamber is about 180 cm, diameter is about 40 cm). Besides, parts of the EAS resonator with the acceleration structure are manufactured, and its assembly is begun. Under item 2, it is realized three works: calculation of increment and frequency shift of the EAS resonator excited by electron beam, calculation of the solenoid for creation of magnetic field with required spatial distribution, and theoretical investigation and computer simulation of ion acceleration in the EAS. 14 figs., 16 refs

  18. Report of the consultant's meeting on applications of accelerator based analysis

    International Nuclear Information System (INIS)

    1998-07-01

    At the present meeting, applications of accelerator based analytical methods, often referred as ion beam analysis (IBA) methods, to the following areas have been discussed: materials (including thin films), Earth sciences (including environmental studies), biology and medicine, art and archaeology (cultural heritage), and other applications (including forensic applications). This report gives brief overview of IBA applications in these areas, with short background about accelerators needed and corresponding analytical techniques

  19. New applications of particle accelerators in medicine, materials science, and industry

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future

  20. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  1. Application of accelerators in industry, medicine and for environmental research in Almaty Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Lyssukhin, S.N.; Arzumanov, A.A.

    2001-01-01

    Full text: The Institute of Nuclear Physics in Almaty is the only Kazakhstan institution with a significant activity at the national level in the field of physics of accelerators, their application and associated technology. Three accelerators of different type are being used in the Institute: high power electron beam accelerator, isochronous cyclotron and heavy ion electrostatic tandem. Electron beam accelerator ELV-4 - This high power machine is only electron beam irradiation facility of industrial scale in the Republic. It was produced by Budker Institute of Nuclear Physics, Novosibirsk, Russia and installed in Almaty in 1991 for development of radiation technology in Kazakhstan. The accelerator generates electron beams of following parameters: Energy range (MeV) 1.0-1.5; Max. beam power (kW) 40; Max. beam current (mA) 40. The machine is equipped with beam scanning system, extraction device with output window 980x75 mm 2 and chain conveyer for irradiated material supply. Tn the time being the accelerator is regularly used for radiation cross-linking technology and for sterilization. Cross-linking technology is the base of high quality roof material production for building industry. Raw ethylene-propylene rubber mixture is rolled as strip of 50 m length, 1 m width, 1 mm thickness and then irradiated by dose of about 120 kGy. The final product is waterproof flexible material, very stable in hard atmospheric conditions and non sensitive to sun UV radiation. Sterilization of medical materials and items is not traditional application of such low energy installations but due to uniqueness of this accelerator in Kazakhstan and high actuality of the task for the Republic this technology was developed in INP. Hermetically packed items (medical cotton , bandages, syringes, surgical gloves, small plastic bottles) with thickness less than penetration range of 1.5 MeV electrons are put at the conveyer as mono-layer and irradiated by sterilizing dose of 25 kGy. Isochronous

  2. Computer applications: Automatic control system for high-voltage accelerator

    International Nuclear Information System (INIS)

    Bryukhanov, A.N.; Komissarov, P.Yu.; Lapin, V.V.; Latushkin, S.T.. Fomenko, D.E.; Yudin, L.I.

    1992-01-01

    An automatic control system for a high-voltage electrostatic accelerator with an accelerating potential of up to 500 kV is described. The electronic apparatus on the high-voltage platform is controlled and monitored by means of a fiber-optic data-exchange system. The system is based on CAMAC modules that are controlled by a microprocessor crate controller. Data on accelerator operation are represented and control instructions are issued by means of an alphanumeric terminal. 8 refs., 6 figs

  3. A study of diagnostics expert system for accelerator applications

    International Nuclear Information System (INIS)

    Tyagi, Y.; Banerji, Anil; Kotaiah, S.

    2003-01-01

    Knowledge based techniques are proving to be useful in a number of problem domains which typically requires human expertise. Expert systems employing knowledge based techniques are a recent product of artificial intelligence. Methods developed in the artificial intelligence area can be applied with success for certain classes of problems in accelerator. Accelerators are complex devices with thousands of components. The number of possible faults or problems that can appear is enormous. A diagnostics expert system can provide great help in finding and diagnosing problems in Indus-II accelerator sub-systems. (author)

  4. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1996-01-01

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives

  5. 15 CFR 301.7 - Final disposition of an application.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Final disposition of an application. 301.7 Section 301.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS...

  6. Final report: Compiled MPI. Cost-Effective Exascale Application Development

    Energy Technology Data Exchange (ETDEWEB)

    Gropp, William Douglas [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-12-21

    This is the final report on Compiled MPI: Cost-Effective Exascale Application Development, and summarizes the results under this project. The project investigated runtime enviroments that improve the performance of MPI (Message-Passing Interface) programs; work at Illinois in the last period of this project looked at optimizing data access optimizations expressed with MPI datatypes.

  7. Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-08-15

    This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs. We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.

  8. Symbolic mathematical computing: orbital dynamics and application to accelerators

    International Nuclear Information System (INIS)

    Fateman, R.

    1986-01-01

    Computer-assisted symbolic mathematical computation has become increasingly useful in applied mathematics. A brief introduction to such capabilitites and some examples related to orbital dynamics and accelerator physics are presented. (author)

  9. Applications of the Strategic Defense Initiative's Compact Accelerators

    National Research Council Canada - National Science Library

    Montanarelli, Nick

    1992-01-01

    ...) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI sponsored compact induction linear accelerator may replace Cobalt 60 radiation...

  10. Accelerators for Medical Applications What is so Special?

    CERN Document Server

    Schippers, J.M.

    2016-01-01

    Specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the requirements of the accelerated beam differ from those in a nuclear physics laboratory. The way of operating such a medical device requires not only operators, but also the possibility to have a safe machine operation by non accelerator specialists at different operating sites (treatment rooms). It will be shown that the organisation and role of the control/interlock system can be considered as being the most dedicated in a particle-therapy providing facility.

  11. Accelerator research studies. Final report, June 1, 1990--November 30, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The program consisted of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' and TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders.''

  12. Final version of the pick-up wheels in the Pelletron tandem accelerator at Lund

    International Nuclear Information System (INIS)

    Hakansson, K.; Hellborg, R.

    1993-01-01

    A new type of pick-up wheel has been designed and constructed for the charge transport system of the Lund 3UDH Pelletron tandem accelerator. The major improvements compared with older types are a slender design with only one ball bearing and more robust contact pins with a rubber ring between the pinhead and the wheel nave. (orig.)

  13. 805 MHz β = 0.47 Elliptical Accelerating Structure R and D. Final Report

    International Nuclear Information System (INIS)

    Bricker, S.; Compton, C.; Hartung, W.; Johnson, M.; Marti, F.; Popierlarski, J.; York, R.C.

    2008-01-01

    A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q 0 ) were between 7 · 10 9 and 1.4 · 10 10 at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules. A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.

  14. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  15. Final report: Accelerated beta decay for disposal of fission fragment wastes

    International Nuclear Information System (INIS)

    Reiss, Howard R.

    2000-01-01

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory

  16. Present Trends In The Configurations And Applications Of Electrostatic Accelerator Systems

    International Nuclear Information System (INIS)

    Norton, Gregory A.; Klody, George M.

    2011-01-01

    Despite the worldwide economic meltdown during the past two years and preceding any stimulus program projects, the market for electrostatic accelerators has increased on three fronts: new applications developed in an expanding range of fields; technical enhancements that increase the range, precision, and sensitivity of existing systems; and new accelerator projects in a growing number of developing countries. From the single application of basic nuclear structure research from the 1930's into the 1970's, the continued expansion of new applications and the technical improvements in electrostatic accelerators have dramatically affected the configurations and capabilities of accelerator systems to meet new requirements. This paper describes examples of recent developments in cosmology, exotic materials, high resolution RBS, compact AMS, dust acceleration, ion implantation, etc.

  17. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1992-01-01

    This report describes work carried out on DOE contract number DE-AC02-80ER10569 during the period December 15, 1979 to May 31, 1992. The original purpose of this research was to investigate the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three major objectives: development of a suitable ion injector, growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components into a suitable proof-of-principle demonstration of the wave accelerator. Work focused on the first two of these objectives. Control of the space charge waves' phase velocity was not obtained to the degree required for a working accelerator, so the project was duly terminated in favor of a program which focused on generating ultra high power microwave signals suitable for use in the next linear collider. Work done to develop suitable efficient, inexpensive, phase-stable microwave sources, with peak powers of up to 1 GW in the X band in pulses shorter than 1 ns, is described. Included are lists of the journal and conference papers resulting from this work, as well as a list of graduate students who completed their Ph.D. studies on the projects described in this report

  18. Applications of accelerators in industry, medicine, agriculture and environmental protection future trends

    International Nuclear Information System (INIS)

    Soni, H.C.

    2001-01-01

    Due to remarkable development in accelerator related technologies during past two and half decades, it has become possible to construct a tailor made accelerator most suited for a specific application. This in turn has resulted in tremendous advantage in terms of cost of process or quality of process in comparison to conventional techniques

  19. Analysis and design of a slotless tubular permanent magnet actuator for high acceleration applications

    NARCIS (Netherlands)

    Meessen, K.J.; Paulides, J.J.H.; Lomonova, E.A.

    2009-01-01

    This paper presents the design of a linear actuator for high acceleration applications. In the analysis, a slotless tubular permanent magnet actuator is modeled by means of semianalytical field solutions. Several slotless topologies are modeled and compared to achieve the highest acceleration. A

  20. Hadron-therapy: applications of accelerator technologies to tumour treatments

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    In the second part the technologies of dose delivery are described emphasising the main challenges of modern radiotherapy, in particular the treatment of moving organs. In this framework the properties of the beams produced by conventional accelerators (cyclotrons and synchrotrons) are compared with the ones due to two novel approaches based on fast cycling machines, as FFAGs and cyclinacs.

  1. Potential Application of Magnetohydrodynamic Acceleration to Hypersonic Environmental Testing

    Science.gov (United States)

    1990-08-01

    homopolar generators, and compulsators should be evaluated along with solid-state converters. 86 AEDC-TR-90-6 B.4.2 Design Study of Control and...heater as a source of hot air for accelerator research. One could consider using motor generator power supplies for the arc heater as d3ne tor the

  2. Report of the Los Alamos accelerator automation application toolkit workshop

    International Nuclear Information System (INIS)

    Clout, P.; Daneels, A.

    1990-01-01

    A 5 day workshop was held in November 1988 at Los Alamos National Laboratory to address the viability of providing a toolkit optimized for building accelerator control systems. The workshop arose from work started independently at Los Alamos and CERN. This paper presents the discussion and the results of the meeting. (orig.)

  3. Dissemination and support of ARGUS for accelerator applications

    International Nuclear Information System (INIS)

    1992-01-01

    The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model. These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms

  4. Emerging standards with application to accelerator safety systems

    International Nuclear Information System (INIS)

    Mahoney, K.L.; Robertson, H.P.

    1997-01-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and nuclear industries

  5. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  6. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); The Virtual National Laboratory for Heavy Ion Fusion Science (United States)

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  7. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    International Nuclear Information System (INIS)

    Friedman, Alex

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy

  8. Accelerator research studies. Final report, June 1, 1991 - May 31, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy is currently in the third year of its three-year funding cycle. The program consists of the following three tasks: Task A -- Study of the transport and longitudinal compression of intense, high-brightness beams; Task B -- Study of high-brightness beam generation in pseudospark devices; Task C -- Study of a gyroklystron high-power microwave source for linear colliders. The research for each task is detailed in this report

  9. Final report for CAFDA project entitled, Experimental and numerical investigation of accelerated fluid interface

    Energy Technology Data Exchange (ETDEWEB)

    Greenough, J.A.; Jacobs, J.W.; Marcus, D.L.

    1997-03-26

    The main thrust of this collaborative effort can be summarized as an attempt to use the strengths of physical experiments and numerical simulations in understanding the dynamics of accelerated interfaces. Laboratory experiments represent the true nature of the physical processes and the simulations represent a model of these processes. We have taken the first steps toward this goal through development and calibration of new experimental techniques as well as validation and direct, systematic, and quantitative comparison with computational results. This report summarizes accomplishments made towards these goals. More detailed information is provided in reprints appended to this document.

  10. Integration of Transients in Axisymmetrical Cavities for Accelerators: Formulation and applications to BNL Photocathode Gun

    International Nuclear Information System (INIS)

    Parsa, Z.; Serafini, L.

    1992-04-01

    This note provides a sketch of the formalism used for the Integration of Transients in Axisymmetrical Cavities for Accelerators, (ITACA). Application to study the BNL Photocathode Gun via the code ITACA is also included

  11. High and ultra-high vacuum pumping techniques: applications in accelerators and storage rings

    International Nuclear Information System (INIS)

    Schaefer, G.

    1988-01-01

    A survey is given on gas transfer pumps, especially Turbomolecular pumps, and entrapment pumps (cryopumps and getter pumps) mainly with regard to their application in evacuating particle accelerators and storage rings. (A.C.A.S.) [pt

  12. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  13. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    Science.gov (United States)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  14. Applications of ultra-compact accelerator technologies for homeland security

    International Nuclear Information System (INIS)

    Sampayan, S.; Caporaso, G.; Chen, Y.J.; Falabella, S.; Guethlein, G.; Harris, J.R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A.C.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Shaklee, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2007-01-01

    We report on a technology development to address explosive detector system throughout with increased detection probability. The system we proposed and are studying consists of a pixelized X-ray based pre-screener and a pulsed neutron source quantitative post verifier. Both technologies are derived from our compact accelerator development program for the Department of Energy Radiography Mission that enables gradients >10MV/m. For the pixelized X-ray source panel technology, we have performed initial integration and testing. For the accelerator, we are presently integrating and testing cell modules. For the verifier, we performed MCNP calculations that show good detectability of military and multi-part liquid threat systems. We detail the progress of our overall effort, including research and modeling to date, recent high voltage test results and concept integration

  15. Applications of microprocessors in upgrading of accelerator controls

    International Nuclear Information System (INIS)

    Mallory, K.B.

    1977-03-01

    Experience at SLAC demonstrates that the criteria for selection and use of microprocessors in modifying an existing control system may differ from the criteria that apply during installation of the control system of a new accelerator. Considerations such as cost of individual projects, progressive installation without disruption of operations and training of on-board personnel can outweigh ''obvious'' goals such as standardization of hardware, uniformity of software, or even a rigid specification of link protocols with the main computer system

  16. X-band RF power sources for accelerator applications

    International Nuclear Information System (INIS)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T.

    2011-01-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  17. Ka-Band Rf Transmission Line Components for a High-Gradient Linear Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2005-01-01

    High-power, high-vacuum prototypes of a variety of components for use at 34 GHz were developed. These include waveguide tapers, right-angle miter bends, windows, mode converters, power combiners, mode launchers, phase shifters, dual directional couplers, and loads. High-power, high-vacuum prototypes of all the components were built and tested up to 45 MW, using the Omega-P 34-GHz magnicon. Peak power limits for the components were determined using a quasi-optical rf pulse compressor, developed under a companion project. The components and the magnicon were configured into a user's facility for research and development by others on high-gradient accelerator structures for a future high-energy electron-positron collider.

  18. Final Report: Conceptual Design of an Electron Accelerator for Bio-Solid Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Charles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-09-20

    Several studies have identified electron beam (EB) irradiation of municipal wastewater and bio-solids as an effective and promising approach to the environmental remediation of the enormous quantities of human waste created by a growing world-wide population and increased urbanization. However, despite the technical success of experimental and pilot programs over the last several decades, the technique is still not in commercial use anywhere in the world. In addition, the report also identifies the need for “Financial and infrastructure participation from a utility for demonstration project” and “Education and awareness of safety of utilizing electron beam technology” as two additional roadblocks preventing technology adoption of EB treatment for bio-solids. In this concept design, we begin to address these barriers by working with Metropolitan Water Reclamation District of Greater Chicago (MWRD) and by the applying the latest accelerator technologies developed at Fermilab and within the DOE Office of Science laboratory complex.

  19. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  20. Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Suprotim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Raje, Sanyukta [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenberg, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – September 2015) and Phase 2 (October 2015 – September 2016).

  1. National plan for the accelerated commercialization of solar energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    After a brief profile of the Mid-American region and characterization of the residential and commercial markets and the industry of the region, a short description is given of a regional planning meeting held for the purpose of preparing input for the Mid-American section of the National Program for the Accelerated Commercialization of Solar Energy (NPAC) Implementation plans. For each of thirty-eight programs, the objective, rationale, task statement/description, evaluation measures, and implementor are given. The programs are in these areas: public education/awareness; education/training; legislative/regulatory; performance/analysis; design/planning;demonstrations; state interface; technology; information dissemination; legal and regulatory; analysis and assessment; and regional coordination. Two policy statements are included - one on cratering a solar society and the other recommending the expansion of the commercialization to encompass and include the concepts of utilization and popularization in the plan for the advancement of solar energy. (LEW)

  2. Tools for man-machine interface development in accelerator control applications

    International Nuclear Information System (INIS)

    Kopylov, L.; Mikhev, M.; Trofimov, N.; Yurpalov, V.

    1994-01-01

    For the UNK Project a development of the Accelerator Control Applications is in the progress. These applications will use a specific Graphical User Interface for data presentation and accelerator parameter management. A number of tools have been developed based on the Motif Tool Kit. They contain a set of problem oriented screen templates and libraries. Using these tools, full scale prototype applications of the UNK Tune and Orbit measurement and correction were developed and are described, as examples. A subset of these allows the creation of the synoptic control screens from the Autocad pictures files and Oracle DB equipment descriptions. The basic concepts and a few application examples are presented. ((orig.))

  3. Supplements and other changes to an approved application. Final rule.

    Science.gov (United States)

    2004-04-08

    The Food and Drug Administration (FDA) is amending its regulations on supplements and other changes to an approved application to implement the manufacturing changes provision of the Food and Drug Administration Modernization Act of 1997 (the Modernization Act). The final rule requires manufacturers to assess the effects of manufacturing changes on the identity, strength, quality, purity, and potency of a drug or biological product as those factors relate to the safety or effectiveness of the product. The final rule sets forth requirements for changes requiring supplement submission and approval before the distribution of the product made using the change, changes requiring supplement submission at least 30 days prior to the distribution of the product, changes requiring supplement submission at the time of distribution, and changes to be described in an annual report.

  4. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Carl Stern; Martin Lee

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  5. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    CERN Document Server

    Carl-Stern

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models.

  6. Double-negative metamaterial research for accelerator applications

    International Nuclear Information System (INIS)

    Antipov, S.; Spentzouris, L.; Gai, W.; Liu, W.; Power, J.G.

    2007-01-01

    Material properties are central to the design of particle accelerators. One area of advanced accelerator research is to investigate novel materials and structures and their potential use in extending capabilities of accelerator components. Within the past decade a new type of artificially constructed material having the unique property of simultaneously negative permittivity and permeability has been realized, and is under intense investigation, primarily by the optical physics and microwave engineering communities [C.M. Soukoulis, Science 315 (2007) 47; D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305 (2004) 788; J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773]. Although they are typically constructed of arrays of discrete cells, as long as the condition that the wavelength of applied radiation is significantly greater than the cell dimensions is met, the material mimics a continuous medium and can be described with the bulk properties of permittivity, ε, and permeability, μ. When the permittivity and permeability are simultaneously negative in some frequency range, the metamaterial is called double negative (DNM) or left-handed (LHM) and has unusual properties, such as a negative index of refraction. An investigation of these materials in the context of accelerators is being carried out by IIT and the Argonne Wakefield Accelerator Facility [S. Antipov, W. Liu, W. Gai, J. Power, L. Spentzouris, AIP Conf. Proc. 877 (2006); S. Antipov, W. Liu, J. Power, L. Spentzouris, Design, Fabrication, and Testing of Left-Handed Metamaterial, Wakefield Notes at Argonne Wakefield Accelerator, ]. Waveguides loaded with metamaterials are of interest because the DNM can change the dispersion relation of the waveguide significantly. For example, slow backward waves can be produced in a DNM-loaded waveguide without having corrugations. This article begins with a brief introduction of known design principles for realizing a DNM [J.B. Pendry, A

  7. Proposed medical applications of the National Accelerator Centre facilities

    International Nuclear Information System (INIS)

    Jones, D.T.L.

    1982-01-01

    The National Accelerator Centre is at present under construction at Faure, near Cape Town. The complex will house a 200 MeV separated-sector cyclotron which will provide high quality beams for nuclear physics and related diciplines as well as high intensity beams for medical use. The medical aspects catered for will include particle radiotherapy, isotope production and possibly proton radiography. A 30-bed hospital is to be constructed on the site. Building operations are well advanced and the medical facilities should be available for use by the end of 1984

  8. Application of accelerator mass spectrometry in aluminum metabolism studies

    International Nuclear Information System (INIS)

    Meirav, O.; Vetterli, D.; Johnson, R.R.; Sutton, R.A.L.; Walker, V.R.; Halabe, A.; Fink, D.; Middleton, R.; Klein, J.

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26 Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.)

  9. Application of accelerator mass spectrometry in aluminum metabolism studies

    Energy Technology Data Exchange (ETDEWEB)

    Meirav, O; Vetterli, D; Johnson, R R [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Sutton, R A.L.; Walker, V R; Halabe, A [British Columbia U.iv., Vancouver, BC (Canada). Dept. of Medicine; Fink, D; Middleton, R; Klein, J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer`s disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope {sup 26}Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.).

  10. Metal and elastomer seal tests for accelerator applications

    International Nuclear Information System (INIS)

    Welch, K.M.; McIntyre, G.T.; Tuozzolo, J.E.; Skelton, R.; Pate, D.J.; Gill, S.M.

    1989-01-01

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs

  11. Superstructure for high current applications in superconducting linear accelerators

    Science.gov (United States)

    Sekutowicz, Jacek [Elbchaussee, DE; Kneisel, Peter [Williamsburg, VA

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  12. Space Processing Applications Rocket project, SPAR 1. Final report

    International Nuclear Information System (INIS)

    Reeves, F.; Chassay, R.

    1976-12-01

    The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment

  13. Space Processing Applications rocket project SPAR III. Final report

    International Nuclear Information System (INIS)

    Reeves, F.

    1978-01-01

    This document presents the engineering report and science payload III test report and summarizes the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies

  14. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    Directory of Open Access Journals (Sweden)

    Neil O Carragher

    2011-04-01

    Full Text Available Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates.

  15. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    Science.gov (United States)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  16. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  17. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Wayne D

    2008-06-27

    The original goals of the Staged Electron Laser Acceleration – Laser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  18. International topical meeting on nuclear research applications and utilization of accelerators. Book of abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    Applications of particle accelerators cover a number of areas, from strategic and applied research, safety and security, environmental applications, materials research and analytical sciences, to radioisotope production and radiation processing. Accelerator based techniques and pulsed neutron sources are expected to lead to new initiatives in materials research of relevance for both the nuclear and non-nuclear fields. Material science studies with the use of accelerators, neutron beams and other nuclear analytical methods are relevant to the development of advanced reactors, nuclear fuel cycle needs and fusion research. In this regard, a better understanding of the irradiation effects in materials for energy and non-energy applications is needed, and is reflected in accelerator techniques for modification and analysis of materials for nuclear technologies. Accelerator applications for innovative nuclear systems aiming at rad-waste transmutation (e.g., accelerator driven systems) are being pursued in many countries. Research and development using accelerators involves a broad spectrum of skills to build a cadre of trained experts in nuclear techniques in IAEA Member States, and to generate knowledge for innovative methodologies and tools. The present conference is also being held in cooperation with the American Nuclear Society (ANS), which successfully organized the series of accelerator applications conferences known as AccApp. The ANS series of topical meetings has provided a forum for the global exchange of scientific and technical knowledge on a wide variety of related topics since the first AccApp took place in 1997 in Albuquerque, USA. The last conference which was held in 2007 in Pocatello, USA, was jointly organized by the ANS and the IAEA. The main objectives of the conference are to promote exchange of information among IAEA Member States representatives/delegates and to discuss new trends in accelerator applications including nuclear materials research

  19. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Science.gov (United States)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  20. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    International Nuclear Information System (INIS)

    Chen Teng; Central Florida Univ., Orlando, FL; Elias, L.R. R.; Central Florida Univ., Orlando, FL

    1995-01-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  1. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen Teng [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics; Elias, L.R. R. [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics

    1995-01-30

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  2. Analysis of the applicability of acceleration methods for a triangular prism geometry nodal diffusion code

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Okumura, Keisuke

    2002-11-01

    A prototype version of a diffusion code has been developed to analyze the hexagonal core as reduced moderation reactor and the applicability of some acceleration methods have been investigated to accelerate the convergence of the iterative solution method. The hexagonal core is divided into regular triangular prisms in the three-dimensional code MOSRA-Prism and a polynomial expansion nodal method is applied to approximate the neutron flux distribution by a cubic polynomial. The multi-group diffusion equation is solved iteratively with ordinal inner and outer iterations and the effectiveness of acceleration methods is ascertained by applying an adaptive acceleration method and a neutron source extrapolation method, respectively. The formulation of the polynomial expansion nodal method is outlined in the report and the local and global effectiveness of the acceleration methods is discussed with various sample calculations. A new general expression of vacuum boundary condition, derived in the formulation is also described. (author)

  3. Accelerated Climate Modeling for Energy (ACME) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Aashish [Kitware, Inc.

    2017-10-17

    Seven Department of Energy (DOE) national laboratories, Universities, and Kitware, undertook a coordinated effort to build an Earth system modeling capability tailored to meet the climate change research strategic objectives of the DOE Office of Science, as well as the broader climate change application needs of other DOE programs.

  4. US-Japan IEC Workshop on Small Plasma and Accelerator Neutron Sources. Final report

    International Nuclear Information System (INIS)

    Miley, George H.

    2008-01-01

    The history of IEC development will be briefly described, and some speculation about future directions will be offered. The origin of IEC is due to the brilliance of Phil Farnsworth, inventor of electronic TV in the US. Early experiments were pioneered in the late 1960s by Robert Hirsch who later became head of the DOE fusion program. At that time studies of IEC physics quickly followed at the University of Illinois and at Penn State University. However, despite many successes in this early work, IEC research died as DOE funding stopped in the mid 1980s. In the early 90's, R. W. Bussard of EMC revived work with a new major project based on a magnetic assisted IEC. While doing supportive studies for that project, G. Miley proposed a grided 'STAR mode' IEC as a neutron source for NAA. This concept was later used commercially by Daimler-Benz in Germany to analysis impurities in incoming ores. This represented a first practical application of the IEC. During this period other research groups at LANL, U of Wisconsin and Kyoto University entered IEC research with innovative new concepts and approaches to IEC physics and applications. Much of this work is documented in the present and in past US-Japan Workshops. At present we stand on the threshold of a new area of IEC applications as neutron source, for isotope production, and as a plasma source. These applications provide a way to continue IEC understanding and technology development with the ultimate goal being a fusion power plant. Indeed, a distinguishing feature of the IEC vs. other fusion confinement approaches is the unique opportunity for 'spin off' applications along the way to a power producing plant.

  5. SKB's safety case for a final repository license application

    International Nuclear Information System (INIS)

    Hedin, Allan; Andersson, Johan

    2014-01-01

    The safety assessment SR-Site is a main component in SKB's license application, submitted in March 2011, to construct and operate a final repository for spent nuclear fuel at Forsmark in the municipality of Oesthammar, Sweden. Its role in the application is to demonstrate long-term safety for a repository at Forsmark. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. The principal regulatory acceptance criterion, issued by the Swedish Radiation Safety Authority (SSM), requires that the annual risk of harmful effects after closure not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. SSM's regulations also imply that the assessment time for a repository of this type is one million years after closure. The licence applied for is one in a stepwise series of permits, each requiring a safety report. The next step concerns a permit to start excavation of the repository and requires a preliminary safety assessment report (PSAR) covering both operational and post-closure safety. Later steps include permission to commence trial operation, to commence regular operation and to close the final repository. (authors)

  6. ELIMED, future hadrontherapy applications of laser-accelerated beams

    Czech Academy of Sciences Publication Activity Database

    Cirrone, Giuseppe A.P.; Carpinelli, M.; Cuttone, G.; Gammino, S.; Jia, S.B.; Korn, Georg; Maggiore, Mario; Manti, L.; Margarone, Daniele; Prokůpek, Jan; Renis, M.; Romano, F.; Schillaci, Francesco; Tomasello, B.; Torrisi, L.; Tramontana, A.; Velyhan, Andriy

    2013-01-01

    Roč. 730, Dec (2013), s. 174-177 ISSN 0168-9002. [International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices /9./(RESMDD). Florence, 09.10.2012-12.10.2012] R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0087 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : laser acceleration * cancer treatment * particle selection * Monte Carlo simulation * beam handling Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013

  7. Device Configuration Handler for Accelerator Control Applications at Jefferson Lab

    International Nuclear Information System (INIS)

    Bickley, Matt; Chevtsov, P.; Larrieu, T.

    2003-01-01

    The accelerator control system at Jefferson Lab uses hundreds of physical devices with such popular instrument bus interfaces as Industry Pack (IPAC), GPIB, RS-232, etc. To properly handle all these components, control computers (IOCs) must be provided with the correct information about the unique memory addresses of the used interface cards, interrupt numbers (if any), data communication channels and protocols. In these conditions, the registration of a new control device in the control system is not an easy task for software developers. Because the device configuration is distributed, it requires the detailed knowledge about not only the new device but also the configuration of all other devices on the existing system. A configuration handler implemented at Jefferson Lab centralizes the information about all control devices making their registration user-friendly and very easy to use. It consists of a device driver framework and the device registration software developed on the basis of ORACLE database and freely available scripting tools (perl, php)

  8. Summary of the Accelerator-Driven Transmutation Technologies and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Wanger, T.P.

    1995-10-01

    During the past 15 years many advances have been made in the technology of high-power accelerators, and in the understanding of the beam-physics issues associated with their high-performance requirements. These developments have contributed significantly to the high level of confidence in the practicality of the applications that were the central point of the international Accelerator-Driven Transmutation Technologies (ADTT) Conference. Even so, there are many accelerator topics that needed to be addressed, and the Conference provided the opportunity to address these issues.

  9. Application of the personnel photographic monitoring method to determine equivalent radiation dose beyond proton accelerator shielding

    International Nuclear Information System (INIS)

    Gel'fand, E.K.; Komochkov, M.M.; Man'ko, B.V.; Salatskaya, M.I.; Sychev, B.S.

    1980-01-01

    Calculations of regularities to form radiation dose beyond proton accelerator shielding are carried out. Numerical data on photographic monitoring dosemeter in radiation fields investigated are obtained. It was shown how to determine the total equivalent dose of radiation fields beyond proton accelerator shielding by means of the photographic monitoring method by introduction into the procedure of considering nuclear emulsions of division of particle tracks into the black and grey ones. A comparison of experimental and calculational data has shown the applicability of the used calculation method for modelling dose radiation characteristics beyond proton accelerator shielding [ru

  10. Application of PIN photodiodes on the detection of X-rays generated in an electron accelerator

    International Nuclear Information System (INIS)

    Mondragon-Contreras, L.; Ramirez-Jimenez, F.J.; Garcia-Hernandez, J.M.; Torres-Bribiesca, M.A.; Lopez-Callejas, R.; Aguilera-Reyes, E.F.; Pena-Eguiluz, R.; Lopez-Valdivia, H.; Carrasco-Abrego, H.

    2009-01-01

    PIN photodiodes are used in a novel application for the determination, within the energy range from 90 to 485 keV, of the intensity of X-rays generated by an experimental electron accelerator. An easily assembled X-ray monitor has been built with a low-cost PIN photodiode and operational amplifiers. The output voltage signal obtained from this device can be related to the electron beam current and the accelerating voltage of the accelerator in order to estimate the dose rate delivered by bremsstrahlung.

  11. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    International Nuclear Information System (INIS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.

    2014-01-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies

  12. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Busold, S., E-mail: s.busold@gsi.de [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Almomani, A. [Institut für angewandte Physik, Johann-Wolfgang-Goethe-Universität Frankfurt, Max von Laue Straße 1, D-60438 Frankfurt (Germany); Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Barth, W. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Bedacht, S. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Boine-Frankenheim, O. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, D-64289 Darmstadt (Germany); and others

    2014-03-11

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  13. High-quality laser-accelerated ion beams for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); American University of Sharjah (United Arab Emirates)

    2009-07-01

    Cancer radiation therapy requires accelerated ion beams of high energy sharpness and a narrow spatial profile. As shown recently, linearly and radially polarized, tightly focused and thus extremely strong laser beams should permit the direct acceleration of light atomic nuclei up to energies that may offer the potentiality for medical applications. Radially polarized beams have better emittance than their linearly polarized counterparts. We put forward the direct laser acceleration of ions, once the refocusing of ion beams by external fields is solved or radially polarized laser pulses of sufficient power can be generated.

  14. Lithium-polymer batteries for EV applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.O. [Uppsala Univ. (Sweden). Dept. of Inorganic Chemistry

    2000-05-01

    The project initially held a strong 'battery materials' profile, but has moved in its final year into more 'battery engineering' aspects; the performances of a range of potential materials have been screened, and candidates have emerged. It is noteworthy that these same materials have also now become 'best-choice' materials in commercial Japanese Li-ion batteries for mobile-phone, lap-top and, more recently, even electric-vehicle (EV) applications. It is now clear that the Li-ion (polymer) battery offers a genuinely viable option in electric and electric-hybrid vehicle concepts. Specifically, our work has involved synthetic, structural, morphological and electrochemical studies of lithium insertion mechanisms in TMO-based cathodes (LiMn{sub 2}O{sub 4}, V{sub 6}O{sub 13}, LiCoO{sub 2}, LiFePO{sub 4}, etc) and graphitic carbon anodes. Performance has been optimised from cell capacity, power, shelf-life and safety viewpoints. Cost has also emerged as a critical variable. Novel methods have been developed within the project for elevated-temperature battery studies (up to 80 deg C); they have become widely applied internationally. The electrode materials which have been developed have subsequently been incorporated into laboratory-scale lithium-ion battery prototypes, whose performance has then been evaluated. The final phase of the project has focussed on a new cathode material (LiFePO{sub 4}) not in current commercial use and yet ideally suited to EV application by virtue of its cheapness, high capacity (ca 170 mAh/g), high voltage vs. Li (3.5V), and extremely flat discharge curve. This could well prove to be the 'best compromise' Li-ion battery cathode for EV applications in the future.

  15. Organization of the 17th Advanced Accelerator Concepts (AAC16) Workshop by the IEEE. Final Scientific/Technical Report On AWARD NO. DE-SC0015635

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, David F. [Inst. of Electrical and Electronics Engineers Inc., Piscataway, NJ (United States)

    2017-07-15

    The 2016 Workshop on Advanced Accelerator Concepts (AAC) was held at the Gaylord Hotel and Conference Center, National Harbor, Maryland, from July 31 through August 5, 2016. This workshop was the seventeenth in a biennial series that began at Los Alamos National Laboratory in 1982 with a workshop on laser acceleration of particles (see AIP Conf. Proc. 91). AAC16 was organized under the sponsorship of the IEEE Council on Superconductivity with financial support from the U. S. Department of Energy Office of High Energy Physics and the National Science Foundation. The scope of the AAC Workshop has grown since 1982 to encompass a broad range of topics related to advancing accelerator science and technology beyond its current scientific and technical limits and is now an internationally acknowledged forum for interdisciplinary discussions on advanced accelerator and beam physics/technology concepts covering the widest possible range of applications. The Workshop continued the trend of growing worldwide participation, attracting world wide participation. The Workshop had a total of 256 attendees comprising (including the U.S.) representatives from 11 countries representing 65 different institutions. Each day’s schedule began with plenary sessions covering broad, cross disciplinary interests or general tutorial topics as selected by the Program Committee, followed by a break out into more narrowly focused working groups. The Workshop was organized into eight Working Groups each with a published statement of topical focus, scope of discussion and goals. A summary of the Working Group activities and conclusions is included in the American Institute of Physics’ (AIP) Conference Proceedings now available as an on line open source document. It has been a long tradition of the AAC workshops to encourage strong student participation. This is accomplished in part by subsidizing student attendance, done for this work shop by using funds from the DOE and National Science

  16. Application and Network-Cognizant Proxies - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Antonio Ortega; Daniel C. Lee

    2003-03-24

    OAK B264 Application and Network-Cognizant Proxies - Final Report. Current networks show increasing heterogeneity both in terms of their bandwidths/delays and the applications they are required to support. This is a trend that is likely to intensify in the future, as real-time services, such as video, become more widely available and networking access over wireless links becomes more widespread. For this reason they propose that application-specific proxies, intermediate network nodes that broker the interactions between server and client, will become an increasingly important network element. These proxies will allow adaptation to changes in network characteristics without requiring a direct intervention of either server or client. Moreover, it will be possible to locate these proxies strategically at those points where a mismatch occurs between subdomains (for example, a proxy could be placed so as to act as a bridge between a reliable network domain and an unreliable one). This design philosophy favors scalability in the sense that the basic network infrastructure can remain unchanged while new functionality can be added to proxies, as required by the applications. While proxies can perform numerous generic functions, such as caching or security, they concentrate here on media-specific, and in particular video-specific, tasks. The goal of this project was to demonstrate that application- and network-specific knowledge at a proxy can improve overall performance especially under changing network conditions. They summarize below the work performed to address these issues. Particular effort was spent in studying caching techniques and on video classification to enable DiffServ delivery. other work included analysis of traffic characteristics, optimized media scheduling, coding techniques based on multiple description coding, and use of proxies to reduce computation costs. This work covered much of what was originally proposed but with a necessarily reduced scope.

  17. Microwave and accelerator research. Final report on Grant DE-FG02-92ER40731

    International Nuclear Information System (INIS)

    Nation, John A.

    2002-01-01

    This report summarizes the main technical objectives and accomplishments during the life of the grant, and concludes with data on publications describing the research. The main activity was the development of very high power microwave sources, initially in X-band, and recent initial work on a Ka band TWT amplifier. There was additional activity on ferroelectric emitters. Highlights include the following: (1) The development of a relatively broad band microwave source yielding approx. 75 MW power at a power efficiency of 54% and an energy conversion efficiency of 43%. (2) The development of a ferroelectric cathode electron gun which yielded a beam current of up to 350 A at 500 kV. The device was shown to operate satisfactorily at a low repetition rate, limited by the available power supplies. The final beam power obtained exceeds that achieved elsewhere by several orders of magnitude. The gun development achieved was shown to give an electron beam suitable for high power X-band microwave sources with the demonstration of a 5-MW tunable X-band TWT single-stage amplifier. (3) Work was initiated on a Ka-Band TWT amplifier. Gains of over 30 dB were achieved at peak output powers of about 4 MW. Appendices include two submitted papers: Symmetric and asymmetric mode interaction in high-power traveling wave amplifiers: experiments and theory and High power microwave generation using a ferroelectric cathode electron gun

  18. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    Science.gov (United States)

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  19. Final Report. Center for Scalable Application Development Software

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-26

    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codes for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.

  20. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    Science.gov (United States)

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  1. Production and applications of quasi-monoenergetic electron bunches in laser-plasma based accelerators

    International Nuclear Information System (INIS)

    Glinec, Y.; Faure, J.; Ewald, F.; Lifschitz, A.; Malka, V.

    2006-01-01

    Plasmas are attractive media for the next generation of compact particle accelerators because they can sustain electric fields larger than those in conventional accelerators by three orders of magnitude. However, until now, plasma-based accelerators have produced relatively poor quality electron beams even though for most practical applications, high quality beams are required. In particular, beams from laser plasma-based accelerators tend to have a large divergence and very large energy spreads, meaning that different particles travel at different speeds. The combination of these two problems makes it difficult to utilize these beams. Here, we demonstrate the production of high quality and high energy electron beams from laser-plasma interaction: in a distance of 3 mm, a very collimated and quasi-monoenergetic electron beam is emitted with a 0.5 nanocoulomb charge at 170 ± 20 MeV. In this regime, we have observed very nonlinear phenomena, such as self-focusing and temporal self-shortenning down to 10 fs durations. Both phenomena increase the excitation of the wakefield. The laser pulse drives a highly nonlinear wakefield, able to trap and accelerate plasma background electrons to a single energy. We will review the different regimes of electron acceleration and we will show how enhanced performances can be reached with state-of-the-art ultrashort laser systems. Applications such as gamma radiography of such electron beams will also be discussed

  2. Application of pulse power technology to ultra high energy electron accelerators

    International Nuclear Information System (INIS)

    Nation, J.A.

    1989-01-01

    The author presents in this paper a review of the application of pulse power technology to the development of high gradient electron accelerators. The technology demands are relatively modest compared to the ultra high power technology used for inertial confinement fusion drivers. With the advent of magnetic switching intense electron beams can be generated with a sufficiently high repetition rate to be of interest for high energy electron accelerator driver applications. Most of the techniques considered rely on the excitation of large amplitude waves on the beams. Within this framework there are two broad categories of accelerator, those in which the waves are directly excited in and supported by the medium and, secondly, those where the waves are used to generate radiofrequency signals which are then coupled via structures to the beam being accelerated. In what follows we shall consider both approaches. Present-day pulse power technology limits pulse durations to about 100 nsec. Consequently, if these sources are to be used, we will need to use high group velocity structures to avoid the need for short accelerator module lengths. An advantage of the short pulse duration is that the available acceleration voltage gradient increases compared to that obtained using conventional rf drivers. 19 references, 9 figures, 1 table

  3. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    International Nuclear Information System (INIS)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system

  4. Accelerated development of advanced steels for nuclear applications

    International Nuclear Information System (INIS)

    Ghoniem, N.; Zinkle, S.

    2009-01-01

    Significant progress has been achieved in the operational performance and radiation resistance of ferritic-martensitic steels during the past few decades. Conventional high temperature steels, such as HT-9 and 2 1/4 Cr-1Mo have evolved into super Oxide Dispersion Strengthened (ODS) steels through successive optimization to meet strict performance and radiation-resistance constraints. Such evolution was possible through a combination of experimentation, modeling and empirical information. Further development and optimization of structural steels in nuclear applications will require full utilization of the available array of sophisticated experimental techniques and multiscale computational modeling, in addition to empirical data. We present here a systematic approach to the process of optimum steel development, by linking material fabrication to thermo-mechanical properties through a physical understanding of microstructure evolution. The optimization process is based on the application of design constraints (e.g. low activation, low DBTT, low swelling, creep resistance, and weldability) to describe the required microstructures, which in turn, can be controlled through material processing techniques. Prospects for future design of optimum structural steels in nuclear applications by utilization of the hierarchy of multiscale experimental and computational strategies will be described. (author)

  5. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  6. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  7. PROLOG language application for alarm system realization in accelerator control

    International Nuclear Information System (INIS)

    Frolov, I.; Vaguine, A.; Abe, I.; Nakahara, K.; Furukawa, K.; Kamikubota, N.

    1994-01-01

    Such PROLOG features as backtracking, matching and recursive data representation are powerful tools for ALARM system realization. Although the main idea is the possibility to describe some technical system in recursive form, backtracking and matching are ideal for processing recursive data structures. This paper represents a technique which would allow PROLOG language application for ALARM system realization using an example of the KEK LINAC magnet system. The technique is based on an object-oriented internal data representation in terms of objects, properties, relations and knowledge conception. In addition, each property value is characterized by a typical 'time life'. (author)

  8. Applications of vacuum technology to novel accelerator problems

    Energy Technology Data Exchange (ETDEWEB)

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.

  9. Advanced FDTD methods parallelization, acceleration, and engineering applications

    CERN Document Server

    Yu, Wenhua

    2011-01-01

    The finite-difference time-domain (FDTD) method has revolutionized antenna design and electromagnetics engineering. Here's a cutting-edge book that focuses on the performance optimization and engineering applications of FDTD simulation systems. Covering the latest developments in this area, this unique resource offer you expert advice on the FDTD method, hardware platforms, and network systems. Moreover the book offers guidance in distinguishing between the many different electromagnetics software packages on the market today. You also find a complete chapter dedicated to large multi-scale pro

  10. Applications of vacuum technology to novel accelerator problems

    International Nuclear Information System (INIS)

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10 -9 torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed

  11. Accelerator mass spectrometry and its applications in environmental science

    International Nuclear Information System (INIS)

    Liu Kexin; Li Kun; Ma Hongji; Guo Zhiyu

    2001-01-01

    Some important work worldwide in environmental science, like urban air pollution, discharges of radioactive wastes from nuclear plants, and global climate change were introduced. Based on the improvements of facility and studies on 14 C dating method, a precision better than 0.5% has been reached for the PKUAMS. A large number of samples have been measured for the Xia-Shang-Zhou Chronology project. 14 C data of PKUAMS have made important contributions to creation of more reliable chronological table of Xia, Shang and Zhou dynasties. The improvements of PKUAMS are of benefit to the applications in environmental science in the future

  12. Power accelerators and their applications; Les accelerateurs de puissance et leurs applications

    Energy Technology Data Exchange (ETDEWEB)

    Ollivier, M [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere

    1997-12-31

    Power accelerators are defined as able to deliver particle beam of which power is greater than 1 MW. In most cases, the aim of such beams is to produce an intense neutron flux by spallation reactions. The main european projects using this kind of accelerator are reviewed. Some characteristics of linacs and cyclotrons in the scope of potential power accelerators are presented. (A.C.) 20 refs.

  13. Accelerated ultrasonic fatigue testing applications and research trends

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho [Ajou Univ., Gyeonggi (Somalia)

    2012-06-15

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

  14. Accelerated ultrasonic fatigue testing applications and research trends

    International Nuclear Information System (INIS)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho

    2012-01-01

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength

  15. Proceedings of the FNCA 2004 workshop on application of electron accelerator. EB treatment of flue gases

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2005-06-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The 2004 workshop was jointly organized by China Atomic Energy Authority (CAEA), Institute of Modern Physics/Chinese Academy of Sciences(IMP-CAS) and Japan Atomic Energy Research Institute (JAERI). It was held at Prime Hotel, Beijing, China from 6 to 10 September 2004. The Workshop was attended by 28 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam, and 10 participants from Japan. On the first day, a National Executive Management Seminar on Application of Electron Accelerator was held and attended by 67 participants. Total of 20 papers including Seminar lectures, invited papers on flue gas treatment by electron beam, and country reports on EB irradiation system were presented. The major areas of interest of FNCA member states for cooperation were identified for application of low energy electron accelerator as liquid (natural polymer, wastewater), solid (hydrogel, thin film) and gases (flue gas). Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2005. It was agreed the FNCA 2005 workshop on EB treatment of wastewater will be held in Korea. All manuscripts submitted by every speaker were included in the proceedings. The 20 of the presented papers are indexed individually. (J.P.N.)

  16. Proceedings of the FNCA 2003 workshop on application of electron accelerator. Radiation system for thin film

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2004-06-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and co-hosted by Malaysian Institute for Nuclear Technology Research (MINT) and Japan Atomic Energy Research Institute (JAERI). It was held at the Legend Hotel, Kuala Lumpur, Malaysia from 18 to 22 August 2003. The Workshop was attended by 28 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam, and 5 participants from Japan. On the first day, a National Executive Management Seminar on Application of Electron Accelerator was held and attended by 87 participants. Total of 19 papers including Seminar lectures, invited papers on film treatment by electron beam, and country reports on EB irradiation system were presented. The major areas of interest of FNCA member states for cooperation were identified for application of low energy electron accelerator as liquid, thin film and granules. The flue gas and wastewater treatments were added to the above major areas. Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2004. All manuscripts submitted by every speaker were included in the proceedings. The 19 of the presented papers are indexed individually. (J.P.N.)

  17. Application of accelerated argon ion radiation in rice breeding

    International Nuclear Information System (INIS)

    Deng Hong; Mei Mantong; Lu Yonggen; Yang, T.C.

    1994-01-01

    Dry seeds of rice 'Xiangzhou', a hsien (indica) variety, which has pleasant aroma but poor yield and originated in Guangdong Province, were irradiated by argon ion beam with the energy of 400 MeV/u to improve its agronomic traits. Three mutant lines, Ar-X-1-1, Ar-X-1-2 and Ar-X-2 were selected from M 1 or M 2 generation plants developed from seeds exposed to the dose of 100 Gy, and their economic potential in the M 5 generation was tested. The results showed that several traits of these lines were evidently improved when compared with the original variety. Plant height was reduced by 25% ∼ 39%, and growth period shortened by 8 ∼ 25 days. The effective panicle per plant was increased, and the resistance to bacterial leaf blight was improved. The grain yield per plot was increased by 14.34% ∼ 121.51%, which reached significant level in variance analysis, and the pleasant aroma was also retained. In addition, two mutants with traits of early maturity or semidwarf were found from the progenies of seeds exposured to the 150 Gy. The results suggest the potential application of heavy ion radiation in rice breeding

  18. A biomedical application of 32Si using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Di Tada, M.L.; Fifield, L.K.; Liu, K.; Cresswell, R.G.; Day, J.L.; Oldham, C.L.; Popplewell, J.; Carling, R.

    1998-01-01

    As a first application of the 32 Si tracer to a biomedical project, the first measurement of silicon uptake by a human subject has been carried out. The motivation for this study aroused from the supposition that silicate may be important in human physiology in protecting against aluminium toxicity. Indeed, in an earlier study of aluminium uptake, using the isotopic tracer, 26 Al, it had been shown that blood-Al levels following Al dosing were lower when the dose was accompanied by dissolved silicate than when it was not. An experiment was set out to determine directly the fraction absorbed from the gastrointestinal tract, and to quantify the kinetics of renal elimination, using the silicon isotopic tracer, 32 Si. A gas-filled magnet technique was developed for measuring 32 Si by AMS which allows a spatial separation of 32 S from 32 Si and hence a reduction in the counting rate entering the detector by a factor of 10 6 . The results for silicon absorption are consistent with those from earlier studies, indicating that the simultaneous ingestion of Al and silicate enhances the rate of aluminium excretion for a period of 12-24 hours

  19. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Science.gov (United States)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  20. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2018-03-01

    Full Text Available A Low-level radio-frequency (LLRF control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  1. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  2. FINAL REPORT DE-FG02-04ER41317 Advanced Computation and Chaotic Dynamics for Beams and Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cary, John R [U. Colorado

    2014-09-08

    During the year ending in August 2013, we continued to investigate the potential of photonic crystal (PhC) materials for acceleration purposes. We worked to characterize acceleration ability of simple PhC accelerator structures, as well as to characterize PhC materials to determine whether current fabrication techniques can meet the needs of future accelerating structures. We have also continued to design and optimize PhC accelerator structures, with the ultimate goal of finding a new kind of accelerator structure that could offer significant advantages over current RF acceleration technology. This design and optimization of these requires high performance computation, and we continue to work on methods to make such computation faster and more efficient.

  3. Monte Carlo based simulation of LIAC intraoperative radiotherapy accelerator along with beam shaper applicator

    Directory of Open Access Journals (Sweden)

    N Heidarloo

    2017-08-01

    Full Text Available Intraoperative electron radiotherapy is one of the radiotherapy methods that delivers a high single fraction of radiation dose to the patient in one session during the surgery. Beam shaper applicator is one of the applicators that is recently employed with this radiotherapy method. This applicator has a considerable application in treatment of large tumors. In this study, the dosimetric characteristics of the electron beam produced by LIAC intraoperative radiotherapy accelerator in conjunction with this applicator have been evaluated through Monte Carlo simulation by MCNP code. The results showed that the electron beam produced by the beam shaper applicator would have the desirable dosimetric characteristics, so that the mentioned applicator can be considered for clinical purposes. Furthermore, the good agreement between the results of simulation and practical dosimetry, confirms the applicability of Monte Carlo method in determining the dosimetric parameters of electron beam  intraoperative radiotherapy

  4. CARE-HHH-APD Workshop on Finalizing the Roadmap for the Upgrade of the CERN and GSI Accelerator Complex

    CERN Document Server

    Zimmermann, Frank; BEAM'07; BEAM 2007; Finalizing the Roadmap for the Upgrade of the LHC and GSI Accelerator Complex

    2008-01-01

    This report contains the Proceedings of the CARE-HHH-APD Event BEAM’07, “Finalizing the Roadmap for the Upgrade of the CERN & GSI Accelerator Complex,” which was held at CERN in Geneva, Switzerland, from 1 to 5 October 2007. BEAM’07 was primarily devoted to beam dynamics limitations for the two, or three, alternative baseline scenarios of the LHC luminosity upgrade and to critical design choices for the upgrade of the LHC injector complex at CERN and for the FAIR complex at GSI. It comprised five parts: (1) a Mini-Workshop on LHC+ Beam Performance, (2) a CERN-GSI Meeting on Collective Effects, (3) the Francesco Ruggiero Memorial Symposium, (4) a Mini-Workshop on the LHC Injectors Upgrade, and (5) the BEAM’07 Summaries. Topics addressed in the first mini-workshop of BEAM’07 ranged from the luminosity performance reach of the upgraded LHC in different scenarios, over the generation and stability of the future LHC beams, the turnaround time, beam–beam effects, luminosity levelling methods, and ...

  5. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  6. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  7. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration...... of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge...... effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set...

  8. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    International Nuclear Information System (INIS)

    Ciocca, Mario; Cantone, Marie-Claire; Veronese, Ivan; Cattani, Federica; Pedroli, Guido; Molinelli, Silvia; Vitolo, Viviana; Orecchia, Roberto

    2012-01-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42–216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy

  9. Application of Fourier transform to MHD flow over an accelerated plate with partial-slippage

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2014-06-01

    Full Text Available Magneto-Hydrodynamic (MHD flow over an accelerated plate is investigated with partial slip conditions. Generalized Fourier Transform is used to get the exact solution not only for uniform acceleration but also for variable acceleration. The numerical solution is obtained by using linear finite element method in space and One-Step-θ-scheme in time. The resulting discretized algebraic systems are solved by applying geometric-multigrid approach. Numerical solutions are compared with the obtained Fourier transform results. Many interesting results related with slippage and MHD effects are discussed in detail through graphical sketches and tables. Application of Dirac-Delta function is one of the main features of present work.

  10. A study on the development plan and preliminary design of proton accelerator for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Choi, B H; Park, C K; Chung, K S. and others

    1997-11-01

    A study on the development plan and preliminary design for the realisation of high current proton accelerator to be used as an essential component for the R and D of accelerator-driven system (ADS) for energy production and transmutation of long-lived radionuclides. Various fields of application of the accelerator such as basic nuclear physics, material science, biology, high energy physics, medicine, etc. were also investigated. From the preliminary design study, 1 GeV (20 mA) - Linac is required for the purposed of transmutation and energy production. Specification of injector, RFQ, CCTL and SL was also suggested. For the case study, a duoplasmatron ion source was designed by KAERI and fabricated by a domestic manufacturer, and the performance was also tested. (author). 71 refs., 61 tabs., 131 figs

  11. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    International Nuclear Information System (INIS)

    Niendorf, Thoralf; Sodickson, Daniel K.

    2008-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. (orig.)

  12. Artificial intelligence applications in logistics information systems : final report

    Science.gov (United States)

    1990-04-01

    This report is the principal deliverable from the LIMSS-AI project. It summarizes the results of a survey of existing applications and discusses the feasibility and benefits of specific candidate logistics applications.

  13. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  14. The Plasma Window: A Windowless High Pressure-Vacuum Interface for Various Accelerator Applications

    International Nuclear Information System (INIS)

    Hershcovitch, A. I.; Johnson, E. D.; Lanza, R. C.

    1999-01-01

    The Plasma Window is a stabilized plasma arc used as an interface between accelerator vacuum and pressurized targets. There is no solid material introduced into the beam and thus it is also capable of transmitting particle beams and electromagnetic radiation with low loss and of sustaining high beam currents without damage. Measurements on a prototype system with a 3 mm diameter opening have shown that pressure differences of more than 2.5 atmospheres can be sustained with an input pressure of ∼ 10 -6 Torr. The system is capable of scaling to higher-pressure differences and larger apertures. Various plasma window applications for synchrotron light sources, high power lasers, internal targets, high current accelerators such as the HAWK, ATW, APT, DARHT, spallation sources, as well as for a number of commercial applications, is discussed

  15. Left-Handed Metamaterials Studies and their Application to Accelerator Physics

    CERN Document Server

    Antipov, Sergey P; Liu Wan Ming; Power, John G

    2005-01-01

    Recently, there has been a growing interest in applying artificial materials, known as Left-Handed Metamaterials (LHM), to accelerator physics. These materials have both negative permittivity and permeability and therefore possess several unusual properties: the index of refraction is negative and the direction of the group velocity is antiparallel to the direction of the phase velocity (along k). These properties lead to a reverse Cherenkov effect, which has potential beam diagnostic applications, in addition to accelerator applications. Several LHM devices with different configurations are being experimentally and theoretically studied at Argonne. In this paper, we describe permittivity and permeability retrieval techniques that we have developed and applied to these devices. We have also investigated the possibility of building a Cherenkov detector based on LHM and propose an experiment to observe the reverse radiation generated by an electron beam passing through a LHM. The potential advantage of a LHM de...

  16. Engineering a large application software project: the controls of the CERN PS accelerator complex

    International Nuclear Information System (INIS)

    Benincasa, G.P.; Daneels, A.; Heymans, P.; Serre, Ch.

    1985-01-01

    The CERN PS accelerator complex has been progressively converted to full computer controls without interrupting its full-time operation (more than 6000 hours per year with on average not more than 1% of the total down-time due to controls). The application software amounts to 120 man-years and 450'000 instructions: it compares with other large software projects, also outside the accelerator world: e.g. Skylab's ground support software. This paper outlines the application software structure which takes into account technical requirements and constraints (resulting from the complexity of the process and its operation) and economical and managerial ones. It presents the engineering and management techniques used to promote implementation, testing and commissioning within budget, manpower and time constraints and concludes with experience gained

  17. Applications of FLUKA Monte Carlo code for nuclear and accelerator physics

    CERN Document Server

    Battistoni, Giuseppe; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; Roesler, Stefan; Rollet, Sofia; Sala, Paola R; Santana, Mario; Sarchiapone, Lucia; Sioli, Maximiliano; Smirnov, George; Sommerer, Florian; Theis, Christian; Trovati, Stefania; Villari, R; Vincke, Heinz; Vincke, Helmut; Vlachoudis, Vasilis; Vollaire, Joachim; Zapp, Neil

    2011-01-01

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such top...

  18. Proton acceleration: new developments for focusing and energy selection, and applications in plasma physics

    Science.gov (United States)

    Audebert, P.

    2007-11-01

    In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-off, high directionality and laminarity, short burst duration. We have shown that for proton energies >10 MeV, the transverse and longitudinal emittance are respectively example point-projection radiography with unprecedented resolution. We will show example of such time and space-resolved radiography of fast evolving fields, either of associated with the expansion of a plasma in vacuum [*] or with the propagation of a ICF-relevant laser beam in an underdense plasma. These proton sources also open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications.

  19. A computer study of radionuclide production in high power accelerators for medical and industrial applications

    Science.gov (United States)

    Van Riper, K. A.; Mashnik, S. G.; Wilson, W. B.

    2001-05-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  20. Realisation of a linear electron accelerator. Application to the production of millimetre wavelength waves

    International Nuclear Information System (INIS)

    Combe, Rene

    1956-01-01

    In the first part of this research thesis, the author reports the development of a linear electron accelerator with a presentation of charged waveguides which are their main components. He also proposes a recall of the charged waveguide theory, an overview of some experimental guides, a description of the calculation method, and reports the actual realisation of the accelerator waveguide. The apparatus is precisely described, and results obtained during tests are presented. The second part of the thesis addresses the study of millimetre wavelength waves. It reports the study of the electron movement in a sinusoidal inverter, and in a helical inverter (a solenoid in which the electron has a helical trajectory). Then, the author proposes a detailed presentation of electron radiation theory: fundamental wavelength, total radiated power, angular and spectral distribution of radiation. The author finally reports a comparison between radiations obtained with different devices [fr

  1. Proceedings of the FNCA 2005 workshop on application of electron accelerator. EB treatment of wastewater

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2006-08-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The 2005 workshop was jointly organized by the Ministry of Science and Technology (MOST), Korea, Korea Atomic Energy Research Institute and Japan Atomic Energy Agency (JAEA). It was held at the International Nuclear Technology and Education Center (INTEC/KAERI), Daejeon, Korea from 14 to 18 November 2005. The Workshop was attended by 32 experts on application of electron accelerator from each of the participating countries, i.e., China (1), Indonesia (1), Korea (18), Malaysia (2), Philippines (1), Thailand (1) and Vietnam (1), and 7 participants from Japan. On the first day, a National Executive Management Seminar on Application of Electron Accelerator was held and attended by 45 participants. Total of 20 papers including Seminar lectures, invited papers on wastewater treatment by electron beam, and country reports on EB irradiation system were presented. The major areas of interest of FNCA member states for cooperation were identified for application of low energy electron accelerator to liquids (natural polymer, wastewater), solids (hydrogel, thin film) and gases (flue gas). Based on the evaluation and proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project on natural polymers and wastewater for three years until FY 2008. It was agreed the FNCA 2006 workshop on EB crosslinking of natural polymers would be held in Malaysia. All manuscripts submitted by every speaker were included in the proceedings. The 18 presented papers are indexed individually. (J.P.N.)

  2. University Programs of the U.S. Department of Energy Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Beller, Denis E.; Ward, Thomas E.; Bresee, James C.

    2002-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21. Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R and D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R and D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs. (authors)

  3. Proceedings of the FNCA 2002 workshop on application of electron accelerator. Radiation system for liquid samples

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2003-10-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 16 to 20 December 2002. The attendants at the workshop were consisted of 13 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, the Philippines, Thailand and Vietnam, and 40 participants from Japan. A total of 18 papers including invited papers on liquid waste treatment by electron beam, reviews of the radiation systems, and designing and cost analysis of EB irradiation system were presented. The major areas of interest of FNCA countries for cooperation were identified for application of low energy electron accelerator as liquid, thin film and granules. The gas and wastewater treatments were added to the above major areas. Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2004. All manuscripts submitted by every speaker were included in the proceedings. The 17 of the presented papers are indexed individually. (J.P.N.)

  4. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  5. Modern trends in ion source development for low-energy accelerators. Final report of a consultants' meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The IAEA consultative meeting was held to review the status of ion source development for accelerators having output energies less than 100 MeV (low-energy accelerators). Terms of reference for the meeting were to review the status of ion source development for several different types of low-energy accelerators (Van de Graaff, cyclotron, sealed-tube neutron generator, ion implanter, etc.) and to highlight any recent advances in this field. Individual abstracts were prepared for 5 papers presented at this meeting

  6. BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & ...

  7. Improving Utility of GPU in Accelerating Industrial Applications with User-centred Automatic Code Translation

    DEFF Research Database (Denmark)

    Yang, Po; Dong, Feng; Codreanu, Valeriu

    2018-01-01

    design and hard-to-use. Little attentions have been paid to the applicability, usability and learnability of these tools for normal users. In this paper, we present an online automated CPU-to-GPU source translation system, (GPSME) for inexperienced users to utilize GPU capability in accelerating general...... SME applications. This system designs and implements a directive programming model with new kernel generation scheme and memory management hierarchy to optimize its performance. A web service interface is designed for inexperienced users to easily and flexibly invoke the automatic resource translator...

  8. A software kit for building applications in accelerator control systems: A proposal

    International Nuclear Information System (INIS)

    Daneels, A.

    1990-01-01

    This paper presents the author's view on how application software could be structured into generic packages which, at the cost of limited programming only, could be tailored to suit the needs of daily operation and use of accelerators. The ideas dealt with in this paper are not claimed to be new or original. They result from observation of efforts at CERN, other laboratories and industry to rationalize application software in the quest for higher efficiency and better quality, and under the pressure of ever increasing demand and shrinking resources. The selection of publications to which reference is made illustrates these activities. (orig.)

  9. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  10. Some aspects of the applications of wire chambers in high energy physics experiments at large accelerators

    International Nuclear Information System (INIS)

    Turala, M.

    1982-01-01

    An application of proportional and drift chambers in four large spectrometers at the accelerators of IHEP Serpukhov and CERN Geneva is described. An operation of wire chambers at high intensities and high multiplicities of particles is discussed. The results of investigations of their efficiencies, spatial resolution (for one and two-dimensional readout) and long term stability are presented. Problems of preselection of a given class of events are discussed. The systems for preselection of defined multiplicities or a scattering angle of particles, in which proportional chambers have been used, are described and the results of their application in the real experiments are presented. (author)

  11. Rapid application development by KEKB accelerator operators using EPICS/Python

    International Nuclear Information System (INIS)

    Tanaka, M.; Satoh, Y.; Kitabayashi, T.

    2004-01-01

    In the KEKB accelerator facility, the control system is constructed based on the framework of EPICS. By using EPICS/Python API, which is originated from KEK, we can develop an EPICS channel access application based on simple Python technology with only a few knowledge of EPICS channel access protocols. The operator's new tuning ideas are quickly implemented to the control system. In this paper, we introduce the EPICS/Python API and report the effectiveness of rapid application development by the KEKB operators using the API. (author)

  12. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1993-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently the authors used a MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r b < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. The authors' success with the MITL technology led them to investigate the application to higher energy accelerator designs. They have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30-50-ns FWHM output pulse

  13. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    Science.gov (United States)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  14. On the application of accelerated molecular dynamics to liquid water simulations.

    Science.gov (United States)

    de Oliveira, César Augusto F; Hamelberg, Donald; McCammon, J Andrew

    2006-11-16

    Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.

  15. Gait Phases Recognition from Accelerations and Ground Reaction Forces: Application of Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Rafajlović

    2009-06-01

    Full Text Available The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7% – force sensors; 150 ms (13.6% – nonprocessed acceleration, and 120 ms (11% – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times.

  16. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r ρ < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs

  17. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    Science.gov (United States)

    Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Poukey, J. W.; Turman, B. N.

    Self Magnetically Insulated Transmission Lines (MITL) adders were used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r(sub rho) less than 2 cm), 11 - 15 MeV, 50 - 100-kA beams with a small transverse velocity v(perpendicular)/c = beta(perpendicular) less than or equal to 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30 - 50 ns FWHM output pulse.

  18. Reliability and Lifetime Prediction of Remote Phosphor Plates in Solid-State Lighting Applications Using Accelerated Degradation Testing

    NARCIS (Netherlands)

    Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q.

    2015-01-01

    A methodology, based on accelerated degradation testing, is developed to predict the lifetime of remote phosphor plates used in solid-state lighting (SSL) applications. Both thermal stress and light intensity are used to accelerate degradation reaction in remote phosphor plates. A reliability model,

  19. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  20. Turn-key Applications for Accelerators with LabVIEW-RADE

    CERN Document Server

    Andreassen, O O; Charrondiere, C; Feniet, T; Kuczerowski, J; Nybo, M; Rijllart, A

    2011-01-01

    In the accelerator domain there is a need of integrating industrial devices and creating control and monitoring applications in an easy and yet structured way. The LabVIEW-RADE framework provides the method and tools to implement these requirements and also provides the essential integration of these applications into the CERN controls infrastructure. We present three examples of applications of different nature to show that the framework provides solutions at all three tiers of the control system, data access, process and supervision. The first example is a remotely controlled alignment system for the LHC collimators. The collimator alignment will need to be checked periodically. Due to limited access for personnel, the instruments are mounted on a small train. The system is composed of a PXI crate housing the instrument interfaces and a PLC for the motor control. We report on the design, development and commissioning of the system. The second application is the renovation of the PS beam spectrum analyzer wh...

  1. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Burgazzi, Luciano; Pierini, Paolo

    2007-01-01

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well

  2. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano [ENEA-Centro Ricerche ' Ezio Clementel' , Advanced Physics Technology Division, Via Martiri di Monte Sole, 4, 40129 Bologna (Italy)]. E-mail: burgazzi@bologna.enea.it; Pierini, Paolo [INFN-Sezione di Milano, Laboratorio Acceleratori e Superconduttivita Applicata, Via Fratelli Cervi 201, I-20090 Segrate (MI) (Italy)

    2007-04-15

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well.

  3. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  4. Fixed Field Alternating Gradient (FFAG)accelerators and their medical application in proton therapy

    International Nuclear Information System (INIS)

    Fourrier, J.

    2008-10-01

    Radiotherapy uses particle beams to irradiate and kill cancer tumors while sparing healthy tissues. Bragg peak shape of the proton energy loss in matter allows a ballistic improvement of the dose deposition compared with X rays. Thus, the irradiated volume can be precisely adjusted to the tumour. This thesis, in the frame of the RACCAM project, aims to the study and the design of a proton therapy installation based on a fixed field alternating gradient (FFAG) accelerator in order to build a spiral sector FFAG magnet for validation. First, we present proton therapy to define medical specifications leading to the technical specifications of a proton therapy installation. Secondly, we introduce FFAG accelerators through their past and on-going projects which are on their way around the world before developing the beam dynamic theories in the case of invariant focusing optics (scaling FFAG). We describe modelling and simulation tools developed to study the dynamics in a spiral scaling FFAG accelerator. Then we explain the spiral optic parameter search which has leaded to the construction of a magnet prototype. Finally, we describe the RACCAM project proton therapy installation starting from the injector cyclotron and ending with the extraction system. (author)

  5. Rural Public Transportation Technologies: User Needs and Applications. Final Report

    Science.gov (United States)

    1998-08-01

    The Rural Public Transportation Technologies: User Needs and Applications Study was conducted as part of the U.S. DOT's overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportunities and challenges of planning and...

  6. Rural public transportation technologies : user needs and applications : final report

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportations (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportuniti...

  7. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-01

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range of energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.

  8. Stationary battery guide: Design, application, and maintenance. Final report

    International Nuclear Information System (INIS)

    1997-11-01

    This guide has been prepared to assist a variety of users with stationary battery design, application, and maintenance. The following battery-related topics are discussed in detail: (1) fundamentals--how batteries are designed and how they work; (2) aging, degradation, and failures with an emphasis on how various maintenance tasks can prevent, detect, or repair certain degradation mechanisms; (3) applications--how batteries are designed for a specific purpose and how the battery industry has evolved; (4) sizing for different applications; (5) protection and charging; (6) periodic inspections and checks; (7) capacity discharge testing; (8) installation and replacement considerations; and (9) problems that can occur with battery systems. Since the original guide was published, new IEEE Recommended Practices related to stationary battery applications have been issued. This revision addresses those industry changes as well as some of the emerging issues related to the development of other industry documents. This guide has been prepared as a comprehensive reference source for stationary batteries and is intended to address the design, application, and maintenance needs of users. The technical discussions are at the application level. Fundamentals of battery design are covered in greater detail in this revision. More details related to internal cell materials, their operational relationship, and performance over the expected life of the battery cell are provided. This information has been included because many changes in battery cell materials, manufacturing and design processes are not always communicated to the user

  9. Computer study of isotope production for medical and industrial applications in high power accelerators

    Science.gov (United States)

    Mashnik, S. G.; Wilson, W. B.; Van Riper, K. A.

    2001-07-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes. These methods are readily applicable both to accelerator and reactor environments and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements that may be expanded to other reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures, is available on the Web at http://t2.lanl.gov/publications/.

  10. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  11. Plan for advanced microelectronics processing technology application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  12. Next-generation particle accelerators for frontline research and wide-ranging applications in India - how to realize them?

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Roy, Amit

    2015-01-01

    Several modern accelerator facilities have been set up in India for basic and applied research during the past 5 decades. Indian scientists have been able to carry out excellent accelerator-based research at these as well as international facilities. Applications of accelerators in healthcare and industry have also grown in recent years. There is a strong realization now, at all levels, that a quantum jump needs to be given to the field of accelerator science and technology in India to fulfil the aspirations of the research community to be at par internationally in our areas of strength. Applications in industry and healthcare also have to grow substantially to benefit the common man. In this article an analysis of the methodology and logic behind the evolution of our accelerator programme has been presented. More importantly, recommendations have been given for gainfully implementing a rather ambitious programme that is proposed to be taken up in the next few decades. (author)

  13. Solair heater program: solair applications study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Other attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.

  14. Research Applications for Teaching (RAFT) Project. Final Report.

    Science.gov (United States)

    Thomson, James R., Jr.; Handley, Herbert M.

    A report is given of the development and progress of the Research Applications for Teaching (RAFT) project, developed at Mississippi State University. Based upon research findings relative to effective teaching and effective schooling, five curriculum modules were prepared and implemented in instruction. In the second year of the project the…

  15. Final Report: Migration Mechanisms for Large-scale Parallel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jason Nieh

    2009-10-30

    Process migration is the ability to transfer a process from one machine to another. It is a useful facility in distributed computing environments, especially as computing devices become more pervasive and Internet access becomes more ubiquitous. The potential benefits of process migration, among others, are fault resilience by migrating processes off of faulty hosts, data access locality by migrating processes closer to the data, better system response time by migrating processes closer to users, dynamic load balancing by migrating processes to less loaded hosts, and improved service availability and administration by migrating processes before host maintenance so that applications can continue to run with minimal downtime. Although process migration provides substantial potential benefits and many approaches have been considered, achieving transparent process migration functionality has been difficult in practice. To address this problem, our work has designed, implemented, and evaluated new and powerful transparent process checkpoint-restart and migration mechanisms for desktop, server, and parallel applications that operate across heterogeneous cluster and mobile computing environments. A key aspect of this work has been to introduce lightweight operating system virtualization to provide processes with private, virtual namespaces that decouple and isolate processes from dependencies on the host operating system instance. This decoupling enables processes to be transparently checkpointed and migrated without modifying, recompiling, or relinking applications or the operating system. Building on this lightweight operating system virtualization approach, we have developed novel technologies that enable (1) coordinated, consistent checkpoint-restart and migration of multiple processes, (2) fast checkpointing of process and file system state to enable restart of multiple parallel execution environments and time travel, (3) process migration across heterogeneous

  16. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-12-10

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  17. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review

    Directory of Open Access Journals (Sweden)

    Silvia Román

    2018-01-01

    Full Text Available Active research on biomass hydrothermal carbonization (HTC continues to demonstrate its advantages over other thermochemical processes, in particular the interesting benefits that are associated with carbonaceous solid products, called hydrochar (HC. The areas of applications of HC range from biofuel to doped porous material for adsorption, energy storage, and catalysis. At the same time, intensive research has been aimed at better elucidating the process mechanisms and kinetics, and how the experimental variables (temperature, time, biomass load, feedstock composition, as well as their interactions affect the distribution between phases and their composition. This review provides an analysis of the state of the art on HTC, mainly with regard to the effect of variables on the process, the associated kinetics, and the characteristics of the solid phase (HC, as well as some of the more studied applications so far. The focus is on research made over the last five years on these topics.

  18. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, M., E-mail: marcos.gaspar@psi.c [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Pedrozzi, M. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Ferreira, L.F.R. [Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Garvey, T. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland)

    2011-05-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  19. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    International Nuclear Information System (INIS)

    Gaspar, M.; Pedrozzi, M.; Ferreira, L.F.R.; Garvey, T.

    2011-01-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  20. Advanced high brightness ion rf accelerator applications in the nuclear energy

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1991-01-01

    The capability of modern rf linear accelerators to provide intense high quality beams of protons, deuterons, or heavier ions is opening new possibilities for transmuting existing nuclear wastes, for generating electricity from readily available fuels with minimal residual wastes, for building intense neutron sources for materials research, for inertial confinement fusion using heavy ions, and for other new applications. These are briefly described, couched in a perspective of the advances in the understanding of the high brightness beams that has enabled these new programs. 32 refs., 2 figs

  1. Application of carbon fiber composite materials for the collision sections of particle accelerators

    International Nuclear Information System (INIS)

    Betzold, H.; Lippmann, G.

    1991-01-01

    Components made of carbon fiber composite material (CFCM) with Epoxy or BMI matrix were designed for various applications such as vacuum tubes, vertex chambers or support structures. The outstanding properties of CFCM which in many aspects are superior to metal structures especially qualify CFCM components for use in the collision sections of particle accelerators. A total of some 50 m of CFCM beam-tubes and of around 20 different CFCM structures and support elements of various configurations were produced following the specific needs and requirements of high energy particle physics at CERN, DESY and several other research institutes

  2. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  3. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  4. Preparation of multilayer graphene sheets and their applications for particle accelerators

    Science.gov (United States)

    Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki

    2018-05-01

    Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.

  5. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    2015-01-01

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  6. Aerodynamics in arbitrarily accelerating frames: application to high-g turns

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Fifth-generation missiles accelerate up to 100 g in turns, and higher accelerations are expected as agility increases. The auhtors have developed the theory of aerodynamics for arbitrary accelerations, and have validated modelling in a Computational...

  7. Aerodynamics in arbitrarily accelerating frames: application to high-g turns

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Fifth-generation missilies accelerate up to 100 g in turns, and higher accelerations are expected as agility increases. The authors have developed the theory of aerodynamics for arbitrary accelerations, and have validated modelling in a...

  8. A Multi Mega Watt Continuous Wave RF Window for Particle Accelerator Applications. Final Technical Report

    International Nuclear Information System (INIS)

    Vguyen-Tuong, V.

    2004-01-01

    In this analysis the proposed 10MW window design is free of multipacting on the ceramic surface for the full power range, both in the traveling wave and full reflection mode. Near 7MW and 8MW in the traveling wave mode, multipacting might show up on the outer conductor of the matching section. These multipacting barriers are however very soft and are expected to be easily eliminated by regular RF processing. The multipacting analysis can identify early design problems while it is unable to provide certainty in design success and testing of window designs is the only certain measure of freedom from multipacting

  9. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  10. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  11. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils

  12. The MOA thruster. A high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2009-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other, terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in Vienna, Austria, which has been set up to further develop and test the Alfven wave technology and its applications. (author)

  13. Development of Advanced Polymeric Reflector for CSP Applications - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Treglio, Richard, T; Boyle, Keith, A; Henderson, Hildie

    2013-03-28

    This project attempted to deposit extremely thick and dense protective barrier onto a mirror film stack with a PET substrate. The target thickness was very high for thin film products; particularly since large areas and long production lengths of film are needed to make the final product economic. The technical investigations in this project centered on maintaining a quality barrier (i.e. dense film) while evaporating alumina with a high deposition rate onto a low cost PET substrate. The project found that the proposed configuration, particularly direct ion bombardment, provides too narrow a solution space to effectively and economically produce the ASRM attempted. The initial project goals were met when depositing on a limited width and at a modest rate. However, expanding to wide deposition at aggressive deposition rates did not produce consistent film quality. Economic viability drives the process to maximize deposition rate. The current system configuration has a limiting upper rate threshold that does not appear economically viable. For future work, alternate approaches seem needed to address the challenges encountered in the scale-up phase of this project.

  14. Prototyping a large field size IORT applicator for a mobile linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rogier W J; Dries, Wim J F [Catharina-Hospital Eindhoven, PO Box 1350, 5602 ZA, Eindhoven (Netherlands); Faddegon, Bruce A [University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, CA 94115-1708 (United States)], E-mail: rogier.janssen@mac.com

    2008-04-21

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron (registered) is often complicated because of the limited field size of the primary collimator and the available applicators (max Oe100 mm). To circumvent this limitation a prototype rectangular applicator of 80 x 150 mm{sup 2} was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron (registered) treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 x 150 mm{sup 2} dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.

  15. Prototyping a large field size IORT applicator for a mobile linear accelerator

    International Nuclear Information System (INIS)

    Janssen, Rogier W J; Dries, Wim J F; Faddegon, Bruce A

    2008-01-01

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron (registered) is often complicated because of the limited field size of the primary collimator and the available applicators (max Oe100 mm). To circumvent this limitation a prototype rectangular applicator of 80 x 150 mm 2 was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron (registered) treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 x 150 mm 2 dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm

  16. Siting guidelines for utility application of wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  17. SIAM conference on inverse problems: Geophysical applications. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  18. Heat pumps for geothermal applications: availability and performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.; Means, P.

    1980-05-01

    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  19. Solid oxide fuel cells towards real life applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Solid Oxide Fuel Cells offer a clean and efficient way of producing electricity and heat from a wide selection of fuels. The project addressed three major challenges to be overcome by the technology to make commercialisation possible. (1) At the cell level, increased efficiency combined with production cost reduction has been achieved through an optimization of the manufacturing processes, b) by using alternative raw materials with a lower purchase price and c) by introducing a new generation of fuel cells with reduced loss and higher efficiency. (2) At the stack level, production cost reduction is reduced and manufacturing capacity is increased through an optimization of the stack production. (3) At the system level, development of integrated hotbox concepts for the market segments distributed generation (DG), micro combined heat and power (mCHP), and auxiliary power units (APU) have been developed. In the mCHP segment, two concepts have been developed and validated with regards to market requirements and scalability. In the APU-segment, different types of reformers have been tested and it has been proven that diesel can be reformed through appropriate reformers. Finally, operation experience and feedback has been gained by deployment of stacks in the test facility at the H.C. OErsted Power Plant (HCV). This demonstration has been carried out in collaboration between TOFC and DONG Energy Power A/S (DONG), who has participated as a subcontractor to TOFC. The demonstration has given valuable knowledge and experience with design, start-up and operation of small power units connected to the grid and future development within especially the mCHP segment will benefit from this. In this report, the project results are described for each of the work packages in the project. (Author)

  20. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  1. Benchmarking study and its application for shielding analysis of large accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Seock; Kim, Dong-hyun; Oranj, Leila Mokhtari; Oh, Joo-Hee; Lee, Arim; Jung, Nam-Suk [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    Shielding Analysis is one of subjects which are indispensable to construct large accelerator facility. Several methods, such as the Monte Carlo, discrete ordinate, and simplified calculation, have been used for this purpose. The calculation precision is overcome by increasing the trial (history) numbers. However its accuracy is still a big issue in the shielding analysis. To secure the accuracy in the Monte Carlo calculation, the benchmarking study using experimental data and the code comparison are adopted fundamentally. In this paper, the benchmarking result for electrons, protons, and heavy ions are presented as well as the proper application of the results is discussed. The benchmarking calculations, which are indispensable in the shielding analysis were performed for different particles: proton, heavy ion and electron. Four different multi-particle Monte Carlo codes, MCNPX, FLUKA, PHITS, and MARS, were examined for higher energy range equivalent to large accelerator facility. The degree of agreement between the experimental data including the SINBAD database and the calculated results were estimated in the terms of secondary neutron production and attenuation through the concrete and iron shields. The degree of discrepancy and the features of Monte Carlo codes were investigated and the application way of the benchmarking results are discussed in the view of safety margin and selecting the code for the shielding analysis. In most cases, the tested Monte Carlo codes give proper credible results except of a few limitation of each codes.

  2. Benchmarking study and its application for shielding analysis of large accelerator facilities

    International Nuclear Information System (INIS)

    Lee, Hee-Seock; Kim, Dong-hyun; Oranj, Leila Mokhtari; Oh, Joo-Hee; Lee, Arim; Jung, Nam-Suk

    2015-01-01

    Shielding Analysis is one of subjects which are indispensable to construct large accelerator facility. Several methods, such as the Monte Carlo, discrete ordinate, and simplified calculation, have been used for this purpose. The calculation precision is overcome by increasing the trial (history) numbers. However its accuracy is still a big issue in the shielding analysis. To secure the accuracy in the Monte Carlo calculation, the benchmarking study using experimental data and the code comparison are adopted fundamentally. In this paper, the benchmarking result for electrons, protons, and heavy ions are presented as well as the proper application of the results is discussed. The benchmarking calculations, which are indispensable in the shielding analysis were performed for different particles: proton, heavy ion and electron. Four different multi-particle Monte Carlo codes, MCNPX, FLUKA, PHITS, and MARS, were examined for higher energy range equivalent to large accelerator facility. The degree of agreement between the experimental data including the SINBAD database and the calculated results were estimated in the terms of secondary neutron production and attenuation through the concrete and iron shields. The degree of discrepancy and the features of Monte Carlo codes were investigated and the application way of the benchmarking results are discussed in the view of safety margin and selecting the code for the shielding analysis. In most cases, the tested Monte Carlo codes give proper credible results except of a few limitation of each codes

  3. Status of current developments and application of two accelerators at Mexico

    International Nuclear Information System (INIS)

    Lopez-Valdivia, H.; Balcazar, M.; Moreno, J.; Tavera, L.; Segovia, N.; Valdovinos-Aguilar, M.; Hernandez-Magadan, V.; Carrasco-Abrego, H.; Colin-Cruz, A.; Vazquez-Polo, G.

    2001-01-01

    Full text: The Instituto Nacional de Investigaciones Nucleares (ININ) is the national laboratory of Mexico. Amongst the irradiation facilities there are three accelerators with the following characteristics: A home made electron accelerator Pelletron type, with a beam energy from 0.15 to I.I MeV, a maximum beam intensity of 50 μA, an scan beam system with a variable frequency from 0 to 200 Hz, which provides an electron beam size of 5 cm wide and 60 cm long; a mixture of 80% Nz and 20% CO 2 is used as dielectric gas. The accelerator has several experimental facilities some of them are an X ray Bremsstrahlung converter, a waste water and sewage sludge irradiation system, and a vertical conveyor system. There is a Tandem Van de Graaff accelerator with a SNICS ion source, a variable voltage at the central terminal from I to 6 MV, an external proton beam which allow PIXE analysis of large samples under atmospheric conditions, a versatile irradiation chamber with the associated electronics to perform RBS, PIGE, ERDA, NRA, a high energy neutron beam from (d,n) and (p,n) nuclear reactions and a micro-beam line. A multipurpose Tandetron accelerator with a maximum terminal voltage of 2 MV, a SNICS and a Duoplasmatron ion sources; at present a PIXE line is fully operating and in the near future all nuclear analytical techniques will be set up. The accelerators are used for biological, material, environmental and industrial applications. The research teams are multidisciplinary and the general objective is the applications on nuclear analytical techniques to the above fields. This paper presents a general panorama of two accelerators and some applications using the electron accelerator Pelletron type. Three studies are presented which were performed with the accelerator Pelletron type: 1) radiation effects on sewage sludge and waste water samples; 2) simulation of both heavy ions and gamma radiation; and 3) basic research in polymers. 1) Test runs were performed to evaluate

  4. Characteristics of high gradient insulators for accelerator and high power flow applications

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented

  5. CONCERT A high power proton accelerator driven multi-application facility concept

    CERN Document Server

    Laclare, J L

    2000-01-01

    A new generation of High Power Proton Accelerator (HPPA) is being made available. It opens new avenues to a long series of scientific applications in fundamental and applied research, which can make use of the boosted flux of secondary particles. Presently, in Europe, several disciplines are preparing their project of dedicated facility, based on the upgraded performances of HPPAs. Given the potential synergies between these different projects, for reasons of cost effectiveness, it was considered appropriate to look into the possibility to group a certain number of these applications around a single HPPA: CONCERT project left bracket 1 right bracket . The ensuing 2-year feasibility study organized in collaboration between the European Spallation Source and the CEA just started. EURISOL left bracket 2 right bracket project and CERN participate in the steering committee.

  6. Accelerating Approximate Bayesian Computation with Quantile Regression: application to cosmological redshift distributions

    Science.gov (United States)

    Kacprzak, T.; Herbel, J.; Amara, A.; Réfrégier, A.

    2018-02-01

    Approximate Bayesian Computation (ABC) is a method to obtain a posterior distribution without a likelihood function, using simulations and a set of distance metrics. For that reason, it has recently been gaining popularity as an analysis tool in cosmology and astrophysics. Its drawback, however, is a slow convergence rate. We propose a novel method, which we call qABC, to accelerate ABC with Quantile Regression. In this method, we create a model of quantiles of distance measure as a function of input parameters. This model is trained on a small number of simulations and estimates which regions of the prior space are likely to be accepted into the posterior. Other regions are then immediately rejected. This procedure is then repeated as more simulations are available. We apply it to the practical problem of estimation of redshift distribution of cosmological samples, using forward modelling developed in previous work. The qABC method converges to nearly same posterior as the basic ABC. It uses, however, only 20% of the number of simulations compared to basic ABC, achieving a fivefold gain in execution time for our problem. For other problems the acceleration rate may vary; it depends on how close the prior is to the final posterior. We discuss possible improvements and extensions to this method.

  7. Construction of an electron accelerator of 20 KeV: application in the polymeric study

    International Nuclear Information System (INIS)

    Sandonato, G.M.

    1983-01-01

    A low energy electron accelerator (maximum energy 20 KeV) is constructed. A black and white kinescope electron gun, with a single thermionic emitter was used as electron source. The energy of electron beam can be changed continuously from 0 to 20 KeV. The intensity of the current can be changed from a minimum of 10 -12 A to a maximum of 3 μA, and can be mantained contant in time after its value has been fixed. The irradiated area can be changed from a diameter of 1 milimeter to a maximum of 6 centimeter, by focalizing or defocalizing the image of electron beam. The final pressure reached in vacuum chambers was 10 -7 Torr. During operation the surface of cathode of electron gun is damaged by ion bombardeament. The degree of damage can be checked if the cathode image is focalized and examined on a luminescent screen. The accelerator was used to study electron irradiation effects in Teflon, employing the method of the split Faraday cup. Transient charging and discharging currents were measured. The average range of electrons of the electrons and the induced conductivity were determined. (Author) [pt

  8. Current status of electron beam processing applications and accelerator technology in India

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Lavale, D.S.; Sabharwal, S.

    2001-01-01

    designed, fabricated and used for irradiating cable insulation. A specially designed 4 channel beam extraction window has been procured from Russia to draw the beam pulse from 4 separate windows. Suitable cable and tube irradiation conveyor has also been installed so that uniform dose can be delivered on all the four sides of the cable. Using this conveyor, cables of 5 mm. insulation thickness can be irradiated. The accelerator is also being used for food irradiation, especially disinfestation of wheat and spices. A variety of product irradiation conveyors were designed and used for these applications. To enable the industry to have free access to the facility, the accelerator which was initially located inside BARC complex, has been shifted to Navi Mumbai, a suburban part of Mumbai and has been put into operation in May 2001. The present facility has been designed to have increased cell and labyrinth area with entry and exit ports, accommodating continuous power roller conveyors in and out of the cell. A linear conveyor and a wire and cable transport gadget could also be placed in the cell so that any one can be brought under irradiation zone on requirement. Substantial expertise has been achieved in the operation and maintenance of the accelerator. Based on the studies, two cable companies are in the process of setting up a 3MeV, 50 kW accelerator in India for processing wire and cables. A 500 keV, 10 kW EB accelerator developed by BARC is in operation and would be used for surface curing applications. Based on the experience gained and the demand for the potential use of such industrial accelerators in India, a comprehensive programme has been chalked out by DAB to develop accelerators of various energies, for different applications. An Electron Beam Centre (EBC) has also been envisaged at Navi Mumbai comprising of 3 MeV, 50 kW and 10MeV, 10 kW accelerators, in order to meet the growing need of various Indian industries in applications such as wire and cables, heat

  9. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  10. APPRAISAL OF FINAL TAILINGS APPLICABILITY FOR PROCESSING AND PRODUCTION OF MODIFIERS OF IRON-CARBON ALLOYS

    Directory of Open Access Journals (Sweden)

    A. S. Panasugin

    2011-01-01

    Full Text Available The methodology of rating of the galvanic final tailings applicability for further processing in the interests of needs of metallurgical production of the Republic Belarus is offered.

  11. Applications in soil-structure interactions. Final report, June 1979

    International Nuclear Information System (INIS)

    Jhaveri, D.P.

    1979-01-01

    Complex phenomenon of soil-structure interaction was assessed. Relationships between the characteristics of the earthquake ground motions, the local soil and geologic conditions, and the response of the structures to the ground motions were studied. (I) The use of the explicit finite-difference method to study linear elastic soil-structure interaction is described. A linear two-dimensional study of different conditions that influence the dynamic compliance and scattering properties of foundations is presented. (II) The FLUSH computer code was used to compute the soil-structure interaction during SIMQUAKE 1B, an experimental underground blast excitation of a 1/12-scale model of a nuclear containment structure. Evaluation was performed using transient excitation, applied to a finite-difference grid. Dynamic foundation properties were studied. Results indicate that the orientation and location of the source relative to the site and the wave environment at the site may be important parameters to be considered. Differences between the computed and experimental recorded responses are indicated, and reasons for the discrepancy are suggested. (III) A case study that examined structural and ground response data tabulated and catalogued from tests at the Nevada Test Site for its applicability to the soil-structure interaction questions of interest is presented. Description, methods, and evaluation of data on soil-structure interaction from forced vibration tests are presented. A two-dimensional finite-difference grid representing a relatively rigid structure resting on uniform ground was analyzed and monitored. Fourier spectra of monitored time histories were also evaluated and are presented. Results show clear evidence of soil-structure interaction and significant agreement with theory. 128 figures, 18 tables

  12. Case study applications of venture analysis: fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mosle, R.

    1978-05-01

    In order to appraise the case for government intervention in the case of atmospheric fluid-bed combustion, Energy Resources Company and Rotan Mosle have developed a methodology containing four key elements. The first is an economic and environmental characterization of the new technology; the second, a survey of its prospective users and vendors; the third, a cost-benefit analysis of its prospective social benefits; and the fourth, an analytical model of its market penetration and the effects thereon of a basket of government incentives. Three major technical obstacles exist to continued AFBC development: feeding coal and limestone reliably to the boiler, tube erosion and corrosion, and developing boiler turndown capability. The review of the economic, environmental and technical attributes of the new technology has suggested that the preliminary venture can be selected with confidence as a commercial prospect capable of detailed evaluation from both private and public perspectives. The venture choice can therefore be considered firm: it will be the equipment required for the combustion of coal in atmospheric fluid beds as applied to industrial process steam in boilers of at least 83 Kpph capacity. The most effective demonstration of the potential of AFBC in the eyes of prospective industrial users is that provided by a project conducted by the private sector with minimal government direction. Unlike the ''experimental'' style of existing mixed public-private demonstration projects, the pressure to achieve reliability in more commercial applications would serve rapidly to reveal more clearly the potential of AFBC. The marketplace can be allowed to decide its fate thereafter. Once AFBC has been successfully demonstrated, the relative merits of AFBC and coal-FGD are best left to prospective users to evaluate.

  13. Examination of Nonchromate Conversion Coatings for Aluminum Armor From Three Final Candidates Using Accelerated Corrosion and Adhesion Test Methods

    National Research Council Canada - National Science Library

    Placzankis, Brian

    2001-01-01

    This study examines the effectiveness of three final candidate nonchromate conversion coatings on aluminum alloys 5083, 7039, and 6061 coated with standard solvent-based Chemical Agent Resistant Coating (CARC) system...

  14. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  15. Multi-Application Small Light Water Reactor Final Report

    International Nuclear Information System (INIS)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-01-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO 2 , 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration

  16. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    Science.gov (United States)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator

  17. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  18. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    Science.gov (United States)

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  19. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-06

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particular interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.

  20. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    Directory of Open Access Journals (Sweden)

    Toshiki Yoneda

    2014-12-01

    Full Text Available Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10, may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old (n = 27 received topical application of ointment containing 5% rCoQ10 (experimental group or control ointment (control group to the sockets for 3 or 8 days (n = 6–7/group. At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05. Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05. At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  1. Developing Use Cases for Evaluation of ADMS Applications to Accelerate Technology Adoption: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Veda, Santosh; Wu, Hongyu; Martin, Maurice; Baggu, Murali

    2017-05-12

    Grid modernization for the distribution systems comprise of the ability to effectively monitor and manage unplanned events while ensuring reliable operations. Integration of Distributed Energy Resources (DERs) and proliferation of autonomous smart controllers like microgrids and smart inverters in the distribution networks challenge the status quo of distribution system operations. Advanced Distribution Management System (ADMS) technologies are being increasingly deployed to manage the complexities of operating distribution systems. The ability to evaluate the ADMS applications in specific utility environments and for future scenarios will accelerate wider adoption of the ADMS and will lower the risks and costs of their implementation. This paper addresses the first step - identify and define the use cases for evaluating these applications. The applications that are selected for this discussion include Volt-VAr Optimization (VVO), Fault Location Isolation and Service Restoration (FLISR), Online Power Flow (OLPF)/Distribution System State Estimation (DSSE) and Market Participation. A technical description and general operational requirements for each of these applications is presented. The test scenarios that are most relevant to the utility challenges are also addressed.

  2. The new IBA self-shielded dynamitron accelerator for industrial applications

    International Nuclear Information System (INIS)

    Galloway, R.A.; DeNeuter, S.; Lisanti, T.F.; Cleland, M.R.

    2004-01-01

    Radiation Dynamics Inc. (RDI), currently a member of the IBA Group (Ion Beam Applications based Louvain-la-Neuve, Belgium), has been supplying accelerators since its founding in 1958. These systems supplied for both industrial processing and research application for electrons and ions have proven to be reliable and robust. Today's demands in the industrial sector have driven the design and development of a new version of our Dynamitron [reg] . This new system, envisioned to operate at electron energies up to 1.5 MeV, in many cases can be supplied with integral shielding providing a small footprint requirement for placement in a facility. In the majority of these lower energy applications this allows the appropriate material handling system to be installed inside the steel radiation enclosure. Designed to deliver beam power outputs as high as 100 kW, this new system is capable of servicing the high throughput demands of today's manufacturing lines. Still retaining the positive aspects of the industrially proven Dynamitron system, this compact system can be tailored to meet a variety of in-line or off-line processing applications

  3. The application of image acquisition and processing technology in measurement of beam profile on particle accelerator

    International Nuclear Information System (INIS)

    Nie Zhenpeng; Zheng Yong; Shen Zhiqing; Wang Shaoming

    2000-01-01

    An introduction is given to the real-time measuring method which can measure the intensity and profile of the beam by a scintillator screen on HIRFL (Heavy Ion Research Facility of Lanzhou). Hardware structure is described briefly, methods of the software design are mainly presented. The system can make a dynamic analysis on the faculae image and has many advantages, such as good reliability, high precision, intuitional measurement, friendly interface of the application software etc. Finally some results of measurement are given

  4. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  5. Establishment of an Advanced Accelerator Applications University Participation Program at the University of Nevada, Las Vegas

    International Nuclear Information System (INIS)

    Hechanova, A.E.; Cerefice, G.S.

    2002-01-01

    The University of Nevada, Las Vegas (UNLV) established an Advanced Accelerator Applications (AAA) University Participation Program in March 2001 to develop a world-class research program for accelerator-driven transmutation technology while building core competencies and facilities to promote the University's strategic growth goals. The goal of this program is to involve UNLV students in research on the cutting edge of science and engineering as an integrated part of the national program to develop this emerging technology. This program augments UNLV's research capabilities and infrastructure, while establishing national and international research collaborations with national laboratories, industrial partners, and other universities, increasing the UNL V research community's presence in the global scientific community. The UNL V Program is closely integrated into the national project led by Los Alamos and Argonne National Laboratories. The primary mechanism to insure this degree of integration is the teaming of national laboratory scientists with UNL V faculty and students on student research proposals. The Program was implemented under an aggressive schedule with faculty response that surpassed expectations. A total of 12 multi-tasked projects that involve 21 graduate students and 13 faculty members began under first year funding. Other major accomplishments include establishment of an administrative structure implementing all the components of the Program and establishment of a communications network between national laboratory project leaders and UNL V faculty. (authors)

  6. The Pelletron Accelerator of IFUNAM and its possible applications to the dosimetry

    International Nuclear Information System (INIS)

    Rickards, J.

    1999-01-01

    The Pelletron Accelerator of positive ions 3 MV in the Institute of Physics of UNAM has characteristics that make it useful for the application to the radiations dosimetry. It is ideal for studying the detailed mechanisms of the radiation interaction with matter, therefore it can be applied to know the performance of dosemeters. With this device can be accelerated almost any type of ion, including He, but excepting the others noble gases. The energies of the disposable ions are in the interval 1 MeV until several MeV, depending of the state of charge selected, the energy can be varied continuously with accuracy of some KeV. It can be achieved streams from 10 4 until 10 6 ions/cm 2 , allowing studies of individual events (tracks) or of collective processes. the beam size can be varying from a diameter 1 mm until 5 cm. It is also took in account with detectors and other techniques associated that can be combined for supporting studies, as surface barrier detectors and of other types, as well as the RBS, PIXE, RN techniques and channeling. (Author)

  7. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    International Nuclear Information System (INIS)

    Neau, E.L.

    1994-01-01

    Short-pulse accelerator technology developed during the early 1960's through the late 1980's is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm 2 . Similar high average power technology is being used at ≤ 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100's of cm 2

  8. The application of front tracking to the simulation of shock refractions and shock accelerated interface mixing

    International Nuclear Information System (INIS)

    Sharp, D.H.; Grove, J.W.; Yang, Y.; Boston, B.; Holmes, R.; Zhang, Q.; Glimm, J.

    1993-01-01

    The mixing behavior of two or more fluids plays an important role in a number of physical processes and technological applications. The authors consider two basic types of mechanical (i.e., non-diffusive) fluid mixing. If a heavy fluid is suspended above a lighter fluid in the presence of a gravitational field, small perturbations at the fluid interface will grow. This process is known as the Rayleigh-Taylor instability. One can visualize this instability in terms of bubbles of the light fluid rising into the heavy fluid, and fingers (spikes) of the heavy fluid falling into the light fluid. A similar process, called the Richtmyer-Meshkov instability occurs when an interface is accelerated by a shock wave. These instabilities have several common features. Indeed, Richtmyer's approach to understanding the shock induced instability was to view that process as resulting from an acceleration of the two fluids by a strong gravitational field acting for a short time. Here, the authors report new results on the Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Highlights include calculations of Richtmyer-Meshkov instabilities in curved geometries without grid orientation effects, improved agreement between computations and experiments in the case of Richtmyer-Meshkov instabilities at a plane interface, and a demonstration of an increase in the Rayleigh-Taylor mixing layer growth rate with increasing compressibility, along with a loss of universality of this growth rate. The principal computational tool used in obtaining these results was a code based on the front tracking method

  9. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    International Nuclear Information System (INIS)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-01-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant

  10. Low - energy Accelerator - based Nuclear Biotechnology for Applications in Agriculture and Biomedicine

    International Nuclear Information System (INIS)

    Yu, L.D.; Anuntalabhochai, S.; Phanchaisri, B.; Wongkham, W.; Vilaithong, T.

    2014-01-01

    A novel biotechnology based on low-energy-accelerator nuclear technology has recently been rapidly developed internationally. Low-energy ion beams with energy in a range of 10-100 keV generated from ion accelerators bombard plant seeds or tissues for mutation induction and plant or mammalian cells for gene transfection induction to benefit to agriculture and biomedicine. In Thailand, centered at Chiang Mai University, this so-called low-energy ion beam biotechnology has been explored and developed for more than a decade. Bioengineering-specialized ion implanters have been constructed and utilized for both research and applications. Certain Thai local rice mutants have been induced and achieved with improved characters of dwarf, photo-insensitivity, enriched nutrients and higher yields. Mutants of other plants such as flowers, vegetables and microorganisms have also been induced with improved properties. DNA transfer into bacterial and mammalian cells has been induced by ion beams. Particularly, ion-beam-induced gene transfection into human cells succeeded to initiate a new non-viral gene transfection method for potential gene therapy.

  11. Slow waves in microchannel metal waveguides and application to particle acceleration

    Directory of Open Access Journals (Sweden)

    L. C. Steinhauer

    2003-06-01

    Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6  mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  12. Slow waves in microchannel metal waveguides and application to particle acceleration

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  13. Application of time release electron donors and electron acceptors for accelerated bioremediation

    International Nuclear Information System (INIS)

    Joksimovich, V.; Koenigsberg, S.

    2002-01-01

    Currently, there are limited options for cost effective approaches to soil and groundwater contamination. One technology that has proven its potential involves the use of time release electron acceptors to accelerate the natural bioattenuation of aerobically degradable compounds and time release electron donors to accelerate the natural bioattenuation of anaerobic compounds. This technology enjoys its reputations as a sensible strategy for engineering accelerated bioattenuation, because it delivers results while 1) limiting or eliminating design, capital and management costs and 2) allowing for the engineering of a low-impact application and a subsequently invisible remediation process. Oxygen Release Compound (ORC ) is proprietary formulation of intercalated magnesium peroxide that releases oxygen slowly, for about a year, and facilitates the aerobic degradation of a range of environmental contaminants including petroleum hydrocarbons, certain chlorinated hydrocarbons, ether oxygenates and nitroaromatics. The history of ORC's introduction and acceptance represents a model for the evolution of an innovative technology. This statement comes by virtue of the fact that since 1994 ORC has been used on over 7000 sites worldwide and has been the subject of an extensive body of literature. Hydrogen Release Compound (HRC) is also a proprietary polylactate ester that is food grade and, upon being deposited into the aquifer, is slowly hydrolyzed to release lactic acid and other organic acid derivatives for about one to two years. The organic acids are fermented to hydrogen, which in turn donates electrons that drive reductive bioattenuation processes. This is primarily directed at a wide range of chlorinated hydrocarbons, but can be applied to the remediation of metals by redox induced precipitation. HRC has now been used on over 220 sites, which we believe make it the most widely used electron donor for accelerating bioattenuation. ORC and HRC can be configured as a

  14. 76 FR 57646 - Final Withdrawal of Certain Federal Aquatic Life Water Quality Criteria Applicable to Wisconsin

    Science.gov (United States)

    2011-09-16

    ... Final Withdrawal of Certain Federal Aquatic Life Water Quality Criteria Applicable to Wisconsin AGENCY... aquatic life water quality criteria applicable to Wisconsin? C. Why is the EPA not withdrawing Wisconsin's chronic endrin aquatic life use criterion for waters designated as Warm Water Sportfish and Warm Water...

  15. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  16. High power coupler issues in normal conducting and superconducting accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-02-01

    The ceramic material (Al{sub 2}O{sub 3}) commonly used for the klystron output coupler in normal conducting, and for an input coupler to superconducting cavities is one of the most troublesome parts in accelerator applications. But the performance can be improved very much by starting with high purity (>99.9%) alumina powder of controlled grain-size (0.1-0.5-{mu}m), and reducing the magnesium (Mg) sintering-binder to lower the dielectric loss to the order of 10{sup -4} at S-band frequencies. It has been confirmed that the new ceramic can stand a peak S-band frequency rf power of up to 300 MW and 2.5 {mu}sec pulse width. (author)

  17. Preliminary research results for generation and application of high power ion beams on FLASh II accelerator

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; He Xiaoping; Sun Jianfeng; Peng Jianchang; Tang Junping; Ren Shuqing; Ouyang Xiaoping; Zhang Guoguang; Huang Jianjun; Yang Li; Wang Haiyang; Li Jingya; Li Hongyu

    2004-01-01

    Preliminary results for the generation and application of the high power ion beam (HPIB) on the FLASH II accelerator are reported. The structure and principle of the pinch reflex ion beam diode are introduced. The equation of parapotential flow is corrected for the reduction of diode A-K gap due to the motion of cathode and anode plasma. The HPIB peak current of ∼160 kA is obtained with a peak energy of ∼500 keV. Experimental investigations of generating 6-7 MeV quasi-monoenergetic pulsed γ-rays with high power ion (proton) beams striking 19 F target are presented. In addition, the results of the thermal-mechanical effects on the material irradiated with HPIB, which are applied to the simulation of 1 keV black body radiation x-rays, are also discussed

  18. Application of shielding calculation of high-energy linear accelerators based on the NCRP-151 protocol

    International Nuclear Information System (INIS)

    Torres Pozas, S.; Monja Rey, P. de la; Sanchez Carrasca, M.; Yanez Lopez, D.; Macias Verde, D.; Martin Oliva, R.

    2011-01-01

    In recent years, the progress experienced in cancer treatment with ionizing radiation can deliver higher doses to smaller volumes and better shaped, making it necessary to take into account new aspects in the calculation of structural barriers. Furthermore, given that forecasts suggest that in the near future will install a large number of accelerators, or existing ones modified, we believe a useful tool to estimate the thickness of the structural barriers of treatment rooms. The shielding calculation methods are based on standard DIN 6847-2 and the recommendations given by the NCRP 151. In our experience we found only estimates originated from the DIN. Therefore, we considered interesting to develop an application that incorporates the formulation suggested by the NCRP, together with previous work based on the rules DIN allow us to establish a comparison between the results of both methods. (Author)

  19. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  20. Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry

    Science.gov (United States)

    2010-01-01

    Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals. PMID:20163100

  1. Radio frequency linear accelerators for NDT applications: Basic overview of RF linacs

    International Nuclear Information System (INIS)

    Hansen, H.J.

    1998-01-01

    High energy X-ray radiography can be an important part of a quality control program. In this article the author will present an overview of the technology found in a typical high energy X-ray source, the radio frequency (RF) linear accelerator. In NDT, linacs are used primarily for the inspection of thick sections of materials. Linacs are also used in applications such as high energy computed tomography of specimens greater than 1 m thick and cargo container inspection. Recent developments in reliable portable linacs are opening up other applications such as field inspection of pipelines, ships, bridges, and other civil infrastructure. The replacement of isotopes (such as Co-60) by the linac is an area for growth in the future. The shorter exposure times, improved image capabilities, and greatly reduced regulatory requirements of the linac make a persuasive argument for the replacement of isotopes with a portable linac. The linacs discussed here are those with X-ray energies from 1 to 20 MeV intended for use in NDT applications. The discussion will be in very broad terms; it will be impossible to discuss every variation in linac design. In addition, some topics have been necessarily simplified to increase the comprehensibility for a wider audience

  2. Performance characteristics and typical industrial applications of Selfshield electron accelerators (<300kV)

    International Nuclear Information System (INIS)

    Aaronson, J.N.; Nablo, S.V.

    1985-01-01

    Selfshielded electron accelerators have been successfully used in industry for more than ten years. One of the important advantages of these machines is their compactness for easy adaptation to conventional coating and product finishing machinery. It is equally important that these machines qualify for use under 'unrestricted' conditions as specified by OSHA. The shielding and product handling configurations which make this unrestricted designation possible for operating voltages under 300 kV are discussed. Thin film dosimetry techniques used for the determination of the machine performance parameters are discussed along with the rotary scanner techniques employed for the dose rate studies which are important in the application of the processors. Paper and wood coatings, which are important industrial applications involving electron initiated polymerization, are reviewed. The sterilization and disinfestation applications are also discussed. The increasing concern of these industries for the more effective use of energy and for compliance with more stringent pollution regulations, coupled with the novel processes this energy source makes possible, assure a bright future for this developing technology. (orig.)

  3. Current status of electron beam processing applications and the latest accelerator technologies in Japan

    International Nuclear Information System (INIS)

    Hoshi, Yasuhisa

    1998-01-01

    Electron Beam (EB) processing has been increasing in popularity as a cross-linking process since the beginning of its industrial use. Examples are heat resistance improvement of electric wires, high quality foamed polyethylene (PE) and polypropylene (PP), automotive tire manufacturing and heat shrinkable products. EB is also used in the tire manufacturing process as a pre-vulcanisation of rubber sheet before forming process. Cross-linking of electric wire insulators is the most popular industrial application of electron beam accelerators in Japan. EB cross-linked wires are widely used in electrical appliances and automotive wire harnesses. Curing of inks or coating is a promising application of low energy EB. EB cure is often compared with Ultra-Violet (UV) curing. Both has a common advantage compared with a conventional heat curing process such as no solvent requirement. A typical advantage is that no initiators are required to start curing process. EB can also be used to remove SO 2 and NO x from coal flue gas. This paper reports some of these applications and discusses the latest equipment design. (author)

  4. Accelerating Corporate Research in the Development, Application and Deployment of Human Language Technologies

    National Research Council Canada - National Science Library

    Ferrucci, David; Lally, Adam

    2003-01-01

    ... accelerate scientific advance. Furthermore, the ability to reuse and combine results through a common architecture and a robust software framework would accelerate the transfer of research results in HLT into IBM's product platforms...

  5. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    International Nuclear Information System (INIS)

    2010-01-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  6. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Bambade, P; Amann, J; Angal-Kalinin, D; Apsimon, R; Araki, S; Aryshev, A; Bai, S; Bellomo, P; Bett, D; Blair, G; Bolzon, B; Boogert, S; Boorman, G; Burrows, P N; Christian, G; Coe, P; Constance, B; Delahaye, J P; Deacon, L; Elsen, E; Faus-Golfe, A; Fukuda, M; Gao, J; Geffroy, N; Gianfelice-Wendt, E; Guler, H; Hayano, H; Heo, A Y; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jeremie, A; Jones, J; Kamiya, Y; Karataev, P; Kim, E S; Kim, H S; Kim, S H; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lyapin, A; Masuzawa, M; McCormick, D; Molloy, S; Naito, T; Nakamura, T; Nelson, J; Okamoto, D; Okugi, T; Oroku, M; Park, Y J; Parker, B; Paterson, E; Perry, C; Pivi, M; Raubenheimer, T; Renier, Y; Resta-Lopez, J; Rimbault, C; Ross, M; Sanuki, T; Scarfe, A; Schulte, D; Seryi, A; Spencer, C; Suehara, T; Sugahara, R; Swinson, C; Takahashi, T; Tauchi, T; Terunuma, N; Tomas, R; Urakawa, J; Urner, D; Verderi, M; Wang, M H; Warden, M; Wendt, M; White, G; Wittmer, W; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, Y; Yoda, H; Yokoya, K; Zhou, F; Zimmermann, F; 10.1103/PhysRevSTAB.13.042801

    2010-01-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  7. Application of Electron Accelerators in Conjunction with Microwave Sources in Medical Studies

    International Nuclear Information System (INIS)

    Martin, D.; Craciun, G.; Manaila, E.; Ighigeanu, D.; Margaritescu, I.; Chirita, D.; Neagu, M.

    2009-01-01

    Electron beams (EB) are presently used, in addition to the routine conventional radiotherapy techniques, for cancer specialized therapies (intensity modulated radiation therapy [1] and total body electron irradiation [2]), the irradiation of blood and blood components, vaccine preparation, and other. Microwaves (MW) are presently used for therapeutic applications in cardiology, urology, surgery, ophthalmology, cancer therapy, and others, and for diagnostic applications such as cancer detection, organ imaging, and more [3]. The reported data show that low dose-all body irradiation with ionizing as well as with nonionizing irradiation may enhance the tumoricidal effects of radiation or chemotherapy, overcome acquired drug resistance and can stimulate certain components of the immune system that may aid in destroying cancer cells. These data suggested that application of low-dose total body EB + MW irradiation in conjunction with chemotherapy could contribute by novel effects to the cancer therapies. In view of this argument two specifically designed radiation exposure devices (REDs) were carried out for separate, successive and simultaneous irradiation with EB of 6.23 MeV and MW of 2.45 GHz in vivo (RED-vivo) and in vitro (RED-vitro) for the following medical studies: 1) The effects of low-dose EB + MW total body irradiation without/with drugs administration on the C57 BL/6 mice bearing malignant melanoma (MM); 2) The effects of separate and simultaneous MW and EB irradiation on MM cells culture without/with drugs incubation and on human blood components (proteins and cells) irradiated in samples of integral blood from healthy donors and from donors with MM. Both REDs consist of the following units: 1) An accelerated EB source: ALIN-10 electron linear accelerator of 6.23 MeV and adjustable absorbed dose rate from 0.002 Gy s-1 up to 70 Gy s-1 (built in the NILPRP, Bucharest, Romania); 2) A special designed exposure chamber that permits inside separate, successive or

  8. Final environmental impact statement. Proton--Proton Storage Accelerator Facility (ISABELLE), Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1978-08-01

    An Environmental Impact Statement for a proposed research facility (ISABELLE) to be built at Brookhaven National Laboratory (BNL) is presented. It was prepared by the Department of Energy (DOE) following guidelines issued for such analyses. In keeping with DOE policy, this statement presents a concise and issues-oriented analysis of the significant environmental effects associated with the proposed action. ISABELLE is a proposed physics research facility where beams of protons collide providing opportunities to study high energy interactions. The facility would provide two interlaced storage ring proton accelerators, each with an energy up to 400 GeV intersecting in six experimental areas. The rings are contained in a tunnel with a circumference of 3.8 km (2.3 mi). The facility will occupy 250 ha (625 acres) in the NW corner of the existing BNL site. A draft Environmental Impact Statement for this proposed facility was issued for public review and comment by DOE on February 21, 1978. The principal areas of concern expressed were in the areas of radiological impacts and preservation of cultural values. After consideration of these comments, appropriate actions were taken and the text of the statement has been amended to reflect the comments. The text was annotated to indicate the origin of the comment. The Appendices contain a glossary of terms and listings of metric prefixes and conversions and symbols and abbreviations

  9. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    International Nuclear Information System (INIS)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  10. Final report of the IAEA advisory group meeting on accelerator-based nuclear analytical techniques for characterization and source identification of aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The field of aerosol characterization and source identification covers a wide range of scientific and technical activities in many institutions, in both developed and developing countries. This field includes research and applications on urban air pollution, source apportionment of suspended particulate matter, radioactive aerosol particles, organic compounds carried on particulate matter, elemental characterization of particles, and other areas. The subject of this AGM focused on the use of accelerator-based nuclear analytical techniques for determination of elemental composition of particles (by either bulk or single particle analysis) and the use of accumulated knowledge for source identification.

  11. Final report of the IAEA advisory group meeting on accelerator-based nuclear analytical techniques for characterization and source identification of aerosol particles

    International Nuclear Information System (INIS)

    1995-01-01

    The field of aerosol characterization and source identification covers a wide range of scientific and technical activities in many institutions, in both developed and developing countries. This field includes research and applications on urban air pollution, source apportionment of suspended particulate matter, radioactive aerosol particles, organic compounds carried on particulate matter, elemental characterization of particles, and other areas. The subject of this AGM focused on the use of accelerator-based nuclear analytical techniques for determination of elemental composition of particles (by either bulk or single particle analysis) and the use of accumulated knowledge for source identification

  12. Claims Procedure for Plans Providing Disability Benefits; 90-Day Delay of Applicability Date. Final rule; delay of applicability

    Science.gov (United States)

    2017-11-29

    This document delays for ninety (90) days--through April 1, 2018--the applicability of a final rule amending the claims procedure requirements applicable to ERISA-covered employee benefit plans that provide disability benefits (Final Rule). The Final Rule was published in the Federal Register on December 19, 2016, became effective on January 18, 2017, and was scheduled to become applicable on January 1, 2018. The delay announced in this document is necessary to enable the Department of Labor to carefully consider comments and data as part of its effort, pursuant to Executive Order 13777, to examine regulatory alternatives that meet its objectives of ensuring the full and fair review of disability benefit claims while not imposing unnecessary costs and adverse consequences.

  13. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    2010-04-01

    Full Text Available ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  14. Advanced accelerator test facility-Final report for the period 9/1/2010 - 8/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay [Yale Univ., New Haven, CT (United States)

    2014-10-27

    This final report summarizes results achieved in the Beam Physics Laboratory at Yale University during the period 9/1/2010 – 8/31//2013, under DoE grant DE-FG02-07 ER 41504. During the period covered by this report, notable progress in technical consolidation of facilities in the Yale Beam Physics Laboratory has occurred; and theory, design, and fabrication for future experiments have been carried out. In the period covered by this grant, 29 scientific publications based on this work and related topics have appeared in the archival literature. Titles, authors, and citations are listed in Section V of this report.

  15. Alanine-ESR dosimeter: application for dosimetry in industrial electron beam accelerator

    International Nuclear Information System (INIS)

    Murali, S.; Venkataramani, R.; Pushparaja; Sarma, K.S.S.; Natarajan, V.; Sastry, M.D.

    2000-01-01

    The feasibility of DL-α-alanine, as ESR dosimeter in powder form, was examined under the conditions of pulse electron accelerator used as an industrial irradiator. The investigations were carried out to examine the following aspects: (i) Alanine-ESR dose response in irradiator characteristics viz. various beam energies, beam currents, product conveying speeds, (ii) linearity of dose response of irradiated alanine signal for suitable range, (iii) dose uniformity of the irradiated samples and (iv) depth dose measurements using alanine powder dosimeters sandwiched between polyethylene layers. Experiments were carried out by varying some of the irradiator parameters at mobile mode of the conveyor (product under movement) and also at stationary mode for different EB energies and pulse rates. For estimation of EB dose, signal intensities of gamma irradiated DL--alanine powder calibrated with Fricke dosimetry have been used. Feasibility of application of alanine ESR dosimeter for low dose measurement down to 350 Gy has been experimentally established. The present studies show that under variable operating conditions of irradiator, alanine ESR dosimetry is suitable for dosimetric applications from low dose (350 Gy) to high dose (53 kgy). (author)

  16. Finding an acceleration function for calculating the reliability of redundant systems - Application to common mode failures

    International Nuclear Information System (INIS)

    Gonnot, R.

    1975-01-01

    While it may be reasonable to assume that the reliability of a system - the design of which is perfectly known - can be evaluated, it seems less easy to be sure that overall reliability is correctly estimated in the case of multiple redundancies arranged in sequence. Framatome is trying to develop a method of evaluating overall reliability correctly for its installations. For example, the protection systems in its power stations considered as a whole are such that several scram signals may be relayed in sequence when an incident occurs. These signals all involve the same components for a given type of action, but the components themselves are in fact subject to different stresses and constraints, which tend to reduce their reliability. Whatever the sequence in which these signals are transmitted (in a fast-developing accident, for example), it is possible to evaluate the actual reliability of a given system (or component) for different constraints, as the latter are generally obtained via the transient codes. By applying the so-called ''equal probability'' hypothesis one can estimate a reliability acceleration function taking into account the constraints imposed. This function is linear for the principal failure probability distribution laws. By generalizing such a method one can: (1) Perform failure calculations for redundant systems (or components) in a more general way than is possible with event trees, since one of the main parameters is the constraint exercised on that system (or component); (2) Determine failure rates of components on the basis of accelerated tests (up to complete failure of the component) which are quicker than the normal long-term tests (statistical results of operation); (3) Evaluate the multiplication factor for the reliability of a system or component in the case of common mode failures. The author presents the mathematical tools required for such a method and described their application in the cases mentioned above

  17. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  18. Development and applications of a multi-purpose digital controller with a System-on-Chip FPGA for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, Yoshinori, E-mail: kurimoto@post.j-parc.jp [High Energy Accelerator Research Organization (KEK), Ibaraki 319-1195 (Japan); Nakamura, Keigo [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2016-12-21

    J-PARC Main Ring (MR) is a high intensity proton synchrotron which accelerates protons from 3 GeV to 30 GeV. It has operated at a beam intensity of 390 kW and an upgrade toward the megawatt rating is scheduled. For higher beam intensity, some of the accelerator components require more intelligent and complicated functions. To consolidate such functions among various components, we developed multi-purpose digital boards using a System-on-Chip Field-Programmable Gated Array (SoC FPGA). In this paper, we describe the details of our developed boards as well as their possible applications. As an application of the boards, we have successfully performed the measurement of the betatron amplitude function during beam acceleration in J-PARC MR. The experimental setup and results of the measurement are also described in detail.

  19. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  20. Technical support document for land application of sewage sludge. Volume 1. Final report

    International Nuclear Information System (INIS)

    Jones, A.; Beyer, L.; Rookwood, M.; Pacenka, J.; Bergin, J.

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the land application of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in land applied sewage sludge. The management practices associated with land application are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through land application are discussed

  1. Superradiant terahertz sources and their applications in accelerator diagnostics and ultra-fast science

    Energy Technology Data Exchange (ETDEWEB)

    Green, Bertram

    2017-04-28

    The terahertz (THz) frequency range lies between the frequency range of radio and infrared. The exact limits are not well defined and depend on the scientific community. The most recent ''2017 Terahertz Science and Technology Roadmap'' sets the THz frequency range to between 0.1 and 30 THz. The development of suitable detectors, detection techniques, and sources for this frequency range has seen tremendous progress over the past decade. The arrival of commercial femtosecond (fs) laser systems has enabled new, background-free THz time domain spectroscopy, and both laser-driven and accelerator-driven THz sources are currently producing pulse energies in the μJ, and even mJ, range. This thesis describes the characterization of a new class of accelerator-based light sources, which open up opportunities to provide a unique combination of high pulse energies and high repetition rates. The foreseen applications of these types of sources, coined ''superradiant THz sources'', lie in the area of time-resolved (nonlinear) spectroscopy. One of the first results of this thesis is the observation that the THz pulses from the prototype facility TELBE exhibit large pulse-to-pulse fluctuations in arrivaltime and intensity. These types of instabilities render the intended applications of TELBE for real-world nonlinear THz spectroscopy experiments impossible. As part of this thesis a pulse resolved data acquisition and analysis scheme has therefore been devised which enables the correction of these instabilities and now allows performance of time-resolved THz spectroscopy measurements with sub-30 femtosecond (fs) (FHWM) time resolution with excellent dynamic range up to 106. The thesis is organized as follows: the first chapter introduces the fundamental principles and techniques utilized in this work. The second chapter presents the results, starting with the diagnostic developments, followed by a thorough characterization of the THz source

  2. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications

    Science.gov (United States)

    Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu

    2018-03-01

    Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.

  3. Neutron activation analysis with a deuteron accelerator. Application to the determination of copper in a Cu-Sn mixture

    International Nuclear Information System (INIS)

    Kodia, A.A.

    1976-01-01

    Neutron activation analysis allows a rapid determination of trace elements. It has many applications in vegetal biology, agronomy, animal biology, medicine and industry. This report presents the different devices used (deuteron accelerator, 3 H-Ti/Zr target, NaI(Tl) scintillation counter, Li-drifted Ge detector), the theory of the method and an application to the determination of copper in a copper-mixture [fr

  4. The peripheral dose outside the applicator in electron beams of Oncor linear accelerator

    International Nuclear Information System (INIS)

    Iktueren, B.; Bilge, H.; Karacam, S.; Atkovar, G.

    2012-01-01

    In this study, the peripheral dose outside the applicator was measured using electron beams produced by an Oncor linear accelerator and compared with the data of the treatment planning system (TPS). The dose profiles have been measured, by using a water-equivalent slab phantom and a parallel plate ionisation chamber, at 6, 9 and 15 MeV energy levels in 5 x 5, 10 x 10, 15 x 15, 20 x 20 and 25 x 25 cm 2 applicators and at 0, 10 and 20 deg. gantry angles; and at the surface, 0.2, 0.5, 1 cm and d max depth for each electron energy level. The peripheral dose has been determined with these profiles by normalisation at the field central beam axis (CAX). It has been noticed that, using a 10 x 10 cm 2 applicator, there is a 1.4 % dose peak on the surface 6 cm away from the field edge where the field CAX is at 100 %, at a gantry angle of 0 deg. with 6 and 9 MeV electron beams; also for the 15 MeV electron beam there is a 2.3 % dose peak. It has been discovered that the peak dose approaches a minimum depending on the increase in depth and reaches 2.5-4 % depending on the growth of the field dimension. At gantry angles of 10 and 20 deg., 6 and 9 MeV electron beams created small peaks and a maximum dose could be reached at 0.2 and 1 cm depth. Electron beam of 15 MeV did not peak at depths of 0.2 and 1 cm at gantry angles of 10 and 20 deg.. The measured peripheral dose outside the applicators has been compared with the data from a TPS's computer using the Pencil Beam algorithm; it has been stated that dose calculations can be made as far as 3 cm outside the field. In conclusion, the TPS is not sufficient to measure the peripheral dose outside the applicators, and this dose can only be determined by direct measurement. (authors)

  5. The peripheral dose outside the applicator in electron beams of Oncor linear accelerator.

    Science.gov (United States)

    Iktueren, Basak; Bilge, Hatice; Karacam, Songul; Atkovar, Gulyuz

    2012-06-01

    In this study, the peripheral dose outside the applicator was measured using electron beams produced by an Oncor linear accelerator and compared with the data of the treatment planning system (TPS). The dose profiles have been measured, by using a water-equivalent slab phantom and a parallel plate ionisation chamber, at 6, 9 and 15 MeV energy levels in 5×5, 10×10, 15×15, 20×20 and 25×25 cm(2) applicators and at 0, 10 and 20° gantry angles; and at the surface, 0.2, 0.5, 1 cm and d(max) depth for each electron energy level. The peripheral dose has been determined with these profiles by normalisation at the field central beam axis (CAX). It has been noticed that, using a 10×10 cm(2) applicator, there is a 1.4 % dose peak on the surface 6 cm away from the field edge where the field CAX is at 100 %, at a gantry angle of 0° with 6 and 9 MeV electron beams; also for the 15 MeV electron beam there is a 2.3 % dose peak. It has been discovered that the peak dose approaches a minimum depending on the increase in depth and reaches 2.5-4 % depending on the growth of the field dimension. At gantry angles of 10 and 20°, 6 and 9 MeV electron beams created small peaks and a maximum dose could be reached at 0.2 and 1 cm depth. Electron beam of 15 MeV did not peak at depths of 0.2 and 1 cm at gantry angles of 10 and 20°. The measured peripheral dose outside the applicators has been compared with the data from a TPS's computer using the Pencil Beam algorithm; it has been stated that dose calculations can be made as far as 3 cm outside the field. In conclusion, the TPS is not sufficient to measure the peripheral dose outside the applicators, and this dose can only be determined by direct measurement.

  6. Studies of the mirrortron ion accelerator concept and its application to heavy-ion drivers

    International Nuclear Information System (INIS)

    Post, R.F.; Schwager, L.A.; Dougless, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L.

    1991-01-01

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10 10 to 10 11 cm -3 ) ''hot electron'' plasma is confined by a long solenoidal magnetic field capped by ''mirrors''. Acceleration of prebunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the Laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs

  7. Applications for approval to market a new drug; complete response letter; amendments to unapproved applications. Final rule.

    Science.gov (United States)

    2008-07-10

    The Food and Drug Administration (FDA) is amending its regulations on new drug applications (NDAs) and abbreviated new drug applications (ANDAs) for approval to market new drugs and generic drugs (drugs for which approval is sought in an ANDA). The final rule discontinues FDA's use of approvable letters and not approvable letters when taking action on marketing applications. Instead, we will send applicants a complete response letter to indicate that the review cycle for an application is complete and that the application is not ready for approval. We are also revising the regulations on extending the review cycle due to the submission of an amendment to an unapproved application and starting a new review cycle after the resubmission of an application following receipt of a complete response letter. In addition, we are adding to the regulations on biologics license applications (BLAs) provisions on the issuance of complete response letters to BLA applicants. We are taking these actions to implement the user fee performance goals referenced in the Prescription Drug User Fee Amendments of 2002 (PDUFA III) that address procedures and establish target timeframes for reviewing human drug applications.

  8. 77 FR 50153 - Special Purpose Permit Application; Hawaii-Based Shallow-Set Longline Fishery; Final...

    Science.gov (United States)

    2012-08-20

    ...-FF01M01000] Special Purpose Permit Application; Hawaii-Based Shallow-Set Longline Fishery; Final... of the Hawaii-based shallow-set longline fishery, which targets swordfish. After evaluating several... take of seabirds in the shallow-set longline fishery based in Hawaii. The analysis of alternatives is...

  9. Systemic Analysis, Mapping, Modeling, and Simulation of the Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Guan, Yue; Laidler, James J.; Morman, James A.

    2002-01-01

    Advanced chemical separations methods envisioned for use in the Department of Energy Advanced Accelerator Applications (AAA) program have been studied using the Systemic Analysis, Mapping, Modeling, and Simulation (SAMMS) method. This integrated and systematic method considers all aspects of the studied process as one dynamic and inter-dependent system. This particular study focuses on two subjects: the chemical separation processes for treating spent nuclear fuel, and the associated non-proliferation implications of such processing. Two levels of chemical separation models are developed: level 1 models treat the chemical process stages by groups; and level 2 models depict the details of each process stage. Models to estimate the proliferation risks based on proliferation barrier assessment are also developed. This paper describes the research conducted for the single-stratum design in the AAA program. Further research conducted for the multi-strata designs will be presented later. The method and models described in this paper can help in the design of optimized processes that fulfill the chemical separation process specifications and non-proliferation requirements. (authors)

  10. Radiocarbon dating by accelerator mass spectrometry: some recent results and applications

    International Nuclear Information System (INIS)

    Hedges, R.E.M.

    1987-01-01

    14 C differs from other nuclides measured by accelerator mass spectrometry (AMS) in that an extensive database of dates already exists. AMS dates should therefore have comparable accuracy, and the measurement of isotopic ratios to better than 1%, which was an important technical goal, has been reached. The main advantage of being able to date samples 1000 times smaller than previously lies in the extra selectivity that can be employed. This is reflected in the results and applications. Selection can apply at several levels; from objects that formerly contained too little carbon, to the choice of archaeological material, to the extraction of specific chemical compounds from a complex environmental sample. This is particularly useful in removing uncertainty regarding the validity of a date, since a given sample may comprise carbon atoms from different sources each with their own 14 C 'age'. Examples from archaeological and environmental research illustrating these points are given. 14 C dating by AMS differs from conventional radiocarbon dating by having the potential to measure much lower levels of 14 C, and therefore should double the time span of the method. This potential has not yet been realized because of sample contamination effects, and work in progress to reduce these is described. (author)

  11. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    International Nuclear Information System (INIS)

    Park, J.J.; Buksa, J.J.

    1994-01-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed

  12. Mind Your Step : Exploring aspects in the application of long accelerating moving walkways

    NARCIS (Netherlands)

    Kusumaningtyas, I.

    2009-01-01

    Accelerating Moving Walkways (AMWs) are conveyor systems that accelerate pedestrians from a low speed at the entrance to a higher speed at the middle section, and then decelerate them to a low speed again at the exit. It is envisaged they can be a potential transport mode to fill the gap between

  13. Application of accelerator mass spectrometry to environmental research, Trial of GC-AMS

    International Nuclear Information System (INIS)

    Shibata, Yasuyuki

    2003-01-01

    The accelerator analysis facility of the National Institute for Environmental Studies, which aims to develop a new device capable of measuring "1"4C age for each compound, is promoting the study to establish the GC-AMS that combines two-dimensional gas chromatograph (GC) and accelerator mass spectrometry (AMS). The on-line GC-AMS system for the metabolic measurement of "1"4C-labeled compounds for medicinal biochemical research is a system, in which a GC-separated sample is continuously converted into CO_2 in a combustion tube and introduced directly to a gas ion source to continuously measure "1"4C. In the "1"4C detection experiment, the concentration of CO_2 gas was changed using a helium introduction line and a sample injection valve, and CO_2 gas plus helium gas were introduced into the gas ion source. As a result, it was found that the online GC-AMS has feasibility and high potential capability. For off-line GC-AMS for environmental samples, after purification with preparative gas chromatography, the sample is converted to graphite in a vacuum line and applied to common AMS measurement. The authors collected Northwest Pacific Ocean bottom sediment cores, and performed the extraction and purification of fatty acids of specific stratigraphy and the "1"4C measurement of each compound. The age of the compound derived from the surface layer planktons was the result capable of indicating the sedimentary age of the stratigraphy. In addition, as an application study to explore the source of pollutants in the environment using "1"4C as a tracer representing the characteristics of each source, the authors started to conduct the research choosing atmospheric dust samples. As a starting point, the authors attempted to measure the "1"4C concentration of vehicle exhaust particles and incinerator fly ash particles respectively. There was hardly any "1"4C in vehicle exhaust particles. (A.O.)

  14. The new external ion beam analysis setup at the Demokritos Tandem accelerator and first applications in cultural heritage

    International Nuclear Information System (INIS)

    Sokaras, Dimosthenis; Bistekos, Euthimios; Georgiou, Lambros; Salomon, Joseph; Bogovac, Mladen; Aloupi-Siotis, Eleni; Paschalis, Vasilis; Aslani, Ioanna; Karabagia, Sofia; Lagoyannis, Anastasios; Harissopulos, Sotirios; Kantarelou, Vasiliki; Karydas, Andreas-Germanos

    2011-01-01

    At the 5.5 MV Tandem VdG accelerator of the Institute of Nuclear Physics of N.C.S.R. 'Demokritos', Athens, Greece, an external ion-beam set-up has been recently developed and installed. The aim of this development was to integrate the analytical capabilities of the PIXE, RBS and PIGE ion beam techniques in one experimental set-up, so that to attain a complete elemental and near surface structural characterization of samples in an almost non-destructive way and without any limitation concerning their size or conductive state. A careful 3D mechanical drawing optimized the set-up experimental parameters achieving probe dimensions at the millimeter range (1 mm 2 ) and fulfilling the special requirements imposed for optimum performance of the aforementioned techniques, including the possibility to use heavier, than protons, ion beams. For the digital pulse processing of the X-ray, γ-ray and charged particle detector signals, novel hardware and software tools were developed based on a custom FPGA configuration. The first applications were focused in the quality control of materials that have been intentionally contaminated with a particular tracer-element ('tagged' materials). The tagged materials which were developed and tested are technologically authentic replicas of ancient attic ceramics with black glazed decoration. Analytical diagnostic studies were carried out for a few representative paintings of contemporary Greek painters in order to identify and document materials/pigments and techniques and eventually to prevent trade of fakes. Finally, ancient glass beads were also examined with respect to the sodium concentration and its in-depth homogeneity.

  15. Consultancy Meeting on Preparation of the Final Technical Document of the IAEA CRP on Analytical and Experimental Benchmark Analysis of Accelerator Driven Systems

    International Nuclear Information System (INIS)

    2014-01-01

    With the objective to study the major physics phenomena of the spallation source and its coupling to a subcritical system, between 2005 and 2010 the IAEA carried out a Coordinated Research Project (CRP) called “Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems (ADS)”. The CRP was contributed by 27 institutions from 18 Member States (Argentina, Belarus, Belgium, Brazil, China, France, Germany, Greece, Hungary, Italy, Japan, Netherlands, Poland, Russian Federation, Spain, Sweden, Ukraine and the USA), which performed a number of analytical and experimental benchmark activities. The main objective of the CRP was to develop, verify and validate calculation tools able to perform detailed ADS calculations, from the high energy proton beam to thermal neutron energies. The purpose of this meeting was to: - Collect and review all the available contributions produced by the CRP participants; - Define structure and content of the final TECDOC; - Assemble the first draft of the TECDOC; - Identify important missing parts; - Distribute tasks and responsibilities for drafting and editing the different sections and sub-sections of the TECDOC; - Agree on the time schedule for the TECDOC finalization, review and publication. The participants were requested to contribute to all the foreseen tasks

  16. Dose properties of a laser accelerated electron beam and prospects for clinical application

    International Nuclear Information System (INIS)

    Kainz, K.K.; Hogstrom, K.R.; Antolak, J.A.; Almond, P.R.; Bloch, C.D.; Chiu, C.; Fomytskyi, M.; Raischel, F.; Downer, M.; Tajima, T.

    2004-01-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25x25 cm2 field. An energy window (ΔE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to ΔE. However, since the falloff of the depth-dose curve (R 10 -R 90 ) and the dose rate both increase with ΔE, a tradeoff between minimizing (R 10 -R 90 ) and maximizing dose rate is implied. If ΔE is constrained so that R 10 -R 90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min-1

  17. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm 2 ) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-T c superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it

  18. Microwave system of the 7-10 MeV electron linear accelerator ALIN for medical applications

    International Nuclear Information System (INIS)

    Martin, D.; Iliescu, E.; Stirbet, M.; Oproiu, C.; Vintan, I.

    1978-01-01

    A detailed description of the Central Institute of Physics 10 MeV linear microwave system and its associated subsystems are presented. Methods of impedance matching to obtain maximum power transfer are described along with broadband design methods for transmission-line impedance transformers. Experimental results for such microwave devices are included. With respect to microwave device performances, simultaneous high efficiency and high power capability with reliability and long life at relatively low unit cost have only recently been achieved as typical device characteristics. Industrial, medical and scientific application of microwave electron accelerators have markedly influenced microwave research progress. Radiographic linear accelerators have grown substantially mainly during the past few years. Following this, the improvements of microwave device performances solicit our attention. The first electron therapy Linear Accelerator ALIN 10 marks a new stage in the development of such instrumentation. Its subsequent ALIN 15 is designed to produce a maximum energy of 18 MeV to widen its applicability in radiotherapy. In addition, a new electron linear accelerator of 8 MeV for nondestructive testing has been started. (author)

  19. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Science.gov (United States)

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  20. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Directory of Open Access Journals (Sweden)

    Calcagnile L.

    2012-04-01

    Full Text Available Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD, University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try radiocarbon dating and IB A (Ion Beam Analysis. An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel burned in WTE (Waste to Energy plants.

  1. Accelerator Mass Spectrometry at the Nuclear Science Laboratory: Applications to Nuclear Astrophysics

    Science.gov (United States)

    Collon, P.; Bauder, W.; Bowers, M.; Lu, W.; Ostdiek, K.; Robertson, D.

    The Accelerator Mass Spectrometry (AMS) program at the Nuclear Science Laboratory of the University of Notre Dame is focused on measurements related to galactic radioactivity and to nucleosynthesis of main stellar burning as well as the production of so called Short-Lived Radionuclides (SLRs) in the Early Solar System (ESS). The research program is based around the 11MV FN tandem accelerator and the use of the gas-filled magnet technique for isobar separation. Using a technique that evolved from radiocarbon dating, this paper presents a number of research programs that rely on the use of an 11MV tandem accelerator at the center of the AMS program.

  2. 14C accelerator mass spectrometry - applications in archaeology, biomedicine and in the atmospheric sciences

    International Nuclear Information System (INIS)

    Rom, W.

    1990-03-01

    Accelerator mass spectrometry (AMS) is superior to all other analytical techniques in its detection sensitivity of radiocarbon ( 14 C). It has therefore influenced or even laid down the foundations for applications in many fields of science. In the current work, various applications of 14 C AMS are presented through published articles for which the measurements were performed at the Vienna Environmental Research Accelerator (VERA). These articles are embedded into an in-depth discussion about characteristic features of the respective fields, emphasizing the broad range of issues which need to be considered in interdisciplinary research. In archaeology new 14 C dates on equipment of the Iceman ('Oetzi'), the world's oldest intact mummy, show reasonable agreement with dates previously obtained on the Iceman himself (3360-3100 BC). However, several botanical remains from the finding place clearly belong to other time periods, indicating that the discovery site of Oetzi has been used as a mountain pass 1500 yr earlier and also 2000 yr later. Dating on spruce logs from the world's oldest salt mines at Hallstatt, Austria provide evidence that salt mining started 1-2 centuries earlier than previously supposed, i.e. in the 14th to the 13th century BC. Recently, Bayesian mathematics is a frequently used tool in calibrating radiocarbon data. So-called vague or non-informative priors employed in this method may cause severe problems as shown by extensive computer simulations. In biomedicine problems in toxicology and in forensic medicine were investigated. Heterocyclic amines (HAs) are probably the epidemiologically most relevant class of mutagenic and carcinogenic substances since they are produced naturally in cooking protein-rich food. A study of 14 C labeled HAs (MeIQx and PhIP) in rodents and humans, one of the first studies using 14 C-labeled mutagens also in healthy human volunteers, severely calls in question the validity of animal models for assessing heterocyclic

  3. Application of probabilistic modelling for the uncertainty evaluation of alignment measurements of large accelerator magnets assemblies

    Science.gov (United States)

    Doytchinov, I.; Tonnellier, X.; Shore, P.; Nicquevert, B.; Modena, M.; Mainaud Durand, H.

    2018-05-01

    Micrometric assembly and alignment requirements for future particle accelerators, and especially large assemblies, create the need for accurate uncertainty budgeting of alignment measurements. Measurements and uncertainties have to be accurately stated and traceable, to international standards, for metre-long sized assemblies, in the range of tens of µm. Indeed, these hundreds of assemblies will be produced and measured by several suppliers around the world, and will have to be integrated into a single machine. As part of the PACMAN project at CERN, we proposed and studied a practical application of probabilistic modelling of task-specific alignment uncertainty by applying a simulation by constraints calibration method. Using this method, we calibrated our measurement model using available data from ISO standardised tests (10360 series) for the metrology equipment. We combined this model with reference measurements and analysis of the measured data to quantify the actual specific uncertainty of each alignment measurement procedure. Our methodology was successfully validated against a calibrated and traceable 3D artefact as part of an international inter-laboratory study. The validated models were used to study the expected alignment uncertainty and important sensitivity factors in measuring the shortest and longest of the compact linear collider study assemblies, 0.54 m and 2.1 m respectively. In both cases, the laboratory alignment uncertainty was within the targeted uncertainty budget of 12 µm (68% confidence level). It was found that the remaining uncertainty budget for any additional alignment error compensations, such as the thermal drift error due to variation in machine operation heat load conditions, must be within 8.9 µm and 9.8 µm (68% confidence level) respectively.

  4. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; /Fermilab; Kikuchi, A.; /Tsukuba Magnet Lab.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; /Fermilab; Takeuchi, T.; /Tsukuba Magnet Lab.; Tartaglia, M.; Turrioni, D.; /Fermilab; Verweij, A.P.; /CERN; Wake, M.; Willering, G; /Tsukuba Magnet Lab.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  5. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  6. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    International Nuclear Information System (INIS)

    Brenner, C M; Rusby, D R; Armstrong, C; Wilson, L A; Clarke, R; Haddock, D; McClymont, A; Notley, M; Oliver, P; Allott, R; Hernandez-Gomez, C; Neely, D; Mirfayzi, S R; Alejo, A; Ahmed, H; Kar, S; Butler, N M H; Higginson, A; McKenna, P; Murphy, C

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification. (paper)

  7. Development and applications of super high energy collider accelerators. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, E M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    This paper presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evaluation of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab, and the large harden collider (LHD) which is now planned as a 14-TeV machine in the 27 Kilometer tunnel of the large electron positron (LEP) collider at CERN. Then presentation is given of the superconducting supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 Kilometers in circumference under the country surrounding Waxahachile in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particles. 12 figs., 1 tab.

  8. Research and development activities around the EUROTRANS accelerator for ADS applications

    International Nuclear Information System (INIS)

    Biarrotte, J. L.; Mueller, A. C.

    2007-01-01

    An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mAs for demonstrators, and of a few tens of mAs for large industrial systems. Such a machine belongs to the category of the high power proton accelerators, with an additional requirement for exceptional 'reliability': because of the induced thermal stress to the subcritical core, the number of unwanted 'beam-trips' should not exceed a few per year, a specification that is several orders of magnitude above usual performance. This paper briefly describes the reference solution adopted for such a machine, based on a linear superconducting accelerator, and presents the status of the Research and Development performed in this context. This work is performed within the 6th Framework Program EC project 'EUROTRANS' (EC Contract No: FI6W 516520, 'EUROTRANS')

  9. Application of normal form methods to the analysis of resonances in particle accelerators

    International Nuclear Information System (INIS)

    Davies, W.G.

    1992-01-01

    The transformation to normal form in a Lie-algebraic framework provides a very powerful method for identifying and analysing non-linear behaviour and resonances in particle accelerators. The basic ideas are presented and illustrated. (author). 4 refs

  10. Development and applications of super high energy collider accelerators. Vol. 1

    International Nuclear Information System (INIS)

    Abdelaziz, E.M.

    1996-01-01

    This paper presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evaluation of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab, and the large harden collider (LHD) which is now planned as a 14-TeV machine in the 27 Kilometer tunnel of the large electron positron (LEP) collider at CERN. Then presentation is given of the superconducting supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 Kilometers in circumference under the country surrounding Waxahachile in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particles. 12 figs., 1 tab

  11. Application of a Cycle Jump Technique for Acceleration of Fatigue Crack Growth Simulation

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Karlsson, A.M.

    2010-01-01

    A method for accelerated simulation of fatigue crack growth in a bimaterial interface is proposed. To simulate fatigue crack growth in a bimaterial interface a routine is developed in the commercial finite element code ANSYS and a method to accelerate the simulation is implemented. The proposed m...... of the simulation show that with fair accuracy, using the cycle jump method, more than 70% reduction in computation time can be achieved....

  12. From laser-plasma accelerators to femtosecond X-ray sources: study, development and applications

    International Nuclear Information System (INIS)

    Corde, S.

    2012-01-01

    During the relativistic interaction between a short and intense laser pulse and an underdense plasma, electrons can be injected and accelerated up to hundreds of MeV in an accelerating structure formed in the wake of the pulse: this is the so-called laser-plasma accelerator. One of the major perspectives for laser-plasma accelerators resides in the realization of compact sources of femtosecond x-ray beams. In this thesis, two x-ray sources was studied and developed. The betatron radiation, intrinsic to laser-plasma accelerators, comes from the transverse oscillations of electrons during their acceleration. Its characterization by photon counting revealed an x-ray beam containing 10"9 photons, with energies extending above 10 keV. We also developed an all-optical Compton source producing photons with energies up to hundreds of keV, based on the collision between a photon beam and an electron beam. The potential of these x-ray sources was highlighted by the realization of single shot phase contrast imaging of a biological sample. Then, we showed that the betatron x-ray radiation can be a powerful tool to study the physics of laser-plasma acceleration. We demonstrated the possibility to map the x-ray emission region, which gives a unique insight into the interaction, permitting us for example to locate the region where electrons are injected. The x-ray angular and spectral properties allow us to gain information on the transverse dynamics of electrons during their acceleration. (author)

  13. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  14. Application of International Linear Collider superconducting cavities for acceleration of protons

    Directory of Open Access Journals (Sweden)

    P. N. Ostroumov

    2007-12-01

    Full Text Available Beam acceleration in the International Linear Collider (ILC will be provided by 9-cell 1300 MHz superconducting (SC cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on π-mode to provide a maximum accelerating gradient. A significant research and development effort has been devoted to develop ILC SC technology and its rf system which resulted in excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above ∼1.2  GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC cavities operating at 1300 MHz and designed for β_{G}=0.81, geometrical beta, to accelerate protons or H^{-} from ∼420  MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new β_{G}=0.81 cavities by operating ILC cavities on 8/9π-mode of standing wave oscillations.

  15. The application of artificial intelligent techniques to accelerator operations at McMaster University

    Science.gov (United States)

    Poehlman, W. F. S.; Garland, Wm. J.; Stark, J. W.

    1993-06-01

    In an era of downsizing and a limited pool of skilled accelerator personnel from which to draw replacements for an aging workforce, the impetus to integrate intelligent computer automation into the accelerator operator's repertoire is strong. However, successful deployment of an "Operator's Companion" is not trivial. Both graphical and human factors need to be recognized as critical areas that require extra care when formulating the Companion. They include interactive graphical user's interface that mimics, for the operator, familiar accelerator controls; knowledge of acquisition phases during development must acknowledge the expert's mental model of machine operation; and automated operations must be seen as improvements to the operator's environment rather than threats of ultimate replacement. Experiences with the PACES Accelerator Operator Companion developed at two sites over the past three years are related and graphical examples are given. The scale of the work involves multi-computer control of various start-up/shutdown and tuning procedures for Model FN and KN Van de Graaff accelerators. The response from licensing agencies has been encouraging.

  16. The application of artificial intelligent techniques to accelerator operations at McMaster University

    International Nuclear Information System (INIS)

    Poehlman, W.F.S.; Garland, W.J.; Stark, J.W.

    1993-01-01

    In an era of downsizing and a limited pool of skilled accelerator personnel from which to draw replacements for an aging workforce, the impetus to integrate intelligent computer automation into the accelerator operator's repertoire is strong. However, successful deployment of an 'Operator's Companion' is not trivial. Both graphical and human factors need to be recognized as critical areas that require extra care when formulating the Companion. They include interactive graphical user's interface that mimics, for the operator, familiar accelerator controls; knowledge of acquisition phases during development must acknowledge the expert's mental model of machine operation; and automated operations must be seen as improvements to the operator's environment rather than threats of ultimate replacement. Experiences with the PACES Accelerator Operator Companion developed at two sites over the past three years are related and graphical examples are given. The scale of the work involves multi-computer control of various start-up/shutdown and tuning procedures for Model FN and KN Van de Graaff accelerators. The response from licensing agencies has been encouraging. (orig.)

  17. High energy nuclear reactions ('Spallation') and their application in calculation of the Acceleration Driven Systems (ADS)

    International Nuclear Information System (INIS)

    Rossi, Pedro Carlos Russo

    2011-01-01

    This work presents a study of high energy nuclear reactions which are fundamental to dene the source term in accelerator driven systems. These nuclear reactions, also known as spallation, consist in the interaction of high energetic hadrons with nucleons in the atomic nucleus. The phenomenology of these reactions consist in two step. In the rst, the proton interacts through multiple scattering in a process called intra-nuclear cascade. It is followed by a step in which the excited nucleus, coming from the intranuclear cascade, could either, evaporates particles to achieve a moderate energy state or fission. This process is known as competition between evaporation and fission. In this work the main nuclear models, Bertini and Cugnon are reviewed, since these models are fundamental for design purposes of the source term in ADS, due to lack of evaluated nuclear data for these reactions. The implementation and validation of the calculation methods for the design of the source is carried out to implement the methodology of source design using the program MCNPX (Monte Carlo N-Particle eXtended), devoted to calculation of transport of these particles and the validation performed by an international cooperation together with a Coordinated Research Project (CRP) of the International Atomic Energy Agency and available jobs, in order to qualify the calculations on nuclear reactions and the de-excitation channels involved, providing a state of the art of design and methodology for calculating external sources of spallation for source driven systems. The CRISP, is a brazilian code for the phenomenological description of the reactions involved and the models implemented in the code were reviewed and improved to continue the qualification process. Due to failure of the main models in describing the production of light nuclides, the multifragmentation reaction model was studied. Because the discrepancies in the calculations of production of these nuclides are attributes to the

  18. Design and applications of a pneumatic accelerator for high speed punching

    International Nuclear Information System (INIS)

    Yaldiz, Sueleyman; Saglam, Haci; Unsacar, Faruk; Isik, Hakan

    2007-01-01

    High speed forming is an important production method that requires specially designed HERF (high energy rate forming) machines. Most of the HERF machines are devices that consist of a system in which energy is stored and a differential piston mechanism is used to release the energy at high rate. In order to eliminate the usage of specially designed HERF machines and to obtain the high speed forming benefits, the accelerator which can be adapted easily onto conventional presses has been designed and manufactured in this study. The designed energy accelerator can be incorporated into mechanical press to convert the low speed operation into high-speed operation of a hammer. Expectations from this work are reduced distortion rates, increased surface quality and precise dimensions in metal forming operations. From the performance test, the accelerator is able to achieve high speed and energy which require for high speed blanking of thick sheet metals

  19. Application of Java Technology to Simulation of Transient Effects in Accelerator Magnets

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Superconducting magnets are one of the key building blocks of modern high-energy particle accelerators. Operating at extremely low temperatures (1.9 K), superconducting magnets produce high magnetic field needed to control the trajectory of beams travelling at nearly the speed of light. With high performance comes considerable complexity represented by several coupled physical domains characterized by multi-rate and multi-scale behaviour. The full exploitation of the LHC, as well as the design of its upgrades and future accelerators calls for more accurate simulations. With such a long-term vision in mind, the STEAM (Simulation of Transient Effects in Accelerator Magnets) project has been establish and is based on two pillars: (i) models developed with optimised solvers for particular sub-problems, (ii) coupling interfaces allowing to exchange information between the models. In order to tackle these challenges and develop a maintainable and extendable simulation framework, a team of developers implemented a ...

  20. Accounting for measurement error in log regression models with applications to accelerated testing.

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  1. Accounting for measurement error in log regression models with applications to accelerated testing.

    Science.gov (United States)

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  2. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  3. On the application of design of experiments to accelerated life testing

    International Nuclear Information System (INIS)

    Hakim-Mashhadi, M.

    1992-01-01

    Today, there is an increasing demand for improved quality and reliability due to increasing system complexity and increasing demands from customer. Continuous improvement of quality is not only a means of competition but also a matter of staying in the market. Accelerated life testing and statistical design of experiments are two needed methods for improvement of quality. The combined use of them is very advantageous and increases the test efficiency. Accelerated life testing is a quick way to provide information on the life distribution of materials and products. By subjecting the test unit to conditions more severe than those at normal usage, the test time can be highly reduced. Estimates of life at normal stress levels are obtained by extrapolating the available information through a reasonable acceleration model. Accelerated life testing has mostly been used to measure reliability but it is high time to use it for improvement of quality. Design of experiments serves to find out the effect of design parameters and other interesting factors on performance measure and its variability. The obtained information is essential for a continuous improvement of quality. As an illustration, two sets of experiment are designed and performed at highly increased stress levels. The results are analysed and discussed and a time saving alternative is proposed. The combination of experimental design and accelerated life testing is discussed and illustrated. The combined use of these methods can be argued for in two different cases. One is for an exploratory improvement investigation and the other is for verification of reliability. In either case, the combined use is advantageous and improves the testing efficiency. Some general conclusions are drawn to be used for planning and performance of statistically designed accelerated life testing experiments. (70 refs.) (au)

  4. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  5. A study for the fabulously of introducing an acceleration mass spectrometer facility (ABMs) for carbon-14 applications

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Comsan, N.; Sadek, M.

    2004-01-01

    In this work a study was conducted to show the importance and feasibility of introducing an accelerating mass spectrometer facility for carbon-14 analysis in the environmental levels. The different applications of Carbon-14 (e.g. dating and identification of food additives of synthetic origin) are discussed. There are two methods for C- 14 measurements, beta decay counting and accelerator mass spectrometry (AMS). The beta decay method requires gram quantities of the sample carbon, compared to few milligram quantities in case of AMS method. The Central Lab. for Environmental Isotope Hydrology of the National Center for Nuclear Safety and Radiation Control has a Carbon-14 analysis facility based on beta decay counting using a liquid scintillation counter after sample preparation in the form of benzene through rather complicated chemical conversion steps. This strongly limits the capacity of the laboratory to about 100-150 samples per year. Also, the amount of sample required limits our expansion for some very important applications like dating of archaeological small samples and especially old bone samples which normally have a low concentration of organic compounds. These applications are only possible by using the AMS method. For some applications only AMS could be used e.g measuring C-14 in atmospheric gases such as methane and carbon dioxide is virtually impossible using decay counting but quite feasible with AMS. The importance of purchasing an AMS facility or upgrading the existing accelerator is discussed in view of the shortage of such a facility in Africa and the Middle East. Acquiring an AMS in Egypt will make it possible to accurately date the Egyptian antiquities and to act as a regional laboratory and to enter into new applications where the amount of sample is limiting

  6. A grey diffusion acceleration method for time-dependent radiative transfer calculations: analysis and application

    International Nuclear Information System (INIS)

    Nowak, P.F.

    1993-01-01

    A grey diffusion acceleration method is presented and is shown by Fourier analysis and test calculations to be effective in accelerating radiative transfer calculations. The spectral radius is bounded by 0.9 for the continuous equations, but is significantly smaller for the discretized equations, especially in the optically thick regimes characteristic to radiation transport problems. The GDA method is more efficient than the multigroup DSA method because its slightly higher iteration count is more than offset by the much lower cost per iteration. A wide range of test calculations confirm the efficiency of GDA compared to multifrequency DSA. (orig.)

  7. Application of MO-type gapless flange to beam duct for high-current accelerators

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Shirai, M.; Ohtsuka, M.

    2004-01-01

    The MO-type flange, which can provide a gapless connection between flanges, was studied experimentally aiming to apply it to the beam duct for high-current accelerators. The test flange showed a good vacuum sealing property, although the aperture had a complicated shape, that is, the combination of a circular beam duct and a rectangular antechamber. The structural analysis well reproduced the observed deformation of flange, and utilized to optimize the structure. The MO-type flange is a promising one for the connection flange of the beam duct for future accelerators. (author)

  8. The application analysis of high energy electron accelerator in food irradiation processing

    International Nuclear Information System (INIS)

    Deng Wenmin; Chen Hao; Feng Lei; Zhang Yaqun; Chen Xun; Li Wenjun; Xiang Chengfen; Pei Ying; Wang Zhidong

    2012-01-01

    Irradiation technology of high energy electron accelerator has been highly concerned in food processing industry with its fast development, especially in the field of food irradiation processing. In this paper, equipment and research situation of high energy electron accelerator were collected, meanwhile, the similarities and differences between high energy electron beam and 60 Co γ-rays were discussed. In order to provide more references of high energy electron beam irradiation, the usages of high energy electron in food irradiation processing was prospected. These information would promote the development of domestic food irradiation industry and give a useful message to irradiation enterprises and researchers. (authors)

  9. An application of the baseline correction technique for correcting distorted seismic acceleration time histories

    International Nuclear Information System (INIS)

    Lee, Gyu Mahn; Kim, Jong Wook; Jeoung, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae; Kim, Keung Koo

    2008-03-01

    Three kinds of baseline correction techniques named as 'Newmark', 'Zero-VD' and 'Newmark and Zero-VD' were introduced to correct the distorted physical characteristics of a seismic time history accelogram. The corrected seismic accelerations and distorted raw acceleration showed an identical response spectra in frequency domains, but showed various time history profiles in velocity and displacement domains. The referred correction techniques were programmed with UNIX-HP Fortran. The verification of the baseline corrected seismic data in terms of frequency response spectrum were performed by ANSYS of a commerical FEM software

  10. International meeting on micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies. Abstracts of reports

    International Nuclear Information System (INIS)

    Romanov, V.A.

    2007-01-01

    The collection contains abstracts presented on the International meeting Micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies which took place 16-18 October 2007 in Obninsk (Russian Federation). The potentialities of ion implantation for creation of nanostructures is discussed. The accelerator complexes applied for manufacture of nanostructural materials are considered [ru

  11. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  12. A study of the application of Brain Atlas with and without +Gz acceleration conditions.

    Science.gov (United States)

    Li, Yifeng; Zhang, Lihui; Zhang, Tao; Li, Baohui

    2017-07-20

    The purposes of this study were to utilize Brain Atlas to investigate the fluctuations in the characteristics of human EEG, with and without +Gz acceleration produced by human centrifuge, and also to examine the G load endurance of human body. The Brain Atlas of the EEG signal with and without +Gz acceleration in a static state were compared in order to reveal the correlation and differences. When compared with those in a static state, it was found that for the EEG readings of the subjects undergoing +Gz acceleration conditions, the energy and gray scale values of the low-frequency component-delta rhythm showed significant increases, while the energy and gray scale values of the high-frequency component-beta rhythm showed significant decreases. Among these, the beta2 rhythm was determined to be significantly inhibited. These fluctuations suggested that the ischemia conditions of brain had been improved. Also, the recoveries in the energy and gray-scale values were determined to be faster, which suggested that the G load endurance of human body had been enhanced. The Brain Atlas was found to show observable changes in color. The experimental results indicated that the Brain Atlas was able to provide assistance during the exploration of the fluctuations in the characteristics of EEG, and provided a criterion to assist in the observations of the function state fluctuations of human brain with +Gz acceleration. It also assisted in the evaluations of the G load endurance of human body.

  13. Application of plasma erosion opening switches to high power accelerators for pulse compression and power multiplication

    International Nuclear Information System (INIS)

    Meyer, R.A.; Boller, J.R.; Commisso, R.J.

    1983-01-01

    A new vacuum opening switch called a plasma erosion opening switch is described. A model of its operation is presented and the energy efficiency of such a switch is discussed. Recent high power experiments on the Gamble II accelerator are described and compared to previous experiments

  14. Precise isotope analysis. Application of accelerator mass spectrometry to human sample

    International Nuclear Information System (INIS)

    Tokanai, Fuyuki

    2016-01-01

    Isotope 14 C is a radioisotope with a half-life of 5,730 years, and the measurement of its concentration makes it possible to calculate 'carbon 14 age.' This paper introduces up-to-date accelerator mass spectrometry (AMS), which is used in 14 C concentration measurement, and outlines its applied researches in pharmaceutical and medical fields. AMS technique has been applied in Europe and the United States to microdose clinical tests. In Japan, implementation foundation has been ready through the guidelines of the Ministry of Health, Labour and Welfare, five years behind Europe and the United States. Although conventional AMS measurement of 14 C required an acceleration voltage of 3 million volts or more, technological development has enabled a high accuracy of 14 C concentration measurement with the low acceleration voltage of about 400,000 volts. A sample for AMS method is graphitized, transformed to carbon ions ( 12 C-, 13 C-, and 14 C-) through negative ionization with cesium irradiation, accelerated under 450 kV, bombarded with argon gas, charge-converted to 12 C+, 13 C+, and 14 C+, and measured. Biological samples for microdose study are plasma, urine, feces, and biological tissue. Model tests showed a very good linearity between the concentrations of 14 C-containing compounds and 14 C concentrations. Applied research on microdose clinical tests is expected to increase its usability in the future, as an effective means of drug development. (A.O.)

  15. Design of Power Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Hegner, Jonas Stenbæk; Sindholt, Joakim; Nannarelli, Alberto

    2012-01-01

    Using Field Programmable Gate Arrays (FPGAs) to accelerate financial derivative calculations is becoming very common. In this work, we implement an FPGA-based specific processor for European option pricing using Monte Carlo simulations, and we compare its performance and power dissipation...

  16. 12 MeV, 4.3 kW electron linear accelerator irradiation application

    International Nuclear Information System (INIS)

    Hang Desheng; Lai Qiji

    2000-01-01

    Characteristics of an electron linear accelerator, which has 6-12 MeV energy, 4.2 kW average beam power is introduced. Results show that it has advantages on improving the characteristics of semiconductor devices such as diodes, triodes, SCR, preventing garlic from sprout, preservation of food, and so on

  17. High rate resistive plate chambers: An inexpensive, fast, large area detector of energetic charged particles for accelerator and non-accelerator applications

    International Nuclear Information System (INIS)

    Wuest, C.R.; Ables, E.; Bionta, R.M.; Clamp, O.; Haro, M.; Mauger, G.J.; Miller, K.; Olson, H.; Ramsey, P.

    1993-05-01

    Resistive Plate Chambers, or RPCs, have been used until recently as large detectors of cosmic ray muons. They are now finding use as fast large-area trigger and muon detection systems for different high energy physics detectors such the L3 Detector at LEP and future detectors to be built at the Superconducting Super Collider (SSC) and at the Large Hadron Collider (LHC) at CERN. RPC systems at these accelerators must operate with high efficiency, providing nanosecond timing resolution in particle fluences up to a few tens of kHz/cm 2 -- with thousands of square meters of active area. RPCs are simple and cheap to construct. The authors report here recent work on RPCs using new materials that exhibit a combination of desirable RPC features such as low bulk resistivity, high dielectric strength, low mass, and low cost. These new materials were originally developed for use in electronics assembly areas and other applications, where static electric charge buildup can damage sensitive electrical systems

  18. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-07-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report.

  19. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    International Nuclear Information System (INIS)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-01-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report

  20. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar [Comisión Nacional de Energía Atómica, Gerencia Materiales, Depto. Corrosión, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Gaillard, Natalia [Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Mariscotti, Mario; Ruffolo, Marcelo [Tomografía de Hormigón Armado S.A. (THASA), Reclus 2017, 1609 Boulogne, Buenos Aires (Argentina)

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.