WorldWideScience

Sample records for acceleration model characteristics

  1. Bounded Acceleration Capacity Drop in a Lagrangian Formulation of the Kinematic Wave Model with Vehicle Characteristics and Unconstrained Overtaking

    NARCIS (Netherlands)

    Calvert, S.C.; Snelder, M.; Taale, H.; Wageningen-Kessels, F.L.M. van; Hoogendoorn, S.P.

    2015-01-01

    In this contribution a model-based analysis of the application of bounded acceleration in traffic flow is considered as a cause for the capacity drop. This is performed in a Lagrangian formulation of the kinematic wave model with general vehicle specific characteristics. Unconstrained overtaking is

  2. Derivation of Stochastic Acceleration Model Characteristics for Solar Flares from RHESSI Hard X-ray Observations

    Science.gov (United States)

    Petrosian, Vahé; Chen, Qingrong

    2010-04-01

    The model of stochastic acceleration of particles by turbulence has been successful in explaining many observed features of solar flares. Here, we demonstrate a new method to obtain the accelerated electron spectrum and important acceleration model parameters from the high-resolution hard X-ray (HXR) observations provided by RHESSI. In our model, electrons accelerated at or very near the loop top (LT) produce thin target bremsstrahlung emission there and then escape downward producing thick target emission at the loop footpoints (FPs). Based on the electron flux spectral images obtained by the regularized spectral inversion of the RHESSI count visibilities, we derive several important parameters for the acceleration model. We apply this procedure to the 2003 November 3 solar flare, which shows an LT source up to 100-150 keV in HXR with a relatively flat spectrum in addition to two FP sources. The results imply the presence of strong scattering and a high density of turbulence energy with a steep spectrum in the acceleration region.

  3. Accelerated shallow water modeling

    Science.gov (United States)

    Gandham, Rajesh; Medina, David; Warburton, Timothy

    2015-04-01

    ln this talk we will describe our ongoing developments in accelerated numerical methods for modeling tsunamis, and oceanic fluid flows using two dimensional shallow water model and/or three dimensional incompressible Navier Stokes model discretized with high order discontinuous Galerkin methods. High order discontinuous Galerkin methods can be computationally demanding, requiring extensive computational time to simulate real time events on traditional CPU architectures. However, recent advances in computing architectures and hardware aware algorithms make it possible to reduce simulation time and provide accurate predictions in a timely manner. Hence we tailor these algorithms to take advantage of single instruction multiple data (SIMD) architecture that is seen in modern many core compute devices such as GPUs. We will discuss our unified and extensive many-core programming library OCCA that alleviates the need to completely re-design the solvers to keep up with constantly evolving parallel programming models and hardware architectures. We will present performance results for the flow simulations demonstrating performance leveraging multiple different multi-threading APIs on GPU and CPU targets.

  4. Accelerated life models modeling and statistical analysis

    CERN Document Server

    Bagdonavicius, Vilijandas

    2001-01-01

    Failure Time DistributionsIntroductionParametric Classes of Failure Time DistributionsAccelerated Life ModelsIntroductionGeneralized Sedyakin's ModelAccelerated Failure Time ModelProportional Hazards ModelGeneralized Proportional Hazards ModelsGeneralized Additive and Additive-Multiplicative Hazards ModelsChanging Shape and Scale ModelsGeneralizationsModels Including Switch-Up and Cycling EffectsHeredity HypothesisSummaryAccelerated Degradation ModelsIntroductionDegradation ModelsModeling the Influence of Explanatory Varia

  5. Social-Emotional Characteristics of Gifted Accelerated and Non-Accelerated Students in the Netherlands

    Science.gov (United States)

    Hoogeveen, Lianne; van Hell, Janet G.; Verhoeven, Ludo

    2012-01-01

    Background: In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims: In this study, social-emotional characteristics of accelerated…

  6. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands

    NARCIS (Netherlands)

    Hoogeveen, A.J.M.; Hell, J.G. van; Verhoeven, L.T.W.

    2012-01-01

    Background. In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims. In this study, soci

  7. Near-fault ground motions with prominent acceleration pulses: pulse characteristics and ductility demand

    Institute of Scientific and Technical Information of China (English)

    Mai Tong; Vladimir Rzhevsky; Dai Junwu; George C Lee; Qi Jincheng; Qi Xiaozhai

    2007-01-01

    Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum,a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.

  8. Self-accelerating Massive Gravity: Hidden Constraints and Characteristics

    CERN Document Server

    Motloch, Pavel; Motohashi, Hayato

    2016-01-01

    Self-accelerating backgrounds in massive gravity provide an arena to explore the Cauchy problem for derivatively coupled fields that obey complex constraints which reduce the phase space degrees of freedom. We present here an algorithm based on the Kronecker form of a matrix pencil that finds all hidden constraints, for example those associated with derivatives of the equations of motion, and characteristic curves for any 1+1 dimensional system of linear partial differential equations. With the Regge-Wheeler-Zerilli decomposition of metric perturbations into angular momentum and parity states, this technique applies to fully 3+1 dimensional perturbations of massive gravity around any isotropic self-accelerating background. Five spin modes of the massive graviton propagate once the constraints are imposed: two spin-2 modes with luminal characteristics present in the massless theory as well as two spin-1 modes and one spin-0 mode. Although the new modes all possess the same - typically spacelike - characteristi...

  9. Opportunity of characteristic's improvement for accelerator driven systems

    CERN Document Server

    Kiselev, G V

    2001-01-01

    Review of sentences on the investigation into different variations of electronuclear plants be directed to the improvement in characteristics of the plants in an effort to the efficient disposal of long-lived components of radioactive wastes is presented. Attention is drown to the fact that subcritical reactor with complicated neutron valve can be used. This permits for drop in demand to current of proton accelerator. Briefly description of the process scheme with the indication of problems is given

  10. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  11. Production of accelerating quad Airy beams and their optical characteristics.

    Science.gov (United States)

    Ren, Zhijun; Wu, Qiong; Shi, Yile; Chen, Chen; Wu, Jiangmiao; Wang, Hui

    2014-06-16

    Based on a geometric caustic argument and diffraction catastrophe theory, we generate a novel form of accelerating beams using a symmetric 3/2 phase-only pattern. Such beams can be called accelerating quad Airy beams (AQABs) because they look very much like four face-to-face combined Airy beams. Optical characteristics of AQABs are subsequently investigated. The research results show that the beams have axial-symmetrical and centrosymmetrical transverse intensity patterns and quasi-diffraction-free propagation features for their four main lobes while undergoing transverse shift along parabolic trajectories. Moreover, we also demonstrate that AQABs possess self-construction ability when local areas are blocked. The unique optical properties of these beams will make them useful tools for future scientific applications.

  12. Self-accelerating massive gravity: Hidden constraints and characteristics

    Science.gov (United States)

    Motloch, Pavel; Hu, Wayne; Motohashi, Hayato

    2016-05-01

    Self-accelerating backgrounds in massive gravity provide an arena to explore the Cauchy problem for derivatively coupled fields that obey complex constraints which reduce the phase space degrees of freedom. We present here an algorithm based on the Kronecker form of a matrix pencil that finds all hidden constraints, for example those associated with derivatives of the equations of motion, and characteristic curves for any 1 +1 dimensional system of linear partial differential equations. With the Regge-Wheeler-Zerilli decomposition of metric perturbations into angular momentum and parity states, this technique applies to fully 3 +1 dimensional perturbations of massive gravity around any spherically symmetric self-accelerating background. Five spin modes of the massive graviton propagate once the constraints are imposed: two spin-2 modes with luminal characteristics present in the massless theory as well as two spin-1 modes and one spin-0 mode. Although the new modes all possess the same—typically spacelike—characteristic curves, the spin-1 modes are parabolic while the spin-0 modes are hyperbolic. The joint system, which remains coupled by nonderivative terms, cannot be solved as a simple Cauchy problem from a single noncharacteristic surface. We also illustrate the generality of the algorithm with other cases where derivative constraints reduce the number of propagating degrees of freedom or order of the equations.

  13. Flexible boosting of accelerated failure time models

    Directory of Open Access Journals (Sweden)

    Hothorn Torsten

    2008-06-01

    Full Text Available Abstract Background When boosting algorithms are used for building survival models from high-dimensional data, it is common to fit a Cox proportional hazards model or to use least squares techniques for fitting semiparametric accelerated failure time models. There are cases, however, where fitting a fully parametric accelerated failure time model is a good alternative to these methods, especially when the proportional hazards assumption is not justified. Boosting algorithms for the estimation of parametric accelerated failure time models have not been developed so far, since these models require the estimation of a model-specific scale parameter which traditional boosting algorithms are not able to deal with. Results We introduce a new boosting algorithm for censored time-to-event data which is suitable for fitting parametric accelerated failure time models. Estimation of the predictor function is carried out simultaneously with the estimation of the scale parameter, so that the negative log likelihood of the survival distribution can be used as a loss function for the boosting algorithm. The estimation of the scale parameter does not affect the favorable properties of boosting with respect to variable selection. Conclusion The analysis of a high-dimensional set of microarray data demonstrates that the new algorithm is able to outperform boosting with the Cox partial likelihood when the proportional hazards assumption is questionable. In low-dimensional settings, i.e., when classical likelihood estimation of a parametric accelerated failure time model is possible, simulations show that the new boosting algorithm closely approximates the estimates obtained from the maximum likelihood method.

  14. Transient accelerating scalar models with exponential potentials

    Institute of Scientific and Technical Information of China (English)

    Wen-Ping Cui; Yang Zhang; Zheng-Wen Fu

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient.We find that,although a decelerating era will return in the future,when extrapolating the model back to earlier stages (z(≥) 4),scalar dark energy becomes dominant over matter.So these models do not have the desired tracking behavior,and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology.When couplings between the scalar field and matter are introduced,the models still have the same problem; only the time when deceleration returns will be varied.To achieve re-deceleration,one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  15. A Qualitative Acceleration Model Based on Intervals

    Directory of Open Access Journals (Sweden)

    Ester MARTINEZ-MARTIN

    2013-08-01

    Full Text Available On the way to autonomous service robots, spatial reasoning plays a main role since it properly deals with problems involving uncertainty. In particular, we are interested in knowing people's pose to avoid collisions. With that aim, in this paper, we present a qualitative acceleration model for robotic applications including representation, reasoning and a practical application.

  16. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu, E-mail: hanyu1203@gmail.com [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Xiaofeng [Shanghai NuStar Nuclear Power Technology Co., Ltd., No. 81 South Qinzhou Road, XuJiaHui District, Shanghai 200000 (China); Wang, Dezhong [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2014-12-15

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times.

  17. Operational Characteristics of an Accelerator Driven Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems require the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

  18. Jet browser model accelerated by GPUs

    Directory of Open Access Journals (Sweden)

    Forster Richárd

    2016-12-01

    Full Text Available In the last centuries the experimental particle physics began to develop thank to growing capacity of computers among others. It is allowed to know the structure of the matter to level of quark gluon. Plasma in the strong interaction. Experimental evidences supported the theory to measure the predicted results. Since its inception the researchers are interested in the track reconstruction. We studied the jet browser model, which was developed for 4π calorimeter. This method works on the measurement data set, which contain the components of interaction points in the detector space and it allows to examine the trajectory reconstruction of the final state particles. We keep the total energy in constant values and it satisfies the Gauss law. Using GPUs the evaluation of the model can be drastically accelerated, as we were able to achieve up to 223 fold speedup compared to a CPU based parallel implementation.

  19. Characteristics of induced activity from medical linear accelerators.

    Science.gov (United States)

    Wang, Yi Zhen; Evans, Michael D C; Podgorsak, Ervin B

    2005-09-01

    A study of the induced activity in a medical linear accelerator (linac) room was carried out on several linac installations. Higher beam energy, higher dose rate, and larger field size generally result in higher activation levels at a given point of interest, while the use of multileaf collimators (MLC) can also increase the activation level at the isocenter. Both theoretical and experimental studies reveal that the activation level in the morning before any clinical work increases from Monday to Saturday and then decreases during the weekend. This weekly activation picture keeps stable from one week to another during standard clinical operation of the linac. An effective half-life for a given point in the treatment room can be determined from the measured or calculated activity decay curves. The effective half-life for points inside the treatment field is longer than that for points outside of the field in the patient plane, while a larger field and longer irradiation time can also make the effective half-life longer. The activation level reaches its practical saturation value after a 30 min continuous irradiation, corresponding to 12 000 MU at a "dose rate" of 400 MU/min. A "dose" of 300 MU was given 20 times in 15 min intervals to determine the trends in the activation level in a typical clinical mode. As well, a long-term (85 h over a long weekend) decay curve was measured to evaluate the long-term decay of room activation after a typical day of clinical linac use. A mathematical model for the activation level at the isocenter has been established and shown to be useful in explaining and predicting the induced activity levels for typical clinical and experimental conditions. The activation level for a 22 MeV electron beam was also measured and the result shows it is essentially negligible.

  20. A model of an accelerating Universe

    CERN Document Server

    Arbab, A I

    1999-01-01

    We have considered a cosmological model with a cosmological term proportional to the deceleration parameter. For age parameter consistent with observational data the Universe must be accelerating in the presence of a positive cosmological term. The minimum age of the Universe is $H_0^{-1}$, where $H_0$ is the present Hubble constant. The cosmological term decreases as $t^{-2}$. The rate of particle creation is very small compared with the Steady State prediction. Allowing the gravitational constant to change with time leads to an ever increasing gravitational constant at the present epoch. In the presence of a viscous fluid this decay law for $\\Lambda$ is equivalent to the one with the de-Sitter type.

  1. Transforming a School of Education via the Accelerated Schools Model.

    Science.gov (United States)

    Mims, J. Sabrina; Slovacek, Simeon; Wong, Gay Yuen

    This paper describes how the Accelerated Schools Model has served as a catalyst for transforming the Charter School of Education at California State University, Los Angeles. The Accelerated Schools Project has been one of the largest and most comprehensive school restructuring movements of the last decade. The focus of Accelerated Schools is…

  2. Static and dynamic characteristics of angular velocity and acceleration transducers based on optical tunneling effect

    Science.gov (United States)

    Busurin, V. I.; Korobkov, V. V.; Htoo Lwin, Naing; Tuan, Phan Anh

    2016-08-01

    Theoretical and experimental analysis of quasi-linear conversion function of angular velocity and acceleration microoptoelectromechnical (MOEM) transducers based on optical tunneling effect (OTE) are conducted. Equivalent oscillating circuit is developed and dynamic characteristics of angular velocity and acceleration MOEM-transducers are investigated.

  3. An algebraic collapsing acceleration method for acceleration of the inner (scattering) iterations in long characteristics transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Suslov, I.R. [Institute for Physics and Power Engineering, Obninsk (Russian Federation)

    2003-07-01

    An acceleration technique for long characteristics discrete ordinates method is presented. The technique is based on the developed representation of the transport sweep finite-difference operator as an sparse matrix operator in the space of the track averaged symmetrized angular fluxes. The collapsing technique is used for the constructing of the reduced sparse matrix with structure similar to block-diffusion in general case. That reduced matrix is applied for the acceleration of the scattering iterations. For slab geometry case it is shown that the simplest (one box collapsing) method is equivalent to consistent diffusion acceleration method. Numerical results for the two-dimensional C5G7MOX OECD benchmark display high efficiency of the developed method. (author)

  4. White Paper on DOE-HEP Accelerator Modeling Science Activities

    CERN Document Server

    Vay, Jean-Luc; Koniges, Alice; Friedman, Alex; Grote, David P; Bruhwiler, David L

    2013-01-01

    Toward the goal of maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies, this white paper presents the rationale for: (a) strengthening and expanding programmatic activities in accelerator modeling science within the Department of Energy (DOE) Office of High Energy Physics (HEP) and (b) increasing the community-wide coordination and integration of code development.

  5. Accelerated propor tional degradation hazards-odds model in accelerated degradation test

    Institute of Scientific and Technical Information of China (English)

    Tingting Huang; Zhizhong Li

    2015-01-01

    An accelerated proportional degradation hazards-odds model is proposed. It is a non-parametric model and thus has path-free and distribution-free properties, avoiding the errors caused by faulty assumptions of degradation paths or distribution of degra-dation measurements. It is established based on a link function which combines the degradation cumulative hazard rate function and the degradation odds function through a transformation pa-rameter, and this makes the accelerated proportional degradation hazards model and the accelerated proportional degradation odds model special cases of it. Hypothesis tests are discussed, and the proposed model is applicable when some model assumptions are satisfied. This model is utilized to estimate the reliability of minia-ture bulbs under low stress levels based on the degradation data obtained under high stress levels to validate the effectiveness of this model.

  6. Universe acceleration in brane world models

    Science.gov (United States)

    Chiou-Lahanas, C.; Diamandis, G. A.; Georgalas, B. C.

    2014-05-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution, determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The possible species of the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  7. Universe Acceleration in Brane World Models

    CERN Document Server

    Chiou-Lahanas, C; Georgalas, B C

    2013-01-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The conditions imposed on the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  8. The charged particle accelerators subsystems modeling

    Science.gov (United States)

    Averyanov, G. P.; Kobylyatskiy, A. V.

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.

  9. [Dosimetric characteristics of the bremsstrahlung beam from the LUE-15M medical linear electron accelerator].

    Science.gov (United States)

    Vatnitskiĭ, S M; Ermakov, I A; Puzanov, V P; Sinitsyn, R V; Cherviakov, A M

    1983-10-01

    The paper presents methods and results of a study of radiation-physical characteristics of inhibitory radiation beam with the Grenz energy of 15MeV generated by an electron linear accelerator LUE-15M. Special emphasis is laid on primary dosimetric information used for the planning of radiotherapy: depth doses, beam profiles, dose functions of a collimated beam. It has been shown that in general the accelerator meets the requirements of the International Electrotechnical Commission. General error in the focal absorbed dose at the expense of variable parameters of the accelerator was evaluated. It does not exceed +/- 3.5%.

  10. Community College Model Characteristics.

    Science.gov (United States)

    Raby, Rosalind Latiner

    This paper argues that community college models, especially in developing countries, can be victims of the vocational school fallacy, which holds that that two-year vocational/technical schools that ignore a general education foundation may not be an optimal means for solving worker needs. In addition, globalization has hastened a mirroring of the…

  11. Time-Dependent Stochastic Acceleration Model for the Fermi Bubbles

    CERN Document Server

    Sasaki, Kento; Terasawa, Toshio

    2015-01-01

    We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin-Helmholtz, Rayleigh-Taylor or Richtmyer-Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the s...

  12. Accelerate Climate Models with the IBM Cell Processor

    Science.gov (United States)

    Zhou, S.; Duffy, D.; Clune, T.; Williams, S.; Suarez, M.; Halem, M.

    2008-12-01

    Ever increasing model resolutions and physical processes in climate models demand continual computing power increases. The IBM Cell processor's order-of- magnitude peak performance increase over conventional processors makes it very attractive for fulfilling this requirement. However, the Cell's characteristics: 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. We selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (~50% total computation time), (2) has a high computational load relative to data traffic to/from main memory, and (3) performs independent calculations across multiple columns. We converted the baseline code (single-precision, Fortran code) to C and ported it to an IBM BladeCenter QS20, manually SIMDizing 4 independent columns, and found that a Cell with 8 SPEs can process more than 3000 columns per second. Compared with the baseline results, the Cell is ~6.76x, ~8.91x, ~9.85x faster than a core on Intel's Xeon Woodcrest, Dempsey, and Itanium2 respectively. Our analysis shows that the Cell could also speed up the dynamics component (~25% total computation time). We believe this dramatic performance improvement makes the Cell processor very competitive, at least as an accelerator. We will report our experience in porting both the C and Fortran codes and will discuss our work in porting other climate model components.

  13. Viscous cosmological models and accelerated Universes

    CERN Document Server

    Kremer, G M

    2003-01-01

    It is shown that a present acceleration with a past deceleration is a possible solution of the Friedmann equation by considering the Universe as a mixture of a scalar with a matter field and by including a non-equilibrium pressure term in the energy-momentum tensor. The dark energy density decays more slowly with respect to the time than the matter energy density does. The inclusion of the non-equilibrium pressure leads to a less pronounced decay of the matter field with a shorter period of past deceleration.

  14. Theoretical and experimental modeling of a rail gun accelerator

    Science.gov (United States)

    Zheleznyj, V. B.; Zagorskij, A. V.; Katsnel'Son, S. S.; Kudryavtsev, A. V.; Plekhanov, A. V.

    1993-04-01

    Results of a series of experiments in the acceleration of macrobodies are analyzed using an integral model of a current arc and a quasi-1D magnetic gasdynamic model. The integral model uses gasdynamic equations averaged by the size of a plasma pump and equations based on the second Kirchhoff's law for electrical current. The quasi-1D model is based on 1D magnetic gasdynamic equations for mean values of density, pressure, velocity, and internal power. Electromagnetic parameters are determined from Maxwell integral equations. It is concluded that the proposed models take into account the major mechanisms of momentum loss and are capable of adequately describing electromagnetic rail accelerators.

  15. Computer modeling of test particle acceleration at oblique shocks

    Science.gov (United States)

    Decker, Robert B.

    1988-01-01

    The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.

  16. Force-Time Characteristics and Running Velocity of Male Sprinters During the Acceleration Phase of Sprinting.

    Science.gov (United States)

    Mero, Antti

    1988-01-01

    Investigation of the force-time characteristics of eight male sprinters during the acceleration phase of the sprint start suggested that the braking and propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start. (Author/CB)

  17. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  18. Friedman-Robertson-Walker Models with Late-Time Acceleration

    Institute of Scientific and Technical Information of China (English)

    Abdussattar; S. R. Prajapati2

    2011-01-01

    @@ In order to account for the observed cosmic acceleration, a modiGcation of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed.The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.%In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that ora modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  19. Vibration acceleration promotes bone formation in rodent models

    Science.gov (United States)

    Uchida, Ryohei; Nakata, Ken; Kawano, Fuminori; Yonetani, Yasukazu; Ogasawara, Issei; Nakai, Naoya; Mae, Tatsuo; Matsuo, Tomohiko; Tachibana, Yuta; Yokoi, Hiroyuki; Yoshikawa, Hideki

    2017-01-01

    All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal) accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF) mouse model and a rib fracture healing (RFH) rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups) were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups) were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model) or nine days (RFH model). All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT). In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model) had significantly greater wet weight and were significantly larger (macroscopically and radiographically) than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV) in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group), but BV in the

  20. Friedmann-Robertson-Walker Models with Late-Time Acceleration

    CERN Document Server

    Abdussattar,

    2016-01-01

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  1. Friedman—Robertson—Walker Models with Late-Time Acceleration

    Science.gov (United States)

    Abdussattar; Prajapati, S. R.

    2011-02-01

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman—Robertson—Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  2. Research on cubic polynomial acceleration and deceleration control model for high speed NC machining

    Institute of Scientific and Technical Information of China (English)

    Hong-bin LENG; Yi-jie WU; Xiao-hong PAN

    2008-01-01

    To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (aec/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.

  3. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  4. A Phenomenological Cost Model for High Energy Particle Accelerators

    CERN Document Server

    Shiltsev, Vladimir

    2014-01-01

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  5. Modeling Reliability Growth in Accelerated Stress Testing

    Science.gov (United States)

    2013-12-01

    follow a poly-Weibull distribution. However, using an agent-based Monte Carlo simulation , it is shown that for typical products subjected to...Multiple Failure Modes Case – With Corrective Action ................................................ 94 Monte Carlo Simulation Procedure...explored the bi-Weibull model, however, they assert that Markov chain simulation is not necessary for obtaining posterior probabilities. Using real

  6. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  7. Cosmic Acceleration in a Model of Fourth Order Gravity

    CERN Document Server

    Banerjee, Shreya; Singh, Tejinder P

    2015-01-01

    We investigate a fourth order model of gravity, having a free length parameter, and no cosmological constant or dark energy. We consider cosmological evolution of a flat Friedmann universe in this model for the case that the length parameter is of the order of present Hubble radius. By making a suitable choice for the present value of the Hubble parameter, and value of third derivative of the scale factor (the jerk) we find that the model can explain cosmic acceleration to the same degree of accuracy as the standard concordance model. If the free length parameter is assumed to be time-dependent, and of the order of the Hubble parameter of the corresponding epoch, the model can still explain cosmic acceleration, and provides a possible resolution of the cosmic coincidence problem. We also compare redshift drift in this model, with that in the standard model.

  8. Hydraulic characteristics of sedimentary deposits at the J-PARC proton-accelerator, Japan

    Directory of Open Access Journals (Sweden)

    Marui Atsunao

    2007-12-01

    Full Text Available Hydraulic characteristics of sediments were investigated at J-PARC for the purpose of site characterization in relation with the construction of Japan's largest proton-accelerator. A total of 340 samples extracted from 9 exploratory wells were examined by standard laboratory tests and complemented with statistical analyses to quantitatively determine the main terrain attributes. Two main hydro-geological units were recognized, although a number of embedded layers defined a
    multilevel aquifer. Grain-size distribution derived from sieve analysis and the coefficient of uniformity showed that soils are poorly sorted. On the other hand, hydraulic conductivity was measured by a
    number of parameters such as a log-normal distribution. Conductivity was also predicted by empirical formulas, yielding values up to three orders of magnitude higher. Discrepancies were explained in
    terms of soil anisotropy and intrinsic differences in the calculation methods. Based on the Shepherd's approach, a power relationship between permeability and grain size was found at 2 wells. Hydraulic
    conductivity was also correlated to porosity. However, this  nterdependence was not systematic and therefore, properties at many parts of the profile were considered to be randomly distributed. Finally,
    logs of electrical conductivity suggested that variations of soil hydraulic properties can be associated to changes in water quality. In spite of the remaining uncertainties, results yielded from the study are useful to better understand the numerical modelling of the subsurface system in the site.

  9. Simulation of variation characteristics at thermostabilization of 27 GHz biperiodical accelerating structure

    Science.gov (United States)

    Kluchevskaya, Y. D.; Polozov, S. M.

    2016-07-01

    It was proposed to develop the biperiodical accelerating structure with operating frequency of 27 GHz to assess the possibility of design a compact accelerating structure for medical application. It is necessary to do the more careful simulation of variation characteristics this case because of decrease of wavelength 3-10 times in comparison with conventional structures 10 and 3 cm ranges. Results of such study are presented in the article. Also a combination of high electromagnetic fields and long pulses at a high operating frequency leads to the temperature increase in the structure, thermal deformation and significant change of the resonator characteristics, including the frequency of the RF pulse. Development results of three versions of system of temperature stabilization also discuses.

  10. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    Aasly, Sara Hegdahl; Vamvakas, Alex; Alme, Johan; Haustveit, Svein

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  11. Logic Model Checking of Unintended Acceleration Claims in Toyota Vehicles

    Science.gov (United States)

    Gamble, Ed

    2012-01-01

    Part of the US Department of Transportation investigation of Toyota sudden unintended acceleration (SUA) involved analysis of the throttle control software, JPL Laboratory for Reliable Software applied several techniques including static analysis and logic model checking, to the software; A handful of logic models were build, Some weaknesses were identified; however, no cause for SUA was found; The full NASA report includes numerous other analyses

  12. Ice-sheet modelling accelerated by graphics cards

    Science.gov (United States)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  13. Estimation of temporal gait parameters using Bayesian models on acceleration signals.

    Science.gov (United States)

    López-Nava, I H; Muñoz-Meléndez, A; Pérez Sanpablo, A I; Alessi Montero, A; Quiñones Urióstegui, I; Núñez Carrera, L

    2016-01-01

    The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results.

  14. An Accelerated Radioactive Decay (ARD) Model for Type Ia Supernovae

    Science.gov (United States)

    Rust, Bert W.; Leventhal, Marvin

    2016-01-01

    In 1975, Leventhal and McCall [Nature, 255, 690-692] presented a radioactive decay model 56N i --> 56Co --> 56Fe for the post-peak luminosity decay of Type I supernovae light curves, in which the two decay rates are both accelerated by a common factor. In 1976, Rust, Leventhal and McCall [Nature, 262, 118-120] used sums of exponentials fitting to confirm the acceleration hypothesis, but their result was nevertheless rejected by the astronomical community. Here, we model Type Ia light curves with a system of ODEs (describing the nuclear decays) forced by a Ni-deposition pulse modelled by a 3-parameter Weibull pdf, with all of this occuring in the center of a pre-existing, optically thick, spherical shell which thermalizes the emitted gamma rays. Fitting this model to observed light curves routinely gives fits which account for 99.9+% of the total variance in the observed record. The accelerated decay rates are so stable, for such a long time, that they must occur in an almost unchanging environment -- not it a turbulent expanding atmosphere. The amplitude of the Ni-deposition pulse indicates that its source is the fusion of hydrogen. Carbon and oxygen could not supply the large energy/nucleon that is observed. The secondary peak in the infrared light curve can be easily modelled as a light echo from dust in the back side of the pre-existing shell, and the separation between the peaks indicates a radius of ≈15 light days for the shell. The long-term stability of the acceleration suggests that it is a kinematic effect arising because the nuclear reactions occur either on the surface of a very rapidly rotating condensed object, or in a very tight orbit around such an object, like the fusion pulse in a tokomak reactor.

  15. Model independent analysis on the slowing down of cosmic acceleration

    CERN Document Server

    Zhang, Ming-Jian

    2016-01-01

    Possible slowing down of cosmic acceleration has attracted more and more attention. However, most analysis in previous work were commonly imposed in some parametrization models. In the present paper, we investigate this subject using the the Gaussian processes (GP), providing a model-independent analysis. We carry out the reconstruction by abundant data including luminosity distance from Union2, Union2.1 compilation and gamma-ray burst, and Hubble parameter from cosmic chronometer and baryon acoustic oscillation peaks. The GP reconstructions suggest that no slowing down of cosmic acceleration is approved within 95\\% C.L. from current observational data. We also test the influence of spatial curvature and Hubble constant, finding that spatial curvature does not present significant impact on the reconstructions. However, Hubble constant strongly influence the reconstructions especially at low redshift. In order to reveal the reason of inconsistence between our reconstruction and previous parametrization constra...

  16. 堰塞湖坝体动力特性及加速度分布规律大型振动台模型试验研究%LARGE-SCALE SHAKING TABLE MODEL TESTS ON DYNAMIC CHARACTERISTICS AND ACCELERATION DISTRIBUTION OF LANDSLIDE DAMS

    Institute of Scientific and Technical Information of China (English)

    石振明; 王友权; 彭铭; 刘珊

    2014-01-01

    distribution of landslide dams under aftershocks. The natural frequency,the damping ratio and the distribution of acceleration amplification factor of a model dam and their influencing factors are studied. The dynamic characteristic parameters of prototype landslide dams are calculated according to the similarity law. Two groups of shaking table tests are conducted to simulate the behaviors of two types of landslide dams:one with small particle size having the cohesive materials(dam I) and the other with large particle size not having the cohesive materials(dam II). The shaking table tests were conducted under different earthquake waves, different peak ground accelerations(PGA) and different water depths. The following conclusions are drawn:(1) The model dams have stable X-directional and Z-directional natural frequency and damping ratio. (2) Earlier shaking makes the natural frequency to decrease and the damping ratio to increase. The natural frequency of dam I is smaller than that of Dam II. The effects of water depth on the natural frequency of the two types of dams are different. (3) In vertical direction,acceleration amplification factor increases from the base to the top of the dam. The maximum accelerations occurred mainly on the top of the dams. In horizontal direction,the maximum accelerations occurred on the upstream and downstream surfaces of dam slopes,i.e. the surface amplification effect,which showed that the dam slope surfaces were prone to fail under earthquake action. (4) The earthquake waves with the predominant frequency close to the natural frequency of landslide dams induce the most prominent acceleration response. The earthquake in Z direction made the amplification factor of acceleration in X direction increase. The acceleration amplification factor decreases as PGA increases.

  17. Re-Acceleration Model for the "Toothbrush" Radio Relic

    Science.gov (United States)

    Kang, Hyesung

    2016-06-01

    The Toothbrush radio relic associated with the merging cluster 1RXS J060303.3 is presumed to be produced by relativistic electrons accelerated at merger-driven shocks. Since the shock Mach number inferred from the observed radio spectral index, M_{radio}≈ 2.8, is larger than that estimated from X-ray observations, M_{X}≲ 1.5, we consider the re-acceleration model in which a weak shock of M_s≈ 1.2-1.5 sweeps through the intracluster plasma with a preshock population of relativistic electrons. We find the models with a power-law momentum spectrum with the slope, s≈ 4.6, and the cutoff Lorentz factor, γ_{e,c}≈ 7-8× 10^4 can reproduce reasonably well the observed profiles of radio fluxes and integrated radio spectrum of the head portion of the Toothbrush relic.This study confirms the strong connection between the ubiquitous presence of fossil relativistic plasma originated from AGNs and the shock-acceleration model of radio relics in the intracluster medium.

  18. Re-acceleration model for the "Toothbrush" Radio Relic

    CERN Document Server

    Kang, Hyesung

    2016-01-01

    The Toothbrush radio relic associated the merging cluster 1RXS J060303.3 is presumed to be produced by relativistic electrons accelerated at merger-driven shocks. Since the shock Mach number inferred from the observed radio spectral index, $M_{radio}\\approx 2.8$, is larger than that estimated from X-ray observations, $M_{X-ray}\\lesssim 1.5$, we consider the re-acceleration model in which a weak shock of $M_s\\approx 1.2-1.5$ sweeps through the intracluster plasma with a preshock population of relativistic electrons. We find the models with a power-law momentum spectrum with the slope, $s\\approx 4.6$, and the cutoff Lorentz factor, $\\gamma_{e,c}\\approx 7-8\\times 10^4$ can reproduce reasonably well the observed profiles of radio fluxes and integrated radio spectrum of the head portion of the Toothbrush relic. This study confirms the strong connection between the ubiquitous presence of fossil relativistic plasma originated from AGNs and the shock-acceleration model of radio relics in the intracluster medium.

  19. Re-Acceleration Model for the "Sausage" Radio Relic

    Science.gov (United States)

    Kang, Hyesung

    2016-08-01

    The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock.However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, M_{radio}≈ 4.6, while the Mach number estimated from X-ray observations, M_{X-ray}≈ 2.7. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of M_s≈ 3 sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, s≈ 4.1, and the cutoff Lorentz factor, γ_{e,c}≈ 3-5× 10^4, can reproduce reasonably well the observed spatial profiles of radio fluxes and integrated radio spectrum of the Sausage relic.The possible origins of such relativistic electrons in the intracluster medium remain to be investigated further.

  20. Re-acceleration model for the `Sausage' Radio Relic

    CERN Document Server

    Kang, Hyesung

    2016-01-01

    The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock. However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, $M_{\\rm radio}\\approx 4.6$, while the Mach number estimated from X-ray observations, $M_{\\rm X-ray}\\approx 2.7$. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of $M_s\\approx 3$ sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, $s\\approx 4.1$, and the cutoff Lorentz factor, $\\gamma_{e,c}\\a...

  1. Scale-free network models with accelerating growth

    Institute of Scientific and Technical Information of China (English)

    Huan LI

    2009-01-01

    Complex networks are everywhere. A typical ex-ample is software network. Basing on analyzing evolutive structure of the software networks, we consider accelerat-ing growth of network as power-law growth, which can be more easily generalized to real systems than linear growth. For accelerating growth via a power law and scale-free state with preferential linking, we focus on exploring the generic property of complex networks. Generally, two scenarios are possible. In one of them, the links are undirected. In the other scenario, the links are directed. We propose two mod-els that can predict the emergence of power-law growth and scale-free state in good agreement with these two scenar-ios and can simulate much more real systems than existing scale-free network models. Moreover, we use the obtained predictions to fit accelerating growth and the connectivity distribution of software networks describing scale-free struc-ture. The combined analytical and numerical results indicate the emergence of a novel set of models that considerably enhance our ability to understand and characterize complex networks, whose applicability reaches far beyond the quoted examples.

  2. Control of Switching Characteristics of Silicon-based Semiconductor Diode Using High Energy Linear Accelerator

    Directory of Open Access Journals (Sweden)

    N. Harihara Krishnan

    2013-05-01

    Full Text Available This paper reports control of switching characteristics of silicon-based semiconductor diode using electron beam produced using linear accelerator. Conventionally, p-n junction chips of diode are exposed to gamma rays from a radioactive source or electron beam from a microtron, depending upon the required level of correction. High energy linear accelerators featuring simultaneous exposure of multiple chips are recent advancements in radiation technology. The paper presents the results of the radiation process using a 10 MeV linear accelerator as applied in industrial manufacturing of a high voltage diode (2600 V. The achieved values of reverse recovery time were found to be within the design limits. The suitability of the new process was verified by constructing the trade-off curve between the switching and conduction parameters of the diode for the complete range using large number of experimental samples. The paper summarizes the advantages of the new process over the conventional methods specifically with reference to industrial requirements. The developed process has been successfully implemented in semiconductor manufacturing.

  3. Re-acceleration Model for Radio Relics with Spectral Curvature

    CERN Document Server

    Kang, Hyesung

    2016-01-01

    Most of the observed features of radio gischt relics such as spectral steepening across the relic width and power-law-like integrated spectrum can be adequately explained by diffusive shock acceleration (DSA) model, in which relativistic electrons are (re-)accelerated at shock waves induced in the intracluster medium. However, Kang & Ryu (2015) showed that the steep spectral curvature in the integrated spectrum above $\\sim 2$ GHz detected in the Sausage relic in cluster CIZA J2242.8+5301 may not be interpreted by simple radiative cooling of postshock electrons. In order to understand such steepening, we here consider a model in which a spherical shock sweeps through and then exits out of a finite-size cloud with fossil relativistic electrons. The ensuing integrated radio spectrum is expected to steepen much more than predicted for aging postshock electrons, since the re-acceleration stops after the cloud-crossing time. Using DSA simulations that are intended to reproduce radio observations of the Sausage ...

  4. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Joshua Lee [Univ. of Tennessee, Knoxville, TN (United States)

    2008-12-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed

  5. GPU technology as a platform for accelerating physiological systems modeling based on Laguerre-Volterra networks.

    Science.gov (United States)

    Papadopoulos, Agathoklis; Kostoglou, Kyriaki; Mitsis, Georgios D; Theocharides, Theocharis

    2015-01-01

    The use of a GPGPU programming paradigm (running CUDA-enabled algorithms on GPU cards) in biomedical engineering and biology-related applications have shown promising results. GPU acceleration can be used to speedup computation-intensive models, such as the mathematical modeling of biological systems, which often requires the use of nonlinear modeling approaches with a large number of free parameters. In this context, we developed a CUDA-enabled version of a model which implements a nonlinear identification approach that combines basis expansions and polynomial-type networks, termed Laguerre-Volterra networks and can be used in diverse biological applications. The proposed software implementation uses the GPGPU programming paradigm to take advantage of the inherent parallel characteristics of the aforementioned modeling approach to execute the calculations on the GPU card of the host computer system. The initial results of the GPU-based model presented in this work, show performance improvements over the original MATLAB model.

  6. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    Science.gov (United States)

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-07-08

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.

  7. Design and characteristics of electric supercharger for diesel engine acceleration by additional rapid air injection

    Institute of Scientific and Technical Information of China (English)

    YAO Chun-de; ZHOU Hong-xiu

    2006-01-01

    The ES (electric supercharger) driven by a high-speed brushless motor was developed to solve the problem of smoke caused by the turbocharger's sluggish response during acceleration.Its rotation speed was from 6 000 r/min to 24 000 r/min,and the maximum flux was 0.1 kg/s.The structural design of the electric supercharger is novel,which makes it easier to set the lubricating installation and to assemble.The velocity distribution at the outlet of the electric supercharger is determined by hot-wire anemometry under various rotation speeds in steady state.Furthermore,the trends of the flux and charge rate with various speeds were analyzed.In addition,the transient response was detected from the motor setup to smooth running within 10 s,15 s,20 s and 25 s respectively,and the characteristic of the transient flux is under pilot study.Research results indicate that the electric supercharger can respond rapidly with the great flux,and it is independent of the operating conditions of a diesel engine.Therefore,it is a feasible way to reduce smoke emission and improve the acceleration performance.

  8. Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, D. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: drochman@bnl.gov; Haight, R.C. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: haight@lanl.gov; O' Donnell, J.M. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: odonnell@lanl.gov; Michaudon, A. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: michaudon@lanl.gov; Wender, S.A. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: wender@lanl.gov; Vieira, D.J. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: vieira@lanl.gov; Bond, E.M. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: bond@lanl.gov; Bredeweg, T.A. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: toddb@lanl.gov; Kronenberg, A. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: kronenberga@mail.phy.ornl.gov; Wilhelmy, J.B. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: j_wilhelmy@lanl.gov; Ethvignot, T. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Cha-hat tel (France)]. E-mail: thierry.ethvignot@cea.fr; Granier, T. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Cha-hat tel (France)]. E-mail: thierry.granier@cea.fr; Petit, M. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Chatel (France)]. E-mail: michael.petit@cea.fr; Danon, Y. [Rensselaer Polytechnic Institute, Troy, New York, NY 12180 (United States)]. E-mail: danony@rpi.edu

    2005-09-11

    A description is given of a lead slowing-down spectrometer (LSDS) installed at the 800-MeV proton accelerator of the Los Alamos Neutron Science Center (LANSCE). The LSDS is designed to study neutron-induced fission on actinides that can only be obtained or used in small quantities. The characteristics of this LSDS (energy-time relation, energy resolution, neutron flux) are presented through simulations with MCNPX and measurements with several different methods. Results on neutron-induced fission of {sup 235}U and {sup 239}Pu with tens of micrograms and tens of nanograms, respectively, are presented. Finally, additional MCNPX calculations have been performed to simulate the measurement of the cross-section for U235m(n,f) using different target quantities and different initial isomer-to-ground state compositions.

  9. A stochastic model of randomly accelerated walkers for human mobility

    Science.gov (United States)

    Gallotti, Riccardo; Bazzani, Armando; Rambaldi, Sandro; Barthelemy, Marc

    2016-08-01

    Recent studies of human mobility largely focus on displacements patterns and power law fits of empirical long-tailed distributions of distances are usually associated to scale-free superdiffusive random walks called Lévy flights. However, drawing conclusions about a complex system from a fit, without any further knowledge of the underlying dynamics, might lead to erroneous interpretations. Here we show, on the basis of a data set describing the trajectories of 780,000 private vehicles in Italy, that the Lévy flight model cannot explain the behaviour of travel times and speeds. We therefore introduce a class of accelerated random walks, validated by empirical observations, where the velocity changes due to acceleration kicks at random times. Combining this mechanism with an exponentially decaying distribution of travel times leads to a short-tailed distribution of distances which could indeed be mistaken with a truncated power law. These results illustrate the limits of purely descriptive models and provide a mechanistic view of mobility.

  10. The Fast Linear Accelerator Modeling Engine for FRIB Online Model Service

    CERN Document Server

    He, Z; Davidsaver, M; Fukushima, K; Shen, G; Ikegami, M

    2016-01-01

    Commissioning of a large accelerator facility like FRIB needs support from an online beam dynamics model. Considering the new physics challenges of FRIB such as modeling of non-axisymmetric superconducting RF cavities and multi-charge state acceleration, there is no readily available online beam tuning code. The design code of FRIB super-conducting linac, IMPACT-Z, is not suitable for online tuning because of its code design and running speed. Therefore, the Fast Linear Accelerator Modeling Engine (FLAME), specifically designed to fulfill FRIB's online modeling challenges, is proposed. The physics model of FLAME, especially its novel way of modeling non-axisymmetric superconducting RF cavities using a multipole expansion based thin-lens kick model, is discussed in detail, and the benchmark results against FRIB design code is presented, after which the software design strategy of FLAME and its execution speed is presented.

  11. What properties of numbers are needed to model accelerated observers in relativity?

    CERN Document Server

    Székely, Gergely

    2012-01-01

    We investigate the possible structures of numbers (as physical quantities) over which accelerated observers can be modeled in special relativity. We present a general axiomatic theory of accelerated observers which has a model over every real closed field. We also show that, if we would like to model certain accelerated observers, then not every real closed field is suitable, e.g., uniformly accelerated observers cannot be modeled over the field of real algebraic numbers. Consequently, the class of fields over which uniform acceleration can be investigated is not axiomatizable in the language of ordered fields.

  12. Acceleration of inertial particles in wall bounded flows: DNS and LES with stochastic modelling of the subgrid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zamansky, Remi; Vinkovic, Ivana; Gorokhovski, Mikhael, E-mail: ivana.vinkovic@univ-lyonl.fr [Laboratoire de Mecanique des Fluides et d' Acoustique CNRS UMR 5509 Ecole Centrale de Lyon, 36, av. Guy de Collongue, 69134 Ecully Cedex (France)

    2011-12-22

    Inertial particle acceleration statistics are analyzed using DNS for turbulent channel flow. Along with effects recognized in homogeneous isotropic turbulence, an additional effect is observed due to high and low speed vortical structures aligned with the channel wall. In response to those structures, particles with moderate inertia experience strong longitudinal acceleration variations. DNS is also used in order to assess LES-SSAM (Subgrid Stochastic Acceleration Model), in which an approximation to the instantaneous non-filtered velocity field is given by simulation of both, filtered and residual, accelerations. This approach allow to have access to the intermittency of the flow at subgrid scale. Advantages of LES-SSAM in predicting particle dynamics in the channel flow at a high Reynolds number are shown.

  13. Modeling Characteristics Of Surfaces For Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.; Durden, Stephen L.

    1992-01-01

    Paper reviews mathematical models of polarimetric radar backscattering characteristics of various types of terrain; forests, grasslands, and lava fields. Represents approach to imaging radar polarimetry in which one accumulates models predicting realistic polarization signatures and represent distinct scattering processes, without attempting full vector solutions of Maxwell's equations in all cases. Idea to develop ability to invert models to identify unknown terrain depicted in polarimetric radar images. Describes models, major scattering characteristics predicted by models, and interpretation of characteristics in terms of dominant scattering mechanisms. Models predict realistic polarization signatures.

  14. Modelling CH$_3$OH masers: Sobolev approximation and accelerated lambda iteration method

    CERN Document Server

    Nesterenok, Aleksandr

    2015-01-01

    A simple one-dimensional model of CH$_3$OH maser is considered. Two techniques are used for the calculation of molecule level populations: the accelerated lambda iteration (ALI) method and the large velocity gradient (LVG), or Sobolev, approximation. The LVG approximation gives accurate results provided that the characteristic dimensions of the medium are larger than 5-10 lengths of the resonance region. We presume that this condition can be satisfied only for the largest observed maser spot distributions. Factors controlling the pumping of class I and class II methanol masers are considered.

  15. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging.

  16. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  17. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.

    2010-06-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  18. Image processing algorithm acceleration using reconfigurable macro processor model

    Institute of Scientific and Technical Information of China (English)

    孙广富; 陈华明; 卢焕章

    2004-01-01

    The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of reconfigurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented.Two image algorithms are developed: template-based automatic target recognition and zone labeling. One is estimating for motion direction in the infrared image background, another is line picking-up algorithm based on image zone labeling and phase grouping technique. It is a kind of "hardware" function that can be called by the DSP in high-level algorithm.It is also a kind of hardware algorithm of the DSP. The results of experiments show the reconfigurable computing technology based on RMP is an ideal accelerating means to deal with the high-speed image processing tasks. High real time performance is obtained in our two applications on RMP.

  19. A GPGPU accelerated modeling environment for quantitatively characterizing karst systems

    Science.gov (United States)

    Myre, J. M.; Covington, M. D.; Luhmann, A. J.; Saar, M. O.

    2011-12-01

    The ability to derive quantitative information on the geometry of karst aquifer systems is highly desirable. Knowing the geometric makeup of a karst aquifer system enables quantitative characterization of the systems response to hydraulic events. However, the relationship between flow path geometry and karst aquifer response is not well understood. One method to improve this understanding is the use of high speed modeling environments. High speed modeling environments offer great potential in this regard as they allow researchers to improve their understanding of the modeled karst aquifer through fast quantitative characterization. To that end, we have implemented a finite difference model using General Purpose Graphics Processing Units (GPGPUs). GPGPUs are special purpose accelerators which are capable of high speed and highly parallel computation. The GPGPU architecture is a grid like structure, making it is a natural fit for structured systems like finite difference models. To characterize the highly complex nature of karst aquifer systems our modeling environment is designed to use an inverse method to conduct the parameter tuning. Using an inverse method reduces the total amount of parameter space needed to produce a set of parameters describing a system of good fit. Systems of good fit are determined with a comparison to reference storm responses. To obtain reference storm responses we have collected data from a series of data-loggers measuring water depth, temperature, and conductivity at locations along a cave stream with a known geometry in southeastern Minnesota. By comparing the modeled response to those of the reference responses the model parameters can be tuned to quantitatively characterize geometry, and thus, the response of the karst system.

  20. Modelling supported driving as an optimal control cycle: Framework and model characteristics

    CERN Document Server

    Wang, Meng; Daamen, Winnie; Hoogendoorn, Serge P; van Arem, Bart

    2014-01-01

    Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of automated vehicles are controlled to optimise a cost function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the framework is demonstrated with controller design of Adaptive Cruise Control (ACC) and Cooperative ACC (C-ACC) systems. The proposed ACC and C-ACC model characteristics are investigated analytically, with focus on equilibrium solutions and stability properties. The proposed ACC model produces plausible human car-following behaviour and is unconditionally locally stable. By careful tuning of parameters, the ACC model generates similar stability characteristics as human driver models. The proposed C-ACC model results in convective downstream and abso...

  1. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  2. Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator

    Institute of Scientific and Technical Information of China (English)

    Huang Xian-Bin; Chen Guang-Hua; Zhang Zheng-Wei; Ouyang Kai; Li Jun; Zhang Zhao-Hui; Zhou Rong-Guo; Wang Gui-Lin; Yang Li-Bing; Li Jing; Zhou Shao-Tong; Ren Xiao-Dong; Zhang Si-Qun; Dan Jia-Kun; Cai Hong-Chun; Duan Shu-Chao

    2012-01-01

    We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 M A and a rising time~90 ns.The arrays are made up of(8-32)x5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy~13 kJ and the energy conversion efficiency~9%(24x5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)x 107 cm/s.

  3. Full velocity difference and acceleration model for a car-following theory

    Science.gov (United States)

    Yu, Shaowei; Liu, Qingling; Li, Xiuhai

    2013-05-01

    In order to describe the car-following behavior more actually in real traffic, a full velocity difference and acceleration model (for short, FVDAM) is proposed by synthetically taking into account headway, velocity difference and acceleration of the leading car on the basis of full velocity difference model. The analytical method and numerical simulation results show that the proposed model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that incorporating the acceleration of the leading car into car-following model can stabilize traffic flow, suppress the traffic jam and increase capacity, and that the following car in FVDAM can accelerate more quickly than in FVDM.

  4. Advanced Computing Tools and Models for Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  5. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.

    2003-01-01

    Using error diagrams, we quantify the forecasting of characteristic-earthquake occurence in a recently introduced minimalist model. Initially we connect the earthquake alarm at a fixed time after the occurence of a characteristic event. The evaluation of this strategy leads to a one-dimensional n...

  6. Characteristic parameters of 6--21 MeV electron beams from a 21 MeV linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L. (Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada) Lingman, D. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Computer Science, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada)); Gilbert, L.D. (Thekkumthala, J. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada))

    1991-07-01

    Dosimetry measurements have been carried out for the electron beams produced by a linear accelerator at energies 6, 8, 10, 14, 18, and 21 MeV. Characteristic parameters of the central axis dose distributions were derived and compared to corresponding values of electron beams from other accelerators in clinical use where such a comparison is appropriate. A comprehensive set of dosimetric parameters is provided for electron beam treatment planning. The data include central axis depth dose, range--energy parameters, beam penumbra and uniformity.

  7. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  8. Effect of Particle Acceleration Process on the Flare Characteristics of Blazars

    Indian Academy of Sciences (India)

    S. Bhattacharyya; S. Sahayanathan; C. L. Kaul

    2002-03-01

    Following the kinetic equation approach, we study the flare processes in blazars in the optical-to-X-ray region, considering energy dependent acceleration time-scale of electrons and synchrotron and adiabatic cooling as their dominant energy loss processes.

  9. A class of additive-accelerated means regression models for recurrent event data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this article, we propose a class of additive-accelerated means regression models for analyzing recurrent event data. The class includes the proportional means model, the additive rates model, the accelerated failure time model, the accelerated rates model and the additive-accelerated rate model as special cases. The new model offers great flexibility in formulating the effects of covariates on the mean functions of counting processes while leaving the stochastic structure completely unspecified. For the inference on the model parameters, estimating equation approaches are derived and asymptotic properties of the proposed estimators are established. In addition, a technique is provided for model checking. The finite-sample behavior of the proposed methods is examined through Monte Carlo simulation studies, and an application to a bladder cancer study is illustrated.

  10. HVDC System Characteristics and Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)

    2001-07-01

    This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.

  11. Executable SysML Model Development Accelerator for the Constellation Program Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at investigating ways to accelerate the creation of SysML based models that can be used for model checking and more generally for...

  12. Curriculum innovation in an accelerated BSN program: the ACE Model.

    Science.gov (United States)

    Suplee, Patricia D; Glasgow, Mary Ellen

    2008-01-01

    As the demand for registered nurses continues to rise, so too has the creation of accelerated baccalaureate nursing programs for second-degree students. This article describes an 11-month Accelerated Career Entry (ACE) Nursing Program's innovative curriculum design, which has a heavy emphasis on technology, professional socialization, and the use of a standardized patient experience as a form of summative evaluation. In addition, challenges of this program are presented. Since 2002, the ACE Program has graduated over 500 students with an average first-time NCLEX pass rate of 95-100%. Although the number of graduates from accelerated programs does not solve the severe nursing shortage, the contributions of these intelligent, assertive, pioneering graduates are important for health care.

  13. STATISTICAL INFERENCE OF WEIBULL DISTRIBUTION FOR TAMPERED FAILURE RATE MODEL IN PROGRESSIVE STRESS ACCELERATED LIFE TESTING

    Institute of Scientific and Technical Information of China (English)

    WANG Ronghua; FEI Heliang

    2004-01-01

    In this note, the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time. For the parametric setting where the scale parameter satisfying the equation of the inverse power law is Weibull, maximum likelihood estimation is investigated.

  14. Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code%Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code

    Institute of Scientific and Technical Information of China (English)

    呼义翔; 雷天时; 吴撼宇; 郭宁; 韩娟娟; 邱爱慈; 王亮平; 黄涛; 丛培天; 张信军; 李岩; 曾正中; 孙铁平

    2011-01-01

    The transmission-line-circuit model of the Z accelerator, developed originally by W. A. STYGAR, P. A. CORCORAN, et al., is revised. The revised model uses different calculations for the electron loss and flow impedance in the magnetically insulated transmission line system of the Z accelerator before and after magnetic insulation is established. By including electron pressure and zero electric field at the cathode, a closed set of equations is obtained at each time step, and dynamic shunt resistance (used to represent any electron loss to the anode) and flow impedance are solved, which have been incorporated into the transmission line code for simulations of the vacuum section in the Z accelerator. Finally, the results are discussed in comparison with earlier findings to show the effectiveness and limitations of the model.

  15. Comparing acceleration and speed tuning in macaque MT: physiology and modeling.

    Science.gov (United States)

    Price, N S C; Ono, S; Mustari, M J; Ibbotson, M R

    2005-11-01

    Studies of individual neurons in area MT have traditionally investigated their sensitivity to constant speeds. We investigated acceleration sensitivity in MT neurons by comparing their responses to constant steps and linear ramps in stimulus speed. Speed ramps constituted constant accelerations and decelerations between 0 and 240 degrees /s. Our results suggest that MT neurons do not have explicit acceleration sensitivity, although speed changes affected their responses in three main ways. First, accelerations typically evoked higher responses than the corresponding deceleration rate at all rates tested. We show that this can be explained by adaptation mechanisms rather than differential processing of positive and negative speed gradients. Second, we inferred a cell's preferred speed from the responses to speed ramps by finding the stimulus speed at the latency-adjusted time when response amplitude peaked. In most cells, the preferred speeds inferred from deceleration were higher than those for accelerations of the same rate or from steps in stimulus speed. Third, neuron responses to speed ramps were not well predicted by the transient or sustained responses to steps in stimulus speed. Based on these findings, we developed a model incorporating adaptation and a neuron's speed tuning that predicted the higher inferred speeds and lower spike rates for deceleration responses compared with acceleration responses. This model did not predict acceleration-specific responses, in accordance with the lack of acceleration sensitivity in the neurons. The outputs of this single-cell model were passed to a population-vector-based model used to estimate stimulus speed and acceleration. We show that such a model can accurately estimate relative speed and acceleration using information from the population of neurons in area MT.

  16. Modeling of Electromagnetic Heating in RF Copper Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Awida, M. H. [Fermilab; Gonin, I. [Fermilab; Romanov, Romanov [Fermilab; Khabiboulline, T. [Fermilab; Yakovlev, V. [Fermilab

    2016-01-17

    Electromagnetic heating is a critical issue in normal conducting copper RF cavities that are employed in particle accelerators. With several tens to hundreds of kilowatts dissipated RF power, there must be an effective cooling scheme whether it is water or air based or even a combination of both. In this paper we investigate the electromagnetic heating in multiple cavities that were designed at Fermilab exploring how the electromagnetic and thermal analyses are coupled together to properly design the cooling of such cavities.

  17. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    Energy Technology Data Exchange (ETDEWEB)

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  18. Characteristics of Spatial Distribution for Peak Ground Acceleration in 3 Aug 2014 Ms6.5 Ludian Earthquake, Yuanan, China

    Science.gov (United States)

    kun, Chen; YanXiang, Yu

    2016-04-01

    Considering the geological context, focal mechanism solutions, aftershock distribution and attenuation characteristics of the ground motion in western China, shakemaps of PGA (Peak Ground Acceleration) for The Ludian Ms6.5 earthquake on 3 Aug 2014 was acquired, in which the Mothed of rapid generation ShakeMaps considering site effects was used, and the peak ground acceleration of 62 stations for this earthquake was used as interpolation. Then, distribution of PGA was amended by using PGA observations to correct system bias of theoretical estimates in the area without PGA observations. The results show that the attenuation of ground motion with distance for this earthquake was faster than that of Wang Su-Yun in 2000; the result of bias-corrected was more consistent with attenuation law of this earthquake. After adjusting, for the area with PGA greater than 40 cm / s2 was nearly 8000 km2, which was is reduced by about 40%.

  19. Modelling of dc characteristics for granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  20. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  1. Accelerated testing statistical models, test plans, and data analysis

    CERN Document Server

    Nelson, Wayne B

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering.""-Dev G.

  2. Normalization and Implementation of Three Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.; Gottlieb, Robert G.

    2016-01-01

    Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the real universe is that gravitational fields are sensitive to the asphericity of their generating central bodies. The gravitational potential of an aspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities that must be removed to generalize the method and solve for any possible orbit, including polar orbits. Samuel Pines, Bill Lear, and Robert Gottlieb developed three unique algorithms to eliminate these singularities. This paper documents the methodical normalization of two of the three known formulations for singularity-free gravitational acceleration (namely, the Lear and Gottlieb algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre polynomials and Associated Legendre Functions (ALFs) for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  3. Modeling Pulse Characteristics in Xenon with NEST

    CERN Document Server

    Mock, Jeremy; Kazkaz, Kareem; Szydagis, Matthew; Tripathi, Mani; Uvarov, Sergey; Woods, Michael; Walsh, Nicholas

    2013-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, effects such as the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, parameters such as ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors.

  4. Accelerated Aging of Intervertebral Discs in a Mouse Model of Progeria

    Science.gov (United States)

    Vo, Nam; Seo, Hyoung-Yeon; Robinson, Andria; Sowa, Gwendolyn; Bentley, Douglas; Taylor, Lauren; Studer, Rebecca; Usas, Arvydas; Huard, Johnny; Alber, Sean; Watkins, Simon C.; Lee, Joon; Coehlo, Paulo; Wang, Dong; Loppini, Mattia; Robbins, Paul D.; Niedernhofer, Laura J.; Kang, James

    2012-01-01

    Intervertebral disc degeneration (IDD) is a common and debilitating disorder that results in reduced flexibility of the spine, pain, and reduced mobility. Risk factors for IDD include age, genetic predisposition, injury, and other environmental factors such as smoking. Loss of proteoglycans (PGs) contributes to IDD with advancing age. Currently there is a lack of a model for rapid investigation of disc aging and evaluation of therapeutic interventions. Here we examined progression of disc aging in a murine model of a human progeroid syndrome caused by deficiency of the DNA repair endonuclease, ERCC1–XPF (Ercc1−/Δ mice). The ERCC1-deficient mice showed loss of disc height and degenerative structural changes in their vertebral bodies similar to those reported for old rodents. Compared to their wild-type littermates, Ercc1−/Δ mice also exhibit other age-related IDD characteristics, including premature loss of disc PG, reduced matrix PG synthesis, and enhanced apoptosis and cell senescence. Finally, the onset of age-associated disc pathologies was further accelerated in Ercc1−/Δ mice following chronic treatment with the chemotherapeutic agent mechlorethamine. These results demonstrate that Ercc1−/Δ mice represent an accurate and rapid model of disc aging and provide novel evidence that DNA damage negatively impacts PG synthesis. PMID:20973062

  5. Considering Late-Time Acceleration in Some Cosmological Models

    Directory of Open Access Journals (Sweden)

    S. Davood Sadatian

    2013-01-01

    Full Text Available We study two cosmological models: a nonminimally coupled scalar field on brane world model and a minimally coupled scalar field on Lorentz invariance violation model. We compare some cosmological results in these scenarios. Also, we consider some types of Rip singularity solution in both models.

  6. A Stochastic Acceleration Model of Radio Emission from Pulsar Wind Nebulae

    Science.gov (United States)

    Tanaka, S.; Asano, K.

    2016-06-01

    The broadband emission of Pulsar Wind Nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the difference of spectral indices at radio and X-rays are not reproduced by the standard shock particle acceleration and cooling processes, and then, for example, the broken power-law spectrum for the particle energy distribution at the injection has been groundlessly adopted. Here, we propose a possible resolution for the particle distribution; the radio emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside the PWNe. The turbulence may be induced by the interaction of the pulsar wind with the supernova ejecta. We upgrade our one-zone spectral evolution model including the stochastic acceleration and apply it to the Crab Nebula. We consider both continuous and impulsive injections of particles to the stochastic acceleration process. The radio emission in the Crab Nebula is reproduced by our stochastic acceleration model. The required forms of the momentum diffusion coefficient will be discussed.

  7. Ribbon thickness dependence of the Magnetic Alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons

    Science.gov (United States)

    Nomura, M.; Shimada, T.; Tamura, F.; Yamamoto, M.; Hara, K.; Hasegawa, K.; Ohmori, C.; Takata, K.; Toda, M.; Yoshii, M.; Schnase, A.

    2014-06-01

    We employ Magnetic Alloy (MA) core loaded RF cavities for the J-PARC synchrotrons to achieve a high field gradient. The MA core has a laminated structure of 18 μm thick ribbon layers. We have been developing high shunt impedance MA cores to prepare for an increase of beam power. At low frequencies, it is well known that the eddy current loss in the ribbon is proportional to the square of the ribbon thickness. The MA core shunt impedance can be increased by using thinner ribbons. On the other hand, at high frequencies, the MA core magnetic characteristics are largely different from low frequencies. Using thinner ribbons might be effective to increase the MA core shunt impedance in the accelerating frequency region of the J-PARC synchrotrons. We reviewed the theoretical calculations of the ribbon thickness dependence of the MA core magnetic characteristics and we derived the ribbon thickness dependence from measured data. The measured data show that the MA core shunt impedance is inversely proportional to the ribbon thickness in the accelerating frequency region of the J-PARC synchrotrons, which is consistent with our calculations.

  8. Characteristic Polynomials of Complex Random Matrix Models

    CERN Document Server

    Akemann, G

    2003-01-01

    We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for hermitian matrices and it also provides a generalization of the Christoffel formula to the complex plane. The derivation we present holds for complex matrix models with a general weight function at finite-N, where N is the size of the matrix. We give some explicit examples at finite-N for specific weight functions. The characteristic polynomials in the large-N limit at weak and strong non-hermiticity follow easily and they are universal in the weak limit. We also comment on the issue of the BMN large-N limit.

  9. Numerical design and model measurements for a 1.3 GHz microtron accelerating cavity

    Science.gov (United States)

    Kleeven, W. J. G. M.; Theeuwen, M. E. H. J.; Knoben, M. H. M.; Moerdijk, A. J.; Botman, J. I. M.; van der Heide, J. A.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    As part of the free electron laser project TEUFEL, a 25 MeV racetrack microtron is under construction at the Eindhoven University. The accelerating cavity of this microtron is a standing wave on axis coupled structure. It consists of three accelerating cells and two coupling cells. Numerical field calculations for this cavity were done with the computer codes SUPERFISH, URMEL-T and MAFIA. Not only the accelerating modes but also the dangerous beam breakup modes were calculated with MAFIA. An aluminium, scale 1:1 model of the structure was made in order to measure various cavity properties. Field profiles were measured with the perturbation ball method. An equivalent LC-circuit simulation of the accelerating structure was made, which serves as a model for the interpretation of the results.

  10. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  11. Shear creep characteristics and constitutive model of limestone

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Mao Xianbiao; Hu Xinyu

    2016-01-01

    The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponen-tial type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10-7. Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained, and the sums of squared residuals belong to 10-3 order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep char-acteristics of limestone very well.

  12. Trait Characteristics of Diffusion Model Parameters

    Directory of Open Access Journals (Sweden)

    Anna-Lena Schubert

    2016-07-01

    Full Text Available Cognitive modeling of response time distributions has seen a huge rise in popularity in individual differences research. In particular, several studies have shown that individual differences in the drift rate parameter of the diffusion model, which reflects the speed of information uptake, are substantially related to individual differences in intelligence. However, if diffusion model parameters are to reflect trait-like properties of cognitive processes, they have to qualify as trait-like variables themselves, i.e., they have to be stable across time and consistent over different situations. To assess their trait characteristics, we conducted a latent state-trait analysis of diffusion model parameters estimated from three response time tasks that 114 participants completed at two laboratory sessions eight months apart. Drift rate, boundary separation, and non-decision time parameters showed a great temporal stability over a period of eight months. However, the coefficients of consistency and reliability were only low to moderate and highest for drift rate parameters. These results show that the consistent variance of diffusion model parameters across tasks can be regarded as temporally stable ability parameters. Moreover, they illustrate the need for using broader batteries of response time tasks in future studies on the relationship between diffusion model parameters and intelligence.

  13. The stability analysis of the full velocity and acceleration velocity model

    Science.gov (United States)

    Xiaomei, Zhao; Ziyou, Gao

    2007-03-01

    The stability analysis is one of the important problems in the traffic flow theory, since the congestion phenomena can be regarded as the instability and the phase transition of a dynamical system. Theoretically, we analyze the stable conditions of the full velocity and acceleration difference model (FVADM), which is proposed by introducing the acceleration difference term based on the previous car-following models (the optimal velocity model and the full velocity difference model, OVM and FVDM). By numerical simulations, it is found that when the traffic flow is unstable, the traffic jam in the FVADM is weaker than that in the FVDM. Also it is observed that the spreading speed of the jam is slower in the FVADM than that in the FVDM and the fluctuations of vehicles in the FVADM are smaller than those in the FVDM. Therefore, the acceleration difference term has strong effects on traffic dynamics and plays an important role in stabilizing the traffic flow.

  14. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    Science.gov (United States)

    Hossain, Murshed

    2014-07-08

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  15. Accelerating Monte Carlo Markov chains with proxy and error models

    Science.gov (United States)

    Josset, Laureline; Demyanov, Vasily; Elsheikh, Ahmed H.; Lunati, Ivan

    2015-12-01

    In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the "exact" model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.

  16. Tessera terrain: Characteristics and models of origin

    Science.gov (United States)

    Bindschadler, D. L.; Head, James W.

    1989-01-01

    Tessera terrain consists of complexly deformed regions characterized by sets of ridges and valleys that intersect at angles ranging from orthogonal to oblique, and were first viewed in Venera 15/16 SAR data. Tesserae cover more area (approx. 15 percent of the area north of 30 deg N) than any of the other tectonic units mapped from the Venera data and are strongly concentrated in the region between longitudes 0 deg E and 150 deg E. Tessera terrain is concentrated between a proposed center of crustal extension and divergence in Aphrodite and a region of intense deformation, crustal convergence, and orogenesis in western Ishtar Terra. Thus, the tectonic processes responsible for tesserae are an important part of Venus tectonics. As part of an effort to understand the formation and evolution of this unusual terrain type, the basic characteristics of the tesserae were compared to the predictions made by a number of tectonic models. The basic characteristics of tessera terrain are described and the models and some of their basic predictions are briefly discussed.

  17. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator

    Directory of Open Access Journals (Sweden)

    Attalla Ehab

    2010-01-01

    Full Text Available Dosimetric properties of virtual wedge (VW and physical wedge (PW in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs and PW factors (PWFs have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  18. Reproductive characteristics of Awassi ewes under Cornell alternate month accelerated lambing system

    Directory of Open Access Journals (Sweden)

    Sabri Gül

    2010-04-01

    Full Text Available We investigated the reproductive responses of Awassi ewes under Cornell alternate month accelerated lambing (CAMAL system. Ewes were randomly allocated to two experimental groups. The first group (control group consists of 20 ewes exposed to rams in September under conventional management system while the second group (CAMAL were divided into four sub-flocks contain 20 head of ewes each one were exposed to rams to obtain three lambing in two years with different breeding and lambing months. In CAMAL ewes, oestrus was synchronized using intra-vaginal sponges with progesterone and PMSG administration. Results revealed that within CAMAL group, the percentage of animals in heat, onset of oestrus, litter size, birth weight and weaning weight were affected by mating months. September and November were the most appropriate months for oestrus ratio (97.5 % and litter size (1.18 and 0.98, respectively. Lambs of control group were heavier at birth and weaning than those of CAMAL group. On the other hand lamb yield was not affected statistically by the CAMAL administration.

  19. Time and Space Dependent Stochastic Acceleration Model for the Fermi Bubbles

    CERN Document Server

    Sasaki, K; Terasawa, T

    2015-01-01

    Fermi-LAT reveals two huge gamma-ray bubbles existing in the Galactic Center, called 'Fermi Bubbles'. The existence of two microwave bubbles at the same region are also reported by the observation by WMAP, dubbed 'WMAP haze'. In order to explain these components, It has been argued that the gamma-rays arise from Inverse-Compton scattering of relativistic electrons accelerated by plasma turbulence, and the microwaves are radiated by synchrotron radiation. But no previous research reproduces both the Fermi Bubbles and WMAP haze under typical magnetic fields in the galaxy. We assume that shocks present in the bubbles and the efficiency of the acceleration by plasma turbulence, 'stochastic acceleration', changes with the distance from the shock front. The distance from the shock front increases with time, accordingly the efficiency of the acceleration changes with time. We also consider the time development of the electrons escape from the turbulence by diffusive loss. Our model succeed to reproduce both the obse...

  20. Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions

    CERN Document Server

    Hemker, Roy G

    2015-01-01

    In this dissertation, a fully object-oriented, fully relativistic, multi-dimensional Particle-In-Cell code was developed and applied to answer key questions in plasma-based accelerator research. The simulations increase the understanding of the processes in laser plasma and beam-plasma interaction, allow for comparison with experiments, and motivate the development of theoretical models. The simulations support the idea that the injection of electrons in a plasma wave by using a transversely propagating laser pulse is possible. The beam parameters of the injected electrons found in the simulations compare reasonably with beams produced by conventional methods and therefore laser injection is an interesting concept for future plasma-based accelerators. Simulations of the optical guiding of a laser wakefield driver in a parabolic plasma channel support the idea that electrons can be accelerated over distances much longer than the Rayleigh length in a channel. Simulations of plasma wakefield acceleration in the ...

  1. Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yin, Lin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stark, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    One of the long-standing problems in the community is the question of how we can model “next-generation” laser-ion acceleration in a computationally tractable way. A new particle tracking capability in the LANL VPIC kinetic plasma modeling code has enabled us to solve this long-standing problem

  2. New, More Authentic Model for AIDS Will Accelerate Studies | Poster

    Science.gov (United States)

    By Frank Blanchard, Staff Writer, and Jeff Lifson, Guest Writer Researchers are working to develop a more authentic animal model of human immunodeficiency virus (HIV) infection and AIDS that is expected to speed up studies of experimental treatments and vaccines.

  3. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    Science.gov (United States)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa

  4. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator

    Science.gov (United States)

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Savage, M. E.; Rochau, G. A.; Bailey, J. E.; Nash, T. J.; Sceiford, M. E.; Struve, K. W.; Corcoran, P. A.; Whitney, B. A.

    2010-01-01

    A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel , in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002), p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.

  5. GPU accelerated numerical simulations of viscoelastic phase separation model.

    Science.gov (United States)

    Yang, Keda; Su, Jiaye; Guo, Hongxia

    2012-07-05

    We introduce a complete implementation of viscoelastic model for numerical simulations of the phase separation kinetics in dynamic asymmetry systems such as polymer blends and polymer solutions on a graphics processing unit (GPU) by CUDA language and discuss algorithms and optimizations in details. From studies of a polymer solution, we show that the GPU-based implementation can predict correctly the accepted results and provide about 190 times speedup over a single central processing unit (CPU). Further accuracy analysis demonstrates that both the single and the double precision calculations on the GPU are sufficient to produce high-quality results in numerical simulations of viscoelastic model. Therefore, the GPU-based viscoelastic model is very promising for studying many phase separation processes of experimental and theoretical interests that often take place on the large length and time scales and are not easily addressed by a conventional implementation running on a single CPU.

  6. Heterogeneity and aggregation in a financial accelerator model

    NARCIS (Netherlands)

    Assenza, T.; Delli Gatti, D.; Gallegati, M.

    2007-01-01

    In this paper we present a macroeconomic model in which changes in the variance (and higher moments of the distribution) of firm's financial conditions - i.e. "distributive shocks" - are bound to play a crucial role in the determination of output fluctuations. Firms differ by degree of financial rob

  7. In Defense of an Accelerating Universe: Model Insensitivity of the Hubble Diagram

    CERN Document Server

    Ringermacher, H I

    2016-01-01

    Nielsen, Guffanti and Sarkar, in their recent Nature article, present a detailed argument that the evidence for cosmic acceleraton is marginal and that a coasting universe model, namely that of the "Milne Universe", fits the same SNe Ia data set in a Hubble diagram (distance modulus vs. redshift) nearly as well. However, we find that when the SNe data, the LCDM model and Milne model are plotted as scale factor vs. linear cosmological time in a model-independent fashion the two resulting curves separate significantly above the noise making it exceptionally clear that the universe is accelerating and the Milne model cannot fit the time-data. In this plot, the Milne model generates a straight line, while LCDM continues to show an excellent fit to acceleration. The separation of these two models on this type of plot demonstrates the efficacy of this new plot procedure.

  8. DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking

    Directory of Open Access Journals (Sweden)

    Jiří Barnat

    2009-12-01

    Full Text Available In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool outperforms non-accelerated version of the algorithm and we discuss where the limits of the tool are and what we intend to do in the future to avoid them.

  9. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    Energy Technology Data Exchange (ETDEWEB)

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Greco, A., E-mail: serena.dalena@fis.unical.it [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy)

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  10. Neutronic characteristics of coupled moderator proposed in integrated model

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Meigo, Shin-ichiro; Sakata, Hideaki; Kai, Tetsuya; Harada, Masahide; Ikeda, Yujiro; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-05-01

    A pulsed spallation source for the materials science and the life science is currently developing for its construction in the High Intensity Proton Accelerator Project proposed jointly by the Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK). This report presents the analytical results of the neutronic characteristics of the coupled moderator based on the analytical results obtained by using an integrated model which has established on the extensive neutronic and technical study. Total heat deposition in a hydrogen (H{sub 2}) moderator working as the main moderator was about 420 W/MW. Maximum nuclear heat density in the H{sub 2} moderator was about 1 W/cm{sup 3}/MW. Also total heat deposition in a premoderator was about 9.2 kW/MW. The heat density of the premoderator was comparable to that of the moderator vessel made of aluminum alloy. The heat density of the premoderator and the moderator vessel is about 1.2-2 times higher than that of the hydrogen moderator. The temperature from 300 K to 400 K of the premoderator did not affect on neutron intensity of the H{sub 2} moderator. This suggested an engineering advantage on the thermal and hydraulic design. 6000 or 7000 type of a aluminum alloy was considered from the viewpoint of the neutron beam transmission. The proton beams scattered by the proton beam window did not affect on the nuclear heating in the H{sub 2} moderator. The heat deposition in the H{sub 2} moderator and the neutron intensity of the H{sub 2} moderator did not depend on the proton beam profile but it did on the distance between the proton beam and the moderator. (author)

  11. Collaborative Model for Acceleration of Individualized Therapy of Colon Cancer

    Science.gov (United States)

    2015-12-01

    receive salvage therapy that results in only a few weeks of disease stability. We have proposed to employ a team science , systems biology based approach...Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold , B.J., and Pachter, L. 2010. Transcript assembly and quantification by...tumor xenografts (PDTX) have been widely used in predictive biomarker development and pathway modeling in cancer research. However, it has not been

  12. Accelerating thermal deposition modeling at terahertz frequencies using GPUs

    Science.gov (United States)

    Doroski, Michael; Knight, Michael; Payne, Jason; Grundt, Jessica E.; Ibey, Bennett L.; Thomas, Robert; Roach, William P.; Wilmink, Gerald J.

    2011-03-01

    Finite-difference time-domain (FDTD) methods are widely used to model the propagation of electromagnetic radiation in biological tissues. High-performance central processing units (CPUs) can execute FDTD simulations for complex problems using 3-D geometries and heterogeneous tissue material properties. However, when FDTD simulations are employed at terahertz (THz) frequencies excessively long processing times are required to account for finer resolution voxels and larger computational modeling domains. In this study, we developed and tested the performance of 2-D and 3-D FDTD thermal propagation code executed on a graphics processing unit (GPU) device, which was coded using an extension of the C language referred to as CUDA. In order to examine the speedup provided by GPUs, we compared the performance (speed, accuracy) for simulations executed on a GPU (Tesla C2050), a high-performance CPU (Intel Xeon 5504), and supercomputer. Simulations were conducted to model the propagation and thermal deposition of THz radiation in biological materials for several in vitro and in vivo THz exposure scenarios. For both the 2-D and 3-D in vitro simulations, we found that the GPU performed 100 times faster than runs executed on a CPU, and maintained comparable accuracy to that provided by the supercomputer. For the in vivo tissue damage studies, we found that the GPU executed simulations 87x times faster than the CPU. Interestingly, for all exposure duration tested, the CPU, GPU, and supercomputer provided comparable predictions for tissue damage thresholds (ED50). Overall, these results suggest that GPUs can provide performance comparable to a supercomputer and at speeds significantly faster than those possible with a CPU. Therefore, GPUs are an affordable tool for conducting accurate and fast simulations for computationally intensive modeling problems.

  13. Modeling of cyclists acceleration behavior using naturalistic data

    OpenAIRE

    Luo, Ding

    2014-01-01

    Over the past few years, many cities have witnessed the increasing popularity of cycling, especially among ordinary commuters. Accordingly, there has also been a fast growing demand for the knowledge of cycling performance as well as cyclist behavior, which can be valuable for both traffic planners and policy makers when it comes to the bicycle-related issues. The aim of this study, hence, is to investigate the cycling performance in detail and to further develop proper models which can be im...

  14. A simple model for cavity-enhanced laser-driven ion acceleration from thin foil targets

    CERN Document Server

    Rączka, Piotr

    2012-01-01

    A scenario for the laser-driven ion acceleration off a solid target is considered, where the reflected laser pulse is redirected towards the target by reflection at the inner cavity wall, thus recycling to some extent the incident laser energy. This scenario is discussed in the context of sub-wavelength foil acceleration in the radiation pressure regime, when plasma dynamics is known to be reasonably well described by the laser-sail model. A semi-analytic extension of the 1D laser-sail model is constructed, which takes into account the effect of reflections at the inner cavity wall. The effect of cavity reflections on sub-wavelength foil acceleration is then illustrated with two concrete examples of intense laser pulses of picosecond and femtosecond duration.

  15. A Data-Driven Analytic Model for Proton Acceleration by Large-Scale Solar Coronal Shocks

    CERN Document Server

    Kozarev, Kamen A

    2016-01-01

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona (Kozarev et al. 2015), using remote observations from Solar Dynamics Observatory's Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front's surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model's performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate ...

  16. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  17. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  18. A two-fluid model for black-hole accretion flows: particle acceleration and disc structure

    Science.gov (United States)

    Lee, Jason P.; Becker, Peter A.

    2017-02-01

    Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.

  19. Characteristics of Nano Particles in the Atmosphere of Gyeongju National Park Area Using a Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. W.; Hur, H. J.; Choi, J. H.; Kim, H. S. [Gyeongju Univ., Gyeongju (Korea, Republic of)

    2007-04-15

    The physico-chemical characteristics of the categorized aerosol with soil-related mineral species, anthropogenic-related heavy metal species, and aerosol-acidity-related element were analyzed based on the air-mass pathways. The lowest value of 0.6 {+-} 0.1 g m-3 was observed during the intensive fall period of 2005. The mass concentration of sulfur (S) was the highest in the intensive spring period and the lowest in the intensive summer period. The frequencies of the EM, the WC, the SC, and the NC events were 6, 17, 3, and 7, respectively. The continental air-mass-pathway categories were calculated consisting of 85% of the total 40 events whereas the marine air-mass-pathway categories were of 15%. The nanoparticles observed at the national park area of Gyeongju were estimated to be affected by soil-related elements when the air mass came from the western area of the Asian continent and to be predominantly affected by anthropogenic-related elements when air mass came from the northern area of the Asian continent through Korean peninsula. Soil-related elements were mainly observed in particles with sizes greater than 560 nm. The average mass fraction of anthropogenic-related elements was relatively much higher in the particle size range less than 320 nm.

  20. Adaptive guidance law design based on characteristic model for reentry vehicles

    Institute of Scientific and Technical Information of China (English)

    YANG JunChun; HU Jun; NI MaoLin

    2008-01-01

    In this paper an adaptive guidance law based on the characteristic model is designed to track a reference drag acceleration for reentry vehicles like the Shuttle. The characteristic modeling method of linear constant systems is extended for single-input and single-output (SlSO) linear time-varying systems so that the characteristic model can be established for reentry vehicles. A new nonlinear differential golden-section adaptive control law is presented. When the coefficients belong to a bounded closed convex set and their rate of change meets some constraints, the uniformly asymptotic stability of the nonlinear differential golden-section adaptive control system is proved. The tracking control law, the nonlinear differential golden-section control law, and the revised logical integral control law are integrated to design an adaptive guidance law based on the characteristic model. This guidance law overcomes the disadvantage of the feedback linearization method which needs the precise model. Simulation results show that the proposed method has better performance of tracking the reference drag acceleration than the feedback linearization one.

  1. Accelerated gravitational wave parameter estimation with reduced order modeling.

    Science.gov (United States)

    Canizares, Priscilla; Field, Scott E; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel

    2015-02-20

    Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate Bayesian inference techniques. In this Letter, we demonstrate that a reduced order modeling approach enables rapid parameter estimation to be performed. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of nonspinning binary neutron star inspirals can be sped up by a factor of ∼30 for the early advanced detectors' configurations (with sensitivities down to around 40 Hz) and ∼70 for sensitivities down to around 20 Hz. This speedup will increase to about 150 as the detectors improve their low-frequency limit to 10 Hz, reducing to hours analyses which could otherwise take months to complete. Although these results focus on interferometric gravitational wave detectors, the techniques are broadly applicable to any experiment where fast Bayesian analysis is desirable.

  2. A comprehensive study of back-reaction and effective acceleration in generic LTB dust models

    CERN Document Server

    Sussman, Roberto A

    2011-01-01

    We provide a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains, we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the domains' boundaries. Effective deceleration necessarily occurs in all domains in: (a) the asymptotic radial range of models converging to a FLRW background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial range of models converging to a FLRW background, (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v)...

  3. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, whi

  4. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  5. An Annular Gap Acceleration Model for γ-ray Emission of Pulsars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that:(1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4)The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that presented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.

  6. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model.

    Science.gov (United States)

    Li, Yan; Zhang, Liying; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M

    2011-09-01

    A modified Marmarou impact acceleration model was developed to study the mechanical responses induced by this model and their correlation to traumatic axonal injury (TAI). Traumatic brain injury (TBI) was induced in 31 anesthetized male Sprague-Dawley rats (392±13 g) by a custom-made 450-g impactor from heights of 1.25 m or 2.25 m. An accelerometer and angular rate sensor measured the linear and angular responses of the head, while the impact event was captured by a high-speed video camera. TAI distribution along the rostro-caudal direction, as well as across the left and right hemispheres, was determined using β-amyloid precursor protein (β-APP) immunocytochemistry, and detailed TAI injury maps were constructed for the entire corpus callosum. Peak linear acceleration 1.25 m and 2.25 m impacts were 666±165 g and 907±501 g, respectively. Peak angular velocities were 95±24 rad/sec and 124±48 rad/sec, respectively. Compared to the 2.25-m group, the observed TAI counts in the 1.25-m impact group were significantly lower. Average linear acceleration, peak angular velocity, average angular acceleration, and surface righting time were also significantly different between the two groups. A positive correlation was observed between normalized total TAI counts and average linear acceleration (R(2)=0.612, plinear and angular acceleration response of the rat head during impact, not necessarily the drop height.

  7. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungwon [ORNL; Lee, Seyong [ORNL; Vetter, Jeffrey S [ORNL

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  8. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  9. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    Science.gov (United States)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  10. Construct Method of Predicting Satisfaction Model Based on Technical Characteristics

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-an; DENG Qian; SUN Guan-long; ZHANG Wei-she

    2011-01-01

    In order to construct objective relatively mapping relationship model between customer requirements and product technical characteristics, a novel approach based on customer satisfactions information digging from case products and satisfaction information of expert technical characteristics was put forward in this paper. Technical characteristics evaluation values were expressed by rough number, and technical characteristics target sequence was determined on the basis of efficiency, cost type and middle type in this method. Use each calculated satisfactions of customers and technical characteristics as input and output elements to construct BP network model. And we use MATLAB software to simulate this BP network model based on the case of electric bicycles.

  11. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    CERN Document Server

    Fonseca, Ricardo A; Fiúza, Frederico; Davidson, Asher; Tsung, Frank S; Mori, Warren B; Silva, Luís O

    2013-01-01

    A new generation of laser wakefield accelerators, supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modeling for further understanding of the underlying physics and identification of optimal regimes, but large scale modeling of these scenarios is computationally heavy and requires efficient use of state-of-the-art Petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed / shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modeling of LWFA, demonstrating speedups of over 1 order of magni...

  12. Clouds and Precipitation Simulated by the US DOE Accelerated Climate Modeling for Energy (ACME)

    Science.gov (United States)

    Xie, S.; Lin, W.; Yoon, J. H.; Ma, P. L.; Rasch, P. J.; Ghan, S.; Zhang, K.; Zhang, Y.; Zhang, C.; Bogenschutz, P.; Gettelman, A.; Larson, V. E.; Neale, R. B.; Park, S.; Zhang, G. J.

    2015-12-01

    A new US Department of Energy (DOE) climate modeling effort is to develop an Accelerated Climate Model for Energy (ACME) to accelerate the development and application of fully coupled, state-of-the-art Earth system models for scientific and energy application. ACME is a high-resolution climate model with a 0.25 degree in horizontal and more than 60 levels in the vertical. It starts from the Community Earth System Model (CESM) with notable changes to its physical parameterizations and other components. This presentation provides an overview on the ACME model's capability in simulating clouds and precipitation and its sensitivity to convection schemes. Results with using several state-of-the-art cumulus convection schemes, including those unified parameterizations that are being developed in the climate community, will be presented. These convection schemes are evaluated in a multi-scale framework including both short-range hindcasts and free-running climate simulations with both satellite data and ground-based measurements. Running climate model in short-range hindcasts has been proven to be an efficient way to understand model deficiencies. The analysis is focused on those systematic errors in clouds and precipitation simulations that are shared in many climate models. The goal is to understand what model deficiencies might be primarily responsible for these systematic errors.

  13. Models of Metal Poor Stars with Gravitational Settling and Radiative Accelerations I. Evolution and Abundance Anomalies

    CERN Document Server

    Richard, O; Richer, J; Turcotte, S; Turck-Chièze, S; Van den Berg, D A; Berg, Don A. Vanden

    2002-01-01

    Evolutionary models have been calculated for Pop II stars of 0.5 to 1.0$M_\\odot$ from the pre-main-sequence to the lower part of the giant branch. Rosseland opacities and radiative accelerations were calculated taking into account the concentration variations of 28 chemical species, including all species contributing to Rosseland opacities in the OPAL tables. The effects of radiative accelerations, thermal diffusion and gravitational settling are included. While models were calculated both for Z=0.00017 and 0.0017, we concentrate on models with Z=0.00017 in this paper. These are the first Pop II models calculated taking radiative acceleration into account. It is shown that, at least in a 0.8$M_\\odot$ star, it is a better approximation not to let Fe diffuse than to calculate its gravitational settling without including the effects of $g_{rad}(Fe)$. In the absence of any turbulence outside of convection zones, the effects of atomic diffusion are large mainly for stars more massive than 0.7$M_\\odot$. Overabundan...

  14. The Fluka Linebuilder and Element Database: Tools for Building Complex Models of Accelerators Beam Lines

    CERN Document Server

    Mereghetti, A; Cerutti, F; Versaci, R; Vlachoudis, V

    2012-01-01

    Extended FLUKA models of accelerator beam lines can be extremely complex: heavy to manipulate, poorly versatile and prone to mismatched positioning. We developed a framework capable of creating the FLUKA model of an arbitrary portion of a given accelerator, starting from the optics configuration and a few other information provided by the user. The framework includes a builder (LineBuilder), an element database and a series of configuration and analysis scripts. The LineBuilder is a Python program aimed at dynamically assembling complex FLUKA models of accelerator beam lines: positions, magnetic fields and scorings are automatically set up, and geometry details such as apertures of collimators, tilting and misalignment of elements, beam pipes and tunnel geometries can be entered at user’s will. The element database (FEDB) is a collection of detailed FLUKA geometry models of machine elements. This framework has been widely used for recent LHC and SPS beam-machine interaction studies at CERN, and led to a dra...

  15. A transient MHD model applicable for the source of solar cosmic ray acceleration

    Science.gov (United States)

    Dryer, M.; Wu, S. T.

    1981-01-01

    A two-dimensional, time-dependent magnetohydrodynamic model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. In this presentation, the effects of initial magnetic topology and strength on the formation of MHD shocks have been studied. The plasma beta (thermal pressure/magnetic pressure) is considered as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfven Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. It is suggested that this model (computed self-consistently) provides the shock waves and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.

  16. From Behavioral Psychology to Acceleration Modeling: Calibration, Validation, and Exploration of Drivers Cognitive and Safety Parameters in a Risk-Taking Environment

    CERN Document Server

    Hamdar, Samer H; Treiber, Martin

    2014-01-01

    We investigate a utility-based approach for driver car-following behavioral modeling while analyzing different aspects of the model characteristics especially in terms of capturing different fundamental diagram regions and safety proxy indices. The adopted model came from an elementary thought where drivers associate subjective utilities for accelerations (i.e. gain in travel times) and subjective dis-utilities for decelerations (i.e. loss in travel time) with a perceived probability of being involved in rear-end collision crashes. Following the testing of the model general structure, the authors translate the corresponding behavioral psychology theory - prospect theory - into an efficientmicroscopic traffic modeling with more elaborate stochastic characteristics considered in a risk-taking environment. The formulated model offers a better understanding of drivers behavior, particularly under extreme/incident conditions.

  17. Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank

    2010-01-01

    The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring

  18. Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Tsallis distribution and the stretched exponential distribution were successfully used to fit the experimental data of turbulence particle acceleration published in Nature (2001), which manifested a clear departure from the normal distribution. These studies, however, fall short of a clear physical mechanism behind the statistical phenomenological description. In this study, we propose a multi- scale diffusion model which considers both normal diffusion in molecular-scale and anomalous diffu- sion in vortex-scale, and the latter is described by a novel fractal derivative modeling approach. This multi-scale model gives rise to a new probability density function which fits experimental data very well.

  19. Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence

    Institute of Scientific and Technical Information of China (English)

    SUN HongGuang; CHEN Wen

    2009-01-01

    The Tsallis distribution and the stretched exponential distribution were successfully used to fit the experimental data of turbulence particle acceleration published in Nature (2001), which manifested a clear departure from the normal distribution. These studies, however, fall short of a clear physical mechanism behind the statistical phenomenological description. In this study, we propose a multi-scale diffusion model which considers both normal diffusion in molecular-scale and anomalous diffu-sion in vortex-scale, and the latter is described by a novel fractal derivative modeling approach. This multi-scale model gives rise to a new probability density function which fits experimental data very well.

  20. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Pesaran, Ahmad A.

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  1. The 2nd Order Focusing by Energy for TOF Sector Field Mass Analyzer with an Orthogonal Acceleration: Theory, Modeling, Experiment

    Science.gov (United States)

    Poteshin, S. S.; Chernyshev, D. M.; Sysoev, Alexey A.; Sysoev, Alexander A.

    Currently axially symmetric type of analyzer with an electrostatic sector fields (AESF) is rarely used to construct time-of-flight mass spectrometers. The main drawback, hindering the wider use of the analyzers of this type, is the lack of chromatic second-order focusing by energy. However, the configuration of AESF in combination with orthogonal accelerator (OA) allows to achieved it through compensation of energy aberrations of the analyzer in the system of orthogonal input of the ion beam. In the presented work the results of theoretical calculation, simulation and experimentally obtained data are compared. Characteristics of the analyzer with OA in a large extent depend on the parameters of the incoming ion beam. Data of modeling the 2nd stage of gas-dynamic interface, which have the greatest influence on the parameters of the ion beam, is provided.

  2. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  3. Characteristic modeling and the control of flexible structure

    Institute of Scientific and Technical Information of China (English)

    吴宏鑫; 刘一武; 刘忠汉; 解永春

    2001-01-01

    Appropriate modeling for a controlled plant has been a remarkable problem in the control field. A new modeling theory, i.e. characteristic modeling, is roundly demonstrated. It is deduced in detail that a general linear constant high_order system can be equivalently described with a two_order time_varying difference equation. The application of the characteristic modeling method to the control of flexible structure is also introduced. Especially, as an example, the Hubble Space Telescope is used to illustrate the application of the characteristic modeling and adaptive control method proposed in this paper.

  4. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  5. Effects of Reducing Convective Acceleration Terms in Modelling Supercritical and Transcritical Flow Conditions

    Directory of Open Access Journals (Sweden)

    Yared Abayneh Abebe

    2016-11-01

    Full Text Available Modelling floods and flood-related disasters has become priority for many researchers and practitioners. Currently, there are several options that can be used for modelling floods in urban areas and the present work attempts to investigate effectiveness of different model formulations in modelling supercritical and transcritical flow conditions. In our work, we use the following three methods for modelling one-dimensional (1D flows: the MIKE 11 flow model, Kutija’s method, and the Roe scheme. We use two methods for modelling two-dimensional (2D flows: the MIKE21 flow model and a non-inertia 2D model. Apart from the MIKE11 and MIKE21 models, the code for all other models was developed and used for the purposes of the present work. The performance of the models was evaluated using hypothetical case studies with the intention of representing some configurations that can be found in urban floodplains. The present work does not go into the assessment of these models in modelling various topographical features that may be found on urban floodplains, but rather focuses on how they perform in simulating supercritical and transcritical flows. The overall findings are that the simplified models which ignore convective acceleration terms (CATs in the momentum equations may be effectively used to model urban flood plains without a significant loss of accuracy.

  6. A Data-driven Analytic Model for Proton Acceleration by Large-scale Solar Coronal Shocks

    Science.gov (United States)

    Kozarev, Kamen A.; Schwadron, Nathan A.

    2016-11-01

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  7. A model for emission from jets in X-ray binaries: consequences of a single acceleration episode

    NARCIS (Netherlands)

    A. Pe'er; P. Casella

    2009-01-01

    There is strong evidence for powerful jets in the low/hard state of black hole X-ray binaries (BHXRBs). Here, we present a model in which electrons are accelerated once at the base of the jet, and are cooled by synchrotron emission and possible adiabatic energy losses. The accelerated electrons assu

  8. Study of the characteristics of neutron monitor area applied to the evaluation of dose rates in a 15 MeV radiotherapy accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Candido M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica]. E-mail: candido_1998@yahoo.com; Patrao, Karla C.S.; Pereira, Walsan W.; Fonseca, Evaldo S.; Giannoni, Ricardo A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons]. E-mails: karla@ird.gov.br; walsan@ird.gov.br; Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Setor de Fisica Medica]. E-mail: delano@inca.gov.br

    2007-07-01

    Currently, in Radiotherapy, the use of linear accelerators is becoming each time more common. From Radiation Protection point of view, these instruments represent an advance in relation to the cobalt and caesium irradiators, mainly due to absence of the radioactive material. On the other hand, accelerators with the energies superior to 10 MeV produce contamination of the therapeutic beam with the presence of neutrons generated in the interaction of high-energy photons with high atomic number materials from the own irradiator. The present work carries through measurements in a linear accelerator of 15 MeV using three neutron area monitors for a comparison of the response of these instruments, evaluating its adequacy to this measurement. Characteristics of use and operation associates to parameters such as: monitor dead time, monitor gamma rejection, and calibration results are also analyzed in this study. (author)

  9. Acceleration of the solar wind in a spherical coordinate kinetic model

    Science.gov (United States)

    Dyadechkin, Sergey; Kallio, Esa; Alho, Markku; Semenov, Vladimir; Erkaev, Nikolay

    2015-04-01

    We have studied the acceleration of the solar wind protons by using a spherical coordinate kinetic hybrid model (HYBs). The model treats ions as particles while electrons form a massless, charge neutralizing fluid. The model includes the gravitation, the electron pressure and the jxB forces. We have studied a magnetized and a non-magnetized solar wind cases and performed simulations for different isothermal electron temperatures by using the same initial Maxwellian velocity distribution function for protons. We show in the presentation of how the bulk velocity, the plasma density, the electric potential and the velocity distribution function of protons depend on the radial distance from the Sun to several Astronomical Units. The derived velocity and density profiles are compared with those of the Parker's solar wind model. Finally, extensions of the model and its applicability for a space weather modelling are discussed.

  10. Slow Solar Wind: Observable Characteristics for Constraining Modelling

    Science.gov (United States)

    Ofman, L.; Abbo, L.; Antiochos, S. K.; Hansteen, V. H.; Harra, L.; Ko, Y. K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y. M.

    2015-12-01

    The Slow Solar Wind (SSW) origin is an open issue in the post SOHO era and forms a major objective for planned future missions such as the Solar Orbiter and Solar Probe Plus.Results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in-situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW.Advances models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.Nevertheless, there are still debated questions such as:What are the source regions of SSW? What are their contributions to the SSW?Which is the role of the magnetic topology in corona for the origin, acceleration and energy deposition of SSW?Which are the possible acceleration and heating mechanisms for the SSW?The aim of this study is to present the insights on the SSW origin and formationarisen during the discussions at the International Space Science Institute (ISSI) by the Team entitled ''Slowsolar wind sources and acceleration mechanisms in the corona'' held in Bern (Switzerland) in March2014--2015. The attached figure will be presented to summarize the different hypotheses of the SSW formation.

  11. Seismicity acceleration model and its application to several earthquake regions in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan-Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole-Tuokexun, Ayinke-Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant αin model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present.

  12. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    Science.gov (United States)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  13. Particle spectra and efficiency in nonlinear relativistic shock acceleration: survey of scattering models

    CERN Document Server

    Ellison, Donald C; Bykov, Andrei M

    2015-01-01

    We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...

  14. Accelerating 3D Visualization in Reservoir Modeling System with Programmable Hardware

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-05-01

    Full Text Available This study presents a new method on 3D visualization in reservoir modeling system by using the computation power of modern programmable Graphics hardware (GPU. The proposed scheme is devised to achieve parallel processing of massive reservoir logging data. By taking advantage of the GPU's parallel processing capability, moreover, the performance of our scheme is discussed in comparison with that of the implementation entirely running on CPU. Experimental results clearly show that the proposed parallel processing can remarkably accelerate the data clustering task. Especially, although data-transferring from GPU to CPU is generally costly, acceleration by GPU is significant to save the total execution time of data-clustering and also significantly alleviates the computing load on CPU.

  15. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    Energy Technology Data Exchange (ETDEWEB)

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  16. Development of an Efficient GPU-Accelerated Model for Fully Nonlinear Water Waves

    DEFF Research Database (Denmark)

    This work is concerned with the development of an efficient high-throughput scalable model for simulation of fully nonlinear water waves (OceanWave3D) applicable to solve and analyze large-scale problems in coastal engineering. The goal can be achieved through algorithm redesign and parallelization...... of an optimized sequential single-CPU algorithm based on a flexible-order Finite Difference Method. High performance is pursued by utilizing many-core processing in the model focusing on GPUs for acceleration of code execution. This involves combining analytical methods with an algorithm redesign of the current...

  17. Modeling of spectral characteristics of blue LEDs

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2010-01-01

    are expected to vary with current and junction temperature. Commercial high power blue LEDs were measured with respect to spectral distribution and chromaticity and the result was compared with the model predictions. We have found that the models predict significantly different results with respect...

  18. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    CERN Document Server

    Lee, Shiu-Hang; Ellison, Donald C

    2008-01-01

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occuring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to devel...

  19. A Model for the Escape of Solar-Flare Accelerated Particles

    CERN Document Server

    Masson, Sophie; DeVore, C Rick

    2013-01-01

    Impulsive solar energetic particles (SEP) bursts are frequently observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These highly prompt SEPs are believed to be accelerated by the flare rather than by a CME shock, but in the standard flare model the accelerated particles should remain trapped in the corona or in the ejected plas- moid. In this case, however, the particles would reach the Earth only after a delay of many hours to a few days. We present a new model that can account for the prompt injection of energetic particles onto open interplanetary magnetic flux tubes. The basic idea underlying the model is that magnetic reconnection between the ejection and external open field allows for the release of the ener- getic particles. We demonstrate the model using 2.5D MHD simulations of a CME/flare event. The model system consists of a multipolar field with a coro- nal null point and with photospheric shear imposed at a polarity inversion line, as in ...

  20. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    Science.gov (United States)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  1. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. [human oculomotor response to transverse acceleration stress

    Science.gov (United States)

    Benson, A. J.; Barnes, G. R.

    1973-01-01

    Human subjects were exposed to a linear acceleration vector that rotated in the transverse plane of the skull without angular counterrotation. Lateral eye movements showed a sinusoidal change in slow phase velocity and an asymmetry or bias in the same direction as vector rotation. A model is developed that attributes the oculomotor response to otolithic mechanisms. It is suggested that the bias component is the manifestation of torsion of the statoconial plaque relative to the base of the utricular macula and that the sinusoidal component represents the translational oscillation of the statoconia. The model subsumes a hypothetical neural mechanism which allows x- and y-axis accelerations to be resolved. Derivation of equations of motion for the statoconial plaque in torsion and translation, which take into account forces acting in shear and normal to the macula, yield estimates of bias and sinusoidal components that are in qualitative agreement with the diverse experimental findings.

  2. Bayesian framework for parametric bivariate accelerated lifetime modeling and its application to hospital acquired infections.

    Science.gov (United States)

    Bilgili, D; Ryu, D; Ergönül, Ö; Ebrahimi, N

    2016-03-01

    Infectious diseases that can be spread directly or indirectly from one person to another are caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi. Infectious diseases remain one of the greatest threats to human health and the analysis of infectious disease data is among the most important application of statistics. In this article, we develop Bayesian methodology using parametric bivariate accelerated lifetime model to study dependency between the colonization and infection times for Acinetobacter baumannii bacteria which is leading cause of infection among the hospital infection agents. We also study their associations with covariates such as age, gender, apache score, antibiotics use 3 months before admission and invasive mechanical ventilation use. To account for singularity, we use Singular Bivariate Extreme Value distribution to model residuals in Bivariate Accelerated lifetime model under the fully Bayesian framework. We analyze a censored data related to the colonization and infection collected in five major hospitals in Turkey using our methodology. The data analysis done in this article is for illustration of our proposed method and can be applied to any situation that our model can be used.

  3. Accelerating dark energy models with anisotropic fluid in Bianchi type-$VI_{0}$ space-time

    CERN Document Server

    Pradhan, Anirudh

    2012-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, we have discussed some features of the Bianchi type-$VI_{0}$ universes in the presence of a fluid that wields an anisotropic equation of state (EoS) parameter in general relativity. We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type-$VI_{0}$ space-time. To prevail the deterministic solution we choose the scale factor $a(t) = \\sqrt{t^{n}e^{t}}$, which yields a time-dependent deceleration parameter (DP), representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase. Under the suitable condition, the anisotropic models approach to isotropic scenario. The EoS for dark energy $\\omega$ is found to be time-dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. 2003), SNe Ia...

  4. Observation and Modeling of a Termination Shock in a Solar Eruption as a Possible Particle Accelerator

    Science.gov (United States)

    Gary, Dale E.; Chen, Bin; Bastian, Timothy S.; Shen, Chengcai; Krucker, Sam

    2015-04-01

    Solar eruptions and their associated solar flares are the most energetic particle accelerators in our solar system. Yet the acceleration mechanism remains uncertain. A possible candidate often invoked in the standard picture of solar eruptions is a termination shock, produced by fast reconnection outflows impinging upon dense, closed loops in a helmet-type geometry. However, the importance of termination shocks in solar particle acceleration remains controversial, mainly because there has been no direct detection of such shocks. Here we report direct imaging of the location and evolution of a termination shock during the rise phase of a solar eruption. The shock appears at radio wavelengths as a narrow surface sandwiched between multitudes of downward-moving plasma blobs and the underlying, newly-reconnected flaring loops, and evolves coherently with a loop-top hard X-ray source in the shock downstream region. The shock produces many short-lived, point-like radio sources, each interpreted as emission from a turbulence cell interacting with fast (nonthermal) electrons. These point-like radio sources clearly outline the termination shock front and their positions change in reaction to the arrival of the fast plasma blobs, which are well-reproduced by our numerical simulations based on a resistive magnetohydrodynamics reconnection model in a standard two-ribbon flare geometry. We further show that a temporary disruption of the shock coincides with a reduction of radio and hard X-ray emission associated with the energetic electron population. Our observations strongly favor a scenario in which the termination shock is responsible for accelerating electrons to high energies.

  5. Rehydration characteristics and modeling of cassava chips

    Directory of Open Access Journals (Sweden)

    Ajala, A.S

    2015-05-01

    Full Text Available Cassava chips with dimension 4x2x0.2cm were re-hydrated in distilled water at 200C, 300C and 400C in a laboratory water bath. Kinetics of re-hydration was investigated using three different re-hydration models namely Peleg, exponential and Weibull. The pattern of water absorption was observed to be faster at the initial period of soaking. Higher temperature induces faster moisture absorption in the chips. Non linear regression analysis was used to fit in the experimental data and the coefficient of determination was found to be greater than 0.72 for all the models. The values of R2 , RMSE, MBE and reduced chi square showed that Weibull model best described the re-hydrating behaviour of the cassava chips.

  6. Characteristic Analysis of Fire Modeling Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Yang, Joon Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jong Hoon [Kyeongmin College, Ujeongbu (Korea, Republic of)

    2004-04-15

    This report documents and compares key features of four zone models: CFAST, COMPBRN IIIE, MAGIC and the Fire Induced Vulnerability Evaluation (FIVE) methodology. CFAST and MAGIC handle multi-compartment, multi-fire problems, using many equations; COMPBRN and FIVE handle single compartment, single fire source problems, using simpler equation. The increased rigor of the formulation of CFAST and MAGIC does not mean that these codes are more accurate in every domain; for instance, the FIVE methodology uses a single zone approximation with a plume/ceiling jet sublayer, while the other models use a two-zone treatment without a plume/ceiling jet sublayer. Comparisons with enclosure fire data indicate that inclusion of plume/ceiling jet sublayer temperatures is more conservative, and generally more accurate than neglecting them. Adding a plume/ceiling jet sublayer to the two-zone models should be relatively straightforward, but it has not been done yet for any of the two-zone models. Such an improvement is in progress for MAGIC.

  7. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2016-07-01

    Full Text Available This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  8. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.;

    2002-01-01

    -earthquake behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...

  9. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1. The Numerical Model

    Science.gov (United States)

    2009-09-10

    The Astrophysical Journal, 702:1553–1566, 2009 September 10 doi:10.1088/0004-637X/702/2/1553 C© 2009. The American Astronomical Society. All rights...to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas. Key words: acceleration of particles – hydrodynamics...and can be viewed as an elementary process of sequential excitation of multiple loops. Evolution on longer timescales (say, !100 s) involves multiple

  10. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P., E-mail: patrick.lee@u-psud.fr [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Audet, T.L. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Lehe, R.; Vay, J.-L. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Maynard, G.; Cros, B. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  11. Microwave accelerated synthesis of isoxazole hydrazide inhibitors of the system xc- transporter: Initial homology model.

    Science.gov (United States)

    Matti, Afnan A; Mirzaei, Joseph; Rudolph, John; Smith, Stephen A; Newell, Jayme L; Patel, Sarjubhai A; Braden, Michael R; Bridges, Richard J; Natale, Nicholas R

    2013-11-01

    Microwave accelerated reaction system (MARS) technology provided a good method to obtain selective and open isoxazole ligands that bind to and inhibit the Sxc- antiporter. The MARS provided numerous advantages, including: shorter time, better yield and higher purity of the product. Of the newly synthesized series of isoxazoles the salicyl hydrazide 6 exhibited the highest level of inhibitory activity in the transport assay. A homology model has been developed to summarize the SAR results to date, and provide a working hypothesis for future studies.

  12. A comparative study of an accelerated life-test model and a toxicokinetics-based model for the analysis of Porcellio scaber survival data.

    Science.gov (United States)

    Ren, Shijin

    2004-01-01

    Statistical models have long been used for reliability analysis and risk assessment. In the present study, an accelerated life-test model was used to analyze a set of dose-time-response data obtained with the terrestrial isopod Porcellio scaber. Survival data were experimentally obtained by exposing P. scaber to diazinon (a nonpersistent insecticide) at six concentrations between 2 and 11.31 microg/g (toxicant/soil). Survival data are presented on a weekly basis. The accelerated life-test model assumed a log-normal distribution and constant variance across all diazinon concentrations. Model parameters were obtained by maximum likelihood estimation. The accelerated life-test model was compared to a toxicokinetics-based model reported in the literature. Survival predictions made by both models were compared with the observed data. Both the accelerated life-test model and the toxicokinetics-based model underestimated toxicity at a diazinon concentration of 8 microg/g. Overall, however, the accelerated life-test model outperformed the toxicokinetics-based model, with survival predictions closer to the observed data in most cases and a stronger correlation between predicted and observed survivals. However, as a statistical model, the accelerated life-test model did not reveal mechanistic information, and only statistical and distributional interpretations of its model parameters could be made.

  13. Wake characteristics of a model ornithopter

    Science.gov (United States)

    Juarez, Alfredo; Harlow, Jacob; Allen, James; Ferreira de Sousa, Paulo

    2006-03-01

    This paper details unsteady wake measurements from a model Ornithopther flying in a wind tunnel at representative flight conditions. Testing over a range of Strouhal number, 0.1-0.3, shows that the unsteady wake is composed of coherent vortical structures that resemble vortex rings. A single ring is formed in the wake of each wing during one wing beat. Momentum balance from velocity field measurements are reconciled with unsteady lift and drag measurements from a drag balance.

  14. Thin-Layer Drying Characteristics and Modeling of Chinese Jujubes

    Directory of Open Access Journals (Sweden)

    Xiao-Kang Yi

    2012-01-01

    Full Text Available A mathematical modeling of thin-layer drying of jujubes in a convective dryer was established under controlled conditions of temperature and velocity. The drying process took place both in the accelerating rate and falling rate period. We observed that higher temperature reduced the drying time, indicating higher drying rates of jujubes. The experimental drying data of jujubes were used to fit ten different thin-layer models, then drying rate constants and coefficients of models tested were determined by nonlinear regression analysis using the Statistical Computer Program. As for all the drying models, the Weibull distribution model was superior and best predicted the experimental values. Therefore, this model can be used to facilitate dryer design and promote efficient dryer operation by simulation and optimization of the drying processes. The volumetric shrinkable coefficient of jujubes decreased as the drying air temperature increased.

  15. Model calibration criteria for estimating ecological flow characteristics

    Science.gov (United States)

    Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William; Seibert, Jan; Breuer, Lutz; Kraft, Philipp

    2016-01-01

    Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.

  16. Generalized accelerated failure time spatial frailty model for arbitrarily censored data.

    Science.gov (United States)

    Zhou, Haiming; Hanson, Timothy; Zhang, Jiajia

    2016-03-18

    Flexible incorporation of both geographical patterning and risk effects in cancer survival models is becoming increasingly important, due in part to the recent availability of large cancer registries. Most spatial survival models stochastically order survival curves from different subpopulations. However, it is common for survival curves from two subpopulations to cross in epidemiological cancer studies and thus interpretable standard survival models can not be used without some modification. Common fixes are the inclusion of time-varying regression effects in the proportional hazards model or fully nonparametric modeling, either of which destroys any easy interpretability from the fitted model. To address this issue, we develop a generalized accelerated failure time model which allows stratification on continuous or categorical covariates, as well as providing per-variable tests for whether stratification is necessary via novel approximate Bayes factors. The model is interpretable in terms of how median survival changes and is able to capture crossing survival curves in the presence of spatial correlation. A detailed Markov chain Monte Carlo algorithm is presented for posterior inference and a freely available function frailtyGAFT is provided to fit the model in the R package spBayesSurv. We apply our approach to a subset of the prostate cancer data gathered for Louisiana by the surveillance, epidemiology, and end results program of the National Cancer Institute.

  17. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    Science.gov (United States)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  18. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    Science.gov (United States)

    Jalas, S.; Dornmair, I.; Lehe, R.; Vincenti, H.; Vay, J.-L.; Kirchen, M.; Maier, A. R.

    2017-03-01

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR—or even suppress it—and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.

  19. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    CERN Document Server

    Jalas, Sören; Lehe, Rémi; Vincenti, Henri; Vay, Jean-Luc; Kirchen, Manuel; Maier, Andreas R

    2016-01-01

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR -- or even suppress it -- and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for efficient parallelization.

  20. High Tc Superconductor Theoretical Models and Electromagnetic Flux Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-xun

    2006-01-01

    High Tc Superconductors (HTS) have special electromagnetic characteristics and phenomena. Effort has been made in order to theoretically understand the applied HTS superconductivity and HTS behaviors for practical applications, various theoretical models related to the HTS electromagnetic properties have been developed. The theoretical models and analytic methods are summarized with regard to understanding the HTS magnetic flux characteristic which is one of the most critical issues related to HTS applications such as for HTS magnetic levitation application.

  1. Accelerating dark energy models with anisotropic fluid in Bianchi type Ⅵ0 space-time

    Institute of Scientific and Technical Information of China (English)

    Anirudh Pradhan

    2013-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data,we have discussed some features of Bianchi type Ⅵ0 universes in the presence of a fluid that has an anisotropic equation of state (EoS) parameter in general relativity.We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type Ⅵ0 space-time.To ensure a deterministic solution,we choose the scale factor a(t) =(√tnet),which yields a time-dependent deceleration parameter,representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase.Under suitable conditions,the anisotropic models approach an isotropic scenario.The EoS for DE ω is found to be time-dependent and its existing range for derived models is in good agreement with data from recent observations of type Ⅰa supernovae (SNe Ⅰa) (Knop et al.2003),SNe Ⅰa data combined with cosmic microwave background (CMB) anisotropy and galaxy clustering statistics (Tegmark et al.2004a),as well as the latest combination of cosmological datasets coming from CMB anisotropies,luminosity distances of high redshift SNe Ⅰa and galaxy clustering.For different values of n,we can generate a class of physically viable DE models.The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e.the present epoch),which is corroborated by results from recent SN Ⅰa observations.We also observe that our solutions are stable.The physical and geometric aspects of both models are also discussed in detail.

  2. Intelligent control based on intelligent characteristic model and its application

    Institute of Scientific and Technical Information of China (English)

    吴宏鑫; 王迎春; 邢琰

    2003-01-01

    This paper presents a new intelligent control method based on intelligent characteristic model for a kind of complicated plant with nonlinearities and uncertainties, whose controlled output variables cannot be measured on line continuously. The basic idea of this method is to utilize intelligent techniques to form the characteristic model of the controlled plant according to the principle of combining the char-acteristics of the plant with the control requirements, and then to present a new design method of intelli-gent controller based on this characteristic model. First, the modeling principles and expression of the intelligent characteristic model are presented. Then based on description of the intelligent characteristic model, the design principles and methods of the intelligent controller composed of several open-loops and closed-loops sub controllers with qualitative and quantitative information are given. Finally, the ap-plication of this method in alumina concentration control in the real aluminum electrolytic process is in-troduced. It is proved in practice that the above methods not only are easy to implement in engineering design but also avoid the trial-and-error of general intelligent controllers. It has taken better effect in the following application: achieving long-term stable control of low alumina concentration and increasing the controlled ratio of anode effect greatly from 60% to 80%.

  3. Intuitional experiment and numerical analysis of flow characteristics affected by flow accelerated corrosion in elbow pipe system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Joon [School of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Kyung Hoon, E-mail: kimkh@khu.ac.kr [Department of Mechanical Engineering, Kyung Hee University, Seochun 1, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-05-15

    Highlights: • Wall-thinning erosion of pipelines in plants leads to fatal accidents unexpectedly. • Flow Acceleration Corrosion (FAC) is a main reason of wall-thinning. • For industrial safety, it is necessary to verify the tendency of FAC. • We focused on local wall thinning by FAC with intuitional visualization experiment and numerical analysis in elbow pipe.

  4. Rate equation modelling and investigation of quantum cascade detector characteristics

    Science.gov (United States)

    Saha, Sumit; Kumar, Jitendra

    2016-10-01

    A simple precise transport model has been proposed using rate equation approach for the characterization of a quantum cascade detector. The resonant tunneling transport is incorporated in the rate equation model through a resonant tunneling current density term. All the major scattering processes are included in the rate equation model. The effect of temperature on the quantum cascade detector characteristics has been examined considering the temperature dependent band parameters and the carrier scattering processes. Incorporation of the resonant tunneling process in the rate equation model improves the detector performance appreciably and reproduces the detector characteristics within experimental accuracy.

  5. Superconductor Magnetization Modeling for the Numerical Calculation of Field Errors in Accelerator Magnets

    CERN Document Server

    Völlinger, C

    2002-01-01

    Superconducting magnets are obligatory today in order to provide the high magnetic fields that are needed for the acceleration of heavy particles in particle accelerators. The coils of such magnets are made of type II superconducting material and are exposed to a changing magnetic field which induces a so-called persistent current. Persistent currents are bipolar screening currents that do not decay, but persist due to the lack of resistivity in the superconductor. This way, they are the source of a superconductor magnetization in the coil which disturbs the field quality in the magnet aperture. In the framework of this thesis, a macroscopic superconductor model for the calculation of the magnetization of a thin superconducting cylinder of type II material has been developed. The model considers the dependency of the induced current density on the applied field as well as the local distribution of the magnetic induction within the superconductor. Both, the one-dimensional case of a homogeneous change of an ex...

  6. Down syndrome as a model of DNA polymerase beta haploinsufficiency and accelerated aging.

    Science.gov (United States)

    Patterson, David; Cabelof, Diane C

    2012-04-01

    Down syndrome is a condition of intellectual disability characterized by accelerated aging. As with other aging syndromes, evidence accumulated over the past several decades points to a DNA repair defect inherent in Down syndrome. This evidence has led us to suggest that Down syndrome results in reduced DNA base excision repair (BER) capacity, and that this contributes to the genomic instability and the aging phenotype of Down syndrome. We propose important roles for microRNA and/or folate metabolism and oxidative stress in the dysregulation of BER in Down syndrome. Further, we suggest these pathways are involved in the leukemogenesis of Down syndrome. We have reviewed the role of BER in the processing of oxidative stress, and the impact of folate depletion on BER capacity. Further, we have reviewed the role that loss of BER, specifically DNA polymerase beta, plays in accelerating the rate of aging. Like that seen in the DNA polymerase beta heterozygous mouse, the aging phenotype of Down syndrome is subtle, unlike the aging phenotypes seen in the classical progeroid syndromes and mouse models of aging. As such, Down syndrome may provide a model for elucidating some of the basic mechanisms of aging.

  7. A non-hydrodynamical model for acceleration of line-driven winds in Active Galactic Nuclei

    CERN Document Server

    Risaliti, G

    2009-01-01

    We present a study of the acceleration phase of line-driven winds in AGNs, in order to examine the physical conditions for the existence of such winds for a wide variety of initial conditions. We built a simple and fast non-hydrodynamic model, QWIND, where we assume that a wind is launched from the accretion disc at supersonic velocities of the order of a few 10^2 km/s and we concentrate on the subsequent supersonic phase. We show that this model can produce a wind with terminal velocities of the order of 10^4 km/s. There are three zones in the wind, only the middle one of which can launch a wind: in the inner zone the wind is too ionized and so experiences only the Compton radiation force which is not effective in accelerating gas. This inner failed wind however plays an important role in shielding the next zone, lowering the ionization parameter there. In the middle zone the lower ionization of the gas leads to a much larger radiation force and the gas achieves escape velocity This middle zone is quite thin...

  8. Dynamic inversion method based on the time-staggered stereo-modeling scheme and its acceleration

    Science.gov (United States)

    Jing, Hao; Yang, Dinghui; Wu, Hao

    2016-12-01

    A set of second-order differential equations describing the space-time behaviour of derivatives of displacement with respect to model parameters (i.e. waveform sensitivities) is obtained via taking the derivative of the original wave equations. The dynamic inversion method obtains sensitivities of the seismic displacement field with respect to earth properties directly by solving differential equations for them instead of constructing sensitivities from the displacement field itself. In this study, we have taken a new perspective on the dynamic inversion method and used acceleration approaches to reduce the computational time and memory usage to improve its ability of performing high-resolution imaging. The dynamic inversion method, which can simultaneously use different waves and multicomponent observation data, is appropriate for directly inverting elastic parameters, medium density or wave velocities. Full wavefield information is utilized as much as possible at the expense of a larger amount of calculations. To mitigate the computational burden, two ways are proposed to accelerate the method from a computer-implementation point of view. One is source encoding which uses a linear combination of all shots, and the other is to reduce the amount of calculations on forward modeling. We applied a new finite-difference (FD) method to the dynamic inversion to improve the computational accuracy and speed up the performance. Numerical experiments indicated that the new FD method can effectively suppress the numerical dispersion caused by the discretization of wave equations, resulting in enhanced computational efficiency with less memory cost for seismic modeling and inversion based on the full wave equations. We present some inversion results to demonstrate the validity of this method through both checkerboard and Marmousi models. It shows that this method is also convergent even with big deviations for the initial model. Besides, parallel calculations can be easily

  9. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  10. Late time acceleration in a non-commutative model of modified cosmology

    Science.gov (United States)

    Malekolkalami, B.; Atazadeh, K.; Vakili, B.

    2014-12-01

    We investigate the effects of non-commutativity between the position-position, position-momentum and momentum-momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  11. Late time acceleration in a non-commutative model of modified cosmology

    CERN Document Server

    Malekolkalami, B; Vakili, B

    2014-01-01

    We investigate the effects of noncommutativity between the position-position, position-momentum and momentum-momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such noncommutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of a $\\alpha$-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables takes the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  12. Late time acceleration in a non-commutative model of modified cosmology

    Directory of Open Access Journals (Sweden)

    B. Malekolkalami

    2014-12-01

    Full Text Available We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  13. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna;

    2014-01-01

    with aging and in Alzheimer's-like disease. We show that, compared with microglia in young mice, microglia in old mice are less ramified and possess fewer branches and fine processes along with a slightly increased proinflammatory cytokine expression. A similar microglial pathology appeared 6-12 months...... earlier in mouse models of Alzheimer's disease (AD), along with a significant increase in brain parenchyma lacking coverage by microglial processes. We further demonstrate that microglia near amyloid plaques acquire unique activated phenotypes with impaired process complexity. We thus show that along...... with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced...

  14. A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Supernova Remnant

    CERN Document Server

    Lee, Shiu-Hang; Nagataki, Shigehiro

    2012-01-01

    To better model the efficient production of cosmic rays (CRs) in supernova remnants (SNRs) with the associated coupling between CR production and SNR dynamics, we have generalized an existing cr-hydro-NEI code (i.e., Ellison et al. 2012) to include the following processes: (1) an explicit calculation of the upstream precursor structure including the position dependent flow speed, density, temperature, and magnetic field strength; (2) a momentum and space dependent CR diffusion coefficient; (3) an explicit calculation of magnetic field amplification (MFA); (4) calculation of the maximum CR momentum using the amplified magnetic field; (5) a finite Alfven speed for the particle scattering centers; and (6) the ability to accelerate a superthermal seed population of CRs as well as the ambient thermal plasma. While a great deal of work has been done modeling SNRs, most work has concentrated on either the continuum emission from relativistic electrons or ions, or the thermal emission from the shock heated plasma. Ou...

  15. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model

    Science.gov (United States)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie

    2016-05-01

    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  16. Late time acceleration in a non-commutative model of modified cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-12-12

    We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  17. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging.

    Science.gov (United States)

    Forman, Katherine; Vara, Elena; García, Cruz; Kireev, Roman; Cuesta, Sara; Acuña-Castroviejo, Darío; Tresguerres, J A F

    2010-10-01

    This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals.

  18. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    CERN Document Server

    da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats

    2015-01-01

    Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...

  19. Accelerated Electromechanical Modeling of a Distributed Internal Combustion Engine Generator Unit

    Directory of Open Access Journals (Sweden)

    Serhiy V. Bozhko

    2012-07-01

    Full Text Available Distributed generation with a combustion engine prime mover is still widely used to supply electric power in a variety of applications. These applications range from backup power supply systems and combined wind-diesel generation to providing power in places where grid connection is either technically impractical or financially uneconomic. Modelling of such systems as a whole is extremely difficult due to the long-time load profiles needed and the computational difficulty of including small time-constant electrical dynamics with large time-constant mechanical dynamics. This paper presents the development of accelerated, reduced-order models of a distributed internal combustions engine generator unit. Overall these models are shown to achieve a massive improvement in the computational time required for long-time simulations while also achieving an extremely high level of dynamic accuracy. It is demonstrated how these models are derived, used and verified against benchmark models created using established techniques. Throughout the paper the modelling set as a whole, including multi level detail, is presented, detailed and finally summarised into a crucial tool for general system investigation and multiple target optimisation.

  20. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    Science.gov (United States)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  1. Nonlinear combination parametric resonance of axially accelerating viscoelastic strings constituted by the standard linear solid model

    Institute of Scientific and Technical Information of China (English)

    LIM; C.W.

    2010-01-01

    Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.

  2. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    Science.gov (United States)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  3. Dark energy via multi-Higgs doublet models: accelerated expansion of the Universe in inert doublet model scenario

    CERN Document Server

    Usman, Muhammad

    2015-01-01

    Scalar fields are among the possible candidates for dark energy. This paper is devoted to the scalar fields from the inert doublet model, where instead of one as in the standard model, two SU(2) Higgs doublets are used. The component fields of one SU(2) doublet ($\\phi_1$) act in an identical way to the standard model Higgs while the component fields of the second SU(2) doublet ($\\phi_2$) are taken to be the dark energy candidate (which is done by assuming that the phase transition in the field has not yet occurred). It is found that one can arrange for late time acceleration (dark energy) by using an SU(2) Higgs doublet in the inert Higgs doublet model, whose vacuum expectation value is zero, in the quintessential regime.

  4. Neoadjuvant paradigm for accelerated drug development: an ideal model in bladder cancer.

    Science.gov (United States)

    Chism, David D; Woods, Michael E; Milowsky, Matthew I

    2013-01-01

    Neoadjuvant cisplatin-based combination chemotherapy for muscle-invasive bladder cancer (MIBC) has been shown to confer a survival advantage in two randomized clinical trials and a meta-analysis. Despite level 1 evidence supporting its benefit, utilization remains dismal with nearly one-half of patients ineligible for cisplatin-based therapy because of renal dysfunction, impaired performance status, and/or coexisting medical problems. This situation highlights the need for the development of novel therapies for the management of MIBC, a disease with a lethal phenotype. The neoadjuvant paradigm in bladder cancer offers many advantages for accelerated drug development. First, there is a greater likelihood of successful therapy at an earlier disease state that may be characterized by less genomic instability compared with the metastatic setting, with an early readout of activity with results determined in months rather than years. Second, pre- and post-treatment tumor tissue collection in patients with MIBC is performed as the standard of care without the need for research-directed biopsies, allowing for the ability to perform important correlative studies and to monitor tumor response to therapy in "real time." Third, pathological complete response (pT0) predicts for improved outcome in patients with MIBC. Fourth, there is a strong biological rationale with rapidly accumulating evidence for actionable targets in bladder cancer. This review focuses on the neoadjuvant paradigm for accelerated drug development using bladder cancer as the ideal model.

  5. Fall-Detection Algorithm Using 3-Axis Acceleration: Combination with Simple Threshold and Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Dongha Lim

    2014-01-01

    Full Text Available Falls are a serious medical and social problem among the elderly. This has led to the development of automatic fall-detection systems. To detect falls, a fall-detection algorithm that combines a simple threshold method and hidden Markov model (HMM using 3-axis acceleration is proposed. To apply the proposed fall-detection algorithm and detect falls, a wearable fall-detection device has been designed and produced. Several fall-feature parameters of 3-axis acceleration are introduced and applied to a simple threshold method. Possible falls are chosen through the simple threshold and are applied to two types of HMM to distinguish between a fall and an activity of daily living (ADL. The results using the simple threshold, HMM, and combination of the simple method and HMM were compared and analyzed. The combination of the simple threshold method and HMM reduced the complexity of the hardware and the proposed algorithm exhibited higher accuracy than that of the simple threshold method.

  6. Accelerated search for biomolecular network models to interpret high-throughput experimental data

    Directory of Open Access Journals (Sweden)

    Sokhansanj Bahrad A

    2007-07-01

    Full Text Available Abstract Background The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables. Results Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics. Conclusion Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular

  7. Characteristic earthquake model, 1884 -- 2011, R.I.P

    CERN Document Server

    Kagan, Yan Y; Geller, Robert J

    2012-01-01

    Unfortunately, working scientists sometimes reflexively continue to use "buzz phrases" grounded in once prevalent paradigms that have been subsequently refuted. This can impede both earthquake research and hazard mitigation. Well-worn seismological buzz phrases include "earthquake cycle," "seismic cycle," "seismic gap," and "characteristic earthquake." They all assume that there are sequences of earthquakes that are nearly identical except for the times of their occurrence. If so, the complex process of earthquake occurrence could be reduced to a description of one "characteristic" earthquake plus the times of the others in the sequence. A common additional assumption is that characteristic earthquakes dominate the displacement on fault or plate boundary "segments." The "seismic gap" (or the effectively equivalent "seismic cycle") model depends entirely on the "characteristic" assumption, with the added assumption that characteristic earthquakes are quasi-periodic. However, since the 1990s numerous statistica...

  8. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model.

    Science.gov (United States)

    Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2012-09-01

    Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27(Kip1) expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.

  9. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model

    Directory of Open Access Journals (Sweden)

    Cristina Martínez-García

    2012-09-01

    Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2 knockout (KO mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27Kip1 expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ and parathyroid hormone-related protein (PTHrP expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1, and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.

  10. Brief but chronic increase in allopregnanolone cause accelerated AD pathology differently in two mouse models.

    Science.gov (United States)

    Bengtsson, Sara K; Johansson, Maja; Backstrom, Torbjorn; Nitsch, Roger M; Wang, Mingde

    2013-01-01

    Previously, we have shown that chronic treatment with allopregnanolone (ALLO) for three months impaired learning function in the Swe/PS1 mouse model. ALLO is a neurosteroid, produced in the CNS and a GABAA receptor agonist. ALLO modulates the general inhibitory system in the CNS by enhancing the effect of GABA. Chronic treatment with other GABAA receptor active compounds, such as benzodiazepines, ethanol and medroxy-progesterone acetate has been associated to cognitive decline and/or increased risk for dementia. In this study, we sufficed with a treatment period of one month for the Swe/PS1 mouse, and included another Alzheimer's disease mouse model; the Swe/Arc model. We found that one month of chronic treatment with elevated ALLO levels within physiological range impaired learning and memory function in the Swe/Arc female and male mice. Male Swe/PS1 mice also showed marginally impaired function, while the female mice did not. Furthermore, the chronic ALLO treatment caused increased levels of soluble Aβ in the Swe/PS1 mouse model while the levels were unchanged in the Swe/Arc model. Therefore, both Swe/Arc and Swe/PS1 mice showed signs of accelerated disease progression. Still, further studies are required to determine the mechanisms behind the cognitive impairment and the increased Aβ-levels caused by mildly elevated ALLO-levels.

  11. Late cosmic acceleration in a vector-Gauss-Bonnet gravity model

    Science.gov (United States)

    Oliveros, A.; Solis, Enzo L.; Acero, Mario A.

    2016-12-01

    In this work, we study a general vector-tensor model of dark energy (DE) with a Gauss-Bonnet term coupled to a vector field and without explicit potential terms. Considering a spatially flat Friedmann-Robertson-Walker (FRW) type universe and a vector field without spatial components, the cosmological evolution is analyzed from the field equations of this model considering two sets of parameters. In this context, we have shown that it is possible to obtain an accelerated expansion phase of the universe since the equation state parameter w satisfies the restriction - 1 < w < -1/3 (for suitable values of model parameters). Further, analytical expressions for the Hubble parameter H, equation state parameter w and the invariant scalar ϕ are obtained. We also find that the square of the speed of sound is negative for all values of redshift, therefore, the model presented here shows a sign of instability under small perturbations. We finally perform an analysis using H(z) observational data and we find that for the free parameter ξ in the interval (-23.9,-3.46) × 10-5, at 99.73% C.L. (and fixing η = -1 and ω = 1/4), the model has a good fit to the data.

  12. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  13. A stochastic model for the semiclassical collective dynamics of charged beams in particle accelerators

    CERN Document Server

    De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1999-01-01

    A recent proposal (see quant-ph/9803068) to simulate semiclassical corrections to classical dynamics by suitable classical stochastic fluctuations is applied to the specific instance of charged beam dynamics in particle accelerators. The resulting picture is that the collective beam dynamics, at the leading semiclassical order in Planck constant can be described by a particular diffusion process, the Nelson process, which is time-reversal invariant. Its diffusion coefficient $\\sqrt{N}\\lambda_{c}$ represents a semiclassical unit of emittance (here $N$ is the number of particles in the beam, and $\\lambda_{c}$ is the Compton wavelength). The stochastic dynamics of the Nelson type can be easily recast in the form of a Schroedinger equation, with the semiclassical unit of emittance replacing Planck constant. Therefore we provide a physical foundation to the several quantum-like models of beam dynamics proposed in recent years. We also briefly touch upon applications of the Nelson and Schroedinger formalisms to inc...

  14. An Instability of the Standard Model Creates the Anomalous Acceleration Without Dark Energy

    CERN Document Server

    Smoller, Joel; Vogler, Zeke

    2014-01-01

    We introduce a new asymptotic ansatz for spherical perturbations of the Standard Model of Cosmology (SM) which applies during the $p=0$ epoch, and prove that these perturbations trigger instabilities in the SM on the scale of the supernova data. These instabilities create a large, central region of uniform under-density which expands faster than the SM, and this central region of accelerated uniform expansion introduces into the SM {\\it precisely} the same range of corrections to redshift vs luminosity as are produced by the cosmological constant in the theory of Dark Energy. A universal behavior is exhibited because all sufficiently small perturbations evolve to a single stable rest point. Moreover, we prove that these perturbations are consistent with, and the instability is triggered by, the one parameter family of self-similar waves which the authors previously proposed as possible time-asymptotic wave patterns for perturbations of the SM at the end of the radiation epoch. Using numerical simulations, we ...

  15. A smoothing expectation and substitution algorithm for the semiparametric accelerated failure time frailty model.

    Science.gov (United States)

    Johnson, Lynn M; Strawderman, Robert L

    2012-09-20

    This paper proposes an estimation procedure for the semiparametric accelerated failure time frailty model that combines smoothing with an Expectation and Maximization-like algorithm for estimating equations. The resulting algorithm permits simultaneous estimation of the regression parameter, the baseline cumulative hazard, and the parameter indexing a general frailty distribution. We develop novel moment-based estimators for the frailty parameter, including a generalized method of moments estimator. Standard error estimates for all parameters are easily obtained using a randomly weighted bootstrap procedure. For the commonly used gamma frailty distribution, the proposed algorithm is very easy to implement using widely available numerical methods. Simulation results demonstrate that the algorithm performs very well in this setting. We re-analyz several previously analyzed data sets for illustrative purposes.

  16. Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

    CERN Document Server

    Cowan, B M; Beck, A; Davoine, X; Bunkers, K; Lifschitz, A F; Lefebvre, E; Bruhwiler, D L; Shadwick, B A; Umstadter, D P

    2012-01-01

    Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code VORPAL using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code CALDER-CIRC uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two mo...

  17. Test Results of a Superconducting Quadrupole Model Designed for Linear Accelerator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir S.; Andreev, Nikolai; Chlachidze, Guram; DiMarco, Joseph; Kashikhin, Vadim V.; Lamm, Michael J.; Lopes, Mauricio L.; Orris, Darryl; Tartaglia, Michael; Tompkins, John C.; Velev, Gueorgui; /Fermilab

    2008-08-01

    The first model of a superconducting quadrupole for use in a Linear Accelerator was designed, built and tested at Fermilab. The quadrupole has a 78 mm aperture, and a cold mass length of 680 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes racetrack type dipole steering coils. The results of the quadrupole design, manufacturing and test, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed. The magnet quench performance and results of magnetic measurements will also be briefly discussed.

  18. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  19. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  20. Developing a Model of Compulsory Basic Education Completion Acceleration in Support of Millennium Development Goals in Magelang, Indonesia

    Science.gov (United States)

    Sukarno; Haryati, Sri

    2015-01-01

    This article reports Year One of a two-year study to develop a model to accelerate compulsory basic education completion toward Millennium Development Goals (MDGs) in Magelang, Indonesia. The study focuses on five issues: (1) profile of MDGs in Magelang, (2) achievement of MDGs, (3) problems in MDGs implementation, (4) model of compulsary basic…

  1. History, development and characteristics of lake ecological models

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper provides some introductory information on the history, development, and characteristics of various lake ecosystem models.The modeling of lake ecological processes began to gain importance in the early 1960s. There are a number of models available today, with varying levels of complexity to cope with the variety of environmental problems found in lake environments, e.g. eutrophication, acidification,oxygen depletion, wetland management, heavy metal and pesticide pollution, as well as hydrodynamic problems. In particular, this paper focuses on lake eutrophication and wetland models, as well as addressing strategies appropriate for the design and development of reliable lake ecological models.

  2. The accelerating universe and other cosmological aspects of modified gravity models

    Science.gov (United States)

    de Felice, Antonio

    I give a short introduction to standard cosmology and a review of what it is meant by "the dark energy enigma" in chapter l. In chapter 2, I mention and describe some attempts found in the literature of the past few years to attack this problem. Dark energy candidates for which the equation-of-state parameter w is less than -1 violate the dominant energy condition. In scalar-tensor theories of gravity, however, the expansion of the universe can mimic the behavior of general relativity with w the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. In chapter 5, I study a baryogenesis mechanism operating in the context of hyperextended inflation and making use of a coupling between the scalar field and a standard model global current, such as B or B - L . The method is efficient at temperatures at which these currents are not conserved due to some higher dimensional operator. The particle physics and cosmological phenomenology are discussed. I consider constraints stemming from nucleosynthesis and solar system experiments.

  3. Late cosmic acceleration in a vector--Gauss-Bonnet gravity model

    CERN Document Server

    Oliveros, A; Acero, Mario A

    2016-01-01

    In this work we study a general vector-tensor model of dark energy with a Gauss-Bonnet term coupled to a vector field and without explicit potential terms. Considering a spatially flat FRW type universe and a vector field without spatial components, the cosmological evolution is analysed from the field equations of this model, considering two sets of parameters. In this context, we have shown that it is possible to obtain an accelerated expansion phase of the universe, since the equation state parameter $w$ satisfies the restriction $-1model parameters). Further, analytical expressions for the Hubble parameter $H$, equation state parameter $w$ and the invariant scalar $\\phi$ are obtained. We also find that the square of the speed of sound is negative for all values of redshift, therefore, the model presented here shows a sign of instability under small perturbations. We finally perform an analysis using $H(z)$ observational data and we find that for the free parameter $\\...

  4. Modelling of the water retention characteristic of deformable soils

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2016-01-01

    Full Text Available A recently proposed water retention model has been further developed for the application on unsaturated deformable soils. The physical mechanisms underpinning the water retention characteristic of soils was at first described in terms of traditional theories of capillarity and interfacial physical chemistry at pore level. Then upscaling to macroscopic level of material scale in terms of average volume theorem produces an analytical formula for the water retention characteristic. The methodology produces an explicit form of the water retention curve as a function of three state parameters: the suction, the degree-of-water-saturation and the void-ratio. At last, the model has been tested using experimental measurements.

  5. Stochastic modeling of uncertain mass characteristics in rigid body dynamics

    Science.gov (United States)

    Richter, Lanae A.; Mignolet, Marc P.

    2017-03-01

    This paper focuses on the formulation, assessment, and application of a modeling strategy of uncertainty on the mass characteristics of rigid bodies, i.e. mass, position of center of mass, and inertia tensor. These characteristics are regrouped into a 4×4 matrix the elements of which are represented as random variables with joint probability density function derived following the maximum entropy framework. This stochastic model is first shown to satisfy all properties expected of the mass and tensor of inertia of rigid bodies. Its usefulness and computational efficiency are next demonstrated on the behavior of a rigid body in pure rotation exhibiting significant uncertainty in mass distribution.

  6. A Feasibility Study on Porting the Community Land Model onto Accelerators Using Openacc

    Directory of Open Access Journals (Sweden)

    D. Wang

    2014-12-01

    Full Text Available As environmental models (such as Accelerated Climate Model for Energy (ACME, Parallel Reactive Flow and Transport Model (PFLOTRAN, Arctic Terrestrial Simulator (ATS, etc. became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC emerges as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM, a terrestrial ecosystem model within the Community Earth System Models (CESM. Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflow procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. We believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.

  7. Analysis of low energy arc discharge characteristics based on dynamic V-A characteristics model

    Institute of Scientific and Technical Information of China (English)

    JING Li-nan; WANG Li-gong

    2006-01-01

    Low energy arc discharge characteristics was analyzed based on dynamic V-A characteristics model. It draws conclusions that discharge time relates to the source voltage and the product of inductance and stable current, discharge time will increase when the source voltage increases; current reduce rate is in inverse proportion to the value of inductance; arc resistance when the arc occurs is the ratio of minimum arcing voltage to stable current. It also gains the expressions of arc resistance and arc power, arc resistance and arc power both increase as the source voltage increases and decrease as the value of inductance increases. Conclusions above mentioned are helpful to design intrinsically safe circuits.

  8. Modeling particle acceleration and transport during high-energy solar gamma-ray events: Results from the HESPERIA project

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Vainio, Rami; Rouillard, Alexis; Aran, Angels; Sipola, Robert; Pomoell, Jens

    2016-04-01

    The EU/H2020 project "High Energy Solar Particle Events foRecastIng and Analysis" (HESPERIA) has an objective to gain improved understanding of solar energetic particle (SEP) acceleration, release and transport related to long-duration gamma-ray emissions recently observed by Fermi/LAT. We have performed simulation studies for particle acceleration and transport for the 17 May 2012 event, which is also a Ground Level Enhancement (GLE) of solar cosmic rays. The particle event is modeled assuming that it is accelerated by the shock wave driven by the erupting coronal mass ejection (CME). We first analyze the 3-dimensional propagation of the shock through the corona using imaging observations from SDO, SOHO and STEREO spacecraft. The derived kinematics of the shock is combined with magnetohydrodynamic and potential field modeling of the ambient corona to derive the evolution of the shock parameters on a large set of field lines. We then employ the self-consistent Coronal Shock Acceleration (CSA) simulation model of the University of Turku to study the acceleration process on selected field lines and combine it with a new model of downstream particle transport to assess the energy spectrum and time profile of accelerated particles precipitating in the dense surface regions below the corona. We also employ the Shock and Particle (SaP) simulation model of the University of Barcelona to analyze the interplanetary counterpart of the Fermi event. In this paper, we will present the observations of the event, our approach to the modeling and the first results of the analysis. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA).

  9. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  10. Calculation and Spectra Analysis of Horizontal Acceleration Correction (HACC) for Airborne Gravimetry

    Institute of Scientific and Technical Information of China (English)

    SHI Pan; SUN Zhongmiao; XIAO Yun

    2004-01-01

    On the basis of a sinusoidal model of the disturbed horizontal acceleration, the spectrum characteristics of misaligned angle and horizontal acceleration correction are analyzed. In an airborne gravimetry test, the misaligned angle of platform and horizontal acceleration correction are calculated. They are 5'and 3 mGal, respectively, when the flight is stable.

  11. Response Surface Modeling and Optimization of Accelerated Solvent Extraction of Four Lignans from Fructus Schisandrae

    Directory of Open Access Journals (Sweden)

    Jian Liang

    2012-03-01

    Full Text Available A new method based on accelerated solvent extraction (ASE combined with response surface methodology (RSM modeling and optimization has been developed for the extraction of four lignans in Fructus Schisandrae (the fruits of Schisandra chinensis Baill. The RSM method, based on a three level and three variable Box-Behnken design (BBD, was employed to obtain the optimal combination of extraction condition. In brief, the lignans schizandrin, schisandrol B, deoxyschizandrin and schisandrin B were optimally extracted with 87% ethanol as extraction solvent, extraction temperature of 160 °C, static extraction time of 10 min, extraction pressure of 1,500 psi, flush volume of 60% and one extraction cycle. The 3D response surface plot and the contour plot derived from the mathematical models were applied to determine the optimal conditions. Under the above conditions, the experimental value of four lignans was 14.72 mg/g, which is in close agreement with the value predicted by the model.

  12. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Babak, E-mail: b-vakili@iauc.ac.ir

    2014-11-10

    We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW) model, a scalar field with potential function V(ϕ) with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ). Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  13. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  14. The L(1/2) regularization approach for survival analysis in the accelerated failure time model.

    Science.gov (United States)

    Chai, Hua; Liang, Yong; Liu, Xiao-Ying

    2015-09-01

    The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L(1/2) regularization estimator with the accelerated failure time (AFT) model. The L(1/2) regularization could be seen as a typical delegate of L(q)(0regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L(1/2) regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L(1/2) regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures.

  15. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Science.gov (United States)

    Vakili, Babak

    2014-11-01

    We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann-Robertson-Walker (FRW) model, a scalar field with potential function V (ϕ) with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f (ϕ). Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  16. Two-fluid Atmosphere from Decelerating to Accelerating FRW Dark Energy Models

    CERN Document Server

    Pradhan, Anirudh

    2012-01-01

    The evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with perfect fluid and dark energy components is studied by revisiting the recent results (Amirhashchi et al. in Int. J. Theor. Phys. 50: 3529, 2011). The two sources are claimed to interact minimally so that their energy momentum tensors are conserved separately. To prevail the deterministic solution we consider a time dependent deceleration parameter (DP) i.e. $q = -\\frac{a\\ddot{a}}{\\dot{a}^{2}} = b(a(t))$, which yields a scale factor $a = [\\sinh (\\alpha t)]^{\\frac{1}{n}}$, where $\\alpha$ and $n$ are arbitrary constants. This provides for a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. It is observed that the transition red shift ($z_{t}$) for our derived model with $q_{0} = -0.73$ is $\\cong 0.32$. This is in good agreement with the cosmological observations in the literature. The physical a...

  17. Mediation Analysis with Survival Outcomes: Accelerated Failure Time Versus Proportional Hazards Models

    Directory of Open Access Journals (Sweden)

    Lois A Gelfand

    2016-03-01

    Full Text Available Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH and fully parametric accelerated failure time (AFT approaches for illustration.Method: We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively under varied data conditions, some including censoring. A simulated data set illustrates the findings.Results: AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome – underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG.Conclusions: When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

  18. Marked Acceleration of Atherosclerosis following Lactobacillus casei induced Coronary Arteritis in a Mouse Model of Kawasaki Disease

    Science.gov (United States)

    Chen, Shuang; Lee, Young Ho; Crother, Timothy R.; Fishbein, Michael; Zhang, Wenxuan; Yilmaz, Atilla; Shimada, Kenichi; Schulte, Danica J; Lehman, Thomas J.A.; Shah, Prediman K.; Arditi, Moshe

    2012-01-01

    Objective To investigate if Lactobacillus casei cell wall extract (LCWE)-induced Kawasaki Disease (KD) accelerates atherosclerosis in hypercholesterolemic mice. Method and Resuslts Apoe−/− or Ldlr−/− mice were injected with LCWE (KD mice) or PBS, fed high fat diet for 8 weeks, and atherosclerotic lesions in aortic sinuses (AS), arch (AC) and whole aorta were assessed. KD mice had larger, more complex aortic lesions with abundant collagen, and both extracellular and intracellular lipid and foam cells, compared to lesions in control mice despite similar cholesterol levels. Both Apoe−/− KD and Ldlr−/− KD mice showed dramatic acceleration in atherosclerosis vs. controls, with increases in en face aortic atherosclerosis and plaque size in both the AS and AC plaques. Accelerated atherosclerosis was associated with increased circulating IL-12p40, IFN-γ, TNF-α, and increased macrophage, DC, and T cell recruitment in lesions. Furthermore, daily injections of the IL-1Ra, which inhibits LCWE induced KD vasculitis, prevented the acceleration of atherosclerosis. Conclusions Our results suggest an important pathophysiologic link between coronary arteritis/vasculitis in the KD mouse model and subsequent atherosclerotic acceleration, supporting the concept that a similar relation may also be present in KD patients. These results also suggest that KD in childhood may predispose to accelerated and early atherosclerosis as adults. PMID:22628430

  19. The influences of model parameters on the characteristics of memristors

    Institute of Scientific and Technical Information of China (English)

    Zhou Jing; Huang Da

    2012-01-01

    As the fourth passive circuit component,a memristor is a nonlinear resistor that can "remember" the amount of charge passing through it.The characteristic of "remembering" the charge and non-volatility makes memristors great potential candidates in many fields.Nowadays,only a few groups have the ability to fabricate memristors,and most researchers study them by theoretic analysis and simulation.In this paper,we first analyse the theoretical base and characteristics of memristors,then use a simulation program with integrated circuit emphasis as our tool to simulate the theoretical model of memristors and change the parameters in the model to see the influence of each parameter on the characteristics.Our work supplies researchers engaged in memristor-based circuits with advice on how to choose the proper parameters.

  20. Linear Characteristic Graphical Models: Representation, Inference and Applications

    CERN Document Server

    Bickson, Danny

    2010-01-01

    Heavy-tailed distributions naturally occur in many real life problems. Unfortunately, it is typically not possible to compute inference in closed-form in graphical models which involve such heavy-tailed distributions. In this work, we propose a novel simple linear graphical model for independent latent random variables, called linear characteristic model (LCM), defined in the characteristic function domain. Using stable distributions, a heavy-tailed family of distributions which is a generalization of Cauchy, L\\'evy and Gaussian distributions, we show for the first time, how to compute both exact and approximate inference in such a linear multivariate graphical model. LCMs are not limited to stable distributions, in fact LCMs are always defined for any random variables (discrete, continuous or a mixture of both). We provide a realistic problem from the field of computer networks to demonstrate the applicability of our construction. Other potential application is iterative decoding of linear channels with non-...

  1. A model for voltage collapse study considering load characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.B. [Companhia de Energia Eletrica da Bahia (COELBA), Salvador, BA (Brazil)

    1994-12-31

    This paper presents a model for analysis of voltage collapse and instability problem considering the load characteristics. The model considers fundamentally the transmission lines represented by exact from through the generalized constants A, B, C, D and the loads as function of the voltage, emphasizing the cases of constant power, constant current and constant impedance. the study treats of the system behavior on steady state and presents illustrative graphics about the problem. (author) 12 refs., 4 figs.

  2. The method of characteristics applied to analyse 2DH models

    NARCIS (Netherlands)

    Sloff, C.J.

    1992-01-01

    To gain insight into the physical behaviour of 2D hydraulic models (mathematically formulated as a system of partial differential equations), the method of characteristics is used to analyse the propagation of physical meaningful disturbances. These disturbances propagate as wave fronts along bichar

  3. Distributed Leadership as Work Redesign: Retrofitting the Job Characteristics Model

    Science.gov (United States)

    Mayrowetz, David; Murphy, Joseph; Louis, Karen Seashore; Smylie, Mark A.

    2007-01-01

    In this article, we revive work redesign theory, specifically Hackman and Oldham's Job Characteristics Model (JCM), to examine distributed leadership initiatives. Based on our early observations of six schools engaged in distributed leadership reform and a broad review of literature, including empirical tests of work redesign theory, we retrofit…

  4. Modeling and Analysis of Radio Frequency Structures Using AN Equivalent Circuit Methodology with Application to Charged Particle Accelerator RF Resonators

    Science.gov (United States)

    Vincent, John J.

    The delineation of analysis techniques for high power radio frequency resonators, used as a fundamental component of particle accelerators, receives little attention in the literature. This dissertation reviews, describes, and develops techniques for resolving a transmission line mode rf resonator into an approximate equivalent circuit. Specifically, it presents a toolbox of techniques used to model and represent rf structures. One technique develops models of transmission lines with varying characteristic impedance (referred to as non-uniform) using multiple series connected circuits consisting of lumped elements and constant impedance transmission lines based on a conserved energy approach. This technique is tested for exponentially tapered and linearly tapered quarter-wave resonators. Another technique developed, maps transmission lines with arbitrary cross-sections (referred to as nonstandard) to a standard structure that preserves the characteristic impedance and loss properties of the original line. The techniques developed are applied to the analysis of the complex K1200 Superconducting Cyclotron rf resonators at the National Superconducting Cyclotron Laboratory (NSCL). The results predicted from the model are compared to measurements. The K1200 rf resonators are tunable over the frequency range of 9.5 to 27 MHz with tuning stems that vary from 300 cm to 11 cm respectively. The resonators are operated in the continuos wave (cw) mode and sustain peak voltages of up to 180 kV requiring drive power of up to 250 kW. Using the techniques developed, the resonant frequency versus tuning stem position was predicted to within a positioning error that varied from 1 to 3.5 cm over the tuning range of 9.5 to 27 Mhz. The discrepancy between model predictions and the experimental data for the resonator power dissipation is postulated to be due to high surface resistance in regions where the rf surfaces were heavily worked or welded. After adjusting the surface resistance

  5. Medium to Long Range Kinematic GPS Positioning with Position-Velocity-Acceleration Model Using Multiple Reference Stations.

    Science.gov (United States)

    Hong, Chang-Ki; Park, Chi Ho; Han, Joong-hee; Kwon, Jay Hyoun

    2015-07-13

    In order to obtain precise kinematic global positioning systems (GPS) in medium to large scale networks, the atmospheric effects from tropospheric and ionospheric delays need to be properly modeled and estimated. It is also preferable to use multiple reference stations to improve the reliability of the solutions. In this study, GPS kinematic positioning algorithms are developed for the medium to large-scale network based on the position-velocity-acceleration model. Hence, the algorithm can perform even in cases where the near-constant velocity assumption does not hold. In addition, the estimated kinematic accelerations can be used for the airborne gravimetry. The proposed algorithms are implemented using Kalman filter and are applied to the in situ airborne GPS data. The performance of the proposed algorithms is validated by analyzing and comparing the results with those from reference values. The results show that reliable and comparable solutions in both position and kinematic acceleration levels can be obtained using the proposed algorithms.

  6. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    Science.gov (United States)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data

  7. Accelerating a Network Model of Care: Taking a Social Innovation to Scale

    Directory of Open Access Journals (Sweden)

    Kerry Byrne

    2012-07-01

    Full Text Available Government-funded systems of health and social care are facing enormous fiscal and human-resource challenges. The space for innovation in care is wide open and new disruptive patterns are emerging. These include self-management and personal budgets, participatory and integrated care, supported decision making and a renewed focus on prevention. Taking these disruptive patterns to scale can be accelerated by a technologically enabled shift to a network model of care to co-create the best outcomes for individuals, family caregivers, and health and social care organizations. The connections, relationships, and activities within an individual’s personal network lay the foundation for care that health and social care systems/policy must simultaneously support and draw on for positive outcomes. Practical tools, adequate information, and tangible resources are required to coordinate and sustain care. Tyze Personal Networks is a social venture that uses technology to engage and inform the individual, their personal networks, and their care providers to co-create the best outcomes. In this article, we demonstrate how Tyze contributes to a shift to a network model of care by strengthening our networks and enhancing partnerships between care providers, individuals, and family and friends.

  8. Limited impairments of associative learning in a mouse model of accelerated senescence.

    Science.gov (United States)

    Yang, Yi; Wu, Guang-yan; Li, Xuan; Huang, He; Hu, Bo; Yao, Juan; Wu, Bing; Sui, Jian-feng

    2013-11-15

    Research concerning impairment of associative learning during aging remains limited. The senescence-accelerated mice (SAM) prone/8 (P8) has been proposed as a useful model for the study of aging, and SAM resistant/1(SAMR1) is its control as a normal aging strain. Classical eyeblink conditioning has long been served as a model of associative learning. In order to explore the effects of aging on associative learning in SAM, the present study successively tested three paradigms of eyeblink conditioning in SAMP8 and SAMR1: classical single cue trace eyeblink conditioning (TEC), discriminative trace eyeblink conditioning and reversal learning of TEC. Behavioral performance indicated that SAMP8 could acquire limited single-cue trace eyeblink conditioning task and two-tone discrimination trace eyeblink conditioning with a relative lower acquisition rate compared to SAMR1. Both SAMP8 and SAMR1 failed to acquire reversal learning of discriminative TEC, and SAMP8' startle reflex to tone CS was lower than SAMR1. These results indicated that the impairments of aging on associative learning were incomplete in SAMP8.

  9. Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model

    CERN Document Server

    Block, Benjamin; Preis, Tobias; 10.1016/j.cpc.2010.05.005

    2010-01-01

    A modern graphics processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two dimensional Ising model [T. Preis et al., J. Comp. Phys. 228, 4468 (2009)] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message Parsing Interface (MPI) on the CPU level, a single Ising lattice can be updated by a cluster of GPUs in parallel. For large systems, the computation time scales nearly linearly with the number of GPUs used. As proof of concept we reproduce the critical temperature of the 2D Ising model using finite size scaling techniques.

  10. Kelvin wave packets and flow acceleration - A comparison of modeling and observations

    Science.gov (United States)

    Coy, L.; Hitchman, M.

    1984-01-01

    Atmospheric Kelvin waves, as revealed by temperatures obtained from the recent Limb Infrared Monitor of the Stratosphere (LIMS) experiment, commonly occur in packets. A simple two-dimensional gravity-wave model is used to study the upward propagation of these packets through different zonal mean wind profiles derived from the LIMS data. The observed prevalence of high frequency waves in the lower mesosphere and low frequency waves in the lower stratosphere can be exlained by dispersion of energy associated with the range of frequencies comprising a packet. Dominant wave frequencies at upper and lower levels are more distinctly separated if the packet propagates through a layer of westerly winds. Due to dispersion and shear effects, a packet of short temporal length at low levels will have a considerably extended impact on a layer of westerly winds at higher levels. Observed and modeled westerly accelerations resulting from packet absorption occur in the same layer, and are similar in magnitude and duration. These results support the theory that Kelvin waves are responsible for the westerly phase of the semiannual oscillation.

  11. Hearing characteristics of cephalopods: modeling and environmental impact study.

    Science.gov (United States)

    Zhang, Yunfeng; Shi, Feng; Song, Jiakun; Zhang, Xugang; Yu, Shiliang

    2015-01-01

    Cephalopods (octopus, squid and cuttlefish) are some of the most intriguing molluscs, and they represent economically important commercial marine species for fisheries. Previous studies have shown that cephalopods are sensitive to underwater particle motion, especially at low frequencies in the order of 10 Hz. The present paper deals with quantitative modeling of the statocyst system in three cephalopod species: Octopus vulgaris, Sepia officinalis and Loligo vulgaris. The octopus's macula/statolith organ was modeled as a 2nd-order dynamic oscillator using parameter values estimated from scanning electron micrograph images. The modeling results agree reasonably well with experimental data (acceleration threshold) in the three cephalopod species. Insights made from quantitative modeling and simulating the particle motion sensing mechanism of cephalopods elucidated their underwater particle motion detection capabilities. Sensitivity to emerging environmental issues, such as low frequency noise caused by near-shore wind farms and increasing levels of carbon dioxide in the ocean, and sensitivity to sounds produced by impending landslides were investigated in octopus using the model.

  12. Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Directory of Open Access Journals (Sweden)

    Jiang Feng

    2010-12-01

    Full Text Available Abstract Background Most genomic data have ultra-high dimensions with more than 10,000 genes (probes. Regularization methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes, directly identifying a small subset of genes from ultra-high (m > 10, 000 dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. Results The accelerated failure time (AFT model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of unknown variables (genes is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. Conclusions Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.

  13. Observational constraints on the accelerating universe in the framework of a 5D bounce cosmological model

    Institute of Scientific and Technical Information of China (English)

    Lü Jian-Bo; Xu Li-Xin; Liu Mo-Lin; Gui Yuan-Xing

    2009-01-01

    In the framework of a five-dimensional(5D)bounce cosmological model,a useful function f(z)is obtained by giving a concrete expression of deceleration parameter q(z)=q1+q2/1+1n(1+z).Then usng the obtained Hubble parameter H(z)according to the function f(z),we constrain the accelerating universe from recent cosmic observations:the 192 ESSENCE SNe Ia and the 9 observational H(z)data.The best fitting values of transition redshift zT and current deceleration parameter q0 are given as zT=o.65±0.25-0.12 and q0=-0.76+0.15-0.15(1σ).Furthermore,in the 5D bounce model it can be seen that the evolution of equation of state(EOS)for dark energy ωde can cross over-1 at about z=0.23 and the current value ω0de=1.15<-1.On the other hand,by giving a concrete expression of model-independent EOS of dark energy ωde,in the 5D bounce model we obtain the best fitting values zT=0.66+0311-0.08 and q0=-0.69+0.10-0.10(1σ)from the recently observed data:the 192 ESSENCE SNe Ia,the observational H(z)data,the 3-year Wilkinson Microwave Anisotropy Probe(WMAP),the Sloan Digital Sky Survey(SDSS)baryon acoustic peak and the x-ray gas mass fraction in clusters.

  14. Cooling nozzles characteristics for numerical models of continuous casting

    Directory of Open Access Journals (Sweden)

    R. Pyszko

    2013-10-01

    Full Text Available Modelling the temperature field of a continuously cast strand is an important tool for the process diagnostics. The main preconditions for numerical simulation of the temperature field of the solidifying strand are correct boundary conditions, especially the surface condition in the secondary zone of the caster. The paper deals with techniques of determining the surface condition under cooling nozzles as well as their approximation and implementation into the model algorithm. Techniques used for laboratory measurements of both cold and hot spraying characteristics of water or water-air cooling nozzles are described. The relationship between the cold and hot characteristics was found. Implementation of such a dependence into the model algorithm reduces the duration and cost of laboratory measurements.

  15. Characteristics of a Logistics-Based Business Model

    OpenAIRE

    Sandberg, Erik; Kihlén, Tobias; Abrahamsson, Mats

    2011-01-01

    In companies where excellence in logistics is decisive for the outperformance of competitors and logistics has an outspoken role for the strategy of the firm, there is present what we refer to here as a “logistics-based business model.” Based on a multiple case study of three Nordic retail companies, the purpose of this article is to explore the characteristics of such a logistics-based business model. As such, this research helps to provide structure to logistics-based business models and id...

  16. Evaluating the AS-level Internet models: beyond topological characteristics

    Institute of Scientific and Technical Information of China (English)

    Fan Zheng-Ping

    2012-01-01

    A surge number of models has been proposed to model the Internet in the past decades.However,the issue on which models are better to model the Internet has still remained a problem.By analysing the evolving dynamics of the Internet,we suggest that at the autonomous system (AS) level,a suitable Internet model,should at least be heterogeneous and have a linearly growing mechanism.More importantly,we show that the roles of topological characteristics in evaluating and differentiating Internet models are apparently over-estimated from an engineering perspective.Also,we find that an assortative network is not necessarily more robust than a disassortative network and that a smaller average shortest path length does not necessarily mean a higher robustness,which is different from the previous observations. Our analytic results are helpful not only for the Internet,but also for other general complex networks.

  17. Design and Modeling of a Flexible Contact-Mode Piezoresistive Detector for Time-Based Acceleration Sensing

    NARCIS (Netherlands)

    Rajaraman, V.; Hau, B.S.; Rocha, L.A.; French, P.J.; Makinwa, K.A.A.

    2010-01-01

    This work reports on the design and modeling of a new flexible contact-mode 1-DOF piezoresistive contact force and impacttime detector used for acceleration sensing in the time domain. The key advantages of the contact-mode detection mechanism are the use of simple readout circuitry, compactness, go

  18. An Analytic Particle Acceleration Model in Pulsar Wind Termination Shocks Applied to the Crab Nebula Gamma-Ray Flares

    Science.gov (United States)

    Kroon, John J.; Becker, Peter A.; Justin, Finke; Dermer, Charles D.

    2017-01-01

    The Crab nebula is a persistent source of gamma-rays up to about 100 MeV due to synchrotron radiation from electrons/positrons emitting in an ambient magnetic field thought to be of magnitude B~200 μG. The radiating electrons are limited by radiation-reaction forces which place an upper limit of about 100 MeV on the gamma-ray photons it can produce. This normally quiescent nebula has been observed by AGILE and Fermi to undergo bright transients lasting about a week and characterized by a significant increase in gamma-ray flux far above the classical radiation-reaction limit, with energies often reaching 3 GeV. The flares imply a population of PeV electrons accelerated on sub-day timescales. The very short acceleration timescales and the observed emission above the radiation-reaction limit place severe constraints on contemporary shock acceleration models such as diffusive shock acceleration which cannot account for the temporal and energetic properties of the gamma-ray flares. In this component of my dissertation research, I revisit the problem and find an analytic solution to the Fokker-Planck equation which incorporates a variety of acceleration and loss terms. I find that the model can reproduce the various Fermi-LAT flare spectra well and that electrostatic acceleration is the most significant contributor to the underlying mechanisms responsible for the most energetic astrophysical particle population ever observed. I find that the spectra of all the Fermi-LAT flares from the Crab nebula can be reproduced with this model using magnetic fields that are in agreement with multi-wavelength observations.

  19. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  20. Modeling the impact and costs of semiannual mass drug administration for accelerated elimination of lymphatic filariasis.

    Directory of Open Access Journals (Sweden)

    Wilma A Stolk

    Full Text Available The Global Program to Eliminate Lymphatic Filariasis (LF has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA programs. Acceleration is needed. We studied how increasing MDA frequency from once to twice per year would affect program duration and costs by using computer simulation modeling and cost projections. We used the LYMFASIM simulation model to estimate how many annual or semiannual MDA rounds would be required to eliminate LF for Indian and West African scenarios with varied pre-control endemicity and coverage levels. Results were used to estimate total program costs assuming a target population of 100,000 eligibles, a 3% discount rate, and not counting the costs of donated drugs. A sensitivity analysis was done to investigate the robustness of these results with varied assumptions for key parameters. Model predictions suggested that semiannual MDA will require the same number of MDA rounds to achieve LF elimination as annual MDA in most scenarios. Thus semiannual MDA programs should achieve this goal in half of the time required for annual programs. Due to efficiency gains, total program costs for semiannual MDA programs are projected to be lower than those for annual MDA programs in most scenarios. A sensitivity analysis showed that this conclusion is robust. Semiannual MDA is likely to shorten the time and lower the cost required for LF elimination in countries where it can be implemented. This strategy may improve prospects for global elimination of LF by the target year 2020.

  1. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    Science.gov (United States)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  2. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek; K. Rautenstrauch

    2004-09-09

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 156605], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 156605]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with AP-SIII.9Q, ''Scientific Analyses'', and the technical work

  3. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L., E-mail: jlvay@lbl.gov [LBNL, Berkeley, CA 94720 (United States); Lehe, R. [LBNL, Berkeley, CA 94720 (United States); Vincenti, H. [CEA, Saclay (France); Godfrey, B.B. [LBNL, Berkeley, CA 94720 (United States); U. Maryland, College Park, MD 20742 (United States); Haber, I. [U. Maryland, College Park, MD 20742 (United States); Lee, P. [LPGP, CNRS, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  4. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    Science.gov (United States)

    Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  5. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease.

    Science.gov (United States)

    Cifuentes, Diana; Poittevin, Marine; Dere, Ekrem; Broquères-You, Dong; Bonnin, Philippe; Benessiano, Joëlle; Pocard, Marc; Mariani, Jean; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I

    2015-01-01

    Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm(2); PHypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice; Phypertension accelerates the development of Alzheimer disease-related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production.

  6. Modeling of Blood Lead Levels in Astronauts Exposed to Lead from Microgravity-Accelerated Bone Loss

    Science.gov (United States)

    Garcia, H.; James, J.; Tsuji, J.

    2014-01-01

    Human exposure to lead has been associated with toxicity to multiple organ systems. Studies of various population groups with relatively low blood lead concentrations (adults. Cognitive effects are considered by regulatory agencies to be the most sensitive endpoint at low doses. Although 95% of the body burden of lead is stored in the bones, the adverse effects of lead correlate with the concentration of lead in the blood better than with that in the bones. NASA has found that prolonged exposure to microgravity during spaceflight results in a significant loss of bone minerals, the extent of which varies from individual to individual and from bone to bone, but generally averages about 0.5% per month. During such bone loss, lead that had been stored in bones would be released along with calcium. The effects on the concentration of lead in the blood (PbB) of various concentrations of lead in drinking water (PbW) and of lead released from bones due to accelerated osteoporosis in microgravity, as well as changes in exposure to environmental lead before, during, and after spaceflight were evaluated using a physiologically based pharmacokinetic (PBPK) model that incorporated exposure to environmental lead both on earth and in flight and included temporarily increased rates of osteoporosis during spaceflight.

  7. Classical and Quantum Cosmology of an Accelerating Model Universe with Compactification of Extra Dimensions

    CERN Document Server

    Darabi, F

    2009-01-01

    We study a $(4+D)$-dimensional Kaluza-Klein cosmology with a Robertson-Walker type metric having two scale factors $a$ and $R$, corresponding to $D$-dimensional internal space and 4-dimensional universe, respectively. By introducing an exotic matter in the form of perfect fluid with an special equation of state, as the space-time part of the higher dimensional energy-momentum tensor, a four dimensional effective decaying cosmological term appears as $\\lambda \\sim R^{-m}$ with $0 \\leq m\\leq 2$, playing the role of an evolving dark energy in the universe. By taking $m=2$, which has some interesting implications in reconciling observations with inflationary models and is consistent with quantum tunneling, the resulting Einstein's field equations yield the exponential solutions for the scale factors $a$ and $R$. These exponential behaviors may account for the dynamical compactification of extra dimensions and the accelerating expansion of the 4-dimensional universe in terms of Hubble parameter, $H$. The accelerat...

  8. Immune responses accelerate ageing: proof-of-principle in an insect model.

    Directory of Open Access Journals (Sweden)

    E Rhiannon Pursall

    Full Text Available The pathology of many of the world's most important infectious diseases is caused by the immune response. Additionally age-related disease is often attributed to inflammatory responses. Consequently a reduction in infections and hence inflammation early in life has been hypothesized to explain the rise in lifespan in industrialized societies. Here we demonstrate experimentally for the first time that eliciting an immune response early in life accelerates ageing. We use the beetle Tenebrio molitor as an inflammation model. We provide a proof of principle for the effects of early infection on morbidity late in life and demonstrate a long-lasting cost of immunopathology. Along with presenting a proof-of-principle study, we discuss a mechanism for the apparently counter-adaptive persistence of immunopathology in natural populations. If immunopathology from early immune response only becomes costly later in life, natural selection on reducing self-harm would be relaxed, which could explain the presence of immune self-harm in nature.

  9. Torque model of hydro turbine with inner energy loss characteristics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents the result and analysis of the composition of energy loss occurring in the hydro turbine. Two new types of energy losses,namely the hydraulic loss in the flow channel and the impact loss,are defined. All losses within the hydro turbine are divided into four types and the loss coefficients are defined accordingly. Expressions or characteristic descriptions of these losses as well as the calibration method of the loss coefficients are presented. Furthermore,the torque model of the hydro turbine where the inner energy loss takes place is established. The developed model has been used to calculate the power loss due to the mechanical friction generated by the units’ rotation to solve the difficulty of measurements of the mechanical friction loss in the hydro turbine. The definition of the impact loss explains the phenomenon that the loss of no-load is greater than that of the rated operation. A set of conversion coefficients are defined using the characteristic parameters at the rated operation,which are used to transform the parameters in the torque model into those that are easily measured. Therefore,the expression of the hydro turbine power is converted into a function that has the main servomotor displacement as its single variable. This makes the proposed model be convenient to use. Finally,the proposed model and methods are calibrated and verified using the measured data of a hydropower plant. Good agreement between the modeled results and the measurements indicates that the proposed model can represent the inner energy loss characteristics of the hydro turbine.

  10. Freeze-Dried Platelet-Rich Plasma Accelerates Bone Union with Adequate Rigidity in Posterolateral Lumbar Fusion Surgery Model in Rats

    Science.gov (United States)

    Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-11-01

    Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite–collagen composite) –alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union–related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone.

  11. A microcosmic discrete occupant evacuation model based on individual characteristics

    Institute of Scientific and Technical Information of China (English)

    YANG Lizhong; LI Jian; ZHAO Daoliang; FANG Weifeng; FAN Weicheng

    2004-01-01

    The research of occupant evacuation in an emergency is of great benefit to building design and evacuation guidance. In this paper a microcosmic discrete evacuation model based on Cellular Automata (CA) is presented, in which the occupants' individual characteristics are considered. Thus, our model has given a description of evacuation route choice with influencing factors, including: individual knowledge of the building,individual realization of the emergency development, and the attractive and repulsive force between occupants. This model differs somewhat from other models in the attention to the associative and separate effect of influencing factors, based on occupant's behaviors. In addition, the model could reveal the phenomenon of escape in fire, as those simulations involving a fire condition have shown.

  12. Compact model for switching characteristics of graphene field effect transistor

    Science.gov (United States)

    Sreenath, R.; Bala Tripura Sundari, B.

    2016-04-01

    The scaling of CMOS transistors has resulted in intensified short channel effects, indicating that CMOS has reached its physical limits. Alternate non silicon based materials namely carbon based graphene, carbon nanotubes are being explored for usability as channel and interconnect material due to their established higher mobility and robustness. This paper presents a drift-diffusion based circuit simulatable Verilog-A compact model of graphene field effect transistor (GFET) for channel length of 100nm.The focus is on the development of simulatable device model in Verilog A based on intrinsic parameters and obtain the current, high cutoff frequency and use the model into circuit level simulations to realize an inverter and a 3-stage ring oscillator using Synopsys HSPICE. The applications are so chosen that their switching characteristics enable the determination of the RF frequency ranges of operation that the model can achieve when used in digital applications and also to compare its performance with existing CMOS model. The GFET's switching characteristics and power consumption were found to be better than similarly sized CMOS operating at same range of voltages. The basic frequency of operation in the circuit is of significant importance so as to use the model in other applications at RF and in future for millimeter wave applications. The frequency of operation at circuit level is found to be 1.1GHz at 100nm which is far higher than the existing frequency of 245 MHz reported at 500nm using AlN.

  13. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally

  14. On injection-ejection fluid influence through different accelerating porous surfaces on unsteady 2d incompressible boundary layer characteristics

    Directory of Open Access Journals (Sweden)

    Ivanović Dečan

    2005-01-01

    Full Text Available Through the porous contour in perpendicular direction, the fluid of the same properties as incompressible fluid in basic flow, has been injected or ejected with velocity who is a function of the contour longitudinal coordinate and time. The corresponding equations of unsteady boundary layer, by introducing the appropriate variable transformations, momentum and energy equations and two similarity parameters sets, are transformed into generalized form. These parameters are expressing the influence of the outer flow velocity, the injection or ejection velocity and the flow history in boundary layer, on the boundary layer characteristics. Obtained generalized solutions are used to calculate the distributions of velocity, and shear stress in laminar-turbulent transition of unsteady incompressible boundary layer on different porous contours: circular cylinder, thin elliptical cylinder and aerofoil, whose centers velocities changes in time as a degree functions. The ejection of fluid postpones the boundary layer separation, i.e. laminar-turbulent transition, and vice versa the injection of fluid favors the separation. Boundary layer characteristics are found directly, no further numerical integration of momentum equation.

  15. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek; K.R. Rautenstrauch

    2003-06-27

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the products (i.e., analysis and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003). Some documents identified in Figure 1-1 may be under development and not available at the time this report is issued. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003), describes the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63, uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the Amargosa Valley population, consistent with the requirements of 10 CFR 63.312. Amargosa Valley is the community, located in the direction of the projected groundwater flow path, where most of the farming in the area occurs. The parameter values

  16. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    Science.gov (United States)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element

  17. Modifications of thick-target model: re-acceleration of electron beams by static and stochastic electric fields

    Science.gov (United States)

    Varady, M.; Karlický, M.; Moravec, Z.; Kašparová, J.

    2014-03-01

    Context. The collisional thick-target model (CTTM) of the impulsive phase of solar flares, together with the famous Carmichael, Sturrock, Hirayama, and Kopp-Pneuman (CSHKP) model, presented for many years a "standard" model, which straightforwardly explained many observational aspects of flares. On the other hand, many critical issues appear when the concept is scrutinised theoretically or with the new generation of hard X-ray (HXR) observations. The famous "electron number problem" or problems related to transport of enormous particle fluxes though the corona represent only two of them. To resolve the discrepancies, several modifications of the CTTM appeared. Aims: We study two of them based on the global and local re-acceleration of non-thermal electrons by static and stochastic electric fields during their transport from the coronal acceleration site to the thick-target region in the chromosphere. We concentrate on a comparison of the non-thermal electron distribution functions, chromospheric energy deposits, and HXR spectra obtained for both considered modifications with the CTTM itself. Methods: The results were obtained using a relativistic test-particle approach. We simulated the transport of non-thermal electrons with a power-law spectrum including the influence of scattering, energy losses, magnetic mirroring, and also the effects of the electric fields corresponding to both modifications of the CTTM. Results: We show that both modifications of the CTTM change the outcome of the chromospheric bombardment in several aspects. The modifications lead to an increase in chromospheric energy deposit, change of its spatial distribution, and a substantial increase in the corresponding HXR spectrum intensity. Conclusions: The re-acceleration in both models reduces the demands on the efficiency of the primary coronal accelerator, on the electron fluxes transported from the corona downwards, and on the total number of accelerated coronal electrons during flares.

  18. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy.

    Science.gov (United States)

    Buford, Thomas W; Anton, Stephen D; Judge, Andrew R; Marzetti, Emanuele; Wohlgemuth, Stephanie E; Carter, Christy S; Leeuwenburgh, Christiaan; Pahor, Marco; Manini, Todd M

    2010-10-01

    Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.

  19. Immunization with hepatitis B vaccine accelerates SLE-like disease in a murine model.

    Science.gov (United States)

    Agmon-Levin, Nancy; Arango, María-Teresa; Kivity, Shaye; Katzav, Aviva; Gilburd, Boris; Blank, Miri; Tomer, Nir; Volkov, Alex; Barshack, Iris; Chapman, Joab; Shoenfeld, Yehuda

    2014-11-01

    Hepatitis-B vaccine (HBVv) can prevent HBV-infection and associated liver diseases. However, concerns regarding its safety, particularly among patients with autoimmune diseases (i.e. SLE) were raised. Moreover, the aluminum adjuvant in HBVv was related to immune mediated adverse events. Therefore, we examined the effects of immunization with HBVv or alum on SLE-like disease in a murine model. NZBWF1 mice were immunized with HBVv (Engerix), or aluminum hydroxide (alum) or phosphate buffered saline (PBS) at 8 and 12 weeks of age. Mice were followed for weight, autoantibodies titers, blood counts, proteinuria, kidney histology, neurocognitive functions (novel object recognition, staircase, Y-maze and the forced swimming tests) and brain histology. Immunization with HBVv induced acceleration of kidney disease manifested by high anti-dsDNA antibodies (p < 0.01), early onset of proteinuria (p < 0.05), histological damage and deposition of HBs antigen in the kidney. Mice immunized with HBVv and/or alum had decreased cells counts mainly of the red cell lineage (p < 0.001), memory deficits (p < 0.01), and increased activated microglia in different areas of the brain compare with mice immunized with PBS. Anxiety-like behavior was more pronounced among mice immunized with alum. In conclusion, herein we report that immunization with the HBVv aggravated kidney disease in an animal model of SLE. Immunization with either HBVv or alum affected blood counts, neurocognitive functions and brain gliosis. Our data support the concept that different component of vaccines may be linked with immune and autoimmune mediated adverse events.

  20. Modelling the reflective thermal contribution to the acceleration of the Pioneer spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, F., E-mail: frederico.francisco@ist.utl.pt [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O., E-mail: orfeu.bertolami@fc.up.pt [Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gil, P.J.S., E-mail: p.gil@dem.ist.utl.pt [Departamento de Engenharia Mecanica and IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Paramos, J., E-mail: paramos@ist.edu [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2012-05-23

    We present an improved method to compute the radiative momentum transfer in the Pioneer 10 and 11 spacecraft that takes into account both diffusive and specular reflection. The method allows for more reliable results regarding the thermal acceleration of the deep-space probes, confirming previous findings. A parametric analysis is performed in order to set upper and lower bounds for the thermal acceleration and its evolution with time.

  1. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    Outdoor testing of buildings and building components under real weather conditions provides useful information about their dynamic performance. Such knowledge is needed to properly characterize the heat transfer dynamics and provides useful information for implementing energy saving strategies...... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends......, for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family...

  2. Modeling and Visualizing the Particle Beam in the Rare Isotope Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Christopher [Argonne National Lab., IL (United States); Erdelyi, Bela [Argonne National Lab., IL (United States); Northern Illinois Univ. (United States)

    2006-01-01

    Argonne National Laboratory is actively pursuing research and design for a Rare Isotope Accelerator (RIA) facility that will aid basic research in nuclear physics by creating beams of unstable isotopes. Such a facility has been labeled as a high priority by the joint Department of Energy and National Science Foundation Nuclear Science Advisory Committee because it will allow more study on the nature of nucleonic matter, the origin of the elements, the Standard Model, and nuclear medicine. An important part of this research is computer simulations that model the behavior of the particle beam, specifically in the Fragment Separator. The Fragment Separator selects isotopes based on their trajectory in electromagnetic fields and then uses absorbers to separate particles with a certain mass and charge from the rest of the beam. This project focused on the development of a multivariate, correlated Gaussian distribution to model the distribution of particles in the beam as well as visualizations and analysis to view how this distribution changed when passing through an absorber. The distribution was developed in the COSY INFINITY programming language. The user inputs a covariance matrix and a vector of means for the six phase space variables, and the program outputs a vector of correlated, Gaussian random variables. A variety of random test cases were conducted in two, three and six variables. In each case, the expectation values, variances and covariances were calculated and they converged to the input values. The output of the absorber code is a large data set that stores all of the variables for each particle in the distribution. It is impossible to analyze such a large data set by hand, so visualizations and summary statistics had to be developed. The first visualization is a three-dimensional graph that shows the number of each isotope present after each slice of the absorber. A second graph plots any of the six phase space variables against any of the others to see

  3. Modeling the Gamma-Ray Emission in the GALACTIC CENTER with a Fading Cosmic-ray Accelerator

    Science.gov (United States)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton; Chang, Xiao-Chuan

    2016-12-01

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays from the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.

  4. Numerical Modeling of Orbit-Spin Coupling Accelerations in a Mars General Circulation Model: Implications for Global Dust Storm Activity

    CERN Document Server

    Mischna, Michael A

    2016-01-01

    We employ the MarsWRF general circulation model (GCM) to test the predictions of a new physical hypothesis: a weak coupling of the orbital and rotational angular momenta of extended bodies is predicted to give rise to cycles of intensification and relaxation of circulatory flows within atmospheres. The dynamical core of the GCM has been modified to include the orbit-spin coupling accelerations due to solar system dynamics for the years 1920-2030. The modified GCM is first subjected to extensive testing and validation. We compare forced and unforced model outcomes for large-scale zonal and meridional flows, and for near-surface wind velocities and surface wind stresses. The predicted cycles of circulatory intensification and relaxation within the modified GCM are observed. Most remarkably, the modified GCM reproduces conditions favorable for the occurrence of perihelion-season global-scale dust storms on Mars in years in which such storms were observed. A strengthening of the meridional overturning (Hadley) ci...

  5. Diffusive Acceleration of Ions at Interplanetary Shocks

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Summerlin, Errol J.

    2005-01-01

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-conv...

  6. Classifying sows' activity types from acceleration patterns

    DEFF Research Database (Denmark)

    Cornou, Cecile; Lundbye-Christensen, Søren

    2008-01-01

    -dimensional axes, plus the length of the acceleration vector) are selected for each activity. Each time series is modeled using a Dynamic Linear Model with cyclic components. The classification method, based on a Multi-Process Kalman Filter (MPKF), is applied to a total of 15 times series of 120 observations......An automated method of classifying sow activity using acceleration measurements would allow the individual sow's behavior to be monitored throughout the reproductive cycle; applications for detecting behaviors characteristic of estrus and farrowing or to monitor illness and welfare can be foreseen....... This article suggests a method of classifying five types of activity exhibited by group-housed sows. The method involves the measurement of acceleration in three dimensions. The five activities are: feeding, walking, rooting, lying laterally and lying sternally. Four time series of acceleration (the three...

  7. Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment

    Science.gov (United States)

    Casademunt, Jaume; Zhang, Wenbin; Vinals, Jorge; Sekerka, Robert F.

    1993-01-01

    We introduce a stochastic model to analyze in quantitative detail the effect of the high frequency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. The residual acceleration field is modeled as a narrow band noise characterized by three independent parameters: its intensity G squared, a dominant frequency Omega, and a characteristic spectral width tau exp -1. The white noise limit corresponds to Omega tau goes to O, with G squared tau finite, and the limit of a periodic g-jitter (or deterministic limit) can be recovered for Omega tau goes to infinity, G squared finite. The analysis of the response of a fluid surface subjected to a fluctuating gravitational field leads to the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the solutions of this equation in the two limits of white noise and deterministic forcing, and in the general case of narrow band noise. The results are then applied to typical microgravity conditions.

  8. Accelerated 20-year sunlight exposure simulation of a photochromic foldable intraocular lens in a rabbit model

    Science.gov (United States)

    Werner, Liliana; Abdel-Aziz, Salwa; Peck, Carolee Cutler; Monson, Bryan; Espandar, Ladan; Zaugg, Brian; Stringham, Jack; Wilcox, Chris; Mamalis, Nick

    2011-01-01

    PURPOSE To assess the long-term biocompatibility and photochromic stability of a new photochromic hydrophobic acrylic intraocular lens (IOL) under extended ultraviolet (UV) light exposure. SETTING John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. DESIGN Experimental study. METHODS A Matrix Aurium photochromic IOL was implanted in right eyes and a Matrix Acrylic IOL without photochromic properties (n = 6) or a single-piece AcrySof Natural SN60AT (N = 5) IOL in left eyes of 11 New Zealand rabbits. The rabbits were exposed to a UV light source of 5 mW/cm2 for 3 hours during every 8-hour period, equivalent to 9 hours a day, and followed for up to 12 months. The photochromic changes were evaluated during slitlamp examination by shining a penlight UV source in the right eye. After the rabbits were humanely killed and the eyes enucleated, study and control IOLs were explanted and evaluated in vitro on UV exposure and studied histopathologically. RESULTS The photochromic IOL was as biocompatible as the control IOLs after 12 months under conditions simulating at least 20 years of UV exposure. In vitro evaluation confirmed the retained optical properties, with photochromic changes observed within 7 seconds of UV exposure. The rabbit eyes had clinical and histopathological changes expected in this model with a 12-month follow-up. CONCLUSIONS The new photochromic IOL turned yellow only on exposure to UV light. The photochromic changes were reversible, reproducible, and stable over time. The IOL was biocompatible with up to 12 months of accelerated UV exposure simulation. PMID:21241924

  9. Nitric oxide accelerates interleukin-13 cytotoxin-mediated regression in head and neck cancer animal model.

    Science.gov (United States)

    Kawakami, Koji; Kawakami, Mariko; Puri, Raj K

    2004-08-01

    Receptors for interleukin-13 (IL-13R) are overexpressed on several types of solid cancers including gliobastoma, renal cell carcinoma, AIDS Kaposi's sarcoma, and head and neck cancer. Recombinant fusion proteins IL-13 cytotoxin (IL13-PE38QQR or IL13-PE38) have been developed to directly target IL-13R-expressing cancer cells. Although it has been found that IL-13 cytotoxin has a direct potent antitumor activity in vivo in nude mice models of human cancers, the involvement of indirect antitumor effecter molecules such as nitric oxide (NO) is unknown. To address this issue, we assessed the effect of NO inhibiter N(omega)-monomethyl-l-arginine on IL-13 cytotoxin-mediated cytotoxicity and NO2/NO3 production in HN12 head and neck cancer cells. In addition, antitumor effects and NO levels in HN12 and KCCT873 head and neck tumors xenografted s.c. in nude mice when treated with IL-13 cytotoxin were evaluated by tumor measurement, Western blot, and immunohistochemistry analyses. Pretreatment of animals with N(omega)-monomethyl-l-arginine significantly decreased the NO levels and IL-13 cytotoxin-mediated antitumor effects. In addition, depletion of macrophages, known to produce NO, also decreased antitumor activity of IL-13 cytotoxin. Based on these studies, we concluded that NO accelerates antitumor effect of IL-13 cytotoxin on head and neck tumor cells. Because IL-13 cytotoxin is currently being tested in the clinic for the treatment of patients with recurrent glioblastoma maltiforme, our current findings suggest maintaining macrophage and NO-producing cellular function for optimal therapeutic effect of this targeted agent.

  10. Parabens Accelerate Ovarian Dysfunction in a 4-Vinylcyclohexene Diepoxide-Induced Ovarian Failure Model

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2017-02-01

    Full Text Available Parabens are widely used preservatives in basic necessities such as cosmetic and pharmaceutical products. In previous studies, xenoestrogenic actions of parabens were reported in an immature rat model and a rat pituitary cell line (GH3 cells. The relationship between parabens and ovarian failure has not been described. In the present study, the influence of parabens on ovarian folliculogenesis and steroidogenesis was investigated. A disruptor of ovarian small pre-antral follicles, 4-vinylcyclohexene diepoxide (VCD, 40 mg/kg, was used to induce premature ovarian failure (POF. Methylparaben (MP, 100 mg/kg, propylparaben (PP, 100 mg/kg, and butylparaben (BP, 100 mg/kg dissolved in corn oil were treated in female 8-week-old Sprague-Dawley rat for 5 weeks. Estrus cycle status was checked daily by vaginal smear test. Ovarian follicle development and steroid synthesis were investigated through real-time PCR and histological analyses. Diestrus phases in the VCD, PP, and BP groups were longer than that in the vehicle group. VCD significantly decreased mRNA level of folliculogenesis-related genes (Foxl2, Kitl and Amh. All parabens significantly increased the Amh mRNA level but unchanged Foxl2 and Kitlg acting in primordial follicles. VCD and MP slightly increased Star and Cyp11a1 levels, which are related to an initial step in steroidogenesis. VCD and parabens induced an increase in FSH levels in serum and significantly decreased the total number of follicles. Increased FSH implies impairment in ovarian function due to VCD or parabens. These results suggest that VCD may suppress both formation and development of follicles. In particular, combined administration of VCD and parabens accelerated inhibition of the follicle-developmental process through elevated AMH level in small antral follicles.

  11. Parabens Accelerate Ovarian Dysfunction in a 4-Vinylcyclohexene Diepoxide-Induced Ovarian Failure Model

    Science.gov (United States)

    Lee, Jae-Hwan; Lee, Myeongho; Ahn, Changhwan; Kang, Hee Young; Tran, Dinh Nam; Jeung, Eui-Bae

    2017-01-01

    Parabens are widely used preservatives in basic necessities such as cosmetic and pharmaceutical products. In previous studies, xenoestrogenic actions of parabens were reported in an immature rat model and a rat pituitary cell line (GH3 cells). The relationship between parabens and ovarian failure has not been described. In the present study, the influence of parabens on ovarian folliculogenesis and steroidogenesis was investigated. A disruptor of ovarian small pre-antral follicles, 4-vinylcyclohexene diepoxide (VCD, 40 mg/kg), was used to induce premature ovarian failure (POF). Methylparaben (MP, 100 mg/kg), propylparaben (PP, 100 mg/kg), and butylparaben (BP, 100 mg/kg) dissolved in corn oil were treated in female 8-week-old Sprague-Dawley rat for 5 weeks. Estrus cycle status was checked daily by vaginal smear test. Ovarian follicle development and steroid synthesis were investigated through real-time PCR and histological analyses. Diestrus phases in the VCD, PP, and BP groups were longer than that in the vehicle group. VCD significantly decreased mRNA level of folliculogenesis-related genes (Foxl2, Kitl and Amh). All parabens significantly increased the Amh mRNA level but unchanged Foxl2 and Kitlg acting in primordial follicles. VCD and MP slightly increased Star and Cyp11a1 levels, which are related to an initial step in steroidogenesis. VCD and parabens induced an increase in FSH levels in serum and significantly decreased the total number of follicles. Increased FSH implies impairment in ovarian function due to VCD or parabens. These results suggest that VCD may suppress both formation and development of follicles. In particular, combined administration of VCD and parabens accelerated inhibition of the follicle-developmental process through elevated AMH level in small antral follicles. PMID:28208728

  12. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    Science.gov (United States)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  13. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-05

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2005 [DIRS 172782]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 173164], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 173164]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with LP-SIII.9Q-BSC, ''Scientific Analyses'', and the technical work

  14. Charge state distribution and emission characteristics in a table top reflex discharge—Effect of ion confinement and electrons accelerated across the sheath

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak, E-mail: deepak.kumar@eli-beams.eu; Englesbe, Alexander; Parman, Matthew; Stutman, Dan; Finkenthal, Michael [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-11-15

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ∼10{sup 18 }m{sup −3} with a significant fraction >0.01 of fast primary electrons. The implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.

  15. DEVELOPMENT OF POLITICAL PARTIES AND PARTY FUNDING: MODELS AND CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Hrvoje MATAKOVIC

    2015-03-01

    Full Text Available The first modern political parties were formed at the end of the 18th century and have, from those times up to now, undergone 4 developing phases; each of the phases is bound to ideal-type political party model: cadre parties, mass parties, catch-all parties and cartel parties. Each of these party models differentiates in various characteristics: party foundation, number of members, and way of leading the election campaigns, but also in ways of financing. This paper describes the above mentioned 4 phases of political parties’ development and 4 phases of parties' finances development; it will be analysed in detail positive and negative sides of each of the models of party financing.

  16. Model analysis for combustion characteristics of RDF pellet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fundamental studies of the combustion characteristics and the de-HCl behavior of a single refuse-derived fuel(RDF) pellet were carried out to explain the de-HCl phenomena of RDF during fluidized bed combustion and to provide data for the development of high efficiency power generation technology using RDF previously. For further interpreting the devolatilization and the char combustion processes of RDF quantitatively, an unsteady combustion model for single RDF pellet, involving reaction rates, heat transfer and oxygen diffusion in the RDF pellet, was developed. Comparisons of simulation results with experimental data for mass loss of the RDF samples made from municipal solid waste, wood chips and poly-propylene when they were heated at 10K/min or put into the furnace under 1073K show the verifiability of the model. Using this model, the distributions of the temperature and the reaction ratio along the radius of RDF pellet during the devolatilization process and the char combustion process were presented, and discussion about the inference of heating rate on the combustion characteristics were performed.

  17. Magnetic confinement effects on the particle escape from the loop top in stochastic acceleration models for solar flares.

    Science.gov (United States)

    Effenberger, F.; Petrosian, V.

    2015-12-01

    Stochastic acceleration scenarios are among the most promising candidates to explain the high energies attained by particles in solar flares. Recent progress in the determination of fundamental acceleration parameters using novel techniques for the inversion of high resolution RHESSI hard X-ray spectra allows to determine non-thermal electron spectra at the loop top and foot points of a flare loop (Chen & Petrosian 2014). One outcome of this work is that the trapping and escape of the electrons is governed by wave particle scatterings and convergence of magnetic lines of force. Here, we present a computational study of the transport and escape processes of particles in the acceleration region. We employ a Fokker-Planck model, which includes pitch-angle scattering and magnetic mirroring in a non-uniform magnetic field. This allows to test analytical approximations for the particle escape times in the loop top region, which are helpful to constrain the key particle acceleration parameters. New perspectives will be given on how the insights gained from the analysis of the particle confinement will enable subsequent studies of a broader class of solar flares.

  18. GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition

    Science.gov (United States)

    Zhen, Z.; Jia, X.

    2014-12-01

    Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the

  19. Kinetic modeling of particle acceleration in a solar null point reconnection region

    DEFF Research Database (Denmark)

    Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke

    2013-01-01

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO......-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms, featuring a power-law index of about -1.75. This work provides a first step towards bridging the gap between macroscopic scales...

  20. Femi-type acceleration of electron in γ-ray burst fireball model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We calculate numerically the hydrodynamic evolution of a γ-ray burst fireball. The results show that refluence will emerge during fireball expansion due to negative-pressure effect. The refluence will collide with outward fluid, then shock wave will form. Electrons moving between the inward and outward fluid shells can be accelerated to 104—105 MeV by one order Femi-type acceleration with high efficiency after several collisions. Radiation of electrons with such high energy may be the observed γ-ray bursts.

  1. Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation.

    Science.gov (United States)

    Ji, Songbai; Zhao, Wei; Li, Zhigang; McAllister, Thomas W

    2014-10-01

    Both linear [Formula: see text] and rotational [Formula: see text] accelerations contribute to head impacts on the field in contact sports; however, they are often isolated in injury studies. It is critical to evaluate the feasibility of estimating brain responses using isolated instead of full degrees-of-freedom (DOFs) accelerations. In this study, we investigated the sensitivities of regional brain strain-related responses to resultant [Formula: see text] and [Formula: see text] as well as the relative contributions of these acceleration components to the responses via random sampling and linear regression using parameterized, triangulated head impacts with kinematic variable values based on on-field measurements. Two independently established and validated finite element models of the human head were employed to evaluate model-consistency and dependency in results: the Dartmouth Head Injury Model and Simulated Injury Monitor. For the majority of the brain, volume-weighted regional peak strain, strain rate, and von Mises stress accumulated from the simulation significantly correlated with the product of the magnitude and duration of [Formula: see text], or effectively, the rotational velocity, but not to [Formula: see text]. Responses from [Formula: see text]-only were comparable to the full-DOF counterparts especially when normalized by injury-causing thresholds (e.g., volume fractions of large differences virtually diminished (i.e., [Formula: see text]1 %) at typical difference percentage levels of 1-4 % on average). These model-consistent results support the inclusion of both rotational acceleration magnitude and duration into kinematics-based injury metrics and demonstrate the feasibility of estimating strain-related responses from isolated [Formula: see text] for analyses of strain-induced injury relevant to contact sports without significant loss of accuracy, especially for the cerebrum.

  2. Metal oxide surge arrester model with active V-I characteristics; Sanka aenkei hiraiki dotokusei model

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, T.; Funabashi, T.; Watanabe, H.; Takeuchi, N. [Meidensha Corporation, Tokyo (Japan); Ueda, T. [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1996-11-20

    Generally a model of Metal Oxide Surge Arrester (MOSA) for numerical analysis uses a non-linear resistance. But actual Voltage-Current (V-I) characteristics of MOSA have hysteresis loop in time domain like i-{Phi} characteristic of a transformer and frequency dependency. The authors have investigated relation between the actual V-I hysteresis characteristics obtained by some current waveforms and static V-I characteristics. From the voltage difference between above two characteristics, an equation was derived and a new model of MOSA was developed. This model consists of a non-linear resistance representing fundamental V-I characteristic, a linear inductance and voltage source which depends on the absorbed energy. The calculated results by the proposed model are compared with measurement results by using the waveform of standard impulse current, steep front current and oscillated current. And the accuracy of the model has been confirmed to be satisfactory. The model is expected to be useful to investigate insulation coordination of power systems. 11 refs., 11 figs., 2 tabs.

  3. Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter.

    Science.gov (United States)

    Gedeon, Patrick C; Thomas, James R; Madura, Jeffry D

    2015-01-01

    Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.

  4. Synaptic proteome changes in a DNA repair deficient Ercc1 mouse model of accelerated aging

    NARCIS (Netherlands)

    M.J. Végh (Marlene); M.C. de Waard (Monique); I. van der Pluijm (Ingrid); Y. Ridwan (Yanto); M.J.M. Sassen (Marion J.); P. van Nierop (Pim); R.C. van der Schors (Roel); K.W. Li (Ka Wan); J.H.J. Hoeijmakers (Jan); A.B. Smit (August); R.E. van Kesteren (Ronald)

    2012-01-01

    textabstractCognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of

  5. Acceleration of PIC and CR algorithms for High Fidelity In-Space Propulsion Modeling (Briefing Charts)

    Science.gov (United States)

    2013-07-29

    stepping integrator for finite-Larmor radius particle trajectories, accelerated collisional-radiative non -equilibrium ionization kinetics through...Reproduces 3-4 Orders of Magnitude Random Merge -> Thermalization 3000 First Point, 1500 First Cross Bi- Maxwellian Specifically Difficult Octree Merge...Merge -> Thermalization 3000 First Point, 1500 First Cross Bi- Maxwellian Specifically Difficult Octree Merge Significantly Better Merge & Split Adapts

  6. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise

    Directory of Open Access Journals (Sweden)

    Anandarajah Gabrial

    2009-07-01

    Full Text Available Abstract Background This work explores the potential contribution of bioenergy technologies to 60% and 80% carbon reductions in the UK energy system by 2050, by outlining the potential for accelerated technological development of bioenergy chains. The investigation was based on insights from MARKAL modelling, detailed literature reviews and expert consultations. Due to the number and complexity of bioenergy pathways and technologies in the model, three chains and two underpinning technologies were selected for detailed investigation: (1 lignocellulosic hydrolysis for the production of bioethanol, (2 gasification technologies for heat and power, (3 fast pyrolysis of biomass for bio-oil production, (4 biotechnological advances for second generation bioenergy crops, and (5 the development of agro-machinery for growing and harvesting bioenergy crops. Detailed literature searches and expert consultations (looking inter alia at research and development needs and economic projections led to the development of an 'accelerated' dataset of modelling parameters for each of the selected bioenergy pathways, which were included in five different scenario runs with UK-MARKAL (MED. The results of the 'accelerated runs' were compared with a low-carbon (LC-Core scenario, which assesses the cheapest way to decarbonise the energy sector. Results Bioenergy was deployed in larger quantities in the bioenergy accelerated technological development scenario compared with the LC-Core scenario. In the electricity sector, solid biomass was highly utilised for energy crop gasification, displacing some deployment of wind power, and nuclear and marine to a lesser extent. Solid biomass was also deployed for heat in the residential sector from 2040 in much higher quantities in the bioenergy accelerated technological development scenario compared with LC-Core. Although lignocellulosic ethanol increased, overall ethanol decreased in the transport sector in the bioenergy

  7. The Postural Control Characteristics of Individuals with and without a History of Ankle Sprain during Single-leg Standing: Relationship between Center of Pressure and Acceleration of the Head and Foot Parameters.

    Science.gov (United States)

    Abe, Yota; Sugaya, Tomoaki; Sakamoto, Masaaki

    2014-06-01

    [Purpose] This study aimed to investigate the postural control characteristics of individuals with and without a history of ankle sprain during single-leg standing by examining the relationship between various parameters of center of pressure (COP) and head and foot acceleration. [Subjects] Twenty subjects with and 23 subjects without a history of ankle sprain (sprain and control groups, respectively) participated. [Methods] Mean and maximum COP velocity and maximum COP range in the anteroposterior and mediolateral components of movement were calculated using a gravicorder. The anteroposterior and mediolateral maximum accelerations of the head and foot, as well as the root mean square (RMS) of each acceleration parameter, were measured using accelerometers. [Results] In the mediolateral component, a significant positive correlation was found between maximum acceleration of the foot and all COP parameters in the sprain group. [Conclusion] Our findings suggest that mediolateral momentary motion of the foot in individuals with a history of ankle sprain has relevance to various parameters of COP.

  8. Characteristics of Behavior of Robots with Emotion Model

    Science.gov (United States)

    Sato, Shigehiko; Nozawa, Akio; Ide, Hideto

    Cooperated multi robots system has much dominance in comparison with single robot system. It is able to adapt to various circumstances and has a flexibility for variation of tasks. However it has still problems to control each robot, though methods for control multi robots system have been studied. Recently, the robots have been coming into real scene. And emotion and sensitivity of the robots have been widely studied. In this study, human emotion model based on psychological interaction was adapt to multi robots system to achieve methods for organization of multi robots. The characteristics of behavior of multi robots system achieved through computer simulation were analyzed. As a result, very complexed and interesting behavior was emerged even though it has rather simple configuration. And it has flexiblity in various circumstances. Additional experiment with actual robots will be conducted based on the emotion model.

  9. Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, David B; McCorquodale, Peter; Colella, Phillip [Lawrence Berkeley National Lab, Applied Numerical Algorithms Group, SciDAC Applied Differential Equations Center (United States)

    2005-01-01

    We seek to improve on the conventional FFT-based algorithms for solving the Poisson equation with infinite-domain (open) boundary conditions for large problems in accelerator modeling and related areas. In particular, improvements in both accuracy and performance are possible by combining several technologies: the method of local corrections (MLC); the James algorithm; and adaptive mesh refinement (AMR). The MLC enables the parallelization (by domain decomposition) of problems with large domains and many grid points. This improves on the FFT-based Poisson solvers typically used as it doesn't require the all-to-all communication pattern that parallel 3d FFT algorithms require, which tends to be a performance bottleneck on current (and foreseeable) parallel computers. In initial tests, good scalability up to 1000 processors has been demonstrated for our new MLC solver. An essential component of our approach is a new version of the James algorithm for infinite-domain boundary conditions for the case of three dimensions. By using a simplified version of the fast multipole method in the boundary-to-boundary potential calculation, we improve on the performance of the Hockney algorithm typically used by reducing the number of grid points by a factor of 8, and the CPU costs by a factor of 3. This is particularly important for large problems where computer memory limits are a consideration. The MLC allows for the use of adaptive mesh refinement, which reduces the number of grid points and increases the accuracy in the Poisson solution. This improves on the uniform grid methods typically used in PIC codes, particularly in beam problems where the halo is large. Also, the number of particles per cell can be controlled more closely with adaptivity than with a uniform grid. To use AMR with particles is more complicated than using uniform grids. It affects depositing particles on the non-uniform grid, reassigning particles when the adaptive grid changes and maintaining the

  10. Characteristics of successful opinion leaders in a bounded confidence model

    Science.gov (United States)

    Chen, Shuwei; Glass, David H.; McCartney, Mark

    2016-05-01

    This paper analyses the impact of competing opinion leaders on attracting followers in a social group based on a bounded confidence model in terms of four characteristics: reputation, stubbornness, appeal and extremeness. In the model, reputation differs among leaders and normal agents based on the weights assigned to them, stubbornness of leaders is reflected by their confidence towards normal agents, appeal of the leaders is represented by the confidence of followers towards them, and extremeness is captured by the opinion values of leaders. Simulations show that increasing reputation, stubbornness or extremeness makes it more difficult for the group to achieve consensus, but increasing the appeal will make it easier. The results demonstrate that successful opinion leaders should generally be less stubborn, have greater appeal and be less extreme in order to attract more followers in a competing environment. Furthermore, the number of followers can be very sensitive to small changes in these characteristics. On the other hand, reputation has a more complicated impact: higher reputation helps the leader to attract more followers when the group bound of confidence is high, but can hinder the leader from attracting followers when the group bound of confidence is low.

  11. An accelerated life test model for harmonic drives under a segmental stress history and its parameter optimization

    Directory of Open Access Journals (Sweden)

    Zhang Chao

    2015-12-01

    Full Text Available Harmonic drives have various distinctive advantages and are widely used in space drive mechanisms. Accelerated life test (ALT is commonly conducted to shorten test time and reduce associated costs. An appropriate ALT model is needed to predict the lifetime of harmonic drives with ALT data. However, harmonic drives which are used in space usually work under a segmental stress history, and traditional ALT models can hardly be used in this situation. This paper proposes a dedicated ALT model for harmonic drives applied in space systems. A comprehensive ALT model is established and genetic algorithm (GA is adopted to obtain optimal parameters in the model using the Manson fatigue damage rule to describe the fatigue failure process and a cumulative damage method to calculate and accumulate the damage caused by each segment in the stress history. An ALT of harmonic drives was carried out and experimental results show that this model is acceptable and effective.

  12. An accelerated life test model for harmonic drives under a segmental stress history and its parameter optimization

    Institute of Scientific and Technical Information of China (English)

    Zhang Chao; Wang Shaoping; Wang Zimeng; Wang Xingjian

    2015-01-01

    Harmonic drives have various distinctive advantages and are widely used in space drive mechanisms. Accelerated life test (ALT) is commonly conducted to shorten test time and reduce associated costs. An appropriate ALT model is needed to predict the lifetime of harmonic drives with ALT data. However, harmonic drives which are used in space usually work under a segmental stress history, and traditional ALT models can hardly be used in this situation. This paper proposes a dedicated ALT model for harmonic drives applied in space systems. A comprehensive ALT model is established and genetic algorithm (GA) is adopted to obtain optimal parameters in the model using the Manson fatigue damage rule to describe the fatigue failure process and a cumulative dam-age method to calculate and accumulate the damage caused by each segment in the stress history. An ALT of harmonic drives was carried out and experimental results show that this model is acceptable and effective.

  13. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  14. Extended temperature-accelerated dynamics: enabling long-time full-scale modeling of large rare-event systems.

    Science.gov (United States)

    Bochenkov, Vladimir; Suetin, Nikolay; Shankar, Sadasivan

    2014-09-07

    A new method, the Extended Temperature-Accelerated Dynamics (XTAD), is introduced for modeling long-timescale evolution of large rare-event systems. The method is based on the Temperature-Accelerated Dynamics approach [M. Sørensen and A. Voter, J. Chem. Phys. 112, 9599 (2000)], but uses full-scale parallel molecular dynamics simulations to probe a potential energy surface of an entire system, combined with the adaptive on-the-fly system decomposition for analyzing the energetics of rare events. The method removes limitations on a feasible system size and enables to handle simultaneous diffusion events, including both large-scale concerted and local transitions. Due to the intrinsically parallel algorithm, XTAD not only allows studies of various diffusion mechanisms in solid state physics, but also opens the avenue for atomistic simulations of a range of technologically relevant processes in material science, such as thin film growth on nano- and microstructured surfaces.

  15. "Leading blob" model in a stochastic acceleration scenario: the case of the 2009 flare of Mkn~501

    CERN Document Server

    Lefa, E; Rieger, F M

    2011-01-01

    Evidence for very hard, intrinsic $\\gamma$-ray source spectra, as inferred after correction for absorption in the extragalactic background light (EBL), has interesting implications for the acceleration and radiation mechanisms acting in blazars. A key issue so far has been the dependance of the hardness of the $\\gamma$-ray spectrum on different existing EBL models. The recent {\\it Fermi} observations of Mkn~501 now provide additional evidence for the presence of hard intrinsic $\\gamma$-ray spectra independent of EBL uncertainties. Relativistic Maxwellian-type electron energy distributions that are formed in stochastic acceleration scenarios offer a plausible interpretation for such hard source spectra. Here we show that the combined emission from different components with Maxwellian-type distributions could in principle also account for more softer and broader, power law-like emission spectra. We introduce a "leading blob" scenario, applicable to active flaring episodes, when one (or few) of these components ...

  16. Student Teachers' Modeling of Acceleration Using a Video-Based Laboratory in Physics Education: A Multimodal Case Study

    Directory of Open Access Journals (Sweden)

    Louis Trudel

    2016-06-01

    Full Text Available This exploratory study intends to model kinematics learning of a pair of student teachers when exposed to prescribed teaching strategies in a video-based laboratory. Two student teachers were chosen from the Francophone B.Ed. program of the Faculty of Education of a Canadian university. The study method consisted of having the participants interact with a video-based laboratory to complete two activities for learning properties of acceleration in rectilinear motion. Time limits were placed on the learning activities during which the researcher collected detailed multimodal information from the student teachers' answers to questions, the graphs they produced from experimental data, and the videos taken during the learning sessions. As a result, we describe the learning approach each one followed, the evidence of conceptual change and the difficulties they face in tackling various aspects of the accelerated motion. We then specify advantages and limits of our research and propose recommendations for further study.

  17. Analytic model and frequency characteristics of plasma synthetic jet actuator

    Science.gov (United States)

    Zong, Hao-hua; Wu, Yun; Li, Ying-hong; Song, Hui-min; Zhang, Zhi-bo; Jia, Min

    2015-02-01

    This paper reports a novel analytic model of a plasma synthetic jet actuator (PSJA), considering both the heat transfer effect and the inertia of the throat gas. Both the whole cycle characteristics and the repetitive working process of PSJA can be predicted with this model. The frequency characteristics of a PSJA with 87 mm3 volume and different orifice diameters are investigated based on the analytic model combined with experiments. In the repetitive working mode, the actuator works initially in the transitional stage with 20 cycles and then in the dynamic balanced stage. During the transitional stage, major performance parameters of PSJA experience stepped growth, while during the dynamic balanced stage, these parameters are characterized by periodic variation. With a constant discharge energy of 6.9 mJ, there exists a saturated frequency of 4 kHz/6 kHz for an orifice diameter of 1 mm/1.5 mm, at which the time-averaged total pressure of the pulsed jet reaches a maximum. Between 0.5 mm and 1.5 mm, a larger orifice diameter leads to a higher saturated frequency due to the reduced jet duration time. As the actuation frequency increases, both the time-averaged cavity temperature and the peak jet velocity initially increase and then remain almost unchanged at 1600 K and 280 m/s, respectively. Besides, with increasing frequency, the mechanical energy incorporated in single pulsed jet, the expelled mass per pulse, and the time-averaged density in the cavity, decline in a stair stepping way, which is caused by the intermittent decrease of refresh stage duration in one period.

  18. Two-Step Acceleration Model of Cosmic Rays at Middle-Aged SNR

    CERN Document Server

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2010-01-01

    Recent gamma-ray observations of middle-aged supernova remnants revealed a mysterious broken power-law spectrum. Using three-dimensional magnetohydrodynamics simulations, we show that the interaction between a supernova blast wave and interstellar clouds formed by thermal instability generates multiple reflected shocks. The typical Mach numbers of the reflected shocks are shown to be M ~ 2 depending on the density contrast between the diffuse intercloud gas and clouds. These secondary shocks can further energize cosmic-ray particles originally accelerated at the blast-wave shock. This "two-step" acceleration scenario reproduces the observed gamma-ray spectrum and predicts the high-energy spectral index ranging approximately from 3 to 4.

  19. GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography

    Directory of Open Access Journals (Sweden)

    Martin Schweiger

    2011-01-01

    and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest gains are achieved for high mesh resolutions.

  20. Experiments assigned to determine the acceleration of 8000kN shear laboratory model elements

    Science.gov (United States)

    Budiul Berghian, A.; Vasiu, T.; Abrudean, C.

    2017-01-01

    In this paper presents an experimental kinetics study by measuring accelerations using a bi-axial accelerometer constructed in the basis of a miniature integrated circuit, included in the class of micro-electrical and mechanical systems - MMA6261Q on the experimental installation reduced to the 1:5 dividing rule by comparison with the shear existent in exploitation, conceived and projected at the Faculty of Engineering in Hunedoara.

  1. From tracking code to analysis generalised Courant-Snyder theory for any accelerator model

    CERN Document Server

    Forest, Etienne

    2016-01-01

    This book illustrates a theory well suited to tracking codes, which the author has developed over the years. Tracking codes now play a central role in the design and operation of particle accelerators. The theory is fully explained step by step with equations and actual codes that the reader can compile and run with freely available compilers. In this book, the author pursues a detailed approach based on finite “s”-maps, since this is more natural as long as tracking codes remain at the center of accelerator design. The hierarchical nature of software imposes a hierarchy that puts map-based perturbation theory above any other methods. This is not a personal choice: it follows logically from tracking codes overloaded with a truncated power series algebra package. After defining abstractly and briefly what a tracking code is, the author illustrates most of the accelerator perturbation theory using an actual code: PTC. This book may seem like a manual for PTC; however, the reader is encouraged to explore...

  2. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  3. Gait analysis using gravitational acceleration measured by wearable sensors.

    Science.gov (United States)

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  4. A stringent restriction from the growth of large-scale structure on apparent acceleration in inhomogeneous cosmological models

    CERN Document Server

    Ishak, Mustapha; Troxel, M A

    2013-01-01

    Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to uneven dynamics in the universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from the study of the growth rate of large-scale structure in the universe as modeled by the Szekeres inhomogeneous cosmological models. We use the models in all generality with no assumptions of spherical or axial symmetries. We find that Szekeres inhomogeneous models that fit well the observed expansion history fail to explain the observed late-time suppression of the growth of structure unless a cosmological constant is added to the dynamics.

  5. A MIXED LUBRICATION MODEL MODIFIED BY SURFACES' FRACTAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    孟凡明; 张有云

    2003-01-01

    Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D, compared with the oil film thickness to roughness ratio h/Rq. As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.

  6. The Model Characteristics of Physical Fitness in CrossFit

    Directory of Open Access Journals (Sweden)

    Vasilii V. Volkov

    2014-06-01

    Full Text Available The aim of the study is to work out the model characteristics of the physical fitness of CrossFit athletes based on laboratory functional testing (n=10. The analysis of the body composition was conducted using the dual-energy absorptiometry method. The morpho-functional characteristics of the heart were explored using a high-resolution ultrasound scanner. Oxygen consumption at the aerobic-anaerobic threshold and maximum oxygen consumption were determined in a step test on arm and leg cycle ergometers using a gas-analyzer. The level of the physical fitness of leg muscles in the males and females who took part in the study was satisfactory. However, it was considerably higher than the norm for untrained people. The level of the physical fitness of arm muscles was higher than the average and matched the Master of Sport of International Class standards. The productivity of the cardio-vascular system was much higher than in healthy males and females who do not work out and comparable to the standards for advanced soccer players.

  7. Dynamic characteristics and mechatronics model for maglev blood pump

    Science.gov (United States)

    Sun, Kun; Chen, Chen

    2017-01-01

    Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.

  8. Modeling the characteristics of wheel/rail rolling noise

    Science.gov (United States)

    Lui, Wai Keung; Li, Kai Ming; Frommer, Glenn H.

    2005-04-01

    To study the sound radiation characteristics of a passing train, four sets of noise measurements for different train operational conditions have been conducted at three different sites, including ballast tracks at grade and railway on a concrete viaduct. The time histories computed by the horizontal radiation models were compared with the measured noise profiles. The measured sound exposure levels are used to deduce the vertical directivity pattern for different railway systems. It is found that the vertical directivity of different railway systems shows a rather similar pattern. The vertical directivity of train noise is shown to increase up to about 30× before reducing to a minimum at 90×. A multipole expansion model is proposed to account for the vertical radiation directivity of the train noise. An empirical formula, which has been derived, compares well with the experimental data. The empirical model is found to be applicable to different train/rail systems at train speeds ranging up to 120 km/h in this study. [Work supported by MTR Corporation Ltd., Innovation Technology Commission of the HKSAR Government and The Hong Kong Polytechnic University.

  9. Characteristics of the chiral phase transition in nonlocal quark models

    CERN Document Server

    Dumm, D G

    2004-01-01

    The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.

  10. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo; Nucamendi, Ulises, E-mail: avelino@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040, Morelia, Michoacán (Mexico)

    2010-08-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form ζ = ζ{sub 0}+ζ{sub 1}H where ζ{sub 0} and ζ{sub 1} are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of ζ{sub 0} and ζ{sub 1} using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (ζ{sub 0},ζ{sub 1}) is that of an expanding Universe beginning with a Big-Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts z∼>1. However, when we assume ζ{sub 1} = 0, the simple model ζ = ζ{sub 0} evaluated at the best estimated value for ζ{sub 0} satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.

  11. GPU加速三维特征线方法的研究%Study on Acceleration of Three-Dimensional Method of Characteristics by GPU

    Institute of Scientific and Technical Information of China (English)

    张知竹; 李庆; 王侃

    2013-01-01

    三维特征线方法可以精确求解任意几何堆芯的稳态多群中子输运方程,但同时也具有收敛慢、计算时间长的不足,需要研究相应的加速手段.图形处理器(GPU)计算由于具有速度快,能耗低的优点,被认为是未来高性能计算发展的方向之一.研究GPU计算加速三维特征线方法,并将其应用到三维特征线程序TCM中.借助统一计算设备架构(CUDA)的GPU计算,中央处理器(CPU)负责内存分配、有效增殖系数keff和源分布计算等逻辑性强或归约计算的处理,GPU执行特征线射线扫描细网求解细网通量.计算结果表明,经改写后的程序具有良好的加速效果.%The three-dimensional method of characteristics (MOC) can solve neutron transport equation for arbitrary geometry accurately.However,the MOC has some drawbacks:the convergence speed is slow and very time consuming.As a result,the research of acceleration of MOC is carried out.Compared with the CPU computing,the GPU computing,which is one of the most promising high performance computing,can achieve higher computing speed but with lower cost.And the development of general computing on GPU can be simplified with CUDA.To reduce the computing time and increase the computing efficiency,the study of three-dimensional MOC is performed and applied to the three-dimensional MOC code TCM.The computing results confirm the excellent acceleration of the code running on GPU.

  12. Modeling the gamma-ray emission in the Galactic Center with a fading cosmic-ray accelerator

    CERN Document Server

    Liu, Ruo-Yu; Prosekin, Anton; Chang, Xiao-Chuan

    2016-01-01

    Recent HESS observations of the ~200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic Center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic Center shows a cutoff at ~10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single, yet fading accelerator. In this model, gamma rays from the CMZ region are produced by protons injected in the past, while gamma rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the C...

  13. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, A.A.; Girola, S. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Valda, A.A., E-mail: valda@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Minsky, D.M.; Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)] [CONICET, Buenos Aires (Argentina); Sanchez, G. [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)

    2011-12-15

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: Black-Right-Pointing-Pointer Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. Black-Right-Pointing-Pointer Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. Black-Right-Pointing-Pointer Calculations: Monte Carlo simulations with the MCNP code. Black-Right-Pointing-Pointer Measured and calculated figure-of-merit parameters in agreement with those of IAEA. Black-Right-Pointing-Pointer Initial MCNP dose calculations for a treatment room to define future design actions.

  14. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  15. Evaluating models for predicting hydraulic characteristics of layered soils

    Science.gov (United States)

    Mavimbela, S. S. W.; van Rensburg, L. D.

    2012-01-01

    Soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (K-coefficient) are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH) is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964), van Genuchten (1980) and Kasugi (1996) parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM). The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC) were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE) recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988) since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980) performing fairly well on the Orthic and neucutanic horizons while its modified form fitted very

  16. Evaluating models for predicting hydraulic characteristics of layered soils

    Directory of Open Access Journals (Sweden)

    S. S. W. Mavimbela

    2012-01-01

    Full Text Available Soil water characteristic curve (SWCC and unsaturated hydraulic conductivity (K-coefficient are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964, van Genuchten (1980 and Kasugi (1996 parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM. The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988 since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980 performing fairly well on the Orthic

  17. A model of the TeV flare of Cygnus X-1: electron acceleration and extended pair cascades

    CERN Document Server

    Zdziarski, A A; Bednarek, W

    2008-01-01

    We consider theoretical models of emission of TeV photons by Cyg X-1 during a flare discovered by the MAGIC detector. We study acceleration of electrons to energies sufficient for TeV emission, and find the emission site is allowed to be close to the black hole. We then consider pair absorption in the photon field of the central X-ray source and a surrounding accretion disc, and find its optical depth is 3 TeV, in which photons travel far away from the star, initiating a spatially extended pair cascade. This qualitatively explains the observed TeV spectrum, though still not its exact shape.

  18. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mehrling, T.J., E-mail: timon.mehrling@desy.de [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Robson, R.E. [Centre for Quantum Dynamics, School of Natural Sciences, Griffith University, Brisbane (Australia); Erbe, J-H.; Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany)

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  19. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  20. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    Science.gov (United States)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  1. A Framework for 3D Model-Based Visual Tracking Using a GPU-Accelerated Particle Filter.

    Science.gov (United States)

    Brown, J A; Capson, D W

    2012-01-01

    A novel framework for acceleration of particle filtering approaches to 3D model-based, markerless visual tracking in monocular video is described. Specifically, we present a methodology for partitioning and mapping the computationally expensive weight-update stage of a particle filter to a graphics processing unit (GPU) to achieve particle- and pixel-level parallelism. Nvidia CUDA and Direct3D are employed to harness the massively parallel computational power of modern GPUs for simulation (3D model rendering) and evaluation (segmentation, feature extraction, and weight calculation) of hundreds of particles at high speeds. The proposed framework addresses the computational intensity that is intrinsic to all particle filter approaches, including those that have been modified to minimize the number of particles required for a particular task. Performance and tracking quality results for rigid object and articulated hand tracking experiments demonstrate markerless, model-based visual tracking on consumer-grade graphics hardware with pixel-level accuracy up to 95 percent at 60+ frames per second. The framework accelerates particle evaluation up to 49 times over a comparable CPU-only implementation, providing an increased particle count while maintaining real-time frame rates.

  2. Synchronized ion acceleration by ultraintense slow light

    CERN Document Server

    Brantov, A V; Kovalev, V F; Bychenkov, V Yu

    2015-01-01

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D PIC simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.

  3. Development of PUNDA (Parametric Universal Nonlinear Dynamics Approximator) Models for Self-Validating Knowledge-Guided Modelling of Nonlinear Processes in Particle Accelerators \\& Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric

    2007-10-07

    The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.

  4. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    Science.gov (United States)

    Curtis, J. H.; Michelotti, M. D.; Riemer, N.; Heath, M. T.; West, M.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removal rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.

  5. A modeling GUI for accelerator physics of the storage ring at SSRF

    Institute of Scientific and Technical Information of China (English)

    CHEN Guangling; TIAN Shunqiang; LIU Guimin; JIANG Bocheng

    2009-01-01

    In this paper, we report a MATLAB-based GUI tool, bodgui, which integrates functions of lattice editor,linear match, and nonlinear optimization, and visualized tracking functions for beam optics design. A user can switch his/ber design procedures one to another. Flexibilities are provided for adjusting or optimizing the lattice settings in commissioning or operation of the accelerators. The algorithm of the linear match and nonlinear optimization, and the GUI windows including the main functions and running status, are presented. The SSRF storage ring was employed as a test lattice. Several optics modes designed and optimized by the GUI tools were used for commissioning the storage ring. Functions of bodgui tool are machine-independent, and it can be well applied to modern light sources being built in other parts of the world.

  6. 一种改进的岩石黏弹塑性加速蠕变力学模型%An improved accelerated creep mechanical model of viscoelasto-plastic rock

    Institute of Scientific and Technical Information of China (English)

    曹平; 刘业科; 蒲成志; 陈锐; 汪亦显

    2011-01-01

    为了全面描述岩石蠕变全过程,克服线性牛顿体不能准确描述加速蠕变的不足,在引入非线性蠕变体模型基础上,结合流变力学模型理论,定义应力与试件长期强度的比值为加速蠕变速率幂级数,n,模型发生加速蠕变时的总蠕变量为蠕变特征长度εc,进而得到一种改进的能够描述岩石黏弹塑性加速蠕变的力学模型.结合东乡铜矿砂质页岩单轴压缩下分级增量循环加卸载蠕变试验,对模型参数的辨识进行解释,并将该模型的蠕变拟合曲线与实验的蠕变曲线进行对比.研究结果表明:该模型能很好地描述了岩石的加速蠕变特性.%In order to depict the process of rock creep comprehensively, and overcome the deficiency of the linear Newton fluid which can not describe accelerated creep accurately, based on the mature rheological model, the nonlinear creep body model was introduced.In this model, the total creep strain before accelerated creep stage was defined as the characteristic length of creep, and the ratio of stress level and long-term strength of rock specimens was defined as accelerated creep rate.The improved rheological mechanics model was established that can describe the viscoelastic-plastic characteristics of accelerated creep.Combined with the uniaxial compression creep test under multi-step incremental cycling loading and unloading on the sandy shale from Dongxiang Copper Mine, the parameter identification of the mechanical model was explained, the experimental creep curve was compared with the creep fitted curve obtained by the model.The results show that the accelerate creep properties of rocks can be described effectively by this improved creep model.

  7. Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial Plants Using Combined Support Vector Machines and First Principles Models

    Energy Technology Data Exchange (ETDEWEB)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX

    2010-08-25

    parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable

  8. Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial Plants Using Combined Support Vector Machines and First Principles Models

    Energy Technology Data Exchange (ETDEWEB)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX

    2010-08-25

    parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable

  9. Computer Modelling and Simulation of Solar PV Array Characteristics

    Science.gov (United States)

    Gautam, Nalin Kumar

    2003-02-01

    The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to

  10. Porcine Models of Accelerated Coronary Atherosclerosis: Role of Diabetes Mellitus and Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Damir Hamamdzic

    2013-01-01

    Full Text Available Animal models of atherosclerosis have proven to be an invaluable asset in understanding the pathogenesis of the disease. However, large animal models may be needed in order to assess novel therapeutic approaches to the treatment of atherosclerosis. Porcine models of coronary and peripheral atherosclerosis offer several advantages over rodent models, including similar anatomical size to humans, as well as genetic expression and development of high-risk atherosclerotic lesions which are similar to humans. Here we review the four models of porcine atherosclerosis, including the diabetic/hypercholesterolemic model, Rapacz-familial hypercholesterolemia pig, the (PCSK9 gain-of-function mutant pig model, and the Ossabaw miniature pig model of metabolic syndrome. All four models reliably represent features of human vascular disease.

  11. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data

    Science.gov (United States)

    Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe

    2012-10-01

    Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.

  12. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  13. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  14. A model for the determination of the nominal potential for a linear accelerator; Un modelo para la determinacion del potencial nominal de un acelerador lineal

    Energy Technology Data Exchange (ETDEWEB)

    Gutt, F.; Silva, P.; Guerrero, R.; Diaz, J.; Colmenares, J. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Laboratorio Secundario de Calibracion Dosimetrica (LSCD), Apartado 21827, Caracas 1020 A (Venezuela)

    1998-12-31

    The objective of the present work is to find a physical mathematical model based on the reason of the dose percentages at 10 and 20 cm depth, at 100 cm DFS and a 10 x 10 cm{sup 2} field. It was utilized literature data of new manufactured accelerators and those are in use in hospitals, which allow to prove the model under different conditions. Our objective consists only to obtain a model that verifies the nominal potential for a linear accelerator, but without pretending that such a model to be used to calculate any one factor to determination of absorbed dose. (Author)

  15. Modelling material effects on flow-accelerated corrosion in primary CANDU coolant and secondary reactor feed-water

    Energy Technology Data Exchange (ETDEWEB)

    Phromwong, P.; Lister, D., E-mail: c7r13@unb.ca [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, New Brunswick (Canada); Uchida, S. [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan)

    2012-07-01

    The effects of chromium content on flow-accelerated corrosion (FAC) of carbon steel have been predicted very well by including a passivating layer, which is a chromium-dependent diffusion barrier at the metal-oxide interface. By adjusting the properties of the chromium-dependent layer, described with a Passivation Parameter (PP), we can predict the FAC of carbon steel of different chromium contents in typical reactor feed-water environments (140{sup o}C and neutral or ammoniated chemistry). The model and an appropriate PP are also applied to the environment typical of carbon-steel feeders in the primary coolant of a CANDU reactor (310{sup o}C and lithiated chemistry). The model predicts FAC rate very well (with a deviation of 10% or less) in both situations. (author)

  16. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    Science.gov (United States)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  17. Modelling of degradation processes in creep resistant steels through accelerated creep tests after long-term isothermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V.; Kucharova, K.; Svoboda, M.; Kroupa, A.; Kloc, L. [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Cmakal, J. [UJP PRAHA a.s., Praha-Zbraslav (Czech Republic)

    2010-07-01

    Creep behaviour and degradation of creep properties of creep resistant materials are phenomena of major practical relevance, often limiting the lives of components and structures designed to operate for long periods under stress at elevated and/or high temperatures. Since life expectancy is, in reality, based on the ability of the material to retain its high-temperature creep strength for the projected designed life, methods of creep properties assessment based on microstructural evolution in the material during creep rather than simple parametric extrapolation of short-term creep tests are necessary. In this paper we will try to further clarify the creep-strength degradation of selected advanced creep resistant steels. In order to accelerate some microstructural changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650 C for 10 000 h was applied to P91 and P23 steels in their as-received states. The accelerated tensile creep tests were performed at temperature 600 C in argon atmosphere on all steels both in the as-received state and after long-term isothermal ageing, in an effort to obtain a more complete description of the role of microstructural stability in high temperature creep of these steels. Creep tests were followed by microstructural investigations by means of both transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the accelerated creep tests was verified by the theoretical modelling of the phase equilibria at different temperatures. It is suggested that under restructed oxidation due to argon atmosphere microstructural instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels. (orig.)

  18. The Characteristics of a Model Technology Education Teacher

    Science.gov (United States)

    Kaufman, Andrew R.; Warner, Scott A.; Buechele, Jessica R.

    2011-01-01

    The things that make the quality of a teacher stand out can cover a wide range of characteristics, actions, words, and experiences. The mark left on a student by a teacher, for good or bad, is written in an ink that will last a lifetime. This article describes a study that identifies the characteristics of exceptional technology education…

  19. The Accelerated Kepler Problem

    CERN Document Server

    Namouni, Fathi

    2007-01-01

    The accelerated Kepler problem is obtained by adding a constant acceleration to the classical two-body Kepler problem. This setting models the dynamics of a jet-sustaining accretion disk and its content of forming planets as the disk loses linear momentum through the asymmetric jet-counterjet system it powers. The dynamics of the accelerated Kepler problem is analyzed using physical as well as parabolic coordinates. The latter naturally separate the problem's Hamiltonian into two unidimensional Hamiltonians. In particular, we identify the origin of the secular resonance in the accelerated Kepler problem and determine analytically the radius of stability boundary of initially circular orbits that are of particular interest to the problem of radial migration in binary systems as well as to the truncation of accretion disks through stellar jet acceleration.

  20. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents.

    Science.gov (United States)

    De Souza, Raquel; Spence, Tara; Huang, Huang; Allen, Christine

    2015-12-10

    The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.

  1. INFILTRATION KINETICS MODEL OF LIQUID METAL INTO A FIBROUS PREFORM IN CENTRIFUGAL ACCELERATING FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Da rcy's law and the assumption that the fibrous preform is treated as “bundle of capillaries”. The critical rotating speed is analyzed with the established mo del. The influences of the metal melt mass,the rotating speed of the equipmen t,the casting height, the original outer radius of the metal melt and the fibrou s volume fraction in fibrous preform on infilatration are studied. The results show that the critical rotating speed is dependent on critical pressure, castin g height, metal melt mass and the character of fibrous preform. With the incr ease in the metal melt mass, rotating speed of the equipment and original outer radius of the metal melt, or the decrease in casting height and fibrous volume f raction in fibrous of the metal melt,or the decrease in casting height and fibro us volume fraction in fibrous preform,infiltration of metal melt for fibrous pre form becomes easier.

  2. Neuroendocrine pathways mediating nutritional acceleration of puberty: insights from ruminant models

    Directory of Open Access Journals (Sweden)

    Marcel eAmstalden

    2011-12-01

    Full Text Available The pubertal process is characterized by an activation of physiological events within the hypothalamic-adenohypophyseal-gonadal axis which culminate in reproductive competence. Excessive weight gain and adiposity during the juvenile period is associated with accelerated onset of puberty in females. The mechanisms and pathways by which excess energy balance advances puberty are unclear, but appear to involve an early escape from estradiol negative feedback and early initiation of high frequency episodic gonadotropin-releasing hormone (GnRH secretion. Hypothalamic neurons, particularly neuropeptide Y and proopiomelanocortin neurons are likely important components of the pathway sensing and transmitting metabolic information to the control of GnRH secretion. Kisspeptin neurons may also have a role as effector neurons integrating metabolic and gonadal steroid feedback effects on GnRH secretion at the time of puberty. Recent studies indicate that leptin-responsive neurons within the ventral premammillary nucleus play a critical role in pubertal progression and challenge the relevance of kisspeptin neurons in this process. Nevertheless, the nutritional control of puberty is likely to involve an integration of major sensor and effector pathways that interact with modulatory circuitries for a fine control of GnRH neuron function. In this review, observations made in ruminant species are emphasized for a comparative perspective.

  3. The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry

    Directory of Open Access Journals (Sweden)

    Kate Brody Nooner

    2012-10-01

    Full Text Available The National Institute of Mental Health strategic plan for advancing psychiatric neuroscience calls for an acceleration of discovery and the delineation of developmental trajectories for risk and resilience across the lifespan. To attain these objectives, sufficiently powered datasets with broad and deep phenotypic characterization, state-of-the-art neuroimaging, and genetic samples must be generated and made openly available to the scientific community. The enhanced Nathan Kline Institute Rockland Sample (NKI-RS is a response to this need. NKI-RS is an ongoing, institutionally-centered endeavor aimed at creating a large-scale (N>1000, deeply phenotyped, community-ascertained, lifespan sample (ages 6-85 years old with advanced neuroimaging and genetics. These data will be publically shared, openly and prospectively (i.e., on a weekly basis. Herein, we describe the conceptual basis of the NKI-RS, including study design, sampling considerations, and steps to synchronize phenotypic and neuroimaging assessment. Additionally, we describe our process for sharing the data with the scientific community while protecting participant confidentiality, maintaining an adequate database, and certifying data integrity. The pilot phase of the NKI-RS, including challenges in recruiting, characterizing, imaging, and sharing data, is discussed while also explaining how this experience informed the final design of the enhanced NKI-RS. It is our hope that familiarity with the conceptual underpinnings of the enhanced NKI-RS will facilitate harmonization with future data collection efforts aimed at advancing psychiatric neuroscience and nosology.

  4. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds.

    Science.gov (United States)

    Schmidt, Anke; Bekeschus, Sander; Wende, Kristian; Vollmar, Brigitte; von Woedtke, Thomas

    2017-02-01

    Cold plasma has been successfully applied in several fields of medicine that require, for example, pathogen inactivation, implant functionalization or alteration of cellular activity. Previous studies have provided evidence that plasma supports the healing of wounds owing to its beneficial mixtures of reactive species and modulation of inflammation in cells and tissues. To investigate the wound healing activity of an atmospheric pressure plasma jet in vivo, we examined the cold plasma's efficacy on dermal regeneration in a murine model of dermal full-thickness ear wound. Over 14 days, female mice received daily plasma treatment. Quantitative analysis by transmitted light microscopy demonstrated a significantly accelerated wound re-epithelialization at days 3-9 in comparison with untreated controls. In vitro, cold plasma altered keratinocyte and fibroblast migration, while both cell types showed significant stimulation resulting in accelerated closure of gaps in scratch assays. This plasma effect correlated with the downregulation of the gap junctional protein connexin 43 which is thought to be important in the regulation of wound healing. In addition, plasma induced profound changes in adherence junctions and cytoskeletal dynamics as shown by downregulation of E-cadherin and several integrins as well as actin reorganization. Our results theorize cold plasma to be a beneficial treatment option supplementing existing wound therapies.

  5. On characteristic modeling of a class of flight vehicles’attitude dynamics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The characteristic modeling problem of flight vehicles’attitude dynamics is considered in this paper.In terms of the affine nonlinear system with triangle form of flight vehicles’attitude dynamics,a general method is presented to compress the dynamics into the characteristic model parameters,by introducing the time scale of nonlinear systems and a class of system states related compress functions.The parameter region and limit of the characteristic model are also given.From the given parameter region it is seen that the bound of the characteristic model parameters is dependent on the sampling period,the modeling error,the system order and the system change rate.The modeling error of the established characteristic model can be arbitrarily small according to the control precision,showing the difference between the characteristic model and other model reduction methods,that is,no system information is lost using this approach.On the basis of this modeling approach,the characteristic model of the flexible satellite attitude is established,as well as the bound and limit of the parameters,which sets a theoretical foundation for characteristic model based control design of flight vehicles.

  6. Low-level laser treatment accelerated hair regrowth in a rat model of chemotherapy-induced alopecia (CIA).

    Science.gov (United States)

    Wikramanayake, Tongyu Cao; Villasante, Alexandra C; Mauro, Lucia M; Nouri, Keyvan; Schachner, Lawrence A; Perez, Carmen I; Jimenez, Joaquin J

    2013-05-01

    Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects of antineoplastic chemotherapy for which there is no effective interventional approach. A low-level laser (LLL) device, the HairMax LaserComb®, has been cleared by the FDA to treat androgenetic alopecia. Its effects may be extended to other settings; we have demonstrated that LaserComb treatment induced hair regrowth in a mouse model for alopecia areata. In the current study, we tested whether LLL treatment could promote hair regrowth in a rat model for CIA. Chemotherapy agents cyclophosphamide, etoposide, or a combination of cyclophosphamide and doxorubicin were administered in young rats to induce alopecia, with or without LLL treatment. As expected, 7-10 days later, all the rats developed full body alopecia. However, rats receiving laser treatment regrew hair 5 days earlier than rats receiving chemotherapy alone or sham laser treatment (with the laser turned off). The accelerated hair regrowth in laser-treated rats was confirmed by histology. In addition, LLL treatment did not provide local protection to subcutaneously injected Shay chloroleukemic cells. Taken together, our results demonstrated that LLL treatment significantly accelerated hair regrowth after CIA without compromising the efficacy of chemotherapy in our rat model. Our results suggest that LLL should be explored for the treatment of CIA in clinical trials because LLL devices for home use (such as the HairMax LaserComb®) provide a user-friendly and noninvasive approach that could be translated to increased patient compliance and improved efficacy.

  7. NIIEFA accelerators for applied purposes

    Science.gov (United States)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  8. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  9. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    Science.gov (United States)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  10. $Om$ diagnostic applied to scalar field models and slowing down of cosmic acceleration

    CERN Document Server

    Shahalam, M; Agarwal, Abhineet

    2015-01-01

    We apply the $Om$ diagnostic to models for dark energy based on scalar fields. In case of the power law potentials, we demonstrate the possibility of slowing down the expansion of the Universe around the present epoch for a specific range in the parameter space. For these models, we also examine the issues concerning the age of Universe. We use the $Om$ diagnostic to distinguish the $\\Lambda$CDM model from non minimally coupled scalar field, phantom field and generic quintessence models. Our study shows that the $Om$ has zero, positive and negative curvatures for $\\Lambda$CDM, phantom and quintessence models respectively. We use an integrated data base (SN+Hubble+BAO+CMB) for bservational analysis and demonstrate that $Om$ is a useful diagnostic to apply to observational data.

  11. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  12. Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model.

    Science.gov (United States)

    Cuesta, Sara; Kireev, Roman; García, Cruz; Forman, Katherine; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2011-01-01

    This study has investigated the effect of aging on parameters of inflammation, oxidative stress and apoptosis in pancreas obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and resistant mice (SAMR1). Animals of 2 (young) and 10 months of age (old) were used (n = 64). The influence of the administration of melatonin in the drinking water for one month at two different dosages (1 and 10mg/(kg day) on old SAMP8 mice on these parameters was also studied. SAMP8 mice showed with age a significant increase in the relative expression of pancreatic genes involved in inflammation, oxidative stress and apoptosis. Furthermore the protein expression of several NFκB subunits was also enhanced. On the contrary aged SAMR1 mice did not show significant increases in these parameters. Melatonin administration to SAMP8 mice was able to reduce these age related alterations at the two used dosages.

  13. Comparison of extraction techniques and modeling of accelerated solvent extraction for the authentication of natural vanilla flavors.

    Science.gov (United States)

    Cicchetti, Esmeralda; Chaintreau, Alain

    2009-06-01

    Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.

  14. General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology

    CERN Document Server

    Smoller, Joel

    2012-01-01

    We prove that the Einstein equations in Standard Schwarzschild Coordinates close to form a system of three ordinary differential equations for a family of spherically symmetric, self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology (FRW), is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, we prove that the family reduces to an implicitly defined one parameter family of distinct spacetimes determined by the value of a new {\\it acceleration parameter} $a$, such that $a=1$ corresponds to FRW. We prove that all self-similar spacetimes in the family are distinct from the non-critical $k\

  15. Development of advanced geometric models and acceleration techniques for Monte Carlo simulation in Medical Physics

    OpenAIRE

    Badal Soler, Andreu

    2008-01-01

    Els programes de simulació Monte Carlo de caràcter general s'utilitzen actualment en una gran varietat d'aplicacions.Tot i això, els models geomètrics implementats en la majoria de programes imposen certes limitacions a la forma dels objectes que es poden definir. Aquests models no són adequats per descriure les superfícies arbitràries que es troben en estructures anatòmiques o en certs aparells mèdics i, conseqüentment, algunes aplicacions que requereixen l'ús de models geomètrics molt detal...

  16. Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

    Energy Technology Data Exchange (ETDEWEB)

    Dzyuba, A.; /Fermilab /Novosibirsk State U.; Romanenko, A.; /Fermilab; Cooley, L.D.; /Fermilab

    2010-07-13

    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H{sub pen}. Such defects were argued to be the worst case by Buzdin and Daumens, [1998 Physica C 294 257], whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter {kappa}. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H{sub pen} when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H{sub pen} was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of {kappa}. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by {approx}20%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  17. Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo; Nucamendi, Ulises, E-mail: avelino@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacan (Mexico)

    2009-04-15

    We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ''Union'' data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient {zeta}-tilde and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for {zeta}-tilde and the Hubble constant H{sub 0} are: {zeta}-tilde = 1.922{+-}0.089 and H{sub 0} = 69.62{+-}0.59 (km/s)Mpc{sup -1} with a {chi}{sup 2}{sub min} = 314 ({chi}{sup 2}{sub d.o.f} = 1.031). The age of the universe is found to be 14.95{+-}0.42 Gyr. We see that the estimated value of H{sub 0} as well as of {chi}{sup 2}{sub d.o.f} are very similar to those obtained from {Lambda}CDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of {zeta}-tilde is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter H{sub 0} in order to study the sensibility of the results to the way how H{sub 0} is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how H{sub 0} is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe.

  18. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  19. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  20. Relative time course of degeneration of different cochlear structures in the CD/1 mouse model of accelerated aging.

    Science.gov (United States)

    Mahendrasingam, Shanthini; Macdonald, Jamie A; Furness, David N

    2011-08-01

    Presbycusis (age-related hearing loss) can result from various cochlear pathologies. We have studied the time course of degeneration in a mouse that shows accelerated presbycusis, the CD/1 mouse, as a possible model to investigate stem-cell strategies to prevent or ameliorate presbycusic changes. CD/1 mice from 0 to 72 weeks old were examined by light and electron microscopy. Early pathological changes were detected in basal turn spiral ligament fibrocytes and spiral ganglion, but the latter was variable as both satellite cells and neurons were normal in some cochleae. Light microscopic counts in the spiral ligament of 20-week-old mice revealed that of the five main types (types I-V), only type V fibrocytes showed no reduction in numbers compared with 3-week-old animals, and type IV showed the greatest losses. However, all types of fibrocyte showed subtle damage when examined using electron microscopy, in the form of swollen mitochondria, as early as 2 weeks. The extent of mitochondrial damage showed a degree of correspondence with the light microscopic pattern of fibrocyte loss in that types III and IV fibrocytes had the most abnormal mitochondria and type V the least, especially at early stages. By 10-15 weeks, ultrastructural features of fibrocyte damage were similar to longer term changes reported in gerbils. Stria vascularis, spiral ganglion and hair cells showed few consistent early signs of damage but became increasingly affected, lagging behind the fibrocyte damage. Our data suggest that fibrocyte pathology may precede other presbycusic changes; breakdown of homeostatic mechanisms to which they contribute may cause the subsequent degeneration of the hair cells. Overall, there were many similarities to presbycusic changes in other rodents and humans. Therefore, the features of accelerated aging in this mouse make it a suitable model for rapidly assessing possible strategies to prevent or ameliorate presbycusic changes.

  1. Acceleration and deceleration capacity of fetal heart rate in an in-vivo sheep model.

    Directory of Open Access Journals (Sweden)

    Massimo W Rivolta

    Full Text Available BACKGROUND: Fetal heart rate (FHR variability is an indirect index of fetal autonomic nervous system (ANS integrity. FHR variability analysis in labor fails to detect early hypoxia and acidemia. Phase-rectified signal averaging (PRSA is a new method of complex biological signals analysis that is more resistant to non-stationarities, signal loss and artifacts. It quantifies the average cardiac acceleration and deceleration (AC/DC capacity. OBJECTIVE: The aims of the study were: (1 to investigate AC/DC in ovine fetuses exposed to acute hypoxic-acidemic insult; (2 to explore the relation between AC/DC and acid-base balance; and (3 to evaluate the influence of FHR decelerations and specific PRSA parameters on AC/DC computation. METHODS: Repetitive umbilical cord occlusions (UCOs were applied in 9 pregnant near-term sheep to obtain three phases of MILD, MODERATE, and SEVERE hypoxic-acidemic insult. Acid-base balance was sampled and fetal ECGs continuously recorded. AC/DC were calculated: (1 for a spectrum of T values (T = 1÷50 beats; the parameter limits the range of oscillations detected by PRSA; (2 on entire series of fetal RR intervals or on "stable" series that excluded FHR decelerations caused by UCOs. RESULTS: AC and DC progressively increased with UCOs phases (MILD vs. MODERATE and MODERATE vs. SEVERE, p<0.05 for DC [Formula: see text] = 2-5, and AC [Formula: see text] = 1-3. The time evolution of AC/DC correlated to acid-base balance (0.4<[Formula: see text]<0.9, p<0.05 with the highest [Formula: see text] for [Formula: see text]. PRSA was not independent from FHR decelerations caused by UCOs. CONCLUSIONS: This is the first in-vivo evaluation of PRSA on FHR analysis. In the presence of acute hypoxic-acidemia we found increasing values of AC/DC suggesting an activation of ANS. This correlation was strongest on time scale dominated by parasympathetic modulations. We identified the best performing [Formula: see text] parameters

  2. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    Science.gov (United States)

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls.

  3. Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?

    CERN Document Server

    Avelino, Arturo

    2008-01-01

    We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe according to their past, present and future evolution. We test the viability of the model performing a Bayesian statistical analysis using the Gold 2006 (182 SNe) and ESSENCE + HST (192 SNe) type Ia supernovae (SNe Ia) data sets, imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient and comparing the predicted age of the universe with the constraints in the age of the universe coming from the oldest globular clusters. The age of the universe is found to be 15.507 Gyr and 16.501 Gyr using the Gold 2006 and ESSENCE+HST SNe Ia data sets respectively. The best estimated values obtained for this model are similar to those obtained from the LCDM model for H_0 and \\chi^2_{min} using the same SNe Ia data sets and the estimated ages of the un...

  4. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent; Perrin, Greg; Glick, Stephen; Kurtz, Sarah; Wohlgemuth, John

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cell circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.

  5. A Magnetohydrodynamic Model of The M87 Jet. II. Self-consistent Quad-shock Jet Model for Optical Relativistic Motions and Particle Acceleration

    CERN Document Server

    Nakamura, Masanori

    2014-01-01

    We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the {\\em Hubble Space Telescope} during 1994 -- 1998. The model concept consists of ejection of a {\\em single} relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the {\\em optical} observations of HST-1 with the same model we used previously to describe similar features in radio VLBI observations in 2005 -- 2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge o...

  6. ENTROPY CHARACTERISTICS IN MODELS FOR COORDINATION OF NEIGHBORING ROAD SECTIONS

    Directory of Open Access Journals (Sweden)

    N. I. Kulbashnaya

    2016-01-01

    Full Text Available The paper considers an application of entropy characteristics as criteria to coordinate traffic conditions at neighboring road sections. It has been proved that the entropy characteristics are widely used in the methods that take into account information influence of the environment on drivers and in the mechanisms that create such traffic conditions which ensure preservation of the optimal level of driver’s emotional tension during the drive. Solution of such problem is considered in the aspect of coordination of traffic conditions at neighboring road sections that, in its turn, is directed on exclusion of any driver’s transitional processes. Methodology for coordination of traffic conditions at neighboring road sections is based on the E. V. Gavrilov’s concept on coordination of some parameters of road sections which can be expressed in the entropy characteristics. The paper proposes to execute selection of coordination criteria according to accident rates because while moving along neighboring road sections traffic conditions change drastically that can result in creation of an accident situation. Relative organization of a driver’s perception field and driver’s interaction with the traffic environment has been selected as entropy characteristics. Therefore, the given characteristics are made conditional to the road accidents rate. The investigation results have revealed a strong correlation between the relative organization of the driver’s perception field and the relative organization of the driver’s interaction with the traffic environment and the accident rate. Results of the executed experiment have proved an influence of the accident rate on the investigated entropy characteristics.

  7. Modelling, analysis, and acceleration of a printed circuit board fabrication process

    Indian Academy of Sciences (India)

    K S Aithal; Y Narahari; E Manjunath

    2001-10-01

    Product design and fabrication constitute an important business activity in any manufacturing firm. Designing an optimized product fabrication process is an important problem in itself and is of significant practical and research interest. In this paper, we look into a printed circuit board (PCB) fabrication process and investigate ways in which the fabrication cycle time can be minimized. Single class queueing networks constitute the modelling framework for our study. The model developed in this paper and the analysis experiments carried out are based on extensive data collected on a PCB fabrication company located in Bangalore, India. This is a representative PCB fabrication company involving multiple, concurrent fabrication works with contention for human/technical resources. Our model seeks to capture faithfully the flow of the fabrication process in this company and such other organisations, using queueing networks. Using the model developed, we explore how the cycle times can be reduced using input control, load balancing, and variability reduction. The model presented is sufficiently generic and conceptual; its scope extends beyond that of a PCB fabrication organization.

  8. A massively parallel GPU-accelerated model for analysis of fully nonlinear free surface waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Madsen, Morten G.; Glimberg, Stefan Lemvig

    2011-01-01

    -throughput co-processors to the CPU. We describe and demonstrate how this approach makes it possible to do fast desktop computations for large nonlinear wave problems in numerical wave tanks (NWTs) with close to 50/100 million total grid points in double/ single precision with 4 GB global device memory...... space dimensions and is useful for fast analysis and prediction purposes in coastal and offshore engineering. A dedicated numerical model based on the proposed algorithm is executed in parallel by utilizing affordable modern special purpose graphics processing unit (GPU). The model is based on a low...

  9. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  10. Advanced modeling to accelerate the scale up of carbon capture technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  11. MIG version 0.0 model interface guidelines: Rules to accelerate installation of numerical models into any compliant parent code

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, R.M.; Wong, M.K.

    1996-08-01

    A set of model interface guidelines, called MIG, is presented as a means by which any compliant numerical material model can be rapidly installed into any parent code without having to modify the model subroutines. Here, {open_quotes}model{close_quotes} usually means a material model such as one that computes stress as a function of strain, though the term may be extended to any numerical operation. {open_quotes}Parent code{close_quotes} means a hydrocode, finite element code, etc. which uses the model and enforces, say, the fundamental laws of motion and thermodynamics. MIG requires the model developer (who creates the model package) to specify model needs in a standardized but flexible way. MIG includes a dictionary of technical terms that allows developers and parent code architects to share a common vocabulary when specifying field variables. For portability, database management is the responsibility of the parent code. Input/output occurs via structured calling arguments. As much model information as possible (such as the lists of required inputs, as well as lists of precharacterized material data and special needs) is supplied by the model developer in an ASCII text file. Every MIG-compliant model also has three required subroutines to check data, to request extra field variables, and to perform model physics. To date, the MIG scheme has proven flexible in beta installations of a simple yield model, plus a more complicated viscodamage yield model, three electromechanical models, and a complicated anisotropic microcrack constitutive model. The MIG yield model has been successfully installed using identical subroutines in three vectorized parent codes and one parallel C++ code, all predicting comparable results. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort, thereby reducing the cost of installing and sharing models in diverse new codes.

  12. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    Science.gov (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  13. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    CERN Document Server

    Avelino, Arturo

    2010-01-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by two fluids: a radiation component and a pressureless fluid with bulk viscosity of the form zeta = zeta_0 + zeta_1 H where zeta_0 and zeta_1 are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study all the possible scenarios for the Universe according to the values of zeta_0 and zeta_1 analyzing the behavior of the scale factor as well as the curvature scalar and the matter density. On the other hand, we test the model computing the best estimated values of zeta_0 and zeta_1 using the type Ia Supernovae (SNe Ia) and the shift parameter R of the Cosmic Microwave Radiation Anisotropies (CMB) probes. We find that the model fits well to both tests. We find also that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (zeta_0, zeta_1) is ...

  14. Multiwavelength Spectral Models for SNR G347.3-0.5 from Non-Linear Shock Acceleration

    CERN Document Server

    Baring, M G; Slane, P O; Baring, Matthew G.; Ellison, Donald C.; Slane, Patrick O.

    2005-01-01

    The remnant G347.3-0.5 exhibits strong shell emission in the radio and X-ray bands, and has a purported detection in the TeV gamma-ray band by the CANGAROO-II telescope. The CANGAROO results were touted as evidence for the production of cosmic ray ions, a claim that has proven controversial due to constraining fluxes associated with a proximate unidentified EGRET source 3EG J1714-3857. HESS has now seen this source in the TeV band. The complex environment of the remnant renders modeling of its broadband spectrum sensitive to assumptions concerning the nature and parameters of the circumremnant medium. This paper explores a sampling of reasonable possibilities for multiwavelength spectral predictions from this source, using a non-linear model of diffusive particle acceleration at the shocked shell. The magnetic field strength, shell size and degree of particle cross-field diffusion act as variables to which the radio to X-ray to gamma-ray signal is sensitive. The modeling of the extant data constrains these va...

  15. Temperature characteristics of quantum dot devices: Rate vs. Master Equation Models

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg;

    2001-01-01

    The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures.......The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures....

  16. Simplified models for estimating isothermal operating characteristics of food extruders.

    Science.gov (United States)

    Levine, L; Rockwood, J

    1985-09-01

    A model of isothermal food extruder performance is described. Inferences about alternative extruder screw designs and their performance are drawn from the model. The model suggests that thread depth or diameter compression screws are superior in performance to a pitch compression screw. The advantage gained from using diameter compression screws is paid for with significantly higher rates of energy dissipation. The use of the model to characterize screws having both a compression zone and metering zone is described.

  17. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  18. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors

    Science.gov (United States)

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze

    2016-06-01

    The main contribution of this study is to improve the GRACE gravity field solution by taking errors of non-conservative acceleration and attitude observations into account. Unlike previous studies, the errors of the attitude and non-conservative acceleration data, and gravity field parameters, as well as accelerometer biases are estimated by means of weighted least squares adjustment. Then we compute a new time series of monthly gravity field models complete to degree and order 60 covering the period Jan. 2003 to Dec. 2012 from the twin GRACE satellites' data. The derived GRACE solution (called Tongji-GRACE02) is compared in terms of geoid degree variances and temporal mass changes with the other GRACE solutions, namely CSR RL05, GFZ RL05a, and JPL RL05. The results show that (1) the global mass signals of Tongji-GRACE02 are generally consistent with those of CSR RL05, GFZ RL05a, and JPL RL05; (2) compared to CSR RL05, the noise of Tongji-GRACE02 is reduced by about 21 % over ocean when only using 300 km Gaussian smoothing, and 60 % or more over deserts (Australia, Kalahari, Karakum and Thar) without using Gaussian smoothing and decorrelation filtering; and (3) for all examples, the noise reductions are more significant than signal reductions, no matter whether smoothing and filtering are applied or not. The comparison with GLDAS data supports that the signals of Tongji-GRACE02 over St. Lawrence River basin are close to those from CSR RL05, GFZ RL05a and JPL RL05, while the GLDAS result shows the best agreement with the Tongji-GRACE02 result.

  19. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models

    CERN Document Server

    Wojtak, Radosław

    2016-01-01

    The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, bu...

  20. Modeling cyclist acceleration process for bicycle traffic simulation using naturalistic data

    OpenAIRE

    Ma, Xiaoliang; Luo, Ding

    2016-01-01

    Cycling is a healthy and sustainable form of transportation. The recent increase of daily cyclists in Sweden has triggered broad interest in finding how policies and measures may facilitate the planning of bicycle traffic in the urban area. However, in comparison to car traffic, bicycle traffic is still far from well understood. This study is part of the research effort to investigate microscopic cyclist behavior, model bicycle traffic and finally build a simulation tool for applications in t...

  1. Design, Implementation, and Test of a Multi-Model Systolic Neural-Network Accelerator

    Directory of Open Access Journals (Sweden)

    Thierry Cornu

    1996-01-01

    Full Text Available A multi-model neural-network computer has been designed and built. A compute-intensive application in the field of power-system monitoring, using the Kohonen neural network, has then been ported onto this machine. After a short description of the system, this article focuses on the programming paradigm adopted. The performance of the machine is also evaluated and discussed.

  2. Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics.

    Science.gov (United States)

    Davis, Courtney L; Wahid, Rezwanul; Toapanta, Franklin R; Simon, Jakub K; Sztein, Marcelo B; Levy, Doron

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella's outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.

  3. Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics.

    Directory of Open Access Journals (Sweden)

    Courtney L Davis

    Full Text Available We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella's outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.

  4. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    CERN Document Server

    Vakili, Babak

    2014-01-01

    We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann-Robertson-Walker (FRW) model, a scalar field with potential function $V(\\phi)$ with which the gravity part of the action is minimally coupled and a vector field its kinetic energy is coupled with the scalar field by a coupling function $f(\\phi)$. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology i...

  5. An Exact and Grid-free Numerical Scheme for the Hybrid Two Phase Traffic Flow Model Based on the Lighthill-Whitham-Richards Model with Bounded Acceleration

    KAUST Repository

    Qiu, Shanwen

    2012-07-01

    In this article, we propose a new grid-free and exact solution method for computing solutions associated with an hybrid traffic flow model based on the Lighthill- Whitham-Richards (LWR) partial differential equation. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a fixed acceleration otherwise. We first present a grid-free solution method for the LWR equation based on the minimization of component functions. We then show that this solution method can be extended to compute the solutions to the hybrid model by proper modification of the component functions, for any concave fundamental diagram. We derive these functions analytically for the specific case of a triangular fundamental diagram. We also show that the proposed computational method can handle fixed or moving bottlenecks.

  6. Accelerating the Delivery of Home Performance Upgrades through a Synergistic Business Model

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, Tom; Ojczyk, Cindy

    2016-04-11

    Achieving Building America energy savings goals (40% by 2030) will require many existing homes to install energy upgrades. Engaging large numbers of homeowners in building science-guided upgrades during a single remodeling event has been difficult for a number of reasons. Performance upgrades in existing homes tend to occur over multiple years and usually result from component failures (furnace failure) and weather damage (ice dams, roofing, siding). This research attempted to: A) understand the homeowner's motivations regarding investing in building science based performance upgrades; B) determining a rapidly scalable approach to engage large numbers of homeowners directly through existing customer networks; and C) access a business model that will manage all aspects of the contractor-homeowner-performance professional interface to ensure good upgrade decisions over time. The solution results from a synergistic approach utilizing networks of suppliers merging with networks of homeowner customers. Companies in the $400 to $800 billion home services industry have proven direct marketing and sales proficiencies that have led to the development of vast customer networks. Companies such as pest control, lawn care, and security have nurtured these networks by successfully addressing the ongoing needs of homes. This long-term access to customers and trust established with consistent delivery has also provided opportunities for home service providers to grow by successfully introducing new products and services like attic insulation and air sealing. The most important component for success is a business model that will facilitate and manage the process. The team analyzes a group that developed a working model.

  7. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  8. Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart

    DEFF Research Database (Denmark)

    Heebøll-Christensen, Jesper

    This ph.d. thesis contains the mathematical modeling of fluid dynamical phenomena in the tubular embryonic chick heart at HH-stages 10, 12, 14, and 16. The models are constructed by application of energy bond technique and involve the elasticity of heart walls with elliptic cross-section, Womersley...... modified inertia, and resistance due to friction and curvature of the multilayered tubular heart. Through the modeling, flow conditions in the embryonic heart are characterized. The models suggest that eccentric rather than concentric deformation of the beating heart is optimal for mean flows induced...... the models are not conclusive on this point. In addition the Liebau effect is investigated in a simpler system containing two elastic tubes joined to form a liquid filled ring, with a compression pump at an asymmetric location. Through comparison to other reports the system validates model construction...

  9. Modeling frequency dependence of GaAs MESFET characteristics

    Science.gov (United States)

    Conger, Jeff; Peczalski, Andrzej; Shur, Michael S.

    1994-01-01

    We present a new method of modeling the output conductance dispersion of GaAs MESFET's. High frequency model parameters are extracted and then used to model high frequency output conductance over a wide range of bias conditions. The model is then used to simulate and analyze the effect of output conductance dispersion on the performance of DCFL and SCFL logic gates. Whereas the DCFL performance is not significantly affected by the high frequency effects, the noise margin of SCFL decreases by almost a factor of 30% above 100 kHz, with an associated decrease in the voltage swing and gate delay.

  10. Dynamic modelling of pectin extraction describing yield and functional characteristics

    DEFF Research Database (Denmark)

    Andersen, Nina Marianne; Cognet, T.; Santacoloma, P. A.

    2017-01-01

    A dynamic model of pectin extraction is proposed that describes pectin yield, degree of esterification and intrinsic viscosity. The dynamic model is one dimensional in the peel geometry and includes mass transport of pectin by diffusion and reaction kinetics of hydrolysis, degradation and de......-esterification. The model takes into account the effects of the process conditions such as temperature and acid concentration on extraction kinetics. It is shown that the model describes pectin bulk solution concentration, degree of esterification and intrinsic viscosity in pilot scale extractions from lime peel...

  11. Modelling reverse characteristics of power LEDs with thermal phenomena taken into account

    Science.gov (United States)

    Ptak, Przemysław; Górecki, Krzysztof

    2016-01-01

    This paper refers to modelling characteristics of power LEDs with a particular reference to thermal phenomena. Special attention is paid to modelling characteristics of the circuit protecting the considered device against the excessive value of the reverse voltage and to the description of the temperature influence on optical power. The network form of the worked out model is presented and some results of experimental verification of this model for the selected diodes operating at different cooling conditions are described. The very good agreement between the calculated and measured characteristics is obtained.

  12. Reverse and Forward Shock X-ray Emission in an Evolutionary Model of Supernova Remnants undergoing Efficient Diffusive Shock Acceleration

    CERN Document Server

    Lee, Shiu-Hang; Ellison, Donald C; Nagataki, Shigehiro; Slane, Patrick O

    2014-01-01

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) which include the efficient production of cosmic rays via non-linear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization (NEI), hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles which the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line em...

  13. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Stephan J. [Modelle und Daten, Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Lohmann, Gerrit [Universitaet Bremen, Fachbereich Geowissenschaften und DFG Forschungszentrum Ozeanraender, Postfach 330440, Bremen (Germany)

    2004-12-01

    A method is introduced which allows the calculation of long-term climate trends within the framework of a coupled atmosphere-ocean circulation model. The change in the seasonal cycle of incident solar radiation induced by varying orbital parameters has been accelerated by factors of 10 and 100 in order to allow transient simulations over the period from the mid-Holocene until today, covering the last 7,000 years. In contrast to conventional time-slice experiments, this approach is not restricted to equilibrium simulations and is capable to utilise all available data for validation. We find that opposing Holocene climate trends in tropics and extra-tropics are a robust feature in our experiments. Results from the transient simulations of the mid-Holocene climate at 6,000 years before present show considerable differences to atmosphere-alone model simulations, in particular at high latitudes, attributed to atmosphere-ocean-sea ice effects. The simulations were extended for the time period 1800-2000 AD, where, in contrast to the Holocene climate, increased concentrations of greenhouse gases in the atmosphere provide for the strongest driving mechanism. The experiments reveal that a Northern Hemisphere cooling trend over the Holocene is completely cancelled by the warming trend during the last century, which brings the recent global warming into a long-term context. (orig.)

  14. Oil spill modeling in the southeastern Mediterranean Sea in support of accelerated offshore oil and gas exploration

    Science.gov (United States)

    Brenner, Steve

    2015-12-01

    Since the discovery of major reserves in the Israeli exclusive economic zone (EEZ) 6 years ago, exploration and drilling for natural gas and oil have proceeded at an accelerated pace. As part of the licensing procedure for drilling, an environmental impact assessment and an emergency response plan must be presented to the authorities, which include several prespecified oil spill simulations. In this study, the MEDSLIK oil spill model has been applied for this purpose. The model accounts for time-dependent advection, dispersion, and physiochemical weathering of the surface slick. It is driven by currents produced by high-resolution dynamic downscaling of ocean reanalysis data and winds extracted from global atmospheric analyses. Worst case scenarios based on 30-day well blowouts under four sets of environmental conditions were simulated for wells located at 140, 70, and 20 km off the coast of central Israel. For the well furthest from the coast, the amount of oil remaining in the surface slick always exceeds the amount deposited on the coast. For the mid-distance well, the cases were evenly split. For the well closest to the coast, coastal deposition always exceeds the oil remaining in the slick. Additional simulations with the wind switched off helped highlight the importance of the wind in evaporation of the oil and in transporting the slick toward the southeastern coast.

  15. Modeling and Scaling of oscillating or pulsating heat transfer devices subjected to earth gravity and to high acceleration levels

    Science.gov (United States)

    Delil, A. A. M.

    2001-02-01

    The discussions, presented in this article, suppose that the reader is familiar with the contents of the accompanying article ``Thermal-Gravitational Modeling and Scaling of Two-Phase Heat Transport Systems from Micro-Gravity to Super-Gravity Levels.'' The latter article describes the history of this particular research at NLR, the approach (based on dimension analysis and similarity considerations), the derivation of constitutive equations for (annular) two-phase flow and heat transfer, the identification of thermal-gravitational scaling possibilities, condensation length issues, and the impact of the magnitude of super-gravity and its direction relative to the flow direction. But the discussions are restricted to ``classical'' two-phase loops. The most recent part of the research is discussed in this follow-up article. It concerns the extension of the research to the modelling, scaling and testing of the steady and transient performance of various types of oscillating or pulsating single-phase and two-phase heat transfer devices. This extension was opportune, as it turned out to be essential to properly support the research and development of such oscillating or pulsating heat transfer devices. For these devices several very promising applications have been identified, not only to cool commercial electronics, but also for cooling high-power electronics in spinning satellites and in military combat aircraft. In such applications, the electronics can be exposed to steady and transient accelerations up to levels around 120 m/s2. .

  16. Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy

    CERN Document Server

    Nojiri, S; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2005-01-01

    The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom-non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. As a second model we suggest generalized holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which d...

  17. An Accelerating Divergence? The Revisionist Model of World History and the Question of Eurasian Military Parity: Data from East Asia

    Directory of Open Access Journals (Sweden)

    Tonio Andrade

    2011-01-01

    Full Text Available Over the past few years, this journal has hosted an important debate:Joseph M. Bryant’s bold assault on the revisionist model of global history and the revisionists’ equally trenchant defense. A key point of contention is Europeans' relative military modernization vis-à-vis Asians. This article adduces new data from East Asian military history to try to advance the debate. First, it argues that there was a Chinese Military Revolution in the 1300s, which compels us to place the European Military Revolution in a larger, Eurasian context. Second, it uses data from the Sino-Dutch War of 1661–8 to explicitly compare Chinese and European military technology. It concludes that the revisionists are correct that Asian societies were undergoing military modernization along the lines of those in western Europe and that the model Bryant defends is incorrect because it presumes that Asian societies are more stagnant than the evidence warrants. Yet counterrevisionists like Bryant are correct that military odernization was proceeding faster in Europe, which may indicate that they are correct that there was an early divergence — slight but accelerating — between the west and the rest of Eurasia.

  18. FPGA Hardware Acceleration of Monte Carlo Simulations for the Ising Model

    CERN Document Server

    Ortega-Zamorano, Francisco; Cannas, Sergio A; Jerez, José M; Franco, Leonardo

    2016-01-01

    A two-dimensional Ising model with nearest-neighbors ferromagnetic interactions is implemented in a Field Programmable Gate Array (FPGA) board.Extensive Monte Carlo simulations were carried out using an efficient hardware representation of individual spins and a combined global-local LFSR random number generator. Consistent results regarding the descriptive properties of magnetic systems, like energy, magnetization and susceptibility are obtained while a speed-up factor of approximately 6 times is achieved in comparison to previous FPGA-based published works and almost $10^4$ times in comparison to a standard CPU simulation. A detailed description of the logic design used is given together with a careful analysis of the quality of the random number generator used. The obtained results confirm the potential of FPGAs for analyzing the statistical mechanics of magnetic systems.

  19. GPU acceleration of a nonhydrostatic model for the internal solitary waves simulation

    Institute of Scientific and Technical Information of China (English)

    CHEN Tong-qing; ZHANG Qing-he

    2013-01-01

    The parallel computing algorithm for a nonhydrostatic model on one or multiple Graphic Processing Units (GPUs) for the simulation of internal solitary waves is presented and discussed.The computational efficiency of the GPU scheme is analyzed by a series of numerical experiments,including an ideal case and the field scale simulations,performed on the workstation and the supercomputer system.The calculated results show that the speedup of the developed GPU-based parallel computing scheme,compared to the implementation on a single CPU core,increases with the number of computational grid cells,and the speedup can increase quasilinearly with respect to the number of involved GPUs for the problem with relatively large number of grid cells within 32 GPUs.

  20. Accelerating a hybrid continuum-atomistic fluidic model with on-the-fly machine learning

    CERN Document Server

    Stephenson, David; Lockerby, Duncan A

    2016-01-01

    We present a hybrid continuum-atomistic scheme which combines molecular dynamics (MD) simulations with on-the-fly machine learning techniques for the accurate and efficient prediction of multiscale fluidic systems. By using a Gaussian process as a surrogate model for the computationally expensive MD simulations, we use Bayesian inference to predict the system behaviour at the atomistic scale, purely by consideration of the macroscopic inputs and outputs. Whenever the uncertainty of this prediction is greater than a predetermined acceptable threshold, a new MD simulation is performed to continually augment the database, which is never required to be complete. This provides a substantial enhancement to the current generation of hybrid methods, which often require many similar atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-confined unsteady flow through a high-aspect-ratio converging-diverging channel, and make comparisons between the new s...

  1. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Mario Munoz-Organero

    2017-02-01

    Full Text Available Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data. The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users, the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77 even in the case of using different people executing a different sequence of movements and using different

  2. Antiaging Effect of Metformin on Brain in Naturally Aged and Accelerated Senescence Model of Rat.

    Science.gov (United States)

    Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim

    2017-01-09

    Metformin, a biguanide, is a widely used antidiabetic drug, which inhibits gluconeogenesis and is used to treat hyperglycemia in type 2 diabetes. Through activation of AMPK (AMP-activated protein kinase) pathway, metformin also mimics caloric restriction health benefits. Aging causes substantial molecular to morphological changes in brain, the brain cells being more susceptible toward oxidative stress mediated damages due to the presence of high lipid content and higher oxygen consumption. Wistar rats (naturally aged and d-galactose induced rat model) were supplemented with metformin (300 mg/kg b.w. orally) for 6 weeks. The biomarkers of oxidative stress such as antioxidant capacity (ferric reducing antioxidant potential [FRAP]), malondialdehyde (MDA), reduced glutathione (GSH), protein carbonyl (PCO), reactive oxygen species (ROS), acetylcholinesterase (AChE) activity, and nitric oxide (NO) were measured in brain tissues of control and experimental groups. The results indicate that metformin treatment augmented the levels of FRAP and GSH in naturally aged, and d-gal induced aging model groups compared to the respective controls. In contrast, metformin treated groups exhibited significant reduction in MDA, PCO, ROS, and NO levels and a significant increase in AChE activity in induced aging rats. The administration of d-galactose upregulated the expression of sirtuin-2, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) and downregulated the expression of Beclin-1. Metformin supplementation downregulated the d-galactose induced expressions of sirtuin-2, IL-6, and TNF-α expression, whereas upregulated the Beclin-1 expression. Our data confirm that metformin restores the antioxidant status and improves healthy brain aging through the activation of autophagy and reduction in inflammation.

  3. A theoretical model of accelerated irradiation creep at low temperatures by transient interstitial absorption

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.; Grossbeck, M.L.; Mansur, L.K.

    1990-01-01

    A theoretical model has been developed using the reaction rate theory of radiation effects to explain experimental results that showed higher than expected values of irradiation creep at low temperatures in the Oak Ridge Research Reactor. The customary assumption that the point defect concentrations are at steady state was not made; rather, the time dependence of the vacancy and interstitial concentrations and the creep rate were explicitly calculated. For temperatures below about 100 to 200{degree}C, the time required for the vacancy concentration to reach steady state exceeds the duration of the experiment. For example, if materials parameters typical of austenitic stainless steel are used, the calculated vacancy transient dose at 100{degree}C is about 100 dpa. At 550{degree}C this transient is over by 10{sup {minus}8} dpa. During the time that the vacancy population remains lower than its steady state value, dislocation climb is increased since defects of primarily one type are being absorbed. Using the time-dependent point defect concentrations, the dislocation climb velocity has been calculated as a function of time and a climb-enabled glide creep model had been invoked. The extended transient time for the vacancies leads to high creep rates at low temperatures. In agreement with the experimental observations, a minimum in the temperature dependence of creep is predicted at a temperature between 50 and 350{degree}C. The temperature at which the minimum occurs decreases as the irradiation dose increases. Predicted values of creep at 8 dpa are in good agreement with the results of the ORR-MFE-6J/7J experiment.

  4. The Effect of Novel Binary Accelerator System on Properties of Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Moez Kamoun

    2009-01-01

    Full Text Available The mechanical properties, curing characteristics, and swelling behaviour of vulcanized natural rubber with a novel binary accelerator system are investigated. Results indicate that the mechanical properties were improved. Crosslinking density of vulcanized natural rubber was measured by equilibrium swelling method. As a result, the new binary accelerator was found to be able to improve both cure rate and crosslinking density. Using the numerical analysis of test interaction between binary accelerator and operational modelling of vulcanization-factors experiments, it can be concluded that the interaction (Cystine, N-cyclohexyl-2-benzothiazyl sulfenamide was significant and the optimum value of binary accelerator was suggested, respectively, at levels 0 and +1.

  5. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    Science.gov (United States)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  6. Modelling perceptual characteristics of loudspeaker reproduction in a stereo setup

    DEFF Research Database (Denmark)

    Volk, Christer Peter; Bech, Søren; Pedersen, Torben Holm

    2017-01-01

    of the perceptual evaluation, four of the descriptors were found suited for modelling, with the purpose of developing metrics for prediction of Bass depth, Punch, Brilliance, and Dark-Bright. Bass depth and Punch were modelled as one due to high correlation between them. The experimental setup included loudspeaker...

  7. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  8. Stochastic Characteristics and Simulation of the Random Waypoint Mobility Model

    CERN Document Server

    Ahuja, A; Krishna, P Venkata

    2012-01-01

    Simulation results for Mobile Ad-Hoc Networks (MANETs) are fundamentally governed by the underlying Mobility Model. Thus it is imperative to find whether events functionally dependent on the mobility model 'converge' to well defined functions or constants. This shall ensure the long-run consistency among simulation performed by disparate parties. This paper reviews a work on the discrete Random Waypoint Mobility Model (RWMM), addressing its long run stochastic stability. It is proved that each model in the targeted discrete class of the RWMM satisfies Birkhoff's pointwise ergodic theorem [13], and hence time averaged functions on the mobility model surely converge. We also simulate the most common and general version of the RWMM to give insight into its working.

  9. THE METHOD OF DETERMINATION OF ERROR IN THE REFERENCE VALUE OF THE DOSE DURING THE LINEAR ACCELERATOR RADIATION OUTPUT CALIBRATION PROCEDURE. Part 3. The dependence of the radiation beam characteristics

    Directory of Open Access Journals (Sweden)

    E. V. Titovich

    2016-01-01

    Full Text Available To ensure the radiation protection of oncology patients is needed to provide the constancy of functional characteristics of the medical linear accelerators, which affect the accuracy of dose delivery. For this purpose, their quality control procedures are realized including calibration of radiation output of the linac, so the error in determining the dose reference value during this procedure must not exceed 2 %. The aim is to develop a methodology for determining the error in determining this value, depending on the characteristics of the radiation beam. Dosimetric measurements of Trilogy S/N 3567 linac dose distributions have been carried out for achievement of the objectives, on the basis of which dose errors depending on the dose rate value, the accuracy of the beam quality and output factors determination, the symmetry and uniformity of the radiation field, the angular dependence of the linac radiation output were obtained. It was found that the greatest impact on the value of the error has the error in the output factors determination (up to 5.26 % for both photon energy. Dose errors caused by changing dose rate during treatment were different for two photon energies, and reached 1.6 % for 6 MeV and 1.4 % for 18 MeV. Dose errors caused by inaccuracies of the beam quality determination were different for two photon energies, and reached 1.1 % for 18 MeV and –0.3 % for 6 MeV. Errors caused by the remaining of the characteristic do not exceed 1 %. Thus, there is a possibility to express the results of periodic quality control of the linear accelerator in terms of dose and use them to conduct a comprehensive assessment of the possibility of clinical use of a linear accelerator for oncology patients irradiation on the basis of the calibration of radiation output.

  10. Atomic-level description of protein-lipid interactions using an accelerated membrane model.

    Science.gov (United States)

    Baylon, Javier L; Vermaas, Josh V; Muller, Melanie P; Arcario, Mark J; Pogorelov, Taras V; Tajkhorshid, Emad

    2016-07-01

    Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.

  11. Onset of streptococcal toxic shock syndrome is accelerated by bruising in a mouse model.

    Science.gov (United States)

    Seki, Masanori; Saito, Mitsumasa; Iida, Ken-Ichiro; Taniai, Hiroaki; Soejima, Takashi; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2008-04-01

    Streptococcal toxic shock syndrome (STSS) is the severest form of human infections caused by Streptococcus pyogenes. In our animal model of STSS [Saito M, Kajiwara H, Ishikawa T, et al. Delayed onset of systemic bacterial dissemination and subsequent death in mice injected intramuscularly with Streptococcus pyogenes. Microbiol Immunol 2001;45:777-86], mice inoculated intramuscularly with S. pyogenes strains initially suffer from a short illness, then recover and remain healthy for about 20 days, and finally become sick and incur a sudden death. Here we report that the death during the convalescent period was facilitated by artificially bruising an extremity remote from the site of the initial inoculation. Bacterial burden was found to be higher in the bruised site than in a non-bruised control extremity of each mouse examined. Bacteremia started to occur approximately 20 days after infection. These findings imply that a fresh bruise serves as a focus for bacterial multiplication in the presence of bacteremia, thereby facilitating the development of STSS.

  12. Modeling of Nike Experiments on Acceleration of Planar Targets Stabilized with a Short Spike

    Science.gov (United States)

    Metzler, N.; Velikovich, A. L.; Gardner, J. H.

    2005-10-01

    A short sub-ns laser pulse (spike) produces a decelerating shock wave and a rarefaction wave immediately behind it, shaping a density gradient in the target. The following main pulse ``rides'' this graded density profile. We have demonstrated how the deceleration of the ablation front following the shock wave suppresses laser imprint and delays perturbation growth in the target [1]. We report the results of 2D numerical modeling of experiments on Nike laser at NRL, with its recently developed short-pulse capability, for a low-energy spike which does not affect the target adiabat. We studied the effect of spike on laser imprint on smooth planar targets and on the growth of perturbations imposed as single-mode ripples on the irradiated surface of the targets. For all cases, delay of the onset and/or suppression of the rate of the mass perturbation growth due to the spike are robust and significant enough to be observable on Nike. [1] N. Metzler et al., Phys. Plasmas 6, 3283 (1999); 9, 5050 (2002); 10, 1897 (2003).

  13. Topical Moltkia coerulea hydroethanolic extract accelerates the repair of excision wound in a rat model

    Institute of Scientific and Technical Information of China (English)

    Mohammad Reza Farahpour; Aydin Dilmaghanian; Maisam Faridy; Esmaeil Karashi

    2016-01-01

    Purpose:To evaluate the effect of a hydroethanolic extract of Moltkia coerulea ointment (MCO) on the healing of excision wound in a rat model.Methods:Circular surgical full thickness excision wound,with 314 mm2 size,was induced in the anterior-dorsal side of each rat.Three different doses of MCO (1%,3% and 6%) were administrated.On Day 3,7,14 and 21,the tissue was sampled and immune cells,fibroblasts and fibrocytes distribution per one mm2 of wound area,collagen density and re-epithelialization were analyzed.Moreover,the total flavnoid,phenols and anti-oxidant potential of the MCO were evaluated.Ultimately,the percentage of wound contraction in different groups was compared with each other.Results:Hydroethanolic extract of MCO significantly (p < 0.05) increased wound contraction percentage.The animals in medium and high dose MCO-treated groups exhibited remarkably (p < 0.05) higher fibroblast and fibrocyte distribution and significantly (p < 0.05) lower immune cells infiltration.On Day 7 after injury,MCO up-regulated neovascularization in a dose-dependent way.Conclusion:Our data showed that MCO shortened the inflammation phase by provoking the fibroblast proliferation.Moreover,MCO promoted the healing process by up-regulating the angiogenesis and provoking the structural cells proliferation as well as increasing the collagen synthesis,cross-linking,and deposition.

  14. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats.

    Science.gov (United States)

    Gopal, Anu; Kant, Vinay; Gopalakrishnan, Anu; Tandan, Surendra K; Kumar, Dinesh

    2014-05-15

    Copper possesses efficacy in wound healing which is a complex phenomenon involving various cells, cytokines and growth factors. Copper nanoparticles modulate cells, cytokines and growth factors involved in wound healing in a better way than copper ions. Chitosan has been shown to be beneficial in healing because of its antibacterial, antifungal, biocompatible and biodegradable polymeric nature. In the present study, chitosan-based copper nanocomposite (CCNC) was prepared by mixing chitosan and copper nanoparticles. CCNC was applied topically to evaluate its wound healing potential and to study its effects on some important components of healing process in open excision wound model in adult Wistar rats. Significant increase in wound contraction was observed in the CCNC-treated rats. The up-regulation of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1(TGF-β1) by CCNC-treatment revealed its role in facilitating angiogenesis, fibroblast proliferation and collagen deposition. The tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were significantly decreased and increased, respectively, in CCNC-treated rats. Histological evaluation showed more fibroblast proliferation, collagen deposition and intact re-epithelialization in CCNC-treated rats. Immunohistochemistry of CD31 revealed marked increase in angiogenesis. Thus, we concluded that chitosan-based copper nanocomposite efficiently enhanced cutaneous wound healing by modulation of various cells, cytokines and growth factors during different phases of healing process.

  15. Accelerated Unification

    OpenAIRE

    Arkani-Hamed, Nima; Cohen, Andrew; Georgi, Howard

    2001-01-01

    We construct four dimensional gauge theories in which the successful supersymmetric unification of gauge couplings is preserved but accelerated by N-fold replication of the MSSM gauge and Higgs structure. This results in a low unification scale of $10^{13/N}$ TeV.

  16. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  17. Assessing the Impact of the Cambridge International Acceleration Program on U.S. University Determinants of Success: A Multi-Level Modeling Approach

    Science.gov (United States)

    Shaw, Stuart; Warren, Jayne; Gill, Tim

    2014-01-01

    This article focuses on the research being conducted by Cambridge International Examinations (Cambridge) to ensure that its international assessments prepare students as well as other acceleration programs for continued study in U.S. colleges and universities. The study, which builds on previous freshman GPA data modeling work using data supplied…

  18. SU-E-T-36: A GPU-Accelerated Monte-Carlo Dose Calculation Platform and Its Application Toward Validating a ViewRay Beam Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Mazur, T; Green, O; Hu, Y; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H [Washington University School of Medicine, St. Louis, MO (United States)

    2015-06-15

    Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using a homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification.

  19. Modeling the Substrate Skin Effects in Mutual RL Characteristics.,

    Directory of Open Access Journals (Sweden)

    D. de Roest

    2003-12-01

    Full Text Available The goal of this work was to model the influence of the substrateskin effects on the distributed mutual impedance per unit lengthparameters of multiple coupled on-chip interconnects. The proposedanalytic model is based on the frequency-dependent distribution of thecurrent in the silicon substrate and the closed form integrationapproach. It is shown that the calculated frequency-dependentdistributed mutual inductance and the associated mutual resistance arein good agreement with the results obtained from CAD-oriented circuitmodeling technique.

  20. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease.

    Science.gov (United States)

    Peng, Yueping; Wang, Jue; Zheng, Chongxun

    2016-01-01

    In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory.

  1. A simple model of universe describing the early inflation and the late accelerated expansion in a symmetric manner

    Energy Technology Data Exchange (ETDEWEB)

    Chavanis, Pierre-Henri [Laboratoire de Physique Théorique (IRSAMC), CNRS and UPS, Université de Toulouse (France)

    2013-07-23

    We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} having a linear component p = αρc{sup 2} and a polytropic component p = kρ{sup 1+1/n}c{sup 2}. For α= 1/3, n= 1 and k=−4/(3ρ{sub P}), where ρ{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes the transition between the vacuum energy era and the radiation era. For t≥ 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup −35} m to a size a{sub 1}= 2.6110{sup −6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup −44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ℏ plays the role of finite size effects (the standard Big Bang theory is recovered for ℏ= 0). For α= 0, n=−1 and k=−ρ{sub Λ}, where ρ{sub Λ}= 7.0210{sup −24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub Λ}. corresponding to a time t{sub 2}= 0.203t{sub Λ} where l{sub Λ}= 4.38 10{sup 26} m is the cosmological length and t{sub Λ}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}∼t{sub 2}). Our model gives the same results as the standard

  2. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  3. Non-linear characteristics of the endolymph-cupula nystagmus system

    Science.gov (United States)

    Mccormack, Percival D.

    1988-01-01

    The way a human can detect angular acceleration forces by means of the semicircular canals in the ears is discussed. The anatomy of the canals and the characteristics of the canal fluids are described. The physical implications of variation in cupula stiffness with angular acceleration are examined by analyzing cross-coupled angular acceleration and modeling mathematically the cupula-endolymph system. The system transfer function is obtained and the nonlinear characteristics of the endolymph-cupula-nystagmus system are discussed.

  4. Modelling Soil Water Characteristic Curves for the Investigation of Hydrophobicity

    Science.gov (United States)

    Hallin, Ingrid; Matthews, Peter; Laudone, Maurizio; Van Keulen, Geertje; Doerr, Stefan; Francis, Lewis; Dudley, Ed; Gazze, Andrea; Quinn, Gerry; Whalley, Richard; Ashton, Rhys

    2016-04-01

    Soil hydrophobicity presents a major challenge for the future, as it reduces both plant-available water and irrigation efficiency, and can increase flooding hazards and erosion. A collaborative research project has been set up in the UK to study hydrophobicity over a wide range of length scales. At core scale, we are investigating the wetting behaviour of water repellent soils in order to model percolation through hydrophobic pore spaces. To that end, water retention measurements were carried out on both wettable and forcibly-wetted water-repellent soils collected from three locations in England and Wales. The data were then fitted with both the commonly used Van Genuchten model and an alternative model from PoreXpert, a software program that analyses and models porous materials. The Van Genuchten model fits a curve to the data using parameters related to air entry suction, irreducible water content and pore size distribution. By contrast, PoreXpert uses a Boltzmann-annealed simplex to find a best-fit curve based on parameters directly related to the void structure of the soil: the size of the voids, the shape of the void size distribution, and how the voids are connected to each other. Both Van Genuchten and PoreXpert fit the experimental data well, but where Van Genuchten forces an S-shaped curve that can mask small variations, PoreXpert gives a closer fit of no pre-defined shape that captures subtle differences between data points. This allows us to calculate differences in the effective pore and throat size distributions, and provides a mechanistic framework from which to model additional hydrologic behaviour in water repellent soil. Simulations of capillary induced wetting based on these mechanistic postulates are then compared to wicking experiments at the core scale, which can then be upscaled and applied to other soils.

  5. Monte Carlo modeling of a 6 and 18 MV Varian Clinac medical accelerator for in-field and out-of-field dose calculations: development and validation.

    Science.gov (United States)

    Bednarz, Bryan; Xu, X George

    2009-02-21

    There is a serious and growing concern about the increased risk of radiation-induced second cancers and late tissue injuries associated with radiation treatment. To better understand and to more accurately quantify non-target organ doses due to scatter and leakage radiation from medical accelerators, a detailed Monte Carlo model of the medical linear accelerator is needed. This paper describes the development and validation of a detailed accelerator model of the Varian Clinac operating at 6 and 18 MV beam energies. Over 100 accelerator components have been defined and integrated using the Monte Carlo code MCNPX. A series of in-field and out-of-field dose validation studies were performed. In-field dose distributions calculated using the accelerator models were tuned to match measurement data that are considered the de facto 'gold standard' for the Varian Clinac accelerator provided by the manufacturer. Field sizes of 4 cm x 4 cm, 10 cm x 10 cm, 20 cm x 20 cm and 40 cm x 40 cm were considered. The local difference between calculated and measured dose on the percent depth dose curve was less than 2% for all locations. The local difference between calculated and measured dose on the dose profile curve was less than 2% in the plateau region and less than 2 mm in the penumbra region for all locations. Out-of-field dose profiles were calculated and compared to measurement data for both beam energies for field sizes of 4 cm x 4 cm, 10 cm x 10 cm and 20 cm x 20 cm. For all field sizes considered in this study, the average local difference between calculated and measured dose for the 6 and 18 MV beams was 14 and 16%, respectively. In addition, a method for determining neutron contamination in the 18 MV operating model was validated by comparing calculated in-air neutron fluence with reported calculations and measurements. The average difference between calculated and measured neutron fluence was 20%. As one of the most detailed accelerator models for both in-field and out

  6. Investigation on laser accelerators. Plasma beat wave accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-04-01

    Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)

  7. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2 on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.

  8. Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease

    Science.gov (United States)

    Potter, Michelle C; Yuan, Chunyan; Ottenritter, Conwell; Mughal, Mohamed; van Praag, Henriette

    2010-01-01

    Exercise benefits both general health and brain function in rodents and humans. However, it is less clear whether physical activity prevents or ameliorates neurodegenerative diseases. The aim of the present study was to determine whether voluntary wheel running can delay the onset or reduce the severity of Huntington’s disease (HD) in a mouse model. To investigate whether running may delay HD symptoms lifespan, disease onset, locomotor activity, glucose levels, weight, striatal volume, inclusions, cognition and hippocampal neurogenesis were studied in male N171-82Q transgenic HD mice. Running started in pre-symptomatic (44±1 days old) male HD mice, did not improve function and appeared to accelerate disease onset. In particular, HD runners had an earlier onset of disease symptoms (shaking, hunched back and poor grooming), reduced striatal volume and impaired motor behavior, including a shorter latency to fall from the rotarod compared to sedentary controls. Furthermore, weight loss, reduced lifespan, hyperglycemia, Morris water maze learning deficits, diminished hippocampal neurogenesis, deficits in immature neuronal morphology, intranuclear inclusions and decreased dentate gyrus volume were refractory to physical activity. Taken together our research indicates that exercise is not beneficial, and may be detrimental to a vulnerable nervous system. PMID:21152076

  9. Model for the determination of instantaneous values of the velocity, instantaneous, and average acceleration for 100-m sprinters.

    Science.gov (United States)

    JanjiĆ, NataŠa J; Kapor, Darko V; Doder, Dragan V; Doder, Radoslava Z; SaviĆ, Biljana V

    2014-12-01

    Temporal patterns of running velocity is of profound interest for coaches and researchers involved in sprint racing. In this study, we applied a nonhomogeneous differential equation for the motion with resistance force proportional to the velocity for the determination of the instantaneous velocity and instantaneous and average acceleration in the sprinter discipline at 100 m. Results obtained for the instantaneous velocity in this study using the presented model indicate good agreement with values measured directly, which is a good verification of the proposed procedure. To perform a comprehensive analysis of the applicability of the results obtained, the harmonic canon of running for the 100-m sprint discipline was formed. Using the data obtained by the measurement of split times for segments of 100-m run of the sprinters K. Lewis (1988), M. Green (2001), and U. Bolt (2009), the method described yielded results that enable comparative analysis of the kinematical parameters for each sprinter. Further treatment allowed the derivation of the ideal harmonic velocity canon of running, which can be helpful to any coach in evaluating the results achieved at particular distances in this and other disciplines. The method described can be applied for the analysis of any race.

  10. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization.

    Directory of Open Access Journals (Sweden)

    Olivia N Chuang-Smith

    Full Text Available Infectious endocarditis involves formation of a microbial biofilm in vivo. Enterococcus faecalis Aggregation Substance (Asc10 protein enhances the severity of experimental endocarditis, where it has been implicated in formation of large vegetations and in microbial persistence during infection. In the current study, we developed an ex vivo porcine heart valve adherence model to study the initial interactions between Asc10(+ and Asc10(-E. faecalis and valve tissue, and to examine formation of E. faecalis biofilms on a relevant tissue surface. Scanning electron microscopy of the infected valve tissue provided evidence for biofilm formation, including growing masses of bacterial cells and the increasing presence of exopolymeric matrix over time; accumulation of adherent biofilm populations on the cardiac valve surfaces during the first 2-4 h of incubation was over 10-fold higher than was observed on abiotic membranes incubated in the same culture medium. Asc10 expression accelerated biofilm formation via aggregation between E. faecalis cells; the results also suggested that in vivo adherence to host tissue and biofilm development by E. faecalis can proceed by Asc10-dependent or Asc10-independent pathways. Mutations in either of two Asc10 subdomains previously implicated in endocarditis virulence reduced levels of adherent bacterial populations in the ex vivo system. Interference with the molecular interactions involved in adherence and initiation of biofilm development in vivo with specific inhibitory compounds could lead to more effective treatment of infectious endocarditis.

  11. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    Science.gov (United States)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  12. Investigating the characteristics of shutoff valves by model tests

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    1977-07-01

    High pressures, strict safety requirements, minimum wear and a decrease of head losses are nowadays the most essential criteria in the design and manufacture of shutoff valves for water powerplants. In the following, the results of such model tests carried out in the hydraulic laboratory of Voeest Alpine AG are described.

  13. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  14. An Analytic Linear Accelerator Source Model for Monte Carlo dose calculations. II. Model Utilization in a GPU-based Monte Carlo Package and Automatic Source Commissioning

    CERN Document Server

    Tian, Zhen; Li, Yongbao; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-01-01

    We recently built an analytical source model for GPU-based MC dose engine. In this paper, we present a sampling strategy to efficiently utilize this source model in GPU-based dose calculation. Our source model was based on a concept of phase-space-ring (PSR). This ring structure makes it effective to account for beam rotational symmetry, but not suitable for dose calculations due to rectangular jaw settings. Hence, we first convert PSR source model to its phase-space let (PSL) representation. Then in dose calculation, different types of sub-sources were separately sampled. Source sampling and particle transport were iterated. So that the particles being sampled and transported simultaneously are of same type and close in energy to alleviate GPU thread divergence. We also present an automatic commissioning approach to adjust the model for a good representation of a clinical linear accelerator . Weighting factors were introduced to adjust relative weights of PSRs, determined by solving a quadratic minimization ...

  15. MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  16. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  17. Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-08-15

    This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs. We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.

  18. Reverse and Forward Shock X-Ray Emission in an Evolutionary Model of Supernova Remnants Undergoing Efficient Diffusive Shock Acceleration

    Science.gov (United States)

    Lee, Shiu-Hang; Patnaude, Daniel J.; Ellison, Donald C.; Nagataki, Shigehiro; Slane, Patrick O.

    2014-08-01

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  19. Reverse and forward shock X-ray emission in an evolutionary model of supernova remnants undergoing efficient diffusive shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Patnaude, Daniel J.; Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ellison, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States); Nagataki, Shigehiro, E-mail: slee@astro.isas.jaxa.jp, E-mail: shiu-hang.lee@riken.jp, E-mail: shigehiro.nagataki@riken.jp, E-mail: slane@cfa.harvard.edu, E-mail: dpatnaude@cfa.harvard.edu, E-mail: don_ellison@ncsu.edu [RIKEN, Astrophysical Big Bang Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-08-20

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  20. Velocity and Celerity Characteristics in the MIPs model

    Science.gov (United States)

    Beven, K.

    2015-12-01

    The Multiple Interacting Pathways (MIPs) model has been shown to give good reproduction of both flows (controlled by celerities) and residence times (controlled by velocities) in comparisons with data from a small catchment. In this contribution we look at the difference in responses and basins of attraction for flow and transport inferred from the model with a view to determining the functional form of larger scale, computationally efficient, parameterisations that more properly represent the scale-dependent hysteresis that is expected as a result of velocity-celerity differences. It is hoped that this might lead to new scale-dependent formulations of runoff and water quality responses that can be applied at hillslope and catchment scales.

  1. A Comparative Analysis of Reynolds-Averaged Navier-Stokes Model Predictions for Rayleigh-Taylor Instability and Mixing with Constant and Complex Accelerations

    Science.gov (United States)

    Schilling, Oleg

    2016-11-01

    Two-, three- and four-equation, single-velocity, multicomponent Reynolds-averaged Navier-Stokes (RANS) models, based on the turbulent kinetic energy dissipation rate or lengthscale, are used to simulate At = 0 . 5 Rayleigh-Taylor turbulent mixing with constant and complex accelerations. The constant acceleration case is inspired by the Cabot and Cook (2006) DNS, and the complex acceleration cases are inspired by the unstable/stable and unstable/neutral cases simulated using DNS (Livescu, Wei & Petersen 2011) and the unstable/stable/unstable case simulated using ILES (Ramaprabhu, Karkhanis & Lawrie 2013). The four-equation models couple equations for the mass flux a and negative density-specific volume correlation b to the K- ɛ or K- L equations, while the three-equation models use a two-fluid algebraic closure for b. The lengthscale-based models are also applied with no buoyancy production in the L equation to explore the consequences of neglecting this term. Predicted mixing widths, turbulence statistics, fields, and turbulent transport equation budgets are compared among these models to identify similarities and differences in the turbulence production, dissipation and diffusion physics represented by the closures used in these models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. A self-consistent combined radiative transfer hydrodynamic and particle acceleration model for the X1.0 class flare on March 29, 2014

    Science.gov (United States)

    Rubio da Costa, F.; Kleint, L.; Sainz Dalda, A.; Petrosian, V.; Liu, W.

    2015-12-01

    The X1.0 flare on March 29, 2014 was well observed, covering its emission at several wavelengths from the photosphere to the corona. The RHESSI spectra images allow us to estimate the temporal variation of the electron spectra using regularized inversion techniques. Using this as input for a combined particle acceleration and transport (Stanford-Flare) and radiative transfer hydrodynamic (Radyn) code, we calculate the response of the atmosphere to the electron heating. We will present the evolution of the thermal continuum and several line emissions. Comparing them with GOES soft X-ray and high resolution observations from IRIS, SDO and DST/IBIS allows us to test the basic mechanism(s) of acceleration and to constrain its characteristics. We will also present perspectives on how to apply this methodology and related diagnostics to other flares.

  3. Laboratory and Numerical Modeling of Smoke Characteristics for Superfog Formation

    Science.gov (United States)

    Bartolome, C.; Lu, V.; Tsui, K.; Princevac, M.; Venkatram, A.; Mahalingam, S.; Achtemeier, G.; Weise, D.

    2011-12-01

    Land management techniques in wildland areas include prescribed fires to promote biodiversity and reduce risk of severe wildfires across the United States. Several fatal car pileups have been associated with smoke-related visibility reduction from prescribed burns. Such events have occurred in year 2000 on the interstate highways I-10 and I-95, 2001 on the I-4, 2006 on the I-95, and 2008 on the I-4 causing numerous fatalities, injuries, and damage to property. In some of the cases visibility reduction caused by smoke and fog combinations traveling over roadways have been reported to be less than 3 meters, defined as superfog. Our research focuses on delineating the conditions that lead to formation of the rare phenomena of superfog and creating a tool to enable land managers to effectively plan prescribed burns and prevent tragic events. It is hypothesized that the water vapor from combustion, live fuels, soil moisture, and ambient air condense onto the cloud condensation nuclei (CCN) particles emitted from low intensity smoldering fires. Physical and numerical modeling has been used to investigate these interactions. A physical model in the laboratory has been developed to characterize the properties of smoke resulting from smoldering pine needle litters at the PSW Forest Service in Riverside, CA. Temporal measurements of temperature, relative humidity, sensible heat flux, radiation heat flux, convective heat flux, particulate matter concentrations and visibilities have been measured for specific cases. The size distribution and number concentrations of the fog droplets formed inside the chamber by mixing cool dry and moist warm air masses to produce near superfog visibilities were measured by a Phase Doppler Particle Analyzer. Thermodynamic modeling of smoke and ambient air was conducted to estimate liquid water contents (LWC) available to condense into droplets and form significant reductions in visibility. The results show that LWC of less than 2 g m-3 can be

  4. Analysis and Modeling of Wangqing Oil Shale Drying Characteristics in a Novel Fluidized Bed Dryer with Asynchronous Rotating Air Distributor

    Institute of Scientific and Technical Information of China (English)

    Yang Ning; Zhou Yunlong; Miao Yanan

    2016-01-01

    In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of lfuidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in lfuidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model ifts properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles’ pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of lfuidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.

  5. Mechanical characteristics of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Dudarev, A; Mayri, C; Miele, P; Sun, Z; ten Kate, H H J; Volpini, G

    2003-01-01

    The ATLAS B0 model coil has been tested at CERN to verify the design parameters of the Barrel Toroid coils (BT). The mechanical behavior of the B0 superconducting coil and its support structure is reported and compared with coil design calculations. The mechanical stresses and structural force levels during cooling down and excitation phases were monitored using strain gauges, position sensors and capacitive force transducers instrumentation. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce the electromagnetic forces present in the BT coils, once these are assembled in toroid in the underground cavern in 2004. (8 refs).

  6. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels;

    2003-01-01

    The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... for both upper and lower electrode systems. This has laid a foundation for modeling the welding process and selecting the welding parameters considering the machine factors. The method is straightforward and easy to be applied in industry since the whole procedure is based on tests with no requirements...

  7. Investigation of the charging characteristics of micrometer sized droplets based on parallel plate capacitor model.

    Science.gov (United States)

    Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Shen, Yang; Ji, Renjie; Cai, Baoping

    2013-02-01

    The charging characteristics of micrometer sized aqueous droplets have attracted more and more attentions due to the development of the microfluidics technology since the electrophoretic motion of a charged droplet can be used as the droplet actuation method. This work proposed a novel method of investigating the charging characteristics of micrometer sized aqueous droplets based on parallel plate capacitor model. With this method, the effects of the electric field strength, electrolyte concentration, and ion species on the charging characteristics of the aqueous droplets was investigated. Experimental results showed that the charging characteristics of micrometer sized droplets can be investigated by this method.

  8. A new lattice model of traffic flow with the consideration of the drivers' aggressive characteristics

    Science.gov (United States)

    Li, Xiaoqin; Fang, Kangling; Peng, Guanghan

    2017-02-01

    In real traffic, aggressive driving behaviors often occurs by anticipating the front density of the next-nearest lattice site at next time step to adjust their acceleration in advance. Therefore, a new lattice model is put forward by considering the driver's aggressive effect (DAE). The linear stability condition is derived from the linear stability theory and the modified KdV equation near the critical point is obtained through nonlinear analysis with the consideration of aggressive driving behaviors, respectively. Both the analytical results and numerical simulation indicate that the driver's aggressive effect can increase the traffic stability. Thus driver's aggressive effect should be considered in traffic lattice model.

  9. Aircraft-skin Infrared Radiation Characteristics Modeling and Analysis

    Institute of Scientific and Technical Information of China (English)

    Lu Jianwei; Wang Qiang

    2009-01-01

    One of the most important problems of stealth technology is to evaluate the infrared radiation (IR) level received by IR sensors from fighters to be detected. This article presents a synthetic method for calculating the IR emitted from aircraft-skin. By reckoning the aerodynamic heating and hot engine casing to be the main heat sources of the exposed aircraft-skin, a numerical model of skin temperature distribution is established through computational fluid dynamics (CFD) technique. Based on it, an infrared signature model for solving the complex geometry and structure of a fighter is proposed with the reverse Monte Carlo (RMC) method. Finally, by way of determining the IR intensity from aircraft-skin, the aircraft components that emit the most IR can be identified; and the cooling effects of the main aircraft components on IR intensity are investigated. It is found that reduction by 10 K in the skin temperature of head, vertical stabilizers and wings could lead to decline of more than 8% of the IR intensity on the aircraft-skin in front view while at the broadside of the aircraft, the drops in IR intensity could attain under 8%. The results provide useful reference in designing stealthy aircraft.

  10. PIV measurements and flow characteristics downstream of mangrove root models

    Science.gov (United States)

    Kazemi, Amirkhosro; Curet, Oscar

    2016-11-01

    Mangrove forests attracted attentions as a solution to protect coastal areas exposed to sea-level rising, frequent storms, and tsunamis. Mangrove forests found in tide-dominated flow regions are characterized by their massive and complex root systems, which play a prominent role in the structure of tidal flow currents. To understand the role of mangrove roots in flow structure, we modeled mangrove roots with rigid and flexible arrays of cylinders with different spacing between them as well as different configurations. In this work, we investigate the fluid dynamics downstream of the models using a 2-D time-resolved particle image velocimetry (PIV) and flow visualization. We carried out experiments for four different Reynolds number based on cylinder diameters ranges from 2200 to 12000. We present time-averaged and time-resolved flow parameters including velocity distribution, vorticity, streamline, Reynolds shear stress and turbulent kinetic energy. The results show that the flow structure has different vortex shedding downstream of the cylinders due to interactions of shear layers separating from cylinders surface. The spectral analysis of the measured velocity data is also performed to obtain Strouhal number of the unsteady flow in the cylinder wake.

  11. Characteristics of model polyelectrolyte multilayer films containing laponite clay nanoparticles.

    Science.gov (United States)

    Elzbieciak, M; Wodka, D; Zapotoczny, S; Nowak, P; Warszynski, P

    2010-01-05

    Polyelectrolyte films structure formed by the "layer-by-layer" (LbL) technique can be enriched by addition of charged nanoparticles like carbon nanotubes and silver or hydroxyapatite nanoparticles, which can improve properties of the polyelectrolyte films or modify their functionality. In our paper we examined the formation and properties of model polyelectrolyte multilayers containing a synthetic layered silicate, Laponite. The Laponite nanoparticles were incorporated into multilayer films, which were formed from weak, branched polycation PEI and strong polyanion PSS. Since charge of PEI is pH-dependent, we build up multilayer films in two deposition conditions: pH = 6 when PEI was strongly charged and pH = 10.5 when charge density of PEI was low. Thicknesses of the films constructed with various numbers of Laponite layers were measured by single wavelength ellipsometry. We also determined the differences in permeability for selected electroactive molecules using cyclic voltamperometry. Properties of the films containing clay nanoparticles were compared with model polyelectrolyte multilayer films PEI/PSS formed at the same conditions. We found that Laponite nanoparticles strongly influenced PEI/PSS multilayer film properties. Replacement of PSS by Laponite eliminated the oscillations of the film thickness in the case when PEI was weakly charged. PSS layer adsorbed on top of PEI/Laponite bilayers increased the thickness of multilayer films and improved their barrier properties so synergistic effects between these properties for polyelectrolytes and Laponite nanoparticles could be observed.

  12. EXAMPLE OF FLOW MODELLING CHARACTERISTICS IN DIESEL ENGINE NOZZLE

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ

    2016-03-01

    research presents the influence of various volume mesh types on flow characteristics inside a fuel injector nozzle. Our work is based upon the creating of two meshes in the CFD software package. Each of them was used two times. First, a time-dependent mass flow rate was defined at the inlet region and pressure was defined at the outlet. The same mesh was later used to perform a simulation with a defined needle lift curve (and hereby the mesh movement and inlet and outlet pressure. In next few steps we investigated which approach offered better results and would thus be most suitable for engineering usage.

  13. Methodological characteristics in establishing rat models of poststroke depression

    Institute of Scientific and Technical Information of China (English)

    Fuyou Liu; Shi Yang; Weiyin Chen; Jinyu Wang; Yi Tang; Guanxiang Zhu

    2006-01-01

    BACKGROUND: Ideal model of poststroke depression (PSD) may be induced in rats guided by the theoretical evidence that "primary endogenous mechanism" and "reactivity mechanism" theories for PSD in human being.OBJECTIVE: To investigate the feasibility of comprehensive methods to induce PSD models in rats.DESrGN: A randomized controlled animal trial.SETTING: Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine.MATERrALS: Male SD rats of SPF degree, weighing 350-500 g, were provided by the experimental animal center of Chengdu University of Traditional Chinese Medicine. The rats were raised for 1 week adaptively, then screened behaviorally by open-field test and passive avoidance test. Forty-five rats with close scores were randomly divided into normal control group (n =10), simple stroke group (n =10), stress group (n =10) and PSD group (n =15).METHODS: The experiments were carried out in the laboratory of Chengdu University of Traditional Chinese Medicine from July 2002 to February 2003. ① Rat models of focal cerebral ischemia were induced by thread embolization, then treated with separate raising and unpredictable stress to induce PSD models. ②The neurologic deficit was evaluated by Longa 5-grade standard (the higher the score, the severer the neurologic deficit) and horizontal round rod test (normal rat could stay on it for at least 3 minutes). ③ The behavioral changes of PSD rats were evaluated by the saccharin water test, open-field text and passive avoidance test,including the changes of interest, spontaneous and exploratory activities, etc. ④ The levels of monoamine neurotransmitters, including norepinephrine (NE), serotonin (5-HT) and dopamine, in brain were determined using fluorospectrophotometry.MAIN OUTCOME MEASURES: ① Score of Longa 5-grade standard; Stayed time in the horizontal round rod test;② Amount of saccharin water consumption; Open-field text: time stayed in the central square, times

  14. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  15. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  16. Analytical two-dimensional model of solar cell current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Caldararu, F.; Caldararu, M.; Nan, S.; Nicolaescu, D.; Vasile, S. (ICCE, Bucharest (RO). R and D Center for Electron Devices)

    1991-06-01

    This paper describes an analytical two-dimensional model for pn junction solar cell I-V characteristic. In order to solve the two-dimensional equations for the minority carrier concentration the Laplace transformation method is used. The model eliminates Hovel's assumptions concerning a one-dimensional model and provides an I-V characteristic that is simpler than those derived from the one-dimensional model. The method can be extended to any other device with two-dimensional symmetry. (author).

  17. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    Science.gov (United States)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is

  18. Localized Ionospheric Particle Acceleration and Wave Acceleration of Auroral Ions: Amicist Data Set

    Science.gov (United States)

    Lynch, Kristina A.

    1999-01-01

    Research supported by this grant covered two main topics: auroral ion acceleration from ELF-band wave activity, and from VLF-spikelet (lower hybrid solitary structure) wave activity. Recent auroral sounding rocket data illustrate the relative significance of various mechanisms for initiating auroral ion outflow. Two nightside mechanisms are shown in detail. The first mechanism is ion acceleration within lower hybrid solitary wave events. The new data from this two payload mission show clearly that: (1) these individual events are spatially localized to scales approximately 100 m wide perpendicular to B, in agreement with previous investigations of these structures, and (2) that the probability of occurrence of the events is greatest at times of maximum VLF wave intensity. The second mechanism is ion acceleration by broadband, low frequency electrostatic waves, observed in a 30 km wide region at the poleward edge of the arc. The ion fluxes from the two mechanisms are compared and it is shown that while lower hybrid solitary structures do indeed accelerate ions in regions of intense VLF waves, the outflow from the electrostatic ion wave acceleration region is dominant for the aurora investigated by this sounding rocket, AMICIST. The fluxes are shown to be consistent with DE-1 and Freja outflow measurements, indicating that the AMICIST observations show the low altitude, microphysical signatures of nightside auroral outflow. In this paper, we present a review of sounding rocket observations of the ion acceleration seen nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations, we will demonstrate the following characteristics of transverse ion acceleration (TAI) in LHSS. The ion acceleration process is narrowly confined to 90 degrees pitch angle, in spatially confined regions of up to a

  19. Acceleration of tendon healing using US guided intratendinous injection of bevacizumab: First pre-clinical study on a murine model

    Energy Technology Data Exchange (ETDEWEB)

    Dallaudière, Benjamin, E-mail: bendallau64@hotmail.fr [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Inserm U698, Hôpital universitaire Bichat, Paris (France); Université de Médecine Paris Diderot (France); Lempicki, Marta [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Université de Médecine Paris Diderot (France); Pesquer, Lionel [Centre d’Imagerie Ostéo Articulaire, Clinique du Sport de Bordeaux-Mérignac (France); Louedec, Liliane [Inserm U698, Hôpital universitaire Bichat, Paris (France); Preux, Pierre Marie [Laboratoire de Biostatistiques, Faculté de médecine, Limoges (France); Meyer, Philippe [Centre d’Imagerie Ostéo Articulaire, Clinique du Sport de Bordeaux-Mérignac (France); Hess, Agathe [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Université de Médecine Paris Diderot (France); Durieux, Marie Hèlène Moreau [Centre d’Imagerie Ostéo Articulaire, Clinique du Sport de Bordeaux-Mérignac (France); Hummel, Vincent; Larbi, Ahmed [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Deschamps, Lydia [Service d’ Anatomopathologie, Hôpital universitaire Bichat, Paris (France); and others

    2013-12-01

    Purpose: Tendinopathy shows early disorganized collagen fibers with neo-angiogenesis on histology. Peri-tendinous injection of corticosteroid is the commonly accepted strategy despite the abscence of inflammation in tendinosis. The aim of our study was to assess the potential of intratendinous injection of an anti-angiogenic drug (bevacizumab, AA) to treat tendinopathy in a murine model of patellar and Achilles tendinopathy, and to evaluate its local toxicity. Materials and method: Forty rats (160 patellar and Achilles tendons) were used for this study. We induced tendinosis (T+) in 80 tendons by injecting under ultrasonography (US) guidance Collagenase 1{sup ®} (day 0 = D0, patellar = 40 and Achilles = 40). Clinical examination and tendon US were performed at D3, immediately followed by either AA (AAT+, n = 40) or physiological serum (PST+, n = 40, control) US-guided intratendinous injection. Follow-up at D6 and D13 using clinical, US and histology, and comparison between the 2 groups were performed. To study AA toxicity we compared the 80 remaining normal tendons (T−) after injecting AA in 40 (AAT−). Results: All AAT+ showed a better joint mobilization compared to PST+ at D6 (p = 0.004) with thinner US tendon diameters (p < 0.004), and less disorganized collagen fibers and neovessels on histology (p < 0.05). There was no difference at D13 regarding clinical status, US tendon diameter and histology (p > 0.05). Comparison between AAT− and T− showed no AA toxicity on tendon (p = 0.18). Conclusion: Our study suggests that high dose mono-injection of AA in tendinosis, early after the beginning of the disease, accelerates tendon's healing, with no local toxicity.

  20. Proton magnetic resonance spectroscopy reveals neuroprotection by oral minocycline in a nonhuman primate model of accelerated NeuroAIDS.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Ratai

    Full Text Available BACKGROUND: Despite the advent of highly active anti-retroviral therapy (HAART, HIV-associated neurocognitive disorders continue to be a significant problem. In efforts to understand and alleviate neurocognitive deficits associated with HIV, we used an accelerated simian immunodeficiency virus (SIV macaque model of NeuroAIDS to test whether minocycline is neuroprotective against lentiviral-induced neuronal injury. METHODOLOGY/PRINCIPAL FINDINGS: Eleven rhesus macaques were infected with SIV, depleted of CD8+ lymphocytes, and studied until eight weeks post inoculation (wpi. Seven animals received daily minocycline orally beginning at 4 wpi. Neuronal integrity was monitored in vivo by proton magnetic resonance spectroscopy and post-mortem by immunohistochemistry for synaptophysin (SYN, microtubule-associated protein 2 (MAP2, and neuronal counts. Astrogliosis and microglial activation were quantified by measuring glial fibrillary acidic protein (GFAP and ionized calcium binding adaptor molecule 1 (IBA-1, respectively. SIV infection followed by CD8+ cell depletion induced a progressive decline in neuronal integrity evidenced by declining N-acetylaspartate/creatine (NAA/Cr, which was arrested with minocycline treatment. The recovery of this ratio was due to increases in NAA, indicating neuronal recovery, and decreases in Cr, likely reflecting downregulation of glial cell activation. SYN, MAP2, and neuronal counts were found to be higher in minocycline-treated animals compared to untreated animals while GFAP and IBA-1 expression were decreased compared to controls. CSF and plasma viral loads were lower in MN-treated animals. CONCLUSIONS/SIGNIFICANCE: In conclusion, oral minocycline alleviates neuronal damage induced by the AIDS virus.