WorldWideScience

Sample records for acceleration model characteristics

  1. Determination of Stochastic Acceleration Model Characteristics in Solar Flares

    CERN Document Server

    Chen, Qingrong

    2013-01-01

    Abridged. Following our recent paper, we have developed an inversion method to determine the basic characteristics for the model of stochastic acceleration (SA) by plasma wave turbulence directly and non-parametrically from observations in the framework of the leaky box version of the Fokker-Planck kinetic equation. In particular, we show that by inverting the Fokker-Planck equation to its integral form, one can derive the energy diffusion coefficient and direct acceleration rate by turbulence in terms of the accelerated and escaping particle spectra. We apply the analytic formulas to solar flare suprathermal electrons, which produce HXR emission at the coronal loop top (LT) and two thick target footpoints. Using the spatially resolved electron spectra from regularized electron flux images, we determine the electron escape time (related to pitch angle scattering rate), and the energy diffusion coefficient at the LT accelerator. Results obtained from two intense RHESSI events indicate that the escape time incr...

  2. Bounded Acceleration Capacity Drop in a Lagrangian Formulation of the Kinematic Wave Model with Vehicle Characteristics and Unconstrained Overtaking

    NARCIS (Netherlands)

    Calvert, S.C.; Snelder, M.; Taale, H.; Wageningen-Kessels, F.L.M. van; Hoogendoorn, S.P.

    2015-01-01

    In this contribution a model-based analysis of the application of bounded acceleration in traffic flow is considered as a cause for the capacity drop. This is performed in a Lagrangian formulation of the kinematic wave model with general vehicle specific characteristics. Unconstrained overtaking is

  3. Constructive characteristics and calculation test of the CTN-10-3/92 accelerator model

    International Nuclear Information System (INIS)

    In the present report is accomplished a short technical justification on the use of accelerometers in mechanical in mechanical vibration measurements and its theoretical basis. The principal objective is the presentation of the constructive solution of the CTN-10-3/92 accelerometer model, as well as the results of the calibration projects that permitted to determine the sensibility, the capacitance, the dielectric permissivity, the open circuit voltage, the piezoelectric constant and the frequency response. Finally, it is offered a technical valuation of obtained results

  4. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  5. MALT accelerator facility; characteristic of ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Chuichiro; Kobayashi, Koichi; Matsuzaki, Hiroyuki; Sunohara, Yoko [Tokyo Univ. (Japan)

    2001-02-01

    A tandem accelerator has been operated since 1995 with a continual effort to increase the accuracy and reliability of the measurement. In the present paper, after a brief discussion on a cesium sputter ion source incorporated in the MALT accelerator, basic characteristics such as temperature of cesium reservoir, and ioniser plate cathode potential. Production of negative ions in the ion source proceed in two step. The first step is generation of positive ions due to the surface ionization on a hot Ta plate, and the second step, electron detachment on a cathode. (M. Tanaka)

  6. Accelerated life models modeling and statistical analysis

    CERN Document Server

    Bagdonavicius, Vilijandas

    2001-01-01

    Failure Time DistributionsIntroductionParametric Classes of Failure Time DistributionsAccelerated Life ModelsIntroductionGeneralized Sedyakin's ModelAccelerated Failure Time ModelProportional Hazards ModelGeneralized Proportional Hazards ModelsGeneralized Additive and Additive-Multiplicative Hazards ModelsChanging Shape and Scale ModelsGeneralizationsModels Including Switch-Up and Cycling EffectsHeredity HypothesisSummaryAccelerated Degradation ModelsIntroductionDegradation ModelsModeling the Influence of Explanatory Varia

  7. Stochastic modeling of Lagrangian accelerations

    Science.gov (United States)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  8. Determination of beam characteristic parameters for a linear accelerator

    International Nuclear Information System (INIS)

    A mechanism to determine electron beam characteristic parameters of a linear accelerator was constructed. The mechanism consists in an electro-calorimeter and an accurate optical densitometer. The following parameters: mean power, mean current, mean energy/particle, pulse Width, pulse amplitude dispersion, and pulse frequency, operating the 2 MeV linear accelerator of CBPF (Brazilian Center pf Physics Researches). The optical isodensity curves of irradiated glass lamellae were obtained, providing information about focus degradation penetration direction in material and the reach of particle. The point to point dose distribution in the material from optical density curves were obtained, using a semi empirical and approached model. (M.C.K.)

  9. Social-Emotional Characteristics of Gifted Accelerated and Non-Accelerated Students in the Netherlands

    Science.gov (United States)

    Hoogeveen, Lianne; van Hell, Janet G.; Verhoeven, Ludo

    2012-01-01

    Background: In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims: In this study, social-emotional characteristics of accelerated…

  10. Dynamic accelerator modeling

    International Nuclear Information System (INIS)

    Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling

  11. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands

    NARCIS (Netherlands)

    Hoogeveen, A.J.M.; Hell, J.G. van; Verhoeven, L.T.W.

    2012-01-01

    Background. In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims. In this study, soci

  12. Opportunity of characteristic's improvement for accelerator driven systems

    CERN Document Server

    Kiselev, G V

    2001-01-01

    Review of sentences on the investigation into different variations of electronuclear plants be directed to the improvement in characteristics of the plants in an effort to the efficient disposal of long-lived components of radioactive wastes is presented. Attention is drown to the fact that subcritical reactor with complicated neutron valve can be used. This permits for drop in demand to current of proton accelerator. Briefly description of the process scheme with the indication of problems is given

  13. Characteristics of photon beams from Philips SL25 linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Palta, J.R.; Ayyangar, K.; Daftari, I.; Suntharalingam, N. (Department of Radiation Oncology, Bodine Center for Cancer Treatment, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107 (US))

    1990-01-01

    The Philips SL25 accelerator is a multimodality machine offering asymmetric collimator jaws and a new type of beam bending and transport system. It produces photon beams, nominally at 6 and 25 MV, and a scattered electron beam with nine selectable energies between 4 and 22 MeV. Dosimetric characteristics for the 6- and 25-MV photon beams are presented with respect to field flatness, surface and depth dose characteristics, isodose distribution, field size factors for both open and wedged fields, and narrow beam transmission data in different materials.

  14. Advanced modeling of high intensity accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R.D.; Habib, S.; Wangler, T.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to develop a new capability, based on high performance (parallel) computers, to perform large scale simulations of high intensity accelerators; (2) to apply this capability to modeling high intensity accelerators under design at LANL; and (3) to use this new capability to improve the understanding of the physics of intense charge particle beams, especially in regard to the issue of beam halo formation. All of these goals were met. In particular, the authors introduced split-operator methods as a powerful and efficient means to simulate intense beams in the presence of rapidly varying accelerating and focusing fields. They then applied these methods to develop scaleable, parallel beam dynamics codes for modeling intense beams in linacs, and in the process they implemented a new three-dimensional space charge algorithm. They also used the codes to study a number of beam dynamics issues related to the Accelerator Production of Tritium (APT) project, and in the process performed the largest simulations to date for any accelerator design project. Finally, they used the new modeling capability to provide direction and validation to beam physics studies, helping to identify beam mismatch as a major source of halo formation in high intensity accelerators. This LDRD project ultimately benefited not only LANL but also the US accelerator community since, by promoting expertise in high performance computing and advancing the state-of-the-art in accelerator simulation, its accomplishments helped lead to approval of a new DOE Grand Challenge in Computational Accelerator Physics.

  15. Modelling of Ram-Accelerator Flow Fields

    Directory of Open Access Journals (Sweden)

    P. Lakhumna

    1998-07-01

    Full Text Available Dynamic phenomena in 'ram-accelerator', a ramjet-in-tube concept for accelerating projectiles to ultra high velocities, have been investigated analytically and compared with the experimental investigations reported in open literature. The projectile resembles the centrebody of a conventional ramjet, but travels through a stationary tube filled with a mixture of gaseous fuel and oxidizer. The energy release process travels with a projectile inside the accelerator tube. The characteristics of subsonic combustion, thermally-choked mode of propulsion, which is capable of increasing the velocity up to Chapman-Jouguet (C-J detonation velocity of the propellant mixture used in ram-accelerator tube, have been studied. The ram-accelerator with a fixed diffuser area ratio operates with different initial velocities for different propellant mixtures. Propellant mixture with CO/sub 2/ as diluent is used for velocity range ~770-1150 m/S; propellant mixture with nitrogen as diluent is used for velocity range ~ 925-1450 m/s and that with helium as diluent is used for velocity range ~ 1500-2000 m/s. Mixtures of propellants with different diluents in varying degree of proportions, giving rise to different acoustic and C-J detonation speeds, have been investigated to evaluate their suitability in the ram-accelerator divided into several segments.

  16. Synergia CUDA: GPU-accelerated accelerator modeling package

    Science.gov (United States)

    Lu, Q.; Amundson, J.

    2014-06-01

    Synergia is a parallel, 3-dimensional space-charge particle-in-cell accelerator modeling code. We present our work porting the purely MPI-based version of the code to a hybrid of CPU and GPU computing kernels. The hybrid code uses the CUDA platform in the same framework as the pure MPI solution. We have implemented a lock-free collaborative charge-deposition algorithm for the GPU, as well as other optimizations, including local communication avoidance for GPUs, a customized FFT, and fine-tuned memory access patterns. On a small GPU cluster (up to 4 Tesla C1070 GPUs), our benchmarks exhibit both superior peak performance and better scaling than a CPU cluster with 16 nodes and 128 cores. We also compare the code performance on different GPU architectures, including C1070 Tesla and K20 Kepler.

  17. A Qualitative Acceleration Model Based on Intervals

    Directory of Open Access Journals (Sweden)

    Ester MARTINEZ-MARTIN

    2013-08-01

    Full Text Available On the way to autonomous service robots, spatial reasoning plays a main role since it properly deals with problems involving uncertainty. In particular, we are interested in knowing people's pose to avoid collisions. With that aim, in this paper, we present a qualitative acceleration model for robotic applications including representation, reasoning and a practical application.

  18. On Uncertainty Quantification in Particle Accelerators Modelling

    CERN Document Server

    Adelmann, Andreas

    2015-01-01

    Using a cyclotron based model problem, we demonstrate for the first time the applicability and usefulness of a uncertainty quantification (UQ) approach in order to construct surrogate models for quantities such as emittance, energy spread but also the halo parameter, and construct a global sensitivity analysis together with error propagation and $L_{2}$ error analysis. The model problem is selected in a way that it represents a template for general high intensity particle accelerator modelling tasks. The presented physics problem has to be seen as hypothetical, with the aim to demonstrate the usefulness and applicability of the presented UQ approach and not solving a particulate problem. The proposed UQ approach is based on sparse polynomial chaos expansions and relies on a small number of high fidelity particle accelerator simulations. Within this UQ framework, the identification of most important uncertainty sources is achieved by performing a global sensitivity analysis via computing the so-called Sobols' ...

  19. Online modeling of the Fermilab accelerators

    International Nuclear Information System (INIS)

    We have implemented access to beam physics models of the Fermilab accelerators and beamlines through the Fermilab control system. The models run on Unix workstations, communicating with legacy controls software through a front end redirection mechanism (the open access server), a relational database and a simple text-based protocol over TCP/IP. The clients and the server are implemented in object-oriented C++. We discuss limitations of our approach and the difficulties that arise from it. Some of the obstacles may be overcome by introducing a new layer of abstraction. To maintain compatibility with the next generation of accelerator control software currently under development at the laboratory, this layer would be implemented in Java. We discuss the implications of that choice

  20. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu, E-mail: hanyu1203@gmail.com [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Xiaofeng [Shanghai NuStar Nuclear Power Technology Co., Ltd., No. 81 South Qinzhou Road, XuJiaHui District, Shanghai 200000 (China); Wang, Dezhong [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2014-12-15

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times.

  1. Impedance characteristics of the Bz diode on the LION accelerator

    International Nuclear Information System (INIS)

    The LION accelerator at Cornell University is being used to study the characteristics of the applied B/sub z/, or 'barrel' diode. This 0.8 TW, 4 ohm, ion accelerator has the ability to take several shots per day, and hence alloys systematic scans to be performed. An important result of a recent series of experiments is that the diode impedance remains relatively constant, decaying only slowly, during the 50 nsec pulse. When the diode is operated with a 4.5 mm gap and a 21 kG insulating magnetic field, the typical diode parameters, are a voltage of 1 MV and a total current of 250 kA, leading to a diode impedance of 4 ohms and power of 0.25 TW. The diode impedance decays with a 100 nsec time constant. The ion beams have peak currents of roughly 125 kA and typical impedances of Bohms, which decays with a time constant of 25 nsec. The Child-Langmuir gap was approximately 2 mm and closed with a velocity of roughly 2X10/sup 6/ cm/sec. Current experimental work is aimed at characterizing the impedance of the B/sub z/ diode as a function of the applied magnetic field, the A-K gap, the anode curvature, and the anode groove parameters. In addition, the effect of changing the voltage rise with a plasma opening switch and of adding an electron limiter is examined. The ion beam quality is examined at the focus of the barrel diode with a swept Thomson parabola and various Rutherford scattering diagnostics

  2. Merging AI and numerical modeling for accelerator control

    International Nuclear Information System (INIS)

    The authors report the beginnings of an experiment to evaluate the power and limitations of artificial intelligence techniques combined with beam-line modeling for solving problems in accelerator control. Using the Knowledge Engineering Environment (KEE) system, they have built a knowledge base that describes the characteristics and the relationships of about 30 devices in a typical accelerator beam line. Each device in the line is categorized and pertinent attributes for each category are defined. Specific values for each device are assigned in the knowledge base to represent static characteristics. Device-specific slots are also provided for dynamic attributes. The definition of these slots reflects the data type and any limitations or restrictions on the range of the data. The authors model relationships between the various beam-line devices using the techniques of rules, active values, and object-oriented models. The knowledge base provides a framework for analyzing faults and offering suggestions to assist in tuning, based on information provided by the accelerator physicists (domain experts) responsible for designing and tuning this beam line. Our knowledge base has a powerful graphical interface. It allows the operator to mouse on an icon for a particular icon in the schematic of the beam line and obtain device-specific information and control over that device. The beam optics code Transport is used to model the beam line numerically. 11 refs., 7 figs

  3. Non Parametric Determination of Acceleration Characteristics in Supernova Shocks Based on Spectra of Cosmic Rays and Remnant Radiation

    Science.gov (United States)

    Petrosian, Vahe

    2016-07-01

    We have developed an inversion method for determination of the characteristics of the acceleration mechanism directly and non-parametrically from observations, in contrast to the usual forward fitting of parametric model variables to observations. This is done in the frame work of the so-called leaky box model of acceleration, valid for isotropic momentum distribution and for volume integrated characteristics in a finite acceleration site. We consider both acceleration by shocks and stochastic acceleration where turbulence plays the primary role to determine the acceleration, scattering and escape rates. Assuming a knowledge of the background plasma the model has essentially two unknown parameters, namely the momentum and pitch angle scattering diffusion coefficients, which can be evaluated given two independent spectral observations. These coefficients are obtained directly from the spectrum of radiation from the supernova remnants (SNRs), which gives the spectrum of accelerated particles, and the observed spectrum of cosmic rays (CRs), which are related to the spectrum of particles escaping the SNRs. The results obtained from application of this method will be presented.

  4. Dynamic Characteristics and Models

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2007-01-01

    is that the dynamic characteristics of a flooring-system do not only depend on material characteristics, floor dimensions and boundary conditions. They are also influenced by the presence of stationary persons on the floor, and these persons may or may not be present. Stationary persons are humans in, for example......, sitting or standing posture, and that these persons influence the dynamic characteristics of the floor (floor frequency and floor damping) is demonstrated in the paper. The mechanism of the dynamic interaction between the floor mass and the mass of stationary persons is generally not well understood...

  5. Study on focusing characteristic of acceleration tube in high current implanter

    International Nuclear Information System (INIS)

    The accelerating tube is one of the most important parts in high current implanter which provides the desired energy and focusing for ion beam. The factors affecting focus characteristic in high current implanter with three gap acceleration tube are discussed. Focusing degrees of different energy ion beam are computed, and the electric field required to prevent beam expansion due to space charge effect are analyzed. The beam envelope inside the three acceleration gap shows a decrease of the beam radius with the increase of the accelerating voltage ratio up to the optimal value. Beyond this optimal value the beam lines make a crossover with the axis of the accelerating tube

  6. Acceleration methods and models in Sn calculations

    International Nuclear Information System (INIS)

    In some neutron transport problems solved by the discrete ordinate method, it is relatively common to observe some particularities as, for example, negative fluxes generation, slow and insecure convergences and solution instabilities. The commonly used models for neutron flux calculation and acceleration methods included in the most used codes were analyzed, in face of their use in problems characterized by a strong upscattering effect. Some special conclusions derived from this analysis are presented as well as a new method to perform the upscattering scaling for solving the before mentioned problems in this kind of cases. This method has been included in the DOT3.5 code (two dimensional discrete ordinates radiation transport code) generating a new version of wider application. (Author)

  7. Transforming a School of Education via the Accelerated Schools Model.

    Science.gov (United States)

    Mims, J. Sabrina; Slovacek, Simeon; Wong, Gay Yuen

    This paper describes how the Accelerated Schools Model has served as a catalyst for transforming the Charter School of Education at California State University, Los Angeles. The Accelerated Schools Project has been one of the largest and most comprehensive school restructuring movements of the last decade. The focus of Accelerated Schools is…

  8. Characteristics of betatron radiation from direct-laser-accelerated electrons

    Science.gov (United States)

    Huang, T. W.; Robinson, A. P. L.; Zhou, C. T.; Qiao, B.; Liu, B.; Ruan, S. C.; He, X. T.; Norreys, P. A.

    2016-06-01

    Betatron radiation from direct-laser-accelerated electrons is characterized analytically and numerically. It is shown here that the electron dynamics is strongly dependent on a self-similar parameter S (≡n/enca0 ) . Both the electron transverse momentum and energy are proportional to the normalized amplitude of laser field (a0) for a fixed value of S . As a result, the total number of radiated photons scales as a02/√{S } and the energy conversion efficiency of photons from the accelerated electrons scales as a03/S . The particle-in-cell simulations agree well with the analytical scalings. It is suggested that a tunable high-energy and high-flux radiation source can be achieved by exploiting this regime.

  9. Static and dynamic characteristics of angular velocity and acceleration transducers based on optical tunneling effect

    Science.gov (United States)

    Busurin, V. I.; Korobkov, V. V.; Htoo Lwin, Naing; Tuan, Phan Anh

    2016-08-01

    Theoretical and experimental analysis of quasi-linear conversion function of angular velocity and acceleration microoptoelectromechnical (MOEM) transducers based on optical tunneling effect (OTE) are conducted. Equivalent oscillating circuit is developed and dynamic characteristics of angular velocity and acceleration MOEM-transducers are investigated.

  10. White Paper on DOE-HEP Accelerator Modeling Science Activities

    CERN Document Server

    Vay, Jean-Luc; Koniges, Alice; Friedman, Alex; Grote, David P; Bruhwiler, David L

    2013-01-01

    Toward the goal of maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies, this white paper presents the rationale for: (a) strengthening and expanding programmatic activities in accelerator modeling science within the Department of Energy (DOE) Office of High Energy Physics (HEP) and (b) increasing the community-wide coordination and integration of code development.

  11. Universe acceleration in brane world models

    Science.gov (United States)

    Chiou-Lahanas, C.; Diamandis, G. A.; Georgalas, B. C.

    2014-05-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution, determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The possible species of the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  12. Universe Acceleration in Brane World Models

    CERN Document Server

    Chiou-Lahanas, C; Georgalas, B C

    2013-01-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The conditions imposed on the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  13. Study and characteristics of a VIVITRON type electrostatic accelerator

    International Nuclear Information System (INIS)

    The conception of the 2 MV tandem electrostatic accelerator ARAMIS, which is intended for research in solid state and astrophysics, benefits from certain technological advances of the VIVITRON. Our study has dealt with the shape and arrangement of the column electrodes for this machine. We have employed the program Poisson which performs two-dimensional calculations of the electrical constraint at the surface of the conductors. The maximum field strength on the constrained regions has a value of 11.5 MV/m. This completely acceptable result let one expect that the machine operation will be satisfactory. Certain limitations inherent in the bidimensional calculations have led us to consider programs treating three dimensions. Access to the finite element library MODULEF at the Centre de Calcul in Strasbourg has increased the computational possibilities. The case of an insulating post in the coaxial terminal-tank structure has thus been treated. This work has allowed the construction of the column electrodes to proceed. They will be ready the beginning 1987. The tandem ARAMIS being built should be operational by the end of 1987

  14. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  15. Temperature versus acceleration: the Unruh effect for holographic models

    NARCIS (Netherlands)

    Paredes Galan, A.; Peeters, K.; Zamaklar, m.

    2009-01-01

    We analyse the effect of velocity and acceleration on the temperature felt by particles and strings in backgrounds relevant in holographic models. First, we compare accelerated strings and strings at finite temperature. We find that for fixed Unruh temperature felt by the string endpoints, the scree

  16. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10.

    Science.gov (United States)

    Miyamoto, M

    1997-01-01

    Senescence-Accelerated Mouse (SAM), a murine model of accelerated senescence, has been established by Takeda et al. (1981). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. In 1991 there were eight different substrains in the P-series, which commonly exhibited accelerated aging with a shortened life span (Takeda et al., 1991). Among the P-series, we have found that SAMP8 mice show significant impairments in a variety of learning tasks when compared with SAMR1 mice (Miyamoto et al., 1986). Further studies suggest that SAMP8 exhibits an age-related emotional disorder characterized by reduced anxiety-like behavior (Miyamoto et al., 1992). On the other hand, it has been shown that SAMP10 exhibits brain atrophy and learning impairments in an avoidance task (Shimada et al., 1992, 1993). Here, characteristics of age-related deficits in learning and memory, changes in emotional behavior, and abnormality of circadian rhythms in SAMP8 and SAMP10 mice are described. In the experiments, SAMP8/Ta (SAMP8), SAMP10/(/)Ta (SAMP10) and SAMR1TA (SAMR1) reared under specific pathogen-free conditions at Takeda Chemical Industries were used. PMID:9088911

  17. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Zika, M.R.; Adams, M.L.

    2000-02-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.

  18. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    International Nuclear Information System (INIS)

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  19. Transport Synthetic Acceleration for Long-Characteristics Assembly-Level Transport Problems

    International Nuclear Information System (INIS)

    We apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, we take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. Our main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme.The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. We devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, we define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. We implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; we prove that the long-characteristics discretization yields an SPD matrix. We present results of our acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  20. Reliability evaluation of a photovoltaic module using accelerated degradation model

    Science.gov (United States)

    Laronde, Rémi; Charki, Abdérafi; Bigaud, David; Excoffier, Philippe

    2011-09-01

    Many photovoltaic modules are installed all around the world. However, the reliability of this product is not enough really known. The electrical power decreases in time due mainly to corrosion, encapsulation discoloration and solder bond failure. The failure of a photovoltaic module is obtained when the electrical power degradation reaches a threshold value. Accelerated life tests are commonly used to estimate the reliability of the photovoltaic module. However, using accelerated life tests, few data on the failure of this product are obtained and the realization of this kind of tests is expensive. As a solution, an accelerated degradation test can be carried out using only one stress if parameters of the acceleration model are known. The Wiener process associated with the accelerated failure time model permits to carry out many simulations and to determine the failure time distribution when the threshold value is reached. So, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated.

  1. Time-Dependent Stochastic Acceleration Model for the Fermi Bubbles

    CERN Document Server

    Sasaki, Kento; Terasawa, Toshio

    2015-01-01

    We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin-Helmholtz, Rayleigh-Taylor or Richtmyer-Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the s...

  2. A new approach to modeling linear accelerator systems

    International Nuclear Information System (INIS)

    A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in accessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are to be modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were used to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Code (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version of ASM is described and examples of the modeling and analysis capabilities are illustrated. The results of an example study, for an accelerator concept typical of ADTT applications, is presented and sample displays from the computer interface are shown

  3. Power requirements for cosmic ray propagation models involving re-acceleration and a comment on second order Fermi acceleration theory

    CERN Document Server

    Thornbury, Andrew

    2014-01-01

    We derive an analytic expression for the power transferred from interstellar turbulence to the Galactic cosmic rays in propagation models which include re-acceleration. This is used to estimate the power required in such models and the relative importance of the primary acceleration as against re-acceleration. The analysis provides a formal mathematical justification for Fermi's heuristic account of second order acceleration in his classic 1949 paper.

  4. Force-Time Characteristics and Running Velocity of Male Sprinters During the Acceleration Phase of Sprinting.

    Science.gov (United States)

    Mero, Antti

    1988-01-01

    Investigation of the force-time characteristics of eight male sprinters during the acceleration phase of the sprint start suggested that the braking and propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start. (Author/CB)

  5. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  6. Friedman-Robertson-Walker Models with Late-Time Acceleration

    Institute of Scientific and Technical Information of China (English)

    Abdussattar; S. R. Prajapati2

    2011-01-01

    @@ In order to account for the observed cosmic acceleration, a modiGcation of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed.The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.%In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that ora modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  7. Friedmann-Robertson-Walker Models with Late-Time Acceleration

    CERN Document Server

    Abdussattar,

    2016-01-01

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  8. Friedman—Robertson—Walker Models with Late-Time Acceleration

    Science.gov (United States)

    Abdussattar; Prajapati, S. R.

    2011-02-01

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman—Robertson—Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  9. Accelerating advances in continental domain hydrologic modeling

    Science.gov (United States)

    Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew; Wagener, Thorsten; Farmer, William H.; Andréassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas

    2015-12-01

    In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.

  10. Research on cubic polynomial acceleration and deceleration control model for high speed NC machining

    Institute of Scientific and Technical Information of China (English)

    Hong-bin LENG; Yi-jie WU; Xiao-hong PAN

    2008-01-01

    To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (aec/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.

  11. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  12. Component/Connection/Signal Modeling of Accelerator Systems

    CERN Document Server

    Dohan, Donald

    2005-01-01

    This paper presents a pragmatic global approach to data modeling a complex facility such as a particle accelerator. By successively partitioning the facility into collaborating subsystems, one eventually arrives at the component level-the point at which the subsystem is replaceable as a single unit. The fundamental goal of the model is to capture the dynamical relationships (i.e., the connections) that exist among the accelerator components. Components participate in one or more of three connection types: control, housing, and power. These connections are captured in a multi-hierarchical model capable of handling any component of the accelerator, from the macro scale (magnets, power supplies, racks, etc.) to the embedded scale (circuit board components), if desired. The connection approach has been used to model the signal flows between the component via their port connections. The result is a schema for a cable database that provides end-to-end signal tracing throughout the facility. The paper will discuss t...

  13. Modelling the nongravitational acceleration during Cassini's gravitation experiments

    OpenAIRE

    Bertolami, O.; Francisco, F.; Gil, P. J. S.; Páramos, J.

    2014-01-01

    In this paper we present a computation of the thermally generated acceleration of the Cassini probe during its solar conjunction experiment, obtained from a model of the spacecraft. We build a thermal model of the vehicle and perform a Monte Carlo simulation to find a thermal acceleration with a main component of $(3.01 \\pm 0.33) \\times 10^{-9} {\\rm m/s^2}$. This result is in close agreement with the estimates of this effect performed through Doppler data analysis.

  14. Hydraulic characteristics of sedimentary deposits at the J-PARC proton-accelerator, Japan

    Directory of Open Access Journals (Sweden)

    Marui Atsunao

    2007-12-01

    Full Text Available Hydraulic characteristics of sediments were investigated at J-PARC for the purpose of site characterization in relation with the construction of Japan's largest proton-accelerator. A total of 340 samples extracted from 9 exploratory wells were examined by standard laboratory tests and complemented with statistical analyses to quantitatively determine the main terrain attributes. Two main hydro-geological units were recognized, although a number of embedded layers defined a
    multilevel aquifer. Grain-size distribution derived from sieve analysis and the coefficient of uniformity showed that soils are poorly sorted. On the other hand, hydraulic conductivity was measured by a
    number of parameters such as a log-normal distribution. Conductivity was also predicted by empirical formulas, yielding values up to three orders of magnitude higher. Discrepancies were explained in
    terms of soil anisotropy and intrinsic differences in the calculation methods. Based on the Shepherd's approach, a power relationship between permeability and grain size was found at 2 wells. Hydraulic
    conductivity was also correlated to porosity. However, this  nterdependence was not systematic and therefore, properties at many parts of the profile were considered to be randomly distributed. Finally,
    logs of electrical conductivity suggested that variations of soil hydraulic properties can be associated to changes in water quality. In spite of the remaining uncertainties, results yielded from the study are useful to better understand the numerical modelling of the subsurface system in the site.

  15. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    Science.gov (United States)

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth curve models when change…

  16. Precision cosmology defeats void models for acceleration

    International Nuclear Information System (INIS)

    The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, σ8. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.

  17. Accelerated discovery via a whole-cell model.

    Science.gov (United States)

    Sanghvi, Jayodita C; Regot, Sergi; Carrasco, Silvia; Karr, Jonathan R; Gutschow, Miriam V; Bolival, Benjamin; Covert, Markus W

    2013-12-01

    To test the promise of whole-cell modeling to facilitate scientific inquiry, we compared growth rates simulated in a whole-cell model with experimental measurements for all viable single-gene disruption Mycoplasma genitalium strains. Discrepancies between simulations and experiments led to predictions about kinetic parameters of specific enzymes that we subsequently validated. These findings represent, to our knowledge, the first application of whole-cell modeling to accelerate biological discovery. PMID:24185838

  18. Progress in Modeling Electron Cloud Effects in HIF Accelerators

    Science.gov (United States)

    Cohen, R. H.; Friedman, A.; Molvik, A. W.; Azevedo, A.; Vay, J.-L.; Furman, M. A.; Stoltz, P. H.

    2003-10-01

    Stray electrons can arise in positive-charge accelerators for heavy ion fusion (or other applications) from ionization of gas (ambient or released from walls), or via secondary emission. Their accumulation is affected by the beam potential and duration, and the accelerating and confining fields. We present electron orbit simulations which show the resultant e-cloud distribution; ion simulations with prescribed e-clouds which show the effect on ion beam quality; a gyro-averaged model for including electron dynamics in ion simulations, and its implementation status; and progress in merging the capabilities of WARP (3-D PIC code for HIF) (D.P. Grote, A. Friedman, I. Haber, Proc. 1996 Comp. Accel. Physics Conf., AIP Proc. 391), 51 (1996), with those of POSINST (e-clouds in high-energy accelerators) (M.A. Furman, LBNL-41482/CBP Note 247/LHC Project Report 180, May 20, 1998).

  19. Logic Model Checking of Unintended Acceleration Claims in Toyota Vehicles

    Science.gov (United States)

    Gamble, Ed

    2012-01-01

    Part of the US Department of Transportation investigation of Toyota sudden unintended acceleration (SUA) involved analysis of the throttle control software, JPL Laboratory for Reliable Software applied several techniques including static analysis and logic model checking, to the software; A handful of logic models were build, Some weaknesses were identified; however, no cause for SUA was found; The full NASA report includes numerous other analyses

  20. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  1. Core characteristics on a hybrid type fast reactor system combined with proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kowata, Yasuki; Otsubo, Akira [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-06-01

    In our study on a hybrid fast reactor system, we have investigated it from the view point of transmutation ability of trans-uranium (TRU) nuclide making the most effective use of special features (controllability, hard neutron spectrum) of the system. It is proved that a proton beam is superior in generation of neutrons compared with an electron beam. Therefore a proton accelerator using spallation reaction with a target nucleus has an advantage to transmutation of TRU than an electron one. A fast reactor is expected to primarily have a merit that the reactor can be operated for a long term without employment of highly enriched plutonium fuel by using external neutron source such as the proton accelerator. Namely, the system has a desirable characteristic of being possible to self-sustained fissile plutonium. Consequently in the present report, core characteristics of the system were roughly studied by analyses using 2D-BURN code. The possibility of self-sustained fuel was investigated from the burnup and neutronic calculation in a cylindrical core with 300w/cc of power density without considering a target material region for the accelerator. For a reference core of which the height and the radius are both 100 cm, there is a fair prospect that a long term reactor operation is possible with subsequent refueling of natural uranium, if the medium enriched (around 10wt%) uranium or plutonium fuels are fully loaded in the initial core. More precise analyses will be planed in a later fiscal year. (author)

  2. Statistical Modeling of Photovoltaic Reliability Using Accelerated Degradation Techniques (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Elmore, R.; Jones, W.

    2011-02-01

    We introduce a cutting-edge life-testing technique, accelerated degradation testing (ADT), for PV reliability testing. The ADT technique is a cost-effective and flexible reliability testing method with multiple (MADT) and Step-Stress (SSADT) variants. In an environment with limited resources, including equipment (chambers), test units, and testing time, these techniques can provide statistically rigorous prediction of lifetime and other interesting parameters, such as failure rate, warranty time, mean time to failure, degradation rate, activation energy, acceleration factor, and upper limit level of stress. J-V characterization can be used for degradation data and the generalized Eyring model can be used for the thermal-humidity stress condition. The SSADT model can be constructed based on the cumulative damage model (CEM), which assumes that the remaining test united are failed according to cumulative density function of current stress level regardless of the history on previous stress levels.

  3. Component/connection/signal modeling of accelerator systems.

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, D. A.; Accelerator Systems Division (APS)

    2006-01-01

    This paper presents a pragmatic global approach to data modeling a complex facility such as a particle accelerator. By successively partitioning the facility into collaborating subsystems, one eventually arrives at the component level--the point at which the subsystem is replaceable as a single unit. The fundamental goal of the model is to capture the dynamical relationships (i. e., the connections) that exist among the accelerator-components. Components participate in one or more of three connection types: control, housing, and power. These connections are captured in a multi-hierarchical model capable of handling any component of the accelerator, from the macro scale (magnets, power supplies, racks, etc.) to the embedded scale (circuit board components), if desired. The connection approach has been used to model the signal flows between the components via their port connections. The result is a schema for a cable database that provides end-to-end signal tracing throughout the facility. The paper will discuss the multi-hierarchy nature of the model and its success in replacing the 'Revision Controlled Drawing' approach to system documentation.

  4. Estimation of temporal gait parameters using Bayesian models on acceleration signals.

    Science.gov (United States)

    López-Nava, I H; Muñoz-Meléndez, A; Pérez Sanpablo, A I; Alessi Montero, A; Quiñones Urióstegui, I; Núñez Carrera, L

    2016-01-01

    The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results.

  5. Effect of driver over-acceleration on traffic breakdown in three-phase cellular automaton traffic flow models

    Science.gov (United States)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Schreckenberg, Michael

    2013-09-01

    Based on simulations with cellular automaton (CA) traffic flow models, a generic physical feature of the three-phase models studied in the paper is disclosed. The generic feature is a discontinuous character of driver over-acceleration caused by a combination of two qualitatively different mechanisms of over-acceleration: (i) Over-acceleration through lane changing to a faster lane, (ii) over-acceleration occurring in car-following without lane changing. Based on this generic feature a new three-phase CA traffic flow model is developed. This CA model explains the set of the fundamental empirical features of traffic breakdown in real heterogeneous traffic flow consisting of passenger vehicles and trucks. The model simulates also quantitative traffic pattern characteristics as measured in real heterogeneous flow.

  6. An Accelerated Radioactive Decay (ARD) Model for Type Ia Supernovae

    Science.gov (United States)

    Rust, Bert W.; Leventhal, Marvin

    2016-01-01

    In 1975, Leventhal and McCall [Nature, 255, 690-692] presented a radioactive decay model 56N i --> 56Co --> 56Fe for the post-peak luminosity decay of Type I supernovae light curves, in which the two decay rates are both accelerated by a common factor. In 1976, Rust, Leventhal and McCall [Nature, 262, 118-120] used sums of exponentials fitting to confirm the acceleration hypothesis, but their result was nevertheless rejected by the astronomical community. Here, we model Type Ia light curves with a system of ODEs (describing the nuclear decays) forced by a Ni-deposition pulse modelled by a 3-parameter Weibull pdf, with all of this occuring in the center of a pre-existing, optically thick, spherical shell which thermalizes the emitted gamma rays. Fitting this model to observed light curves routinely gives fits which account for 99.9+% of the total variance in the observed record. The accelerated decay rates are so stable, for such a long time, that they must occur in an almost unchanging environment -- not it a turbulent expanding atmosphere. The amplitude of the Ni-deposition pulse indicates that its source is the fusion of hydrogen. Carbon and oxygen could not supply the large energy/nucleon that is observed. The secondary peak in the infrared light curve can be easily modelled as a light echo from dust in the back side of the pre-existing shell, and the separation between the peaks indicates a radius of ≈15 light days for the shell. The long-term stability of the acceleration suggests that it is a kinematic effect arising because the nuclear reactions occur either on the surface of a very rapidly rotating condensed object, or in a very tight orbit around such an object, like the fusion pulse in a tokomak reactor.

  7. 堰塞湖坝体动力特性及加速度分布规律大型振动台模型试验研究%LARGE-SCALE SHAKING TABLE MODEL TESTS ON DYNAMIC CHARACTERISTICS AND ACCELERATION DISTRIBUTION OF LANDSLIDE DAMS

    Institute of Scientific and Technical Information of China (English)

    石振明; 王友权; 彭铭; 刘珊

    2014-01-01

    distribution of landslide dams under aftershocks. The natural frequency,the damping ratio and the distribution of acceleration amplification factor of a model dam and their influencing factors are studied. The dynamic characteristic parameters of prototype landslide dams are calculated according to the similarity law. Two groups of shaking table tests are conducted to simulate the behaviors of two types of landslide dams:one with small particle size having the cohesive materials(dam I) and the other with large particle size not having the cohesive materials(dam II). The shaking table tests were conducted under different earthquake waves, different peak ground accelerations(PGA) and different water depths. The following conclusions are drawn:(1) The model dams have stable X-directional and Z-directional natural frequency and damping ratio. (2) Earlier shaking makes the natural frequency to decrease and the damping ratio to increase. The natural frequency of dam I is smaller than that of Dam II. The effects of water depth on the natural frequency of the two types of dams are different. (3) In vertical direction,acceleration amplification factor increases from the base to the top of the dam. The maximum accelerations occurred mainly on the top of the dams. In horizontal direction,the maximum accelerations occurred on the upstream and downstream surfaces of dam slopes,i.e. the surface amplification effect,which showed that the dam slope surfaces were prone to fail under earthquake action. (4) The earthquake waves with the predominant frequency close to the natural frequency of landslide dams induce the most prominent acceleration response. The earthquake in Z direction made the amplification factor of acceleration in X direction increase. The acceleration amplification factor decreases as PGA increases.

  8. Propositions for a PDF model based on fluid particle acceleration

    International Nuclear Information System (INIS)

    This paper describes theoretical propositions to model the acceleration of a fluid particle in a turbulent flow. Such a model is useful for the PDF approach to turbulent reactive flows as well as for the Lagrangian modelling of two-phase flows. The model developed here draws from ideas already put forward by Sawford but which are generalized to the case of non-homogeneous flows. The model is built so as to revert continuously to Pope's model, which uses a Langevin equation for particle velocities, when the Reynolds number becomes very high. The derivation is based on the technique of fast variable elimination. This technique allow a careful analysis of the relations between different levels of modelling. It also allows to address certain problems in a more rigorous way. In particular, application of this technique shows that models presently used can in principle simulate bubbly flows including the pressure-gradient and added-mass forces. (author)

  9. Course Enrichment and the Job Characteristics Model.

    Science.gov (United States)

    Catanzaro, Diane

    1997-01-01

    Describes how the job characteristics model (J. R. Hackman), used by industrial-organizational psychologists to enhance the motivating potential of jobs in industry, can be applied to increase student motivation. The job characteristics model describes the relationship between the core characteristics of skill variety, task identity, task…

  10. Model independent analysis on the slowing down of cosmic acceleration

    CERN Document Server

    Zhang, Ming-Jian

    2016-01-01

    Possible slowing down of cosmic acceleration has attracted more and more attention. However, most analysis in previous work were commonly imposed in some parametrization models. In the present paper, we investigate this subject using the the Gaussian processes (GP), providing a model-independent analysis. We carry out the reconstruction by abundant data including luminosity distance from Union2, Union2.1 compilation and gamma-ray burst, and Hubble parameter from cosmic chronometer and baryon acoustic oscillation peaks. The GP reconstructions suggest that no slowing down of cosmic acceleration is approved within 95\\% C.L. from current observational data. We also test the influence of spatial curvature and Hubble constant, finding that spatial curvature does not present significant impact on the reconstructions. However, Hubble constant strongly influence the reconstructions especially at low redshift. In order to reveal the reason of inconsistence between our reconstruction and previous parametrization constra...

  11. A stochastic model for non-relativistic particle acceleration

    CERN Document Server

    Pallocchia, G; Consolini, G

    2016-01-01

    A stochastic model is proposed for the acceleration of non-relativistic particles yielding to energy spectra with a shape of a Weibull\\textquoteright s function. Such particle distribution is found as the stationary solution of a diffusion-loss equation in the framework of a second order Fermi\\textquoteright s mechanism producing anomalous diffusion for particle velocity. The present model is supported by in situ observations of energetic particle enhancements at interplanetary shocks, as here illustrated by means of an event seen by STEREO B instruments in the heliosphere. Results indicate that the second order Fermi\\textquoteright s mechanism provides a viable explanation for the acceleration of energetic particles at collisioness shock waves.

  12. Acceleration and Radiation Model of Particles in Solar Active Regions

    Science.gov (United States)

    Anastasiadis, Anastasios; Dauphin, Cyril; Vilmer, Nicole

    2006-08-01

    Cellular Automata (CA) models have successfully reproduced several statistical properties of solar flares such as the peak flux or the total flux distribution. We are using a CA model based on the concept of self organized criticality (SOC) to model the evolution of the magnetic energy released in a solar flare. Each burst of magnetic energy released is assumed to be the consequence of a magnetic reconnection process, where the particles are accelerated by a direct electric field. We relate the difference of energy gain of particles (alpha particles, protons and electrons) to the magnetic energy released and we calculate the resulting kinetic energy distributions and the emitted radiation.

  13. Case–Cohort Analysis with Accelerated Failure Time Model

    OpenAIRE

    Kong, Lan; Cai, Jianwen

    2008-01-01

    In a case–cohort design, covariates are assembled only for a subcohort that is randomly selected from the entire cohort and any additional cases outside the subcohort. This design is appealing for large cohort studies of rare disease, especially when the exposures of interest are expensive to ascertain for all the subjects. We propose statistical methods for analyzing the case–cohort data with a semiparametric accelerated failure time model that interprets the covariates effects as to acceler...

  14. Re-acceleration model for the "Toothbrush" Radio Relic

    CERN Document Server

    Kang, Hyesung

    2016-01-01

    The Toothbrush radio relic associated the merging cluster 1RXS J060303.3 is presumed to be produced by relativistic electrons accelerated at merger-driven shocks. Since the shock Mach number inferred from the observed radio spectral index, $M_{radio}\\approx 2.8$, is larger than that estimated from X-ray observations, $M_{X-ray}\\lesssim 1.5$, we consider the re-acceleration model in which a weak shock of $M_s\\approx 1.2-1.5$ sweeps through the intracluster plasma with a preshock population of relativistic electrons. We find the models with a power-law momentum spectrum with the slope, $s\\approx 4.6$, and the cutoff Lorentz factor, $\\gamma_{e,c}\\approx 7-8\\times 10^4$ can reproduce reasonably well the observed profiles of radio fluxes and integrated radio spectrum of the head portion of the Toothbrush relic. This study confirms the strong connection between the ubiquitous presence of fossil relativistic plasma originated from AGNs and the shock-acceleration model of radio relics in the intracluster medium.

  15. Scale-free network models with accelerating growth

    Institute of Scientific and Technical Information of China (English)

    Huan LI

    2009-01-01

    Complex networks are everywhere. A typical ex-ample is software network. Basing on analyzing evolutive structure of the software networks, we consider accelerat-ing growth of network as power-law growth, which can be more easily generalized to real systems than linear growth. For accelerating growth via a power law and scale-free state with preferential linking, we focus on exploring the generic property of complex networks. Generally, two scenarios are possible. In one of them, the links are undirected. In the other scenario, the links are directed. We propose two mod-els that can predict the emergence of power-law growth and scale-free state in good agreement with these two scenar-ios and can simulate much more real systems than existing scale-free network models. Moreover, we use the obtained predictions to fit accelerating growth and the connectivity distribution of software networks describing scale-free struc-ture. The combined analytical and numerical results indicate the emergence of a novel set of models that considerably enhance our ability to understand and characterize complex networks, whose applicability reaches far beyond the quoted examples.

  16. Re-Acceleration Model for the "Sausage" Radio Relic

    Science.gov (United States)

    Kang, Hyesung

    2016-08-01

    The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock.However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, M_{radio}≈ 4.6, while the Mach number estimated from X-ray observations, M_{X-ray}≈ 2.7. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of M_s≈ 3 sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, s≈ 4.1, and the cutoff Lorentz factor, γ_{e,c}≈ 3-5× 10^4, can reproduce reasonably well the observed spatial profiles of radio fluxes and integrated radio spectrum of the Sausage relic.The possible origins of such relativistic electrons in the intracluster medium remain to be investigated further.

  17. Re-acceleration model for the `Sausage' Radio Relic

    CERN Document Server

    Kang, Hyesung

    2016-01-01

    The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock. However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, $M_{\\rm radio}\\approx 4.6$, while the Mach number estimated from X-ray observations, $M_{\\rm X-ray}\\approx 2.7$. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of $M_s\\approx 3$ sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, $s\\approx 4.1$, and the cutoff Lorentz factor, $\\gamma_{e,c}\\a...

  18. Control of Switching Characteristics of Silicon-based Semiconductor Diode Using High Energy Linear Accelerator

    Directory of Open Access Journals (Sweden)

    N. Harihara Krishnan

    2013-05-01

    Full Text Available This paper reports control of switching characteristics of silicon-based semiconductor diode using electron beam produced using linear accelerator. Conventionally, p-n junction chips of diode are exposed to gamma rays from a radioactive source or electron beam from a microtron, depending upon the required level of correction. High energy linear accelerators featuring simultaneous exposure of multiple chips are recent advancements in radiation technology. The paper presents the results of the radiation process using a 10 MeV linear accelerator as applied in industrial manufacturing of a high voltage diode (2600 V. The achieved values of reverse recovery time were found to be within the design limits. The suitability of the new process was verified by constructing the trade-off curve between the switching and conduction parameters of the diode for the complete range using large number of experimental samples. The paper summarizes the advantages of the new process over the conventional methods specifically with reference to industrial requirements. The developed process has been successfully implemented in semiconductor manufacturing.

  19. Re-acceleration Model for Radio Relics with Spectral Curvature

    CERN Document Server

    Kang, Hyesung

    2016-01-01

    Most of the observed features of radio gischt relics such as spectral steepening across the relic width and power-law-like integrated spectrum can be adequately explained by diffusive shock acceleration (DSA) model, in which relativistic electrons are (re-)accelerated at shock waves induced in the intracluster medium. However, Kang & Ryu (2015) showed that the steep spectral curvature in the integrated spectrum above $\\sim 2$ GHz detected in the Sausage relic in cluster CIZA J2242.8+5301 may not be interpreted by simple radiative cooling of postshock electrons. In order to understand such steepening, we here consider a model in which a spherical shock sweeps through and then exits out of a finite-size cloud with fossil relativistic electrons. The ensuing integrated radio spectrum is expected to steepen much more than predicted for aging postshock electrons, since the re-acceleration stops after the cloud-crossing time. Using DSA simulations that are intended to reproduce radio observations of the Sausage ...

  20. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Joshua Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2008-09-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed

  1. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Joshua Lee [Univ. of Tennessee, Knoxville, TN (United States)

    2008-12-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed

  2. What properties of numbers are needed to model accelerated observers in relativity?

    OpenAIRE

    Székely, Gergely

    2012-01-01

    We investigate the possible structures of numbers (as physical quantities) over which accelerated observers can be modeled in special relativity. We present a general axiomatic theory of accelerated observers which has a model over every real closed field. We also show that, if we would like to model certain accelerated observers, then not every real closed field is suitable, e.g., uniformly accelerated observers cannot be modeled over the field of real algebraic numbers. Consequently, the cl...

  3. Re-acceleration Model for Radio Relics with Spectral Curvature

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2016-05-01

    Most of the observed features of radio gischt relics, such as spectral steepening across the relic width and a power-law-like integrated spectrum, can be adequately explained by a diffusive shock acceleration (DSA) model in which relativistic electrons are (re-)accelerated at shock waves induced in the intracluster medium. However, the steep spectral curvature in the integrated spectrum above ∼2 GHz detected in some radio relics, such as the Sausage relic in cluster CIZA J2242.8+5301, may not be interpreted by the simple radiative cooling of postshock electrons. In order to understand such steepening, we consider here a model in which a spherical shock sweeps through and then exits out of a finite-size cloud with fossil relativistic electrons. The ensuing integrated radio spectrum is expected to steepen much more than predicted for aging postshock electrons, since the re-acceleration stops after the cloud-crossing time. Using DSA simulations that are intended to reproduce radio observations of the Sausage relic, we show that both the integrated radio spectrum and the surface brightness profile can be fitted reasonably well, if a shock of speed {u}s ∼ 2.5–2.8 × {10}3 {km} {{{s}}}-1 and a sonic Mach number {M}s ∼ 2.7–3.0 traverses a fossil cloud for ∼45 Myr, and the postshock electrons cool further for another ∼10 Myr. This attempt illustrates that steep curved spectra of some radio gischt relics could be modeled by adjusting the shape of the fossil electron spectrum and adopting the specific configuration of the fossil cloud.

  4. Can decaying modes save void models for acceleration?

    CERN Document Server

    Zibin, James P

    2011-01-01

    The discovery of the unexpected dimness of Type Ia supernovae (SNe), apparently due to accelerated expansion driven by some form of dark energy or modified gravity, has led to attempts to explain the observations using only general relativity with baryonic and cold dark matter, but by dropping the standard assumption of homogeneity on Hubble scales. In particular, the SN data can be explained if we live near the centre of a Hubble-scale void. However, such void models have been shown to be inconsistent with various observations, assuming the void consists of a pure growing mode. Here it is shown that models with significant decaying mode contribution today can be ruled out on the basis of the expected cosmic microwave background spectral distortion. This esentially closes one of very few remaining loopholes in attempts to rule out void models, and strengthens the evidence for Hubble-scale homogeneity.

  5. Accelerating transient simulation of linear reduced order models.

    Energy Technology Data Exchange (ETDEWEB)

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  6. Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, D. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: drochman@bnl.gov; Haight, R.C. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: haight@lanl.gov; O' Donnell, J.M. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: odonnell@lanl.gov; Michaudon, A. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: michaudon@lanl.gov; Wender, S.A. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: wender@lanl.gov; Vieira, D.J. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: vieira@lanl.gov; Bond, E.M. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: bond@lanl.gov; Bredeweg, T.A. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: toddb@lanl.gov; Kronenberg, A. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: kronenberga@mail.phy.ornl.gov; Wilhelmy, J.B. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: j_wilhelmy@lanl.gov; Ethvignot, T. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Cha-hat tel (France)]. E-mail: thierry.ethvignot@cea.fr; Granier, T. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Cha-hat tel (France)]. E-mail: thierry.granier@cea.fr; Petit, M. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Chatel (France)]. E-mail: michael.petit@cea.fr; Danon, Y. [Rensselaer Polytechnic Institute, Troy, New York, NY 12180 (United States)]. E-mail: danony@rpi.edu

    2005-09-11

    A description is given of a lead slowing-down spectrometer (LSDS) installed at the 800-MeV proton accelerator of the Los Alamos Neutron Science Center (LANSCE). The LSDS is designed to study neutron-induced fission on actinides that can only be obtained or used in small quantities. The characteristics of this LSDS (energy-time relation, energy resolution, neutron flux) are presented through simulations with MCNPX and measurements with several different methods. Results on neutron-induced fission of {sup 235}U and {sup 239}Pu with tens of micrograms and tens of nanograms, respectively, are presented. Finally, additional MCNPX calculations have been performed to simulate the measurement of the cross-section for U235m(n,f) using different target quantities and different initial isomer-to-ground state compositions.

  7. A stochastic model of randomly accelerated walkers for human mobility

    Science.gov (United States)

    Gallotti, Riccardo; Bazzani, Armando; Rambaldi, Sandro; Barthelemy, Marc

    2016-08-01

    Recent studies of human mobility largely focus on displacements patterns and power law fits of empirical long-tailed distributions of distances are usually associated to scale-free superdiffusive random walks called Lévy flights. However, drawing conclusions about a complex system from a fit, without any further knowledge of the underlying dynamics, might lead to erroneous interpretations. Here we show, on the basis of a data set describing the trajectories of 780,000 private vehicles in Italy, that the Lévy flight model cannot explain the behaviour of travel times and speeds. We therefore introduce a class of accelerated random walks, validated by empirical observations, where the velocity changes due to acceleration kicks at random times. Combining this mechanism with an exponentially decaying distribution of travel times leads to a short-tailed distribution of distances which could indeed be mistaken with a truncated power law. These results illustrate the limits of purely descriptive models and provide a mechanistic view of mobility.

  8. Modelling supported driving as an optimal control cycle: Framework and model characteristics

    CERN Document Server

    Wang, Meng; Daamen, Winnie; Hoogendoorn, Serge P; van Arem, Bart

    2014-01-01

    Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of automated vehicles are controlled to optimise a cost function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the framework is demonstrated with controller design of Adaptive Cruise Control (ACC) and Cooperative ACC (C-ACC) systems. The proposed ACC and C-ACC model characteristics are investigated analytically, with focus on equilibrium solutions and stability properties. The proposed ACC model produces plausible human car-following behaviour and is unconditionally locally stable. By careful tuning of parameters, the ACC model generates similar stability characteristics as human driver models. The proposed C-ACC model results in convective downstream and abso...

  9. Acceleration of inertial particles in wall bounded flows: DNS and LES with stochastic modelling of the subgrid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zamansky, Remi; Vinkovic, Ivana; Gorokhovski, Mikhael, E-mail: ivana.vinkovic@univ-lyonl.fr [Laboratoire de Mecanique des Fluides et d' Acoustique CNRS UMR 5509 Ecole Centrale de Lyon, 36, av. Guy de Collongue, 69134 Ecully Cedex (France)

    2011-12-22

    Inertial particle acceleration statistics are analyzed using DNS for turbulent channel flow. Along with effects recognized in homogeneous isotropic turbulence, an additional effect is observed due to high and low speed vortical structures aligned with the channel wall. In response to those structures, particles with moderate inertia experience strong longitudinal acceleration variations. DNS is also used in order to assess LES-SSAM (Subgrid Stochastic Acceleration Model), in which an approximation to the instantaneous non-filtered velocity field is given by simulation of both, filtered and residual, accelerations. This approach allow to have access to the intermittency of the flow at subgrid scale. Advantages of LES-SSAM in predicting particle dynamics in the channel flow at a high Reynolds number are shown.

  10. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging.

  11. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.;

    2003-01-01

    Using error diagrams, we quantify the forecasting of characteristic-earthquake occurence in a recently introduced minimalist model. Initially we connect the earthquake alarm at a fixed time after the occurence of a characteristic event. The evaluation of this strategy leads to a one...

  12. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  13. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.

    2010-06-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  14. Output characteristics of 2 MeV, 60 kW, dual beam type electron accelerator of TRCRE, JAERI

    International Nuclear Information System (INIS)

    The output characteristics of the dual beam type electron accelerator installed at Takasaki Radiation Chemistry Research Establishment, JAERI in 1981 are described for the convenience of users. The accelerator has two accelerating tubes, for vertical and horizontal beams. The electron beam is independently generated in either direction by using the high voltage switching system. The output of the accelerator is controllable from 0.5 MeV to 2.0 MeV in the acceleration voltage and from 0.1 mA to 30.0 mA in the beam current. The maximum scanning width is 120 cm for vertical beam and 60 cm for horizontal beam. The beam current density distribution and depth-dose distribution for the vertical beam are mainly described as output characteristics of the accelerator. The surface dose distribution, the air dose rate distribution in horizontal beam irradiation room and the temperature rise in the irradiated material during a electron beam irradiation are also described. (author)

  15. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.;

    2002-01-01

    In a spirit akin to the sandpile model of self- organized criticality, we present a simple statistical model of the cellular-automaton type which simulates the role of an asperity in the dynamics of a one-dimensional fault. This model produces an earthquake spectrum similar to the characteristic-earthquake...... behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...... of the characteristic earthquake....

  16. Two-phase bounded acceleration traffic flow model: Analytical solutions and applications

    OpenAIRE

    LEBACQUE, JP

    2003-01-01

    The present paper describes a two phase traffic flow model. One phase is traffic equilibrium: flow and speed are functions of density, and traffic acceleration is low. The second phase is characterized by constant acceleration. This model extends first order traffic flow models and recaptures the fact that traffic acceleration is bounded. The paper show how to calculate analytical solutions of the two-phase model for dynamic traffic situations, provides a set of calculation rules, and analyze...

  17. Injury predictors for traumatic axonal injury in a rodent head impact acceleration model.

    Science.gov (United States)

    Li, Yan; Zhang, Liying; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M

    2011-11-01

    A modified Marmarou impact acceleration injury model was developed to study the kinematics of the rat head to quantify traumatic axonal injury (TAI) in the corpus callosum (CC) and brainstem pyramidal tract (Py), to determine injury predictors and to establish injury thresholds for severe TAI. Thirty-one anesthetized male Sprague-Dawley rats (392±13 grams) were impacted using a modified impact acceleration injury device from 2.25 m and 1.25 m heights. Beta-amyloid precursor protein (β-APP) immunocytochemistry was used to assess and quantify axonal changes in CC and Py. Over 600 injury maps in CC and Py were constructed in the 31 impacted rats. TAI distribution along the rostro-caudal direction in CC and Py was determined. Linear and angular responses of the rat head were monitored and measured in vivo with an attached accelerometer and angular rate sensor, and were correlated to TAI data. Logistic regression analysis suggested that the occurrence of severe TAI in CC was best predicted by average linear acceleration, followed by power and time to surface righting. The combination of average linear acceleration and time to surface righting showed an improved predictive result. In Py, severe TAI was best predicted by time to surface righting, followed by peak and average angular velocity. When both CC and Py were combined, power was the best predictor, and the combined average linear acceleration and average angular velocity was also found to have good injury predictive ability. Receiver operator characteristic curves were used to assess the predictive power of individual and paired injury predictors. TAI tolerance curves were also proposed in this study. PMID:22869303

  18. Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations

    CERN Document Server

    Reid, H A S; Kontar, E P

    2011-01-01

    We investigate the type III radio bursts and X-ray signatures of accelerated electrons in a well observed solar flare in order to find the spatial properties of the acceleration region. Combining simultaneous RHESSI hard X-ray flare data and radio data from Phoenix-2 and the Nan\\c{c}ay radioheliograph, the outward transport of flare accelerated electrons is analyzed. The observations show that the starting frequencies of type III bursts are anti-correlated with the HXR spectral index of solar flare accelerated electrons. We demonstrate both analytically and numerically that the type III burst starting location is dependent upon the accelerated electron spectral index and the spatial acceleration region size, but weakly dependent on the density of energetic electrons for relatively intense electron beams. Using this relationship and the observed anti-correlation, we estimate the height and vertical extent of the acceleration region, giving values of around $50$~Mm and $10$~Mm respectively. The inferred acceler...

  19. Establishment of a small animal tumour model for in vivo studies with low energy laser accelerated particles

    International Nuclear Information System (INIS)

    The long-term aim of developing a laser based acceleration of protons and ions towards clinical application requires not only substantial technological progress, but also the radiobiological characterization of the resulting ultra-short pulsed particle beams. Recent in vitro data showed similar effects of laser-accelerated versus 'conventional' protons on clonogenic cell survival. As the proton energies currently achieved by laser driven acceleration are too low to penetrate standard tumour models on mouse legs, the aim of the present work was to establish a tumour model allowing for the penetration of low energy protons (~ 20 MeV) to further verify their effects in vivo. KHT mouse sarcoma cells were injected subcutaneously in the right ear of NMRI (nu/nu) mice and the growing tumours were characterized with respect to growth parameters, histology and radiation response. In parallel, the laser system JETI was prepared for animal experimentation, i.e. a new irradiation setup was implemented and the laser parameters were carefully adjusted. Finally, a proof-of-principle experiment with laser accelerated electrons was performed to validate the tumour model under realistic conditions, i.e. altered environment and horizontal beam delivery. KHT sarcoma on mice ears showed a high take rate and continuous tumour growth after reaching a volume of ~ 5 mm3. The first irradiation experiment using laser accelerated electrons versus 200 kV X-rays was successfully performed and tumour growth delay was evaluated. Comparable tumour growth delay was found between X-ray and laser accelerated electron irradiation. Moreover, experimental influences, like anaesthesia and positioning at JETI, were found to be negligible. A small animal tumour model suitable for the irradiation with low energy particles was established and validated at a laser based particle accelerator. Thus, the translation from in vitro to in vivo experimentation was for the first time realized allowing a

  20. Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator

    Institute of Scientific and Technical Information of China (English)

    Huang Xian-Bin; Chen Guang-Hua; Zhang Zheng-Wei; Ouyang Kai; Li Jun; Zhang Zhao-Hui; Zhou Rong-Guo; Wang Gui-Lin; Yang Li-Bing; Li Jing; Zhou Shao-Tong; Ren Xiao-Dong; Zhang Si-Qun; Dan Jia-Kun; Cai Hong-Chun; Duan Shu-Chao

    2012-01-01

    We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 M A and a rising time~90 ns.The arrays are made up of(8-32)x5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy~13 kJ and the energy conversion efficiency~9%(24x5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)x 107 cm/s.

  1. Critical system issues and modeling requirements - the problem of beam energy sweep in an electron linear induction accelerator

    International Nuclear Information System (INIS)

    In this paper the authors attempt to motivate the development of modeling tools for linear induction accelerator components by giving examples of performance limitations related to energy sweep. The most pressing issues is the development of an accurate model of the switching behavior of large magnetic cores at high dB/dt in the accelerator and magnetic compression modulators. Ideally one would like to have a model with as few parameters as possible that allows the user to choose the core geometry and magnetic material and perhaps a few parameters characterizing the switch model. Beyond this, the critical modeling tasks are: simulation of a magnetic compression modulator, modeling the reset dynamics of a magnetic compression modulator, modeling the loading characteristics of a linear induction accelerator cell, and modeling the electron injector current including the dynamics of feedback modulation and beam loading in an accelerator cell. Of course in the development of these models care should be given to benchmarking them against data from experimental systems. Beyond that one should aim for tools that have predictive power so that they can be used as design tools and not merely to replicate existing data

  2. Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations

    Science.gov (United States)

    Reid, H. A. S.; Vilmer, N.; Kontar, E. P.

    2011-05-01

    We investigate the type III radio bursts and X-ray signatures of accelerated electrons in a well-observed solar flare in order to find the spatial properties of the acceleration region. Combining simultaneous RHESSI hard X-ray flare data and radio data from Phoenix-2 and the Nançay radioheliograph, the outward transport of flare accelerated electrons is analysed. The observations show that the starting frequencies of type III bursts are anti-correlated with the HXR spectral index of solar flare accelerated electrons. We demonstrate both analytically and numerically that the type III burst starting location is dependent upon the accelerated electron spectral index and the spatial acceleration region size, but weakly dependent on the density of energetic electrons for relatively intense electron beams. Using this relationship and the observed anti-correlation, we estimate the height and vertical extent of the acceleration region, giving values of around 50 Mm and 10 Mm, respectively. The inferred acceleration height and size suggest that electrons are accelerated well above the soft X-ray loop-top, which could be consistent with the electron acceleration between 40 Mm and 60 Mm above the flaring loop.

  3. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A L; Chase, B E; Edstrom, D; Milton, S V; Stabile, P

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  4. Advanced Computing Tools and Models for Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  5. Characteristic parameters of 6--21 MeV electron beams from a 21 MeV linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L. (Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada) Lingman, D. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Computer Science, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada)); Gilbert, L.D. (Thekkumthala, J. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada))

    1991-07-01

    Dosimetry measurements have been carried out for the electron beams produced by a linear accelerator at energies 6, 8, 10, 14, 18, and 21 MeV. Characteristic parameters of the central axis dose distributions were derived and compared to corresponding values of electron beams from other accelerators in clinical use where such a comparison is appropriate. A comprehensive set of dosimetric parameters is provided for electron beam treatment planning. The data include central axis depth dose, range--energy parameters, beam penumbra and uniformity.

  6. Transient electromagnetic modeling of the ZR accelerator water convolute and stack

    International Nuclear Information System (INIS)

    The ZR accelerator is a refurbishment of Sandia National Laboratories Z accelerator (1). The ZR accelerator components were designed using electrostatic and circuit modeling tools. Transient electromagnetic modeling has played a complementary role in the analysis of ZR components (2). In this paper we describe a 3D transient electromagnetic analysis of the ZR water convolute and stack using edge-based finite element techniques.

  7. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  8. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  9. Effect of Particle Acceleration Process on the Flare Characteristics of Blazars

    Indian Academy of Sciences (India)

    S. Bhattacharyya; S. Sahayanathan; C. L. Kaul

    2002-03-01

    Following the kinetic equation approach, we study the flare processes in blazars in the optical-to-X-ray region, considering energy dependent acceleration time-scale of electrons and synchrotron and adiabatic cooling as their dominant energy loss processes.

  10. A class of additive-accelerated means regression models for recurrent event data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this article, we propose a class of additive-accelerated means regression models for analyzing recurrent event data. The class includes the proportional means model, the additive rates model, the accelerated failure time model, the accelerated rates model and the additive-accelerated rate model as special cases. The new model offers great flexibility in formulating the effects of covariates on the mean functions of counting processes while leaving the stochastic structure completely unspecified. For the inference on the model parameters, estimating equation approaches are derived and asymptotic properties of the proposed estimators are established. In addition, a technique is provided for model checking. The finite-sample behavior of the proposed methods is examined through Monte Carlo simulation studies, and an application to a bladder cancer study is illustrated.

  11. Modelling of dc characteristics for granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  12. THE EFFECT OF ACCELERATED AGING ON GERMINATION CHARACTERISTICS, SEED RESERVE UTILIZATION AND MALONDIALDEHYDE CONTENT OF TWO WHEAT CULTIVARS

    OpenAIRE

    Maryam Goodarzian Ghahfarokhi; Elahe Ghasemi; Mohsen Saeidi; Zeinab Heidari Kazafi

    2014-01-01

    In this study experiment was conducted to evaluated the effect of accelerated aging on germination characteristics, seed reserve utilization and malondialdehyde of two wheat cultivars. The experiment was conducted in factorial with a randomized complete block design with 3 replications. Results of variance analysis showed that, seed aging had significant effects on germination percentage, germination index, normal seedling percentage, mean time to germination, malondialdehyde content, seedlin...

  13. Modeling high-Power Accelerators Reliability-SNS LINAC (SNS-ORNL); MAX LINAC (MYRRHA)

    Energy Technology Data Exchange (ETDEWEB)

    Pitigoi, A. E.; Fernandez Ramos, P.

    2013-07-01

    Improving reliability has recently become a very important objective in the field of particle accelerators. The particle accelerators in operation are constantly undergoing modifications, and improvements are implemented using new technologies, more reliable components or redundant schemes (to obtain more reliability, strength, more power, etc.) A reliability model of SNS (Spallation Neutron Source) LINAC has been developed within MAX project and analysis of the accelerator systems reliability has been performed within the MAX project, using the Risk Spectrum reliability analysis software. The analysis results have been evaluated by comparison with the SNS operational data. Results and conclusions are presented in this paper, oriented to identify design weaknesses and provide recommendations for improving reliability of MYRRHA linear accelerator. The SNS reliability model developed for the MAX preliminary design phase indicates possible avenues for further investigation that could be needed to improve the reliability of the high-power accelerators, in view of the future reliability targets of ADS accelerators.

  14. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  15. Executable SysML Model Development Accelerator for the Constellation Program Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at investigating ways to accelerate the creation of SysML based models that can be used for model checking and more generally for...

  16. Particle acceleration in a complex solar active region modelled by a Cellular automata model

    Science.gov (United States)

    Dauphin, C.; Vilmer, N.; Anastasiadis, A.

    2004-12-01

    The models of cellular automat allowed to reproduce successfully several statistical properties of the solar flares. We use a cellular automat model based on the concept of self-organised critical system to model the evolution of the magnetic energy released in an eruptive active area. Each burst of magnetic energy released is assimilated to a process of magnetic reconnection. We will thus generate several current layers (RCS) where the particles are accelerated by a direct electric field. We calculate the energy gain of the particles (ions and electrons) for various types of magnetic configuration. We calculate the distribution function of the kinetic energy of the particles after their interactions with a given number of RCS for each type of configurations. We show that the relative efficiency of the acceleration of the electrons and the ions depends on the selected configuration.

  17. Curriculum innovation in an accelerated BSN program: the ACE Model.

    Science.gov (United States)

    Suplee, Patricia D; Glasgow, Mary Ellen

    2008-01-01

    As the demand for registered nurses continues to rise, so too has the creation of accelerated baccalaureate nursing programs for second-degree students. This article describes an 11-month Accelerated Career Entry (ACE) Nursing Program's innovative curriculum design, which has a heavy emphasis on technology, professional socialization, and the use of a standardized patient experience as a form of summative evaluation. In addition, challenges of this program are presented. Since 2002, the ACE Program has graduated over 500 students with an average first-time NCLEX pass rate of 95-100%. Although the number of graduates from accelerated programs does not solve the severe nursing shortage, the contributions of these intelligent, assertive, pioneering graduates are important for health care.

  18. Multi-flare study of acceleration region characteristics using combined X-ray and Radio Observations

    Science.gov (United States)

    Reid, Hamish; Kontar, Eduard; Vilmer, Nicole

    2012-07-01

    Using emission in X-ray and radio wavelengths, we infer properties of accelerated electrons to indirectly obtain estimates about flare acceleration regions. We have selected a list of events using the RHESSI flare catalogue and the PHOENIX 2 radio burst list that show temporally correlated X-ray and radio emission. We find some events show a very good anti-correlation between the hard X-ray spectral index and the starting frequency of type III bursts. We use this information to constrain the distance an outwardly propagating electron beam can travel before it undergoes the bump-in-tail instability. By assuming the height dependence of the background electron density we are able to observationally estimate the height and vertical extent of a variety of different solar flare acceleration regions. We verify the feasibility of these predictions by using kinetic simulations to check the Langmuir wave-particle instability distance for electron beam.

  19. Modeling of Activated Sludge Floc Characteristics

    Directory of Open Access Journals (Sweden)

    Ibrahim H. Mustafa

    2009-01-01

    Full Text Available Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii Study the effect of bulk concentrations of oxygen and nitrates, power input and substrates diffusivity on the portion aerobic portion of the floc. Approach: An appropriate mathematical model based on heterogeneous modeling is developed for activated sludge flocs. The model was taking into account three growth processes: Carbon oxidation, nitrification and de-nitrification in terms of four components: substrate, nitrate, ammonia, and oxygen. The model accounts for the internal and external mass transfer limitations and relates the external mass transfer resistance with power input. The floc model equations were two- point boundary value differential equations. Therefore a central finite difference method is employed. Results: The percentage aerobic portion increased with increasing with oxygen bulk concentrations and power input and decreases when the bulk concentration of ammonia and substrate increases. Both will compete to consume the internal oxygen by autotrophic and heterotrophic bacteria through aerobic growth processes. The biofloc activity through the profiles was either totally active or partially active. The totally active biofloc is either totally aerobic or aerobic and anoxic together. Conclusions: The heterogeneous floc model was able to describe the biofloc characteristics and reflects the real phenomena existing in the activated sludge processes.

  20. Modeling Pulse Characteristics in Xenon with NEST

    CERN Document Server

    Mock, Jeremy; Kazkaz, Kareem; Szydagis, Matthew; Tripathi, Mani; Uvarov, Sergey; Woods, Michael; Walsh, Nicholas

    2013-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, effects such as the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, parameters such as ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors.

  1. Modeling pulse characteristics in Xenon with NEST

    Science.gov (United States)

    Mock, J.; Barry, N.; Kazkaz, K.; Stolp, D.; Szydagis, M.; Tripathi, M.; Uvarov, S.; Woods, M.; Walsh, N.

    2014-04-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, the effects of the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, the ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors.

  2. STATISTICAL INFERENCE OF WEIBULL DISTRIBUTION FOR TAMPERED FAILURE RATE MODEL IN PROGRESSIVE STRESS ACCELERATED LIFE TESTING

    Institute of Scientific and Technical Information of China (English)

    WANG Ronghua; FEI Heliang

    2004-01-01

    In this note, the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time. For the parametric setting where the scale parameter satisfying the equation of the inverse power law is Weibull, maximum likelihood estimation is investigated.

  3. Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code%Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code

    Institute of Scientific and Technical Information of China (English)

    呼义翔; 雷天时; 吴撼宇; 郭宁; 韩娟娟; 邱爱慈; 王亮平; 黄涛; 丛培天; 张信军; 李岩; 曾正中; 孙铁平

    2011-01-01

    The transmission-line-circuit model of the Z accelerator, developed originally by W. A. STYGAR, P. A. CORCORAN, et al., is revised. The revised model uses different calculations for the electron loss and flow impedance in the magnetically insulated transmission line system of the Z accelerator before and after magnetic insulation is established. By including electron pressure and zero electric field at the cathode, a closed set of equations is obtained at each time step, and dynamic shunt resistance (used to represent any electron loss to the anode) and flow impedance are solved, which have been incorporated into the transmission line code for simulations of the vacuum section in the Z accelerator. Finally, the results are discussed in comparison with earlier findings to show the effectiveness and limitations of the model.

  4. Characteristics and performances of new scintillating crystals for future accelerators calorimetry

    International Nuclear Information System (INIS)

    This work aims at finding new heavy scintillators, fast and radiation resistant, in particular for calorimetric detection of new accelerators. A comparative evaluation is lead between the two most promising: lead tungstate and cerium fluoride. Fabrication techniques as well as physical properties are studied. The behaviour of crystal matrices in high energy electron beams. (D.L.)

  5. Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ki Lae; Yang, Oh Nam; Choi, Won Sik; Shin, Seong Soo; Ahn, Woo Sang [Dept. of Radiation Oncology, Gangneung Asan Hospital, College of Medicine Ulsan University, Gangneung (Korea, Republic of); Lim, Cheoung Hwan [Dept. of Radiological Science, Hanseo Univesity, Seosan (Korea, Republic of)

    2012-09-15

    Acquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01 cc and 0.13 cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from 2 x 2 cm{sup 2} to 5 x 5 cm{sup 2}. For field size, the differences of the ratios of PDD{sub 20} and PDD{sub 10} measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than 3 X 3 cm{sup 2}, the differences of values of PDD{sub 20}/PDD{sub 10} obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for 2 X 2 cm{sup 2} field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for 3 x 3 cm{sup 2} to 5 x 5 cm{sup 2} field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for 2 x 2 cm{sup 2} field size, and to use of three detectors

  6. Modification of the beam transfer model of travelling wave accelerator structures at SACLA

    International Nuclear Information System (INIS)

    In order to perform efficient beam tuning at SACLA, we had developed a beam transfer model to calculate the beam transverse envelope in a linear accelerator using linear symplectic matrices. However the measured beam orbit responses were not consistent with the calculated orbit. In order to investigate the error source, we modify the transfer matrix of an accelerator structure so that the matrix model reproduces the measured orbit response. In this paper, we report detail of the error source and how the beam transfer model of a travelling wave accelerator structure is modified. (author)

  7. Characteristics of Spatial Distribution for Peak Ground Acceleration in 3 Aug 2014 Ms6.5 Ludian Earthquake, Yuanan, China

    Science.gov (United States)

    kun, Chen; YanXiang, Yu

    2016-04-01

    Considering the geological context, focal mechanism solutions, aftershock distribution and attenuation characteristics of the ground motion in western China, shakemaps of PGA (Peak Ground Acceleration) for The Ludian Ms6.5 earthquake on 3 Aug 2014 was acquired, in which the Mothed of rapid generation ShakeMaps considering site effects was used, and the peak ground acceleration of 62 stations for this earthquake was used as interpolation. Then, distribution of PGA was amended by using PGA observations to correct system bias of theoretical estimates in the area without PGA observations. The results show that the attenuation of ground motion with distance for this earthquake was faster than that of Wang Su-Yun in 2000; the result of bias-corrected was more consistent with attenuation law of this earthquake. After adjusting, for the area with PGA greater than 40 cm / s2 was nearly 8000 km2, which was is reduced by about 40%.

  8. Modeling of Electromagnetic Heating in RF Copper Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Awida, M. H. [Fermilab; Gonin, I. [Fermilab; Romanov, Romanov [Fermilab; Khabiboulline, T. [Fermilab; Yakovlev, V. [Fermilab

    2016-01-17

    Electromagnetic heating is a critical issue in normal conducting copper RF cavities that are employed in particle accelerators. With several tens to hundreds of kilowatts dissipated RF power, there must be an effective cooling scheme whether it is water or air based or even a combination of both. In this paper we investigate the electromagnetic heating in multiple cavities that were designed at Fermilab exploring how the electromagnetic and thermal analyses are coupled together to properly design the cooling of such cavities.

  9. Comparing acceleration and speed tuning in macaque MT: physiology and modeling.

    Science.gov (United States)

    Price, N S C; Ono, S; Mustari, M J; Ibbotson, M R

    2005-11-01

    Studies of individual neurons in area MT have traditionally investigated their sensitivity to constant speeds. We investigated acceleration sensitivity in MT neurons by comparing their responses to constant steps and linear ramps in stimulus speed. Speed ramps constituted constant accelerations and decelerations between 0 and 240 degrees /s. Our results suggest that MT neurons do not have explicit acceleration sensitivity, although speed changes affected their responses in three main ways. First, accelerations typically evoked higher responses than the corresponding deceleration rate at all rates tested. We show that this can be explained by adaptation mechanisms rather than differential processing of positive and negative speed gradients. Second, we inferred a cell's preferred speed from the responses to speed ramps by finding the stimulus speed at the latency-adjusted time when response amplitude peaked. In most cells, the preferred speeds inferred from deceleration were higher than those for accelerations of the same rate or from steps in stimulus speed. Third, neuron responses to speed ramps were not well predicted by the transient or sustained responses to steps in stimulus speed. Based on these findings, we developed a model incorporating adaptation and a neuron's speed tuning that predicted the higher inferred speeds and lower spike rates for deceleration responses compared with acceleration responses. This model did not predict acceleration-specific responses, in accordance with the lack of acceleration sensitivity in the neurons. The outputs of this single-cell model were passed to a population-vector-based model used to estimate stimulus speed and acceleration. We show that such a model can accurately estimate relative speed and acceleration using information from the population of neurons in area MT.

  10. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    Energy Technology Data Exchange (ETDEWEB)

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  11. Focusing characteristics of an accelerating structure with non-circular beam holes

    International Nuclear Information System (INIS)

    High energy linacs of the next generation are required to keep stably high bunch populations and very small beam spots at colliding points, in order to realize high luminosity at TeV energy region. CERN proposed to apply the rf focusing technology which makes a strong focusing force according to the rf phase within a bunch, and rf focusing power is proportional to both the accelerating gradient and the operating frequency. Some computed results of the focusing property of 3 GHz accelerating structures are presented which has non-circular beam holes. The construction of this 3 GHz structure, because an rf technology for 3 GHz is well-established, will be useful in order to know, at an early stage of the development, whether the idea will be successful or not. The 3D code MAFIA was used to investigate the deflecting force caused by the asymmetry of the beam aperture. (R.P.) 5 refs., 14 figs., 3 tabs

  12. Velocity field characteristics at pipe-wall thinning position induced by Flow-Accelerated Corrosion

    International Nuclear Information System (INIS)

    Contributing the establishment of technical basis for advanced codes and standards for the management of flow accelerated corrosion (FAC)-induced pipe thinning. 2D PIV measurements on orifice downstream flow including the global flow patterns and the influence of forced swirl was performed. There is some correlation between the large-scale motion and the velocity gradient close to the wall. This result shows that the large scale motion has some effect on the pipe thinning mechanism. (author)

  13. VDE characteristics during disruption process and its underlying acceleration mechanism in the ITER-EDA tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yukiharu; Nishio, Satoshi; Yoshino, Ryuji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kessel, C.E.; Jardin, S.C.

    1996-12-01

    The dynamic behavior of vertical displacement events (VDEs) during a disruption and acceleration mechanisms that govern VDEs in the ITER-EDA tokamak are investigated using the Tokamak Simulation Code. A sudden plasma pressure drop ({beta}{sub p} collapse) does not accelerate VDEs for the ITER tokamak. The geometry of the ITER resistive shell is shown to be suitable for preventing a {beta}{sub p} collapse-induced VDE, because the magnetic field decay n-index after the {beta}{sub p} collapse does not considerably degrade. On the other hand, it is shown that the plasma current quench (I{sub p} quench) following the energy quench can accelerate VDEs due to the vertical imbalance of the attractive force arising from the up-down asymmetric shell. The vertical location of the neutral point where the I{sub p} quench-induced VDE almost disappears is found to lie at {approx}22 cm below the plasma magnetic axis of the nominal equilibrium (Z = 1.44 m). An upward and moderate I{sub p} quench-induced VDE can be expected for the nominal configuration in the ITER-EDA tokamak. It is shown that the ITER tokamak has an advantage of avoiding the fatal damage of the complicated structures of the bottom-divertor. (author)

  14. VDE characteristics during disruption process and its underlying acceleration mechanism in the ITER-EDA tokamak

    International Nuclear Information System (INIS)

    The dynamic behavior of vertical displacement events (VDEs) during a disruption and acceleration mechanisms that govern VDEs in the ITER-EDA tokamak are investigated using the Tokamak Simulation Code. A sudden plasma pressure drop (βp collapse) does not accelerate VDEs for the ITER tokamak. The geometry of the ITER resistive shell is shown to be suitable for preventing a βp collapse-induced VDE, because the magnetic field decay n-index after the βp collapse does not considerably degrade. On the other hand, it is shown that the plasma current quench (Ip quench) following the energy quench can accelerate VDEs due to the vertical imbalance of the attractive force arising from the up-down asymmetric shell. The vertical location of the neutral point where the Ip quench-induced VDE almost disappears is found to lie at ∼22 cm below the plasma magnetic axis of the nominal equilibrium (Z = 1.44 m). An upward and moderate Ip quench-induced VDE can be expected for the nominal configuration in the ITER-EDA tokamak. It is shown that the ITER tokamak has an advantage of avoiding the fatal damage of the complicated structures of the bottom-divertor. (author)

  15. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach.

    Science.gov (United States)

    Okuma, Y; Nomura, Y

    1998-12-01

    To elucidate the fundamental mechanism of age-related deficiencies of learning and to develop effective drugs for intervention in age-related diseases such as learning dysfunctions, pertinent animal models that have characteristics closely similar to human dysfunctions should be established. SAM (senescence-accelerated mouse) has been established as a murine model of the SAM strains, groups of related inbred strains including nine strains of accelerated senescence-prone, short-lived mice (SAMP) and three strains of accelerated senescence-resistant, long-lived mice (SAMR). SAMP-strain mice show relatively strain-specific age-associated phenotypic pathologies such as shortened life span and early manifestation of senescence. Among the SAMP-strain mice, SAMP8 mice show an age-related deterioration in learning ability. Here, the neuropathological, neurochemical and pharmacological features of SAM are reported, especially for SAMP8. Moreover, the effects of several drugs on the biochemical and behavioral alterations in SAMP8 and the etiologic manifestation of accelerated senescence are also discussed. PMID:9920195

  16. Shear creep characteristics and constitutive model of limestone

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Mao Xianbiao; Hu Xinyu

    2016-01-01

    The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponen-tial type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10-7. Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained, and the sums of squared residuals belong to 10-3 order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep char-acteristics of limestone very well.

  17. Accelerated testing statistical models, test plans, and data analysis

    CERN Document Server

    Nelson, Wayne B

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering.""-Dev G.

  18. Normalization and Implementation of Three Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.; Gottlieb, Robert G.

    2016-01-01

    Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the real universe is that gravitational fields are sensitive to the asphericity of their generating central bodies. The gravitational potential of an aspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities that must be removed to generalize the method and solve for any possible orbit, including polar orbits. Samuel Pines, Bill Lear, and Robert Gottlieb developed three unique algorithms to eliminate these singularities. This paper documents the methodical normalization of two of the three known formulations for singularity-free gravitational acceleration (namely, the Lear and Gottlieb algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre polynomials and Associated Legendre Functions (ALFs) for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  19. Evaluation of a server-client architecture for accelerator modeling and simulation

    International Nuclear Information System (INIS)

    Traditional approaches to computational modeling and simulation often utilize a batch method for code execution using file-formatted input/output. This method of code implementation was generally chosen for several factors, including CPU throughput and availability, complexity of the required modeling problem, and presentation of computation results. With the advent of faster computer hardware and the advances in networking and software techniques, other program architectures for accelerator modeling have recently been employed. Jefferson Laboratory has implemented a client/server solution for accelerator beam transport modeling utilizing a query-based I/O. The goal of this code is to provide modeling information for control system applications and to serve as a computation engine for general modeling tasks, such as machine studies. This paper performs a comparison between the batch execution and server/client architectures, focusing on design and implementation issues, performance, and general utility towards accelerator modeling demands

  20. Dosimetric characteristics of a 6 MV photon beam from a linear accelerator with asymmetric collimator jaws

    Energy Technology Data Exchange (ETDEWEB)

    Palta, J.R.; Ayyangar, K.M.; Suntharalingam, N.

    1988-02-01

    Dosimetric measurements have been made of a 6 MV photon beam from a linear accelerator equipped with asymmetric jaws. The field size factors for asymmetrically set fields are compared to those for symmetrically set fields. The change of beam quality has been measured as a function of off-axis position of the asymmetric fields to assess its effect on depth dose. Additional measurements include beam penumbra and shape of isodose curves for open and wedge fields as the field opening is moved asymmetrically from the central ray.

  1. Electron beam characteristics of a laser-driven plasma wakefield accelerator

    CERN Document Server

    Assamagan, Ketevi A; Chen, S Y; Ent, R; Green, R N; Gueye, P; Keppel, C; Mourou, G; Umstadter, D; Wagner, R

    1999-01-01

    The properties of an electron beam trapped and accelerated in a laser wakefield have been investigated. Plastic scintillating fibers were employed together with position sensitive photomultiplier tubes (PMT) and a series of dipole electro-magnets to study the beam. The measured momentum spectrum peaks around 7 MeV/c with an exponential fall-off at high momenta up to (70.3+- 19.9) MeV/c. The number of electrons detected per bunch is determined to be (2.6+-0.3)x10 sup 1 sup 1.

  2. Accelerated Aging of Intervertebral Discs in a Mouse Model of Progeria

    Science.gov (United States)

    Vo, Nam; Seo, Hyoung-Yeon; Robinson, Andria; Sowa, Gwendolyn; Bentley, Douglas; Taylor, Lauren; Studer, Rebecca; Usas, Arvydas; Huard, Johnny; Alber, Sean; Watkins, Simon C.; Lee, Joon; Coehlo, Paulo; Wang, Dong; Loppini, Mattia; Robbins, Paul D.; Niedernhofer, Laura J.; Kang, James

    2012-01-01

    Intervertebral disc degeneration (IDD) is a common and debilitating disorder that results in reduced flexibility of the spine, pain, and reduced mobility. Risk factors for IDD include age, genetic predisposition, injury, and other environmental factors such as smoking. Loss of proteoglycans (PGs) contributes to IDD with advancing age. Currently there is a lack of a model for rapid investigation of disc aging and evaluation of therapeutic interventions. Here we examined progression of disc aging in a murine model of a human progeroid syndrome caused by deficiency of the DNA repair endonuclease, ERCC1–XPF (Ercc1−/Δ mice). The ERCC1-deficient mice showed loss of disc height and degenerative structural changes in their vertebral bodies similar to those reported for old rodents. Compared to their wild-type littermates, Ercc1−/Δ mice also exhibit other age-related IDD characteristics, including premature loss of disc PG, reduced matrix PG synthesis, and enhanced apoptosis and cell senescence. Finally, the onset of age-associated disc pathologies was further accelerated in Ercc1−/Δ mice following chronic treatment with the chemotherapeutic agent mechlorethamine. These results demonstrate that Ercc1−/Δ mice represent an accurate and rapid model of disc aging and provide novel evidence that DNA damage negatively impacts PG synthesis. PMID:20973062

  3. Subcritical set coupled to accelerator (ADS) for transmutation of radioactive wastes: an approach of computational modelling

    International Nuclear Information System (INIS)

    Nuclear fission devices coupled to particle accelerators ADS are being widely studied. These devices have several applications, including nuclear waste transmutation and producing hydrogen, both applications with strong social and environmental impact. The essence of this work was to model an ADS geometry composed of small TRISO fuel loaded with a mixture of MOX uranium and thorium target material spallation of uranium, using methods of computational modeling probabilistic, in particular the MCNPX 2.6e program to evaluate the physical characteristics of the device and their ability to transmutation. As a result of the characterization of the spallation target, it can be concluded that production of neutrons per incident proton increases with increasing dimensions of the spallation target (thickness and radius), until it reached the maximum production of neutrons per incident proton or call the region saturation. The results obtained in modeling the ADS device bed kind of balls with respect to isotopic variation in the isotopes of plutonium and minor actinides considered in the analysis revealed that accumulation of mass of the isotopes of plutonium and minor actinides increase for subcritical configuration considered. In the particular case of the isotope 239Pu, it is observed a reduction of the mass from the time of burning of 99 days. The increase of power in the core, whereas tungsten spallation targets and Lead is among the key future developments of this work

  4. Some useful characteristics of performance models

    International Nuclear Information System (INIS)

    This paper examines the demands placed upon models of human cognitive decision processes in application to Probabilistic Risk Assessment. Successful models, for this purpose, should, 1) be based on proven or plausible psychological knowledge, e.g., Rasmussen's mental schematic, 2) incorporate opportunities for slips, 3) take account of the recursive nature, in time, of corrections to mistaken actions, and 4) depend on the crew's predominant mental states that accompany such recursions. The latter is equivalent to an explicit coupling between input and output of Rasmussen's mental schematic. A family of such models is proposed with observable rate processes mediating the (conscious) mental states involved. It is expected that the cumulative probability distributions corresponding to the individual rate processes can be identified with probability-time correlations of the HCR Human Cognitive Reliability type discussed elsewhere in this session. The functional forms of the conditional rates are intuitively shown to have simple characteristics that lead to a strongly recursive stochastic process with significant predictive capability. Models of the type proposed have few parts and form a representation that is intentionally far short of a fully transparent exposition of the mental process in order to avoid making impossible demands on data

  5. Ribbon thickness dependence of the Magnetic Alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons

    Science.gov (United States)

    Nomura, M.; Shimada, T.; Tamura, F.; Yamamoto, M.; Hara, K.; Hasegawa, K.; Ohmori, C.; Takata, K.; Toda, M.; Yoshii, M.; Schnase, A.

    2014-06-01

    We employ Magnetic Alloy (MA) core loaded RF cavities for the J-PARC synchrotrons to achieve a high field gradient. The MA core has a laminated structure of 18 μm thick ribbon layers. We have been developing high shunt impedance MA cores to prepare for an increase of beam power. At low frequencies, it is well known that the eddy current loss in the ribbon is proportional to the square of the ribbon thickness. The MA core shunt impedance can be increased by using thinner ribbons. On the other hand, at high frequencies, the MA core magnetic characteristics are largely different from low frequencies. Using thinner ribbons might be effective to increase the MA core shunt impedance in the accelerating frequency region of the J-PARC synchrotrons. We reviewed the theoretical calculations of the ribbon thickness dependence of the MA core magnetic characteristics and we derived the ribbon thickness dependence from measured data. The measured data show that the MA core shunt impedance is inversely proportional to the ribbon thickness in the accelerating frequency region of the J-PARC synchrotrons, which is consistent with our calculations.

  6. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  7. Modeling and Measurement of Image Sensor Characteristics

    Directory of Open Access Journals (Sweden)

    K. Fliegel

    2004-12-01

    Full Text Available The optical transfer function (OTF, as an objective measure of thequality of optical and electro-optical systems, is closely related tothe point spread function (PSF and other derived characteristics, suchas the modulation transfer function (MTF and the phase transferfunction (PTF. The paper focused to the use a generalized OTF, whichis primarily dedicated to the description of linear space invariantsystems (LSI, for the purpose of sampled structures of image sensors(e.g. CCD, CMOS, CID, and to implement the derived results whileutilizing the graphical user's interface (GUI in Matlab. The modelused considers the effects of the detector photo sensitive area,sampling process, as well as other CCD specific parameters, such as thecharge transfer efficiency (CTE or diffusion in order to derive theoverall MTF shape. The paper also includes an experimental measurementin the real system and a comparison with the results of modeling.

  8. Non-linear model of particle acceleration at colliding shock flows

    CERN Document Server

    Bykov, A M; Osipov, S M

    2012-01-01

    Powerful stellar winds and supernova explosions with intense energy release in the form of strong shock waves can convert a sizeable part of the kinetic energy release into energetic particles. The starforming regions are argued as a favorable site of energetic particle acceleration and could be efficient sources of nonthermal emission. We present here a non-linear time-dependent model of particle acceleration in the vicinity of two closely approaching fast magnetohydrodynamic (MHD) shocks. Such MHD flows are expected to occur in rich young stellar cluster where a supernova is exploding in the vicinity of a strong stellar wind of a nearby massive star. We find that the spectrum of the high energy particles accelerated at the stage of two closely approaching shocks can be harder than that formed at a forward shock of an isolated supernova remnant. The presented method can be applied to model particle acceleration in a variety of systems with colliding MHD flows.

  9. The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

    OpenAIRE

    Abdalla Ahmed Abdel-Ghaly; Hanan Mohamed Aly; Elham Abdel-Malik Abde-Rahman

    2016-01-01

    This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of t...

  10. Numerical modeling of gravitational wave sources accelerated by OpenCL

    OpenAIRE

    Khanna, Gaurav; McKennon, Justin

    2010-01-01

    In this work, we make use of the OpenCL framework to accelerate an EMRI modeling application using the hardware accelerators -- Cell BE and Tesla CUDA GPU. We describe these compute technologies and our parallelization approach in detail, present our performance results, and then compare them with those from our previous implementations based on the native CUDA and Cell SDKs. The OpenCL framework allows us to execute identical source-code on both architectures and yet obtain strong performanc...

  11. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Science.gov (United States)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-09-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  12. Neutronic characteristics of coupled moderator proposed in integrated model

    International Nuclear Information System (INIS)

    A pulsed spallation source for the materials science and the life science is currently developing for its construction in the High Intensity Proton Accelerator Project proposed jointly by the Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK). This report presents the analytical results of the neutronic characteristics of the coupled moderator based on the analytical results obtained by using an integrated model which has established on the extensive neutronic and technical study. Total heat deposition in a hydrogen (H2) moderator working as the main moderator was about 420 W/MW. Maximum nuclear heat density in the H2 moderator was about 1 W/cm3/MW. Also total heat deposition in a premoderator was about 9.2 kW/MW. The heat density of the premoderator was comparable to that of the moderator vessel made of aluminum alloy. The heat density of the premoderator and the moderator vessel is about 1.2-2 times higher than that of the hydrogen moderator. The temperature from 300 K to 400 K of the premoderator did not affect on neutron intensity of the H2 moderator. This suggested an engineering advantage on the thermal and hydraulic design. 6000 or 7000 type of a aluminum alloy was considered from the viewpoint of the neutron beam transmission. The proton beams scattered by the proton beam window did not affect on the nuclear heating in the H2 moderator. The heat deposition in the H2 moderator and the neutron intensity of the H2 moderator did not depend on the proton beam profile but it did on the distance between the proton beam and the moderator. (author)

  13. Neutronic characteristics of coupled moderator proposed in integrated model

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Meigo, Shin-ichiro; Sakata, Hideaki; Kai, Tetsuya; Harada, Masahide; Ikeda, Yujiro; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-05-01

    A pulsed spallation source for the materials science and the life science is currently developing for its construction in the High Intensity Proton Accelerator Project proposed jointly by the Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK). This report presents the analytical results of the neutronic characteristics of the coupled moderator based on the analytical results obtained by using an integrated model which has established on the extensive neutronic and technical study. Total heat deposition in a hydrogen (H{sub 2}) moderator working as the main moderator was about 420 W/MW. Maximum nuclear heat density in the H{sub 2} moderator was about 1 W/cm{sup 3}/MW. Also total heat deposition in a premoderator was about 9.2 kW/MW. The heat density of the premoderator was comparable to that of the moderator vessel made of aluminum alloy. The heat density of the premoderator and the moderator vessel is about 1.2-2 times higher than that of the hydrogen moderator. The temperature from 300 K to 400 K of the premoderator did not affect on neutron intensity of the H{sub 2} moderator. This suggested an engineering advantage on the thermal and hydraulic design. 6000 or 7000 type of a aluminum alloy was considered from the viewpoint of the neutron beam transmission. The proton beams scattered by the proton beam window did not affect on the nuclear heating in the H{sub 2} moderator. The heat deposition in the H{sub 2} moderator and the neutron intensity of the H{sub 2} moderator did not depend on the proton beam profile but it did on the distance between the proton beam and the moderator. (author)

  14. Accelerated discovery via a whole-cell model

    OpenAIRE

    Sanghvi, Jayodita C.; Regot, Sergi; Carrasco, Silvia; Karr, Jonathan R.; Miriam V Gutschow; Bolival, Benjamin; Covert, Markus W

    2013-01-01

    Whole-cell modeling promises to facilitate scientific inquiry by prioritizing future experiments based on existing datasets. To test this promise, we compared simulated growth rates with new measurements for all viable single-gene disruption strains in Mycoplasma genitalium. The discrepancies between simulations and experiments led to novel model predictions about specific kinetic parameters that we subsequently validated. These findings represent the first application of whole-cell modeling ...

  15. A model of eternal accelerated expansion without particle horizon

    CERN Document Server

    Wang, Zi-Liang

    2016-01-01

    In our previous paper \\cite{8}, we proposed a cosmological model from the emergence of space, which possesses a significant character of evaluating the vacuum energy from the Hubble constant and the age of universe. And one problem of this model is that there is no inflation in the early universe. In this paper, we aim at resolving this problem which leads us to a rather surprising conclusion that our cosmological model can avoid the horizon and flatness problems.

  16. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    Science.gov (United States)

    Hossain, Murshed

    2014-01-01

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  17. Accelerating Monte Carlo Markov chains with proxy and error models

    Science.gov (United States)

    Josset, Laureline; Demyanov, Vasily; Elsheikh, Ahmed H.; Lunati, Ivan

    2015-12-01

    In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the "exact" model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.

  18. LOCAL BUCKLEY-JAMES ESTIMATION FOR HETEROSCEDASTIC ACCELERATED FAILURE TIME MODEL

    Science.gov (United States)

    Pang, Lei; Lu, Wenbin; Wang, Huixia Judy

    2016-01-01

    In survival analysis, the accelerated failure time model is a useful alternative to the popular Cox proportional hazards model due to its easy interpretation. Current estimation methods for the accelerated failure time model mostly assume independent and identically distributed random errors, but in many applications the conditional variance of log survival times depend on covariates exhibiting some form of heteroscedasticity. In this paper, we develop a local Buckley-James estimator for the accelerated failure time model with heteroscedastic errors. We establish the consistency and asymptotic normality of the proposed estimator and propose a resampling approach for inference. Simulations demonstrate that the proposed method is flexible and leads to more efficient estimation when heteroscedasticity is present. The value of the proposed method is further assessed by the analysis of a breast cancer data set.

  19. Reproductive characteristics of Awassi ewes under Cornell alternate month accelerated lambing system

    Directory of Open Access Journals (Sweden)

    Sabri Gül

    2010-04-01

    Full Text Available We investigated the reproductive responses of Awassi ewes under Cornell alternate month accelerated lambing (CAMAL system. Ewes were randomly allocated to two experimental groups. The first group (control group consists of 20 ewes exposed to rams in September under conventional management system while the second group (CAMAL were divided into four sub-flocks contain 20 head of ewes each one were exposed to rams to obtain three lambing in two years with different breeding and lambing months. In CAMAL ewes, oestrus was synchronized using intra-vaginal sponges with progesterone and PMSG administration. Results revealed that within CAMAL group, the percentage of animals in heat, onset of oestrus, litter size, birth weight and weaning weight were affected by mating months. September and November were the most appropriate months for oestrus ratio (97.5 % and litter size (1.18 and 0.98, respectively. Lambs of control group were heavier at birth and weaning than those of CAMAL group. On the other hand lamb yield was not affected statistically by the CAMAL administration.

  20. Drying Characteristics and Model of Chinese Hawthorn Using Microwave Coupled with Hot Air

    OpenAIRE

    Hai-Ming Yu; Chun-Cheng Zuo; Qiu-Ju Xie

    2015-01-01

    Microwave coupled with hot air drying kinetics and characteristics of hawthorn slices at different drying hot air temperatures, hot air velocities, and microwave power densities was investigated. The research results showed that drying occurred mainly in the falling rate period and in the accelerating period. Twelve mathematical models were selected to describe and compare the drying kinetics of hawthorn slices. By comparing three criterions including correlation coefficient, chi-square, and ...

  1. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  2. An Analytic Linear Accelerator Source Model for Monte Carlo Dose Calculations. I. Model Representation and Construction

    CERN Document Server

    Tian, Zhen; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation is considered as the most accurate method for radiation dose calculations. Accuracy of a source model for a linear accelerator is critical for the overall dose calculation accuracy. In this paper, we presented an analytical source model that we recently developed for GPU-based MC dose calculations. A key concept called phase-space-ring (PSR) was proposed. It contained a group of particles that are of the same type and close in energy and radial distance to the center of the phase-space plane. The model parameterized probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. For a primary photon PSRs, the particle direction is assumed to be from the beam spot. A finite spot size is modeled with a 2D Gaussian distribution. For a scattered photon PSR, multiple Gaussian components were used to model the particle direction. The direction distribution of an electron PSRs was also modeled as a 2D Gaussian distributi...

  3. New, More Authentic Model for AIDS Will Accelerate Studies | Poster

    Science.gov (United States)

    By Frank Blanchard, Staff Writer, and Jeff Lifson, Guest Writer Researchers are working to develop a more authentic animal model of human immunodeficiency virus (HIV) infection and AIDS that is expected to speed up studies of experimental treatments and vaccines.

  4. Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions

    CERN Document Server

    Hemker, Roy G

    2015-01-01

    In this dissertation, a fully object-oriented, fully relativistic, multi-dimensional Particle-In-Cell code was developed and applied to answer key questions in plasma-based accelerator research. The simulations increase the understanding of the processes in laser plasma and beam-plasma interaction, allow for comparison with experiments, and motivate the development of theoretical models. The simulations support the idea that the injection of electrons in a plasma wave by using a transversely propagating laser pulse is possible. The beam parameters of the injected electrons found in the simulations compare reasonably with beams produced by conventional methods and therefore laser injection is an interesting concept for future plasma-based accelerators. Simulations of the optical guiding of a laser wakefield driver in a parabolic plasma channel support the idea that electrons can be accelerated over distances much longer than the Rayleigh length in a channel. Simulations of plasma wakefield acceleration in the ...

  5. Time and Space Dependent Stochastic Acceleration Model for the Fermi Bubbles

    CERN Document Server

    Sasaki, K; Terasawa, T

    2015-01-01

    Fermi-LAT reveals two huge gamma-ray bubbles existing in the Galactic Center, called 'Fermi Bubbles'. The existence of two microwave bubbles at the same region are also reported by the observation by WMAP, dubbed 'WMAP haze'. In order to explain these components, It has been argued that the gamma-rays arise from Inverse-Compton scattering of relativistic electrons accelerated by plasma turbulence, and the microwaves are radiated by synchrotron radiation. But no previous research reproduces both the Fermi Bubbles and WMAP haze under typical magnetic fields in the galaxy. We assume that shocks present in the bubbles and the efficiency of the acceleration by plasma turbulence, 'stochastic acceleration', changes with the distance from the shock front. The distance from the shock front increases with time, accordingly the efficiency of the acceleration changes with time. We also consider the time development of the electrons escape from the turbulence by diffusive loss. Our model succeed to reproduce both the obse...

  6. Adaptive guidance law design based on characteristic model for reentry vehicles

    Institute of Scientific and Technical Information of China (English)

    YANG JunChun; HU Jun; NI MaoLin

    2008-01-01

    In this paper an adaptive guidance law based on the characteristic model is designed to track a reference drag acceleration for reentry vehicles like the Shuttle. The characteristic modeling method of linear constant systems is extended for single-input and single-output (SlSO) linear time-varying systems so that the characteristic model can be established for reentry vehicles. A new nonlinear differential golden-section adaptive control law is presented. When the coefficients belong to a bounded closed convex set and their rate of change meets some constraints, the uniformly asymptotic stability of the nonlinear differential golden-section adaptive control system is proved. The tracking control law, the nonlinear differential golden-section control law, and the revised logical integral control law are integrated to design an adaptive guidance law based on the characteristic model. This guidance law overcomes the disadvantage of the feedback linearization method which needs the precise model. Simulation results show that the proposed method has better performance of tracking the reference drag acceleration than the feedback linearization one.

  7. Polarization Jet: characteristics and a model

    Directory of Open Access Journals (Sweden)

    Y. I. Galperin

    Full Text Available Recent analysis of the ground-based observations of the Polarization Jet (PJ effects in the subauroral ionosphere has shown that PJ can rapidly develop in the near-midnight sector near the Harang Discontinuity (HD. Based on these observations, a simple, semi-quantitative theory of the PJ formation and its main characteristics is constructed. According to the model, PJ starts to develop, as proposed by Southwood and Wolf, 1978, due to the penetration of the injected energetic ions to the deeper L-shells in the presence of the westward component of the electric field. The injection near the tip of the HD is assumed here. The initial development stage of the PJ band, considered only qualitatively, is supposed to lead to its inclination inward toward evening with respect to the lines B = const. Within the model proposed, the PJ band, once formed, will be sustained by the continuous charging at its equatorial side, at first, mainly by the newly injected ring current ions, and later by the plasma sheet ions convected inward through the HD. In addition, an important charging of the PJ band occurs at its polar side by energetic electrons drifting eastward. These electrons were either previously on the trapped orbits or convected inward from the plasma sheet, and encounter the PJ polar border. The model semi-quantitatively describes the main features of the PJ events: the typical cross-PJ voltage drop ( ~ 10 kV, the resulting double-sheet current loop feeding the PJ, the recently observed short PJ formation time near midnight ( ~ 10 min or less accompanied by a fast westward HD displacement, the nearly steady-state PJ location in the evening to midnight MLT sector and width in the ionospheric frame, the bell-shape of the electric field latitude profile, and the long PJ lifetime (up to several hours - all are in rough accord with observations. Further developments of the model now in progress are briefly described.

    Key words. Magnetospheric

  8. Radiobiological modeling of interplay between accelerated repopulation and altered fractionation schedules in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Marcu Loredana

    2009-01-01

    Full Text Available Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

  9. Radiobiological modeling of interplay between accelerated repopulation and altered fractionation schedules in head and neck cancer.

    Science.gov (United States)

    Marcu, Loredana G; Bezak, Eva

    2009-10-01

    Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling) is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

  10. Modelling current voltage characteristics of practical superconductors

    International Nuclear Information System (INIS)

    Based on recent experimental results, and in the light of fundamental physical properties of the magnetic flux in type-II superconductors, we introduce a practical expression for the material law to be applied in numerical modelling of superconducting applications. Focusing on the computational side, in this paper, previous theory is worked out, so as to take the celebrated form of a power-law-like dependence for the current voltage characteristic. However, contrary to the common approach in numerical studies, this proposal suits the general situation of current density flow with components either parallel or perpendicular to the local magnetic field, and different constraints applying on each component. Mathematically, the theory is generated from an elliptic locus defined in terms of the current density vector components. From the physical side, this contour establishes the boundary for the onset of entropy production related to overcritical current flow in different conditions. The electric field is obtained by partial differentiation and points perpendicular to the ellipse. Some numerical examples, inspired by the geometry of a two-layer helical counter-wound cable are provided. Corrections to the widespread use of the implicit isotropic assumption (physical properties only depend on the modulus of the current density vector) are discussed, and essentially indicate that the current carrying capacity of practical systems may be underestimated by using such simplification. (paper)

  11. Maximal acceleration and radiative processes

    OpenAIRE

    Papini, Giorgio

    2015-01-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass $m$ has the upper limit $\\mathcal{A}_m=2mc^3/\\hbar$. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to $\\mathcal{A}_m$ and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws du...

  12. Heterogeneity and aggregation in a financial accelerator model

    NARCIS (Netherlands)

    T. Assenza; D. Delli Gatti; M. Gallegati

    2007-01-01

    In this paper we present a macroeconomic model in which changes in the variance (and higher moments of the distribution) of firm's financial conditions - i.e. "distributive shocks" - are bound to play a crucial role in the determination of output fluctuations. Firms differ by degree of financial rob

  13. Accelerating expansion or inhomogeneity? Part 2: Mimicking acceleration with the energy function in the Lema\\^{\\i}tre-Tolman model

    CERN Document Server

    Krasiński, Andrzej

    2014-01-01

    This is a continuation of the paper published in {\\it Phys. Rev.} {\\bf D89}, 023520 (2014). It is investigated here how the luminosity distance -- redshift relation $D_L(z)$ of the $\\Lambda$CDM model is duplicated in the Lema\\^{\\i}tre -- Tolman (L--T) model with $\\Lambda = 0$, constant bang-time function $t_B$ and the energy function $E(r)$ mimicking accelerated expansion on the observer's past light cone ($r$ is a uniquely defined comoving radial coordinate). Numerical experiments show that $E > 0$ necessarily. The functions $z(r)$ and $E(r)$ are numerically calculated from the initial point at the observer's position; then backward from the initial point at the apparent horizon (AH). Reconciling the results of the two calculations allows one to determine the values of $E/r^2$ at $r = 0$ and at the AH. The problems connected with continuing the calculation through the AH are discussed in detail and solved. Then $z(r)$ and $E(r)$ are continued beyond the AH, up to the numerical crash that signals the contact ...

  14. In Defense of an Accelerating Universe: Model Insensitivity of the Hubble Diagram

    CERN Document Server

    Ringermacher, H I

    2016-01-01

    Nielsen, Guffanti and Sarkar, in their recent Nature article, present a detailed argument that the evidence for cosmic acceleraton is marginal and that a coasting universe model, namely that of the "Milne Universe", fits the same SNe Ia data set in a Hubble diagram (distance modulus vs. redshift) nearly as well. However, we find that when the SNe data, the LCDM model and Milne model are plotted as scale factor vs. linear cosmological time in a model-independent fashion the two resulting curves separate significantly above the noise making it exceptionally clear that the universe is accelerating and the Milne model cannot fit the time-data. In this plot, the Milne model generates a straight line, while LCDM continues to show an excellent fit to acceleration. The separation of these two models on this type of plot demonstrates the efficacy of this new plot procedure.

  15. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    Directory of Open Access Journals (Sweden)

    T. Kerh

    2012-01-01

    Full Text Available It may not be possible to collect adequate records of strong ground motions in a short period of time; hence microtremor survey is frequently conducted to reveal the stratum structure and earthquake characteristics at a specified construction site. This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site, in a science park of Taiwan. The four key parameters used as inputs for the model are soil values of the standard penetration test, the medium grain size, the safety factor against liquefaction, and the distance between soil depth and measuring station. The results show that a neural network model with four neurons in the hidden layer can achieve better performance than other models presently available. Also, a weight-based neural network model is developed to provide reliable prediction of peak ground acceleration at an unmeasured site based on data at three nearby measuring stations. The method employed in this paper provides a new way to treat this type of seismic-related problem, and it may be applicable to other areas of interest around the world.

  16. DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking

    Directory of Open Access Journals (Sweden)

    Jiří Barnat

    2009-12-01

    Full Text Available In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool outperforms non-accelerated version of the algorithm and we discuss where the limits of the tool are and what we intend to do in the future to avoid them.

  17. Accelerating thermal deposition modeling at terahertz frequencies using GPUs

    Science.gov (United States)

    Doroski, Michael; Knight, Michael; Payne, Jason; Grundt, Jessica E.; Ibey, Bennett L.; Thomas, Robert; Roach, William P.; Wilmink, Gerald J.

    2011-03-01

    Finite-difference time-domain (FDTD) methods are widely used to model the propagation of electromagnetic radiation in biological tissues. High-performance central processing units (CPUs) can execute FDTD simulations for complex problems using 3-D geometries and heterogeneous tissue material properties. However, when FDTD simulations are employed at terahertz (THz) frequencies excessively long processing times are required to account for finer resolution voxels and larger computational modeling domains. In this study, we developed and tested the performance of 2-D and 3-D FDTD thermal propagation code executed on a graphics processing unit (GPU) device, which was coded using an extension of the C language referred to as CUDA. In order to examine the speedup provided by GPUs, we compared the performance (speed, accuracy) for simulations executed on a GPU (Tesla C2050), a high-performance CPU (Intel Xeon 5504), and supercomputer. Simulations were conducted to model the propagation and thermal deposition of THz radiation in biological materials for several in vitro and in vivo THz exposure scenarios. For both the 2-D and 3-D in vitro simulations, we found that the GPU performed 100 times faster than runs executed on a CPU, and maintained comparable accuracy to that provided by the supercomputer. For the in vivo tissue damage studies, we found that the GPU executed simulations 87x times faster than the CPU. Interestingly, for all exposure duration tested, the CPU, GPU, and supercomputer provided comparable predictions for tissue damage thresholds (ED50). Overall, these results suggest that GPUs can provide performance comparable to a supercomputer and at speeds significantly faster than those possible with a CPU. Therefore, GPUs are an affordable tool for conducting accurate and fast simulations for computationally intensive modeling problems.

  18. Spatial and temporal tuning in void models for acceleration

    International Nuclear Information System (INIS)

    There has been considerable interest in recent years in cosmological models in which we inhabit a very large, underdense void as an alternative to dark energy. A long-standing objection to this proposal is that observations limit our position to be very close to the void center. By selecting from a family of void profiles that fit supernova luminosity data, we carefully determine how far from the center we could be. To do so, we use the observed dipole component of the cosmic microwave background, as well as an additional stochastic peculiar velocity arising from primordial perturbations. We find that we are constrained to live within 80 Mpc of the center of a void--a somewhat weaker constraint than found in previous studies, but nevertheless a strong violation of the Copernican principle. By considering how such a Gpc-scale void would appear on the microwave sky, we also show that there can be a maximum of one of these voids within our Hubble radius. Hence, the constraint on our position corresponds to a fraction of the Hubble volume of order 10-8. Finally, we use the fact that void models only look temporarily similar to a cosmological-constant-dominated universe to argue that these models are not free of temporal fine-tuning.

  19. Studies of the pulse-line accelerator using a circuit model

    International Nuclear Information System (INIS)

    This note describes a simple model developed to explore some of the properties of the pulse-line ion accelerator [1], here represented as a series of lumped elements, in the general parameter regime for the ''NDCX-1d'' experiments. The goals of this modeling are: to understand the evolution of various possible input pulses in the presence of dispersive effects and imperfect termination of the line; to examine scenarios for beam acceleration; and to explore the effects of ''beam loading'', that is, changes to the voltages along the helical line that result from the interaction of the beam's return current with the ''circuitry'' of that line. In Section 1 below, the model is described and the method of solution outlined; in Section 2, a low-current example of beam acceleration is presented; in Section 3, runs are presented showing the development of beam loading-induced voltages as model pulses are followed; in section 4, the modeling of a higher-current beam under acceleration is presented, and the effects of beam loading quantified; and in section 5, a brief summary of complementary efforts and of plans to extend the modeling is presented

  20. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    Energy Technology Data Exchange (ETDEWEB)

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Greco, A., E-mail: serena.dalena@fis.unical.it [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy)

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  1. Characteristics of Nano Particles in the Atmosphere of Gyeongju National Park Area Using a Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. W.; Hur, H. J.; Choi, J. H.; Kim, H. S. [Gyeongju Univ., Gyeongju (Korea, Republic of)

    2007-04-15

    The physico-chemical characteristics of the categorized aerosol with soil-related mineral species, anthropogenic-related heavy metal species, and aerosol-acidity-related element were analyzed based on the air-mass pathways. The lowest value of 0.6 {+-} 0.1 g m-3 was observed during the intensive fall period of 2005. The mass concentration of sulfur (S) was the highest in the intensive spring period and the lowest in the intensive summer period. The frequencies of the EM, the WC, the SC, and the NC events were 6, 17, 3, and 7, respectively. The continental air-mass-pathway categories were calculated consisting of 85% of the total 40 events whereas the marine air-mass-pathway categories were of 15%. The nanoparticles observed at the national park area of Gyeongju were estimated to be affected by soil-related elements when the air mass came from the western area of the Asian continent and to be predominantly affected by anthropogenic-related elements when air mass came from the northern area of the Asian continent through Korean peninsula. Soil-related elements were mainly observed in particles with sizes greater than 560 nm. The average mass fraction of anthropogenic-related elements was relatively much higher in the particle size range less than 320 nm.

  2. Construct Method of Predicting Satisfaction Model Based on Technical Characteristics

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-an; DENG Qian; SUN Guan-long; ZHANG Wei-she

    2011-01-01

    In order to construct objective relatively mapping relationship model between customer requirements and product technical characteristics, a novel approach based on customer satisfactions information digging from case products and satisfaction information of expert technical characteristics was put forward in this paper. Technical characteristics evaluation values were expressed by rough number, and technical characteristics target sequence was determined on the basis of efficiency, cost type and middle type in this method. Use each calculated satisfactions of customers and technical characteristics as input and output elements to construct BP network model. And we use MATLAB software to simulate this BP network model based on the case of electric bicycles.

  3. A simple model for cavity-enhanced laser-driven ion acceleration from thin foil targets

    CERN Document Server

    Rączka, Piotr

    2012-01-01

    A scenario for the laser-driven ion acceleration off a solid target is considered, where the reflected laser pulse is redirected towards the target by reflection at the inner cavity wall, thus recycling to some extent the incident laser energy. This scenario is discussed in the context of sub-wavelength foil acceleration in the radiation pressure regime, when plasma dynamics is known to be reasonably well described by the laser-sail model. A semi-analytic extension of the 1D laser-sail model is constructed, which takes into account the effect of reflections at the inner cavity wall. The effect of cavity reflections on sub-wavelength foil acceleration is then illustrated with two concrete examples of intense laser pulses of picosecond and femtosecond duration.

  4. A Data-Driven Analytic Model for Proton Acceleration by Large-Scale Solar Coronal Shocks

    CERN Document Server

    Kozarev, Kamen A

    2016-01-01

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona (Kozarev et al. 2015), using remote observations from Solar Dynamics Observatory's Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front's surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model's performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate ...

  5. Using MMS measurements to validate models of reconnection-driven magnetotail reconfiguration and particle acceleration during substorms

    Science.gov (United States)

    Baker, Daniel N.

    2016-04-01

    New data from the Magnetospheric Multiscale (MMS) mission confirms and greatly extends the view that substorms are a configurational instability driven by magnetic reconnection. We have studied in detail a powerful storm period in June 2015 which shows that substorm events seen sequentially by the four MMS spacecraft subsequently feed the powerful enhancement of the radiation belts observed by the Van Allen Probes mission. Several sequences of significant southward IMF along with a period of high (VSW≥500 km/s) solar wind speed occurred following a strong interplanetary shock wave impact on the magnetosphere. We see that substorms provide a "seed" population, while high-speed solar wind drives the acceleration to relativistic energies in this two-step geomagnetic activity scenario. Thus, MMS data help validate models that invoke reconnection as a fundamental driver of magnetospheric particle acceleration. The data for several separate events on 22 June 2015 show that the magnetosphere progresses through a specific, well-observed sequence of energy-loading and stress-developing states until the entire system suddenly reconfigures. Energetic electron fluxes measured by the several MMS spacecraft reveal the clear temporal occurrence characteristics and the obvious relationships to concurrently measured solar wind drivers. This shows that enhancements in substorms are a key first step in the acceleration of radiation belt electrons to high energies as observed subsequently by the Van Allen Probes instrumentation. Thus, this high-resolution observational evidence along with the accompanying modeling has demonstrated that magnetospheric substorms are an important acceleration component within the coupled near-Earth system.

  6. A comprehensive study of back-reaction and effective acceleration in generic LTB dust models

    CERN Document Server

    Sussman, Roberto A

    2011-01-01

    We provide a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains, we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the domains' boundaries. Effective deceleration necessarily occurs in all domains in: (a) the asymptotic radial range of models converging to a FLRW background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial range of models converging to a FLRW background, (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v)...

  7. Development of an Efficient GPU-Accelerated Model for Fully Nonlinear Water Waves

    DEFF Research Database (Denmark)

    of an optimized sequential single-CPU algorithm based on a flexible-order Finite Difference Method. High performance is pursued by utilizing many-core processing in the model focusing on GPUs for acceleration of code execution. This involves combining analytical methods with an algorithm redesign of...

  8. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, whi

  9. Numerical modeling of gravitational wave sources accelerated by OpenCL

    CERN Document Server

    Khanna, Gaurav

    2010-01-01

    In this work, we make use of the OpenCL framework to accelerate an EMRI modeling application using the hardware accelerators -- Cell BE and Tesla CUDA GPU. We describe these compute technologies and our parallelization approach in detail, present our performance results, and then compare them with those from our previous implementations based on the native CUDA and Cell SDKs. The OpenCL framework allows us to execute identical source-code on both architectures and yet obtain strong performance gains that are comparable to what can be derived from the native SDKs.

  10. Particle-in-cell Modeling Of Plasma-based Accelerators In Two And Three Dimensions

    CERN Document Server

    Hemker, R J

    2000-01-01

    In this dissertation, a fully object-oriented, fully relativistic, multidimensional Particle-In-Cell code was developed and applied to answer key questions in plasma- based accelerator research. The simulations increase the understanding of the processes in laser plasma and beam- plasma interaction, allow for comparison with experiments, and motivate the development of theoretical models. The simulations support the idea that the injection of electrons in a plasma wave by using a transversely propagating laser pulse is possible. The beam parameters of the injected electrons found in the simulations compare reasonably with beams produced by conventional methods and therefore laser injection is an interesting concept for future plasma-based accelerators. Simulations of long laser pulses, such as the ones used in self- modulated laser wakefield acceleration, predict the existence of a hosing instability with a wavelength longer than the plasma wavelength. It is found that this effect might increase the emittance...

  11. Stochastic Acceleration Model of Gamma-Ray Burst with Decaying Turbulence

    CERN Document Server

    Asano, Katsuaki

    2015-01-01

    The spectral shape of the prompt emissions of gamma-ray bursts (GRBs) is typically expressed by the Band function: smooth joining of two power-law functions for high-energy and low-energy regions. To reveal the origin of the Band function, we revisit the stochastic acceleration model, in which electrons are accelerated via scattering with turbulent waves in the GRB outflow. The balance between the acceleration and synchrotron cooling yields a narrow energy-distribution similar to the Maxwellian distribution. The synchrotron spectrum becomes consistent with the observed hard photon index for the low-energy region. On the other hand, the narrow electron energy distribution contradicts the power-law spectrum for the high-energy region. We consider an evolution of the electron energy distribution to solve this problem. The turbulence and magnetic field induced by a certain hydrodynamical instability gradually decay. According to this evolution, the typical synchrotron photon energy also decreases with time. The t...

  12. Achievements in ISICs/SAPP collaborations for electromagnetic modeling of accelerators

    International Nuclear Information System (INIS)

    SciDAC provides the unique opportunity and the resources for the Electromagnetic System Simulations (ESS) component of High Energy Physics (HEP)'s Accelerator Science and Technology (AST) project to work with researchers in the Integrated Software Infrastructure Centres (ISICs) and Scientific Application Pilot Program (SAPP) to overcome challenging barriers in computer science and applied mathematics in order to perform the large-scale simulations required to support the ongoing R and D efforts on accelerators across the Office of Science. This paper presents the resultant achievements made under SciDAC in important areas of computational science relevant to electromagnetic modelling of accelerators which include nonlinear eigensolvers, shape optimization, adaptive mesh refinement, parallel meshing, and visualization

  13. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  14. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungwon [ORNL; Lee, Seyong [ORNL; Vetter, Jeffrey S [ORNL

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  15. Development of a RAMI model for LANSCE and high power APT accelerators

    International Nuclear Information System (INIS)

    Assessment of the reliability, availability, maintainability and inspectability (RAMI) of all high power, high cost systems is important to justify and improve the cost effectiveness of these systems. For the very large (over 100 MW) accelerator systems associated with APT, a RAMI model is very valuable in guiding the design and allocation of resources. A RAMI model of an existing machine is also valuable, since machine improvement funds must be allocated to increase the availability by the largest amount. The authors have developed a RAMI model using the critical subsystems of the LANSCE accelerator and beam delivery complex as an example and to evaluate the effectiveness for estimating reliability and beam availability. LAMPF and LANSCE together provide most of the features required for the accelerator and beam delivery part of a high-power APT machine, but LANSCE is pulsed, rather than CW. This complex is capable of a 1-MW average power H- beam, and it is the most powerful proton accelerator in the US built to date

  16. An Annular Gap Acceleration Model for γ-ray Emission of Pulsars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that:(1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4)The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that presented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.

  17. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model.

    Science.gov (United States)

    Li, Yan; Zhang, Liying; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M

    2011-09-01

    A modified Marmarou impact acceleration model was developed to study the mechanical responses induced by this model and their correlation to traumatic axonal injury (TAI). Traumatic brain injury (TBI) was induced in 31 anesthetized male Sprague-Dawley rats (392±13 g) by a custom-made 450-g impactor from heights of 1.25 m or 2.25 m. An accelerometer and angular rate sensor measured the linear and angular responses of the head, while the impact event was captured by a high-speed video camera. TAI distribution along the rostro-caudal direction, as well as across the left and right hemispheres, was determined using β-amyloid precursor protein (β-APP) immunocytochemistry, and detailed TAI injury maps were constructed for the entire corpus callosum. Peak linear acceleration 1.25 m and 2.25 m impacts were 666±165 g and 907±501 g, respectively. Peak angular velocities were 95±24 rad/sec and 124±48 rad/sec, respectively. Compared to the 2.25-m group, the observed TAI counts in the 1.25-m impact group were significantly lower. Average linear acceleration, peak angular velocity, average angular acceleration, and surface righting time were also significantly different between the two groups. A positive correlation was observed between normalized total TAI counts and average linear acceleration (R(2)=0.612, plinear and angular acceleration response of the rat head during impact, not necessarily the drop height.

  18. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  19. Characteristic modeling and the control of flexible structure

    Institute of Scientific and Technical Information of China (English)

    吴宏鑫; 刘一武; 刘忠汉; 解永春

    2001-01-01

    Appropriate modeling for a controlled plant has been a remarkable problem in the control field. A new modeling theory, i.e. characteristic modeling, is roundly demonstrated. It is deduced in detail that a general linear constant high_order system can be equivalently described with a two_order time_varying difference equation. The application of the characteristic modeling method to the control of flexible structure is also introduced. Especially, as an example, the Hubble Space Telescope is used to illustrate the application of the characteristic modeling and adaptive control method proposed in this paper.

  20. Modeling and Measurement of Image Sensor Characteristics

    OpenAIRE

    K. Fliegel

    2004-01-01

    The optical transfer function (OTF), as an objective measure of the quality of optical and electro-optical systems, is closely related to the point spread function (PSF) and other derived characteristics, such as the modulation transfer function (MTF) and the phase transfer function (PTF). The paper focused to the use a generalized OTF, which is primarily dedicated to the description of linear space invariant systems (LSI), for the purpose of sampled structures of image sensors (e.g. CCD, CMO...

  1. An event-driven model simulating fundamental seismic characteristics with the use of cellular automata

    Science.gov (United States)

    Pavlou, L.; Georgoudas, I. G.; Sirakoulis, G. Ch.; Scordilis, E. M.; Andreadis, I.

    This paper presents an extensive simulation tool based on a Cellular Automata (CA) system that models fundamental seismic characteristics of a region. The CA-based dynamic model consists of cells-charges and it is used for the simulation of the earthquake process. The simulation tool has remarkably accelerated the response of the model by incorporating principles of the High Performance Computing (HPC). Extensive programming features of parallel computing have been applied, thus improving its processing effectiveness. The tool implements an enhanced (or hyper-) 2-dimensional version of the proposed CA model. Regional characteristics that depend on the seismic background of the area under study are assigned to the model with the application of a user-friendly software environment. The model is evaluated with real data that correspond to a circular region around Skyros Island, Greece, for different time periods, as for example one of 45 years (1901-1945). The enhanced 2-dimensional version of the model incorporates all principal characteristics of the 2-dimensional one, also including groups of CA cells that interact with others, located to a considerable distance in an attempt to simulate long-range interaction. The advanced simulation tool has been thoroughly evaluated. Several measurements have been made for different critical states, as well as for various cascade (earthquake) sizes, cell activities and different neighbourhood sizes. Simulation results qualitatively approach the Gutenberg-Richter (GR) scaling law and reveal fundamental characteristics of the system.

  2. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    CERN Document Server

    Fonseca, Ricardo A; Fiúza, Frederico; Davidson, Asher; Tsung, Frank S; Mori, Warren B; Silva, Luís O

    2013-01-01

    A new generation of laser wakefield accelerators, supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modeling for further understanding of the underlying physics and identification of optimal regimes, but large scale modeling of these scenarios is computationally heavy and requires efficient use of state-of-the-art Petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed / shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modeling of LWFA, demonstrating speedups of over 1 order of magni...

  3. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    Science.gov (United States)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  4. Dark Energy Models and Cosmic Acceleration with Anisotropic Universe in f(T) Gravity

    Science.gov (United States)

    Sharif, M.; Sehrish, Azeem

    2014-04-01

    This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshift for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models.

  5. Dark Energy Models and Cosmic Acceleration with Anisotropic Universe in f(T) Gravity

    International Nuclear Information System (INIS)

    This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshift for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models

  6. Maximal acceleration and radiative processes

    CERN Document Server

    Papini, Giorgio

    2015-01-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass $m$ has the upper limit $\\mathcal{A}_m=2mc^3/\\hbar$. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to $\\mathcal{A}_m$ and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws due to the maximal acceleration with that for particles in gravitational fields, we find that the model of Caianiello allows, in principle, the use of charged particles as tools to distinguish inertial from gravitational fields locally.

  7. Maximal acceleration and radiative processes

    Science.gov (United States)

    Papini, Giorgio

    2015-08-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass m has the upper limit 𝒜m = 2mc3/ℏ. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to 𝒜m and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws due to the maximal acceleration (MA) with that for particles in gravitational fields, we find that the model of Caianiello allows, in principle, the use of charged particles as tools to distinguish inertial from gravitational fields locally.

  8. A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Masson, S.; Antiochos, S. K. [Space Weather Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: sophie.masson@nasa.gov [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2013-07-10

    We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

  9. Slow Solar Wind: Observable Characteristics for Constraining Modelling

    Science.gov (United States)

    Ofman, L.; Abbo, L.; Antiochos, S. K.; Hansteen, V. H.; Harra, L.; Ko, Y. K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y. M.

    2015-12-01

    The Slow Solar Wind (SSW) origin is an open issue in the post SOHO era and forms a major objective for planned future missions such as the Solar Orbiter and Solar Probe Plus.Results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in-situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW.Advances models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.Nevertheless, there are still debated questions such as:What are the source regions of SSW? What are their contributions to the SSW?Which is the role of the magnetic topology in corona for the origin, acceleration and energy deposition of SSW?Which are the possible acceleration and heating mechanisms for the SSW?The aim of this study is to present the insights on the SSW origin and formationarisen during the discussions at the International Space Science Institute (ISSI) by the Team entitled ''Slowsolar wind sources and acceleration mechanisms in the corona'' held in Bern (Switzerland) in March2014--2015. The attached figure will be presented to summarize the different hypotheses of the SSW formation.

  10. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice.

    Science.gov (United States)

    Takeda, Toshio

    2009-04-01

    The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders. PMID:19199030

  11. Modeling of spectral characteristics of blue LEDs

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2010-01-01

    are expected to vary with current and junction temperature. Commercial high power blue LEDs were measured with respect to spectral distribution and chromaticity and the result was compared with the model predictions. We have found that the models predict significantly different results with respect...

  12. The Fluka Linebuilder and Element Database: Tools for Building Complex Models of Accelerators Beam Lines

    CERN Document Server

    Mereghetti, A; Cerutti, F; Versaci, R; Vlachoudis, V

    2012-01-01

    Extended FLUKA models of accelerator beam lines can be extremely complex: heavy to manipulate, poorly versatile and prone to mismatched positioning. We developed a framework capable of creating the FLUKA model of an arbitrary portion of a given accelerator, starting from the optics configuration and a few other information provided by the user. The framework includes a builder (LineBuilder), an element database and a series of configuration and analysis scripts. The LineBuilder is a Python program aimed at dynamically assembling complex FLUKA models of accelerator beam lines: positions, magnetic fields and scorings are automatically set up, and geometry details such as apertures of collimators, tilting and misalignment of elements, beam pipes and tunnel geometries can be entered at user’s will. The element database (FEDB) is a collection of detailed FLUKA geometry models of machine elements. This framework has been widely used for recent LHC and SPS beam-machine interaction studies at CERN, and led to a dra...

  13. From Behavioral Psychology to Acceleration Modeling: Calibration, Validation, and Exploration of Drivers Cognitive and Safety Parameters in a Risk-Taking Environment

    CERN Document Server

    Hamdar, Samer H; Treiber, Martin

    2014-01-01

    We investigate a utility-based approach for driver car-following behavioral modeling while analyzing different aspects of the model characteristics especially in terms of capturing different fundamental diagram regions and safety proxy indices. The adopted model came from an elementary thought where drivers associate subjective utilities for accelerations (i.e. gain in travel times) and subjective dis-utilities for decelerations (i.e. loss in travel time) with a perceived probability of being involved in rear-end collision crashes. Following the testing of the model general structure, the authors translate the corresponding behavioral psychology theory - prospect theory - into an efficientmicroscopic traffic modeling with more elaborate stochastic characteristics considered in a risk-taking environment. The formulated model offers a better understanding of drivers behavior, particularly under extreme/incident conditions.

  14. Experiments with Orbit-Spin Coupling Accelerations in a Mars General Circulation Model

    Science.gov (United States)

    Mischna, M. A.; Shirley, J. H.; Newman, C. E.

    2014-12-01

    We explore the hypothesis that year-to-year differences in the orbital angular momentum of Mars [Shirley, this meeting] can contribute to the interannual variability of the Mars climate. For much of the year, the seasonal cycle of the atmospheric circulation is highly repeatable, being driven by global insolation patterns; however, during southern summer (the 'dust storm season'), the atmosphere is more highly variable from year-to-year. The processes underlying this variability are not yet clear. As a means of addressing this uncertainty, we explore the possibility that the root cause may be extrinsic to the atmospheric system itself. Recent work has uncovered a mechanism for a coupling of Mars' orbital and rotational motions that yields heretofore-unsuspected accelerations on the martian atmosphere. These accelerations, while instantaneously small (on the order of 10-5 ms-2), may cumulatively yield wind velocity changes of several 10s of ms-1 on seasonal timescales. Here, we use the MarsWRF general circulation model to examine the effect of these newly identified coupling term accelerations (CTAs) on Mars' atmospheric circulation. The accelerations vary significantly with time, and exhibit variable phasing with respect to Mars' annual cycle. We have run MarsWRF with the inclusion of the additional accelerations for a range of years from MY -16 (1924) to MY 34 (2018). We find that interannual variability in the model output derives largely from differences in the sign and magnitude of the CTAs, confirming one of the predictions of the physical hypothesis. During certain seasons the overall circulation is strengthened by the CTAs, while at other times the CTAs disappear. Resultant surface wind stresses, which are a function of the near-surface winds, are enhanced during periods when the CTAs attain maximum values. We have begun to explore the relationship between the CTAs and the martian dust cycle through its influence on these surface stresses.

  15. Experimental Validation of a Branched Solution Model for Magnetosonic Ionization Waves in Plasma Accelerators

    Science.gov (United States)

    Underwood, Thomas; Loebner, Keith; Cappelli, Mark

    2015-11-01

    Detailed measurements of the thermodynamic and electrodynamic plasma state variables within the plume of a pulsed plasma accelerator are presented. A quadruple Langmuir probe operating in current-saturation mode is used to obtain time resolved measurements of the plasma density, temperature, potential, and velocity along the central axis of the accelerator. This data is used in conjunction with a fast-framing, intensified CCD camera to develop and validate a model predicting the existence of two distinct types of ionization waves corresponding to the upper and lower solution branches of the Hugoniot curve. A deviation of less than 8% is observed between the quasi-steady, one-dimensional theoretical model and the experimentally measured plume velocity. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  16. The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

    Directory of Open Access Journals (Sweden)

    Abdalla Ahmed Abdel-Ghaly

    2016-06-01

    Full Text Available This paper suggests the use of the conditional probability integral transformation (CPIT method as a goodness of fit (GOF technique in the field of accelerated life testing (ALT, specifically for validating the underlying distributional assumption in accelerated failure time (AFT model. The method is based on transforming the data into independent and identically distributed (i.i.d Uniform (0, 1 random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.

  17. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    Science.gov (United States)

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  18. Plasmas in particle accelerators: a hydrodynamic model of three-dimensional electrostatic instabilities

    International Nuclear Information System (INIS)

    A hydrodynamic model is used to help isolate possible three dimensional space charge instabilities in beam plasmas of concern in designing heavy ion accelerators for inertial confinement fusion energy applications. The model provides an economic means for searching the large parameter space relevant to problems in which coupling of longitudinal and transverse motions is allowed. It is shown that the equilibrium axial hydrodynamic pressure of the beam plasma has a significant effect on the stability boundaries of a two-rotating-stream instability. When considering the resistive wall effect, this model shows a kink instability. The growth rate of some modes could be enhanced by increasing the equilibrium axial pressure

  19. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Pesaran, Ahmad A.

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  20. Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence

    Institute of Scientific and Technical Information of China (English)

    SUN HongGuang; CHEN Wen

    2009-01-01

    The Tsallis distribution and the stretched exponential distribution were successfully used to fit the experimental data of turbulence particle acceleration published in Nature (2001), which manifested a clear departure from the normal distribution. These studies, however, fall short of a clear physical mechanism behind the statistical phenomenological description. In this study, we propose a multi-scale diffusion model which considers both normal diffusion in molecular-scale and anomalous diffu-sion in vortex-scale, and the latter is described by a novel fractal derivative modeling approach. This multi-scale model gives rise to a new probability density function which fits experimental data very well.

  1. Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Tsallis distribution and the stretched exponential distribution were successfully used to fit the experimental data of turbulence particle acceleration published in Nature (2001), which manifested a clear departure from the normal distribution. These studies, however, fall short of a clear physical mechanism behind the statistical phenomenological description. In this study, we propose a multi- scale diffusion model which considers both normal diffusion in molecular-scale and anomalous diffu- sion in vortex-scale, and the latter is described by a novel fractal derivative modeling approach. This multi-scale model gives rise to a new probability density function which fits experimental data very well.

  2. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    CERN Document Server

    Dalena, S; Dmitruk, P; Greco, A; Matthaeus, W H

    2014-01-01

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares, nevertheless acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multi-scale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely from the ion inertial scale of the order of a meter up to macroscopic scales of the order of $10\\,$km ...

  3. Rehydration characteristics and modeling of cassava chips

    Directory of Open Access Journals (Sweden)

    Ajala, A.S

    2015-05-01

    Full Text Available Cassava chips with dimension 4x2x0.2cm were re-hydrated in distilled water at 200C, 300C and 400C in a laboratory water bath. Kinetics of re-hydration was investigated using three different re-hydration models namely Peleg, exponential and Weibull. The pattern of water absorption was observed to be faster at the initial period of soaking. Higher temperature induces faster moisture absorption in the chips. Non linear regression analysis was used to fit in the experimental data and the coefficient of determination was found to be greater than 0.72 for all the models. The values of R2 , RMSE, MBE and reduced chi square showed that Weibull model best described the re-hydrating behaviour of the cassava chips.

  4. Modeling the Impact and Costs of Semiannual Mass Drug Administration for Accelerated Elimination of Lymphatic Filariasis

    OpenAIRE

    Stolk, Wilma; Bosch, Quirine; De Vlas, Sake,; Fischer, Peter; Weil, Gary; Goldman, Ann

    2013-01-01

    textabstractThe Global Program to Eliminate Lymphatic Filariasis (LF) has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA) programs. Acceleration is needed. We studied how increasing MDA frequency from once to twice per year would affect program duration and costs by using computer simulation modeling and cost projections. We used the LYMFASIM simul...

  5. GUERRILLA INNOVATION — THE ACCELERATED RADICAL INNOVATION MODEL MEETS THE REAL WORLD

    OpenAIRE

    JOHN A. BERS; JOHN P. DISMUKES

    2012-01-01

    The Accelerated Radical Innovation (ARI) methodology, an integrated approach to shepherding radical innovation from initial concept through commercialization, was compared to the approach used by an investor-funded seed-stage innovation incubation firm. Similarities include traversal of the same major stages of innovation, emphasis on front-end analysis before escalating commitments, and using an extended "probe-and-learn" process. Key differences were in emphasis. The ARI model relies on ana...

  6. Determination of a gravity field model from one month of CHAMP satellite data using accelerations

    OpenAIRE

    Abt, Tin Lian

    2004-01-01

    A gravity field model has been estimated based on reduced dynamic and kinematic state vectors of CHAMP. Newton Interpolation has been used to calculate accelerations and Least-Squares Collocation to estimate the spherical harmonic coefficients. During data preprocessing positions and velocities of the reduced dynamic and kinematic state vectors are synchronized so that two corresponding data sets of one month (July 2002) with a sampling rate of 30s are achieved. Observations where the kine...

  7. Response Surface Modeling and Optimization of Accelerated Solvent Extraction of Four Lignans from Fructus Schisandrae

    OpenAIRE

    Jian Liang; Qian-Li Tang; Wei Li; Geng-Liang Yang; Xin Deng; Ying He; Li-Chun Zhao

    2012-01-01

    A new method based on accelerated solvent extraction (ASE) combined with response surface methodology (RSM) modeling and optimization has been developed for the extraction of four lignans in Fructus Schisandrae (the fruits of Schisandra chinensis Baill). The RSM method, based on a three level and three variable Box-Behnken design (BBD), was employed to obtain the optimal combination of extraction condition. In brief, the lignans schizandrin, schisandrol B, deoxyschizandrin and schisandrin B w...

  8. The Importance of Simulation Workflow and Data Management in the Accelerated Climate Modeling for Energy Project

    Science.gov (United States)

    Bader, D. C.

    2015-12-01

    The Accelerated Climate Modeling for Energy (ACME) Project is concluding its first year. Supported by the Office of Science in the U.S. Department of Energy (DOE), its vision is to be "an ongoing, state-of-the-science Earth system modeling, modeling simulation and prediction project that optimizes the use of DOE laboratory resources to meet the science needs of the nation and the mission needs of DOE." Included in the "laboratory resources," is a large investment in computational, network and information technologies that will be utilized to both build better and more accurate climate models and broadly disseminate the data they generate. Current model diagnostic analysis and data dissemination technologies will not scale to the size of the simulations and the complexity of the models envisioned by ACME and other top tier international modeling centers. In this talk, the ACME Workflow component plans to meet these future needs will be described and early implementation examples will be highlighted.

  9. A Mathematical Model of T1D Acceleration and Delay by Viral Infection.

    Science.gov (United States)

    Moore, James R; Adler, Fred

    2016-03-01

    Type 1 diabetes (T1D) is often triggered by a viral infection, but the T1D prevalence is rising among populations that have a lower exposure to viral infection. In an animal model of T1D, the NOD mouse, viral infection at different ages may either accelerate or delay disease depending on the age of infection and the type of virus. Viral infection may affect the progression of T1D via multiple mechanisms: triggering inflammation, bystander activation of self-reactive T-cells, inducing a competitive immune response, or inducing a regulatory immune response. In this paper, we create mathematical models of the interaction of viral infection with T1D progression, incorporating each of these four mechanisms. Our goal is to understand how each viral mechanism interacts with the age of infection. The model predicts that each viral mechanism has a unique pattern of interaction with disease progression. Viral inflammation always accelerates disease, but the effect decreases with age of infection. Bystander activation has little effect at younger ages and actually decreases incidence at later ages while accelerating disease in mice that do get the disease. A competitive immune response to infection can decrease incidence at young ages and increase it at older ages, with the effect decreasing over time. Finally, an induced Treg response decreases incidence at any age of infection, but the effect decreases with age. Some of these patterns resemble those seen experimentally. PMID:27030351

  10. Recent Advances and Some Results in Plasma-Based Accelerator Modeling

    Science.gov (United States)

    Mori, W. B.

    2002-12-01

    Simulation, using particle-in-cell (PIC) methods, has played a critical role in the evolution of the field of plasma-based acceleration. Early on, simulations allowed the testing of new ideas using so-called cartoon parameters. These simulations were done in either one or two-dimensions using single processor supercomputers. Through the development of new algorithms and parallel computing, today, we can now use PIC simulations to model the full-scale of ongoing experiments in three-dimensions. These experiments are attempting to accelerate electrons to ˜1 GeV. In this article, I will present recent results in which simulation results are compared to experiment and I will discuss the future challenges in advanced accelerator modeling. Principally, these are 1.) to be able to model a 100+ on 100+ GeV collider in three-dimensions and, 2.) to develop more efficient, yet still accurate, algorithms so that simulation can be used for real-time feedback with experiment.

  11. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2016-07-01

    Full Text Available This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  12. Reconciling the Characteristics vs. Factors Models for Explaining Stock Returns

    Directory of Open Access Journals (Sweden)

    Lt Col Brian C. Payne

    2015-02-01

    Full Text Available Daniel and Titman (DT (1997 disclaim the Fama-French three factor model in favor of a firm characteristics based model to explain stock returns. Davis, Fama, and French (2000 find this characteristics-based model outperforms their model only for the 20.5 year time period from July 1973-December 1993, but the three factor model is robust for the 68-year period from 1929-1997. We find the DT period represents a unique macroeconomic environment in that significant interaction effects exist between the default (and term risk premia innovations and returns. Incorporating these effects into a traditional three-factor model help explain the 1973-1993 “characteristics model puzzle,” providing insight into market returns for portfolio managers during economic environments comparable to the DT period.

  13. Senescence-accelerated mouse (SAM): a novel murine model of senescence.

    Science.gov (United States)

    Takeda, T; Hosokawa, M; Higuchi, K

    1997-01-01

    The Senescence-Accelerated Mouse (SAM) has been under development by our research team at Kyoto University since 1970 through the selective inbreeding of the AKR/J strain of mice donated by the Jackson Laboratory in 1968, based on a graded score for senescence, life span, and pathologic phenotype. At present, there are 12 lines of SAM: nine senescence-prone inbred strains (SAMP) including SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10, and SAMP11; and three senescence-resistant inbred strains (SAMR) including SAMR1, SAMR4, and SAMR5. Data from survival curves, Gompertzian function, and grading score of senescence, together with growth patterns of body weight of these SAMP and SAMR, revealed that the characteristic feature of aging common to all SAMP mice is "accelerated senescence;" early onset and irreversible advance of senescence manifested by several signs and gross lesions such as the loss of normal behavior, various skin lesions, increased lordokyphosis, etc., after a period of normal development. In the course of SAM development, it became evident that SAMP strains manifest various pathologic phenotypes that are characteristic enough to differentiate the SAM strains. The genetic background and significance of SAM development are discussed. PMID:9088907

  14. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  15. Study of the characteristics of neutron monitor area applied to the evaluation of dose rates in a 15 MeV radiotherapy accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Candido M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica]. E-mail: candido_1998@yahoo.com; Patrao, Karla C.S.; Pereira, Walsan W.; Fonseca, Evaldo S.; Giannoni, Ricardo A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons]. E-mails: karla@ird.gov.br; walsan@ird.gov.br; Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Setor de Fisica Medica]. E-mail: delano@inca.gov.br

    2007-07-01

    Currently, in Radiotherapy, the use of linear accelerators is becoming each time more common. From Radiation Protection point of view, these instruments represent an advance in relation to the cobalt and caesium irradiators, mainly due to absence of the radioactive material. On the other hand, accelerators with the energies superior to 10 MeV produce contamination of the therapeutic beam with the presence of neutrons generated in the interaction of high-energy photons with high atomic number materials from the own irradiator. The present work carries through measurements in a linear accelerator of 15 MeV using three neutron area monitors for a comparison of the response of these instruments, evaluating its adequacy to this measurement. Characteristics of use and operation associates to parameters such as: monitor dead time, monitor gamma rejection, and calibration results are also analyzed in this study. (author)

  16. Model calibration criteria for estimating ecological flow characteristics

    Science.gov (United States)

    Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William; Seibert, Jan; Breuer, Lutz; Kraft, Philipp

    2016-01-01

    Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.

  17. A model for emission from jets in X-ray binaries: consequences of a single acceleration episode

    NARCIS (Netherlands)

    A. Pe'er; P. Casella

    2009-01-01

    There is strong evidence for powerful jets in the low/hard state of black hole X-ray binaries (BHXRBs). Here, we present a model in which electrons are accelerated once at the base of the jet, and are cooled by synchrotron emission and possible adiabatic energy losses. The accelerated electrons assu

  18. Seismicity acceleration model and its application to several earthquake regions in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan-Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole-Tuokexun, Ayinke-Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant αin model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present.

  19. High Tc Superconductor Theoretical Models and Electromagnetic Flux Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-xun

    2006-01-01

    High Tc Superconductors (HTS) have special electromagnetic characteristics and phenomena. Effort has been made in order to theoretically understand the applied HTS superconductivity and HTS behaviors for practical applications, various theoretical models related to the HTS electromagnetic properties have been developed. The theoretical models and analytic methods are summarized with regard to understanding the HTS magnetic flux characteristic which is one of the most critical issues related to HTS applications such as for HTS magnetic levitation application.

  20. Particle acceleration and radiation in flaring complex solar active regions modeled by cellular automata

    Science.gov (United States)

    Dauphin, C.; Vilmer, N.; Anastasiadis, A.

    2007-06-01

    Context: We study the acceleration and radiation of electrons and ions interacting with multiple small-scale dissipation regions resulting from the magnetic energy release process. Aims: We aim to calculate the distribution functions of the kinetic energy of the particles and the X-ray spectra and γ-ray fluxes produced by the accelerated particles. Methods: The evolution of the magnetic energy released in an active region is mimicked by a cellular automaton model based on the concept of self-organized criticality. Each burst of magnetic energy release is associated with a reconnecting current sheet (RCS) in which the particles are accelerated by a direct electric field. Results: We calculate the energy gain of the particles (ions and electrons) for three different magnetic configurations of the RCS after their interactions with a given number of RCS. We finally compare our results with existing observations. Conclusions: The results of our simulation can reproduce several properties of the observations such as variable electron and ion energy contents and γ-ray line ratio. Even if very flat X-ray spectra have been reported in a few events, the X-ray spectra produced in this model are too flat when compared to most X-ray observations.

  1. Thin-Layer Drying Characteristics and Modeling of Chinese Jujubes

    Directory of Open Access Journals (Sweden)

    Xiao-Kang Yi

    2012-01-01

    Full Text Available A mathematical modeling of thin-layer drying of jujubes in a convective dryer was established under controlled conditions of temperature and velocity. The drying process took place both in the accelerating rate and falling rate period. We observed that higher temperature reduced the drying time, indicating higher drying rates of jujubes. The experimental drying data of jujubes were used to fit ten different thin-layer models, then drying rate constants and coefficients of models tested were determined by nonlinear regression analysis using the Statistical Computer Program. As for all the drying models, the Weibull distribution model was superior and best predicted the experimental values. Therefore, this model can be used to facilitate dryer design and promote efficient dryer operation by simulation and optimization of the drying processes. The volumetric shrinkable coefficient of jujubes decreased as the drying air temperature increased.

  2. Early acceleration and adiabatic matter perturbations in a class of dilatonic dark-energy models

    OpenAIRE

    Amendola, L.; Gasperini, M.; Tocchini-Valentini, D.; Ungarelli, C.

    2002-01-01

    We estimate the growth of matter perturbations in a class of recently proposed dark-energy models based on the (loop-corrected) gravi-dilaton string effective action, and characterized by a global attractor epoch in which dark-matter and dark-energy density scale with the same effective equation of state. Unlike most dark-energy models, we find that the accelerated phase might start even at redshifts as high as z~5 (thus relaxing the coincidence problem), while still producing at present an a...

  3. Particle spectra and efficiency in nonlinear relativistic shock acceleration: survey of scattering models

    CERN Document Server

    Ellison, Donald C; Bykov, Andrei M

    2015-01-01

    We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...

  4. Accelerating 3D Visualization in Reservoir Modeling System with Programmable Hardware

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-05-01

    Full Text Available This study presents a new method on 3D visualization in reservoir modeling system by using the computation power of modern programmable Graphics hardware (GPU. The proposed scheme is devised to achieve parallel processing of massive reservoir logging data. By taking advantage of the GPU's parallel processing capability, moreover, the performance of our scheme is discussed in comparison with that of the implementation entirely running on CPU. Experimental results clearly show that the proposed parallel processing can remarkably accelerate the data clustering task. Especially, although data-transferring from GPU to CPU is generally costly, acceleration by GPU is significant to save the total execution time of data-clustering and also significantly alleviates the computing load on CPU.

  5. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    Energy Technology Data Exchange (ETDEWEB)

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  6. Intelligent control based on intelligent characteristic model and its application

    Institute of Scientific and Technical Information of China (English)

    吴宏鑫; 王迎春; 邢琰

    2003-01-01

    This paper presents a new intelligent control method based on intelligent characteristic model for a kind of complicated plant with nonlinearities and uncertainties, whose controlled output variables cannot be measured on line continuously. The basic idea of this method is to utilize intelligent techniques to form the characteristic model of the controlled plant according to the principle of combining the char-acteristics of the plant with the control requirements, and then to present a new design method of intelli-gent controller based on this characteristic model. First, the modeling principles and expression of the intelligent characteristic model are presented. Then based on description of the intelligent characteristic model, the design principles and methods of the intelligent controller composed of several open-loops and closed-loops sub controllers with qualitative and quantitative information are given. Finally, the ap-plication of this method in alumina concentration control in the real aluminum electrolytic process is in-troduced. It is proved in practice that the above methods not only are easy to implement in engineering design but also avoid the trial-and-error of general intelligent controllers. It has taken better effect in the following application: achieving long-term stable control of low alumina concentration and increasing the controlled ratio of anode effect greatly from 60% to 80%.

  7. Rate equation modelling and investigation of quantum cascade detector characteristics

    Science.gov (United States)

    Saha, Sumit; Kumar, Jitendra

    2016-10-01

    A simple precise transport model has been proposed using rate equation approach for the characterization of a quantum cascade detector. The resonant tunneling transport is incorporated in the rate equation model through a resonant tunneling current density term. All the major scattering processes are included in the rate equation model. The effect of temperature on the quantum cascade detector characteristics has been examined considering the temperature dependent band parameters and the carrier scattering processes. Incorporation of the resonant tunneling process in the rate equation model improves the detector performance appreciably and reproduces the detector characteristics within experimental accuracy.

  8. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    CERN Document Server

    Lee, Shiu-Hang; Ellison, Donald C

    2008-01-01

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occuring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to devel...

  9. Dark Energy or Apparent Acceleration Due to a Relativistic Cosmological Model More Complex than FLRW?

    CERN Document Server

    Ishak, Mustapha; Whittington, Delilah; Garred, David

    2007-01-01

    We use the Szekeres inhomogeneous relativistic models in order to fit supernova combined data sets. We show that with a choice of the spatial curvature function that is guided by current observations, the models fit the supernova data as well as the LCDM model without requiring any dark energy component. The Szekeres models were originally derived as an exact solution to Einstein's equations with a general metric that has no symmetries and are regarded in the field as good candidates to represent the true lumpy universe that we observe. The best fit model found is also consistent with the requirement of spatial flatness at CMB scales. While more work remains, the result presented in this first paper appears to support the possibility of apparent acceleration.

  10. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    Science.gov (United States)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  11. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    International Nuclear Information System (INIS)

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators

  12. A GENERALIZED MODEL OF NONLINEAR DIFFUSIVE SHOCK ACCELERATION COUPLED TO AN EVOLVING SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang; Nagataki, Shigehiro [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ellison, Donald C., E-mail: lee@yukawa.kyoto-u.ac.jp, E-mail: nagataki@yukawa.kyoto-u.ac.jp, E-mail: don_ellison@ncsu.edu [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States)

    2012-05-10

    To better model the efficient production of cosmic rays (CRs) in supernova remnants (SNRs) with the associated coupling between CR production and SNR dynamics, we have generalized an existing cr-hydro-NEI code to include the following processes: (1) an explicit calculation of the upstream precursor structure including the position-dependent flow speed, density, temperature, and magnetic field strength; (2) a momentum- and space-dependent CR diffusion coefficient; (3) an explicit calculation of magnetic field amplification; (4) calculation of the maximum CR momentum using the amplified magnetic field; (5) a finite Alfven speed for the particle scattering centers; and (6) the ability to accelerate a superthermal seed population of CRs, as well as the ambient thermal plasma. While a great deal of work has been done modeling SNRs, most work has concentrated on either the continuum emission from relativistic electrons or ions or the thermal emission from the shock heated plasma. Our generalized code combines these elements and describes the interplay between CR production and SNR evolution, including the nonlinear coupling of efficient diffusive shock acceleration, based mainly on the work of P. Blasi and coworkers, and a non-equilibrium ionization (NEI) calculation of thermal X-ray line emission. We believe that our generalized model will provide a consistent modeling platform for SNRs, including those interacting with molecular clouds, and improve the interpretation of current and future observations, including the high-quality spectra expected from Astro-H. SNR RX J1713.7-3946 is modeled as an example.

  13. Accelerating dark energy models with anisotropic fluid in Bianchi type-$VI_{0}$ space-time

    CERN Document Server

    Pradhan, Anirudh

    2012-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, we have discussed some features of the Bianchi type-$VI_{0}$ universes in the presence of a fluid that wields an anisotropic equation of state (EoS) parameter in general relativity. We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type-$VI_{0}$ space-time. To prevail the deterministic solution we choose the scale factor $a(t) = \\sqrt{t^{n}e^{t}}$, which yields a time-dependent deceleration parameter (DP), representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase. Under the suitable condition, the anisotropic models approach to isotropic scenario. The EoS for dark energy $\\omega$ is found to be time-dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. 2003), SNe Ia...

  14. Turbulence modeling for mass transfer in separated and reattaching flows for flow-accelerated corrosion

    International Nuclear Information System (INIS)

    Three low Reynolds number (LRN) k-ω models, one LRN k-ω model and the k-ω SST model are tested with OpenFOAM for the computation of high-Schmidt- number mass transfer in the flow-accelerated corrosion (FAC), especially for the separated and reattaching flow. Three types of flow are selected for the test of models: 1) the fully developed pipe flow, 2) the axisymmetric flow with an abrupt expansion, 3) the flow through an orifice. The model developed with the aid of direct numerical simulation (DNS) data, the Hwang-Lin model, shows a good performance in the fully developed pipe flow, but its prediction in the latter two flows is far from reliable. The LRN k-ω model and the k-ω SST model predict a low mass transfer rate for all three types of flow. The Lam- Bremhorst model shows abnormal behavior at the reattaching point. Synthetically evaluating all the models in all the computed case, the Abe-Kondoh-Nagano model is the best one; however, the prediction is still not satisfactory. (author)

  15. Observation and Modeling of a Termination Shock in a Solar Eruption as a Possible Particle Accelerator

    Science.gov (United States)

    Gary, Dale E.; Chen, Bin; Bastian, Timothy S.; Shen, Chengcai; Krucker, Sam

    2015-04-01

    Solar eruptions and their associated solar flares are the most energetic particle accelerators in our solar system. Yet the acceleration mechanism remains uncertain. A possible candidate often invoked in the standard picture of solar eruptions is a termination shock, produced by fast reconnection outflows impinging upon dense, closed loops in a helmet-type geometry. However, the importance of termination shocks in solar particle acceleration remains controversial, mainly because there has been no direct detection of such shocks. Here we report direct imaging of the location and evolution of a termination shock during the rise phase of a solar eruption. The shock appears at radio wavelengths as a narrow surface sandwiched between multitudes of downward-moving plasma blobs and the underlying, newly-reconnected flaring loops, and evolves coherently with a loop-top hard X-ray source in the shock downstream region. The shock produces many short-lived, point-like radio sources, each interpreted as emission from a turbulence cell interacting with fast (nonthermal) electrons. These point-like radio sources clearly outline the termination shock front and their positions change in reaction to the arrival of the fast plasma blobs, which are well-reproduced by our numerical simulations based on a resistive magnetohydrodynamics reconnection model in a standard two-ribbon flare geometry. We further show that a temporary disruption of the shock coincides with a reduction of radio and hard X-ray emission associated with the energetic electron population. Our observations strongly favor a scenario in which the termination shock is responsible for accelerating electrons to high energies.

  16. Modelling and simulation of dynamic characteristics of CANDU-SCWR

    International Nuclear Information System (INIS)

    Owing to the thermal properties of supercritical water and features of heat transfer correlation under supercritical pressure, a detailed thermal-hydraulic model with movable boundary of is developed for CANDU-SCWR (Supercritical Water-Cooled Reactor). Steady-state results of the model agree well with the design data. The dynamic responses of CANDU-SCWR to different disturbances are simulated and characteristics are analyzed. A dynamic model for ACR is also developed using CATHENA. Differences between dynamic characteristics of CANDU-SCWR and those of ACR are highlighted and investigated. It is concluded that CANDU-SCWR has a larger time constant, but with a higher response amplitude. (author)

  17. Statistical Characteristics of the Received Signal for Stochastic Surface Models

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes the stochastic model of the scattered electromagnetic field.Unlike common-used functional-determined models the proposed is characterised by amplitude/phase fluctuation of the received signal.This paper derives the statistical characteristic of the input signal and describes algorithm for its estimation in post-processing and real-time processing modes.Achieved characteristics allow the mapping and estimation of the surface models more accurate,moreover,such processing increase space resolution of synthetic aperture radar.

  18. Characteristic earthquake model, 1884 -- 2011, R.I.P

    CERN Document Server

    Kagan, Yan Y; Geller, Robert J

    2012-01-01

    Unfortunately, working scientists sometimes reflexively continue to use "buzz phrases" grounded in once prevalent paradigms that have been subsequently refuted. This can impede both earthquake research and hazard mitigation. Well-worn seismological buzz phrases include "earthquake cycle," "seismic cycle," "seismic gap," and "characteristic earthquake." They all assume that there are sequences of earthquakes that are nearly identical except for the times of their occurrence. If so, the complex process of earthquake occurrence could be reduced to a description of one "characteristic" earthquake plus the times of the others in the sequence. A common additional assumption is that characteristic earthquakes dominate the displacement on fault or plate boundary "segments." The "seismic gap" (or the effectively equivalent "seismic cycle") model depends entirely on the "characteristic" assumption, with the added assumption that characteristic earthquakes are quasi-periodic. However, since the 1990s numerous statistica...

  19. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Science.gov (United States)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  20. Microwave accelerated synthesis of isoxazole hydrazide inhibitors of the system xc- transporter: Initial homology model.

    Science.gov (United States)

    Matti, Afnan A; Mirzaei, Joseph; Rudolph, John; Smith, Stephen A; Newell, Jayme L; Patel, Sarjubhai A; Braden, Michael R; Bridges, Richard J; Natale, Nicholas R

    2013-11-01

    Microwave accelerated reaction system (MARS) technology provided a good method to obtain selective and open isoxazole ligands that bind to and inhibit the Sxc- antiporter. The MARS provided numerous advantages, including: shorter time, better yield and higher purity of the product. Of the newly synthesized series of isoxazoles the salicyl hydrazide 6 exhibited the highest level of inhibitory activity in the transport assay. A homology model has been developed to summarize the SAR results to date, and provide a working hypothesis for future studies.

  1. Characteristic and Counting Polynomials: Modelling Nonane Isomers Properties

    OpenAIRE

    Jäntschi, Lorentz; BOLBOACA, Sorana D.; FURDUI, Cristina Maria

    2009-01-01

    Abstract The major goal of this study was to investigate the broad application of graph polynomials to the analysis of Henry?s law constants (solubility) of nonane isomers. In this context, Henry?s law constants of nonane isomers were modelled using characteristic and counting polynomials. The characteristic and counting polynomials on the distance matrix, on the maximal fragments matrix, on the complement of maximal fragments matrix, and on the Szeged matrix were calculated for ea...

  2. Acceleration response characteristics of a counter-rotating dual rotor system%反向旋转双转子系统加速响应特性研究

    Institute of Scientific and Technical Information of China (English)

    杨喜关; 罗贵火; 王飞; 唐振寰

    2014-01-01

    The acceleration response characteristics of a five-support counter-rotating dual-rotor system were studied.A transient dynamic model of the experimental counter-rotating dual-rotor system was established with finite element analysis software by using fixed interface modal synthesis method.The acceleration time-domain characteristics, the precession speed variation characteristics and the change laws of centroid of each disk in the rotor system were analyzed during an accelerating process.The study results show that:the acceleration response characteristics of various cross-sections have a close relation with critical speeds and mode shapes of the rotor system;complex nonsynchronous precession exists in the accelerating process;the centroid shifts of inner and outer rotors occur at their incentive critical speed respectively.Experimental verification was carried out,and the calculation results are in good agreement with experiment data.%以五支点双转子系统为研究对象,开展反向旋转双转子系统加速响应特性研究。结合有限元分析软件,利用固定界面模态综合法建立反向旋转双转子试验器的瞬态动力学模型,研究反向旋转双转子系统加速过程中加速时域特性、进动转速变化特性及内外转子盘质心变化规律。研究结果表明,转子各截面加速响应特性与系统各阶临界转速及振型有密切联系;加速过程中存在复杂的非协调进动;内、外转子分别在以各自为主激励的临界转速附近发生质心换向;经试验验证,试验数据与计算结果吻合性较好。

  3. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    Science.gov (United States)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  4. Accelerating dark energy models with anisotropic fluid in Bianchi type Ⅵ0 space-time

    Institute of Scientific and Technical Information of China (English)

    Anirudh Pradhan

    2013-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data,we have discussed some features of Bianchi type Ⅵ0 universes in the presence of a fluid that has an anisotropic equation of state (EoS) parameter in general relativity.We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type Ⅵ0 space-time.To ensure a deterministic solution,we choose the scale factor a(t) =(√tnet),which yields a time-dependent deceleration parameter,representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase.Under suitable conditions,the anisotropic models approach an isotropic scenario.The EoS for DE ω is found to be time-dependent and its existing range for derived models is in good agreement with data from recent observations of type Ⅰa supernovae (SNe Ⅰa) (Knop et al.2003),SNe Ⅰa data combined with cosmic microwave background (CMB) anisotropy and galaxy clustering statistics (Tegmark et al.2004a),as well as the latest combination of cosmological datasets coming from CMB anisotropies,luminosity distances of high redshift SNe Ⅰa and galaxy clustering.For different values of n,we can generate a class of physically viable DE models.The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e.the present epoch),which is corroborated by results from recent SN Ⅰa observations.We also observe that our solutions are stable.The physical and geometric aspects of both models are also discussed in detail.

  5. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona

    International Nuclear Information System (INIS)

    The acceleration of protons and electrons to high (sometimes GeV/nucleon) energies by solar phenomena is a key component of space weather. These solar energetic particle (SEP) events can damage spacecraft and communications, as well as present radiation hazards to humans. In-depth particle acceleration simulations have been performed for idealized magnetic fields for diffusive acceleration and particle propagation, and at the same time the quality of MHD simulations of coronal mass ejections (CMEs) has improved significantly. However, to date these two pieces of the same puzzle have remained largely decoupled. Such structures may contain not just a shock but also sizable sheath and pileup compression regions behind it, and may vary considerably with longitude and latitude based on the underlying coronal conditions. In this work, we have coupled results from a detailed global three-dimensional MHD time-dependent CME simulation to a global proton acceleration and transport model, in order to study time-dependent effects of SEP acceleration between 1.8 and 8 solar radii in the 2005 May 13 CME. We find that the source population is accelerated to at least 100 MeV, with distributions enhanced up to six orders of magnitude. Acceleration efficiency varies strongly along field lines probing different regions of the dynamically evolving CME, whose dynamics is influenced by the large-scale coronal magnetic field structure. We observe strong acceleration in sheath regions immediately behind the shock.

  6. History, development and characteristics of lake ecological models

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper provides some introductory information on the history, development, and characteristics of various lake ecosystem models.The modeling of lake ecological processes began to gain importance in the early 1960s. There are a number of models available today, with varying levels of complexity to cope with the variety of environmental problems found in lake environments, e.g. eutrophication, acidification,oxygen depletion, wetland management, heavy metal and pesticide pollution, as well as hydrodynamic problems. In particular, this paper focuses on lake eutrophication and wetland models, as well as addressing strategies appropriate for the design and development of reliable lake ecological models.

  7. Modelling of the water retention characteristic of deformable soils

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2016-01-01

    Full Text Available A recently proposed water retention model has been further developed for the application on unsaturated deformable soils. The physical mechanisms underpinning the water retention characteristic of soils was at first described in terms of traditional theories of capillarity and interfacial physical chemistry at pore level. Then upscaling to macroscopic level of material scale in terms of average volume theorem produces an analytical formula for the water retention characteristic. The methodology produces an explicit form of the water retention curve as a function of three state parameters: the suction, the degree-of-water-saturation and the void-ratio. At last, the model has been tested using experimental measurements.

  8. A non-hydrodynamical model for acceleration of line-driven winds in Active Galactic Nuclei

    CERN Document Server

    Risaliti, G

    2009-01-01

    We present a study of the acceleration phase of line-driven winds in AGNs, in order to examine the physical conditions for the existence of such winds for a wide variety of initial conditions. We built a simple and fast non-hydrodynamic model, QWIND, where we assume that a wind is launched from the accretion disc at supersonic velocities of the order of a few 10^2 km/s and we concentrate on the subsequent supersonic phase. We show that this model can produce a wind with terminal velocities of the order of 10^4 km/s. There are three zones in the wind, only the middle one of which can launch a wind: in the inner zone the wind is too ionized and so experiences only the Compton radiation force which is not effective in accelerating gas. This inner failed wind however plays an important role in shielding the next zone, lowering the ionization parameter there. In the middle zone the lower ionization of the gas leads to a much larger radiation force and the gas achieves escape velocity This middle zone is quite thin...

  9. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    Science.gov (United States)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  10. Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion.

    Science.gov (United States)

    Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product's performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner's ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters. PMID:27509499

  11. Late time acceleration in a non-commutative model of modified cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-12-12

    We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  12. Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections

    CERN Document Server

    Schrijver, C J; Kliem, B; Toeroek, T; Title, A M

    2007-01-01

    We examine the early phases of two near-limb filament destabilization involved in coronal mass ejections on 16 June and 27 July 2005, using high-resolution, high-cadence observations made with the Transition Region and Coronal Explorer (TRACE), complemented by coronagraphic observations by Mauna Loa and the SOlar and Heliospheric Observatory (SOHO). The filaments' heights above the solar limb in their rapid-acceleration phases are best characterized by a height dependence h(t) ~ t^m with m near, or slightly above, 3 for both events. Such profiles are incompatible with published results for breakout, MHD-instability, and catastrophe models. We show numerical simulations of the torus instability that approximate this height evolution in case a substantial initial velocity perturbation is applied to the developing instability. We argue that the sensitivity of magnetic instabilities to initial and boundary conditions requires higher fidelity modeling of all proposed mechanisms if observations of rise profiles are...

  13. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model

    Science.gov (United States)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie

    2016-05-01

    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  14. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    CERN Document Server

    da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats

    2015-01-01

    Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...

  15. Dark energy via multi-Higgs doublet models: accelerated expansion of the Universe in inert doublet model scenario

    CERN Document Server

    Usman, Muhammad

    2015-01-01

    Scalar fields are among the possible candidates for dark energy. This paper is devoted to the scalar fields from the inert doublet model, where instead of one as in the standard model, two SU(2) Higgs doublets are used. The component fields of one SU(2) doublet ($\\phi_1$) act in an identical way to the standard model Higgs while the component fields of the second SU(2) doublet ($\\phi_2$) are taken to be the dark energy candidate (which is done by assuming that the phase transition in the field has not yet occurred). It is found that one can arrange for late time acceleration (dark energy) by using an SU(2) Higgs doublet in the inert Higgs doublet model, whose vacuum expectation value is zero, in the quintessential regime.

  16. Study on turbulence characteristics of free surface flow for cooling of fusion reactors, accelerator targets and reactor safety

    International Nuclear Information System (INIS)

    For the development of innovative fusion reactors, we examine the film flow along the first wall to simplify blanket and reduce the cost. A film flow is formed in primary cooling circuits of the light water reactors (LWR) when the loss of coolant accident (LOCA) occurs and a cold water is injected into the primary systems. In order to estimate the interfacial condensation rate at the developing region, it is required to have the knowledge about interfacial turbulent thermal diffusion of a thick film flow. Therefore, these systems have the same problem of heat transfer and transport inside the film flows. It is necessary to investigate the velocity and turbulence characteristics that have a close relation to the heat transfer and transport. Although there have been performed various studies on turbulence structure having free surface in a fully developed flow region, the turbulence properties of the film flows in a developing flow region has not been investigated sufficiently. Thus, we measure the velocity profiles and velocity fluctuations in a developing flow region using Laser Doppler Velocimeter (LDV). Then, experimental data are compared with analytical result that is obtained using the k-ε model of turbulence. (author)

  17. The influences of model parameters on the characteristics of memristors

    Institute of Scientific and Technical Information of China (English)

    Zhou Jing; Huang Da

    2012-01-01

    As the fourth passive circuit component,a memristor is a nonlinear resistor that can "remember" the amount of charge passing through it.The characteristic of "remembering" the charge and non-volatility makes memristors great potential candidates in many fields.Nowadays,only a few groups have the ability to fabricate memristors,and most researchers study them by theoretic analysis and simulation.In this paper,we first analyse the theoretical base and characteristics of memristors,then use a simulation program with integrated circuit emphasis as our tool to simulate the theoretical model of memristors and change the parameters in the model to see the influence of each parameter on the characteristics.Our work supplies researchers engaged in memristor-based circuits with advice on how to choose the proper parameters.

  18. MATHEMATICAL MODELING FOR DURABILITY CHARACTERISTICS OF FLY ASH CONCRETE

    Directory of Open Access Journals (Sweden)

    JINO JOHN

    2012-01-01

    Full Text Available This paper presents the results obtained from the mathematical modeling for the durability characteristics of fly ash concrete. A mathematical model is employed to predict the saturated water absorption, permeability, sorpitivity and acid resistance of the concrete containing fly ash as a replacement of cement at a range of 0%, 10%, 20%, 30%, 40% and 50 %. This model is valid for mixes with cement quantity 208 to 416 kg/m3, water cement ratio 0.38 to 0.76, flyash 0 to 208 kg/m3 and cement/ total aggregate ratio varying from 0.11 to 0.22. Fly ash content and water cement ratio are the main parameters which influence the durability characteristics. The predicted mathematical model for saturated water absorption, permeability, sorpitivity and acid resistance produced accurate results for the respective ages when compared with the experimental results.

  19. Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing models

    Science.gov (United States)

    Manandhar, Chandra Bahadur

    The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration. To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels Ndesign gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids Ndesign (2%) level performed very poorly in the HWTD test. HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids Ndesign of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22. Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of

  20. Accelerated Electromechanical Modeling of a Distributed Internal Combustion Engine Generator Unit

    Directory of Open Access Journals (Sweden)

    Serhiy V. Bozhko

    2012-07-01

    Full Text Available Distributed generation with a combustion engine prime mover is still widely used to supply electric power in a variety of applications. These applications range from backup power supply systems and combined wind-diesel generation to providing power in places where grid connection is either technically impractical or financially uneconomic. Modelling of such systems as a whole is extremely difficult due to the long-time load profiles needed and the computational difficulty of including small time-constant electrical dynamics with large time-constant mechanical dynamics. This paper presents the development of accelerated, reduced-order models of a distributed internal combustions engine generator unit. Overall these models are shown to achieve a massive improvement in the computational time required for long-time simulations while also achieving an extremely high level of dynamic accuracy. It is demonstrated how these models are derived, used and verified against benchmark models created using established techniques. Throughout the paper the modelling set as a whole, including multi level detail, is presented, detailed and finally summarised into a crucial tool for general system investigation and multiple target optimisation.

  1. Nonlinear combination parametric resonance of axially accelerating viscoelastic strings constituted by the standard linear solid model

    Institute of Scientific and Technical Information of China (English)

    LIM; C.W.

    2010-01-01

    Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.

  2. A model for voltage collapse study considering load characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.B. [Companhia de Energia Eletrica da Bahia (COELBA), Salvador, BA (Brazil)

    1994-12-31

    This paper presents a model for analysis of voltage collapse and instability problem considering the load characteristics. The model considers fundamentally the transmission lines represented by exact from through the generalized constants A, B, C, D and the loads as function of the voltage, emphasizing the cases of constant power, constant current and constant impedance. the study treats of the system behavior on steady state and presents illustrative graphics about the problem. (author) 12 refs., 4 figs.

  3. Evaluation of the linearity characteristic of the cone-beam CT fixed on the Varian 23EX linear accelerator

    International Nuclear Information System (INIS)

    Objective: To investigate the CT number linearity of the cone-beam CT (CBCT) images at the different spatial locations in the scanning area. Methods: The Catphan 504 phantom at the different locations are scanned repeatedly using the CBCT on the Varian 23EX linear accelerator. The phantom is located the isocenter point, eccentric 3 cm, eccentric 6 cm, and different points on the z-axis successively on the accelerator. The scanned mode is the standard head mode. The reconstructive thickness is 2.5 cm. The different densities inserts of CTP 4.4 module on the different locations are measured via Eclips treatment planning system (TPS) and computed by Matlab 7.0 and the CT linear fitting are then processed. In order to understand better the linear distribution along with the value of CT in the spatial distribution the results are compared with the fan-beam CT. Results: Phantom studies show that: CBCT has good linearity performance not only under the standard header (body) of the scanning conditions, but also on such locations including the cross-sectional, the sagittal, the coronal plane and the eccentric position (R2>0.953). Bowtie filtration device dose not change the CT linearity but changes the value of CT. Conclusions: The linearity of X-ray CBCT on the Varian linear accelerator is favorable. CBCT will be used in the TPS dose calculation via further correction of the CT value. (authors)

  4. Distributed Leadership as Work Redesign: Retrofitting the Job Characteristics Model

    Science.gov (United States)

    Mayrowetz, David; Murphy, Joseph; Louis, Karen Seashore; Smylie, Mark A.

    2007-01-01

    In this article, we revive work redesign theory, specifically Hackman and Oldham's Job Characteristics Model (JCM), to examine distributed leadership initiatives. Based on our early observations of six schools engaged in distributed leadership reform and a broad review of literature, including empirical tests of work redesign theory, we retrofit…

  5. Mathematical models and dynamic characteristics of the WWER-440 unit

    International Nuclear Information System (INIS)

    Dynamic characteristics of the WWER-440 unit are determined. Using suitable mathematical models the dynamic properties of the reactor fuel channel, steam generator and individual parts of the secondary circuit were investigated. General relations of the corresponding transfer function and its numerical value are calculated as well as the transfer functions of different configurations of two parallel lines of the secondary circuit. (author)

  6. The method of characteristics applied to analyse 2DH models

    NARCIS (Netherlands)

    Sloff, C.J.

    1992-01-01

    To gain insight into the physical behaviour of 2D hydraulic models (mathematically formulated as a system of partial differential equations), the method of characteristics is used to analyse the propagation of physical meaningful disturbances. These disturbances propagate as wave fronts along bichar

  7. Study on autoresonance ion acceleration in experimental models and development of ion autoemission injector

    International Nuclear Information System (INIS)

    For the purpose of investigating the autoresonance acceleration method experiments on excitation and amplification of a slow cyclotron wave (SCW) while the interaction of electron beam with the deceleration structure single turn spiral have been performed. In the spiral by means of an external generator the travelling Wave has been excited with the frequency 150 mHz. power 100 W, phase velocity 109cm/s. Beam parameters: energy up to 60 keV, current up to 50 A, duration up to 30 mks. While resonance on the anomalous Doppler effect a vave coupling with the SCW of beam negative energy and wave amplification take place. Under the conditions of Waves weak coupling resonance amplification 7 dB/m, increment 107c-1 were observed. A description of small model of an autoresonance accelerator is given. At the facility intended for testing an ion antoemission injector, the modes with planar diode are investigated (at voltgge 400 kV, 50 nc aluminium ions, are obtained with an average beam charge anti Z=8(+-20%) and current up to 20A, 20nc), with cylindrical diode (at the same parameters the current up to 200 A has been obtained) and with a diode with spherical focusing (current up to 40 A)

  8. 2D and 3D multipactor modeling in dielectric-loaded accelerator structures

    Science.gov (United States)

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas

    2010-11-01

    Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an RF electric field under vacuum conditions. MP is a severe problem in modern rf systems and, therefore, theoretical and experimental studies of MP are of great interest to the researchers working in various areas of physics and engineering. In this work we present results of MP studies in dielectric-loaded accelerator (DLA) structures. First, we show simulation results obtained with the use of the 2D self-consistent MP model (O. V. Sinitsyn, et. al., Phys. Plasmas, vol. 16, 073102 (2009)) and compare those to experimental ones obtained during recent extensive studies of DLA structures performed by Argonne National Laboratory, Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs (C. Jing, et al., IEEE Trans. Plasma Sci., vol. 38, pp. 1354-1360 (2010)). Then we present some new results of 3D analysis of MP which include studies of particle trajectories and studies of MP development at the early stage.

  9. Treatment with 5-Azacytidine Accelerates Acute Promyelocytic Leukemia Leukemogenesis in a Transgenic Mouse Model

    Science.gov (United States)

    Scaglioni, Pier Paolo; Cai, Lu Fan; Majid, Samia M.; Yung, Thomas M.; Socci, Nicholas D.; Kogan, Scott C.; Kopelovich, Levy; Pandolfi, Pier Paolo

    2011-01-01

    A key oncogenic force in acute promyelocytic leukemia (APL) is the ability of the promyelocytic leukemia–retinoic acid receptor α (PML-RARA) oncoprotein to recruit transcriptional repressors and DNA methyltransferases at retinoic acid–responsive elements. Pharmacological doses of retinoic acid relieve transcriptional repression inducing terminal differentiation/apoptosis of the leukemic blasts. APL blasts often harbor additional recurrent chromosomal abnormalities, and significantly, APL prevalence is increased in Latino populations. These observations suggest that multiple genetic and environmental/dietary factors are likely implicated in APL. We tested whether dietary or targeted chemopreventive strategies relieving PML-RARA transcriptional repression would be effective in a transgenic mouse model. Surprisingly, we found that 1) treatment with a demethylating agent, 5-azacytidine, results in a striking acceleration of APL; 2) a high fat, low folate/choline–containing diet resulted in a substantial but nonsignificant APL acceleration; and 3) all-trans retinoic acid (ATRA) is ineffective in preventing leukemia and results in ATRA-resistant APL. Our findings have important clinical implications because ATRA is a drug of choice for APL treatment and indicate that global demethylation, whether through dietary manipulations or through the use of a pharmacologic agent such as 5-azacytidine, may have unintended and detrimental consequences in chemopreventive regimens. PMID:21779489

  10. Two-dimensional, three-fluid modeling of capillary plasma discharges in electrothermal mass accelerators

    Science.gov (United States)

    Esmond, M. J.; Winfrey, A. L.

    2016-06-01

    Electrothermal (ET) plasma launchers have a wide array of applications as mass acceleration devices. An ET plasma launcher utilizes an ET plasma discharge to accelerate a projectile. ET plasma discharges are arc-driven capillary discharges that ablate liner materials and form partially ionized plasmas. ET plasma discharges are generated by driving current pulses through a capillary source. Current pulses typically have peak currents on the order of tens of kA with pulse lengths on the order of hundreds of μs. These types of plasma discharges have been explored for their application to military ballistics, electric thrusters, and nuclear fusion power. ET plasma discharges have been studied using 0D, 1D, and semi-2D fluid models. In this work, a three-fluid, fully two-dimensional model of ET plasma discharges is presented. First approximations used in the newly developed model and code are discussed and simulation results are compared with experiment. Simulation results indicate the development of back flow inside ET plasma discharges due to collisional drag forces between individual plasma species. This back flow is observed for simulations of ET plasma discharges receiving current pulses with peak currents of 10, 20, 30, and 40 kA. Simulation results also reveal the development of fluid perturbations near the breech of the plasma source. These perturbations cause variations in the plasma electrical conductivity and ultimately cause changes in the local ablation rate of the source liner. At higher current pulses, these perturbations are more localized in the region of the source closest to the breech. This effect causes a decrease in the ablated mass in this region relative to the region of the source experiencing the highest ablation.

  11. Characteristics of a Logistics-Based Business Model

    OpenAIRE

    Sandberg, Erik; Kihlén, Tobias; Abrahamsson, Mats

    2011-01-01

    In companies where excellence in logistics is decisive for the outperformance of competitors and logistics has an outspoken role for the strategy of the firm, there is present what we refer to here as a “logistics-based business model.” Based on a multiple case study of three Nordic retail companies, the purpose of this article is to explore the characteristics of such a logistics-based business model. As such, this research helps to provide structure to logistics-based business models and id...

  12. Evaluating the AS-level Internet models: beyond topological characteristics

    Institute of Scientific and Technical Information of China (English)

    Fan Zheng-Ping

    2012-01-01

    A surge number of models has been proposed to model the Internet in the past decades.However,the issue on which models are better to model the Internet has still remained a problem.By analysing the evolving dynamics of the Internet,we suggest that at the autonomous system (AS) level,a suitable Internet model,should at least be heterogeneous and have a linearly growing mechanism.More importantly,we show that the roles of topological characteristics in evaluating and differentiating Internet models are apparently over-estimated from an engineering perspective.Also,we find that an assortative network is not necessarily more robust than a disassortative network and that a smaller average shortest path length does not necessarily mean a higher robustness,which is different from the previous observations. Our analytic results are helpful not only for the Internet,but also for other general complex networks.

  13. Test Results of a Superconducting Quadrupole Model Designed for Linear Accelerator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir S.; Andreev, Nikolai; Chlachidze, Guram; DiMarco, Joseph; Kashikhin, Vadim V.; Lamm, Michael J.; Lopes, Mauricio L.; Orris, Darryl; Tartaglia, Michael; Tompkins, John C.; Velev, Gueorgui; /Fermilab

    2008-08-01

    The first model of a superconducting quadrupole for use in a Linear Accelerator was designed, built and tested at Fermilab. The quadrupole has a 78 mm aperture, and a cold mass length of 680 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes racetrack type dipole steering coils. The results of the quadrupole design, manufacturing and test, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed. The magnet quench performance and results of magnetic measurements will also be briefly discussed.

  14. A smoothing expectation and substitution algorithm for the semiparametric accelerated failure time frailty model.

    Science.gov (United States)

    Johnson, Lynn M; Strawderman, Robert L

    2012-09-20

    This paper proposes an estimation procedure for the semiparametric accelerated failure time frailty model that combines smoothing with an Expectation and Maximization-like algorithm for estimating equations. The resulting algorithm permits simultaneous estimation of the regression parameter, the baseline cumulative hazard, and the parameter indexing a general frailty distribution. We develop novel moment-based estimators for the frailty parameter, including a generalized method of moments estimator. Standard error estimates for all parameters are easily obtained using a randomly weighted bootstrap procedure. For the commonly used gamma frailty distribution, the proposed algorithm is very easy to implement using widely available numerical methods. Simulation results demonstrate that the algorithm performs very well in this setting. We re-analyz several previously analyzed data sets for illustrative purposes.

  15. A stochastic model for the semiclassical collective dynamics of charged beams in particle accelerators

    CERN Document Server

    De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1999-01-01

    A recent proposal (see quant-ph/9803068) to simulate semiclassical corrections to classical dynamics by suitable classical stochastic fluctuations is applied to the specific instance of charged beam dynamics in particle accelerators. The resulting picture is that the collective beam dynamics, at the leading semiclassical order in Planck constant can be described by a particular diffusion process, the Nelson process, which is time-reversal invariant. Its diffusion coefficient $\\sqrt{N}\\lambda_{c}$ represents a semiclassical unit of emittance (here $N$ is the number of particles in the beam, and $\\lambda_{c}$ is the Compton wavelength). The stochastic dynamics of the Nelson type can be easily recast in the form of a Schroedinger equation, with the semiclassical unit of emittance replacing Planck constant. Therefore we provide a physical foundation to the several quantum-like models of beam dynamics proposed in recent years. We also briefly touch upon applications of the Nelson and Schroedinger formalisms to inc...

  16. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  17. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  18. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  19. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

    International Nuclear Information System (INIS)

    The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon-climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr-1 is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback. (author)

  20. The accelerating universe and other cosmological aspects of modified gravity models

    Science.gov (United States)

    de Felice, Antonio

    I give a short introduction to standard cosmology and a review of what it is meant by "the dark energy enigma" in chapter l. In chapter 2, I mention and describe some attempts found in the literature of the past few years to attack this problem. Dark energy candidates for which the equation-of-state parameter w is less than -1 violate the dominant energy condition. In scalar-tensor theories of gravity, however, the expansion of the universe can mimic the behavior of general relativity with w the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. In chapter 5, I study a baryogenesis mechanism operating in the context of hyperextended inflation and making use of a coupling between the scalar field and a standard model global current, such as B or B - L . The method is efficient at temperatures at which these currents are not conserved due to some higher dimensional operator. The particle physics and cosmological phenomenology are discussed. I consider constraints stemming from nucleosynthesis and solar system experiments.

  1. Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC

    CERN Document Server

    Zhou, Miaomiao; Decker, Franz Josef; Decyk, Viktor K; Deng, Suzhi; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Joshi, Chandrashekhar; Katsouleas, Thomas C; Lu, Wei; Mori, Warren; Muggli, Patric; Oz, Erdem; Shih Yu Tsung, Frank; Walz, Dieter

    2005-01-01

    A plasma wakefield accelerator (PWFA) has been proposed as a way to double the energy of a future linear collider. This afterburner concept will require meter long uniform plasmas. For the parameters envisaged in possible afterburner stages, the self-fields of the particle beam are intense enough to tunnel ionize some neutral gases such as lithium. Tunnel ionization has been investigated as a way for the beam itself to create the plasma.* Furthermore, tunnel ionization in a neutral or partially pre-ionized gas may create new plasma electrons and alter the plasma wake.*,** Unfortunately, it is not possible to model a PWFA with afterburner parameters using the models described in Bruhwiler et al. and Deng et al. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. There is excellent agreement between QuickPIC and OSIRIS(a full PIC code) for pre-ionized plasma...

  2. Late cosmic acceleration in a vector--Gauss-Bonnet gravity model

    CERN Document Server

    Oliveros, A; Acero, Mario A

    2016-01-01

    In this work we study a general vector-tensor model of dark energy with a Gauss-Bonnet term coupled to a vector field and without explicit potential terms. Considering a spatially flat FRW type universe and a vector field without spatial components, the cosmological evolution is analysed from the field equations of this model, considering two sets of parameters. In this context, we have shown that it is possible to obtain an accelerated expansion phase of the universe, since the equation state parameter $w$ satisfies the restriction $-1model parameters). Further, analytical expressions for the Hubble parameter $H$, equation state parameter $w$ and the invariant scalar $\\phi$ are obtained. We also find that the square of the speed of sound is negative for all values of redshift, therefore, the model presented here shows a sign of instability under small perturbations. We finally perform an analysis using $H(z)$ observational data and we find that for the free parameter $\\...

  3. Transient simulations of the present and the last interglacial climate using a coupled general circulation model: effects of orbital acceleration

    Directory of Open Access Journals (Sweden)

    V. Varma

    2015-07-01

    Full Text Available Numerical simulations provide a considerable aid in studying past climates. Out of the various approaches taken in designing numerical climate experiments, transient simulations have been found to be the most optimal when it comes to comparison with proxy data. However, multi-millennial or longer simulations using fully coupled general circulation models are computationally very expensive such that acceleration techniques are frequently applied. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model 3. Our study shows that in most parts of the world, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor 10 and, hence, large-scale model-data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere.

  4. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 156605], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 156605]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with AP-SIII.9Q, ''Scientific Analyses'', and the technical work plan (BSC 2004 [DIRS 169573])

  5. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek; K. Rautenstrauch

    2004-09-09

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 156605], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 156605]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with AP-SIII.9Q, ''Scientific Analyses'', and the technical work

  6. Acceleration and transport modeling in the 2000 May 1 SEP event

    Science.gov (United States)

    Kartavykh, Y.Y.; Dröge, W.; Klecker, B.; Mason, G.M.

    Using instruments on the ACE and Wind spacecraft, we investigate the temporal evolution, spectrum, and ionization states of Solar Energetic Particle (SEP) Fe in the impulsive event of 2000 May 1. Proton and electron intensities and anisotropies were used to help constrain the characteristics of the interplanetary propagation taking account of focusing, pitch-angle scattering, adiabatic deceleration, and convection. We find that event was nearly scatter-free, with an interplanetary scattering mean free path of larger than 1 AU. The Fe spectrum spectral form is consistent with stochastic acceleration, but the observed increase of the ionization state of Fe between 200-600 keV/nucleon is larger than can be explained using a single temperature source even after including the effects of stripping and Coulomb losses. A two-temperature source region is required to fit the observed range of Fe charge states, with the bulk (>80%) of the particles coming from a 106K region, and the remainder from a region with T ~1.6 x 107K.

  7. A microcosmic discrete occupant evacuation model based on individual characteristics

    Institute of Scientific and Technical Information of China (English)

    YANG Lizhong; LI Jian; ZHAO Daoliang; FANG Weifeng; FAN Weicheng

    2004-01-01

    The research of occupant evacuation in an emergency is of great benefit to building design and evacuation guidance. In this paper a microcosmic discrete evacuation model based on Cellular Automata (CA) is presented, in which the occupants' individual characteristics are considered. Thus, our model has given a description of evacuation route choice with influencing factors, including: individual knowledge of the building,individual realization of the emergency development, and the attractive and repulsive force between occupants. This model differs somewhat from other models in the attention to the associative and separate effect of influencing factors, based on occupant's behaviors. In addition, the model could reveal the phenomenon of escape in fire, as those simulations involving a fire condition have shown.

  8. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  9. Modeling particle acceleration and transport during high-energy solar gamma-ray events: Results from the HESPERIA project

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Vainio, Rami; Rouillard, Alexis; Aran, Angels; Sipola, Robert; Pomoell, Jens

    2016-04-01

    The EU/H2020 project "High Energy Solar Particle Events foRecastIng and Analysis" (HESPERIA) has an objective to gain improved understanding of solar energetic particle (SEP) acceleration, release and transport related to long-duration gamma-ray emissions recently observed by Fermi/LAT. We have performed simulation studies for particle acceleration and transport for the 17 May 2012 event, which is also a Ground Level Enhancement (GLE) of solar cosmic rays. The particle event is modeled assuming that it is accelerated by the shock wave driven by the erupting coronal mass ejection (CME). We first analyze the 3-dimensional propagation of the shock through the corona using imaging observations from SDO, SOHO and STEREO spacecraft. The derived kinematics of the shock is combined with magnetohydrodynamic and potential field modeling of the ambient corona to derive the evolution of the shock parameters on a large set of field lines. We then employ the self-consistent Coronal Shock Acceleration (CSA) simulation model of the University of Turku to study the acceleration process on selected field lines and combine it with a new model of downstream particle transport to assess the energy spectrum and time profile of accelerated particles precipitating in the dense surface regions below the corona. We also employ the Shock and Particle (SaP) simulation model of the University of Barcelona to analyze the interplanetary counterpart of the Fermi event. In this paper, we will present the observations of the event, our approach to the modeling and the first results of the analysis. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA).

  10. Compact model for switching characteristics of graphene field effect transistor

    Science.gov (United States)

    Sreenath, R.; Bala Tripura Sundari, B.

    2016-04-01

    The scaling of CMOS transistors has resulted in intensified short channel effects, indicating that CMOS has reached its physical limits. Alternate non silicon based materials namely carbon based graphene, carbon nanotubes are being explored for usability as channel and interconnect material due to their established higher mobility and robustness. This paper presents a drift-diffusion based circuit simulatable Verilog-A compact model of graphene field effect transistor (GFET) for channel length of 100nm.The focus is on the development of simulatable device model in Verilog A based on intrinsic parameters and obtain the current, high cutoff frequency and use the model into circuit level simulations to realize an inverter and a 3-stage ring oscillator using Synopsys HSPICE. The applications are so chosen that their switching characteristics enable the determination of the RF frequency ranges of operation that the model can achieve when used in digital applications and also to compare its performance with existing CMOS model. The GFET's switching characteristics and power consumption were found to be better than similarly sized CMOS operating at same range of voltages. The basic frequency of operation in the circuit is of significant importance so as to use the model in other applications at RF and in future for millimeter wave applications. The frequency of operation at circuit level is found to be 1.1GHz at 100nm which is far higher than the existing frequency of 245 MHz reported at 500nm using AlN.

  11. Mediation Analysis with Survival Outcomes: Accelerated Failure Time Versus Proportional Hazards Models

    Directory of Open Access Journals (Sweden)

    Lois A Gelfand

    2016-03-01

    Full Text Available Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH and fully parametric accelerated failure time (AFT approaches for illustration.Method: We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively under varied data conditions, some including censoring. A simulated data set illustrates the findings.Results: AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome – underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG.Conclusions: When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

  12. Two-fluid Atmosphere from Decelerating to Accelerating FRW Dark Energy Models

    CERN Document Server

    Pradhan, Anirudh

    2012-01-01

    The evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with perfect fluid and dark energy components is studied by revisiting the recent results (Amirhashchi et al. in Int. J. Theor. Phys. 50: 3529, 2011). The two sources are claimed to interact minimally so that their energy momentum tensors are conserved separately. To prevail the deterministic solution we consider a time dependent deceleration parameter (DP) i.e. $q = -\\frac{a\\ddot{a}}{\\dot{a}^{2}} = b(a(t))$, which yields a scale factor $a = [\\sinh (\\alpha t)]^{\\frac{1}{n}}$, where $\\alpha$ and $n$ are arbitrary constants. This provides for a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. It is observed that the transition red shift ($z_{t}$) for our derived model with $q_{0} = -0.73$ is $\\cong 0.32$. This is in good agreement with the cosmological observations in the literature. The physical a...

  13. The L(1/2) regularization approach for survival analysis in the accelerated failure time model.

    Science.gov (United States)

    Chai, Hua; Liang, Yong; Liu, Xiao-Ying

    2015-09-01

    The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L(1/2) regularization estimator with the accelerated failure time (AFT) model. The L(1/2) regularization could be seen as a typical delegate of L(q)(0regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L(1/2) regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L(1/2) regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures.

  14. Response Surface Modeling and Optimization of Accelerated Solvent Extraction of Four Lignans from Fructus Schisandrae

    Directory of Open Access Journals (Sweden)

    Jian Liang

    2012-03-01

    Full Text Available A new method based on accelerated solvent extraction (ASE combined with response surface methodology (RSM modeling and optimization has been developed for the extraction of four lignans in Fructus Schisandrae (the fruits of Schisandra chinensis Baill. The RSM method, based on a three level and three variable Box-Behnken design (BBD, was employed to obtain the optimal combination of extraction condition. In brief, the lignans schizandrin, schisandrol B, deoxyschizandrin and schisandrin B were optimally extracted with 87% ethanol as extraction solvent, extraction temperature of 160 °C, static extraction time of 10 min, extraction pressure of 1,500 psi, flush volume of 60% and one extraction cycle. The 3D response surface plot and the contour plot derived from the mathematical models were applied to determine the optimal conditions. Under the above conditions, the experimental value of four lignans was 14.72 mg/g, which is in close agreement with the value predicted by the model.

  15. Modeling of current characteristics of segmented Langmuir probe on DEMETER

    Energy Technology Data Exchange (ETDEWEB)

    Imtiaz, Nadia; Marchand, Richard [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Lebreton, Jean-Pierre [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace (LPC2E), CNRS-Université d' Orléans, Orléans Cedex (France)

    2013-05-15

    We model the current characteristics of the DEMETER Segmented Langmuir probe (SLP). The probe is used to measure electron density and temperature in the ionosphere at an altitude of approximately 700 km. It is also used to measure the plasma flow velocity in the satellite frame of reference. The probe is partitioned into seven collectors: six electrically insulated spherical segments and a guard electrode (the rest of the sphere and the small post). Comparisons are made between the predictions of the model and DEMETER measurements for actual ionospheric plasma conditions encountered along the satellite orbit. Segment characteristics are computed numerically with PTetra, a three-dimensional particle in cell simulation code. In PTetra, space is discretized with an unstructured tetrahedral mesh, thus, enabling a good representation of the probe geometry. The model also accounts for several physical effects of importance in the interaction of spacecraft with the space environment. These include satellite charging, photoelectron, and secondary electron emissions. The model is electrostatic, but it accounts for the presence of a uniform background magnetic field. PTetra simulation results show different characteristics for the different probe segments. The current collected by each segment depends on its orientation with respect to the ram direction, the plasma composition, the magnitude, and the orientation of the magnetic field. It is observed that the presence of light H{sup +} ions leads to a significant increase in the ion current branch of the I-V curves of the negatively polarized SLP. The effect of the magnetic field is demonstrated by varying its magnitude and direction with respect to the reference magnetic field. It is found that the magnetic field appreciably affects the electron current branch of the I-V curves of certain segments on the SLP, whereas the ion current branch remains almost unaffected. PTetra simulations are validated by comparing the computed

  16. Model characteristics of average skill boxers’ competition functioning

    OpenAIRE

    Martsiv V.P.

    2015-01-01

    Purpose: analysis of competition functioning of average skill boxers. Material: 28 fights of boxers-students have been analyzed. The following coefficients have been determined: effectiveness of punches, reliability of defense. The fights were conducted by formula: 3 rounds (3 minutes - every round). Results: models characteristics of boxers for stage of specialized basic training have been worked out. Correlations between indicators of specialized and general exercises have been determined. ...

  17. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the products (i.e., analysis and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003). Some documents identified in Figure 1-1 may be under development and not available at the time this report is issued. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003), describes the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63, uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the Amargosa Valley population, consistent with the requirements of 10 CFR 63.312. Amargosa Valley is the community, located in the direction of the projected groundwater flow path, where most of the farming in the area occurs. The parameter values developed in this report support the

  18. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek; K.R. Rautenstrauch

    2003-06-27

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the products (i.e., analysis and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003). Some documents identified in Figure 1-1 may be under development and not available at the time this report is issued. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003), describes the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63, uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the Amargosa Valley population, consistent with the requirements of 10 CFR 63.312. Amargosa Valley is the community, located in the direction of the projected groundwater flow path, where most of the farming in the area occurs. The parameter values

  19. DEVELOPMENT OF POLITICAL PARTIES AND PARTY FUNDING: MODELS AND CHARACTERISTICS

    OpenAIRE

    Hrvoje MATAKOVIC; Irena CAJNER MRAOVIC

    2015-01-01

    The first modern political parties were formed at the end of the 18th century and have, from those times up to now, undergone 4 developing phases; each of the phases is bound to ideal-type political party model: cadre parties, mass parties, catch-all parties and cartel parties. Each of these party models differentiates in various characteristics: party foundation, number of members, and way of leading the election campaigns, but also in ways of financing. This paper describes the above mentio...

  20. Standing wave linear accelerator

    International Nuclear Information System (INIS)

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  1. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    Science.gov (United States)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data

  2. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    Outdoor testing of buildings and building components under real weather conditions provides useful information about their dynamic performance. Such knowledge is needed to properly characterize the heat transfer dynamics and provides useful information for implementing energy saving strategies...... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends......, for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family...

  3. Validation of Finite-Element Models of Persistent-Current Effects in Nb3Sn Accelerator Magnets

    International Nuclear Information System (INIS)

    Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb3Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnet designs and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed

  4. Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion

    Science.gov (United States)

    Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product’s performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner’s ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters. PMID:27509499

  5. Accelerating a Network Model of Care: Taking a Social Innovation to Scale

    Directory of Open Access Journals (Sweden)

    Kerry Byrne

    2012-07-01

    Full Text Available Government-funded systems of health and social care are facing enormous fiscal and human-resource challenges. The space for innovation in care is wide open and new disruptive patterns are emerging. These include self-management and personal budgets, participatory and integrated care, supported decision making and a renewed focus on prevention. Taking these disruptive patterns to scale can be accelerated by a technologically enabled shift to a network model of care to co-create the best outcomes for individuals, family caregivers, and health and social care organizations. The connections, relationships, and activities within an individual’s personal network lay the foundation for care that health and social care systems/policy must simultaneously support and draw on for positive outcomes. Practical tools, adequate information, and tangible resources are required to coordinate and sustain care. Tyze Personal Networks is a social venture that uses technology to engage and inform the individual, their personal networks, and their care providers to co-create the best outcomes. In this article, we demonstrate how Tyze contributes to a shift to a network model of care by strengthening our networks and enhancing partnerships between care providers, individuals, and family and friends.

  6. Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model

    CERN Document Server

    Block, Benjamin; Preis, Tobias; 10.1016/j.cpc.2010.05.005

    2010-01-01

    A modern graphics processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two dimensional Ising model [T. Preis et al., J. Comp. Phys. 228, 4468 (2009)] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message Parsing Interface (MPI) on the CPU level, a single Ising lattice can be updated by a cluster of GPUs in parallel. For large systems, the computation time scales nearly linearly with the number of GPUs used. As proof of concept we reproduce the critical temperature of the 2D Ising model using finite size scaling techniques.

  7. Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Directory of Open Access Journals (Sweden)

    Jiang Feng

    2010-12-01

    Full Text Available Abstract Background Most genomic data have ultra-high dimensions with more than 10,000 genes (probes. Regularization methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes, directly identifying a small subset of genes from ultra-high (m > 10, 000 dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. Results The accelerated failure time (AFT model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of unknown variables (genes is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. Conclusions Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.

  8. Observational constraints on the accelerating universe in the framework of a 5D bounce cosmological model

    Institute of Scientific and Technical Information of China (English)

    Lü Jian-Bo; Xu Li-Xin; Liu Mo-Lin; Gui Yuan-Xing

    2009-01-01

    In the framework of a five-dimensional(5D)bounce cosmological model,a useful function f(z)is obtained by giving a concrete expression of deceleration parameter q(z)=q1+q2/1+1n(1+z).Then usng the obtained Hubble parameter H(z)according to the function f(z),we constrain the accelerating universe from recent cosmic observations:the 192 ESSENCE SNe Ia and the 9 observational H(z)data.The best fitting values of transition redshift zT and current deceleration parameter q0 are given as zT=o.65±0.25-0.12 and q0=-0.76+0.15-0.15(1σ).Furthermore,in the 5D bounce model it can be seen that the evolution of equation of state(EOS)for dark energy ωde can cross over-1 at about z=0.23 and the current value ω0de=1.15<-1.On the other hand,by giving a concrete expression of model-independent EOS of dark energy ωde,in the 5D bounce model we obtain the best fitting values zT=0.66+0311-0.08 and q0=-0.69+0.10-0.10(1σ)from the recently observed data:the 192 ESSENCE SNe Ia,the observational H(z)data,the 3-year Wilkinson Microwave Anisotropy Probe(WMAP),the Sloan Digital Sky Survey(SDSS)baryon acoustic peak and the x-ray gas mass fraction in clusters.

  9. Statistical modeling for correlate of protection using accelerated failure time models and piecewise methods.

    OpenAIRE

    Mogeni, Polycarp

    2013-01-01

    Chicken pox is an important childhood illness affecting mostly school-going children. The disease can be spread through contacts between infected and susceptible individuals. It is a very contagious disease caused by the varicella-zoster virus. Its main symptoms are: blister-like rash, tiredness, itching, and fever. Chicken pox can be serious, especially in adults, babies, and people with weakened immune systems. The objective of this study was to apply parametric survival models to determine...

  10. ACLT 052: Academic Literacy--An Integrated, Accelerated Model for Developmental Reading and Writing

    Science.gov (United States)

    Hayes, Sharon Moran; Williams, Jeanine L.

    2016-01-01

    The current trend in postsecondary literacy is to offer developmental reading and writing coursework in an integrated, (and in most cases) accelerated, format. This move toward integration and acceleration is definitely in line with the research literature; however, many of these new courses do not reflect the curricular and pedagogical reforms…

  11. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    Science.gov (United States)

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  12. Dosimetric Characteristics of Circular 6-MeV X-Ray Beams for Stereotactic Radiotherapy with a Linear Accelerator

    Science.gov (United States)

    Wysocka, A.; Rostkowska, J.; Kania, M.; Bulski, W.; Fijuth, J.

    2000-01-01

    Dosimetric characteristics of 6 MeV circular X-ray beams of diameters ranging from 7.5 to 35.0 mm are reported. The 6-MeV X-ray beam from Clinac 2300CD was formed using additional cylindrical BrainLAB's collimators. The mechanical stability of the entire system was verified. Specific quantities measured include tissue maximum ratios (TMR), beam profiles (off-axis ratios OAR) and relative output factors. Measurements of these parameters were performed in a water phantom using small cylindrical ionization chambers and a diamond detector. Comparison of TMR values measured with the ionization chamber and the diamond detector showed no significant differences. It was shown that the latter yields more accurate results for beam profiles than ionization chambers. The mechanical and dosimetric characteristics of this radiotherapy unit are found to be suitable for stereotactic radiosurgery and radiotherapy.

  13. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2005 [DIRS 172782]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 173164], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 173164]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with LP-SIII.9Q-BSC, ''Scientific Analyses'', and the technical work plan (BSC 2005 [DIRS 172782]). The scope of the revision was

  14. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-05

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2005 [DIRS 172782]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 173164], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 173164]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with LP-SIII.9Q-BSC, ''Scientific Analyses'', and the technical work

  15. DEVELOPMENT OF POLITICAL PARTIES AND PARTY FUNDING: MODELS AND CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Hrvoje MATAKOVIC

    2015-03-01

    Full Text Available The first modern political parties were formed at the end of the 18th century and have, from those times up to now, undergone 4 developing phases; each of the phases is bound to ideal-type political party model: cadre parties, mass parties, catch-all parties and cartel parties. Each of these party models differentiates in various characteristics: party foundation, number of members, and way of leading the election campaigns, but also in ways of financing. This paper describes the above mentioned 4 phases of political parties’ development and 4 phases of parties' finances development; it will be analysed in detail positive and negative sides of each of the models of party financing.

  16. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations

    Science.gov (United States)

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B.; Jia, Xun

    2015-10-01

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  17. Modeling the impact and costs of semiannual mass drug administration for accelerated elimination of lymphatic filariasis.

    Directory of Open Access Journals (Sweden)

    Wilma A Stolk

    Full Text Available The Global Program to Eliminate Lymphatic Filariasis (LF has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA programs. Acceleration is needed. We studied how increasing MDA frequency from once to twice per year would affect program duration and costs by using computer simulation modeling and cost projections. We used the LYMFASIM simulation model to estimate how many annual or semiannual MDA rounds would be required to eliminate LF for Indian and West African scenarios with varied pre-control endemicity and coverage levels. Results were used to estimate total program costs assuming a target population of 100,000 eligibles, a 3% discount rate, and not counting the costs of donated drugs. A sensitivity analysis was done to investigate the robustness of these results with varied assumptions for key parameters. Model predictions suggested that semiannual MDA will require the same number of MDA rounds to achieve LF elimination as annual MDA in most scenarios. Thus semiannual MDA programs should achieve this goal in half of the time required for annual programs. Due to efficiency gains, total program costs for semiannual MDA programs are projected to be lower than those for annual MDA programs in most scenarios. A sensitivity analysis showed that this conclusion is robust. Semiannual MDA is likely to shorten the time and lower the cost required for LF elimination in countries where it can be implemented. This strategy may improve prospects for global elimination of LF by the target year 2020.

  18. Promotion of accelerated repair in a radiation impaired wound healing model in murine skin

    International Nuclear Information System (INIS)

    therapeutic modalities investigated were unable to counteract any radiation damage and promote acceleration of repair in this impaired wound healing model. (author)

  19. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor.

    Science.gov (United States)

    Pan, Shu-Yuan; Liu, Hsing-Lu; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-07-01

    Basic oxygen furnace slag (BOFS) exhibits highly alkaline properties due to its high calcium content, which is beneficial to carbonation reaction. In this study, accelerated carbonation of BOFS was evaluated under different reaction times, temperatures, and liquid-to-solid (L/S) ratios in a slurry reactor. CO2 mass balance within the slurry reactor was carried out to validate the technical feasibility of fixing gaseous CO2 into solid precipitates. After that, a multiple model approach, i.e., theoretical kinetics and empirical surface model, for carbonation reaction was presented to determine the maximal carbonation conversion of BOFS in a slurry reactor. On one hand, the reaction kinetics of BOFS carbonation was evaluated by the shrinking core model (SCM). Calcite (CaCO3) was identified as a reaction product through the scanning electronic microscopy and X-ray diffraction analyses, which provided the rationale of applying the SCM in this study. The rate-limiting step of carbonation was found to be ash-diffusion controlled, and the effective diffusivity for carbonation of BOFS in a slurry reactor were determined accordingly. On the other hand, the carbonation conversion of BOFS was predicted by the response surface methodology (RSM) via a nonlinear mathematical programming. According to the experimental data, the highest carbonation conversion of BOFS achieved was 57% under an L/S ratio of 20 mL g(-1), a CO2 flow rate of 0.1 L min(-1), and a pressure of 101.3 kPa at 50 °C for 120 min. Furthermore, the applications and limitations of SCM and RSM were examined and exemplified by the carbonation of steelmaking slags. PMID:27038901

  20. Model analysis for combustion characteristics of RDF pellet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fundamental studies of the combustion characteristics and the de-HCl behavior of a single refuse-derived fuel(RDF) pellet were carried out to explain the de-HCl phenomena of RDF during fluidized bed combustion and to provide data for the development of high efficiency power generation technology using RDF previously. For further interpreting the devolatilization and the char combustion processes of RDF quantitatively, an unsteady combustion model for single RDF pellet, involving reaction rates, heat transfer and oxygen diffusion in the RDF pellet, was developed. Comparisons of simulation results with experimental data for mass loss of the RDF samples made from municipal solid waste, wood chips and poly-propylene when they were heated at 10K/min or put into the furnace under 1073K show the verifiability of the model. Using this model, the distributions of the temperature and the reaction ratio along the radius of RDF pellet during the devolatilization process and the char combustion process were presented, and discussion about the inference of heating rate on the combustion characteristics were performed.

  1. Classical and Quantum Cosmology of an Accelerating Model Universe with Compactification of Extra Dimensions

    CERN Document Server

    Darabi, F

    2009-01-01

    We study a $(4+D)$-dimensional Kaluza-Klein cosmology with a Robertson-Walker type metric having two scale factors $a$ and $R$, corresponding to $D$-dimensional internal space and 4-dimensional universe, respectively. By introducing an exotic matter in the form of perfect fluid with an special equation of state, as the space-time part of the higher dimensional energy-momentum tensor, a four dimensional effective decaying cosmological term appears as $\\lambda \\sim R^{-m}$ with $0 \\leq m\\leq 2$, playing the role of an evolving dark energy in the universe. By taking $m=2$, which has some interesting implications in reconciling observations with inflationary models and is consistent with quantum tunneling, the resulting Einstein's field equations yield the exponential solutions for the scale factors $a$ and $R$. These exponential behaviors may account for the dynamical compactification of extra dimensions and the accelerating expansion of the 4-dimensional universe in terms of Hubble parameter, $H$. The accelerat...

  2. Magnetic and Structural Design of a 15 T $Nb_3Sn$ Accelerator Depole Model

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. V. [Fermilab; Andreev, N. [Fermilab; Barzi, E. [Fermilab; Novitski, I. [Fermilab; Zlobin, A. V. [Fermilab

    2015-01-01

    Hadron Colliders (HC) are the most powerful discovery tools in modern high energy physics. A 100 TeV scale HC with a nominal operation field of at least 15 T is being considered for the post-LHC era. The choice of a 15 T nominal field requires using the Nb3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance. The experience gained during the 11-T dipole R&D campaign is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T $Nb_3Sn$ dipole and the steps towards the demonstration model.

  3. Accelerating f(T) gravity models constrained by recent cosmological data

    CERN Document Server

    Cardone, Vincenzo F; Camera, Stefano

    2012-01-01

    Generalised Teleparallel gravity, also referred to as f(T) gravity, has been recently proposed as an extended theory of gravitation able to give rise to an accelerated expansion in a matter only universe. The cosmic speed up is driven by an effective torsion fluid whose equation of state depend on the f(T) function entering the modified gravity Lagrangian. We focus on two particular choices for f(T) which share the nice property to emulate a phantom divide crossing as suggested by some recent data. We check their viability contrasting the predicted background dynamics to the Hubble diagram as traced by both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs), the measurement of the rate expansion H(z), the Baryon Acoustic Oscillations (BAOs) at different redshifts, and the Cosmic Microwave Background Radiation (CMBR) distance priors. Both f(T) models turn out to be in very good agreement with this large dataset so that we also investigate whether it is possible to discriminate among them relying on the dif...

  4. Metal oxide surge arrester model with active V-I characteristics; Sanka aenkei hiraiki dotokusei model

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, T.; Funabashi, T.; Watanabe, H.; Takeuchi, N. [Meidensha Corporation, Tokyo (Japan); Ueda, T. [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1996-11-20

    Generally a model of Metal Oxide Surge Arrester (MOSA) for numerical analysis uses a non-linear resistance. But actual Voltage-Current (V-I) characteristics of MOSA have hysteresis loop in time domain like i-{Phi} characteristic of a transformer and frequency dependency. The authors have investigated relation between the actual V-I hysteresis characteristics obtained by some current waveforms and static V-I characteristics. From the voltage difference between above two characteristics, an equation was derived and a new model of MOSA was developed. This model consists of a non-linear resistance representing fundamental V-I characteristic, a linear inductance and voltage source which depends on the absorbed energy. The calculated results by the proposed model are compared with measurement results by using the waveform of standard impulse current, steep front current and oscillated current. And the accuracy of the model has been confirmed to be satisfactory. The model is expected to be useful to investigate insulation coordination of power systems. 11 refs., 11 figs., 2 tabs.

  5. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    International Nuclear Information System (INIS)

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: ► Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. ► Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. ► Calculations: Monte Carlo simulations with the MCNP code. ► Measured and calculated figure-of-merit parameters in agreement with those of IAEA. ► Initial MCNP dose calculations for a treatment room to define future design actions.

  6. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    Science.gov (United States)

    Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  7. On injection-ejection fluid influence through different accelerating porous surfaces on unsteady 2d incompressible boundary layer characteristics

    Directory of Open Access Journals (Sweden)

    Ivanović Dečan

    2005-01-01

    Full Text Available Through the porous contour in perpendicular direction, the fluid of the same properties as incompressible fluid in basic flow, has been injected or ejected with velocity who is a function of the contour longitudinal coordinate and time. The corresponding equations of unsteady boundary layer, by introducing the appropriate variable transformations, momentum and energy equations and two similarity parameters sets, are transformed into generalized form. These parameters are expressing the influence of the outer flow velocity, the injection or ejection velocity and the flow history in boundary layer, on the boundary layer characteristics. Obtained generalized solutions are used to calculate the distributions of velocity, and shear stress in laminar-turbulent transition of unsteady incompressible boundary layer on different porous contours: circular cylinder, thin elliptical cylinder and aerofoil, whose centers velocities changes in time as a degree functions. The ejection of fluid postpones the boundary layer separation, i.e. laminar-turbulent transition, and vice versa the injection of fluid favors the separation. Boundary layer characteristics are found directly, no further numerical integration of momentum equation.

  8. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally

  9. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    International Nuclear Information System (INIS)

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem

  10. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    Science.gov (United States)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element

  11. Immunization with hepatitis B vaccine accelerates SLE-like disease in a murine model.

    Science.gov (United States)

    Agmon-Levin, Nancy; Arango, María-Teresa; Kivity, Shaye; Katzav, Aviva; Gilburd, Boris; Blank, Miri; Tomer, Nir; Volkov, Alex; Barshack, Iris; Chapman, Joab; Shoenfeld, Yehuda

    2014-11-01

    Hepatitis-B vaccine (HBVv) can prevent HBV-infection and associated liver diseases. However, concerns regarding its safety, particularly among patients with autoimmune diseases (i.e. SLE) were raised. Moreover, the aluminum adjuvant in HBVv was related to immune mediated adverse events. Therefore, we examined the effects of immunization with HBVv or alum on SLE-like disease in a murine model. NZBWF1 mice were immunized with HBVv (Engerix), or aluminum hydroxide (alum) or phosphate buffered saline (PBS) at 8 and 12 weeks of age. Mice were followed for weight, autoantibodies titers, blood counts, proteinuria, kidney histology, neurocognitive functions (novel object recognition, staircase, Y-maze and the forced swimming tests) and brain histology. Immunization with HBVv induced acceleration of kidney disease manifested by high anti-dsDNA antibodies (p < 0.01), early onset of proteinuria (p < 0.05), histological damage and deposition of HBs antigen in the kidney. Mice immunized with HBVv and/or alum had decreased cells counts mainly of the red cell lineage (p < 0.001), memory deficits (p < 0.01), and increased activated microglia in different areas of the brain compare with mice immunized with PBS. Anxiety-like behavior was more pronounced among mice immunized with alum. In conclusion, herein we report that immunization with the HBVv aggravated kidney disease in an animal model of SLE. Immunization with either HBVv or alum affected blood counts, neurocognitive functions and brain gliosis. Our data support the concept that different component of vaccines may be linked with immune and autoimmune mediated adverse events.

  12. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy.

    Science.gov (United States)

    Buford, Thomas W; Anton, Stephen D; Judge, Andrew R; Marzetti, Emanuele; Wohlgemuth, Stephanie E; Carter, Christy S; Leeuwenburgh, Christiaan; Pahor, Marco; Manini, Todd M

    2010-10-01

    Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.

  13. Accelerated Cosmological Models in Modified Gravity tested by distant Supernovae SNIa data

    OpenAIRE

    Borowiec, Andrzej; Godlowski, Wlodzimierz; Szydlowski, Marek

    2006-01-01

    Recent supernovae of type Ia measurements and other astronomical observations suggest that our universe is in accelerating phase of evolution at the present epoch. While a dark energy of unknown form is usually proposed as the most feasible mechanism for the acceleration, there are appears some alternative conception that some effects arising from generalization of Einstein equation can mimic dark energy through a modified Friedmann equation. In this work we investigate some observational con...

  14. Modelling the reflective thermal contribution to the acceleration of the Pioneer spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, F., E-mail: frederico.francisco@ist.utl.pt [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O., E-mail: orfeu.bertolami@fc.up.pt [Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gil, P.J.S., E-mail: p.gil@dem.ist.utl.pt [Departamento de Engenharia Mecanica and IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Paramos, J., E-mail: paramos@ist.edu [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2012-05-23

    We present an improved method to compute the radiative momentum transfer in the Pioneer 10 and 11 spacecraft that takes into account both diffusive and specular reflection. The method allows for more reliable results regarding the thermal acceleration of the deep-space probes, confirming previous findings. A parametric analysis is performed in order to set upper and lower bounds for the thermal acceleration and its evolution with time.

  15. Characteristics of successful opinion leaders in a bounded confidence model

    Science.gov (United States)

    Chen, Shuwei; Glass, David H.; McCartney, Mark

    2016-05-01

    This paper analyses the impact of competing opinion leaders on attracting followers in a social group based on a bounded confidence model in terms of four characteristics: reputation, stubbornness, appeal and extremeness. In the model, reputation differs among leaders and normal agents based on the weights assigned to them, stubbornness of leaders is reflected by their confidence towards normal agents, appeal of the leaders is represented by the confidence of followers towards them, and extremeness is captured by the opinion values of leaders. Simulations show that increasing reputation, stubbornness or extremeness makes it more difficult for the group to achieve consensus, but increasing the appeal will make it easier. The results demonstrate that successful opinion leaders should generally be less stubborn, have greater appeal and be less extreme in order to attract more followers in a competing environment. Furthermore, the number of followers can be very sensitive to small changes in these characteristics. On the other hand, reputation has a more complicated impact: higher reputation helps the leader to attract more followers when the group bound of confidence is high, but can hinder the leader from attracting followers when the group bound of confidence is low.

  16. Modeling and Visualizing the Particle Beam in the Rare Isotope Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Christopher [Argonne National Lab., IL (United States); Erdelyi, Bela [Argonne National Lab., IL (United States); Northern Illinois Univ. (United States)

    2006-01-01

    Argonne National Laboratory is actively pursuing research and design for a Rare Isotope Accelerator (RIA) facility that will aid basic research in nuclear physics by creating beams of unstable isotopes. Such a facility has been labeled as a high priority by the joint Department of Energy and National Science Foundation Nuclear Science Advisory Committee because it will allow more study on the nature of nucleonic matter, the origin of the elements, the Standard Model, and nuclear medicine. An important part of this research is computer simulations that model the behavior of the particle beam, specifically in the Fragment Separator. The Fragment Separator selects isotopes based on their trajectory in electromagnetic fields and then uses absorbers to separate particles with a certain mass and charge from the rest of the beam. This project focused on the development of a multivariate, correlated Gaussian distribution to model the distribution of particles in the beam as well as visualizations and analysis to view how this distribution changed when passing through an absorber. The distribution was developed in the COSY INFINITY programming language. The user inputs a covariance matrix and a vector of means for the six phase space variables, and the program outputs a vector of correlated, Gaussian random variables. A variety of random test cases were conducted in two, three and six variables. In each case, the expectation values, variances and covariances were calculated and they converged to the input values. The output of the absorber code is a large data set that stores all of the variables for each particle in the distribution. It is impossible to analyze such a large data set by hand, so visualizations and summary statistics had to be developed. The first visualization is a three-dimensional graph that shows the number of each isotope present after each slice of the absorber. A second graph plots any of the six phase space variables against any of the others to see

  17. ‘DEOS CHAMP-01C 70’: a model of the Earth’s gravity field computed from accelerations of the CHAMP satellite

    NARCIS (Netherlands)

    Ditmar, P.G.; Kuznetsov, V.; Van Eck van der Sluis, A.A.; Schrama, E.; Klees, R.

    2005-01-01

    Performance of a recently proposed technique for gravity field modeling has been assessed with data from the CHAMP satellite. The modeling technique is a variant of the acceleration approach. It makes use of the satellite accelerations that are derived from the kinematic orbit with the 3-point numer

  18. Numerical Modeling of Orbit-Spin Coupling Accelerations in a Mars General Circulation Model: Implications for Global Dust Storm Activity

    CERN Document Server

    Mischna, Michael A

    2016-01-01

    We employ the MarsWRF general circulation model (GCM) to test the predictions of a new physical hypothesis: a weak coupling of the orbital and rotational angular momenta of extended bodies is predicted to give rise to cycles of intensification and relaxation of circulatory flows within atmospheres. The dynamical core of the GCM has been modified to include the orbit-spin coupling accelerations due to solar system dynamics for the years 1920-2030. The modified GCM is first subjected to extensive testing and validation. We compare forced and unforced model outcomes for large-scale zonal and meridional flows, and for near-surface wind velocities and surface wind stresses. The predicted cycles of circulatory intensification and relaxation within the modified GCM are observed. Most remarkably, the modified GCM reproduces conditions favorable for the occurrence of perihelion-season global-scale dust storms on Mars in years in which such storms were observed. A strengthening of the meridional overturning (Hadley) ci...

  19. Modeling the Distribution Characteristics of Urban Public Bicycle Rental Duration

    Directory of Open Access Journals (Sweden)

    Shuichao Zhang

    2016-01-01

    Full Text Available In order to model the distribution characteristics of public bicycle rental durations, individual journey data for three cities in China (Ningbo, Hangzhou, and Beijing, for weekdays, was obtained. The distribution curves for public bicycle rental duration in the three cities were found to be extremely similar, with small differences among the weekdays. The basic parameters such as the average rental duration, the rental duration corresponding to the maximum rental frequency, and the rental duration corresponding to 75% degree were then calculated. On this basis, the radioactive decay law from physics was used to establish a theoretical model for the relationship between rental frequency and rental duration. The data on public bicycle rental duration in Ningbo, Hangzhou, and Beijing were used to test the model and produce a corrected theoretical model. The results indicate that the relationship between rental frequency and rental duration obeys the decay law. The study results provide important theoretical support for the rental station planning of bicycle sharing systems, as well as the allocation, operation, and dispatch of public bicycles.

  20. Analytic model and frequency characteristics of plasma synthetic jet actuator

    Science.gov (United States)

    Zong, Hao-hua; Wu, Yun; Li, Ying-hong; Song, Hui-min; Zhang, Zhi-bo; Jia, Min

    2015-02-01

    This paper reports a novel analytic model of a plasma synthetic jet actuator (PSJA), considering both the heat transfer effect and the inertia of the throat gas. Both the whole cycle characteristics and the repetitive working process of PSJA can be predicted with this model. The frequency characteristics of a PSJA with 87 mm3 volume and different orifice diameters are investigated based on the analytic model combined with experiments. In the repetitive working mode, the actuator works initially in the transitional stage with 20 cycles and then in the dynamic balanced stage. During the transitional stage, major performance parameters of PSJA experience stepped growth, while during the dynamic balanced stage, these parameters are characterized by periodic variation. With a constant discharge energy of 6.9 mJ, there exists a saturated frequency of 4 kHz/6 kHz for an orifice diameter of 1 mm/1.5 mm, at which the time-averaged total pressure of the pulsed jet reaches a maximum. Between 0.5 mm and 1.5 mm, a larger orifice diameter leads to a higher saturated frequency due to the reduced jet duration time. As the actuation frequency increases, both the time-averaged cavity temperature and the peak jet velocity initially increase and then remain almost unchanged at 1600 K and 280 m/s, respectively. Besides, with increasing frequency, the mechanical energy incorporated in single pulsed jet, the expelled mass per pulse, and the time-averaged density in the cavity, decline in a stair stepping way, which is caused by the intermittent decrease of refresh stage duration in one period.

  1. Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment

    Science.gov (United States)

    Casademunt, Jaume; Zhang, Wenbin; Vinals, Jorge; Sekerka, Robert F.

    1993-01-01

    We introduce a stochastic model to analyze in quantitative detail the effect of the high frequency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. The residual acceleration field is modeled as a narrow band noise characterized by three independent parameters: its intensity G squared, a dominant frequency Omega, and a characteristic spectral width tau exp -1. The white noise limit corresponds to Omega tau goes to O, with G squared tau finite, and the limit of a periodic g-jitter (or deterministic limit) can be recovered for Omega tau goes to infinity, G squared finite. The analysis of the response of a fluid surface subjected to a fluctuating gravitational field leads to the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the solutions of this equation in the two limits of white noise and deterministic forcing, and in the general case of narrow band noise. The results are then applied to typical microgravity conditions.

  2. Drying Characteristics and Model of Chinese Hawthorn Using Microwave Coupled with Hot Air

    Directory of Open Access Journals (Sweden)

    Hai-Ming Yu

    2015-01-01

    Full Text Available Microwave coupled with hot air drying kinetics and characteristics of hawthorn slices at different drying hot air temperatures, hot air velocities, and microwave power densities was investigated. The research results showed that drying occurred mainly in the falling rate period and in the accelerating period. Twelve mathematical models were selected to describe and compare the drying kinetics of hawthorn slices. By comparing three criterions including correlation coefficient, chi-square, and root mean square error, we determined that Weibull distribution model obtained the best fit and could best predict the experimental values. Consequently, Weibull distribution model could be used to aid dryer design and promote the efficiency of dryer operation by simulation and optimization of the drying processes. Moisture transfer from hawthorn slice was described by applying Fick’s second law and the effective diffusivity values were calculated by simplified Fick’s second law. The variable law of effective diffusivity values was consistent with the variable law of moisture ratio.

  3. Accelerated 20-year sunlight exposure simulation of a photochromic foldable intraocular lens in a rabbit model

    Science.gov (United States)

    Werner, Liliana; Abdel-Aziz, Salwa; Peck, Carolee Cutler; Monson, Bryan; Espandar, Ladan; Zaugg, Brian; Stringham, Jack; Wilcox, Chris; Mamalis, Nick

    2011-01-01

    PURPOSE To assess the long-term biocompatibility and photochromic stability of a new photochromic hydrophobic acrylic intraocular lens (IOL) under extended ultraviolet (UV) light exposure. SETTING John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. DESIGN Experimental study. METHODS A Matrix Aurium photochromic IOL was implanted in right eyes and a Matrix Acrylic IOL without photochromic properties (n = 6) or a single-piece AcrySof Natural SN60AT (N = 5) IOL in left eyes of 11 New Zealand rabbits. The rabbits were exposed to a UV light source of 5 mW/cm2 for 3 hours during every 8-hour period, equivalent to 9 hours a day, and followed for up to 12 months. The photochromic changes were evaluated during slitlamp examination by shining a penlight UV source in the right eye. After the rabbits were humanely killed and the eyes enucleated, study and control IOLs were explanted and evaluated in vitro on UV exposure and studied histopathologically. RESULTS The photochromic IOL was as biocompatible as the control IOLs after 12 months under conditions simulating at least 20 years of UV exposure. In vitro evaluation confirmed the retained optical properties, with photochromic changes observed within 7 seconds of UV exposure. The rabbit eyes had clinical and histopathological changes expected in this model with a 12-month follow-up. CONCLUSIONS The new photochromic IOL turned yellow only on exposure to UV light. The photochromic changes were reversible, reproducible, and stable over time. The IOL was biocompatible with up to 12 months of accelerated UV exposure simulation. PMID:21241924

  4. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    Science.gov (United States)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  5. Charge state distribution and emission characteristics in a table top reflex discharge—Effect of ion confinement and electrons accelerated across the sheath

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak, E-mail: deepak.kumar@eli-beams.eu; Englesbe, Alexander; Parman, Matthew; Stutman, Dan; Finkenthal, Michael [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-11-15

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ∼10{sup 18 }m{sup −3} with a significant fraction >0.01 of fast primary electrons. The implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.

  6. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    Science.gov (United States)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  7. Characteristics and modeling of spruce wood under dynamic compression load

    International Nuclear Information System (INIS)

    Spruce wood is frequently used as an energy absorbing material in impact limiters of packages for the transportation of radioactive material. A 9m drop test onto an unyielding target is mandatory for the packages. The impact results in a dynamic compression load of the spruce wood inside the impact limiter. The lateral dilation of the wood is restrained thereby due to encasing steel sheets. This work's objective was to provide a material model for spruce wood based on experimental investigations to enable the calculation of such loading conditions. About 600 crush tests with cubical spruce wood specimens were performed to characterize the material. The compression was up to 70% and the material was assumed to be transversely isotropic. Particularly the lateral constraint showed to have an important effect: the material develops a high lateral dilation without lateral constraint. The force-displacement characteristics show a comparably low force level and no or only slight hardening. Distinctive softening occurs after the linear-elastic region when loaded parallel to the fiber. On the other hand, using a lateral constraint results in significantly higher general force levels, distinctive hardening and lateral forces. The softening effect when loaded parallel to the fiber is less distinctive. Strain rate and temperature raise or lower the strength level, which was quantified for the applicable ranges of impact limiters. The hypothesis of an uncoupled evolution of the yield surface was proposed based on the experimental findings. It postulates an independent strength evolution with deviatoric and volumetric deformation. The hypothesis could be established using the first modeling approach, the modified LS-DYNA material model MAT075. A transversely isotropic material model was developed based thereupon and implemented in LS-DYNA. The material characteristics of spruce wood were considered using a multi-surface yield criterion and a non-associated flow rule. The yield

  8. GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition

    Science.gov (United States)

    Zhen, Z.; Jia, X.

    2014-12-01

    Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the

  9. The Model Characteristics of Physical Fitness in CrossFit

    Directory of Open Access Journals (Sweden)

    Vasilii V. Volkov

    2014-06-01

    Full Text Available The aim of the study is to work out the model characteristics of the physical fitness of CrossFit athletes based on laboratory functional testing (n=10. The analysis of the body composition was conducted using the dual-energy absorptiometry method. The morpho-functional characteristics of the heart were explored using a high-resolution ultrasound scanner. Oxygen consumption at the aerobic-anaerobic threshold and maximum oxygen consumption were determined in a step test on arm and leg cycle ergometers using a gas-analyzer. The level of the physical fitness of leg muscles in the males and females who took part in the study was satisfactory. However, it was considerably higher than the norm for untrained people. The level of the physical fitness of arm muscles was higher than the average and matched the Master of Sport of International Class standards. The productivity of the cardio-vascular system was much higher than in healthy males and females who do not work out and comparable to the standards for advanced soccer players.

  10. A MIXED LUBRICATION MODEL MODIFIED BY SURFACES' FRACTAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    孟凡明; 张有云

    2003-01-01

    Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D, compared with the oil film thickness to roughness ratio h/Rq. As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.

  11. A Bandwidth Allocation Model Provisioning Framework with Autonomic Characteristics

    Directory of Open Access Journals (Sweden)

    Rafael F. Reale

    2013-11-01

    Full Text Available The Bandwidth Allocation Models (MAM, RDM, G-RDM and AllocTC-Sharing are managementalternatives currently available which propose different resource (bandwidth allocation strategies inmultiservice networks. The BAM adoption by a network is typically a management choice andconfiguration task executed by the network operations and management system setup in a static or nearlystatic way. This paper proposes and explores the alternative ofallowing BAM definition and configurationon a more dynamic way. In effect, one of the basic motivations towards BAM dynamic allocation is the factthat multiservice networks characteristics (traffic loadmay change considerably in daily networkoperation and, as such, some dynamics in BAM allocation should be introduced in order to improveperformance. A framework is presented supporting BAM dynamicallocation. The framework adopts anOpenFlow-based software-defined networking (SDN implementation approach in order to supportscalability issues with a centralized controller and managementnetwork view. The framework architecturealso supports the implementation of some autonomic characteristics which, in brief, look for improving andfacilitating the decision-making process involved with BAM provisioning in a multiservice network. Aproof of concept is presented evaluating different BAM performance under different traffic loads in order todemonstrate the framework strategy adopted.

  12. Modeling the characteristics of wheel/rail rolling noise

    Science.gov (United States)

    Lui, Wai Keung; Li, Kai Ming; Frommer, Glenn H.

    2005-04-01

    To study the sound radiation characteristics of a passing train, four sets of noise measurements for different train operational conditions have been conducted at three different sites, including ballast tracks at grade and railway on a concrete viaduct. The time histories computed by the horizontal radiation models were compared with the measured noise profiles. The measured sound exposure levels are used to deduce the vertical directivity pattern for different railway systems. It is found that the vertical directivity of different railway systems shows a rather similar pattern. The vertical directivity of train noise is shown to increase up to about 30× before reducing to a minimum at 90×. A multipole expansion model is proposed to account for the vertical radiation directivity of the train noise. An empirical formula, which has been derived, compares well with the experimental data. The empirical model is found to be applicable to different train/rail systems at train speeds ranging up to 120 km/h in this study. [Work supported by MTR Corporation Ltd., Innovation Technology Commission of the HKSAR Government and The Hong Kong Polytechnic University.

  13. Diffusive Acceleration of Ions at Interplanetary Shocks

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Summerlin, Errol J.

    2005-01-01

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-conv...

  14. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  15. Modelling roughness and acceleration effects with application to the flow in a hydraulic turbine

    International Nuclear Information System (INIS)

    This study reports the numerical predictions of flows over turbine blades, which include flow acceleration and deceleration. Two issues are addressed: (1) accurately predicting roughness effects, and (2) evaluating the performance of Reynolds-Averaged Navier-Stokes (RANS) simulations on moderately accelerating flows. For the present turbine surfaces, it is found that roughness correlations based on roughness surface slope better predict the roughness effects than both the correlations based on the moments of roughness height statistics and the IEC standard approach. It is shown that RANS simulations reproduce the flow evolution over rough-wall accelerating turbulent boundary layers, although, on a smooth wall, they fail to capture strong non-equilibrium flow behaviours. Finally, a hydraulic turbine simulation is performed to show the significant roughness impact on the total losses

  16. Mixing characteristics of sludge simulant in a model anaerobic digester.

    Science.gov (United States)

    Low, Siew Cheng; Eshtiaghi, Nicky; Slatter, Paul; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam

    2016-03-01

    This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number. PMID:26739143

  17. Kinetic modeling of particle acceleration in a solar null point reconnection region

    DEFF Research Database (Denmark)

    Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke

    2013-01-01

    -relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms, featuring a power-law index of about -1.75. This work provides a first step towards bridging the gap between macroscopic scales...... particles and 3.5 billion grid cells of size 17.5\\,km --- these simulations offer a new opportunity to study particle acceleration in solar-like settings....

  18. Magnetic confinement effects on the particle escape from the loop top in stochastic acceleration models for solar flares.

    Science.gov (United States)

    Effenberger, F.; Petrosian, V.

    2015-12-01

    Stochastic acceleration scenarios are among the most promising candidates to explain the high energies attained by particles in solar flares. Recent progress in the determination of fundamental acceleration parameters using novel techniques for the inversion of high resolution RHESSI hard X-ray spectra allows to determine non-thermal electron spectra at the loop top and foot points of a flare loop (Chen & Petrosian 2014). One outcome of this work is that the trapping and escape of the electrons is governed by wave particle scatterings and convergence of magnetic lines of force. Here, we present a computational study of the transport and escape processes of particles in the acceleration region. We employ a Fokker-Planck model, which includes pitch-angle scattering and magnetic mirroring in a non-uniform magnetic field. This allows to test analytical approximations for the particle escape times in the loop top region, which are helpful to constrain the key particle acceleration parameters. New perspectives will be given on how the insights gained from the analysis of the particle confinement will enable subsequent studies of a broader class of solar flares.

  19. SU-E-T-384: Experimental Verification of a Monte Carlo Linear Accelerator Model Using a Radiochromic Film Stack Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    McCaw, T; Culberson, W; DeWerd, L [University of Wisconsin Medical Radiation Research Center, Madison, WI (United States)

    2014-06-01

    Purpose: To experimentally verify a Monte Carlo (MC) linear accelerator model for the simulation of intensity-modulated radiation therapy (IMRT) treatments of moving targets. Methods: A Varian Clinac™ 21EX linear accelerator was modeled using the EGSnrc user code BEAMnrc. The mean energy, radial-intensity distribution, and divergence of the electron beam incident on the bremsstrahlung target were adjusted to achieve agreement between simulated and measured percentage-depth-dose and transverse field profiles for a 6 MV beam. A seven-field step-and-shoot IMRT lung procedure was prepared using Varian Eclipse™ treatment planning software. The plan was delivered using a Clinac™ 21EX linear accelerator and measured with a Gafchromic™ EBT2 film stack dosimeter (FSD) in two separate static geometries: within a cylindrical water-equivalent-plastic phantom and within an anthropomorphic chest phantom. Two measurements were completed in each setup. The dose distribution for each geometry was simulated using the EGSnrc user code DOSXYZnrc. MC geometries of the treatment couch, cylindrical phantom, and chest phantom were developed by thresholding CT data sets using MATLAB™. The FSD was modeled as water. The measured and simulated dose distributions were normalized to the median dose within the FSD. Results: Using an electron beam with a mean energy of 6.05 MeV, a Gaussian radial-intensity distribution with a full width at half maximum of 1.5 mm, and a divergence of 0°, the measured and simulated dose profiles agree within 1.75% and 1 mm. Measured and simulated dose distributions within both the cylindrical and chest phantoms agree within 3% over 94% of the FSD volume. The overall uncertainty in the FSD measurements is 3.1% (k=1). Conclusion: MC simulations agree with FSD measurements within measurement uncertainty, thereby verifying the accuracy of the linear accelerator model for the simulation of IMRT treatments of static geometries. The experimental verification

  20. Study of the fuel behavior, safety characteristics and transmutation performance of a gas cooled accelerator driven system (ADS)

    International Nuclear Information System (INIS)

    The neutronic behavior of an ADS system based on gas cooling is examined in this work by using the simulation tools MCNPX and ORIGEN. The main character of the MCNPX code is the use of the Monte-Carlo method allowing a high dimensional simulation of the physical processes. The whole model of the core is represented in 3 dimensional zones including the target structure, which provides the initial spallation neutrons for the chain reaction in the fuel zone. At the beginning, MOX fuel with 19.5 wt. Pu/(Pu+U) is loaded in order to investigate the technical feasibility of a test facility. The fuel assemblies are replaced step by step with Plutonium and minor actinides (PuMa) uranium free fuel according to a loading and shuffling pattern. The designed test facility consists of 120 fuel assemblies each 91 fuel rods which are arranged around the spallation target. For a thermal power of 100 MW the burn-up and transmutation rate is studied. The first results for the MOX and partially PuMa fuel loaded core are presented in this paper. For the PuMa fuel two compositions are investigated. Both fuel types chosen for the analysis demonstrate the capability of the incineration of americium. The simulations show that the initial composition has significant influence on the transmutation rate. The deployment of MOX type fuel in the ADS core causes a considerable consumption of Pu but also a significant generation of americium

  1. Students' Views of Scientific Models and Modeling: Do Representational Characteristics of Models and Students' Educational Levels Matter?

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Wu, Hsin-Kai

    2015-11-01

    The aim of this study was to examine the potential impact of the representational characteristics of models and students' educational levels on students' views of scientific models and modeling (VSMM). An online multimedia questionnaire was designed to address three major aspects of VSMM, namely the nature of models, the nature of modeling, and the purpose of models. The three scales of representational characteristics included modality, dimensionality, and dynamics. A total of 102 eighth graders and 87 eleventh graders were surveyed. Both quantitative data and written responses were analyzed. The influence of the representational characteristics seemed to be more salient on the nature of models and the purpose of models. Some interactions between the educational levels and the representational characteristics showed that the high school students were more likely to recognize textual representations and pictorial representations as models, while also being more likely to appreciate the differences between 2D and 3D models. However, some other differences between educational levels did not necessarily suggest that the high school students attained more sophisticated VSMM. For instance, in considering what information should be included in a model, students' attention to particular affordances of the representation can lead to a more naive view of modeling. Implications for developing future questionnaires and for teaching modeling are suggested in this study.

  2. Acceleration and Transport Modeling of Solar Energetic Particle Charge States for the Event of 1998 September 9

    Science.gov (United States)

    Dröge, W.; Kartavykh, Y. Y.; Klecker, B.; Mason, G. M.

    2006-07-01

    The 1998 September 9 solar particle event was a 3He-rich solar particle event that showed a strong increase of Fe ionization states in the energy range below 1 MeV nucleon-1. We have investigated this event by fitting Wind and ACE observations using a model of acceleration and stripping near the Sun, followed by particle transport in the interplanetary medium taking into account particle focusing, pitch-angle scattering, adiabatic deceleration, and convection. The simulation provides a reconstruction of the injection function of the energetic particles released from the Sun and their time, energy, and charge dependence. We find that electrons and Fe ions are injected almost impulsively, whereas the injection of protons takes place on a much longer timescale or even consists of two distinct injection processes. We are able to obtain good overall fits to the observations. This suggests that our model can be used to obtain information about the conditions in the acceleration region such as density, temperature, and the timescales of the acceleration process, if sufficiently accurate modeling of the particle transport in the solar wind is possible.

  3. Modeling the Impact and Costs of Semiannual Mass Drug Administration for Accelerated Elimination of Lymphatic Filariasis

    NARCIS (Netherlands)

    W.A. Stolk (Wilma); Q.A. ten Bosch (Quirine); S.J. de Vlas (Sake); P.U. Fischer (Peter); G.J. Weil (Gary); A.S. Goldman (Ann)

    2013-01-01

    textabstractThe Global Program to Eliminate Lymphatic Filariasis (LF) has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA) programs. Acceleration is neede

  4. Evaluating models for predicting hydraulic characteristics of layered soils

    Science.gov (United States)

    Mavimbela, S. S. W.; van Rensburg, L. D.

    2012-01-01

    Soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (K-coefficient) are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH) is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964), van Genuchten (1980) and Kasugi (1996) parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM). The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC) were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE) recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988) since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980) performing fairly well on the Orthic and neucutanic horizons while its modified form fitted very

  5. Evaluating models for predicting hydraulic characteristics of layered soils

    Directory of Open Access Journals (Sweden)

    S. S. W. Mavimbela

    2012-01-01

    Full Text Available Soil water characteristic curve (SWCC and unsaturated hydraulic conductivity (K-coefficient are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964, van Genuchten (1980 and Kasugi (1996 parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM. The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988 since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980 performing fairly well on the Orthic

  6. Calibration of a Computation Model for a Reinforced Concrete Structure Against the Experimentally Determined Dynamic Characteristics

    OpenAIRE

    Gavriloaia, Constantin; Budescu, Mihai; Ţăranu, Nicolae; Hohan, Raluca

    2013-01-01

    The dynamic characteristics of the structures range are depending on their mass and lateral stiffness. In the present paper a method for improving the computation model is proposed, thus creating a link between the dynamic characteristics obtained with the computation model based on the finite element method and the experimentally determined dynamic characteristics. The finite element model was obtained using the program ETABS and the experimental dynamic characteristics were obtained on a lo...

  7. Characterization of senescence-accelerated mouse prone 6 (SAMP6) as an animal model for brain research.

    Science.gov (United States)

    Niimi, Kimie; Takahashi, Eiki

    2014-01-01

    The senescence-accelerated mouse (SAM) was developed by selective breeding of the AKR/J strain, based on a graded score for senescence, which led to the development of both senescence-accelerated prone (SAMP), and senescence-accelerated resistant (SAMR) strains. Among the SAMP strains, SAMP6 is well characterized as a model of senile osteoporosis, but its brain and neuronal functions have not been well studied. We therefore decided to characterize the central nervous system of SAMP6, in combination with different behavioral tests and analysis of its biochemical and pharmacological properties. Multiple behavioral tests revealed higher motor activity, reduced anxiety, anti-depressant activity, motor coordination deficits, and enhanced learning and memory in SAMP6 compared with SAMR1. Biochemical and pharmacological analyses revealed several alterations in the dopamine and serotonin systems, and in long-term potentiation (LTP)-related molecules. In this review, we discuss the possibility of using SAMP6 as a model of brain function. PMID:24521858

  8. Measurements and modeling of gamma absorbed doses due to releases from a linear proton accelerator: experimental design and preliminary results

    International Nuclear Information System (INIS)

    External radiation levels due to positron annihilation radiation from 11C, 13N, and 15O released by the 800 MeV linear proton accelerator at the Los Alamos Meson Physics Facility (LAMPF) have been monitored at a fence-line location both by thermoluminescent dosimeters (TLDs) and high pressure ionization chambers (HPICs). The accelerator is located in irregular terrain consisting of mesas and canyons. Fifteen-minute, accumulated external radiation levels were recorded with the HPICs. Instruments on a nerby meteorological tower concurrently measured wind speed and direction at three levels, temperature at two levels, solar radiation, and rainfall. Real-time radionuclide release rates and stack velocities were measured at the release point with in-stack monitors. This paper presents analyses of short-term radiation levels using HPICs and long-term levels using TLDs. Work being done to develop a computer model to predict external radiation levels based on meteorological data is also discussed

  9. Two-Step Acceleration Model of Cosmic Rays at Middle-Aged SNR

    CERN Document Server

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2010-01-01

    Recent gamma-ray observations of middle-aged supernova remnants revealed a mysterious broken power-law spectrum. Using three-dimensional magnetohydrodynamics simulations, we show that the interaction between a supernova blast wave and interstellar clouds formed by thermal instability generates multiple reflected shocks. The typical Mach numbers of the reflected shocks are shown to be M ~ 2 depending on the density contrast between the diffuse intercloud gas and clouds. These secondary shocks can further energize cosmic-ray particles originally accelerated at the blast-wave shock. This "two-step" acceleration scenario reproduces the observed gamma-ray spectrum and predicts the high-energy spectral index ranging approximately from 3 to 4.

  10. Pricing Options under Heston’s Stochastic Volatility Model via Accelerated Explicit Finite Differencing Methods

    OpenAIRE

    CONALL O'SULLIVAN; Stephen O'Sullivan

    2010-01-01

    We present an acceleration technique, effective for explicit finite difference schemes describing diffusive processes with nearly symmetric operators, called Super-Time-Stepping (STS). The technique is applied to the two-factor problem of option pricing under stochastic volatility. It is shown to significantly reduce the severity of the stability constraint known as the Courant-Friedrichs-Lewy condition whilst retaining the simplicity of the chosen underlying explicit method. For European and...

  11. A stochastic model for the semiclassical collective dynamics of charged beams in particle accelerators

    OpenAIRE

    De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    1998-01-01

    A recent proposal (see quant-ph/9803068) to simulate semiclassical corrections to classical dynamics by suitable classical stochastic fluctuations is applied to the specific instance of charged beam dynamics in particle accelerators. The resulting picture is that the collective beam dynamics, at the leading semiclassical order in Planck constant can be described by a particular diffusion process, the Nelson process, which is time-reversal invariant. Its diffusion coefficient $\\sqrt{N}\\lambda_...

  12. A stringent restriction from the growth of large-scale structure on apparent acceleration in inhomogeneous cosmological models

    CERN Document Server

    Ishak, Mustapha; Troxel, M A

    2013-01-01

    Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to uneven dynamics in the universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from the study of the growth rate of large-scale structure in the universe as modeled by the Szekeres inhomogeneous cosmological models. We use the models in all generality with no assumptions of spherical or axial symmetries. We find that Szekeres inhomogeneous models that fit well the observed expansion history fail to explain the observed late-time suppression of the growth of structure unless a cosmological constant is added to the dynamics.

  13. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  14. From tracking code to analysis generalised Courant-Snyder theory for any accelerator model

    CERN Document Server

    Forest, Etienne

    2016-01-01

    This book illustrates a theory well suited to tracking codes, which the author has developed over the years. Tracking codes now play a central role in the design and operation of particle accelerators. The theory is fully explained step by step with equations and actual codes that the reader can compile and run with freely available compilers. In this book, the author pursues a detailed approach based on finite “s”-maps, since this is more natural as long as tracking codes remain at the center of accelerator design. The hierarchical nature of software imposes a hierarchy that puts map-based perturbation theory above any other methods. This is not a personal choice: it follows logically from tracking codes overloaded with a truncated power series algebra package. After defining abstractly and briefly what a tracking code is, the author illustrates most of the accelerator perturbation theory using an actual code: PTC. This book may seem like a manual for PTC; however, the reader is encouraged to explore...

  15. Model characteristics of average skill boxers’ competition functioning

    Directory of Open Access Journals (Sweden)

    Martsiv V.P.

    2015-08-01

    Full Text Available Purpose: analysis of competition functioning of average skill boxers. Material: 28 fights of boxers-students have been analyzed. The following coefficients have been determined: effectiveness of punches, reliability of defense. The fights were conducted by formula: 3 rounds (3 minutes - every round. Results: models characteristics of boxers for stage of specialized basic training have been worked out. Correlations between indicators of specialized and general exercises have been determined. It has been established that sportsmanship of boxers manifests as increase of punches’ density in a fight. It has also been found that increase of coefficient of punches’ effectiveness results in expansion of arsenal of technical-tactic actions. Importance of consideration of standard specialized loads has been confirmed. Conclusions: we have recommended means to be applied in training process at this stage of training. On the base of our previous researches we have made recommendations on complex assessment of sportsmen-students’ skillfulness. Besides, we have shown approaches to improvement of different sides of sportsmen’s fitness.

  16. CFT duals for accelerating black holes

    Science.gov (United States)

    Astorino, Marco

    2016-09-01

    The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though it is not isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of AdS2 ×S2. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduces, through the Cardy formula, the Bekenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfils the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.

  17. CFT Duals for Accelerating Black Holes

    CERN Document Server

    Astorino, Marco

    2016-01-01

    The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of $AdS_2 \\times S^2$. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduce, through the Cardy formula, the Beckenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfil the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.

  18. Computer Modelling and Simulation of Solar PV Array Characteristics

    Science.gov (United States)

    Gautam, Nalin Kumar

    2003-02-01

    The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to

  19. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. Modeling the gamma-ray emission in the Galactic Center with a fading cosmic-ray accelerator

    CERN Document Server

    Liu, Ruo-Yu; Prosekin, Anton; Chang, Xiao-Chuan

    2016-01-01

    Recent HESS observations of the ~200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic Center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic Center shows a cutoff at ~10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single, yet fading accelerator. In this model, gamma rays from the CMZ region are produced by protons injected in the past, while gamma rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the C...

  1. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, A.A.; Girola, S. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Valda, A.A., E-mail: valda@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Minsky, D.M.; Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)] [CONICET, Buenos Aires (Argentina); Sanchez, G. [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)

    2011-12-15

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: Black-Right-Pointing-Pointer Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. Black-Right-Pointing-Pointer Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. Black-Right-Pointing-Pointer Calculations: Monte Carlo simulations with the MCNP code. Black-Right-Pointing-Pointer Measured and calculated figure-of-merit parameters in agreement with those of IAEA. Black-Right-Pointing-Pointer Initial MCNP dose calculations for a treatment room to define future design actions.

  2. Stationary plasma accelerator - ATON engine

    International Nuclear Information System (INIS)

    The principles of a stationary plasma accelerator (engine) with closed electron drift are described. The accelerator has record integral characteristics. A method for analysis of operating process features in the integral characteristics is proposed. Results are presented of local measurements of the plasma parameters in the accelerator channel and in the leaving plasma jet Main attention is paid to determination of the part of twice ionized ions in the plasma flow

  3. The Characteristics of a Model Technology Education Teacher

    Science.gov (United States)

    Kaufman, Andrew R.; Warner, Scott A.; Buechele, Jessica R.

    2011-01-01

    The things that make the quality of a teacher stand out can cover a wide range of characteristics, actions, words, and experiences. The mark left on a student by a teacher, for good or bad, is written in an ink that will last a lifetime. This article describes a study that identifies the characteristics of exceptional technology education…

  4. Numerical Simulations and Model Tests of the Mooring Characteristic of A Tension Leg Platform Under Random Waves

    Institute of Scientific and Technical Information of China (English)

    谷家扬; 杨建民; 吕海宁

    2013-01-01

    Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses and the mooring characteristics of TLP under random waves are studied by using a self-developed program. Results are verified by the 1:40 scaling factor model test conducted in the State Key Laboratory of Ocean Engineering at Shanghai JiaoTong University. The mean, range, and standard deviation of the numerical simulation and model test are compared. The influences of different sea states and wave approach angles on the dynamic response and tendon tension of the mooring system are investigated. The acceleration in the center and corner of the deck is forecasted.

  5. Prediction of PM 10 concentrations at urban traffic intersections using semi-empirical box modelling with instantaneous velocity and acceleration

    Science.gov (United States)

    He, Hong-di; Lu, Wei-Zhen; Xue, Yu

    2009-12-01

    At urban traffic intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly during the green-light period. The changes of driving patterns (i.e., idle, acceleration, deceleration and cruising patterns) generally produce uncertain emission. Additionally, the movement of pedestrians and the influence of wind further result in the random dispersion of pollutants. It is, therefore, too complex to simulate the effects of such dynamics on the resulting emission using conventional deterministic causal models. For this reason, a modified semi-empirical box model for predicting the PM 10 concentrations on roadsides is proposed in this paper. The model constitutes three parts, i.e., traffic, emission and dispersion components. The traffic component is developed using a generalized force traffic model to obtain the instantaneous velocity and acceleration when vehicles move through intersections. Hence the distribution of vehicle emission in street canyon during the green-light period is calculated. Then the dispersion component is investigated using a semi-empirical box model combining average wind speed, box height and background concentrations. With these considerations, the proposed model is applied and evaluated using measured data at a busy traffic intersection in Mong Kok, Hong Kong. In order to test the performance of the model, two situations, i.e., the data sets within a sunny day and between two sunny days, were selected to examine the model performance. The predicted values are generally well coincident with the observed data during different time slots except several values are overestimated or underestimated. Moreover, two types of vehicles, i.e., buses and petrol cars, are separately taken into account in the study. Buses are verified to contribute most to the emission in street canyons, which may be useful in evaluating the impact of vehicle emissions on the ambient air quality when there is a significant change

  6. Berberine Attenuated Aging-Accelerating Effect of High Temperature in Drosophila Model

    OpenAIRE

    Navrotskaya, Valeriya; Oxenkrug, Gregory; Vorobyova, Lyudmila; Summergrad, Paul

    2014-01-01

    We have observed that berberine prolonged life span and improved viability of pupae and climbing activity of imagoes of wild-type Drosophila melanogaster maintained at 23°C. As a continuation of our studies of berberine effect on life span, we were interested to evaluate the effect of berberine of life span in flies maintained at a higher temperature (28°C) known to accelerate aging in wild type flies. Considering that genetically or pharmacologically induced deficiency of TRP conversion into...

  7. Thermal vacuum accelerated life test of the unit qualification model msds 3 marconi low speed mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, D.A.

    1975-01-01

    The thermal vacuum accelerated life test of a solar array unit qualification mechanism (MSDS 3) is described. Most of the test was conducted with the shaft of the mechanism rotating at one revolution per hour, which is 24 times normal speed. The test was conducted at two different temperature conditions, and included additional thermal cycling of the shaft temperature to simulate conditions of earth eclipse of a satellite in a geostationary orbit. Throughout the test there was no change in the motor power required to drive the shaft, and the electrical noise levels on the slip rings showed no significant deterioration.

  8. Radiative characteristics for atmospheric models from lidar sounding and AERONET

    Science.gov (United States)

    Sapunov, Maxim; Kuznetsov, Anatoly; Efremenko, Dmitry; Bochalov, Valentin; Melnikova, Irina; Samulenkov, Dimity; Vasilyev, Alexander; Poberovsky, Anatoly; Frantsuzova, Inna

    2016-04-01

    Optical models of atmospheric aerosols above of St. Petersburg are constraint on the base of the results of lidar sounding. The lidar system of the Resource Center "Observatory of environmental safety" of the St. Petersburg University Research Park is situated the city center, Vasilievsky Island. The measurements of the vertical profile of velocity and wind direction in the center of St. Petersburg for 2014 -2015 are fulfilled in addition. Height of laser sounding of aerosols is up to 25 km and wind up to 12 km. Observations are accomplished in the daytime and at night and mapped to vertical profiles of temperature, humidity, wind speed and pressure obtained from radiosounding in Voeikovo (St. Petersburg suburb). Results of wind observations are compared with those of upper-air measurements of meteorological service in Voeikovo. The distance between the points of observation is 25 km. Statistics of wind directions at different heights are identified. The comparison is based on the assumption of homogeneity of the wind field on such a scale. In most cases, good agreement between the observed vertical profiles of wind, obtained by both methods is appeared. However, there were several cases, when the results differ sharply or at high altitudes, or, on the contrary, in the surface layer. The analysis of the impact of wind, temperature, and humidity profiles in the atmosphere on the properties and dynamics of solid impurities is implemented. Comparison with AOT results from AERONET observations in St. Petersburg suburb Peterhof is done. It is shown that diurnal and seasonal variations of optical and morphological parameters of atmospheric aerosols in the pollution cap over the city to a large extent determined by the variability of meteorological parameters. The results of the comparison are presented and possible explanation of the differences is proposed. Optical models of the atmosphere in day and night time in different seasons are constructed from lidar and AERONET

  9. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    Science.gov (United States)

    Mehrling, T. J.; Robson, R. E.; Erbe, J.-H.; Osterhoff, J.

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  10. A model of the TeV flare of Cygnus X-1: electron acceleration and extended pair cascades

    CERN Document Server

    Zdziarski, A A; Bednarek, W

    2008-01-01

    We consider theoretical models of emission of TeV photons by Cyg X-1 during a flare discovered by the MAGIC detector. We study acceleration of electrons to energies sufficient for TeV emission, and find the emission site is allowed to be close to the black hole. We then consider pair absorption in the photon field of the central X-ray source and a surrounding accretion disc, and find its optical depth is 3 TeV, in which photons travel far away from the star, initiating a spatially extended pair cascade. This qualitatively explains the observed TeV spectrum, though still not its exact shape.

  11. On characteristic modeling of a class of flight vehicles’attitude dynamics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The characteristic modeling problem of flight vehicles’attitude dynamics is considered in this paper.In terms of the affine nonlinear system with triangle form of flight vehicles’attitude dynamics,a general method is presented to compress the dynamics into the characteristic model parameters,by introducing the time scale of nonlinear systems and a class of system states related compress functions.The parameter region and limit of the characteristic model are also given.From the given parameter region it is seen that the bound of the characteristic model parameters is dependent on the sampling period,the modeling error,the system order and the system change rate.The modeling error of the established characteristic model can be arbitrarily small according to the control precision,showing the difference between the characteristic model and other model reduction methods,that is,no system information is lost using this approach.On the basis of this modeling approach,the characteristic model of the flexible satellite attitude is established,as well as the bound and limit of the parameters,which sets a theoretical foundation for characteristic model based control design of flight vehicles.

  12. Design and Implementation Model for Linearization Sensor Characteristic by FPAA

    Directory of Open Access Journals (Sweden)

    Alaa Abdul Hussein Salman

    2015-11-01

    Full Text Available Linearization sensors characteristics becomes very interest field for researchers due to the importance in enhance the system performance, measurement accuracy, system design simplicity (hardware and software, reduce system cost, ..etc. in this paper, two approaches has been introduced in order to linearize the sensor characteristics; first is signal condition circuit based on lock up table (LUT which this method performed for linearize NTC sensor characteristic. Second is ratiometric measurement equation which this method performed for linearize LVDT sensor characteristic. The proposed methods has been simulated by MATLAB, and then implemented by using Anadigm AN221E04 Field Programmable Analog Array (FPAA development kit which several experiments performed in order to improve the performance of these approaches.

  13. Switched Matrix Accelerator

    International Nuclear Information System (INIS)

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  14. Development of PUNDA (Parametric Universal Nonlinear Dynamics Approximator) Models for Self-Validating Knowledge-Guided Modelling of Nonlinear Processes in Particle Accelerators \\& Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric

    2007-10-07

    The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.

  15. The characteristic analysis of a hybrid multifluid turbulent-mix model

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B.; Cranfill, C.W.

    1998-07-13

    A thorough analysis of the characteristics of a multifluid turbulent mix model in the case of one-dimensional two phase flows is presented under various physical circumstances. It has been found that the new hybrid multifluid turbulent mix model has all real characteristics if either real or turbulent viscosity is present. When real viscosity vanishes, the model still has all real characteristics for zero relative motion between fluids. For nonzero relative motions between fluids, the model will have all real characteristics if the disordered motions and turbulent viscosity together are generated with the nonzero relative motions simultaneously. The implications of the results are further discussed.

  16. A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting

    International Nuclear Information System (INIS)

    Highlights: • A novel data-characteristic-driven modeling methodology is proposed. • The methodology formulates forecast model based on data’s own data characteristics. • Two steps are involved: data analysis and forecast modeling. • Relationships between data characteristics and forecasting models are discussed. • Empirical results statistically verify the effectiveness of our novel methodology. - Abstract: Due to the unique features of nuclear energy market, this paper tries to propose a novel data-characteristic-driven modeling methodology based on the principle of “data-characteristic-driven modeling”, aiming at formulating appropriate forecasting model closely in terms of sample data’s own data characteristics. In the novel data-characteristic-driven modeling methodology, two steps are mainly involved, i.e., data analysis and forecasting modeling. First, the sample data of nuclear energy consumption are thoroughly investigated in order to capture the main inner rules and hidden patterns driving the data dynamics, in terms of data characteristics. Second, the corresponding forecasting model is accordingly formulated and designed based on these data characteristics. For illustration and verification purposes, the proposed methodology is implemented to predict the nuclear energy consumption of USA and China. The empirical results demonstrate that the novel methodology with the principle of “data-characteristic-driven modeling” strikingly improves prediction performance, since the models elaborately built based on data characteristics statistically outperform all other benchmark models without consideration of data characteristics. This further confirms that the proposed methodology is a very promising tool in both analyzing and forecasting nuclear energy consumption

  17. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  18. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    Science.gov (United States)

    Curtis, J. H.; Michelotti, M. D.; Riemer, N.; Heath, M. T.; West, M.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removal rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.

  19. Diabetes Accelerates Retinal Neuronal Cell Death In A Mouse Model of Endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-07-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase (cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs+/- mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs+/- and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs+/-; non-DB cbs+/-; DB cbs+/+; non-DB cbs+/+. One group of diabetic cbs+/- mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs+/- had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs+/- and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 µm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  20. Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial Plants Using Combined Support Vector Machines and First Principles Models

    Energy Technology Data Exchange (ETDEWEB)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX

    2010-08-25

    parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable

  1. Use of soil physical characteristics from laboratory measurements or standard series for modelling unsaturated water flow

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.; Hegmans, J.H.B.M.

    1996-01-01

    Soil physical characteristics are important input parameters in modelling unsaturated flow in soils. Determining such characteristics in the laboratory is laborious and expensive. Instead, characteristics can be inferred from available soil data by class-pedotransfer functions. A comparison was made

  2. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Science.gov (United States)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  3. Porcine Models of Accelerated Coronary Atherosclerosis: Role of Diabetes Mellitus and Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Damir Hamamdzic

    2013-01-01

    Full Text Available Animal models of atherosclerosis have proven to be an invaluable asset in understanding the pathogenesis of the disease. However, large animal models may be needed in order to assess novel therapeutic approaches to the treatment of atherosclerosis. Porcine models of coronary and peripheral atherosclerosis offer several advantages over rodent models, including similar anatomical size to humans, as well as genetic expression and development of high-risk atherosclerotic lesions which are similar to humans. Here we review the four models of porcine atherosclerosis, including the diabetic/hypercholesterolemic model, Rapacz-familial hypercholesterolemia pig, the (PCSK9 gain-of-function mutant pig model, and the Ossabaw miniature pig model of metabolic syndrome. All four models reliably represent features of human vascular disease.

  4. ENTROPY CHARACTERISTICS IN MODELS FOR COORDINATION OF NEIGHBORING ROAD SECTIONS

    Directory of Open Access Journals (Sweden)

    N. I. Kulbashnaya

    2016-01-01

    Full Text Available The paper considers an application of entropy characteristics as criteria to coordinate traffic conditions at neighboring road sections. It has been proved that the entropy characteristics are widely used in the methods that take into account information influence of the environment on drivers and in the mechanisms that create such traffic conditions which ensure preservation of the optimal level of driver’s emotional tension during the drive. Solution of such problem is considered in the aspect of coordination of traffic conditions at neighboring road sections that, in its turn, is directed on exclusion of any driver’s transitional processes. Methodology for coordination of traffic conditions at neighboring road sections is based on the E. V. Gavrilov’s concept on coordination of some parameters of road sections which can be expressed in the entropy characteristics. The paper proposes to execute selection of coordination criteria according to accident rates because while moving along neighboring road sections traffic conditions change drastically that can result in creation of an accident situation. Relative organization of a driver’s perception field and driver’s interaction with the traffic environment has been selected as entropy characteristics. Therefore, the given characteristics are made conditional to the road accidents rate. The investigation results have revealed a strong correlation between the relative organization of the driver’s perception field and the relative organization of the driver’s interaction with the traffic environment and the accident rate. Results of the executed experiment have proved an influence of the accident rate on the investigated entropy characteristics.

  5. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  6. A model for the determination of the nominal potential for a linear accelerator; Un modelo para la determinacion del potencial nominal de un acelerador lineal

    Energy Technology Data Exchange (ETDEWEB)

    Gutt, F.; Silva, P.; Guerrero, R.; Diaz, J.; Colmenares, J. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Laboratorio Secundario de Calibracion Dosimetrica (LSCD), Apartado 21827, Caracas 1020 A (Venezuela)

    1998-12-31

    The objective of the present work is to find a physical mathematical model based on the reason of the dose percentages at 10 and 20 cm depth, at 100 cm DFS and a 10 x 10 cm{sup 2} field. It was utilized literature data of new manufactured accelerators and those are in use in hospitals, which allow to prove the model under different conditions. Our objective consists only to obtain a model that verifies the nominal potential for a linear accelerator, but without pretending that such a model to be used to calculate any one factor to determination of absorbed dose. (Author)

  7. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  8. Modelling material effects on flow-accelerated corrosion in primary CANDU coolant and secondary reactor feed-water

    International Nuclear Information System (INIS)

    The effects of chromium content on flow-accelerated corrosion (FAC) of carbon steel have been predicted very well by including a passivating layer, which is a chromium-dependent diffusion barrier at the metal-oxide interface. By adjusting the properties of the chromium-dependent layer, described with a Passivation Parameter (PP), we can predict the FAC of carbon steel of different chromium contents in typical reactor feed-water environments (140oC and neutral or ammoniated chemistry). The model and an appropriate PP are also applied to the environment typical of carbon-steel feeders in the primary coolant of a CANDU reactor (310oC and lithiated chemistry). The model predicts FAC rate very well (with a deviation of 10% or less) in both situations. (author)

  9. ANALYSIS OF ACCELERATED LIFE TESTING USING LOG-LOGISTIC GEOMETRIC PROCESS MODEL IN CASE OF CENSORED DATA

    Directory of Open Access Journals (Sweden)

    S. SAXENA

    2013-07-01

    Full Text Available Geometric process model has been used in a variety of situations such as the determination of the optimal replacement policy and the optimal inspection-repair replacement policy for standby systems, and the analysis of data with trends. This study deals with the analysis of accelerated life testing for Log-Logistic distribution using geometric process model. The case of type-I censoring is considered in this study. It is assumed that the lifetimes under increasing stress levels form a geometric process. The maximum likelihood estimates of the parameters and their confidence intervals using the asymptotic method are derived. The performance of the estimators is evaluated by a simulation study with different pre-fixed parameters.

  10. Space-time modeling of catchment scale drought characteristics

    NARCIS (Netherlands)

    Tallaksen, L.; Hisdal, H.; Lanen, van H.A.J.

    2009-01-01

    Drought may affect all components of the water cycle and covers commonly a large part of the catchment area. This paper examines drought propagation at the catchment scale using spatially aggregated drought characteristics and illustrates the importance of catchment processes in modifying the drough

  11. The Postural Control Characteristics of Individuals with and without a History of Ankle Sprain during Single-leg Standing: Relationship between Center of Pressure and Acceleration of the Head and Foot Parameters

    OpenAIRE

    Abe, Yota; Sugaya, Tomoaki; Sakamoto, Masaaki

    2014-01-01

    [Purpose] This study aimed to investigate the postural control characteristics of individuals with and without a history of ankle sprain during single-leg standing by examining the relationship between various parameters of center of pressure (COP) and head and foot acceleration. [Subjects] Twenty subjects with and 23 subjects without a history of ankle sprain (sprain and control groups, respectively) participated. [Methods] Mean and maximum COP velocity and maximum COP range in the anteropos...

  12. Simplified models for estimating isothermal operating characteristics of food extruders.

    Science.gov (United States)

    Levine, L; Rockwood, J

    1985-09-01

    A model of isothermal food extruder performance is described. Inferences about alternative extruder screw designs and their performance are drawn from the model. The model suggests that thread depth or diameter compression screws are superior in performance to a pitch compression screw. The advantage gained from using diameter compression screws is paid for with significantly higher rates of energy dissipation. The use of the model to characterize screws having both a compression zone and metering zone is described.

  13. Temperature characteristics of quantum dot devices: Rate vs. Master Equation Models

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg;

    2001-01-01

    The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures.......The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures....

  14. INFILTRATION KINETICS MODEL OF LIQUID METAL INTO A FIBROUS PREFORM IN CENTRIFUGAL ACCELERATING FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Da rcy's law and the assumption that the fibrous preform is treated as “bundle of capillaries”. The critical rotating speed is analyzed with the established mo del. The influences of the metal melt mass,the rotating speed of the equipmen t,the casting height, the original outer radius of the metal melt and the fibrou s volume fraction in fibrous preform on infilatration are studied. The results show that the critical rotating speed is dependent on critical pressure, castin g height, metal melt mass and the character of fibrous preform. With the incr ease in the metal melt mass, rotating speed of the equipment and original outer radius of the metal melt, or the decrease in casting height and fibrous volume f raction in fibrous of the metal melt,or the decrease in casting height and fibro us volume fraction in fibrous preform,infiltration of metal melt for fibrous pre form becomes easier.

  15. Accelerating the connection between experiments and models: The FACE-MDS experience

    Science.gov (United States)

    Norby, R. J.; Medlyn, B. E.; De Kauwe, M. G.; Zaehle, S.; Walker, A. P.

    2014-12-01

    The mandate is clear for improving communication between models and experiments to better evaluate terrestrial responses to atmospheric and climatic change. Unfortunately, progress in linking experimental and modeling approaches has been slow and sometimes frustrating. Recent successes in linking results from the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments with ecosystem and land surface models - the FACE Model-Data Synthesis (FACE-MDS) project - came only after a period of slow progress, but the experience points the way to future model-experiment interactions. As the FACE experiments were approaching their termination, the FACE research community made an explicit attempt to work together with the modeling community to synthesize and deliver experimental data to benchmark models and to use models to supply appropriate context for the experimental results. Initial problems that impeded progress were: measurement protocols were not consistent across different experiments; data were not well organized for model input; and parameterizing and spinning up models that were not designed for simulating a specific site was difficult. Once these problems were worked out, the FACE-MDS project has been very successful in using data from the Duke and ORNL FACE experiment to test critical assumptions in the models. The project showed, for example, that the stomatal conductance model most widely used in models was supported by experimental data, but models did not capture important responses such as increased leaf mass per unit area in elevated CO2, and did not appropriately represent foliar nitrogen allocation. We now have an opportunity to learn from this experience. New FACE experiments that have recently been initiated, or are about to be initiated, include a eucalyptus forest in Australia; the AmazonFACE experiment in a primary, tropical forest in Brazil; and a mature oak woodland in England. Cross-site science questions are being developed that will have a

  16. The Validity of the Job Characteristics Model: A Review and Meta-Analysis.

    Science.gov (United States)

    Fried, Yitzhak; Ferris, Gerald R.

    1987-01-01

    Assessed the validity of Hackman and Oldham's Job Characteristics Model by conducting a comprehensive review of nearly 200 relevant studies on the model as well as by applying meta-analytic procedures to much of the data. Available correlational results were reasonably valid and support the multidimensionality of job characteristics and their…

  17. Job Characteristics and College Performance and Attitudes: A Model of Work-School Conflict and Facilitation

    Science.gov (United States)

    Butler, Adam B.

    2007-01-01

    The processes linking job characteristics to school performance and satisfaction in a sample of 253 full-time college students were examined from 2 role theory perspectives, 1 of which emphasized resource scarcity and the other resource expansion. Model tests using structural equation modeling showed that 2 resource-enriching job characteristics,…

  18. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  19. Accelerated clearance of human red blood cells in a rat transfusion model

    OpenAIRE

    Straat, M.; Klei, TRL; de Korte, D; van Bruggen, R.; Juffermans, NP

    2015-01-01

    Background Animal models are valuable in transfusion research. Use of human red blood cells (RBCs) in animal models facilitates extrapolation of the impact of storage conditions to the human condition but may be hampered by the use of cross species. Methods Investigation of clearance and posttransfusion recovery in a rat model using fresh and stored human RBCs. Results Directly following transfusion, human RBCs could be detected in the circulation of all recipients, with higher recovery rates...

  20. Modelling of Zircaloy-4 accelerated degradation kinetics in nitrogen–oxygen mixtures at 850 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, M., E-mail: marina.lasserre-gagnaire@edf.fr [Institut de Radioprotection et de Sûreté Nucléaire, Cadarache BP 3, 13 115 St Paul-Lez-Durance cedex (France); Laboratoire George Friedel CNRS UMR 5307, Centre SPIN, Ecole Nationale Supérieure des Mines, 158 Cours Fauriel, 42 023 Saint-Etienne (France); Peres, V. [Laboratoire George Friedel CNRS UMR 5307, Centre SPIN, Ecole Nationale Supérieure des Mines, 158 Cours Fauriel, 42 023 Saint-Etienne (France); Pijolat, M., E-mail: mpijolat@emse.fr [Laboratoire George Friedel CNRS UMR 5307, Centre SPIN, Ecole Nationale Supérieure des Mines, 158 Cours Fauriel, 42 023 Saint-Etienne (France); Coindreau, O.; Duriez, C. [Institut de Radioprotection et de Sûreté Nucléaire, Cadarache BP 3, 13 115 St Paul-Lez-Durance cedex (France); Mardon, J.-P. [AREVA, AREVA NP SAS Fuel Business Unit, 10 rue Juliette Récamier, 69 456 Lyon Cédex 06 (France)

    2015-07-15

    Zirconium-based alloys used in PWR cladding show an acceleration of their oxidation kinetics in air at high temperature compared to their behaviour under oxygen or steam alone. This paper presents an analysis of the oxidation kinetics in order to explain the role of nitrogen during the accelerated corrosion. Isothermal thermogravimetry on alloy thin plates was used to collect kinetic data during the reaction of Zircaloy-4 at 850 °C in oxygen and nitrogen mixtures. The influence of oxygen and nitrogen partial pressure on the degradation kinetics was studied by a jump method. The presence of nitrogen in the reacting gas enables the formation of zirconium nitride near the oxide–metal interface which acts as a catalytic phase. A three steps reaction path composed of nitride oxidation, α-Zr(O) nitridation and oxidation is proposed. A detailed mechanism and the rate-determining step of the overall process are proposed that account for the experimentally observed dependence of the kinetic rate with the oxygen and nitrogen partial pressures; a kinetic model based on surface nucleation and growth of regions attacked by nitrogen was successful in describing the mass variations with time of exposure at 850 °C.

  1. Modelling of Zircaloy-4 accelerated degradation kinetics in nitrogen-oxygen mixtures at 850 °C

    Science.gov (United States)

    Lasserre, M.; Peres, V.; Pijolat, M.; Coindreau, O.; Duriez, C.; Mardon, J.-P.

    2015-07-01

    Zirconium-based alloys used in PWR cladding show an acceleration of their oxidation kinetics in air at high temperature compared to their behaviour under oxygen or steam alone. This paper presents an analysis of the oxidation kinetics in order to explain the role of nitrogen during the accelerated corrosion. Isothermal thermogravimetry on alloy thin plates was used to collect kinetic data during the reaction of Zircaloy-4 at 850 °C in oxygen and nitrogen mixtures. The influence of oxygen and nitrogen partial pressure on the degradation kinetics was studied by a jump method. The presence of nitrogen in the reacting gas enables the formation of zirconium nitride near the oxide-metal interface which acts as a catalytic phase. A three steps reaction path composed of nitride oxidation, α-Zr(O) nitridation and oxidation is proposed. A detailed mechanism and the rate-determining step of the overall process are proposed that account for the experimentally observed dependence of the kinetic rate with the oxygen and nitrogen partial pressures; a kinetic model based on surface nucleation and growth of regions attacked by nitrogen was successful in describing the mass variations with time of exposure at 850 °C.

  2. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  3. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  4. Natural Selection at Work: An Accelerated Evolutionary Computing Approach to Predictive Model Selection

    OpenAIRE

    Akman, Olcay; Hallam, Joshua W.

    2010-01-01

    We implement genetic algorithm based predictive model building as an alternative to the traditional stepwise regression. We then employ the Information Complexity Measure (ICOMP) as a measure of model fitness instead of the commonly used measure of R-square. Furthermore, we propose some modifications to the genetic algorithm to increase the overall efficiency.

  5. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    Science.gov (United States)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  6. Response characteristics of a low-dimensional model neuron.

    Science.gov (United States)

    Cartling, B

    1996-11-15

    It is shown that a low-dimensional model neuron with a response time constant smaller than the membrane time constant closely reproduces the activity and excitability behavior of a detailed conductance-based model of Hodgkin-Huxley type. The fast response of the activity variable also makes it possible to reduce the model to a one-dimensional model, in particular for typical conditions. As an example, the reduction to a single-variable model from a multivariable conductance-based model of a neocortical pyramidal cell with somatic input is demonstrated. The conditions for avoiding a spurious damped oscillatory response to a constant input are derived, and it is shown that a limit-cycle response cannot occur. The capability of the low-dimensional model to approximate higher-dimensional models accurately makes it useful for describing complex dynamics of nets of interconnected neurons. The simplicity of the model facilitates analytic studies, elucidations of neurocomputational mechanisms, and applications to large-scale systems. PMID:8888611

  7. Dynamic modelling of pectin extraction describing yield and functional characteristics

    DEFF Research Database (Denmark)

    Andersen, Nina Marianne; Cognet, T.; Santacoloma, P. A.;

    2017-01-01

    A dynamic model of pectin extraction is proposed that describes pectin yield, degree of esterification and intrinsic viscosity. The dynamic model is one dimensional in the peel geometry and includes mass transport of pectin by diffusion and reaction kinetics of hydrolysis, degradation and de......-esterification. The model takes into account the effects of the process conditions such as temperature and acid concentration on extraction kinetics. It is shown that the model describes pectin bulk solution concentration, degree of esterification and intrinsic viscosity in pilot scale extractions from lime peel...

  8. Comparative Study of Inter-Strand Coupling Current Models for Accelerator Magnets

    CERN Document Server

    Auchmann, Bernard; Russenschuck, Stephan

    2006-01-01

    Inter-strand coupling currents (ISCCs) contribute to field errors and losses in Rutherford-type superconducting cables in the time-transient regime. A field change induces eddy currents in loops formed by the superconducting twisted strands and the resistive matrix. The implementation of ISCC models in ROXIE allows to combine ISCC calculations with models for persistent current sand inter- filament coupling currents. Saturation effects in iron can be taken into account as well. The predictions of different ISCC models with regard to losses and field errors are compared for two design versions of the LHC main dipole.

  9. Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart

    DEFF Research Database (Denmark)

    Heebøll-Christensen, Jesper

    the models are not conclusive on this point. In addition the Liebau effect is investigated in a simpler system containing two elastic tubes joined to form a liquid filled ring, with a compression pump at an asymmetric location. Through comparison to other reports the system validates model construction...

  10. Stochastic Characteristics and Simulation of the Random Waypoint Mobility Model

    CERN Document Server

    Ahuja, A; Krishna, P Venkata

    2012-01-01

    Simulation results for Mobile Ad-Hoc Networks (MANETs) are fundamentally governed by the underlying Mobility Model. Thus it is imperative to find whether events functionally dependent on the mobility model 'converge' to well defined functions or constants. This shall ensure the long-run consistency among simulation performed by disparate parties. This paper reviews a work on the discrete Random Waypoint Mobility Model (RWMM), addressing its long run stochastic stability. It is proved that each model in the targeted discrete class of the RWMM satisfies Birkhoff's pointwise ergodic theorem [13], and hence time averaged functions on the mobility model surely converge. We also simulate the most common and general version of the RWMM to give insight into its working.

  11. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  12. Outdoor robot : characteristics and calculation of the mathematical model

    OpenAIRE

    Díaz Martínez, Pablo

    2011-01-01

    The objective of the following project is to work on an outdoor robot. It has been designed to explore and work in open areas or indoor places as big pipes or caves. The main idea of the project is to develop the movements of the robot. For which the program MATLAB is used to simulate the trajectories. The robot can make some type of movements; they are evaluated acording to the characteristics and the restrictions of the robot. First all the components of the robot are analysed. Once fini...

  13. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  14. Efficient Modeling of Laser-Plasma Accelerators with INF and RNO

    International Nuclear Information System (INIS)

    The numerical modeling code INF and RNO (INtegrated Fluid and paRticle simulatioN cOde, pronounced inferno) is presented. INF and RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  15. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  16. The Bevalac accelerator

    International Nuclear Information System (INIS)

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  17. Comparison of extraction techniques and modeling of accelerated solvent extraction for the authentication of natural vanilla flavors.

    Science.gov (United States)

    Cicchetti, Esmeralda; Chaintreau, Alain

    2009-06-01

    Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.

  18. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    Science.gov (United States)

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls. PMID:26494281

  19. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    Science.gov (United States)

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls.

  20. Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models

    OpenAIRE

    Koopman, S.J.; Lucas, A.; Scharth Figueiredo Pinto, M.

    2011-01-01

    This paper led to a publication in the 'Journal of Business & Economic Statistics' , 2015, 33 (1), 114-127. We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that only a small part of the likelihood evaluation problem requires simulation. We refer to our new ...

  1. A Magnetohydrodynamic Model of The M87 Jet. II. Self-consistent Quad-shock Jet Model for Optical Relativistic Motions and Particle Acceleration

    CERN Document Server

    Nakamura, Masanori

    2014-01-01

    We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the {\\em Hubble Space Telescope} during 1994 -- 1998. The model concept consists of ejection of a {\\em single} relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the {\\em optical} observations of HST-1 with the same model we used previously to describe similar features in radio VLBI observations in 2005 -- 2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge o...

  2. Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

    Energy Technology Data Exchange (ETDEWEB)

    Dzyuba, A.; /Fermilab /Novosibirsk State U.; Romanenko, A.; /Fermilab; Cooley, L.D.; /Fermilab

    2010-07-13

    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H{sub pen}. Such defects were argued to be the worst case by Buzdin and Daumens, [1998 Physica C 294 257], whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter {kappa}. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H{sub pen} when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H{sub pen} was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of {kappa}. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by {approx}20%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  3. Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine

    International Nuclear Information System (INIS)

    Since the turbocharger turbine plays an important role in determining the engine performance, how to model and extrapolate mass flow characteristics of the turbocharger turbine is very important especially when only a narrow range of turbine data is provided by manufacturers. In this paper, a new mass flow model is proposed based on the physical model of a radial turbine simplified as two nozzles in series. With the ideal nozzle flow equation applied on the turbine stator, the mass flow rate through the turbine can be expressed with three fitted coefficients which have clear physical meanings. Existing empirical and partly empirical models of turbine mass flow characteristics are reviewed and compared with the deduced model in the Matlab software. The results show that considering the number of fitted coefficients and the modeling accuracy, the deduced model performs well in regression analyses conducted with experimental data tested from three radial turbines of different sizes. Also interpolating and extrapolating performances of this new model can match the turbine model in the GT-Power commercial software. Thus this new model is sufficiently robust to model and extrapolate mass flow characteristics of the radial turbocharger turbine at off design operating conditions. - Highlights: • A physical based turbine model of mass flow characteristics is proposed. • Existing turbine mass flow models are reviewed and summarized. • Comparative analyses of the deduced model and existing models are conducted. • Interpolating and extrapolating abilities of the deduced model are evaluated

  4. MIG version 0.0 model interface guidelines: Rules to accelerate installation of numerical models into any compliant parent code

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, R.M.; Wong, M.K.

    1996-08-01

    A set of model interface guidelines, called MIG, is presented as a means by which any compliant numerical material model can be rapidly installed into any parent code without having to modify the model subroutines. Here, {open_quotes}model{close_quotes} usually means a material model such as one that computes stress as a function of strain, though the term may be extended to any numerical operation. {open_quotes}Parent code{close_quotes} means a hydrocode, finite element code, etc. which uses the model and enforces, say, the fundamental laws of motion and thermodynamics. MIG requires the model developer (who creates the model package) to specify model needs in a standardized but flexible way. MIG includes a dictionary of technical terms that allows developers and parent code architects to share a common vocabulary when specifying field variables. For portability, database management is the responsibility of the parent code. Input/output occurs via structured calling arguments. As much model information as possible (such as the lists of required inputs, as well as lists of precharacterized material data and special needs) is supplied by the model developer in an ASCII text file. Every MIG-compliant model also has three required subroutines to check data, to request extra field variables, and to perform model physics. To date, the MIG scheme has proven flexible in beta installations of a simple yield model, plus a more complicated viscodamage yield model, three electromechanical models, and a complicated anisotropic microcrack constitutive model. The MIG yield model has been successfully installed using identical subroutines in three vectorized parent codes and one parallel C++ code, all predicting comparable results. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort, thereby reducing the cost of installing and sharing models in diverse new codes.

  5. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2014-12-01

    Full Text Available The commonly adopted biogeochemistry spin-up process in earth system model is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon-nitrogen (CN models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon/nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4 with carbon and nitrogen component was used in this study. From point scale simulations we found that the method can reduce the computation time by 20–69% compared to the fastest approach in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a low model for variably saturated porous media.

  6. Modeling the Substrate Skin Effects in Mutual RL Characteristics.,

    Directory of Open Access Journals (Sweden)

    D. de Roest

    2003-12-01

    Full Text Available The goal of this work was to model the influence of the substrateskin effects on the distributed mutual impedance per unit lengthparameters of multiple coupled on-chip interconnects. The proposedanalytic model is based on the frequency-dependent distribution of thecurrent in the silicon substrate and the closed form integrationapproach. It is shown that the calculated frequency-dependentdistributed mutual inductance and the associated mutual resistance arein good agreement with the results obtained from CAD-oriented circuitmodeling technique.

  7. Modelling, analysis, and acceleration of a printed circuit board fabrication process

    Indian Academy of Sciences (India)

    K S Aithal; Y Narahari; E Manjunath

    2001-10-01

    Product design and fabrication constitute an important business activity in any manufacturing firm. Designing an optimized product fabrication process is an important problem in itself and is of significant practical and research interest. In this paper, we look into a printed circuit board (PCB) fabrication process and investigate ways in which the fabrication cycle time can be minimized. Single class queueing networks constitute the modelling framework for our study. The model developed in this paper and the analysis experiments carried out are based on extensive data collected on a PCB fabrication company located in Bangalore, India. This is a representative PCB fabrication company involving multiple, concurrent fabrication works with contention for human/technical resources. Our model seeks to capture faithfully the flow of the fabrication process in this company and such other organisations, using queueing networks. Using the model developed, we explore how the cycle times can be reduced using input control, load balancing, and variability reduction. The model presented is sufficiently generic and conceptual; its scope extends beyond that of a PCB fabrication organization.

  8. Advanced modeling to accelerate the scale up of carbon capture technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  9. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease.

    Science.gov (United States)

    Peng, Yueping; Wang, Jue; Zheng, Chongxun

    2016-12-01

    In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory. PMID:26998957

  10. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease.

    Science.gov (United States)

    Peng, Yueping; Wang, Jue; Zheng, Chongxun

    2016-01-01

    In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory.

  11. Algorithm Acceleration and Data Storage Volume Reduction in Reliability Modeling Within Distribution Network

    Directory of Open Access Journals (Sweden)

    Esmail limouzade

    2013-04-01

    Full Text Available Investigation and assessment of a system performance was complex. So Equipment reliability modeling may be a proper solution to easier it. Electricity distribution network is among systems reliability of which is of great importance. They are highly complex due to their large size and hence their modeling takes a long time. This study offers a simple algorithm for Electricity distribution networks modeling which enjoys algorithm high speed and data low volume. It is based on a graph search method called coloring. In this innovative method, it is suggested to search minimal path from the beginning of the feeder to the sink points .Also it is applied by saving paths in terms of switches and through logical operations of symmetric difference without searching paths from each input to estimate minimal path between all inputs and outputs. In so doing there will be no need for explicitly defining the source node, as it is easily recognizable via junction matrix composition. This kind of network modeling is so flexible and it is simply applicable to bidirectional or non-planar graphs.

  12. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    Science.gov (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  13. Modelling Soil Water Characteristic Curves for the Investigation of Hydrophobicity

    Science.gov (United States)

    Hallin, Ingrid; Matthews, Peter; Laudone, Maurizio; Van Keulen, Geertje; Doerr, Stefan; Francis, Lewis; Dudley, Ed; Gazze, Andrea; Quinn, Gerry; Whalley, Richard; Ashton, Rhys

    2016-04-01

    Soil hydrophobicity presents a major challenge for the future, as it reduces both plant-available water and irrigation efficiency, and can increase flooding hazards and erosion. A collaborative research project has been set up in the UK to study hydrophobicity over a wide range of length scales. At core scale, we are investigating the wetting behaviour of water repellent soils in order to model percolation through hydrophobic pore spaces. To that end, water retention measurements were carried out on both wettable and forcibly-wetted water-repellent soils collected from three locations in England and Wales. The data were then fitted with both the commonly used Van Genuchten model and an alternative model from PoreXpert, a software program that analyses and models porous materials. The Van Genuchten model fits a curve to the data using parameters related to air entry suction, irreducible water content and pore size distribution. By contrast, PoreXpert uses a Boltzmann-annealed simplex to find a best-fit curve based on parameters directly related to the void structure of the soil: the size of the voids, the shape of the void size distribution, and how the voids are connected to each other. Both Van Genuchten and PoreXpert fit the experimental data well, but where Van Genuchten forces an S-shaped curve that can mask small variations, PoreXpert gives a closer fit of no pre-defined shape that captures subtle differences between data points. This allows us to calculate differences in the effective pore and throat size distributions, and provides a mechanistic framework from which to model additional hydrologic behaviour in water repellent soil. Simulations of capillary induced wetting based on these mechanistic postulates are then compared to wicking experiments at the core scale, which can then be upscaled and applied to other soils.

  14. Development of prediction method of flow accelerated corrosion (1). Study of Reynolds number dependency in FAC prediction model

    International Nuclear Information System (INIS)

    Flow Accelerated Corrosion (FAC) requires considerable attention in plant piping management, for its potential of catastrophic pipe rupture of main piping systems. In view of fluid dynamics, the most essential factor to be considered is mass transfer at the inner surface of the pipe. In the previous report, the authors have proposed a new mass transfer coefficient model, which is adaptable to various types of piping elements with strong turbulence, by introducing the idea of 'Effective Friction Velocity' from the hydraulics in the viscous sub-layer along the wall. And in the present report, the model has been revised to improve the prediction accuracy of FAC thinning rate, quantitatively. In this revision process, FAC experimental data with AVT water condition of various pH values and CFD data for the flow in the experiments were applied. As the result, the exponent of Reynolds number in the mass transfer coefficient model was changed from 0.75 to 0.88, as a main item in the revision. In addition, diffusivity of dissolved iron and impact factor for turbulence consideration were also varied for the improvement. (author)

  15. An Exact and Grid-free Numerical Scheme for the Hybrid Two Phase Traffic Flow Model Based on the Lighthill-Whitham-Richards Model with Bounded Acceleration

    KAUST Repository

    Qiu, Shanwen

    2012-07-01

    In this article, we propose a new grid-free and exact solution method for computing solutions associated with an hybrid traffic flow model based on the Lighthill- Whitham-Richards (LWR) partial differential equation. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a fixed acceleration otherwise. We first present a grid-free solution method for the LWR equation based on the minimization of component functions. We then show that this solution method can be extended to compute the solutions to the hybrid model by proper modification of the component functions, for any concave fundamental diagram. We derive these functions analytically for the specific case of a triangular fundamental diagram. We also show that the proposed computational method can handle fixed or moving bottlenecks.

  16. Dimension Driven Accelerating Universe

    CERN Document Server

    Chatterjee, S

    2009-01-01

    The current acceleration of the universe leads us to investigate higher dimensional gravity theory, which is able to explain acceleration from a theoretical view point without the need of introducing dark energy by hand. We argue that the terms containing higher dimensional metric coefficients produce an extra negative pressure that apparently drives an acceleration of the 3D space, tempting us to suggest that the accelerating universe seems to act as a window to the existence of extra spatial dimensions. Interesting to point out that in this case our cosmology apparently mimics the well known quintessence scenario fuelled by a generalised Chaplygin-type of fluid where a smooth transition from a dust dominated model to a de Sitter like one takes place. Correspondence to models generated by a tachyonic form of matter is also briefly discussed.

  17. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models

    CERN Document Server

    Wojtak, Radosław

    2016-01-01

    The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, bu...

  18. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.

    2006-01-01

    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil volu

  19. Investigating the characteristics of shutoff valves by model tests

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    1977-07-01

    High pressures, strict safety requirements, minimum wear and a decrease of head losses are nowadays the most essential criteria in the design and manufacture of shutoff valves for water powerplants. In the following, the results of such model tests carried out in the hydraulic laboratory of Voeest Alpine AG are described.

  20. Characteristics of Effective Training: Developing a Model To Motivate Action.

    Science.gov (United States)

    Wise, Dena; Ezell, Patsy

    2003-01-01

    The Parenting and Consumer Education project identified effective models for training welfare-to-work facilitators. Premises were the importance of process, learner responsibility, and improvement of social networks. Effective training was learner focused, inspiring, and motivating; demonstrated productive behaviors and effective life skills; and…

  1. Design, Implementation, and Test of a Multi-Model Systolic Neural-Network Accelerator

    Directory of Open Access Journals (Sweden)

    Thierry Cornu

    1996-01-01

    Full Text Available A multi-model neural-network computer has been designed and built. A compute-intensive application in the field of power-system monitoring, using the Kohonen neural network, has then been ported onto this machine. After a short description of the system, this article focuses on the programming paradigm adopted. The performance of the machine is also evaluated and discussed.

  2. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Science.gov (United States)

    Gagné-Bourque, François; Mayer, Boris F; Charron, Jean-Benoit; Vali, Hojatollah; Bertrand, Annick; Jabaji, Suha

    2015-01-01

    Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal

  3. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  4. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors

    Science.gov (United States)

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze

    2016-06-01

    The main contribution of this study is to improve the GRACE gravity field solution by taking errors of non-conservative acceleration and attitude observations into account. Unlike previous studies, the errors of the attitude and non-conservative acceleration data, and gravity field parameters, as well as accelerometer biases are estimated by means of weighted least squares adjustment. Then we compute a new time series of monthly gravity field models complete to degree and order 60 covering the period Jan. 2003 to Dec. 2012 from the twin GRACE satellites' data. The derived GRACE solution (called Tongji-GRACE02) is compared in terms of geoid degree variances and temporal mass changes with the other GRACE solutions, namely CSR RL05, GFZ RL05a, and JPL RL05. The results show that (1) the global mass signals of Tongji-GRACE02 are generally consistent with those of CSR RL05, GFZ RL05a, and JPL RL05; (2) compared to CSR RL05, the noise of Tongji-GRACE02 is reduced by about 21 % over ocean when only using 300 km Gaussian smoothing, and 60 % or more over deserts (Australia, Kalahari, Karakum and Thar) without using Gaussian smoothing and decorrelation filtering; and (3) for all examples, the noise reductions are more significant than signal reductions, no matter whether smoothing and filtering are applied or not. The comparison with GLDAS data supports that the signals of Tongji-GRACE02 over St. Lawrence River basin are close to those from CSR RL05, GFZ RL05a and JPL RL05, while the GLDAS result shows the best agreement with the Tongji-GRACE02 result.

  5. Accelerating the Delivery of Home Performance Upgrades through a Synergistic Business Model

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, Tom; Ojczyk, Cindy

    2016-04-11

    Achieving Building America energy savings goals (40% by 2030) will require many existing homes to install energy upgrades. Engaging large numbers of homeowners in building science-guided upgrades during a single remodeling event has been difficult for a number of reasons. Performance upgrades in existing homes tend to occur over multiple years and usually result from component failures (furnace failure) and weather damage (ice dams, roofing, siding). This research attempted to: A) understand the homeowner's motivations regarding investing in building science based performance upgrades; B) determining a rapidly scalable approach to engage large numbers of homeowners directly through existing customer networks; and C) access a business model that will manage all aspects of the contractor-homeowner-performance professional interface to ensure good upgrade decisions over time. The solution results from a synergistic approach utilizing networks of suppliers merging with networks of homeowner customers. Companies in the $400 to $800 billion home services industry have proven direct marketing and sales proficiencies that have led to the development of vast customer networks. Companies such as pest control, lawn care, and security have nurtured these networks by successfully addressing the ongoing needs of homes. This long-term access to customers and trust established with consistent delivery has also provided opportunities for home service providers to grow by successfully introducing new products and services like attic insulation and air sealing. The most important component for success is a business model that will facilitate and manage the process. The team analyzes a group that developed a working model.

  6. Modeling Tidal Wetland Resiliency in the Face of Predicted Accelerated Sea-Level Rise

    Science.gov (United States)

    Schile, L. M.; Callaway, J.; Morris, J. T.; Kelly, M.

    2014-12-01

    Tidal wetland ecosystems are dynamic coastal habitats that, in California, often occur at the complex nexus of aquatic environments, diked and leveed baylands, and modified upland habitat. Because of their prime location and rich peat soil, many wetlands have been reduced, degraded, and/or destroyed, and yet their important role in carbon sequestration, nutrient and sediment filtering, and as habitat requires us to further examine their sustainability in light of predicted climate change. Predictions of climate change effects for the San Francisco Bay Estuary present a future with reduced summer freshwater input and increased sea levels. We examined the applicability and accuracy of the Marsh Equilibrium Model (MEM), a zero-dimensional model that models organic and inorganic accretion rates under a given rate of sea-level rise. MEM was calibrated using data collected from salt and brackish marshes in the San Francisco Bay Estuary to examine wetland resiliency under a range of sea-level rise and suspended sediment concentration scenarios. At sea-level rise rates 100 cm/century and lower, wetlands remained vegetated. Once sea levels rise above 100 cm, marshes begin to lose ability to maintain elevation, and the presence of adjacent upland habitat becomes increasingly important for marsh migration. The negative effects of sea-level rise on elevations were compounded as suspended sediment concentrations decreased. Results from this study emphasize that the wetland landscape in the bay is threatened with rising sea levels, and there are a limited number of wetlands that will be able to migrate to higher ground as sea levels rise.

  7. A Bandwidth Allocation Model Provisioning Framework with Autonomic Characteristics

    OpenAIRE

    Rafael F. Reale; Romildo M. da S. Bezerra; Martins, Joberto S. B.

    2013-01-01

    The Bandwidth Allocation Models (MAM, RDM, G-RDM and AllocTC-Sharing) are managementalternatives currently available which propose different resource (bandwidth) allocation strategies inmultiservice networks. The BAM adoption by a network is typically a management choice andconfiguration task executed by the network operations and management system setup in a static or nearlystatic way. This paper proposes and explores the alternative ofallowing BAM definition and configurationon a more dynam...

  8. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  9. Laboratory and Numerical Modeling of Smoke Characteristics for Superfog Formation

    Science.gov (United States)

    Bartolome, C.; Lu, V.; Tsui, K.; Princevac, M.; Venkatram, A.; Mahalingam, S.; Achtemeier, G.; Weise, D.

    2011-12-01

    Land management techniques in wildland areas include prescribed fires to promote biodiversity and reduce risk of severe wildfires across the United States. Several fatal car pileups have been associated with smoke-related visibility reduction from prescribed burns. Such events have occurred in year 2000 on the interstate highways I-10 and I-95, 2001 on the I-4, 2006 on the I-95, and 2008 on the I-4 causing numerous fatalities, injuries, and damage to property. In some of the cases visibility reduction caused by smoke and fog combinations traveling over roadways have been reported to be less than 3 meters, defined as superfog. Our research focuses on delineating the conditions that lead to formation of the rare phenomena of superfog and creating a tool to enable land managers to effectively plan prescribed burns and prevent tragic events. It is hypothesized that the water vapor from combustion, live fuels, soil moisture, and ambient air condense onto the cloud condensation nuclei (CCN) particles emitted from low intensity smoldering fires. Physical and numerical modeling has been used to investigate these interactions. A physical model in the laboratory has been developed to characterize the properties of smoke resulting from smoldering pine needle litters at the PSW Forest Service in Riverside, CA. Temporal measurements of temperature, relative humidity, sensible heat flux, radiation heat flux, convective heat flux, particulate matter concentrations and visibilities have been measured for specific cases. The size distribution and number concentrations of the fog droplets formed inside the chamber by mixing cool dry and moist warm air masses to produce near superfog visibilities were measured by a Phase Doppler Particle Analyzer. Thermodynamic modeling of smoke and ambient air was conducted to estimate liquid water contents (LWC) available to condense into droplets and form significant reductions in visibility. The results show that LWC of less than 2 g m-3 can be

  10. Optimization of parameters for fitting linear accelerator photon beams using a modified CBEAM model

    Energy Technology Data Exchange (ETDEWEB)

    Ayyangar, K.; Daftari, I.; Palta, J.; Suntharalingam, N. (Thomas Jefferson University Hospital, Department of Radiation Oncology and Nuclear Medicine, Philadelphia, Pennsylvania 19107 (US))

    1989-11-01

    Measured beam profiles and central-axis depth-dose data for 6- and 25-MV photon beams are used to generate a dose matrix which represents the full beam. A corresponding dose matrix is also calculated using the modified CBEAM model. The calculational model uses the usual set of three parameters to define the intensity at beam edges and the parameter that accounts for collimator transmission. An additional set of three parameters is used for the primary profile factor, expressed as a function of distance from the central axis. An optimization program has been adapted to automatically adjust these parameters to minimize the {chi}{sup 2} between the measured and calculated data. The average values of the parameters for small (6{times}6 cm{sup 2}), medium (10{times}10 cm{sup 2}), and large (20{times}20 cm{sup 2}) field sizes are found to represent the beam adequately for all field sizes. The calculated and the measured doses at any point agree to within 2% for any field size in the range 4{times}4 to 40{times}40 cm{sup 2}.

  11. Playing with a Concept: Teaching Job Characteristics Model with a Tinkertoy[R] Builder Set

    Science.gov (United States)

    Smrt, Diana Lazarova; Nelson, Reed Elliot

    2013-01-01

    Using a toy construction set, we introduce to students the job characteristics model in a fun and engaging way. The activity not only describes the theoretical variables of the model but also allows students to (a) experience the dynamic interaction among these variables and (b) gain a better, hands-on understanding of the model. The exercise…

  12. Model for the J-V characteristics of degraded polymer solar cells

    Science.gov (United States)

    Kumar, Pankaj; Gaur, Ankita

    2013-03-01

    An equivalent circuit model was developed for polymer solar cells (PSCs), which explains correctly their behavior under different test conditions. We examine here the validity of that model for degraded PSCs. For that purpose, investigations were carried out on solar cells based on the interpenetrating bulk heterojunctions of poly(3-hehylthiophene) and phenyl[6,6] C61 butyric acid methyl ester. Current density-voltage (J-V) characteristics were measured in dark and under illumination at different time intervals. The characteristics of fresh solar cells are explained well by the developed model, with exponential dependence of photocurrent on applied voltage. However, the degraded characteristics showed space charge limited conduction and the characteristics could be explained well by the same model but with different voltage dependence of photocurrent.

  13. Mechanical characteristics of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Dudarev, A; Mayri, C; Miele, P; Sun, Z; ten Kate, H H J; Volpini, G

    2003-01-01

    The ATLAS B0 model coil has been tested at CERN to verify the design parameters of the Barrel Toroid coils (BT). The mechanical behavior of the B0 superconducting coil and its support structure is reported and compared with coil design calculations. The mechanical stresses and structural force levels during cooling down and excitation phases were monitored using strain gauges, position sensors and capacitive force transducers instrumentation. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce the electromagnetic forces present in the BT coils, once these are assembled in toroid in the underground cavern in 2004. (8 refs).

  14. FPGA Hardware Acceleration of Monte Carlo Simulations for the Ising Model

    CERN Document Server

    Ortega-Zamorano, Francisco; Cannas, Sergio A; Jerez, José M; Franco, Leonardo

    2016-01-01

    A two-dimensional Ising model with nearest-neighbors ferromagnetic interactions is implemented in a Field Programmable Gate Array (FPGA) board.Extensive Monte Carlo simulations were carried out using an efficient hardware representation of individual spins and a combined global-local LFSR random number generator. Consistent results regarding the descriptive properties of magnetic systems, like energy, magnetization and susceptibility are obtained while a speed-up factor of approximately 6 times is achieved in comparison to previous FPGA-based published works and almost $10^4$ times in comparison to a standard CPU simulation. A detailed description of the logic design used is given together with a careful analysis of the quality of the random number generator used. The obtained results confirm the potential of FPGAs for analyzing the statistical mechanics of magnetic systems.

  15. Accelerating a hybrid continuum-atomistic fluidic model with on-the-fly machine learning

    CERN Document Server

    Stephenson, David; Lockerby, Duncan A

    2016-01-01

    We present a hybrid continuum-atomistic scheme which combines molecular dynamics (MD) simulations with on-the-fly machine learning techniques for the accurate and efficient prediction of multiscale fluidic systems. By using a Gaussian process as a surrogate model for the computationally expensive MD simulations, we use Bayesian inference to predict the system behaviour at the atomistic scale, purely by consideration of the macroscopic inputs and outputs. Whenever the uncertainty of this prediction is greater than a predetermined acceptable threshold, a new MD simulation is performed to continually augment the database, which is never required to be complete. This provides a substantial enhancement to the current generation of hybrid methods, which often require many similar atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-confined unsteady flow through a high-aspect-ratio converging-diverging channel, and make comparisons between the new s...

  16. GPU acceleration of a nonhydrostatic model for the internal solitary waves simulation

    Institute of Scientific and Technical Information of China (English)

    CHEN Tong-qing; ZHANG Qing-he

    2013-01-01

    The parallel computing algorithm for a nonhydrostatic model on one or multiple Graphic Processing Units (GPUs) for the simulation of internal solitary waves is presented and discussed.The computational efficiency of the GPU scheme is analyzed by a series of numerical experiments,including an ideal case and the field scale simulations,performed on the workstation and the supercomputer system.The calculated results show that the speedup of the developed GPU-based parallel computing scheme,compared to the implementation on a single CPU core,increases with the number of computational grid cells,and the speedup can increase quasilinearly with respect to the number of involved GPUs for the problem with relatively large number of grid cells within 32 GPUs.

  17. Accelerators for research and applications

    International Nuclear Information System (INIS)

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  18. Oil spill modeling in the southeastern Mediterranean Sea in support of accelerated offshore oil and gas exploration

    Science.gov (United States)

    Brenner, Steve

    2015-12-01

    Since the discovery of major reserves in the Israeli exclusive economic zone (EEZ) 6 years ago, exploration and drilling for natural gas and oil have proceeded at an accelerated pace. As part of the licensing procedure for drilling, an environmental impact assessment and an emergency response plan must be presented to the authorities, which include several prespecified oil spill simulations. In this study, the MEDSLIK oil spill model has been applied for this purpose. The model accounts for time-dependent advection, dispersion, and physiochemical weathering of the surface slick. It is driven by currents produced by high-resolution dynamic downscaling of ocean reanalysis data and winds extracted from global atmospheric analyses. Worst case scenarios based on 30-day well blowouts under four sets of environmental conditions were simulated for wells located at 140, 70, and 20 km off the coast of central Israel. For the well furthest from the coast, the amount of oil remaining in the surface slick always exceeds the amount deposited on the coast. For the mid-distance well, the cases were evenly split. For the well closest to the coast, coastal deposition always exceeds the oil remaining in the slick. Additional simulations with the wind switched off helped highlight the importance of the wind in evaporation of the oil and in transporting the slick toward the southeastern coast.

  19. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    Science.gov (United States)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  20. An Accelerating Divergence? The Revisionist Model of World History and the Question of Eurasian Military Parity: Data from East Asia

    Directory of Open Access Journals (Sweden)

    Tonio Andrade

    2011-01-01

    Full Text Available Over the past few years, this journal has hosted an important debate:Joseph M. Bryant’s bold assault on the revisionist model of global history and the revisionists’ equally trenchant defense. A key point of contention is Europeans' relative military modernization vis-à-vis Asians. This article adduces new data from East Asian military history to try to advance the debate. First, it argues that there was a Chinese Military Revolution in the 1300s, which compels us to place the European Military Revolution in a larger, Eurasian context. Second, it uses data from the Sino-Dutch War of 1661–8 to explicitly compare Chinese and European military technology. It concludes that the revisionists are correct that Asian societies were undergoing military modernization along the lines of those in western Europe and that the model Bryant defends is incorrect because it presumes that Asian societies are more stagnant than the evidence warrants. Yet counterrevisionists like Bryant are correct that military odernization was proceeding faster in Europe, which may indicate that they are correct that there was an early divergence — slight but accelerating — between the west and the rest of Eurasia.