WorldWideScience

Sample records for acceleration mechanics

  1. Particle acceleration mechanisms

    CERN Document Server

    Petrosyan, V

    2008-01-01

    We review the possible mechanisms for production of non-thermal electrons which are responsible for non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We briefly review acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We consider two scenarios for production of non-thermal radiation. The first is hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic particles. Non-thermal tails are produced by accelerating electrons from the background plasma with an initial Maxwellian distribution. However, these tails are accompanied by significant heating and they are present for a short time of <10^6 yr, which is also the time that the tail will be thermalised. Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission...

  2. Hamiltonian mechanics of stochastic acceleration.

    Science.gov (United States)

    Burby, J W; Zhmoginov, A I; Qin, H

    2013-11-08

    We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

  3. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, F

    2014-01-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  4. Diffusive Shock Acceleration the Fermi Mechanism

    CERN Document Server

    Baring, M G

    1997-01-01

    The mechanism of diffusive Fermi acceleration at collisionless plasma shock waves is widely invoked in astrophysics to explain the appearance of non-thermal particle populations in a variety of environments, including sites of cosmic ray production, and is observed to operate at several sites in the heliosphere. This review outlines the principal results from the theory of diffusive shock acceleration, focusing first on how it produces power-law distributions in test-particle regimes, where the shock dynamics are dominated by the thermal populations that provide the seed particles for the acceleration process. Then the importance of non-linear modifications to the shock hydrodynamics by the accelerated particles is addressed, emphasizing how these subsequently influence non-thermal spectral formation.

  5. Nonlinear Acceleration Mechanism of Collisionless Magnetic Reconnection

    CERN Document Server

    Hirota, M; Ishii, Y; Yagi, M; Aiba, N

    2012-01-01

    A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges. Nonlinear growth of the tearing mode driven by electron inertia is analytically estimated by invoking the energy principle for the first time. Decrease of potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to be steeper than in the linear regime, resulting in acceleration of the reconnection. Release of free energy by such ideal fluid motion leads to unsteady and strong convective flow, which theoretically corroborates the inertia-driven collapse model of the sawtooth crash [D. Biskamp and J. F. Drake, Phys. Rev. Lett. 73, 971 (1994)].

  6. Mechanical power output during running accelerations in wild turkeys.

    Science.gov (United States)

    Roberts, Thomas J; Scales, Jeffrey A

    2002-05-01

    We tested the hypothesis that the hindlimb muscles of wild turkeys (Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg(-1) hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg(-1) muscle during the highest accelerations. The high power outputs observed during accelerations

  7. AN OVERVIEW OF THE SNS ACCELERATOR MECHANICAL ENGINEERING.

    Energy Technology Data Exchange (ETDEWEB)

    HSEUH, H.; LUDWIG, H.; MAHLER, G.; PAI, C.; PEARSON, C.; RANK, J.; TUOZZOLO, J.; WEI, J.

    2006-06-23

    The Spallation Neutron Source (SNS*) is an accelerator-based neutron source currently nearing completion at Oak Ridge National Laboratory. When completed in 2006, the SNS will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. SNS is a collaborative effort between six U.S. Department of Energy national laboratories and offered a unique opportunity for the mechanical engineers to work with their peers from across the country. This paper presents an overview of the overall success of the collaboration concentrating on the accelerator ring mechanical engineering along with some discussion regarding the relative merits of such a collaborative approach. Also presented are a status of the mechanical engineering installation and a review of the associated installation costs.

  8. On the novel mechanism of acceleration of cosmic particles

    CERN Document Server

    Osmanov, Z

    2015-01-01

    A novel model of particle acceleration in the rotating magnetospheres of active galactic nuclei (AGN) and pulsars is constructed. The particle energies may be boosted up to enormous energies in a several step mechanism. In the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. By considering the pulsars it is shown that the Langmuir waves very soon Landau damp on the relativistic electrons already present in a magnetosphere. It has been found that the process is so efficient that no energy losses might affect the mechanism of particle acceleration. Applying typical parameters for young pulsars we have shown that by means of this process the electrons might achieve energies of the order of $10^{18}$ eV. The situation in AGN magnetospheres is slightly different. In the second stage, the process of "Langmuir collapse" develops, creating appropriate conditions for transferring electric en...

  9. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    Science.gov (United States)

    2011-10-01

    A. Plasma flow layer features and Non - Maxwellian EEDF Essentially, a quasineutral steepening layer (QSL) is an electric potential fall of the order of...nozzle. It is needed to analyze the far beam. It requires a more sophisticated integration technique. 5. Plasma detachment via non -neutral...Magnetic nozzles for plasma thrusters: acceleration, thrust, and detachment mechanisms Eduardo Ahedo Mario Merino Plasmas and Space

  10. Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism

    Science.gov (United States)

    Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh

    2014-10-01

    Electron acceleration to non-thermal energies in low Mach number (Ms Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with Ms = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ~= 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  11. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Andrews, Richard [Fermilab; Carlson, Kermit [Fermilab; Leibfritz, Jerry [Fermilab; Nobrega, Lucy [Fermilab; Valishev, Alexander [Fermilab

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  12. Mechanical stability study for Integrable Optics Test Accelerator at Fermilab

    CERN Document Server

    McGee, M W; Carlson, K; Leibfritz, J; Nobrega, L; Valishev, A

    2016-01-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 3.96 m and (2) 3.1 m long girders with identical cross section completely encompass the ring. This study focuses on the 3.96 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  13. Origin of Nonthermal Emission from the Fermi Bubbles and Mechanisms of Particle Acceleration There

    CERN Document Server

    Dogiel, V A; Chernyshov, D O; Ko, C -M

    2013-01-01

    We analyse processes of particle acceleration in the Fermi Bubbles. The goal of our investigations is to obtain restrictions for acceleration mechanisms. Our analysis of the three processes: acceleration from background plasma, re-acceleration of relativistic electrons emitted by supernova remnants, and acceleration by shocks generated by processes of star tidal disruption in the Galactic Center, showed that the model of multi-shock acceleration does not have serious objections at present and therefore seems us more attractive than others.

  14. The Mechanisms of Electron Heating and Acceleration during Magnetic Reconnection

    CERN Document Server

    Dahlin, J T; Swisdak, M

    2014-01-01

    The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell (PIC) simulations with non-zero guide fields so that electrons remain magnetized. In this regime electric fields parallel to B accelerate particles directly while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20 % of the magnitude of the reconnecting component) the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases the heating by the gradient B drift i...

  15. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    CERN Document Server

    Fiore, Gaetano; Fedele, Renato

    2016-01-01

    We briefly report on the recently proposed [G. Fiore, R. Fedele, U. de Angelis, Phys. Plasmas 21 (2014), 113105], [G. Fiore, S. De Nicola, arXiv:1509.04656] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  16. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

    Science.gov (United States)

    Williams, S B; Usherwood, J R; Jespers, K; Channon, A J; Wilson, A M

    2009-02-01

    Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration.

  17. Non-Thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism

    CERN Document Server

    Guo, Xinyi; Narayan, Ramesh

    2014-01-01

    Electron acceleration to non-thermal energies in low Mach number (M<5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M=3. We find that about 15 percent of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p~2.4. Initially, thermal electrons are energized at the shock front via shock drift a...

  18. Consistency analysis of accelerated degradation mechanism based on gray theory

    Institute of Scientific and Technical Information of China (English)

    Yunxia Chen; Hongxia Chen; Zhou Yang; Rui Kang; Yi Yang

    2014-01-01

    A fundamental premise of an accelerated testing is that the failure mechanism under elevated and normal stress levels should remain the same. Thus, verification of the consistency of failure mechanisms is essential during an accelerated testing. A new consistency analysis method based on the gray theory is pro-posed for complex products. First of al , existing consistency ana-lysis methods are reviewed with a focus on the comparison of the differences among them. Then, the proposed consistency ana-lysis method is introduced. Two effective gray prediction models, gray dynamic model and new information and equal dimensional (NIED) model, are adapted in the proposed method. The process to determine the dimension of NIED model is also discussed, and a decision rule is expanded. Based on that, the procedure of ap-plying the new consistent analysis method is developed. Final y, a case study of the consistency analysis of a reliability enhancement testing is conducted to demonstrate and validate the proposed method.

  19. Acceleration of Classical Mechanics by Phase Space Constraints.

    Science.gov (United States)

    Martínez-Núñez, Emilio; Shalashilin, Dmitrii V

    2006-07-01

    In this article phase space constrained classical mechanics (PSCCM), a version of accelerated dynamics, is suggested to speed up classical trajectory simulations of slow chemical processes. The approach is based on introducing constraints which lock trajectories in the region of the phase space close to the dividing surface, which separates reactants and products. This results in substantial (up to more than 2 orders of magnitude) speeding up of the trajectory simulation. Actual microcanonical rates are calculated by introducing a correction factor equal to the fraction of the phase volume which is allowed by the constraints. The constraints can be more complex than previously used boosting potentials. The approach has its origin in Intramolecular Dynamics Diffusion Theory, which shows that the majority of nonstatistical effects are localized near the transition state. An excellent agreement with standard trajectory simulation at high energies and Monte Carlo Transition State Theory at low energies is demonstrated for the unimolecular dissociation of methyl nitrite, proving that PSCCM works both in statistical and nonstatistical regimes.

  20. New mechanism of acceleration of particles by stellar black holes

    CERN Document Server

    Osmanov, Z

    2016-01-01

    In this paper we study efficiency of particle acceleration in the magnetospheres of stellar mass black holes. For this purpose we consider the linearized set of the Euler equation, continuity equation and Poisson equation respectively. After introducing the varying relativistic centrifugal force, we show that the charge separation undergoes the parametric instability, leading to generation of centrifugally excited Langmuir waves. It is shown that these waves, via the Langmuir collapse damp by means of the Landau damping, as a result energy transfers to particles accelerating them to energies of the order of $10^{16}$eV.

  1. Properties and Acceleration Mechanism of Cement Mortar Added with Low Alkaline Liquid State Setting Accelerator

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; WANG Xuebing; LIU Weiqing

    2014-01-01

    Low alkaline liquid state setting accelerator(LSA) for Portland cement was prepared in laboratory from aqueous solution of several inorganic sulfate salts and some organic chemical substances. Properties of cement with addition of LSA relating to its setting time and strength development as well as its resistance to sulfate attack for short and long term exposure were experimentally examined. The experimental results showed that 5%-7%addition of LSA significantly accelerated the initial and final setting of Portland cement in the presence or absence of the blending of mineral admixtures, the initial and final setting time being less than 3 min and 6 min respectively. Meanwhile, the early 1 day curing age compressive strength increased remarkably by 20%, while the late 28th day curing age compressive strength remained almost unchanged as compared with that of the reference accelerator free cement mortar specimen. Furthermore, mortar specimens of cement added with LSA and exposed to 5%Na2SO4 solution showed their excellent resistance to sulfate attack, with their short and long term curing age resistance coefficient to sulfate attack being around 1.04 to 1.17, all larger than 1.0. XRD analysis on hardened cement paste specimens at very early curing ages of several minutes disclosed the existence of more ettringite in specimens added with LSA than that of the reference specimens, meanwhile SEM observation also revealed the existence of well crystallized ettringite at very early hydration stage, suggesting that the accelerated setting of Portland cement can be attributed to the early and rapid formation of ettringite over the whole cement paste matrix due to the introduction of LSA. MIP measurement revealed that hardened cement paste specimens with the addition of LSA presented less medium diameter pores, more proportion of small pores and less proportion of large capillary pores, which is in a very good coincidence with the improvement of strength development of

  2. The Mechanisms of Electron Acceleration During Multiple X Line Magnetic Reconnection with a Guide Field

    CERN Document Server

    Wang, Huanyu; Huang, Can; Wang, Shui

    2016-01-01

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional (2-D) particle-in-cell (PIC) simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. The electrons remain almost magnetized, and we can then analyze the contributions of the parallel electric field, Fermi and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection by comparing with a guide-center theory. The results show that with the proceeding of magnetic reconnection, two magnetic islands are formed in the simulation domain. The electrons are accelerated by both the parallel electric field in the vicinity of the X lines and Fermi mechanism due to the contraction of the two magnetic islands. Then the two magnetic islands begin to merge into one, and in such a process electrons can be accelerated by the parallel electric field and betatron mechanisms. ...

  3. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  4. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    Science.gov (United States)

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  5. Research on the Mechanism of Accelerator for Photocurable Resin in 3D Printing

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-tao; MO Jian-hua; HUANG Xiao-mao

    2009-01-01

    The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy (RT-FTIR). The consumption rates of epoxy group and oxetane group as a function of time were obtained by monitoring of the absorption peaks in the 789 cm-1 and 981 cm-1. The effect of accelerators type and the accelerating mechanism were discussed. In general, benzyl alcohol and its analogues with electron-donating substituents are useful accelerators for the cationic polymerization of cycloaliphatic epoxide and oxetane. Activated monomer mechanism and free-radical chain-induced decomposition of onium salt cationic photoinitiator account for the observed accelerating effect on the polymerization rate.

  6. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui, E-mail: qmlu@ustc.edu.cn [CAS Key Lab of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  7. Acceleration of Thermal Protons By Generic Phenomenological Mechanisms

    CERN Document Server

    Petrosian, Vahé

    2016-01-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was carried out in Petrosian & East (2008) for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton-electron kinetic equation. We numerically solve the coupled Fokker-Plank equations and computes the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high energy nonthermal tail. We determine the evolution of nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas and the intracluster medium of galaxy clusters. We find that emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence nee...

  8. Correlation between mechanical and chemical degradation after outdoor and accelerated laboratory aging for multilayer photovoltaic backsheets

    Science.gov (United States)

    Lin, Chiao-Chi; Lyu, Yadong; Yu, Li-Chieh; Gu, Xiaohong

    2016-09-01

    Channel cracking fragmentation testing and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were utilized to study mechanical and chemical degradation of a multilayered backsheet after outdoor and accelerated laboratory aging. A model sample of commercial PPE backsheet, namely polyethylene terephthalate/polyethylene terephthalate/ethylene vinyl acetate (PET/PET/EVA) was investigated. Outdoor aging was performed in Gaithersburg, Maryland, USA for up to 510 days, and complementary accelerated laboratory aging was conducted on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure). Fracture energy, mode I stress intensity factor and film strength were analyzed using an analytical model based on channel cracking fragmentation testing results. The correlation between mechanical and chemical degradation was discussed for both outdoor and accelerated laboratory aging. The results of this work provide preliminary understanding on failure mechanism of backsheets after weathering, laying the groundwork for linking outdoor and indoor accelerated laboratory testing for multilayer photovoltaic backsheets.

  9. The influences of accelerated aging on mechanical properties of veneering ceramics used for zirconia restorations.

    Science.gov (United States)

    Luo, Huinan; Tang, Xuehua; Dong, Zhen; Tang, Hui; Nakamura, Takashi; Yatani, Hirofumi

    2016-01-01

    This study evaluated the influences of accelerated aging on the mechanical properties of veneering ceramics used for zirconia frameworks. Five different veneering ceramics for zirconia frameworks were used. Twenty specimens were fabricated for each veneering ceramic. All specimens were divided into two groups. One was subjected to accelerated aging and the other was used as a control. Accelerated aging was performed in distilled water for 5 h at 200ºC and 2 atm. The density, open porosity, surface roughness, three-point flexural strength, and Vickers hardness were measured. The results showed that the density, open porosity, and surface roughness of all examined veneering ceramics were changed by the accelerated aging process. Accelerated aging was also found to have a positive effect on strength and a negative effect on the hardness.

  10. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2016-01-01

    Full Text Available Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies.

  11. Delayed and accelerated aging share common longevity assurance mechanisms

    NARCIS (Netherlands)

    Schumacher, B.; van der Pluijm, I.; Moorhouse, M.J.; Kosteas, T.; Robinson, A.R.; Suh, Y.; Breit, T.M.; van Steeg, H.; Niedernhofer, L.J.; van IJcken, W.; Bartke, A.; Spindler, S.R.; Hoeijmakers, J.H.J.; van der Horst, G.T.J.; Garinis, G.A.

    2008-01-01

    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wi

  12. Studies on mechanisms of the laser particle acceleration; Untersuchungen zu Mechanismen der Laser-Teilchenbeschleunigung

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, Bastian

    2012-06-20

    Within the last decade, many developments towards higher energies and particle numbers paved the way of particle acceleration performed by high intensity laser systems. Up to now, the process of a field-induced acceleration process (Target-Normal-Sheath-Acceleration (TNSA)) is investigated the most. Acceleration occurs as a consequence of separation of charges on a surface potential. Here, the broad energy spectrum is a problem not yet overcome although many improvements were achieved. Calculations for intensities higher than 10{sup 20..21} W/cm{sup 2} give hint that Radiation-Pressure-Acceleration (RPA) may lead to a sharper, monoenergetic energy spectrum. Within the framework of this thesis, the investigation of the acceleration mechanism is studied experimentally in the intensity range of 10{sup 19} W/cm{sup 2}. Suitable targets were developed and applied for patent. A broad range of parameters was scanned by means of high repetition rates together with an adequate laser system to provide high statistics of several thousands of shots, and the dependence of target material, intensity, laser polarisation and pre plasma-conditions was verified. Comparisons with 2-d numeric simulations lead to a model of the acceleration process which was analyzed by several diagnostic methods, giving clear evidence for a new, not field-induced acceleration process. In addition, a system for a continuous variation of the polarization based on reflective optics was developed in order to overcome the disadvantages of retardation plates, and their practicability of high laser energies can be achieved.

  13. Acceleration of Plasma Flows Due to Inverse Dynamo Mechanism

    CERN Document Server

    Mahajan, S M; Mikeladze, S V; Sigua, K I; Mahajan, Swadesh M.; Shatashvili, Nana L.; Mikeladze, Solomon V.; Sigua, Ketevan I.

    2005-01-01

    The "inverse-dynamo" mechanism - the amplification/generation of fast plasma flows by short scale (turbulent) magnetic fields via magneto-fluid coupling is recognized and explored. It is shown that large-scale magnetic fields and flows are generated simultaneously and proportionately from short scale fields and flows. The stronger the short-scale driver, the stronger are the large-scale products. Stellar and astrophysical applications are suggested.

  14. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Science.gov (United States)

    Padda, Hersimerjit; King, Martin; Gray, Ross; Powell, Haydn; Gonzalez-Izquierdo, Bruno; Stockhausen, Luca; Wilson, Robbie; Carroll, David; Dance, Rachel; MacLellan, David; Yuan, Xiaohui; Butler, Nick; Capdessus, Remi; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-10-01

    Laser-driven sheath acceleration of ions has been widely studied and the recent move to ultra thin foil interactions enables promising new acceleration mechanisms. However, the acceleration dynamics in this regime are complex and over the course of the laser-foil interaction multiple ion acceleration mechanisms can occur, resulting in the dominant mechanism changing throughout the interaction. Measuring the spatial intensity distribution of the accelerated proton beam we investigate the transition from radiation pressure acceleration to transparency-driven processes. Using PIC simulations, the radiation pressure drives an increased expansion of the target ions, which results in a radial deflection of low MeV protons to form an annular distribution. By varying the thickness of the target, the opening angle of the ring is shown to be correlated to the point in time that transparency occurs and is maximised at the peak of the laser intensity profile. Measurements of the ring size as a function of target thickness are found to be in good agreement with the simulation results.

  15. Mechanism and operation parameters of a plasma-driven micro-particle accelerator

    Institute of Scientific and Technical Information of China (English)

    HUANG JianGuo; FENG ChunHua; HAN dianWei; LI HongWei; CAI MingHui; LI XiaoYin; ZHANG ZhenLong; CHEN ZhaoFeng; WANG Long; YANG XuanZong

    2009-01-01

    There is a large amount of micro debris ranging between millimeters and micrometers in space, which has significant influence on the reliability and life of spacecrafts through long-duration integrated im-pacts and has to be considered in designing a vehicle's suitability to the space environment. In order to simulate the micro-impacts on exposed materials, a plasma-driven micro-particle accelerator was de-veloped. The major processes, including the acceleration, compression and ejection of plasmas, were modeled. By comparing the theoretical simulations with the experimental results, the acceleration mechanism was clarified. Moreover, through a series of experiments, the optimum operation range was investigated, and the acceleration ability was primarily determined.

  16. Constraining sources of ultrahigh energy cosmic rays and shear acceleration mechanism of particles in relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruoyu

    2015-06-10

    Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.

  17. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72-85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets.

  18. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.

  19. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  20. High-Energy Ion Acceleration Mechanisms in a Dense Plasma Focus Z-Pinch

    Science.gov (United States)

    Higginson, D. P.; Link, A.; Schmidt, A.; Welch, D.

    2016-10-01

    The compression of a Z-pinch plasma, specifically in a dense plasma focus (DPF), is known to accelerate high-energy electrons, ions and, if using fusion-reactant ions (e.g. D, T), neutrons. The acceleration of particles is known to coincide with the peak constriction of the pinch, however, the exact physical mechanism responsible for the acceleration remains an area of debate and uncertainty. Recent work has suggested that this acceleration is linked to the growth of an m =0 (sausage) instability that evacuates a region of low-density, highly-magnetized plasma and creates a strong (>MV/cm) electric field. Using the fully kinetic particle-in-cell code LSP in 2D-3V, we simulate the compression of a 2 MA, 35 kV DPF plasma and investigate in detail the formation of the electric field. The electric field is found to be predominantly in the axial direction and driven via charge-separation effects related to the resistivity of the kinetic plasma. The strong electric and magnetic fields are shown to induce non-Maxwellian distributions in both the ions and electrons and lead to the acceleration of high-energy tails. We compare the results in the kinetic simulations to assumptions of magnetohydrodynamics (MHD). Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model.

    Science.gov (United States)

    Li, Yan; Zhang, Liying; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M

    2011-09-01

    A modified Marmarou impact acceleration model was developed to study the mechanical responses induced by this model and their correlation to traumatic axonal injury (TAI). Traumatic brain injury (TBI) was induced in 31 anesthetized male Sprague-Dawley rats (392±13 g) by a custom-made 450-g impactor from heights of 1.25 m or 2.25 m. An accelerometer and angular rate sensor measured the linear and angular responses of the head, while the impact event was captured by a high-speed video camera. TAI distribution along the rostro-caudal direction, as well as across the left and right hemispheres, was determined using β-amyloid precursor protein (β-APP) immunocytochemistry, and detailed TAI injury maps were constructed for the entire corpus callosum. Peak linear acceleration 1.25 m and 2.25 m impacts were 666±165 g and 907±501 g, respectively. Peak angular velocities were 95±24 rad/sec and 124±48 rad/sec, respectively. Compared to the 2.25-m group, the observed TAI counts in the 1.25-m impact group were significantly lower. Average linear acceleration, peak angular velocity, average angular acceleration, and surface righting time were also significantly different between the two groups. A positive correlation was observed between normalized total TAI counts and average linear acceleration (R(2)=0.612, plinear and angular acceleration response of the rat head during impact, not necessarily the drop height.

  2. Mechanisms of accelerated degradation in the front cells of PEMFC stacks and some mitigation strategies

    Science.gov (United States)

    Li, Pengcheng; Pei, Pucheng; He, Yongling; Yuan, Xing; Chao, Pengxiang; Wang, Xizhong

    2013-11-01

    The accelerated degradation in the front cells of a polymer electrolyte membrane fuel cell(PEMFC) stack seriously reduces the reliability and durability of the whole stack. Most researches only focus on the size and configuration of the gas intake manifold, which may lead to the maldistribution of flow and pressure. In order to find out the mechanisms of the accelerated degradation in the front cells, an extensive program of experimental and simulation work is initiated and the results are reported. It is found that after long-term lifetime tests the accelerated degradation in the front cells occurs in all three fuel cell stacks with different flow-fields under the U-type feed configuration. Compared with the rear cells of the stack, the voltage of the front cells is much lower at the same current densities and the membrane electrode assembly(MEA) has smaller active area, more catalyst particle agglomeration and higher ohmic impedance. For further investigation, a series of three dimensional isothermal numerical models are built to investigate the degradation mechanisms based on the experimental data. The simulation results reveal that the dry working condition of the membrane and the effect of high-speed gas scouring the MEA are the main causes of the accelerated degradation in the front cells of a PEM fuel cell stack under the U-type feed configuration. Several mitigation strategies that would mitigate these phenomena are presented: removing cells that have failed and replacing them with those of the same aging condition as the average of the stack; choosing a Z-type feed pattern instead of a U-type one; putting several air flow-field plates without MEA in the front of the stack; or exchanging the gas inlet and outlet alternately at a certain interval. This paper specifies the causes of the accelerated degradation in the front cells and provides the mitigation strategies.

  3. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    Science.gov (United States)

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  4. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms

    CERN Document Server

    Courtney, Michael; 10.1016/j.neuroimage.2010.05.025

    2011-01-01

    Research in blast-induced lung injury resulted in exposure thresholds that are useful in understanding and protecting humans from such injury. Because traumatic brain injury (TBI) due to blast exposure has become a prominent medical and military problem, similar thresholds should be identified that can put available research results in context and guide future research toward protecting warfighters as well as diagnosis and treatment. At least three mechanical mechanisms by which the blast wave may result in brain injury have been proposed - a thoracic mechanism, head acceleration and direct cranial transmission. These mechanisms need not be mutually exclusive. In this study, likely regions of interest for the first two mechanisms based on blast characteristics (positive pulse duration and peak effective overpressure) are developed using available data from blast experiments and related studies, including behind-armor blunt trauma and ballistic pressure wave studies. These related studies are appropriate to in...

  5. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Pesaran, Ahmad A.

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  6. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration

    Science.gov (United States)

    Wan, Y.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Lu, W.; Gu, Y. Q.; Silva, L. O.; Joshi, C.; Mori, W. B.

    2016-12-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

  7. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  8. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  9. Physical mechanism of the transverse instability in radiation pressure ion acceleration

    CERN Document Server

    Wan, Y; Zhang, C J; Li, F; Wu, Y P; Hua, J F; Lu, W; Gu, Y Q; Silva, L O; Joshi, C; Mori, W B

    2016-01-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this letter, a theoretical model and supporting two-dimensional (2D) Particle-in-Cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasi-static ions, a mechanism similar to the transverse two stream instability in the inertial confinement fusion (ICF) research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse break-up of the target.

  10. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M. [Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Rijk, G. de [European Organization for Nuclear Research CERN, 1211 Geneva (Switzerland)

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  11. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    Science.gov (United States)

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; de Rijk, G.

    2014-01-01

    Future accelerators will make extensive use of superconductors made of Nb3Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb3Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb3Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  12. The Acceleration Mechanism of Resistive MHD Jets Launched from Accretion Disks

    CERN Document Server

    Kuwabara, T; Kudoh, T; Matsumoto, R

    2004-01-01

    We analyzed the results of non-linear resistive magnetohydrodynamical (MHD) simulations of jet formation to study the acceleration mechanism of axisymmetric, resistive MHD jets. The initial state is a constant angular momentum, polytropic torus threaded by weak uniform vertical magnetic fields. The time evolution of the torus is simulated by applying the CIP-MOCCT scheme extended for resistive MHD equations. We carried out simulations up to 50 rotation period at the innermost radius of the disk created by accretion from the torus. The acceleration forces and the characteristics of resistive jets were studied by computing forces acting on Lagrangian test particles. Since the angle between the rotation axis of the disk and magnetic field lines is smaller in resistive models than in ideal MHD models, magnetocentrifugal acceleration is smaller. The effective potential along a magnetic field line has maximum around $z \\sim 0.5r_0$ in resistive models, where $r_0$ is the radius where the density of the initial toru...

  13. Accelerated Discovery in Photocatalysis using a Mechanism-Based Screening Method.

    Science.gov (United States)

    Hopkinson, Matthew N; Gómez-Suárez, Adrián; Teders, Michael; Sahoo, Basudev; Glorius, Frank

    2016-03-18

    Herein, we report a conceptually novel mechanism-based screening approach to accelerate discovery in photocatalysis. In contrast to most screening methods, which consider reactions as discrete entities, this approach instead focuses on a single constituent mechanistic step of a catalytic reaction. Using luminescence spectroscopy to investigate the key quenching step in photocatalytic reactions, an initial screen of 100 compounds led to the discovery of two promising substrate classes. Moreover, a second, more focused screen provided mechanistic insights useful in developing proof-of-concept reactions. Overall, this fast and straightforward approach both facilitated the discovery and aided the development of new light-promoted reactions and suggests that mechanism-based screening strategies could become useful tools in the hunt for new reactivity.

  14. Quantum mechanics, high energy physics and accelerators selected papers of John S Bell (with commentary)

    CERN Document Server

    Bell, John Stewart; Gottfried, Kurt; Veltman, Martinus J G

    1994-01-01

    The scientific career of John Stewart Bell was distinguished by its breadth and its quality. He made several very important contributions to scientific fields as diverse as accelerator physics, high energy physics and the foundations of quantum mechanics. This book contains a large part of J S Bell's publications, including those that are recognized as his most important achievements, as well as others that are for no good reason less well known. The selection was made by Mary Bell, Martinus Veltman and Kurt Gottfried, all of whom were involved with John Bell both personally and professionally throughout a large part of his life. An introductory chapter has been written to help place the selected papers in a historical context and to review their significance. This book comprises an impressive collection of outstanding scientific work of one of the greatest scientists of the recent past, and it will remain important and influential for a long time to come.

  15. Improvement of the Error-detection Mechanism in Adults with Dyslexia Following Reading Acceleration Training.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi

    2016-05-01

    The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd.

  16. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration

    Institute of Scientific and Technical Information of China (English)

    Laura Charalambous a; Wolfgang Potthast c; Gareth Irwin b

    2016-01-01

    Background: Artificial turf is considered a feasible global alternative to natural turf by many sports governing bodies. Consequently, its ability to provide a safe and consistent playing surface regardless of climate becomes essential. The aims of this study were to determine the effects of artificial surface temperature on:(1) mechanical properties of the turf and (2) the kinematics of a turf-sport related movement. Methods: Two identical artificial turf pitches were tested:one with a cold surface temperature (1.8°C–2.4°C) and one with a warm surface temperature (14.5°C–15.2°C). Mechanical testing was performed to measure the surface properties. Four amateur soccer players performed a hurdle jump to sprint acceleration movement, with data (contact time, step length and hip, knee and ankle kinematics) collected using CODASport (200 Hz). Results: The temperature difference had a significant influence on the mechanical properties of the artificial turf, including force absorption, energy restitution, rotational resistance, and the height where the head injury criterion was met. Both step length (p=0.008) and contact time (p=0.002) of the initial step after the landing were significantly longer on the warm surface. In addition, significant range of motion and joint angular velocity differences were found. Conclusion: These findings highlight different demands placed on players due to the surface temperature and suggest a need for coaches, practitioners, and sports governing bodies to be aware of these differences.

  17. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, psurface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  18. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Thirolf, P. G., E-mail: Peter.Thirolf@lmu.de [Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching (Germany)

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional

  19. Material studies in the frame of CLIC Accelerating structures production conducted within the Mechanics program together with Metso Oy

    CERN Document Server

    Nurminen, Janne

    2012-01-01

    MeChanICs (Marie Curie Linking Industry to CERN) is an Industry to Academia Partnership and Pathways (IAPP) platform for precision manufacturing knowledge exchange bringing together five Finnish manufacturing companies with Helsinki Insitute of Physics (HIP) and CERN. The scientific objective of MeChanICs project is to contribute to the manufacturing RTD of CLIC enabling technologies. The focus is on the design, materials, machining, brazing and assembly of A CLIC accelerating structure. This study deals with the materials work package of the program and wants to explore the following items: 1) producing copper accelerating structures for CLIC from raw copper powder by near net shape hot isostatic pressing (HIP). 2) The feasibility to use HIP diffusion bonding of the accelerator structures as a function of surface quality and applied temperature and pressure. 3) Brazing for CLIC AS auxiliary systems, like water cooling or damping manifolds, to the disc stack by coating one of the brazing partners with an enab...

  20. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  1. Prediction of strong acceleration motion depended on focal mechanism; Shingen mechanism wo koryoshita jishindo yosoku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, Y.; Ejiri, J. [Obayashi Corp., Tokyo (Japan)

    1996-10-01

    This paper describes simulation results of strong acceleration motion with varying uncertain fault parameters mainly for a fault model of Hyogo-ken Nanbu earthquake. For the analysis, based on the fault parameters, the strong acceleration motion was simulated using the radiation patterns and the breaking time difference of composite faults as parameters. A statistic waveform composition method was used for the simulation. For the theoretical radiation patterns, directivity was emphasized which depended on the strike of faults, and the maximum acceleration was more than 220 gal. While, for the homogeneous radiation patterns, the maximum accelerations were isotopically distributed around the fault as a center. For variations in the maximum acceleration and the predominant frequency due to the breaking time difference of three faults, the response spectral value of maximum/minimum was about 1.7 times. From the viewpoint of seismic disaster prevention, underground structures including potential faults and non-arranging properties can be grasped using this simulation. Significance of the prediction of strong acceleration motion was also provided through this simulation using uncertain factors, such as breaking time of composite faults, as parameters. 4 refs., 4 figs., 1 tab.

  2. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    Energy Technology Data Exchange (ETDEWEB)

    Klink, W.H., E-mail: william-klink@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Wickramasekara, S., E-mail: wickrama@grinnell.edu [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States)

    2016-06-15

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  3. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  4. Cocaine reduces thymic endocrine function: another mechanism for accelerated HIV disease progression.

    Science.gov (United States)

    Rafie, Carlin; Campa, Adriana; Smith, Sylvia; Huffman, Fatma; Newman, Fred; Baum, Marianna K

    2011-08-01

    Thymulin is a thymic peptide important for the maturation and differentiation of immature thymocytes, which have been found to be depressed in patients with low-level CD4(+) cell recovery despite viral control. Substance use is associated with faster progression of HIV disease, which has been ascribed to poor adherence to antiretroviral medication. Recent findings of an association between cocaine use and decline in CD4(+) cell counts independent of antiretroviral adherence indicate alternative mechanisms for disease progression. We evaluated the relationship between thymulin activity, CD4(+) and CD8(+) cell counts and the CD4(+)/CD8(+) ratio, and the covariate effects of substance use cross-sectionally in 80 HIV(+) active substance users and over 12 months in 40 participants. Thymulin activity was analyzed in plasma using a modification of the sheep rosette bioassay. Thymulin activity was negatively associated with cocaine use (β = -0.908,95% CI: -1.704, -0.112; p = 0.026). Compared to those who do not use cocaine, cocaine users were 37% less likely to have detectable thymulin activity (RR = 0.634, 95% CI: 0.406, 0.989 p = 0.045) and were 75 times more likely to show a decrease in thymulin activity (OR = 74.7, 95% CI: 1.59, 3519.74; p = 0.028) over time. CD4(+) cell count was positively associated with thymulin activity (β = 0.127, 95% CI: 0.048,0.205; p = 0.002), detectable thymulin activity was 2.32 times more likely in those with a CD4 cell count ≥200 cells/μl (RR = 2.324, 95% CI: 1.196, 4.513, p = 0.013), and those with an increase in CD4 cell counts were more likely to show an increase in thymulin activity (OR = 1.02, 95% CI: 1.00, 1.034; p = 0.041) over time. Thymulin activity is predictive of HIV disease progression and is depressed in cocaine users independent of antiretroviral treatment (ART) and HIV viral load. Understanding the mechanisms for accelerated HIV disease progression provides opportunities to find alternative strategies to counteract

  5. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    Science.gov (United States)

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  6. Ergonomic assessment of brake and accelerator mechanisms of MF285 and MF399 tractors using electromyography method

    Directory of Open Access Journals (Sweden)

    A Nikkhah

    2016-04-01

    Full Text Available Introduction: Too many people are working in the agricultural sector and therefore, pay more attention to the safety and health at work in the agricultural sector is important. This issue is more important in developing industrial countries where the level of the ergonomic working condition is less than that of developed countries. Attention to ergonomic condition of agricultural machinery drivers is one of the goals of agricultural mechanization. Therefore, in this study the ergonomic conditions of brake and accelerator mechanisms for MF285 and MF399 tractor's drivers were investigated using a new method. Materials and Methods: 25 people were selected for experiment. The electrical activity of Medialis gastrocnemius, Lateralis gastrocnemius, Vastus medialis, Vastus lateralis, Quadratus Lumborum and Trapezius muscles of drivers before and during pressing the pedal and after rest time were recorded using Biovision device. Measurements were performed for each person on each muscle 30 seconds before pressing the pedal, 60 seconds after pressing the pedal and after 60 seconds of rest. For all drivers, the muscles on the right side (brake and accelerator side have been selected and tested. The measurements were performed in compliance with appropriate time intervals between the measurements. Results and Discussion: Ergonomic assessment of brake pedal: The results showed that the RMS electrical activity of muscles of Vastus medialis and Medial gastrocnemius, during 60 seconds braking were 2.47 and 1.97. So, Vastus medialis and Medial gastrocnemius had the highest stress during pressing the MF399 tractor's brake pedal. Moreover, the Medial gastrocnemius and Lateral gastrocnemius with RMS electrical activity ratio of 2.47 and 1.74 had the highest RMS electrical activity ratio respectively, during 60 seconds braking compared to before braking of MF285 tractor. The comparison of results showed that the Vastus medialis and Trapezius had the higher stress

  7. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism

    Institute of Scientific and Technical Information of China (English)

    Talita Cavalcante Morais; Synara Cavalcante Lopes; Karine Maria Martins Bezerra Carvalho; Bruno Rodrigues Arruda; Francisco Thiago Correia de Souza; Maria Teresa Salles Trevisan; Vietla Satyanarayana Rao; Flávia Almeida Santos

    2012-01-01

    AIM:To investigate the effects of mangiferin on gastrointestinal transit (GIT) in normal and constipated mice,together with the possible mechanism.METHODS:Intragastrically-administered charcoal meal was used to measure GIT in overnight starved Swiss mice.In the first experiments,mangiferin (3 mg/kg,10mg/kg,30 mg/kg,and 100 mg/kg,po) or tegaserod (1mg/kg,ip) were administered 30 min before the charcoal meal to study their effects on normal transit.In the second series,mangiferin (30 mg/kg) was tested on delayed GIT induced by several different pharmacological agonists (morphine,clonidine,capsaicin) or antagonists (ondansetron,verapamil,and atropine) whereas in the third series,mangiferin (30 mg/kg,100mg/kg and 300 mg/kg) or tegaserod (1 mg/kg) were tested on 6 h fecal pellets outputted by freely fed mice.The ratio of wet to dry weight was calculated and used as a marker of fecal water content.RESULTS:Mangiferin administered orally significantly (P < 0.05) accelerated GIT at 30 mg/kg and 100 mg/kg (89%and 93%,respectively),similarly to 5-hydroxytryptamine4 (5-HT4) agonist tegaserod (81%) when compared to vehicle-treated control (63%).Co-administered mangiferin (30 mg/kg) totally reversed the inhibitory effect of opioid agonist morphine,5-HT3-receptor antagonist ondansetron and transient receptor potential vanilloid-1 receptor agonist capsaicin on GIT,but only to a partial extent with the GIT-delay induced by α2-adrenoceptor agonist clonidine,and calcium antagonist verapamil.However,co-administered atropine completely blocked the stimulant effect of mangiferin on GIT,suggesting the involvement of muscarinic acetylcholine receptor activation.Although mangiferin significantly enhanced the 6 h fecal output at higher doses (245.5 ± 10.43 mg vs 161.9 ± 10.82 mg and 227.1 ± 20.11 mg vs 161.9 ±10.82 mg of vehicle-treated control,at 30 and 100 mg/kg,P < 0.05,respectively),the effect of tegaserod was more potent (297.4 ± 7.42 mg vs 161.9 ± 10.82 mg of

  8. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism

    Science.gov (United States)

    Morais, Talita Cavalcante; Lopes, Synara Cavalcante; Carvalho, Karine Maria Martins Bezerra; Arruda, Bruno Rodrigues; de Souza, Francisco Thiago Correia; Trevisan, Maria Teresa Salles; Rao, Vietla Satyanarayana; Santos, Flávia Almeida

    2012-01-01

    AIM: To investigate the effects of mangiferin on gastrointestinal transit (GIT) in normal and constipated mice, together with the possible mechanism. METHODS: Intragastrically-administered charcoal meal was used to measure GIT in overnight starved Swiss mice. In the first experiments, mangiferin (3 mg/kg, 10 mg/kg, 30 mg/kg, and 100 mg/kg, po) or tegaserod (1 mg/kg, ip) were administered 30 min before the charcoal meal to study their effects on normal transit. In the second series, mangiferin (30 mg/kg) was tested on delayed GIT induced by several different pharmacological agonists (morphine, clonidine, capsaicin) or antagonists (ondansetron, verapamil, and atropine) whereas in the third series, mangiferin (30 mg/kg, 100 mg/kg and 300 mg/kg) or tegaserod (1 mg/kg) were tested on 6 h fecal pellets outputted by freely fed mice. The ratio of wet to dry weight was calculated and used as a marker of fecal water content. RESULTS: Mangiferin administered orally significantly (P < 0.05) accelerated GIT at 30 mg/kg and 100 mg/kg (89% and 93%, respectively), similarly to 5-hydroxytryptamine4 (5-HT4) agonist tegaserod (81%) when compared to vehicle-treated control (63%). Co-administered mangiferin (30 mg/kg) totally reversed the inhibitory effect of opioid agonist morphine, 5-HT3-receptor antagonist ondansetron and transient receptor potential vanilloid-1 receptor agonist capsaicin on GIT, but only to a partial extent with the GIT-delay induced by α2-adrenoceptor agonist clonidine, and calcium antagonist verapamil. However, co-administered atropine completely blocked the stimulant effect of mangiferin on GIT, suggesting the involvement of muscarinic acetylcholine receptor activation. Although mangiferin significantly enhanced the 6 h fecal output at higher doses (245.5 ± 10.43 mg vs 161.9 ± 10.82 mg and 227.1 ± 20.11 mg vs 161.9 ± 10.82 mg of vehicle-treated control, at 30 and 100 mg/kg, P < 0.05, respectively), the effect of tegaserod was more potent (297.4 ± 7.42 mg

  9. Generation of stable ultra-relativistic attosecond electron bunches via the laser wakefield acceleration mechanism

    NARCIS (Netherlands)

    Luttikhof, M.J.H.; Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.

    2009-01-01

    In recent experiments ultra-relativistic femtosecond electron bunches were generated by a Laser Wakefield Accelerator (LWFA) in different regimes. Here we predict that even attosecond bunches can be generated by an LWFA due to the fast betatron phase mixing within a femtosecond electron bunch. The a

  10. Insight into the labeling mechanism of acceleration selective arterial spin labeling

    DEFF Research Database (Denmark)

    Schmid, Sophie; Petersen, Esben T; Van Osch, Matthias J P

    2016-01-01

    OBJECTIVES: Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature...... of the control and label conditions in both the acceleration and velocity selective module. The cut-off acceleration (0.59 m/s(2)) or velocity (2 cm/s) was kept constant in one module, while it was varied over a large range in the other module. With the right subtractions this resulted in AccASL, VS......-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other. RESULTS: The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries. CONCLUSION: AccASL is able to label...

  11. Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum

    NARCIS (Netherlands)

    Dijkstra, J.J.; Zomeren, van A.; Meeussen, J.C.L.; Comans, R.N.J.

    2006-01-01

    The effect of accelerated aging of Municipal Solid Waste Incinerator (MSWI) bottom ash on the leaching of Cu and Mo was studied using a "multisurface" modeling approach, based on surface complexation to iron/aluminum (hydr) oxides, mineral dissolution/precipitation, and metal complexation by humic s

  12. Acceleration control system for semi-active in-car crib with joint application of regular and inverted pendulum mechanisms

    Science.gov (United States)

    Kawashima, T.

    2016-09-01

    To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.

  13. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  14. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A

    2010-01-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, o...

  15. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  16. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production

    Directory of Open Access Journals (Sweden)

    Jean-Benoit eMORIN

    2015-12-01

    Full Text Available Recent literature supports the importance of horizontal ground reaction force (GRF production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG activity of the vastus lateralis, rectus femoris, biceps femoris and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024 between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability.

  17. MO-FG-303-04: A Smartphone Application for Automated Mechanical Quality Assurance of Medical Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H [Interdisciplinary Program in Radiation applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lee, H; Choi, K [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ye, S [Interdisciplinary Program in Radiation applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantry and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations.

  18. Collisionless Magnetic Reconnection as an Ion Acceleration Mechanism of Low- β Laboratory Plasmas

    Science.gov (United States)

    Cazzola, Emanuele; Curreli, Davide; Lapenta, Giovanni

    2016-10-01

    In this work we present the results from a series of fully-kinetic simulations of magnetic reconnection under typical laboratory plasma conditions. The highly-efficient energy conversion obtained from this process is of great interest for applications such as future electric propulsion systems and ion beam accelerators. We analysed initial configurations in low-beta conditions with reduced mass ratio of mi = 512me at magnetic fields between 200G and 5000G and electron temperatures between 0.5 and 10eV. The initial ion density and temperature are kept uniform and equal to 1019 m-3 and 0.0215eV (room temperature) respectively. The analysis has shown that the reconnection process under these conditions can accelerate ions up to velocities as high as a significant fraction of the inflow Alfven speed. The configuration showing the best scenario is further studied with a realistic mass ratio in terms of energetics and outflow ion momentum, with the latter featured by the traditionally used specific impulse. Finally, a more detailed analysis of the reconnection outflow has revealed the formation of different interesting set of shock structures, also recently seen from MHD simulations of relativistic plasmas and certainly subject of future more careful attention. The present work has been possible thanks to the Illinois-KULeuven Faculty/PhD Candidate Exchange Program. Computational resources provided by the PRACE Tier-0 machines.

  19. Study of Natural and Accelerated Weathering on Mechanical Properties of Antioxidants Modified Low Density Polyethylene Films for Greenhouse

    Directory of Open Access Journals (Sweden)

    Othman Al Othman

    2014-01-01

    Full Text Available Natural and accelerated weatherings were studied to inspect the effect of antioxidants to protect low-density polyethylene (LDPE films for commercial application as greenhouse covering materials in Saudi Arabia. In this investigation, six different formulations of LDPE film with incorporation of antioxidants were prepared and compared with neat LDPE. The samples were extruded and blown into a film using twin-screw extruder and film blowing machine. The LDPE films were exposed for outdoor weathering in Riyadh during the period of 90 days (mid of June to mid of September while the accelerated tests were performed by Weather-Ometer. The film having 0.2 wt% Alkanox-240 (AN-0.2 stabilizers showed the highest tensile strength among all samples during natural and 100-hour accelerated weathering (10.9 MPa and 21.8 MPa, resp.. The best elongation at break was witnessed in 0.2% Good-rite antioxidants which were 64% in natural weathering; however, 0.5% Good-rite antioxidants showed 232% in accelerated weathering. The film having 0.5 wt% Good-rite 3114 (GR-0.5 antioxidant could withstand 70 days during natural exposure before the tensile strength values were reduced to 2/3rd of the initial. The present study suggested that the addition of antioxidants Good-rite, Anox, and Alkanox can improve the mechanical strength, film’s life, effectiveness, and stability and they are suitable to be incorporated in LDPE for commercial greenhouse films.

  20. Mechanical engineering of a 75-keV proton injector for the Low Energy Demonstration Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hodgkins, D.J.; Meyer, E.A.; Schneider, J.D.; Sherman, J.D.; Stevens, R.R. Jr.; Zaugg, T.J.

    1997-10-01

    A dc injector capable of 75-keV, 110-mA proton beam operation is under development for the Low Energy Demonstration Accelerator (LEDA) project at Los Alamos. The injector uses a dc microwave proton source which has demonstrated 98% beam availability while operating at design parameters. A high-voltage isolation transformer is avoided by locating all ion source power supplies and controls at ground potential. The low-energy beam transport system (LEBT) uses two solenoid focusing and two steering magnets for beam matching and centroid control at the RFQ matchpoint. This paper will discuss proton source microwave window design, H{sub 2} gas flow control, vacuum considerations, LEBT design, and an iris for beam current control.

  1. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  2. Experimental demonstration of a new radiation mechanism: emission by an oscillating, accelerated, superluminal polarization current

    CERN Document Server

    Ardavan, A; Ardavan, H; Fopma, J; Halliday, D; Hayes, W

    2004-01-01

    We describe the experimental implementation of a superluminal ({\\it i.e.} faster than light {\\it in vacuo}) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments lead one to expect that the radiation emitted from each volume element of such a polarization current will comprise a \\v{C}erenkov-like envelope with two sheets that meet along a cusp. The emission from the experimental machine is in good agreement with these expectations, the combined effect of the volume elements leading to tightly-defined beams of a well-defined geometry, determined by the source speed and trajectory. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These are due to the detection over a short time period (in the laboratory frame) of radiation emitted over a considerably longer period of source time. Consequently, the intensity of the radiation at these angles was observed to decline more slowly with increasing d...

  3. The effect of artificial accelerated weathering on the mechanical properties of maxillofacial polymers PDMS and CPE

    Energy Technology Data Exchange (ETDEWEB)

    Eleni, P N; Krokida, M K [Department of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780 Athens (Greece); Polyzois, G L [Division of Removable Prosthodontics, University of Athens, Dental School, 2 Thivon Street, 11527 Athens (Greece)

    2009-06-15

    The effect of UVA-UVB irradiation on the mechanical properties of three different industrial types of polydimethylsiloxane and chlorinated polyethylene samples, used in maxillofacial prostheses, was investigated in this study. Mechanical properties and thermal analysis are commonly used to determine the structural changes and mechanical strength. An aging chamber was used in order to simulate the solar radiation and assess natural aging. Compression and tensile tests were conducted on a Zwick testing machine. Durometer Shore A hardness measurements were carried out in a CV digital Shore A durometer according to ASTM D 2240. Glass transition temperature was evaluated with a differential scanning calorimeter. Simple mathematical models were developed to correlate the measured properties with irradiation time. The effect of UVA-UVB irradiation on compressive behavior affected model parameters. Significant deterioration seems to occur due to irradiation in samples.

  4. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  5. Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Vange, Jakob; Nielsen, Lene Feldskov

    2014-01-01

    Within recent years, researchers have looked into using polycaprolactone (PCL) as a synthetic biodegradable scaffold for tissue engineering purposes. This study investigated the mechanical properties of an electrospun PCL, while being exposed to physiological fluids at 37C (in vitro conditions...

  6. Accelerated kinetics and mechanism of growth of boride layers on titanium under isothermal and cyclic diffusion

    Science.gov (United States)

    Sarma, Biplab

    2011-12-01

    The tendency of titanium (Ti) and its alloys to wear, gall and seize during high contact stresses between sliding surfaces severely limits their applications in bearings, gears etc. One way to mitigate these problems is to modify their surfaces by applying hard and wear resistant surface coatings. Boriding, which involves solid state diffusion of boron (B) into Ti, thereby forming hard surface layers consisting of TiB2 and TiB compounds has been shown to produce extremely high wear resistant surfaces in Ti and its alloys. The growth kinetics of these layers are, however, limited by the low diffusivities of B in the high melting TiB2 and TiB compounds. On the basis of the fact that HCP metals such as Ti show enhanced (anomalous) self-diffusion near the phase transition temperature, the first hypothesis of this work has been that the diffusivity enhancement should cause rapid ingress of B atoms, thereby accelerating the growth of the hard boride layers. Isothermal boriding experiments were performed close to phase transition temperature (890, 910, and 915°C) for time periods ranging from 3 to 24 hours. It was found that indeed a much deeper growth of TiB into the Ti substrate (˜75 mum) occurred at temperatures very close to the transition temperature (910°C), compared to that obtained at 1050°C. A diffusion model based on error-function solutions of Fick's second law was developed to quantitatively illustrate the combined effects of the normal B diffusion in the TiB phase and the anomalous B diffusion in Ti phase in accelerating TiB layer growth. Furthermore, isothermal boriding experiments close to transition temperature (900°C) for a period of 71 hours resulted in coating thickness well above 100 mum, while at 1050°C, the layer growth saturated after about 24 hours of treatment time. In the second part of this work, a novel approach named "cyclic-phase-changediffusion, (CPCD)," to create deeper TiB2 and TiB coating layers on CP-Ti by cyclic thermal processing

  7. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    Science.gov (United States)

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion.

  8. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    Science.gov (United States)

    Artoos, K.; Collette, C.; Fernandez Carmona, P.; Guinchard, M.; Hauviller, C.; Janssens, S.; Kuzmin, A.; Slaathaug, A.

    2010-11-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, one might allow for an adaptive method to increase the S/N ratio of vibration measurements by combining seismometer measurements of adjacent magnets. Finally a list of open topics, the current limitations and the plans to overcome them will be presented.

  9. Mechanisms of accelerated proteolysis in rat soleus muscle atrophy induced by unweighting or denervation

    Science.gov (United States)

    Tischler, Marc E.; Kirby, Christopher; Rosenberg, Sara; Tome, Margaret; Chase, Peter

    1991-01-01

    A hypothesis proposed by Tischler and coworkers (Henriksen et al., 1986; Tischler et al., 1990) concerning the mechanisms of atrophy induced by unweighting or denervation was tested using rat soleus muscle from animals subjected to hindlimb suspension and denervation of muscles. The procedure included (1) measuring protein degradation in isolated muscles and testing the effects of lysosome inhibitors, (2) analyzing the lysosome permeability and autophagocytosis, (3) testing the effects of altering calcium-dependent proteolysis, and (4) evaluating in vivo the effects of various agents to determine the physiological significance of the hypothesis. The results obtained suggest that there are major differences between the mechanisms of atrophies caused by unweighting and denervation, though slower protein synthesis is an important feature common for both.

  10. Mechanical properties as an indicator of interstitials in niobium for superconducting accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ricker, R. E., E-mail: richard.ricker@nist.gov; Pitchure, D. J., E-mail: david.pitchure@nist.gov [Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, US (United States); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, US (United States)

    2015-12-04

    A preliminary investigation was conducted into the feasibility of using simple mechanical properties experiments to evaluate interstitial impurity uptake from processing environments. Two types of tests were examined: tensile tests and complex modulus measurements using a dynamic mechanical analyzer (DMA). For the tensile tests, samples were cut from a single crystal of niobium, with the same orientation, and then prepared following different procedures. Significant differences were observed during tensile tests, with yielding strength and strain-to-failure clearly related to interstitial uptake. When the strain rate was reduced by an order of magnitude, the strain-to-failure was reduced by 18 % indicating that interstitial hydrogen is responsible for this behavior. For the complex modulus measurement, polycrystalline samples from different locations of two different ingots were examined at a frequency of 1.0 Hz while the temperature was increased at the rate of 1.0 °C per minute. Anaelastic peaks were found for C, N, and O in all samples, but the lower limit of the system did not allow for detection of a peak for H. It is concluded that mechanical properties could be developed as a measurement tool to guide the development of processing methods for producing reduced interstitial content material, but additional research, and uncertainty analysis, is required for these tools to be reliable in this application.

  11. Mechanical quality assurance using light field for linear accelerators with camera calibration.

    Science.gov (United States)

    Park, Kwangwoo; Choi, Wonhoon; Keum, Ki Chang; Lee, Ho; Yoon, Jeongmin; Lee, Chang Geol; Lee, Ik Jae; Cho, Jaeho

    2016-02-01

    Mechanical Quality Assurance (QA) is important to assure spatially precise delivery of external-beam radiation therapy. As an alternative to the conventional-film based method, we have developed a new tool for mechanical QA of LINACs which uses a light field rather than radiation. When light passes through the collimator, a shadow is projected onto a piece of translucent paper and the resulting image is captured by a digital camera via a mirror. With this method, we evaluated the position of the LINAC isocenter and the accuracy of the gantry, collimator, and couch rotation. We also evaluated the accuracy of the digital readouts of the gantry, collimator, and couch rotation. In addition, the treatment couch position indicator was tested. We performed camera calibration as an essential pre-requisite for quantitative measurements of the position of isocenter, the linear motion of the couch, and the rotation angles of the gantry and collimator. Camera calibration reduced the measurement error to submillimeter based on uncertainty in pixel size of the image, while, without calibration, the measurement error of up to 2 mm could occur for an object with a length of 5 cm.

  12. Effect of accelerated electron beam on mechanical properties of human cortical bone: influence of different processing methods.

    Science.gov (United States)

    Kaminski, Artur; Grazka, Ewelina; Jastrzebska, Anna; Marowska, Joanna; Gut, Grzegorz; Wojciechowski, Artur; Uhrynowska-Tyszkiewicz, Izabela

    2012-08-01

    Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy

  13. A Precision-Positioning Method for a High-Acceleration Low-Load Mechanism Based on Optimal Spatial and Temporal Distribution of Inertial Energy

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2015-09-01

    Full Text Available High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM, and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.

  14. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    Energy Technology Data Exchange (ETDEWEB)

    Kundrat, Pavel [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2006-03-07

    A detailed study of the biological effects of diverse quality radiations, addressing their biophysical interpretation, is presented. Published survival data for V79 cells irradiated by monoenergetic protons, helium-3, carbon and oxygen ions and for CHO cells irradiated by carbon ions have been analysed using the probabilistic two-stage model of cell inactivation. Three different classes of DNA damage formed by traversing particles have been distinguished, namely severe single-track lesions which might lead to cell inactivation directly, less severe lesions where cell inactivation is caused by their combinations and lesions of negligible severity that can be repaired easily. Probabilities of single ions forming these lesions have been assessed in dependence on their linear energy transfer (LET) values. Damage induction probabilities increase with atomic number and LET. While combined lesions play a crucial role at lower LET values, single-track damage dominates in high-LET regions. The yields of single-track lethal lesions for protons have been compared with Monte Carlo estimates of complex DNA lesions, indicating that lethal events correlate well with complex DNA double-strand breaks. The decrease in the single-track damage probability for protons of LET above approximately 30 keV {mu}m{sup -1}, suggested by limited experimental evidence, is discussed, together with the consequent differences in the mechanisms of biological effects between protons and heavier ions. Applications of the results in hadrontherapy treatment planning are outlined.

  15. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  16. Auger electron spectroscopic study of mechanism of sulfide-accelerated corrosion of copper-nickel alloy in seawater

    Science.gov (United States)

    Schrader, Malcolm E.

    The mechanism of sulfide-induced accelerated corrosion of 90-10 copper-nickel(iron) alloy is investigated. Samples of the alloy are exposed to flowing (2.4 m/s) seawater, with and without 0 01 mg/l sulfide, for various periods of time. The resulting surfaces are examined by means of Auger electron spectroscopy coupled with inert-ion-homoardment. A detailed depth profile is thereby obtained of concentrations in the surface region of a total of nine elements. The results are consistent with the hypothesis that iron hydroxide segregates at the surface to form a protective gelatinous layer against the normal chloride-induced corrosion process. Trace sulfide interferes with formation of a good protective layer and leaves the iron hydroxide vulnerable to ultimate partial or complete debonding. When the alloy is first exposed to "pure" seawater for a prolonged period of time, however, subsequent exposure to sulfide is no longer deleterious. This is apparently due to a layer of copper-nickel salt that slowly forms over the iron hydroxide.

  17. Effect of Accelerated Xenon Lamp Aging on the Mechanical Properties and Structure of Thermoplastic Polyurethane for Stratospheric Airship Envelope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuyan; LIU Yuxi; LIU Shaozhu; TAN Huifeng

    2014-01-01

    This study aimed to investigate the effect of artificial weathering test on the photoaging behavior of TPU films. Changes in mechanical properties, morphology and chemical structures are studied by tensile test, scanning electron microscopy, atomic force microscopy, Fourier-transformed infrared, and X-ray photoelectron spectroscopy. The results show that the photoaging negatively affects the initial modulus and stress at break values of TPU films. The surface of the specimen that is exposed to irradiation becomes rough, and some visible micro-defects such as blisters and voids can be detected. The morphology of the fracture surfaces illustrates that irradiation reduces the plasticity but increases the brittleness of the TPU films. The chemical structure analyses of the accelerated aged films prove that chemical structural changes in TPU films occur. The irradiation may break the long molecular chains on the surface of the specimens and form the low-molecular weight oxygen-containing groups. The number of chain scissions increases with the increase in exposure time.

  18. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Latha Devi

    Full Text Available Although evidence is accumulating that diabetes mellitus is an important risk factor for sporadic Alzheimer's disease (AD, the mechanisms by which defects in insulin signaling may lead to the acceleration of AD progression remain unclear. In this study, we applied streptozotocin (STZ to induce experimental diabetes in AD transgenic mice (5XFAD model and investigated how insulin deficiency affects the β-amyloidogenic processing of amyloid precursor protein (APP. Two and half months after 5XFAD mice were treated with STZ (90 mg/kg, i.p., once daily for two consecutive days, they showed significant reductions in brain insulin levels without changes in insulin receptor expression. Concentrations of cerebral amyloid-β peptides (Aβ40 and Aβ42 were significantly increased in STZ-treated 5XFAD mice as compared with vehicle-treated 5XFAD controls. Importantly, STZ-induced insulin deficiency upregulated levels of both β-site APP cleaving enzyme 1 (BACE1 and full-length APP in 5XFAD mouse brains, which was accompanied by dramatic elevations in the β-cleaved C-terminal fragment (C99. Interestingly, BACE1 mRNA levels were not affected, whereas phosphorylation of the translation initiation factor eIF2α, a mechanism proposed to mediate the post-transcriptional upregulation of BACE1, was significantly elevated in STZ-treated 5XFAD mice. Meanwhile, levels of GGA3, an adapter protein responsible for sorting BACE1 to lysosomal degradation, are indistinguishable between STZ- and vehicle-treated 5XFAD mice. Moreover, STZ treatments did not affect levels of Aβ-degrading enzymes such as neprilysin and insulin-degrading enzyme (IDE in 5XFAD brains. Taken together, our findings provide a mechanistic foundation for a link between diabetes and AD by demonstrating that insulin deficiency may change APP processing to favor β-amyloidogenesis via the translational upregulation of BACE1 in combination with elevations in its substrate, APP.

  19. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

    2006-06-01

    Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of

  20. The Influence of Irradiation and Accelerated Aging on the Mechanical and Tribological Properties of the Graphene Oxide/Ultra-High-Molecular-Weight Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guodong Huang

    2016-01-01

    Full Text Available Graphene oxide/ultra-high-molecular-weight polyethylene (GO/UHMWPE nanocomposite is a potential and promising candidate for artificial joint applications. However, after irradiation and accelerated aging, the mechanical and tribological behaviors of the nanocomposites are still unclear and require further investigation. GO/UHMWPE nanocomposites were successfully fabricated using ultrasonication dispersion, ball-milling, and hot-pressing process. Then, the nanocomposites were irradiated by gamma ray at doses of 100 kGy. Finally, GO/UHMWPE nanocomposites underwent accelerated aging at 80°C for 21 days in air. The mechanical and tribological properties of GO/UHMWPE nanocomposites have been evaluated after irradiation and accelerated aging. The results indicated that the incorporation of GO could enhance the mechanical, wear, and antiscratch properties of UHMWPE. After irradiation, these properties could be further enhanced, compared to unirradiated ones. After accelerated aging, however, these properties have been significantly reduced when compared to unirradiated ones. Moreover, GO and irradiation can synergistically enhance these properties.

  1. Physical Mechanisms and Feedback Control of Beam Halo-Chaos for Accelerator-driven Radioactive-clean Nuclear Power Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High-current proton beams have attractive features for possible breakthrough applications, especially for accelerator-driven radioactive-clean nuclear power systems (ADS), which make nuclear energy systems safer, cleaner, cheaper, and therefore more practical. However, beam halo-chaos in ADS has become one of the key technical issues because it can cause excessive radio-activation from the accelerators and significantly limits the industrial applications of the new accelerators.Some general engineering methods for chaos control have been developed, but they generally

  2. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes

    CERN Document Server

    Kazakov, Kirill A

    2013-01-01

    The problem of spontaneous acceleration of premixed flames propagating in open horizontal tubes with smooth walls is revisited. It is proved that in long tubes, this process can be considered quasi-steady, and an equation for the flame front position is derived using the on-shell description. Numerical solutions of this equation are found which show that as in the case of uniform flame movement, there are two essentially different regimes of flame propagation. In the type I regime, the flame speed and its acceleration are comparatively low, whereas the type II regime is characterized by significant flame acceleration that rapidly increases as the flame travels along the tube. A detailed comparison of the obtained results with the experimental data on flame acceleration in methane-air mixtures is given. In particular, it is confirmed that flames propagating in near-stoichiometric mixtures and mixtures near the limits of inflammability belong to the types II and I, respectively, whereas flames in transient mixt...

  3. Analysis of the dynamics of a nutating body. [numerical analysis of displacement, velocity, and acceleration of point on mechanical drives

    Science.gov (United States)

    Anderson, W. J.

    1974-01-01

    The equations for the displacement, velocity, and acceleration of a point in a nutating body are developed. These are used to derive equations for the inertial moment developed by a nutating body of arbitrary shape. Calculations made for a previously designed nutating plate transmission indicate that that device is severely speed limited because of the very high magnitude inertial moment.

  4. The effect of the accelerated aging on the mechanical properties of the PMMA denture base materials modified with itaconates

    Directory of Open Access Journals (Sweden)

    Spasojević Pavle M.

    2011-01-01

    Full Text Available This study evaluated the effect of accelerated ageing on the tensile strength, elongation at break, hardness and Charpy impact strength in commercial PMMA denture base material modified with di-methyl itaconate (DMI and di-n-butyl itaconate (DBI. The samples were prepared by modifying commercial formulation by addition of itaconates in the amounts of 2.5, 5, 7.5 and 10% by weight. After polymerization samples were characterized by FT-IR and DSC analysis while residual monomer content was determined by HPLC-UV. Accelerated ageing was performed at 70°C in water for periods of 7, 15 and 30 days. Tensile measurements were performed using Instron testing machine while the hardness of the polymerized samples was measured by Shore D method. The addition of itaconate significantly reduces the residual MMA. Even at the small amounts of added itaconates (2.5% the residual MMA content was reduced by 50%. The increase of itaconate content in the system leads to the decrease of residual MMA. It has been found that the addition of di-n-alkyl itaconates decreases the tensile strength, hardness and Charpy impact strength and increases elongation at break. Samples modified with DMI had higher values of tensile strength, hardness and Charpy impact strength compared to the ones modified with DBI. This is explained by the fact that DBI has longer side chain compared to DMI. After accelerated ageing during a 30 days period the tensile strength decreased for all the investigated samples. The addition of DMI had no effect on the material ageing and the values for the tensile strength of all of the investigated samples decreased around 20%, while for the samples modified with DBI, the increase of the amount of DBI in the polymerized material leads to the higher decrease of the tensile strength after the complete accelerated ageing period od 30 days, aulthough after the first seven days of the accelerated ageing the values of hardness have increased for all of the

  5. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    Science.gov (United States)

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity.

  6. Comparison of displacement and acceleration transducers for the characterization of mechanics of muscle and subcutaneous tissues by system identification of a mechanomyogram.

    Science.gov (United States)

    Uchiyama, Takanori; Shinohara, Keita

    2013-02-01

    The purpose of this study was to clarify the performance of transducers for the mechanical characterization of muscle and subcutaneous tissue with the aid of a system identification technique. The common peroneal nerve was stimulated, and a mechanomyogram (MMG) of the anterior tibialis muscle was detected with a laser displacement meter or an acceleration sensor. The transfer function between stimulation and the MMG was identified by the singular value decomposition method. The MMG detected with a laser displacement meter, DMMG, was approximated with a second-order model, but that detected with an acceleration sensor, AMMG, was approximated with a sixth-order model. The natural frequency of the DMMG coincided with that in the literature and was close to the lowest natural frequency of the AMMG. The highest natural frequency of the AMMG was within the range of the resonance frequencies of human soft tissue. The laser displacement meter is suitable for the precise identification of the MMG, which has a natural frequency of around 3 Hz. The acceleration transducer is suitable for the identification of the MMG with natural frequencies of tens of hertz.

  7. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  8. Torque of Acceleration and Braking for Worm Transmission Mechanism%蜗杆传动机构加速与制动时的转矩

    Institute of Scientific and Technical Information of China (English)

    李立新; 江玉刚

    2011-01-01

    As a compact deceleration body, worm transmission mechanism is widely used in large ratio occasions. But calculating the torque is always in accordance with the situation in which the worm runs at a constant speed, and not apply to accelerating and braking situation. Particularly in the inertial load to the servo-based system,the torque of accelerating and decelerating is different from that of steady-state. The actual torque, firstly calculated by the theory, can control the system accurately, especially when the worm transmission mechanism is accelerating and decelerating in the servo-based system, and the performance is very good.%蜗杆传动机构作为一种结构紧凑的减速机构在大速比场合应用广泛.但一般计算转矩时通常只考虑蜗轮蜗杆匀速传动的场合,而不适用于加速与制动时的情形.特别是在以惯性载荷为主的伺服系统中,其加、减速时的转矩不同于常规稳态转矩.文中首次采用由理论转矩计算出的实际转矩可以精确地控制系统,尤其是在蜗杆传动机构用于伺服系统加、减速时,性能良好.

  9. An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments. Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, Jesse

    1999-01-01

    OAK-B135 An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments. Technical Progress Report. This program focuses on understanding the mechanisms causing corrosion damage to steam generator tubes in a pressurized water reactor (PWR) and the effects of the proposed remedial measures. The crevice formed by the tube/tube support plate (T/TSP) intersection in a PWR steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate during the generation of steam, from quickly dispersing into the bulk water. The concentrated solutions in crevices have been a contributing cause of several forms of corrosion of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage.

  10. Golden-Finger and Back-Door: Two HW/SW Mechanisms for Accelerating Multicore Computer Systems

    Directory of Open Access Journals (Sweden)

    Slo-Li Chu

    2012-01-01

    Full Text Available Continuously requirements of high-performance computing make the computer system adopt more processors within a system to improve the parallelism and throughput. Although multiple processing cores are implemented in a computer system, the complicated hardware communication mechanism between processors will decrease the performance of overall system. Besides, the unsuitable process scheduling mechanism of conventional operating system can not fully utilize the computation power of additional processors. Accordingly, this paper provides two mechanisms to overcome the above challenges by using hardware and software mechanisms, respectively. In software aspect, we propose a tool, called Golden-Finger, to dynamically adjust the scheduling policy of the process scheduler in Linux. This software mechanism can improve the performance of the specified process by occupying a processor solely. In hardware aspect, we design an effective hardware mechanism, called Back-Door, to communicate two independent processors which can not be operated together, such as the dual PowerPC 405 cores in the Xilinx ML310 system. The experimental results reveal that the two mechanisms can obtain significant performance enhancements.

  11. Effective mechanical means of uterine cervix accelerating maturity in pregnant women of first mature age period of different somatotypes

    Directory of Open Access Journals (Sweden)

    Yakovleva О.V.

    2013-03-01

    Full Text Available The purpose is to evaluate the effectiveness of stimulation of delivery in first mature age period of pregnant women mechanically in different somatotypes. Materials and Methods: 658 patients at 38-41 weeks of gestation of the first period of mature age (22-35 years have been considered. Differentiation by somatotypes has been performed by the method of HT Kaarma (1991. All patients of each somatotype have been divided into primiparous (n = 402 and multiparous (n = 256. Preparation for delivery by mechanical means: on the 1 st day it was introduced into the cervical canal for 16 hours, on the 2nd day — Foley catheter for 8-16 hours (before the birth. Results: In multiparous women the application of mechanical preparation of the birth canal has been effective regardless of somatotype. The percentage of operative delivery in mechanical induction has been lower in multiparous women and also not related to somatotype. In nulliparous women of asthenic and normosthenic type greater efficiency of mechanical induction in preparation for delivery has been revealed. In asthenic and pyknictype mechanical induction has been inefficient and therefore has not been recommended for the use. Conclusion: Application of mechanical means of stimulation of delivery in nulliparous pregnant women should be performed according to their somatotype.

  12. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  13. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  14. Cosmic particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano; Perri, Silvia [Universita della Calabria, Dipartimento di Fisica, 87036 Rende (Italy)

    2014-07-01

    The most popular mechanism for the acceleration of cosmic rays, which is thought to operate in supernova remnant shocks as well as at heliospheric shocks, is the diffusive shock acceleration, which is a Fermi mechanism based on normal diffusion. On the other hand, in the last few years it has been shown that the transport of plasma particles in the presence of electric and magnetic turbulence can be superdiffusive rather than normal diffusive. The term 'superdiffusive' refers to the mean square displacement of particle positions growing superlinearly with time, as compared to the normal linear growth. In particular, superdiffusion is characterized by a non Gaussian statistical process called Levy random walk. We show how diffusive shock acceleration is modified by superdiffusion, and how this yields new predictions for the cosmic ray spectral index, for the acceleration time, and for the spatial profile of energetic particles. A comparison with observations of particle acceleration at heliospheric shocks and at supernova remnant shocks is done. We discuss how superdiffusive shock acceleration allows to explain the observations of hard ion spectra at the solar wind termination shock detected by Voyager 2, of hard radio spectra due to synchrotron emission of electrons accelerated at supernova remnant shocks, and how it can help to explain the observations of 'thin rims' in the X-ray synchrotron emission.

  15. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  16. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  17. Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques - A European effort to accelerate fusion materials development

    DEFF Research Database (Denmark)

    Linsmeier, Ch.; Fu, C.-C.; Kaprolat, A.

    2013-01-01

    For the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons...... having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected...... as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced...

  18. $K$-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    CERN Document Server

    Bouhmadi-López, Mariam; Marto, João; Morais, João; Zhuk, Alexander

    2016-01-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a $K$-essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the $K$-essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the $K$-essence models: (i) the pure kinetic $K$-essence field, (ii) a $K$-essence with a constant speed of sound and (iii) the $K$-essence m...

  19. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  20. 将机械式直线加速器用于采油机械的设想%An idea of applying mechanical linear accelerator to oil pumping system

    Institute of Scientific and Technical Information of China (English)

    刘泽峰; 李少果; 黄清世

    2001-01-01

    Mechanical linear accelerator is a new transmission devicedesigned on the basis of the parallel straight push rod linear reducer. To make use of its acceleration and stroke increment functions, an idea of applying the mechanical linear accelerator to oil pumping system is put forward. The design schemes for long stroke pumping unit and downhole stroke increment device both equipped with the mechanical linear accelerator are presented. The long stroke pumping unit with the linear accelerator is easy to realize compound balance and is predicted to have high mechanical efficiency and long service life. The downhole stroke increment device with the linear accelerator can increase the stroke of the subsurface pump plunger, therefore it provides the condition for modifying the existing pumping systems to long stroke pumping systems.%机械式直线加速器是根据平行直动推杆传动机构设计而成的新型传动装置,利用其加速和增程功能,提出两种采取对称布置的直线加速器实现长冲程、低冲次的抽油装置设计新方案:(1)采用直线加速器的长冲程抽油机,其结构合理,便于实现复合平衡,预计有较高的机械效率和较长的使用寿命;(2)采用直线加速器的抽油机井下增程装置,可使地面设备结构紧凑,比同类型长冲程抽油机的悬点载荷相对较低,对现有抽油机实施长冲程改造有着重要的实际意义。

  1. Bi-layer structure of counterstreaming energetic electron fluxes: a diagnostic tool of the acceleration mechanism in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2010-02-01

    Full Text Available For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS instrument that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008. The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an

  2. Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications:Effect of Accelerated Ageing

    Institute of Scientific and Technical Information of China (English)

    H.Fouad; R.Elleithy; Othman Y.Alothman

    2013-01-01

    The objective of this work is to demonstrate how the viscoelastic,thermal,rheological,hardness,wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles.Also the effects of accelerated thermal ageing on the composite properties have been investigated.Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder.The fracture toughness results showed a remarkable decrease in proportion to the HAP content.The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix.The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility.The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa).Finally,the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles.The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its hang composites crystallinity increased while the fracture toughness,hardness,wear resistance,storage and loss modulus decreased.

  3. Accelerated Unification

    OpenAIRE

    Arkani-Hamed, Nima; Cohen, Andrew; Georgi, Howard

    2001-01-01

    We construct four dimensional gauge theories in which the successful supersymmetric unification of gauge couplings is preserved but accelerated by N-fold replication of the MSSM gauge and Higgs structure. This results in a low unification scale of $10^{13/N}$ TeV.

  4. Particle acceleration by ultra-intense laser-plasma interactions

    CERN Document Server

    Nakajima, K

    2002-01-01

    The mechanism of particle acceleration by ultra-increase laser-plasma interaction is explained. Laser light can generate very high electric field by focusing with electromagnetic field matched phase with frequency. 1018 W/cm sup 2 laser light produce about 3 TV/m electric field. Many laser accelerators, which particle acceleration method satisfies phase matching particle and electric field, are proposed. In these accelerators, the Inverse Cherenkov Accelerator, Inverse FEL Accelerator and Laser-Plasma Accelerator are explained. Three laser-plasma acceleration mechanisms: Plasma Beat Wave Accelerator, Laser Wake-Field Accelerator (LWFA) and Self-Modulated LWFA, showed particle acceleration by experiments. By developing a high speed Z pinch capillary-plasma optical waveguide, 2.2 TW and 90 fs laser pulse could be propagated 2 cm at 40 mu m focusing radius in 1999. Dirac acceleration or ultra-relativistic ponderomotive acceleration mechanism can increase energy exponentially. (S.Y.)

  5. Molecular modifications by regulating cAMP signaling and oxidant-antioxidant defence mechanisms, produce antidepressant-like effect: A possible mechanism of etazolate aftermaths of impact accelerated traumatic brain injury in rat model.

    Science.gov (United States)

    Jindal, Ankur; Mahesh, Radhakrishnan; Bhatt, Shvetank; Pandey, Dilip

    2016-12-14

    Traumatic brain injury (TBI) is one of the leading cause of psychiatric conditions in patients, amongst which, depression and anxiety are more frequent. Despite the preclinical antidepressant-like effects, clinical development of Phospodiesterase-4 (PDE4) enzyme inhibitors has been hampered due to serious side effect profiles, such as nausea and vomiting. Etazolate (ETZ) is a new generation PDE4 inhibitor with encouraging safety and tolerance profiles. In our previous studies we have addressed that ETZ produces antidepressant-like effects in animal models of depression, however, the underlying mechanism(s) following TBI have not been completely explored. Impact accelerated TBI by weight drop method causes depression-like behavioral deficits in modified open field exploration, hyper-emotionality and sucrose consumption paradigms. TBI not only causes immediate mechanical damage to the brain, but also induces biochemical changes that lead to delayed neural cell loss leading to a secondary injury. The present study examines the antidepressant effects of ETZ on the TBI-induced depression-like behavior deficits and attempts to explore the underlying mechanism. In order to understand the underlying pathology of TBI and mechanism(s) of ETZ in TBI molecular markers namely, brain cAMP, cAMP response element binding protein (pCREB) and brain-derived neurotrophic factor (BDNF) were estimated. Additionally, the level of oxidative (lipid peroxidation) & nitrosative (nitrite) stress markers, along with antioxidant enzymes markers, such as, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were measured. Furthermore, the involvement of hypothalamic-pituitary adrenal (HPA) axis activity in underlying mechanism was also investigated by measuring serum corticosterone (CORT) level. The results revealed that TBI significantly altered cAMP, pCREB and BDNF levels. Moreover, a significant increase in oxidative-nitrosative stress markers levels, while, significant

  6. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  7. MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  8. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: From the resistome to genetic plasticity in the beta-lactamases world

    Directory of Open Access Journals (Sweden)

    Juan- Carlos eGalán

    2013-02-01

    Full Text Available Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are -lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread and diversification of -lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of -lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyse the antibiotic resistance problem from new perspectives. From intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the

  9. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  10. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  11. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  12. Impact accelerations

    Science.gov (United States)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  13. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  14. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  15. Particle Acceleration in Astrophysical Sources

    CERN Document Server

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  16. Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events.

    Science.gov (United States)

    Sreedhar, Amere Subbarao; Mihály, Katalin; Pató, Bálint; Schnaider, Tamás; Steták, Attila; Kis-Petik, Katalin; Fidy, Judit; Simonics, Tibor; Maraz, Anna; Csermely, Péter

    2003-09-12

    The 90 kDa heat shock protein, Hsp90, is an abundant molecular chaperone participating in the cytoprotection of eukaryotic cells. Here we analyzed the involvement of Hsp90 in the maintenance of cellular integrity using partial cell lysis as a measure. Inhibition of Hsp90 by geldanamycin, radicicol, cisplatin, and novobiocin induced a significant acceleration of detergent- and hypotonic shock-induced cell lysis. The concentration and time dependence of cell lysis acceleration was in agreement with the Hsp90 inhibition characteristics of the N-terminal inhibitors, geldanamycin and radicicol. Glutathione and other reducing agents partially blocked geldanamycin-induced acceleration of cell lysis but were largely ineffective with other inhibitors. Indeed, geldanamycin treatment led to superoxide production and a change in membrane fluidity. When Hsp90 content was diminished using anti-Hsp90 hammerhead ribozymes, an accelerated cell lysis was also observed. Hsp90 inhibition-induced cell lysis was more pronounced in eukaryotic (yeast, mouse red blood, and human T-lymphoma) cells than in bacteria. Our results indicate that besides the geldanamycin-induced superoxide production, and a consequent increase in cell lysis, inhibition or lack of Hsp90 alone can also compromise cellular integrity. Moreover, cell lysis after hypoxia and complement attack was also enhanced by any type of Hsp90 inhibition used, which shows that the maintenance of cellular integrity by Hsp90 is important in physiologically relevant lytic conditions of tumor cells.

  17. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  18. Microwave View on Particle Acceleration in Flares

    CERN Document Server

    Fleishman, Gregory D

    2013-01-01

    The thermal-to-nonthermal partition was found to vary greatly from one flare to another resulting in a broad variety of cases from 'heating without acceleration' to 'acceleration without heating'. Recent analysis of microwave data of these differing cases suggests that a similar acceleration mechanism, forming a power-law nonthermal tail up to a few MeV or even higher, operates in all the cases. However, the level of this nonthermal spectrum compared to the original thermal distribution differs significantly from one case to another, implying a highly different thermal-to-nonthermal energy partition in various cases. This further requires a specific mechanism capable of extracting the charged particles from the thermal pool and supplying them to a bulk acceleration process to operate in flares \\textit{in addition} to the bulk acceleration process itself, which, in contrast, efficiently accelerates the seed particles, while cannot accelerate the thermal particles. Within this 'microwave' view on the flare ener...

  19. Proton Acceleration at Oblique Shocks

    Science.gov (United States)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  20. Accelerator structure work for NLC

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gluckstern, R. [Maryland Univ., College Park, MD (United States); Ko, K.; Kroll, N. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  1. Particle acceleration around SNR shocks

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G., E-mail: morlino@arcetri.astro.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze (Italy)

    2013-08-21

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non-linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non-linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  2. Particle acceleration around SNR shocks

    CERN Document Server

    Morlino, Giovanni

    2012-01-01

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  3. 一种改进的岩石黏弹塑性加速蠕变力学模型%An improved accelerated creep mechanical model of viscoelasto-plastic rock

    Institute of Scientific and Technical Information of China (English)

    曹平; 刘业科; 蒲成志; 陈锐; 汪亦显

    2011-01-01

    为了全面描述岩石蠕变全过程,克服线性牛顿体不能准确描述加速蠕变的不足,在引入非线性蠕变体模型基础上,结合流变力学模型理论,定义应力与试件长期强度的比值为加速蠕变速率幂级数,n,模型发生加速蠕变时的总蠕变量为蠕变特征长度εc,进而得到一种改进的能够描述岩石黏弹塑性加速蠕变的力学模型.结合东乡铜矿砂质页岩单轴压缩下分级增量循环加卸载蠕变试验,对模型参数的辨识进行解释,并将该模型的蠕变拟合曲线与实验的蠕变曲线进行对比.研究结果表明:该模型能很好地描述了岩石的加速蠕变特性.%In order to depict the process of rock creep comprehensively, and overcome the deficiency of the linear Newton fluid which can not describe accelerated creep accurately, based on the mature rheological model, the nonlinear creep body model was introduced.In this model, the total creep strain before accelerated creep stage was defined as the characteristic length of creep, and the ratio of stress level and long-term strength of rock specimens was defined as accelerated creep rate.The improved rheological mechanics model was established that can describe the viscoelastic-plastic characteristics of accelerated creep.Combined with the uniaxial compression creep test under multi-step incremental cycling loading and unloading on the sandy shale from Dongxiang Copper Mine, the parameter identification of the mechanical model was explained, the experimental creep curve was compared with the creep fitted curve obtained by the model.The results show that the accelerate creep properties of rocks can be described effectively by this improved creep model.

  4. TECHNIQUE OF ESTIMATION OF ERROR IN THE REFERENCE VALUE OF THE DOSE DURING THE LINEAR ACCELERATOR RADIATION OUTPUT CALIBRATION PROCEDURE. PART 1. DEPENDANCE OF THE MECHANICAL PARAMETERS OF LINAC’S GANTRY

    Directory of Open Access Journals (Sweden)

    Y. V. Tsitovich

    2015-01-01

    Full Text Available To ensure the safety of radiation oncology patients needed to provide a consistent functional characteristics of the medical linear electron accelerators, which affect the accuracy of dose delivery. To this end, their quality control procedures, which include the calibration of radiation output of the linear accelerator, the error in determining the dose reference value during which must not exceed 2 %, is provided. The aim is to develop a methodology for determining the error in determining this value, depending on the mechanical charachteristics of the linac’s gantry. To achieve the objectives have been carried out dosimetric measurements of Trilogy S/N 3567 linac dose distributions, on the basis of which dose errors depending on the accuracy setting the zero position of the gantry and the deviation of the gantry rotation isocenter were obtained. It was found that the greatest impact on the value of the error has gantry rotation isocenter deviation in a plane perpendicular to the plane of incidence of the radiation beam (up to 3,64% for the energy of 6 MeV. Dose errors caused by tilting the gantry and its isocenter deviation in the plane of incidence of the beam were highest for 18 MeV energy and reached –0,7 % and –0,9 % respectively. Thus, it is possible to express the results of periodic quality control of the linear accelerator ganty in terms of dose and use them to conduct a comprehensive assessment of the possibility of clinical use of a linear accelerator for oncology patients irradiation in case of development of techniques that allow to analyze the influence of the rest of its technical and dosimetric parameters for error in dose.

  5. Cosmic-ray acceleration in young protostars

    CERN Document Server

    Padovani, Marco; Marcowith, Alexandre; Ferrière, Katia

    2015-01-01

    The main signature of the interaction between cosmic rays and molecular clouds is the high ionisation degree. This decreases towards the densest parts of a cloud, where star formation is expected, because of energy losses and magnetic effects. However recent observations hint to high levels of ionisation in protostellar systems, therefore leading to an apparent contradiction that could be explained by the presence of energetic particles accelerated within young protostars. Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient particle acceleration through the diffusive shock acceleration mechanism. We find that jet shocks can be strong accelerators of protons which can be boosted up to relativistic energies. Another possibly efficient acceleration site is located at protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate protons. Our results demonstrate the possibility of accelerating particles du...

  6. Nonresonant Grain Acceleration in MHD Turbulence

    CERN Document Server

    Yan, Huirong

    2009-01-01

    We discuss a new type of dust acceleration mechanism that acts in a turbulent magnetized medium. The magnetohydrodynamic (MHD) turbulence can accelerate grains through resonant as well as nonresonant interactions. We show that the magnetic compression provides higher velocities for super-Alfv\\'enic turbulence and can accelerate an extended range of grains in warm media compared to gyroresonance. While fast modes dominate the acceleration for the large grains, slow modes can be important for sub-micron grains. We provide comprehensive discussion of all the possible grain acceleration mechanisms in interstellar medium. We show that supersonic velocities are attainable for Galactic dust grains. We discuss the consequence of the acceleration. The implications for extinction curve, grain alignment, chemical abundance, etc, are provided.

  7. Enhanced particle acceleration via cascade of autoresonance detrappings

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Gell, Y. [CET, Tel-Aviv (Israel)

    1997-10-01

    We propose to enhance the acceleration of electrons by repeating consecutively a basic accelerating mechanism. This mechanism consists of trapping the particles in a traveling ponderomotive well, then autoresonance detrapping them allowing for considerable acceleration. The traveling well is generated by two counterpropagating electromagnetic waves along a uniform magnetic field. (author) 8 refs.

  8. Role of Direct Laser Acceleration of Electrons in a Laser Wakefield Accelerator with Ionization Injection

    Science.gov (United States)

    Shaw, J. L.; Lemos, N.; Amorim, L. D.; Vafaei-Najafabadi, N.; Marsh, K. A.; Tsung, F. S.; Mori, W. B.; Joshi, C.

    2017-02-01

    We show the first experimental demonstration that electrons being accelerated in a laser wakefield accelerator operating in the forced or blowout regimes gain significant energy from both the direct laser acceleration (DLA) and the laser wakefield acceleration mechanisms. Supporting full-scale 3D particle-in-cell simulations elucidate the role of the DLA of electrons in a laser wakefield accelerator when ionization injection of electrons is employed. An explanation is given for how electrons can maintain the DLA resonance condition in a laser wakefield accelerator despite the evolving properties of both the drive laser and the electrons. The produced electron beams exhibit characteristic features that are indicative of DLA as an additional acceleration mechanism.

  9. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard [Univ. of Maryland, College Park, MD (United States)

    2016-07-01

    This grant supported basic experimental, theoretical and computer simulation research into developing a compact, high pulse repetition rate laser accelerator using the direct laser acceleration mechanism in plasma-based slow wave structures.

  10. Centripetal Acceleration: Often Forgotten or Misinterpreted

    Science.gov (United States)

    Singh, Chandralekha

    2009-01-01

    Acceleration is a fundamental concept in physics which is taught in mechanics at all levels. Here, we discuss some challenges in teaching this concept effectively when the path along which the object is moving has a curvature and centripetal acceleration is present. We discuss examples illustrating that both physics teachers and students have…

  11. Acceleration of small astrophysical grains due to charge fluctuations

    CERN Document Server

    Ivlev, A V; Tsytovich, V N; de Angelis, U; Hoang, Thiem; Morfill, G E

    2010-01-01

    We discuss a novel mechanism of dust acceleration which dominates for particles smaller than $\\sim0.1 \\mu$m. The acceleration is caused by charge fluctuations occurring on grains during their mutual Coulomb collisions. The energy source for the acceleration are the irreversible plasma fluxes continuously absorbed by grains. In particular, this mechanism of charge-fluctuation-induced acceleration affects the rate of grain coagulation and shattering of the population of small grains.

  12. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  13. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  14. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  15. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  16. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  17. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  18. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  19. Accelerators, Colliders, and Snakes

    Science.gov (United States)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  20. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  1. Accelerators and Dinosaurs

    CERN Document Server

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  2. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  3. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  4. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  5. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  6. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  7. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model

    Directory of Open Access Journals (Sweden)

    Jbahi Samira

    2015-10-01

    Full Text Available Background: Synthetic bone graft substitutes such as bioactive glass (BG material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims: This study aims to evaluate in vivo the performance therapy of zinc-doped bioactive glass (BG-Zn and its applications in biomedicine. Methods: Female Wistar rats were ovariectomized. BG and BG-Zn were implanted in the femoral condyles of Wistar rats and compared to that of control group. Grafted bone tissues were carefully removed to evaluate the oxidative stress status, histomorphometric profile, mechanical property, and mineral bone distribution by using inductively coupled plasma optical emission spectrometry. Results: A significant decrease of thiobarbituric acid–reactive substances was observed after BG-Zn implantation. Superoxide dismutase, catalase (CAT, and glutathione peroxidase (GPx activities significantly increased in ovariectomized group implanted with Zinc-doped bioactive glass (OVX-BG-Zn as compared to ovariectomized group implanted with bioactive glass (OVX-BG. An improved mechanical property was noticed in contact of OVX-BG-Zn (39±6 HV when compared with that of OVX-BG group (26±9 HV. After 90 days of implantation, the histomorphometric analysis showed that trabecular thickness (Tb.Th and trabecular number (Tb.N were significantly increased with 28 and 24%, respectively, in treated rats of OVX-BG-Zn group as compared to those of OVX-BG groups. Trabecular separation (Tb.Sp and trabecular bone pattern factor (TBPf were significantly decreased in OVX-BG-Zn group with 29.5 and 54% when compared with those of OVX-BG rat groups. On the other hand, a rise in Ca and P ion concentrations in the implanted microenvironment was shown and lead to the formation/deposition of Ca-P phases. The ratio of pyridinoline [Pyr] to dihydroxylysinonorleucine [DHLNL] cross-links was normalized to the

  8. Low doses of LPS and minimally oxidized LDL cooperatively activate macrophages via NF-kappaB and AP-1: Possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia

    Science.gov (United States)

    Wiesner, Philipp; Choi, Soo-Ho; Almazan, Felicidad; Benner, Christopher; Huang, Wendy; Diehl, Cody J.; Gonen, Ayelet; Butler, Susan; Witztum, Joseph L.; Glass, Christopher K.; Miller, Yury I.

    2010-01-01

    Rationale Oxidized low-density lipoprotein (LDL) is an important determinant of inflammation in atherosclerotic lesions. It has also been documented that certain chronic infectious diseases, such as periodontitis and chlamydial infection, exacerbate clinical manifestations of atherosclerosis. In addition, low-level but persistent metabolic endotoxemia is often found in diabetic and obese subjects and is induced in mice fed a high-fat diet. Objective In this study, we examined cooperative macrophage activation by low levels of bacterial LPS and by minimally oxidized LDL (mmLDL), as a model for subclinical endotoxemia-complicated atherosclerosis. Methods and Results We found that both in vitro and in vivo, mmLDL and LPS (Kdo2-LipidA) cooperatively activated macrophages to express pro-inflammatory cytokines Cxcl2 (MIP-2), Ccl3 (MIP-1alpha), and Ccl4 (MIP-1beta). Importantly, the mmLDL and LPS cooperative effects were evident at a threshold LPS concentration (1 ng/ml) at which LPS alone induced only a limited macrophage response. Analyzing microarray data with a de novo motif discovery algorithm, we found that genes transcribed by promoters containing an AP-1 binding site were significantly upregulated by co-stimulation with mmLDL and LPS. In a nuclear factor-DNA binding assay, the cooperative effect of mmLDL and LPS co-stimulation on c-Jun and c-Fos DNA binding, but not on p65 or p50, was dependent on mmLDL-induced activation of ERK1/2. In addition, mmLDL induced JNK-dependent derepression of AP-1 by removing the corepressor NCoR from the chemokine promoters. Conclusions The cooperative engagement of AP-1 and NF-kappaB by mmLDL and LPS may constitute a mechanism of increased transcription of inflammatory cytokines within atherosclerotic lesions. PMID:20489162

  9. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  10. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  11. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  12. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  13. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  14. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  15. Approach of determining accelerated degradation mechanism consistency' s boundary for accelerometers%加速度计加速退化机理一致性边界确定方法

    Institute of Scientific and Technical Information of China (English)

    王前程; 陈云霞; 邓沣鹂; 康锐

    2012-01-01

    Through analyzing the Arrhenius model in the accelerated degradation testing, it is found that there is a close relationship between the operating stress and the slope of degraded trajectory in the aeeelerome ter accelerated testing. The degradation trajectory models such as linear function, exponential function and power function were studied. The formulas on the operating stress and the slope of degraded trajectory were in ferred from the perspective that the activation energy does not change. Then a method of determining acceler ated degradation mechanism consistency' s boundary was offered based on the slope interval inspection of deg radation trajectory. Finally, according to the constant temperature degradation simulation test data of the accel erometer scaling factor stability, the accurate temperature boundary that ensured the scaling factor stability degradation mechanism is consistent was given. The result proves that the method is feasible.%以加速退化模型——Arrhenius模型为研究对象,发现加速度计在加速试验过程中,保持加速机理不变的应力与退化轨迹斜率存在密切关系.通过针对退化轨迹模型分别为一次函数、指数函数和幂函数三种常见情况,从激活能不变角度推导出保证加速度计加速机理不变的应力-斜率公式,然后基于退化轨迹斜率区间检验提出了一种加速机理一致性条件确定方法,最后根据加速度计恒定高温标度因数稳定性退化仿真试验数据,准确得到了保持加速度计标度因数稳定性退化机理一致的应力边界.验证了该方法的可行性.

  16. FFAGS FOR MUON ACCELERATION.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.KAHN,S.PALMER,R.TRBOJEVIC,D.JOHNSTONE,C.KEIL,Y.OGITSU,T.OHMORI,C.SESSLER,A.KOSCIELNIAK,S.

    2003-06-26

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed.

  17. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. FFAGS for rapid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  19. Particle acceleration at a reconnecting magnetic separator

    CERN Document Server

    Threlfall, J; Parnell, C E; Oskoui, S Eradat

    2014-01-01

    While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. The effect upon particle behaviour of initial position, pitch angle and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains ...

  20. Cosmic Ray Acceleration in Supernova Remnants

    CERN Document Server

    Blasi, Pasquale

    2010-01-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  1. Centripetal Acceleration: Often Forgotten or Misinterpreted

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    Acceleration is a fundamental concept in physics which is taught in mechanics at all levels. Here, we discuss some challenges in teaching this concept effectively when the path along which the object is moving has a curvature and centripetal acceleration is present. We discuss examples illustrating that both physics teachers and students have difficulty with this concept. We conclude with instructional strategies that may help students with this challenging concept.

  2. Observation of Laser Wakefield Acceleration of Electrons

    CERN Document Server

    Amiranoff, F; Bernard, D; Cros, B; Descamps, D; Dorchies, F; Jacquet, F; Malka, V; Marqués, J R; Matthieussent, G; Miné, P; Modena, A; Mora, P; Morillo, J; Najmudin, Z

    1998-01-01

    The acceleration of electrons injected in a plasma wave generated by the laser wakefield mechanism has been observed. A maximum energy gain of 1.6~MeV has been measured and the maximum longitudinal electric field is estimated to 1.5~GV/m. The experimental data agree with theoretical predictions when 3D effects are taken into account. The duration of the plasma wave inferred from the number of accelerated electrons is of the order of 1~ps.

  3. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  4. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  5. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  6. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  7. GPU-accelerated molecular mechanics computations.

    Science.gov (United States)

    Anthopoulos, Athanasios; Grimstead, Ian; Brancale, Andrea

    2013-10-05

    In this article, we describe an improved cell-list approach designed to match the Kepler architecture of General-purpose graphics processing units (GPGPU). We explain how our approach improves load balancing for the above algorithm and how warp intrinsics are used to implement Newton's third law for the nonbonded force calculations. We also talk through our approach to exclusions handling together with a method to calculate bonded forces and 1-4 electrostatic scaling using a single Cuda kernel. Performance benchmarks are included in the last sections to show the linear scaling of our implementation using a step minimization method. In addition, multiple performance benchmarks demonstrate the contribution of various optimizations we used for our implementations. © 2013 Wiley Periodicals, Inc.

  8. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  9. The Accelerated Kepler Problem

    CERN Document Server

    Namouni, Fathi

    2007-01-01

    The accelerated Kepler problem is obtained by adding a constant acceleration to the classical two-body Kepler problem. This setting models the dynamics of a jet-sustaining accretion disk and its content of forming planets as the disk loses linear momentum through the asymmetric jet-counterjet system it powers. The dynamics of the accelerated Kepler problem is analyzed using physical as well as parabolic coordinates. The latter naturally separate the problem's Hamiltonian into two unidimensional Hamiltonians. In particular, we identify the origin of the secular resonance in the accelerated Kepler problem and determine analytically the radius of stability boundary of initially circular orbits that are of particular interest to the problem of radial migration in binary systems as well as to the truncation of accretion disks through stellar jet acceleration.

  10. On Accelerated Black Holes

    CERN Document Server

    Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.

    1998-01-01

    The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.

  11. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  12. A cyclic behavior of CME accelerations for accelerating and decelerating events

    Institute of Scientific and Technical Information of China (English)

    Peng-Xin Gao; Ke-Jun Li

    2009-01-01

    We investigate the cyclic evolutionary behavior of CME accelerations for accelerating and decelerating CME events in cycle 23 from 1997 January to 2007 December.It is found that the absolute values of semiannual mean accelerations of both accelerating and decelerating CME events roughly wax and wane in a cycle,delaying the sunspot cycle in time phase.We also investigate the semiannual number of CMEs with positive and negative acceleration and find that there are more decelerating CME events than accelerating CME events during the maximum period of a cycle (about three years),but there are more accelerating CME events than decelerating CME events during the rest of the time interval of the cycle.Our results seem to suggest that the different driving mechanisms may be acting accelerate and decelerate CME events: for accelerating CME events,the propelling force (Fp) statistically seems to play a significant role in pushing CMEs outward;for decelerating CME events,the drag (F_d) statistically seems to play a more effective role in determining CME kinematic evolution in the outer corona.During the maximum period of a cycle,because of the V_2 dependence,Fd is generally stronger; because of the magnetic field dependence,Fp is also generally stronger.Thus,the absolute values of both the negative and positive accelerations are generally larger during that time.Because of the V2 dependence,Fd may be more effective during the maximum period of a cycle.Hence,there are more decelerating CME events than accelerating CME events during that time.During the minimum time interval of a cycle,CMEs have relatively small speeds,and Fp may be more effective.Therefore,there are more accelerating CME events than decelerating CME events during that time.

  13. Application of Accelerators and Storage Rings: Accelerators in Medicine

    CERN Document Server

    Amaldi, U

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '11.3 Accelerators in Medicine' of the Chapter '11 Application of Accelerators and Storage Rings' with the content: 11.3 Accelerators in Medicine 11.3.1 Accelerators and Radiopharmaceuticals 11.3.2 Accelerators and Cancer Therapy

  14. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  15. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  16. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    Science.gov (United States)

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  17. Vibration control in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  18. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  19. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  20. Dielectric assist accelerating structure

    Science.gov (United States)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  1. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  2. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  3. The Research about Jiaxing Bulldog Cultural Innovation Mechanism in the Process of Accelerated Urbanization%城市化加速进程中“中国掼牛”文化业态创新机制研究

    Institute of Scientific and Technical Information of China (English)

    王怀建; 孙立; 张华新

    2015-01-01

    “掼牛”国家级体育类非物质文化遗产作为嘉兴对外交流的一张“金名片”,充当着城市发展与文化创新的“实验体”和“教科书”,在推进嘉兴城市转型、拉动经济增长、优化产业结构、打造城市文化品牌、提升城市文化影响力等方面发挥着重要的作用。研究从城市体育健身娱乐、制造与零售、竞赛表演文化业态创新机制视角,深入挖掘“掼牛”在嘉兴城市化加速进程中的物质、精神文化财富值。%As a piece of “gold card”of the foreign exchange of jiaxing, bulldog national sports non-material cultural heritage acts as "experiment" and "textbooks of city development and the cultural innovation , which plays an important role in promoting the transformation of jiaxing city, enhacing economic growth, optimizing the industrial structure, building urban culture brand, and promoting urban culture influence. The research digs Jiaxing Bulldog in jiaxing accelerated urbanization process in the material , spiritual and cultural wealth value from urban sports fitness entertainment, manufacturing and retail perspective mode, innovation mechanism, competition performance culture.

  4. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  5. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  6. Small type accelerator. Try for accelerator driven system

    CERN Document Server

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  7. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  8. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    CERN Document Server

    Barletta, William A; Seryi, Andrei

    2012-01-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intense courses at regional accelerator schools. This paper describes the approaches being used to satisfy the educational interests of a growing number of interested physicists and engineers.

  9. On the polarized beam acceleration in medium energy synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  10. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  11. 单进口后混式射流粉碎中多相流混合机理及加速特性%Mixing mechanism of multiphase flow and acceleration performance in single inlet rear-mixed jet flow crushing

    Institute of Scientific and Technical Information of China (English)

    万继伟; 牛争鸣; 廖伟丽; 牛助农

    2013-01-01

    In order to deeply understand the super fine crushing technology of rear-mixed high-speed water jet flow,the mixing and jetting behavior of gas-liquid-solid three phases in acceleration tube with various diameter were investigated by using numerical simulation and crushing experiment methods.Mixing mechanism and acceleration performance of multiphase mixture jet flow were explored,and particles distributions in acceleration space were obtained.The result showed that aeration and entrainment effects of jet flow turbulent motion were the inherent mechanism of mixed attached phase.There existed many partition zones in the rear-mixed jet flow for particle acceleration.Whereby the nearer to the potential flow zone,the stronger the impact energy.Accordingly,optimizing configuration of the optional nozzle diameter with the acceleration tube diameter could force the particles near or enter the potential flow zone,whereby effectively improving grinding yield efficiency.The particles in space distribution within the acceleration tube were in the highest contents in high-efficiency acceleration zones of the outer and inner layers.As a result,the nearer to the potential flow zone,the fewer the particles.The particle contents in the air flow zone increased with increasing acceleration tube diameter.It was difficult for the particles to enter the ideal acceleration zone so that most of the particles were accelerated by relying on the highefficiency acceleration zone of the inner and outer layers.In the case of maintaining the flowing morphological state of free jet flow,the grinding yield efficiency decreased with increasing acceleration tube diameter.Accordingly small tube diameter was of better constraint and concentration functions for water jet flow energy and particle motion space.%为了深入了解后混式高速水射流超细粉碎技术,以4种加速管管径条件下的液、气、固三相混合射流为对象,利用数值计算和粉碎实验相结合的方法,研

  12. Localized Ionospheric Particle Acceleration and Wave Acceleration of Auroral Ions: Amicist Data Set

    Science.gov (United States)

    Lynch, Kristina A.

    1999-01-01

    Research supported by this grant covered two main topics: auroral ion acceleration from ELF-band wave activity, and from VLF-spikelet (lower hybrid solitary structure) wave activity. Recent auroral sounding rocket data illustrate the relative significance of various mechanisms for initiating auroral ion outflow. Two nightside mechanisms are shown in detail. The first mechanism is ion acceleration within lower hybrid solitary wave events. The new data from this two payload mission show clearly that: (1) these individual events are spatially localized to scales approximately 100 m wide perpendicular to B, in agreement with previous investigations of these structures, and (2) that the probability of occurrence of the events is greatest at times of maximum VLF wave intensity. The second mechanism is ion acceleration by broadband, low frequency electrostatic waves, observed in a 30 km wide region at the poleward edge of the arc. The ion fluxes from the two mechanisms are compared and it is shown that while lower hybrid solitary structures do indeed accelerate ions in regions of intense VLF waves, the outflow from the electrostatic ion wave acceleration region is dominant for the aurora investigated by this sounding rocket, AMICIST. The fluxes are shown to be consistent with DE-1 and Freja outflow measurements, indicating that the AMICIST observations show the low altitude, microphysical signatures of nightside auroral outflow. In this paper, we present a review of sounding rocket observations of the ion acceleration seen nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations, we will demonstrate the following characteristics of transverse ion acceleration (TAI) in LHSS. The ion acceleration process is narrowly confined to 90 degrees pitch angle, in spatially confined regions of up to a

  13. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  14. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  15. Uniform Acceleration in General Relativity

    CERN Document Server

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  16. Microelectromechanical acceleration-sensing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  17. Studies of accelerated compact toruses

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-04

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.

  18. Test particle acceleration in torsional fan reconnection

    Science.gov (United States)

    Hosseinpour, M.

    2014-12-01

    Magnetic reconnection is understood to be a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. Torsional fan reconnection is one of the proposed mechanisms for steady-state three-dimensional (3D) magnetic reconnection. By using the magnetic and electric fields for `torsional fan reconnection', the features of test particle acceleration with input parameters for the solar corona are investigated numerically. We show that torsional fan reconnection is potentially an efficient particle accelerator and a proton can gain up to tens of MeV of kinetic energy within only a few milliseconds. Although the final kinetic energy of the accelerated particle depends on the injection position but there exists only one scenario for the particle's trajectory with different initial positions in which the particle is accelerated on the fan plane. Moreover, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory. These results are compared with those of torsional spine reconnection.

  19. Accelerating News Issue 4

    CERN Document Server

    Szeberenyi, A; Wildner, E

    2012-01-01

    In this winter issue, we are very pleased to announce the approval of EuCARD-2 by the European Commission. We look at the conclusions of EUROnu in proposing future neutrino facilities at CERN, a new milestone reached by CLIC and progress on the SPARC upgrade using C-band technology. We also report on recent events: second Joint HiLumi LHC-LARP Annual Meeting and workshop on Superconducting technologies for the Next Generation of Accelerators aiming at closer collaboration with industry. The launch of the Accelerators for Society brochure is also highlighted.

  20. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  1. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  2. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  3. The CERN accelerator complex

    CERN Multimedia

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  4. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  5. Acceleration and Special Relativity

    CERN Document Server

    Yahalomi, E M

    2000-01-01

    The integration of acceleration over time before reaching the uniformvelocity turns out to be the source of all the special relativity effects. Itexplains physical phenomena like clocks comparisons. The equations forspace-time, mass and energy are presented. This phenomenon complements theexplanation for the twins paradox. A Universal reference frame is obtained.

  6. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  7. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  8. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  9. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  10. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  11. Combined generating-accelerating buncher for compact linear accelerators

    Science.gov (United States)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  12. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  13. Neurodegeneration in accelerated aging.

    Science.gov (United States)

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  14. Relativistic particle acceleration in developing Alfv\\'{e}n turbulence

    CERN Document Server

    Matsukiyo, S; 10.1088/0004-637X/692/2/1004

    2009-01-01

    A new particle acceleration process in a developing Alfv\\'{e}n turbulence in the course of successive parametric instabilities of a relativistic pair plasma is investigated by utilyzing one-dimensional electromagnetic full particle code. Coherent wave-particle interactions result in efficient particle acceleration leading to a power-law like energy distribution function. In the simulation high energy particles having large relativistic masses are preferentially accelerated as the turbulence spectrum evolves in time. Main acceleration mechanism is simultaneous relativistic resonance between a particle and two different waves. An analytical expression of maximum attainable energy in such wave-particle interactions is derived.

  15. Centripetal Acceleration and Centrifugal Force in General Relativity

    Science.gov (United States)

    Bini, D.; de Felice, F.; Jantzen, R. T.

    2003-05-01

    In nonrelativistic mechanics noninertial observers studying accelerated test particle motion experience a centripetal acceleration which, once interpreted as a centrifugal force acting on the particle, allows writing the particle's equation of motion in a Newtonian form, simply by adding the inertial force contribution to that of the external forces in the acceleration-equals-force equation. In general relativity centripetal and centrifugal acceleration generalizing the classical concepts must be properly (geometrically) defined. This requires a relative Frenet-Serret frame approach based on a family of test observers.

  16. Proton acceleration by circularly polarized traveling electromagnetic wave

    CERN Document Server

    Holkundkar, A; Marklund, M

    2012-01-01

    The acceleration of charged particles, producing collimated mono-energetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase-modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 KeV proton to 386 MeV under optimum conditions. Finally we discuss possible limitations of the acceleration scheme.

  17. Double layer -- a particle accelerator in the magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiangrong [Los Alamos National Laboratory

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  18. Ion acceleration in a scalable MEMS RF-structure for a compact linear accelerator

    CERN Document Server

    Persaud, A; Feinberg, E; Seidl, P A; Waldron, W L; Lal, A; Vinayakumar, K B; Ardanuc, S; Schenkel, T

    2016-01-01

    A new approach for a compact radio-frequency(rf) accelerator structure is presented. The idea is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC allowed scaling of rf-structure down to dimensions of centimeters while at the same time allowing for higher beam currents through parallel beamlets. Using micro-electro-mechanical systems (MEMS) for highly scalable fabrication, we reduce the critical dimension to the sub-millimeter regime, while massively scaling up the potential number of parallel beamlets. The technology is based on rf-acceleration components and electrostatic quadrupoles (ESQs) implemented in a silicon wafer based design where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach allows fast and cheap batch fabrication of the components and flexibility in system design for different applications. For prototyping these ...

  19. Diffusive shock acceleration at laser driven shocks: studying cosmic-ray accelerators in the laboratory

    CERN Document Server

    Reville, B; Gregori, G

    2012-01-01

    The non-thermal particle spectra responsible for the emission from many astrophysical systems are thought to originate from shocks via a first order Fermi process otherwise known as diffusive shock acceleration. The same mechanism is also widely believed to be responsible for the production of high energy cosmic rays. With the growing interest in collisionless shock physics in laser produced plasmas, the possibility of reproducing and detecting shock acceleration in controlled laboratory experiments should be considered. The various experimental constraints that must be satisfied are reviewed. It is demonstrated that several currently operating laser facilities may fulfil the necessary criteria to confirm the occurrence of diffusive shock acceleration of electrons at laser produced shocks. Successful reproduction of Fermi acceleration in the laboratory could open a range of possibilities, providing insight into the complex plasma processes that occur near astrophysical sources of cosmic rays.

  20. On Solar Wind Origin and Acceleration: Measurements from ACE

    Science.gov (United States)

    Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico; Tracy, Patrick; Zurbuchen, Thomas H.

    2016-10-01

    The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed from the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.

  1. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  2. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  3. A Statistical Perspective on Highly Accelerated Testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  4. A Statistical Perspective on Highly Accelerated Testing.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  5. Selective Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2001-01-01

    A plasma acceleration mechanism is proposed to explain the dramatic enhancement in the ratio of 3 He/4He, (enhancement factor 102 - 103) observed in solar 3He-rich flares. Considering that coronal plasma is mainly composed of hydrogen and helium ions, the hydrogen ion-helium ion hybrid waves and quasi-perpendicular waves can be excited by energetic electron beam during the impulsive solarflares. The frequencies of these waves are close to the 3He++ ion gyrofrequency, but far from the 4He++ ion gyrofrequency. Most of these waves are selectively absorbed by 3He ions. These preheated 3He ions can be successively stochastic accelerated by Alfvén turbulence, when their velocities are larger than the local Alfvén velocity. It makes the ratio of 3He/4He dramatically enhanced and the acceleration energy spectrum of 3He ions forms a power-law distribution during the impulsive solar flares.

  6. Protection of Accelerator Hardware: RF systems

    CERN Document Server

    Kim, S-H

    2016-01-01

    The radio-frequency (RF) system is the key element that generates electric fields for beam acceleration. To keep the system reliable, a highly sophisticated protection scheme is required, which also should be designed to ensure a good balance between beam availability and machine safety. Since RF systems are complex, incorporating high-voltage and high-power equipment, a good portion of machine downtime typically comes from RF systems. Equipment and component damage in RF systems results in long and expensive repairs. Protection of RF system hardware is one of the oldest machine protection concepts, dealing with the protection of individual high-power RF equipment from breakdowns. As beam power increases in modern accelerators, the protection of accelerating structures from beam-induced faults also becomes a critical aspect of protection schemes. In this article, an overview of the RF system is given, and selected topics of failure mechanisms and examples of protection requirements are introduced.

  7. A microscopic analysis of shear acceleration

    CERN Document Server

    Rieger, F M; Rieger, Frank M.; Duffy, Peter

    2006-01-01

    A microscopic analysis of the viscous energy gain of energetic particles in (gradual) non-relativistic shear flows is presented. We extend previous work and derive the Fokker-Planck coefficients for the average rate of momentum change and dispersion in the general case of a momentum-dependent scattering time $\\tau(p) \\propto p^{\\alpha}$ with $\\alpha \\geq 0$. We show that in contrast to diffusive shock acceleration the characteristic shear acceleration timescale depends inversely on the particle mean free path which makes the mechanism particularly attractive for high energy seed particles. Based on an analysis of the associated Fokker-Planck equation we show that above the injection momentum $p_0$ power-law differential particle number density spectra $n(p) \\propto p^{-(1+ \\alpha)}$ are generated for $\\alpha >0$ if radiative energy losses are negligible. We discuss the modifications introduced by synchrotron losses and determine the contribution of the accelerated particles to the viscosity of the background ...

  8. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  9. Acceleration Workspace of Cooperating Multi-Finger Robot Systems

    Institute of Scientific and Technical Information of China (English)

    Hyungwon Shim; Jihong Lee

    2008-01-01

    We present a mathematical method for acceleration workspace analysis of cooperating multi-finger robot systems using a model of point-contact with friction. A new unified formulation from dynamic equations of cooperating multi-finger robots is derived considering the force and acceleration relationships between the fingers and the object to be handled. From the dynamic equation, maximum translational and rotational acceleration bounds of an object are calculated under given constraints of contact conditions, configurations of fingers, and bounds on the torques of joint actuators for each finger. Here, the rotational acceleration bounds can be applied as an important manipulability index when the multi-finger robot grasps an object. To verify the proposed method, we used a set of case studies with a simple multi-finger mechanism system. The achievable acceleration boundary in task space can be obtained successfully with the proposed method and the acceleration boundary depends on the configurations of fingers.

  10. Accelerated Characterization of Polymer Properties

    Energy Technology Data Exchange (ETDEWEB)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  11. Accelerating the life of transistors

    Science.gov (United States)

    Haochun, Qi; Changzhi, Lü; Xiaoling, Zhang; Xuesong, Xie

    2013-06-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 104 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 103. Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation.

  12. Accelerating the life of transistors

    Institute of Scientific and Technical Information of China (English)

    Qi Haochun; Lü Changzhi; Zhang Xiaoling; Xie Xuesong

    2013-01-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object,the test of accelerating life is conducted in constant temperature and humidity,and then the data are statistically analyzed with software developed by ourselves.According to degradations of such sensitive parameters as the reverse leakage current of transistors,the lifetime order of transistors is about more than 104 at 100 ℃ and 100% relative humidity (RH) conditions.By corrosion fracture of transistor outer leads and other failure modes,with the failure truncated testing,the average lifetime rank of transistors in different distributions is extrapolated about 103.Failure mechanism analyses of degradation of electrical parameters,outer lead fracture and other reasons that affect transistor lifetime are conducted.The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation.

  13. Theoretical Aspects of Cosmic Acceleration

    CERN Document Server

    Trodden, Mark

    2016-01-01

    Efforts to understand and map the possible explanations for the late time acceleration of the universe have led to a broad range of suggestions, ranging from the cosmological constant and straightforward dark energy, to exotically coupled models, to infrared modifications of General Relativity. If we are to uncover which, if any, of these approaches might provide a serious answer to the problem, it is crucial to understand the constraints that theoretical consistency places on the models, and on the regimes in which they make predictions. In this talk, delivered as an invited plenary lecture at the Dark Side of the Universe conference in Kyoto, Japan, I briefly describe some modern attempts to carry out this program and some of the more interesting ideas that have emerged. As an example, I use the Galileon model, discussing how the Vainshtein mechanism occurs, and how a number of these theoretical problems arise around such backgrounds.

  14. Born Reciprocity and Cosmic Accelerations

    CERN Document Server

    Bolognesi, S

    2015-01-01

    The trans-Planckian theory is a model that realizes concretely the Born reciprocity idea, which is the postulate of absolute equivalence between coordinate $x$ and momenta $p$. This model is intrinsically global, and thus it is naturally implemented in a cosmological setting. Cosmology and Born reciprocity are made for each other. Inflation provides the essential mechanism to suppress the terms coming from the dual part of the action. The trans-Planckian theory, on the other hand, provides an explanation for the accelerated periods of the universe scale factor, both the inflationary period and the present period dominated by dark energy. All of this is possible just considering a simple model that contains gravity, one gauge field plus one matter field (to be identified with dark matter) together with the reciprocity principle.

  15. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    Science.gov (United States)

    Badziak, J.; Rosiński, M.; Jabłoński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Rączka, P.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes.

  16. Poređenje odziva piezoelektričnih i induktivnih davača ubrzanja na mehaničke udare i postprocesno dobijanje pomeranja / The comparison of the response of piezoelectric and inductive acceleration gauges on mechanical impacts and the postprocesual obtaining of displacement

    Directory of Open Access Journals (Sweden)

    Snežana Jovanović

    2006-01-01

    Full Text Available U ovom radu razmatrano je merenje ubrzanja nastalih usled mehaničkih udara i post-procesno izračunavanje pomaka. Rezultati i zapažanja iz realnih opita eksperimentalno su provereni na etalonskim mašinama za vibracije i potrese. Na osnovu upoređenja zaključeno je daje za merenje ubrzanja (na konstrukciji borbenog vozila usled mehaničkih udara bolje koristiti induktivne davače i da izračunavanje pomaka iz izrazito aperiodičnih signala ubrzanja nije relevantno. / This paper presents measuring the acceleration of mechanical impacts and the postprocesual calculating of displacement. The results and observations of the tests have been evaluated on machines for vibrations and quakes. The following conclusions were drawn out of comparisons: it is better to use inductive transducers for the acceleration measurement of combat vehicles chassis because of mechanical impacts; the displacement calculation from high aperiodical acceleration signals is not relevant.

  17. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  18. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  19. SUPERDIFFUSIVE SHOCK ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G. [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy)

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  20. Accelerating QDP++ using GPUs

    CERN Document Server

    Winter, Frank

    2011-01-01

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an ...

  1. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  2. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  3. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  4. Accelerated Parallel Texture Optimization

    Institute of Scientific and Technical Information of China (English)

    Hao-Da Huang; Xin Tong; Wen-Cheng Wang

    2007-01-01

    Texture optimization is a texture synthesis method that can efficiently reproduce various features of exemplar textures. However, its slow synthesis speed limits its usage in many interactive or real time applications. In this paper, we propose a parallel texture optimization algorithm to run on GPUs. In our algorithm, k-coherence search and principle component analysis (PCA) are used for hardware acceleration, and two acceleration techniques are further developed to speed up our GPU-based texture optimization. With a reasonable precomputation cost, the online synthesis speed of our algorithm is 4000+ times faster than that of the original texture optimization algorithm and thus our algorithm is capable of interactive applications. The advantages of the new scheme are demonstrated by applying it to interactive editing of flow-guided synthesis.

  5. NEW ACCELERATION METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1984-07-01

    But a glance at the Livingston chart, Fig. 1, of accelerator particle energy as a function of time shows that the energy has steadily, exponentially, increased. Equally significant is the fact that this increase is the envelope of diverse technologies. If one is to stay on, or even near, the Livingston curve in future years then new acceleration techniques need to be developed. What are the new acceleration methods? In these two lectures I would like to sketch some of these new ideas. I am well aware that they will probably not result in high energy accelerators within this or the next decade, but conversely, it is likely that these ideas will form the basis for the accelerators of the next century. Anyway, the ideas are stimulating and suffice to show that accelerator physicists are not just 'engineers', but genuine scientists deserving to be welcomed into the company of high energy physicists. I believe that outsiders will find this field surprisingly fertile and, certainly fun. To put it more personally, I very much enjoy working in this field and lecturing on it. There are a number of review articles which should be consulted for references to the original literature. In addition there are three books on the subject. Given this material, I feel free to not completely reference the material in the remainder of this article; consultation of the review articles and books will be adequate as an introduction to the literature for references abound (hundreds are given). At last, by way of introduction, I should like to quote from the end of Ref. 2 for I think the remarks made there are most germane. Remember that the talk was addressed to accelerator physicists: 'Finally, it is often said, I think by physicists who are not well-informed, that accelerator builders have used up their capital and now are bereft of ideas, and as a result, high energy physics will eventually--rather soon, in fact--come to a halt. After all, one can't build too many

  6. Electron acceleration in a post-flare decimetric continuum source

    CERN Document Server

    Subramanian, P; Karlick'y, M; Sych, R; Sawant, H S; Ananthakrishnan, S; Subramanian, Prasad

    2007-01-01

    Aims: To calculate the power budget for electron acceleration and the efficiency of the plasma emission mechanism in a post-flare decimetric continuum source. Methods: We have imaged a high brightness temperature ($\\sim 10^{9}$K) post-flare source at 1060 MHz with the Giant Metrewave Radio Telescope (GMRT). We use information from these images and the dynamic spectrum from the Hiraiso spectrograph together with the theoretical method described in Subramanian & Becker (2006) to calculate the power input to the electron acceleration process. The method assumes that the electrons are accelerated via a second-order Fermi acceleration mechanism. Results: We find that the power input to the nonthermal electrons is in the range $3\\times 10^{25}$--$10^{26}$ erg/s. The efficiency of the overall plasma emission process starting from electron acceleration and culminating in the observed emission could range from $2.87\\times 10^{-9}$ to $2.38 \\times 10^{-8}$.

  7. Neutron Source from Laser Plasma Acceleration

    Science.gov (United States)

    Jiao, Xuejing; Shaw, Joseph; McCary, Eddie; Downer, Mike; Hegelich, Bjorn

    2016-10-01

    Laser driven electron beams and ion beams were utilized to produce neutron sources via different mechanism. On the Texas Petawatt laser, deuterized plastic, gold and DLC foil targets of varying thickness were shot with 150 J , 150 fs laser pulses at a peak intensity of 2 ×1021W /cm2 . Ions were accelerated by either target normal sheath acceleration or Breakout Afterburner acceleration. Neutrons were produced via the 9Be(d,n) and 9Be(p,n) reactions when accelerated ions impinged on a Beryllium converter as well as by deuteron breakup reactions. We observed 2 ×1010 neutron per shot in average, corresponding to 5 ×1018n /s . The efficiencies for different targets are comparable. In another experiment, 38fs , 0.3 J UT3 laser pulse interacted with mixed gas target. Electrons with energy 40MeV were produced via laser wakefield acceleration. Neutron flux of 2 ×106 per shot was generated through bremsstrahlung and subsequent photoneutron reactions on a Copper converter.

  8. Accelerated stability testing of organic photovoltaics using concentrated sunlight

    DEFF Research Database (Denmark)

    Katz, Eugene A.; Manor, Assaf; Mescheloff, Asaf;

    2012-01-01

    We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported.......We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported....

  9. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  10. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  11. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  12. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  13. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  14. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  15. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  16. French nuclear physics accelerator opens

    Science.gov (United States)

    Dumé, Belle

    2016-12-01

    A new €140m particle accelerator for nuclear physics located at the French Large Heavy Ion National Accelerator (GANIL) in Caen was inaugurated last month in a ceremony attended by French president François Hollande.

  17. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  18. Accelerating in de Sitter spacetimes

    CERN Document Server

    Cotaescu, Ion I

    2014-01-01

    We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a result with a reasonable physical meaning.

  19. EIDOSCOPE: particle acceleration at plasma boundaries

    Science.gov (United States)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  20. Numerical Investigation and Experimental Reproduction of Fermi Acceleration in Laboratory Scale

    Science.gov (United States)

    Zhou, M.; Zhai, C.

    2015-12-01

    Fermi acceleration is widely accepted as the mechanism to explain power law of cosmic ray spectrum. Now this mechanism has been developed to first order Fermi acceleration and second order Fermi acceleration. In first order Fermi acceleration, also known as diffusive shock acceleration, particles are confined around the shock through scattering and accelerated by repeatedly crossing shock front. In second order Fermi acceleration, particles gain energy through statistical collisions with interstellar clouds. In this proposed work, we plan to carefully study these two kinds of acceleration numerically and experimentally. We first consider a single relativistic particle and investigate how it gains energy in Fermi-Ulam model and shock wave acceleration model respectively. We investigate collective behavior of particles with different kinds of wall-oscillation functions and try to find an optimal one in terms of efficiency of acceleration. Then, we plan to go further and consider a group of particles statistically, during which we borrow the correct generalization of Maxwell's velocity distribution in special relativity and compare the results with those in cases where we simply use Maxwell-Boltzmann distribution. To this end, we try to provide a scheme to build an accelerator applying both laser technology and mirror effect in Laboratory to reproduce Fermi acceleration, which might be a promising source to obtain high energy particles and further study the mechanism of cosmic rays acceleration.

  1. Acceleration of Small Dust Grains due to Charge Fluctuations

    CERN Document Server

    Hoang, Thiem

    2011-01-01

    We consider the acceleration of very small dust grains including Polycyclic Aromatic Hydrocarbons (PAHs) arising from the electrostatic interactions of dust grains that have charge fluctuates in time due to charging events. We simulate the charge fluctuations of very small grains due to their sticking collisions with electrons and ions in plasma and the emission of photoelectrons by UV photons using Monte Carlo method. We identify the acceleration induced by the charge fluctuations as the dominant acceleration mechanism of very small grains in the diffuse interstellar medium (ISM). We show that this acceleration mechanism is more efficient for environments with low ionization, where the charge fluctuations are slow but have a large amplitude. We also discuss the implications of the present mechanism for grain coagulation and shattering in the diffuse ISM, molecular clouds and protoplanetary disks.

  2. APT accelerator. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  3. Muon Acceleration - RLA and FFAG

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  4. Observation of particle acceleration in laboratory magnetosphere

    CERN Document Server

    Kawazura, Yohei; Nishiura, Masaki; Saitoh, Haruhiko; Yano, Yoshihisa; Nogami, Tomoaki; Sato, Naoki; Yamasaki, Miyuri; Kashyap, Ankur; Mushiake, Toshiki

    2015-01-01

    The self-organization of magnetospheric plasma is brought about by inward diffusion of magnetized particles. Not only creating a density gradient toward the center of a dipole magnetic field, the inward diffusion also accelerates particles and provides a planetary radiation belt with high energy particles. Here, we report the first experimental observation of a 'laboratory radiation belt' created in the Ring Trap 1 (RT-1) device. By spectroscopic measurement, we found an appreciable anisotropy in the ion temperature, proving the betatron acceleration mechanism which heats particles in the perpendicular direction with respect to the magnetic field when particles move inward. The energy balance model including the heating mechanism explains the observed ion temperature profile.

  5. Observation of particle acceleration in laboratory magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kawazura, Y.; Yoshida, Z.; Nishiura, M.; Saitoh, H.; Yano, Y.; Nogami, T.; Sato, N.; Yamasaki, M.; Kashyap, A.; Mushiake, T. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561 (Japan)

    2015-11-15

    The self-organization of magnetospheric plasma is brought about by inward diffusion of magnetized particles. Not only creating a density gradient toward the center of a dipole magnetic field, the inward diffusion also accelerates particles and provides a planetary radiation belt with high energy particles. Here, we report the first experimental observation of a “laboratory radiation belt” created in the ring trap 1 device. By spectroscopic measurement, we found an appreciable anisotropy in the ion temperature, proving the betatron acceleration mechanism which heats particles in the perpendicular direction with respect to the magnetic field when particles move inward. The energy balance model, including the heating mechanism, explains the observed ion temperature profile.

  6. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Aki, H.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand (Iran, Islamic Republic of)

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  7. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  8. 2014 CERN Accelerator Schools

    CERN Multimedia

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  9. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  10. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  11. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  12. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  13. Gait analysis using gravitational acceleration measured by wearable sensors.

    Science.gov (United States)

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  14. Accelerator School Success

    CERN Multimedia

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  15. Acceleration in Linear and Circular Motion

    Science.gov (United States)

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  16. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  17. Investigation on laser accelerators. Plasma beat wave accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-04-01

    Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)

  18. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  19. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  20. Can superhorizon cosmological perturbations explain the acceleration of the universe?

    CERN Document Server

    Hirata, C M; Hirata, Christopher M.; Seljak, Uros

    2005-01-01

    We investigate the recent suggestions by Barausse et al. (astro-ph/0501152) and Kolb et al. (hep-th/0503117) that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several ``no go'' theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate syst...

  1. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    Science.gov (United States)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  2. A Novel Permanent Magnetic Angular Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-07-01

    Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  3. A Novel Permanent Magnetic Angular Acceleration Sensor.

    Science.gov (United States)

    Zhao, Hao; Feng, Hao

    2015-07-03

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  4. Electron Acceleration at Pulsar Wind Termination Shocks

    Science.gov (United States)

    Giacchè, S.; Kirk, John G.

    2017-02-01

    We study the acceleration of electrons and positrons at an electromagnetically modified, ultrarelativistic shock in the context of pulsar wind nebulae. We simulate the outflow produced by an obliquely rotating pulsar in proximity of its termination shock with a two-fluid code that uses a magnetic shear wave to mimic the properties of the wind. We integrate electron trajectories in the test-particle limit in the resulting background electromagnetic fields to analyze the injection mechanism. We find that the shock-precursor structure energizes and reflects a sizable fraction of particles, which becomes available for further acceleration. We investigate the subsequent first-order Fermi process sustained by small-scale magnetic fluctuations with a Monte Carlo code. We find that the acceleration proceeds in two distinct regimes: when the gyroradius {r}{{g}} exceeds the wavelength of the shear λ, the process is remarkably similar to first-order Fermi acceleration at relativistic, parallel shocks. This regime corresponds to a low-density wind that allows the propagation of superluminal waves. When {r}{{g}}< λ , which corresponds to the scenario of driven reconnection, the spectrum is softer.

  5. Vacuum system for Advanced Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  6. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  7. HIGH ENERGY PARTICLE ACCELERATOR

    Science.gov (United States)

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  8. Hadron accelerators for radiotherapy

    Science.gov (United States)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  9. Dynamics of pyroelectric accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  10. Testing Gravity on Accelerators

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  11. Acceleration of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)], E-mail: berezhko@ikfia.ysn.ru

    2008-07-15

    Cosmic ray (CR) origin problem is briefly discussed. It is argued that CRs with energies up to 10{sup 17} eV are produced in galactic supernova remnants, whereas ultra high energy CRs are extragalactic. CR composition strongly changes within the transition from galactic to extragalactic CR component, therefore precise measurements of CR composition at energies 10{sup 17} - 10{sup 19} eV are needed for the reliable determination of this transition. The possible sources of extragalactic CRs are briefly discussed. It is argued that CR acceleration at the shock created by the expanding cocoons around active galactic nuclei has to be considered as a prime candidate for the sources of extragalactic CRs.

  12. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  13. Estimation of direct laser acceleration in laser wakefield accelerators using particle-in-cell simulations

    CERN Document Server

    Shaw, J L; Marsh, K A; Tsung, F S; Mori, W B; Joshi, C

    2015-01-01

    Many current laser wakefield acceleration (LWFA) experiments are carried out in a regime where the laser pulse length is on the order of or longer than the wake wavelength and where ionization injection is employed to inject electrons into the wake. In these experiments, the trapped electrons will co-propagate with the longitudinal wakefield and the transverse laser field. In this scenario, the electrons can gain a significant amount of energy from both the direct laser acceleration (DLA) mechanism as well as the usual LWFA mechanism. Particle-in-cell (PIC) codes are frequently used to discern the relative contribution of these two mechanisms. However, if the longitudinal resolution used in the PIC simulations is inadequate, it can produce numerical heating that can overestimate the transverse motion, which is important in determining the energy gain due to DLA. We have therefore carried out a systematic study of this LWFA regime by varying the longitudinal resolution of PIC simulations from the standard, bes...

  14. Project X: Accelerator Reference Design

    CERN Document Server

    Holmes, S D; Chase, B; Gollwitzer, K; Johnson, D; Kaducak, M; Klebaner, A; Kourbanis, I; Lebedev, V; Leveling, A; Li, D; Nagaitsev, S; Ostroumov, P; Pasquinelli, R; Patrick, J; Prost, L; Scarpine, V; Shemyakin, A; Solyak, N; Steimel, J; Yakovlev, V; Zwaska, R

    2013-01-01

    Part 1 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". Part 1 contains the volume Preface and a description of the conceptual design for a high-intensity proton accelerator facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Subjects covered include performance goals, the accelerator physics design, and the technological basis for such a facility.

  15. NIIEFA accelerators for applied purposes

    Science.gov (United States)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  16. Landing the uniformly accelerating observers

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan; Gruber, Ronald P.

    2006-01-01

    Observers of the uniformly accelerating observers or the observers who make up the system of uniformly accelerating observers reach the same velocity V at different times ti which depends on V and on theirs acceleration gi. Considering a platform that moves with constant velocity V, the observers can land smoothly on it. Their ages and locations in the inertial reference frame attached to the platform are reckoned and compared.

  17. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  18. Thomas Precession by Uniform Acceleration

    CERN Document Server

    Pardy, Miroslav

    2015-01-01

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  19. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  20. Optical transverse injection in laser-plasma acceleration.

    Science.gov (United States)

    Lehe, R; Lifschitz, A F; Davoine, X; Thaury, C; Malka, V

    2013-08-23

    Laser-wakefield acceleration constitutes a promising technology for future electron accelerators. A crucial step in such an accelerator is the injection of electrons into the wakefield, which will largely determine the properties of the extracted beam. We present here a new paradigm of colliding-pulse injection, which allows us to generate high-quality electron bunches having both a very low emittance (0.17 mm·mrad) and a low energy spread (2%), while retaining a high charge (~100 pC) and a short duration (3 fs). In this paradigm, the pulse collision provokes a transient expansion of the accelerating bubble, which then leads to transverse electron injection. This mechanism contrasts with previously observed optical injection mechanisms, which were essentially longitudinal. We also specify the range of parameters in which this new type of injection occurs and show that it is within reach of existing high-intensity laser facilities.

  1. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, I-87036 Rende (Italy)

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.

  2. Investigation of toroidal acceleration and potential acceleration forces in EAST and J-TEXT plasmas

    CERN Document Server

    Wang, Fudi; Pan, Xiayun; Cheng, Zhifeng; Chen, Jun; Cao, Guangming; Wang, Yuming; Han, Xiang; Li, Hao; Wu, Bin; Chen, Zhongyong; Bitter, Manfred; Hill, Kenneth; Rice, John; Morita, Shigeru; Li, Yadong; Zhuang, Ge; Ye, Minyou; Wan, Baonian; Shi, Yuejiang

    2014-01-01

    In order to produce intrinsic rotation, bulk plasmas must be collectively accelerated by the net force exerted on them, which results from both driving and damping forces. So, to study the possible mechanisms of intrinsic rotation generation, it is only needed to understand characteristics of driving and damping terms because the toroidal driving and damping forces induce net acceleration which generates intrinsic rotation. Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping up and ramping down. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between - 50 km/s^2 in counter-current direction and 70 km/s^2 in co-current direction. According to toroidal momentum equation, toroidal electric field (E\\-(\\g(f))), electron-ion toroidal friction, and toroidal viscous force etc. may play roles in the evolution of toroi...

  3. Optimizing laser-driven proton acceleration from overdense targets

    Science.gov (United States)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  4. The acceleration of a neutron in a static electric field

    Science.gov (United States)

    Cappelletti, R. L.

    2012-06-01

    We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov-Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov-Casher effect, there is no acceleration, while in Mott-Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction.

  5. Prototype of cavity for lepton acceleration in the SPS

    CERN Multimedia

    1982-01-01

    The SPS was to be the injector for LEP and had to accelerate the electrons and positrons delivered by the PS. This is a prototype of a 200 MHz, single-cell, standing-wave, cavity for lepton acceleration in the SPS. On top of the cavity, at the back, is the tetrode amplifier, the tuning mechanism is leaning towards the viewer. See also 8103523 and Annual Report 1981, p.114.

  6. "Super-acceleration" of ions in a stationary plasma discharge

    Science.gov (United States)

    Bardakov, Vladimir; Ivanov, Sergey; Kazantsev, Alexander; Strokin, Nikolay; Stupin, Aleksey

    2016-10-01

    We report on the detection of the acceleration effect of the bulk of ions in a stationary plasma E × B discharge to energies exceeding considerably the value equivalent to the discharge voltage. We determined the conditions necessary for the generation of high-energy ions, and ascertained the influence exerted on the value of the ion energies by pressure (flow rate) and the kind of plasma-producing gas, and by the value of discharge current. The possible acceleration mechanism is suggested.

  7. Accelerating scientific publication in biology.

    Science.gov (United States)

    Vale, Ronald D

    2015-11-01

    Scientific publications enable results and ideas to be transmitted throughout the scientific community. The number and type of journal publications also have become the primary criteria used in evaluating career advancement. Our analysis suggests that publication practices have changed considerably in the life sciences over the past 30 years. More experimental data are now required for publication, and the average time required for graduate students to publish their first paper has increased and is approaching the desirable duration of PhD training. Because publication is generally a requirement for career progression, schemes to reduce the time of graduate student and postdoctoral training may be difficult to implement without also considering new mechanisms for accelerating communication of their work. The increasing time to publication also delays potential catalytic effects that ensue when many scientists have access to new information. The time has come for life scientists, funding agencies, and publishers to discuss how to communicate new findings in a way that best serves the interests of the public and the scientific community.

  8. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  9. On the safety of ITER accelerators.

    Science.gov (United States)

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER.

  10. Ultra-accelerated natural sunlight exposure testing

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.J.; Bingham, C.; Goggin, R.; Lewandowski, A.A.; Netter, J.C.

    2000-06-13

    Process and apparatus are disclosed for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: (a) concentrating solar flux uniformly; (b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  11. Ultra-accelerated natural sunlight exposure testing

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Gary J. (Pine, CO); Bingham, Carl (Lakewood, CO); Goggin, Rita (Englewood, CO); Lewandowski, Allan A. (Evergreen, CO); Netter, Judy C. (Westminster, CO)

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  12. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  13. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  14. COMPASS Accelerator Design Technical Overview

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff; /SLAC

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  15. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  16. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  17. The entangled accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Robles-Perez, Salvador [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)

    2009-08-31

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  18. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  19. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  20. Accelerated shallow water modeling

    Science.gov (United States)

    Gandham, Rajesh; Medina, David; Warburton, Timothy

    2015-04-01

    ln this talk we will describe our ongoing developments in accelerated numerical methods for modeling tsunamis, and oceanic fluid flows using two dimensional shallow water model and/or three dimensional incompressible Navier Stokes model discretized with high order discontinuous Galerkin methods. High order discontinuous Galerkin methods can be computationally demanding, requiring extensive computational time to simulate real time events on traditional CPU architectures. However, recent advances in computing architectures and hardware aware algorithms make it possible to reduce simulation time and provide accurate predictions in a timely manner. Hence we tailor these algorithms to take advantage of single instruction multiple data (SIMD) architecture that is seen in modern many core compute devices such as GPUs. We will discuss our unified and extensive many-core programming library OCCA that alleviates the need to completely re-design the solvers to keep up with constantly evolving parallel programming models and hardware architectures. We will present performance results for the flow simulations demonstrating performance leveraging multiple different multi-threading APIs on GPU and CPU targets.

  1. Actinides, accelerators and erosion

    Science.gov (United States)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  2. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  3. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  4. EXOTIC MAGNETS FOR ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  5. Shear Acceleration in Expanding Flows

    CERN Document Server

    Rieger, F M

    2016-01-01

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets of active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi-Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge ...

  6. The ISAC post-accelerator

    Science.gov (United States)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  7. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  8. Analysis of flame acceleration in open or vented obstructed pipes

    Science.gov (United States)

    Bychkov, Vitaly; Sadek, Jad; Akkerman, V'yacheslav

    2017-01-01

    While flame propagation through obstacles is often associated with turbulence and/or shocks, Bychkov et al. [V. Bychkov et al., Phys. Rev. Lett. 101, 164501 (2008), 10.1103/PhysRevLett.101.164501] have revealed a shockless, conceptually laminar mechanism of extremely fast flame acceleration in semiopen obstructed pipes (one end of a pipe is closed; a flame is ignited at the closed end and propagates towards the open one). The acceleration is devoted to a powerful jet flow produced by delayed combustion in the spaces between the obstacles, with turbulence playing only a supplementary role in this process. In the present work, this formulation is extended to pipes with both ends open in order to describe the recent experiments and modeling by Yanez et al. [J. Yanez et al., arXiv:1208.6453] as well as the simulations by Middha and Hansen [P. Middha and O. R. Hansen, Process Safety Prog. 27, 192 (2008) 10.1002/prs.10242]. It is demonstrated that flames accelerate strongly in open or vented obstructed pipes and the acceleration mechanism is similar to that in semiopen ones (shockless and laminar), although acceleration is weaker in open pipes. Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance (viscous forces) into the analysis for the sake of comparing its role to that of a jet flow driving acceleration. It is shown that hydraulic resistance is actually not required to drive flame acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the other hand, viscous forces are nevertheless an important effect because they are responsible for the initial delay occurring before the flame acceleration onset, which is observed in the experiments and simulations. Accounting for this effect provides good agreement between the experiments, modeling, and the present theory.

  9. Mechanics of machinery

    CERN Document Server

    Mostafa, Mahmoud A

    2012-01-01

    MechanismsDefinitions Degrees of Freedom of Planar Mechanisms Four-Revolute-Pairs Chains Single-Slider Chain Double-Slider Mechanisms Mechanisms with Higher Pairs Compound Mechanisms Special Mechanisms Analytical Position Analysis of Mechanisms Velocities and AccelerationsAbsolute Plane Motion of a Particle Relative Motion Applications to Common Links Analysis of Mechanisms: Graphical Method Method of Instantaneous Centers for Determining the VelocitiesAnalytical Analysis CamsIntroduction Types of Cams Modes of Input/Output Motion Follower Configurations Classes of Cams Spur GearsIntroduction

  10. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Science.gov (United States)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  11. Accelerated cleanup risk reduction

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  12. Accelerating DSMC data extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  13. Accelerated coffee pulp composting.

    Science.gov (United States)

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  14. Operation of the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Batzka, B.; Billquist, P.J. [and others

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  15. "small ACCELERATORS" 24 May - 2 June 2005

    CERN Multimedia

    2005-01-01

    CERN Accelerator School and Kernfysisch Versneller Instituut (KVI) Groningen, the Netherlands announce a course on "Small Accelerators", Hotel Golden Tulip Drenthe, Zeegse, the Netherlands, 24 May - 2 June 2005. This specialised course is dedicated to the physics and the main applications of small accelerators. The course will review the different accelerator types as well as their specificities in terms of accelerator physics.

  16. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  17. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  18. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  19. Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster.

    Science.gov (United States)

    Navrotskaya, V; Oxenkrug, G; Vorobyova, L; Sharma, H; Muresanu, D; Summergrad, P

    2014-10-01

    Cerebrolysin® (CBL) is a neuroprotective drug used for the treatment of neurodegenerative diseases. CBL's mechanisms of action remain unclear. Involvement of tryptophan (TRP)-kynurenine (KYN) pathway in neuroprotective effect of CBL might be suggested considering that modulation of KYN pathway of TRP metabolism by CBL, and protection against eclosion defect and prolongation of life span of Drosophila melanogaster with pharmacologically or genetically-induced down-regulation of TRP conversion into KYN. To investigate possible involvement of TRP-KYN pathway in mechanisms of neuroprotective effect of CBL, we evaluated CBL effects on metamorphosis and life span of Drosophila melanogaster maintained at 23 °C and 28 °C ambient temperature. CBL accelerated metamorphosis, exerted strong tendency (p = 0.04) to prolong life span in female but not in male flies, and attenuated aging-accelerating effect of high (28 °C) ambient temperature in both female and male flies. Further research of CBL effects on metamorphosis and resistance to aging-accelerating effect of high temperature might offer new insights in mechanisms of its neuroprotective action and expand its clinical applications.

  20. Effect of fringe divergence in fluid acceleration measurement using LDA

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Jong; Sung, Hyung Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Nobach, Holger; Tropea, Cam [Technische Universitat Darmstadt, Darmstadt (Germany)

    2004-07-01

    The laser Doppler technique is well-established as a velocity measurement technique of high precision for flow velocity. Recently, the laser Doppler technique has also been used to measure acceleration of fluid particles. Acceleration is interesting from a fluid mechanics point of view, since the Navier Stokes equations, specifically the left-hand-side, are formulated in terms of fluid acceleration. Further, there are several avenues to estimating the dissipation rate using the acceleration. However such measurements place additional demands on the design of the optical system; in particular fringe non-uniformity must be held below about 0.0001 to avoid systematic errors. Relations expressing fringe divergence as a function of the optical parameters of the system have been given in the literature; however, direct use of these formulae to minimize fringe divergence lead either to very large measurement volumes or to extremely high intersection angles. This dilemma can be resolved by using an off-axis receiving arrangement, in which the measurement volume is truncated by a pinhole in front of the detection plane. In the present study an optical design study is performed for optimizing laser Doppler systems for fluid acceleration measurements. This is followed by laboratory validation using a round free jet and a stagnation flow, two flows in which either fluid acceleration has been previously measured or in which the acceleration is known analytically. A 90 degree off-axis receiving angle is used with a pinhole or a slit.

  1. Cosmic acceleration and the helicity-0 graviton

    Science.gov (United States)

    de Rham, Claudia; Gabadadze, Gregory; Heisenberg, Lavinia; Pirtskhalava, David

    2011-05-01

    We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the ΛCDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.

  2. Research on laser induced particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Natascha; Buescher, Markus [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Willi, Oswald; Jung, Ralph [Institut fuer Laser-Plasma Physik (ILPP), Heinrich Heine Universitaet Duesseldorf (Germany); Seltmann, Michael [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); FH Aachen (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany)

    2009-07-01

    By directing a high-power, ultrashort laser pulse onto a thin foil, it is now possible to produce electron, proton and ion beams. However, for realizing reliable laser-driven accelerators one must still overcome fundamental and technological limitations. One current challenge is to continuously provide mass-limited targets into the laser focus in which its energy can be effectively converted into kinetic energy of the accelerated ions. IKP and ILPP have initiated a corresponding joint project based on a worldwide unique frozen pellet target that can provide a regular flux of frozen spheres of e.g. H2, N2, Ar and Xe, and the 100-TW laser system PULSAR at ILPP. As a first step measurements are carried out with conventional gas and foil targets. These measurements include detector developement for fast particle detection and magnetic focusing of the particle beam as well as optical probing of the plasma itself, in order to better understand the ion-acceleration mechanisms. The talk outlines the status of the research and the results of the first measurements.

  3. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  4. Argonne lectures on particles accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    1999-09-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb{sub 3}Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb{sub 3}Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cos{theta} and cos 2{theta} coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest

  5. Parametric injection for monoenergetic electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, A; Takano, K; Hotta, E; Nemoto, K [Department of Energy Sciences Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8502 Japan (Japan); Zhidkov, A [Central Research Instistute of Electric Power Industry 2-6-1 Nagasaka Yokosuka Kanagawa 240-0196 Japan (Japan); Nakajima, K [High Energy Accelerator Research Organization, KEK 1-1 Oho Tsukuba Ibaraki 305-0801 Japan (Japan)], E-mail: blue-ayu@plasma.es.titech.ac.jp

    2008-05-01

    Electrons are accelerated in the laser wakefield (LWFA). This mechanism has been studied by 2D or 3D Particle In Cell simulation. However, how the electrons are injected in the wakefield is not understood. In this paper, we consider about the process of self -injection and propose new scheme. When plasma electron density modulates, parametric resonance of electron momentum is induced. The parametric resonance depends on laser waist modulation. We carried out 2D PIC simulation with the initial condition decided from resonance condition. Moreover, we analyze experimental result that generated 200-250 MeV monoenergetic electron beam with 400TW intense laser in CAEP in China.

  6. Accelerated tests of coil coatings

    Directory of Open Access Journals (Sweden)

    Rosales, B. M.

    2003-12-01

    Full Text Available Accelerated laboratory tests on 12 materials in study in the Subgroup 6 of the PATINA Network (CYTED, are discussed for different exposition periods in salt spray, SO2 and Prohesion chambers. International standards used to evaluate failures caused by the different aggressive agents of these laboratory tests are the same as those applied for outdoor expositions. The results exposed contribute to a better understanding of the mechanisms occurred in the diverse natural environments, being mentioned the main analogies and differences respect to factors affecting natural tests. They also allowed to evidence the advantages and limitations in the application of these tests during several days, as compared to the years required to attain similar failure magnitudes through outdoor tests.

    En este trabajo se discuten los ensayos de laboratorio acelerados, realizados sobre 12 materiales de estudio en el Subgrupo 6 de la Red PATINA (CYTED, a diferentes periodos de exposición en cámaras de niebla salina, SO2 y Prohesion. Se utilizaron las normas internacionales para evaluar los fallos causados por los diferentes agentes agresivos de estos ensayos de laboratorio, las cuales se aplican también para los ensayos de exposición a la intemperie. Los resultados expuestos contribuyen a una mejor comprensión de los mecanismos ocurridos en los diversos ambientes naturales, mencionándose las principales analogías y diferencias respecto de los factores que afectan los ensayos naturales. También permitieron evidenciar las ventajas y limitaciones en la aplicación de estos ensayos durante varios días, en comparación con los años requeridos para alcanzar magnitudes de fallos similares por medio de ensayos a intemperie.

  7. Beyond velocity and acceleration: jerk, snap and higher derivatives

    Science.gov (United States)

    Eager, David; Pendrill, Ann-Marie; Reistad, Nina

    2016-11-01

    The higher derivatives of motion are rarely discussed in the teaching of classical mechanics of rigid bodies; nevertheless, we experience the effect not only of acceleration, but also of jerk and snap. In this paper we will discuss the third and higher order derivatives of displacement with respect to time, using the trampolines and theme park roller coasters to illustrate this concept. We will also discuss the effects on the human body of different types of acceleration, jerk, snap and higher derivatives, and how they can be used in physics education to further enhance the learning and thus the understanding of classical mechanics concepts.

  8. SNEAP 80: symposium of Northeastern Accelerator personnel

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J.H. (ed.)

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  9. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  10. Particle trajectories and acceleration during 3D fan reconnection

    CERN Document Server

    Dalla, S; 10.1051/0004-6361:200809771

    2008-01-01

    Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible...

  11. Probing Acceleration and Turbulence at Relativistic Shocks in Blazar Jets

    CERN Document Server

    Baring, Matthew G; Summerlin, Errol J

    2016-01-01

    Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broadband continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-LAT spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multi-wavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron $\

  12. Advanced Test Accelerator (ATA) pulse power technology development

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-03-09

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described.

  13. Stochastic particle acceleration in multiple magnetic islands during reconnection.

    Science.gov (United States)

    Hoshino, Masahiro

    2012-03-30

    A nonthermal particle acceleration mechanism involving the interaction of a charged particle with multiple magnetic islands is proposed. The original Fermi acceleration model, which assumes randomly distributed magnetic clouds moving at random velocity V(c) in the interstellar medium, is known to be of second-order acceleration of O(V(c)/c)(2) owing to the combination of head-on and head-tail collisions. In this Letter, we reconsider the original Fermi model by introducing multiple magnetic islands during reconnection instead of magnetic clouds. We discuss that the energetic particles have a tendency to be distributed outside the magnetic islands, and they mainly interact with reconnection outflow jets. As a result, the acceleration efficiency becomes first order of O(V(A)/c), where V(A) and c are the Alfvén velocity and the speed of light, respectively.

  14. Combined Particle Acceleration in Solar Flares and Associated CME Shocks

    Science.gov (United States)

    Petrosian, Vahe

    2016-07-01

    I will review some observations of the characteristics of accelerated electrons seen near Earth (as SEPs) and those producing flare radiation in the low corona and chromosphere. The similarities and differences between the numbers, spectral distribution, etc. of the two population can shed light on the mechanism and sites of the acceleration. I will show that in some events the origin of both population appears to be the flare site while in others, with harder SEP spectra, in addition to acceleration at the flare site, there appears to be a need for a second stage re-acceleration in the associated fast Coronal Mass Ejection (CME) environment. This scenario can also describe a similar dichotomy that exists between the so called impulsive, highly enriched (3He and heavy ions) and softer SEP ion events, and stronger more gradual SEP events with near normal ionic abundances and harder spectra. I will also describe under what conditions such hardening can be achieved.

  15. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  16. IGBT accelerated aging data set.

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary data from thermal overstress accelerated aging using the aging and characterization system. The data set contains aging data from 6 devices, one device...

  17. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  18. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  19. Accelerating advanced-materials commercialization

    Science.gov (United States)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  20. The Effect of Novel Binary Accelerator System on Properties of Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Moez Kamoun

    2009-01-01

    Full Text Available The mechanical properties, curing characteristics, and swelling behaviour of vulcanized natural rubber with a novel binary accelerator system are investigated. Results indicate that the mechanical properties were improved. Crosslinking density of vulcanized natural rubber was measured by equilibrium swelling method. As a result, the new binary accelerator was found to be able to improve both cure rate and crosslinking density. Using the numerical analysis of test interaction between binary accelerator and operational modelling of vulcanization-factors experiments, it can be concluded that the interaction (Cystine, N-cyclohexyl-2-benzothiazyl sulfenamide was significant and the optimum value of binary accelerator was suggested, respectively, at levels 0 and +1.

  1. The KEK Digital Accelerator and Its Brothers

    Science.gov (United States)

    Takayama, Ken

    Circular induction accelerators developed in the last 10 years are discussed. They are characterized by induction acceleration of a charged beam bunch trapped in the barrier bucket. This property enables acceleration of any ion species from an extremely low energy to relativistic energy in a single accelerator ring. In the future, a racetrack-shaped fixed field induction accelerator (induction microtron) could be realized as a unique accelerator for cluster ions such as C-60 and Si-100.

  2. Atomic References for Measuring Small Accelerations

    Science.gov (United States)

    Maleki, Lute; Yu, Nan

    2009-01-01

    Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.

  3. Technology of superconducting accelerator dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.

  4. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  5. BRIEF HISTORY OF FFAG ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    RUGGIERO, A.

    2006-12-04

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions.

  6. Dark Energy or local acceleration?

    CERN Document Server

    Feoli, Antonio

    2016-01-01

    We find that an observer with a suitable acceleration relative to the frame comoving whit the cosmic fluid, in the context of the FRW decelerating universe, measures the same cosmological redshift as the LambdaCDM model. The estimated value of this acceleration is beta = 1.4x10^-9m/s^2. The problem of a too high peculiar velocity can be solved assuming, for the observer, a sort of helical motion.

  7. Vacuum Brazing of Accelerator Components

    Science.gov (United States)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  8. Ponderomotive Acceleration by Relativistic Waves

    CERN Document Server

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  9. High-Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  10. Mechanisms Design

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design such mechan......Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design...... such mechanisms. This is a horizontal subject, which means you will be asked to make use of your knowledge in different disciplines, specially statics and dynamics, but also material selection, general product development, etc. At the end of this course you will be able to: • Generate alternative configurations...... for mechanisms that follow a particular trajectory, that need to occupy certain positions or that perform special functions using synthesis tools. • Analyze a mechanism from its kinematic characteristics (speed, velocity and acceleration) • Evaluate the best solution from different mechanisms configurations...

  11. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  12. New frontier of laser particle acceleration: driving protons to 80 MeV by radiation pressure

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Lee, Chang-Lyoul; Choi, Il Woo; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V; Jeong, Tae Moon; Nam, Chang Hee

    2014-01-01

    The radiation pressure acceleration (RPA) of charged particles has been considered a challenging task in laser particle acceleration. Laser-driven proton/ion acceleration has attracted considerable interests due to its underlying physics and potential for applications such as high-energy density physics, ultrafast radiography, and cancer therapy. Among critical issues to overcome the biggest challenge is to produce energetic protons using an efficient acceleration mechanism. The proton acceleration by radiation pressure is considerably more efficient than the conventional target normal sheath acceleration driven by expanding hot electrons. Here we report the generation of 80-MeV proton beams achieved by applying 30-fs circularly polarized laser pulses with an intensity of 6.1 x 1020 W/cm2 to ultrathin targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and 3D-PIC simulations. We expect this fast energy scalin...

  13. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  14. Orders of Fermi- and Plasma-Accelerations of Cosmic Rays

    CERN Document Server

    Tawfik, A

    2010-01-01

    The generic acceleration model for ultra high energy cosmic rays, which has been introduced in {\\tt 1006.5708 [astro-ph.HE]}, suggests various types of electromagnetic interactions between cosmic charged particles and the different types of the plasma fields, which are assumed to have general configurations, spatially and temporally. The well-known Fermi acceleration mechanisms are also included in the model. Meanwhile Fermi mechanisms in non-relativistic limit adhere first- and second-order of $\\beta$, the ratio of particle's velocity relative to the velocity of the stellar magnetic cloud, in the plasma field sector, $\\beta$ does not play any role, i.e. zero-order. In the relativistic limit, the orders of Fermi acceleration are only possible, when applying the corresponding conditions, either elastic scatterings or shock waves. Furthermore, it is found that the coefficients of $\\beta$ are functions of the initial and final velocities and the characteristic Larmor radius.

  15. Influence of Accelerated Aging on Detonation Performance of Explosives

    Institute of Scientific and Technical Information of China (English)

    GAO Da-yuan; HUA Cheng; WANG Xiang; HAN Yong

    2010-01-01

    To understand the aging effects on detonation performances of explosives, an accelerated aging mechanism and effect of explosives were analyzed. Based on the thermo-gravimetric (TG) curves of explosives under the heat rate of 5, 10 and 20 K·min-1, the thermal decomposition activation energy, pre-exponential factor, mechanism function and kinetic equation of the explosives were calculated by Ozawa's equation and decomposition extents. Then, according to the derived kinetic equation, the density, composition and heat of formation of GI-1, PBX-1 and PBX-2 explosive in different decompo-sition extents were calculated at accelerated aging temperatures of 70 ℃ and 75 ℃, respectively. Furthermore, the detona-tion parameters of GI-1, PBX-1 and PBX-2 explosives were found out by means of VLWR code. The results show that after accelerated aging, the density are decrease, the detonation velocity and pressure are all decreased slightly.

  16. Solar Particle Acceleration at Reconnecting 3D Null Points

    CERN Document Server

    Stanier, Adam J; Dalla, Silvia

    2012-01-01

    Context: The strong electric fields associated with magnetic reconnection in solar flares are a plausible mechanism to accelerate populations of high energy, non-thermal particles. One such reconnection scenario occurs at a 3D magnetic null point, where global plasma flows give rise to strong currents in the spine axis or fan plane. Aims: To understand the mechanism of charged particle energy gain in both the external drift region and the diffusion region associated with 3D magnetic reconnection. In doing so we evaluate the efficiency of resistive spine and fan models for particle acceleration, and find possible observables for each. Method: We use a full orbit test particle approach to study proton trajectories within electromagnetic fields that are exact solutions to the steady and incompressible magnetohydrodynamic equations. We study single particle trajectories and find energy spectra from many particle simulations. The scaling properties of the accelerated particles with respect to field and plasma para...

  17. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    Aasly, Sara Hegdahl; Vamvakas, Alex; Alme, Johan; Haustveit, Svein

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  18. CAS Accelerator Physics (RF for Accelerators) in Denmark

    CERN Multimedia

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  19. Acceleration schedules for a recirculating heavy-ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  20. Acceleration of injected electrons by the plasma beat wave accelerator

    Science.gov (United States)

    Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.

    1992-07-01

    In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.

  1. The Accelerator Markup Language and the Universal Accelerator Parser

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, D.; Forster, M.; /Cornell U., LNS; Bates, D.A.; /LBL, Berkeley; Wolski, A.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; /CERN; Walker, N.J.; /DESY; Larrieu, T.; Roblin, Y.; /Jefferson Lab; Pelaia, T.; /Oak Ridge; Tenenbaum, P.; Woodley, M.; /SLAC; Reiche, S.; /UCLA

    2006-10-06

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.

  2. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    Energy Technology Data Exchange (ETDEWEB)

    King, M.; Gray, R.J.; Powell, H.W.; MacLellan, D.A.; Gonzalez-Izquierdo, B. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L.C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Hicks, G.S.; Dover, N.P. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Rusby, D.R. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Carroll, D.C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Padda, H. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Torres, R. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Kar, S. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.J.; Musgrave, I.O. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Najmudin, Z. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  3. Derivation of Hamiltonians for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  4. Industrial Electron Accelerators Type ILU

    CERN Document Server

    Auslender, Vadim; Cheskidov, Vladimir; Faktorovich, Boris; Gorbunov, Vladimir; Gornakov, Igor; Nekhaev, V E; Panfilov, Alexander; Sidorov, Alexander; Tkachenko, Vadim; Tuvik, Alfred; Voronin, Leonid

    2005-01-01

    The report describes the electron accelerators of ILU series covering the energy range from 0.5 to 5 MeV with beam power up to 50 kW. The pulse linear accelerators type ILU are developed since 1970 in Budker institute of Nuclear Physics and are supplied to the industry. The ILU machines are purposed for wide application in various technological processes and designed for long continuous and round-the-clock work in industrial conditions. A principle of acceleration of electrons in the gap of HF resonator is used in the ILU machines. The HF resonator has toroidal form. The electron gun is placed in one of the protruding electrodes forming the accelerating gap of the resonator. The resonator is fed from HF autogenerator realized on the industrial triode, the feedback signal is given from the resonator. The absence of outer beam injection and usage of self-excited HF generator simplify the design of accelerator and ensure its reliable operation.

  5. Accelerator Technology Division annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  6. 38 CFR 9.14 - Accelerated Benefits.

    Science.gov (United States)

    2010-07-01

    ...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...? ____ Yes__ No__ The patient applied for an accelerated benefit under his/her government life...

  7. Nb3Sn accelerator magnet development around the world

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Lamm

    2003-06-23

    During the past 30 years superconducting magnet systems have enabled accelerators to achieve energies and luminosities that would have been impractical if not impossible with resistive magnets. By far, NbTi has been the preferred conductor for this application because of its ductility and insensitivity of Jc to mechanical strain. This is despite the fact that Nb{sub 3}Sn has a more favorable Jc vs. B dependence and can operate at much higher temperatures. Unfortunately, NbTi conductor is reaching the limit of it usefulness for high field applications. Despite incremental increases in Jc and operation at superfluid temperatures, magnets are limited to approximately a 10 T field. Improvements in conductor performance combined with future requirements for accelerator magnets to have bore fields greater than 10 T or operate in areas of large beam-induced heat loads now make Nb{sub 3}Sn look attractive. Thus, laboratories in several countries are actively engaged in programs to develop Nb{sub 3}Sn accelerator magnets for future accelerator applications. A summary of this important research activity is presented along with a brief history of Nb{sub 3}Sn accelerator magnet development and a discussion of requirements for future accelerator magnets.

  8. A MEMS Energy Harvesting Device for Vibration with Low Acceleration

    DEFF Research Database (Denmark)

    Triches, Marco; Wang, Fei; Crovetto, Andrea

    2012-01-01

    We propose a polymer electret based energy harvesting device in order to extract energy from vibration sources with low acceleration. With MEMS technology, a silicon structure is fabricated which can resonate in 2D directions. Thanks to the excellent mechanical properties of the silicon material...

  9. Study of variables for accelerating lifetime testing of SOFCs

    DEFF Research Database (Denmark)

    Ploner, Alexandra; Hagen, Anke; Hauch, Anne

    at a generally accepted result. First accelerated testing approaches were performed under non-steady operation conditions (current cycling,temperature cycling) by different researchers [1, 2]. However, cycling conditions seemed to have no significant impact on degradation mechanisms. Furthermore, tests done...

  10. Radial acceleration relation from screening of fifth forces

    CERN Document Server

    Burrage, Clare; Millington, Peter

    2016-01-01

    We show that the radial acceleration relation for rotationally-supported galaxies may be explained, in the absence of cold dark matter, by a non-minimally coupled scalar field, whose fifth forces are partially screened on galactic scales by the symmetron mechanism. If realised in nature, this effect could have a significant impact on the inferred density of dark matter halos.

  11. Neck forces and moments and head accelerations in side impact

    NARCIS (Netherlands)

    Yoganandan, N.; Pintar, F.A.; Maiman, D.J.; Philippens, M.M.G.M.; Wismans, J.S.H.M.

    2009-01-01

    Objectives: Although side-impact sled studies have investigated chest, abdomen, and pelvic injury mechanics, determination of head accelerations and the associated neck forces and moments is very limited. The purpose of the present study was therefore to determine the temporal forces and moments at

  12. An Energy Model of a Failure Mechanism and its Application

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-ning; LU Zhen-zhou

    2003-01-01

    The energy expression is presented for a failure mechanism, and it is applied in an Accelerated Life Test (ALT) and an Accelerated Reliability Growth Test (ARGT). The conditions of the common failure mechanism are obtained. The essential relationship between the conditions and the Accelerated Factor (Af) is proposed by using the energy model.

  13. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  14. Virtual gap dielectric wall accelerator

    Science.gov (United States)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  15. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  16. A Multibunch Plasma Wakefield Accelerator

    CERN Document Server

    Kallos, Efthymios; Ben-Zvi, Ilan; Katsouleas, Thomas C; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Yakimenko, Vitaly; Zhou, Feng

    2005-01-01

    We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.

  17. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  18. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  19. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  20. Particle acceleration in cosmic plasmas – paradigm change?

    Energy Technology Data Exchange (ETDEWEB)

    Lytikov, Maxim [Purdue University; Guo, Fan [Los Alamos National Laboratory

    2015-07-21

    The presentation begins by considering the requirements on the acceleration mechanism. It is found that at least some particles in high-energy sources are accelerated by magnetic reconnection (and not by shocks). The two paradigms can be distinguished by the hardness of the spectra. Shocks typically produce spectra with p > 2 (relativistic shocks have p ~ 2.2); non-linear shocks & drift acceleration may give p < 2, e.g. p=1.5; B-field dissipation can give p = 1. Then collapse of stressed magnetic X-point in force-free plasma and collapse of a system of magnetic islands are taken up, including Island merger: forced reconnection. Spectra as functions of sigma are shown, and gamma ~ 109 is addressed. It is concluded that reconnection in magnetically-dominated plasma can proceed explosively, is an efficient means of particle acceleration, and is an important (perhaps dominant for some phenomena) mechanism of particle acceleration in high energy sources.

  1. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  2. Strong evidence for hadron acceleration in Tycho's supernova remnant

    Science.gov (United States)

    Morlino, G.; Caprioli, D.

    2012-02-01

    Context. Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS have provided new fundamental pieces of information for understanding particle acceleration and nonthermal emission in SNRs. Aims: We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics, and multiwavelength emission by accounting for particle acceleration at the forward shock via first-order Fermi mechanism. Methods: We adopt here a quick and reliable semi-analytical approach to nonlinear diffusive shock acceleration. It includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. Results: We find that Tycho's forward shock accelerates protons up to at least 500 TeV, channelling into CRs about 10% of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidence of very efficient magnetic field amplification (up to ~300 μG). In such a strong magnetic field, the velocity of the Alfvén waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction ∝ E-2. This effect is crucial for explaining GeV-to-TeV gamma-ray spectrum as the result of neutral pions decay produced in nuclear collisions between accelerated nuclei and the background gas. Conclusions: The self-consistency of such hadronic scenario, along with the inability of the concurrent leptonic mechanism (inverse Compton scattering of relativistic electrons on several photon backgrounds) to reproduce both the shape and the normalization of the detected gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.

  3. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  4. Geometric integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Etienne [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2006-05-12

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  5. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  6. Electron Cloud Effects in Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  7. Electron Cloud Effects in Accelerators

    CERN Document Server

    Furman, M A

    2013-01-01

    We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire "ECLOUD" series [122]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  8. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  9. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  10. Near-fault ground motions with prominent acceleration pulses: pulse characteristics and ductility demand

    Institute of Scientific and Technical Information of China (English)

    Mai Tong; Vladimir Rzhevsky; Dai Junwu; George C Lee; Qi Jincheng; Qi Xiaozhai

    2007-01-01

    Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum,a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.

  11. DYNAMIC MODELING OF METAMORPHIC MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The concept of metamorphic mechanism is put forward according to the change of configurations from one state to another. Different configurations of metamorphic mechanism are described through the method of Huston lower body arrays. Kinematics analyses for metamorphic mechanism with generalized topological structure, including the velocity, angular velocity, acceleration and angular acceleration, are given. Dynamic equations for an arbitrary configuration, including close-loop constraints, are formed by using Kane's equations. For an arbitrary metamorphic mechanism, the transformation matrix of generalized speeds between configuration (*)and(*)+1 is obtained for the first time. Furthermore, configuration-complete dynamic modeling of metamorphic mechanism including all configurations is completely established.

  12. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  13. TeV/m nano-accelerator: Investigation on feasibility of CNT-channeling acceleration at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. M. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-03-23

    The development of high gradient acceleration and tight phase-space control of high power beams is a key element for future lepton and hadron colliders since the increasing demands for higher energy and luminosity significantly raise costs of modern HEP facilities. Atomic channels in crystals are known to consist of 10–100 V/Å potential barriers capable of guiding and collimating a high energy beam providing continuously focused acceleration with exceptionally high gradients (TeV/m). However, channels in natural crystals are only angstrom-size and physically vulnerable to high energy interactions, which has prevented crystals from being applied to high power accelerators. Carbon-based nano-crystals such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength, which could be suitable for channeling acceleration of MW beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals. This study presents the current status of CNT-channeling acceleration research at the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  14. Combining Diffusive Shock Acceleration with Acceleration by Contracting and Reconnecting Small-scale Flux Ropes at Heliospheric Shocks

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.

    2016-08-01

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.

  15. Analysis on Mechanism of Flowing Cooling Water on Ship Pipeline Accelerated Corrosion%流动冷却水对船舶管路的冲刷加速腐蚀机理

    Institute of Scientific and Technical Information of China (English)

    杨元龙

    2015-01-01

    为研究船舶冷却水管路流动冲蚀失效过程,明晰冷却水管路易发生腐蚀破损的薄弱部位,建立船舶冷却水系统管路数理模型,采用基于CFD数值模拟的方法研究冷却水管路系统压力场和流速场运行特性,结合引发流动冷却水冲蚀管道的机理,得到弯头、三通管等易损部位的流速、湍动能、剪切应力和压力的参数分布。分析冷却水管路内流场,判定三通管流出支管易遭受冲击腐蚀和冲刷腐蚀,三通管焊缝区域易遭受空泡腐蚀,弯管中游靠内壁区域受冲击腐蚀、冲刷腐蚀和空泡腐蚀。%For the study of ship cooling water flow erosion failure process, weak position coming from corrosion damages for cooling water pipe were cleared.The mathematical and physical models of ship cooling water pipeline are established.The opera-tion characteristics with pressure and velocity field for the cooling water pipeline are analyzed by using CFD simulation.Three mechanisms comprised impingement corrosion, brush corrosion and cavitation erosion, which could induce pipeline erosion by flowing cooling water are inserted.The key predicting parameter such as local velocity, turbulence kinetic energy, wall shears and pressure around T-junction and elbow regions are obtained.Based on the analysis of flow field within the cooling water pipe-line, the calculated results indicated that impingement corrosion and brush corrosion are easy to come up.Cavitation erosion is easy to take place at the region of weld joint for T-junction.All of impingement corrosion, brush corrosion and cavitation erosion can happen midstream elbow rely on inner wall region.

  16. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an e ort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the ow of current up the jet into the nozzle during the interaction, heating the jet and damaging the ori ce. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic lms (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic jets

  17. Accelerated Aging in Electrolytic Capacitors for Prognostics

    Science.gov (United States)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  18. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  19. CERNois wins prestigious accelerator award

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    During the 2nd International Particle Accelerator Conference, CERN’s Rogelio Tomás García became the first Spaniard to receive the Frank Sacherer Prize for his work in particle beam optics.   Rogelio Tomás García at the 2nd International Particle Accelerator Conference. The Frank Sacherer Prize is awarded to physicists who have made a “significant, original contribution to the accelerator field" early on in their career. This year the prize was given to Rogelio Tomás García who, at only 35 years of age, has made important contributions to the optics design, optics measurement, and correction techniques applied at both the LHC and Brookhaven’s RHIC. “Tomás has had a vital impact on CERN’s beam optics studies and has made very impressive achievements in the field of beam optics,” says Oliver Brüning, Head of the Accelerators and Beam Physics...

  20. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  1. Program Evaluation: Accelerating Retained Students

    Science.gov (United States)

    Juneau, Lisa

    2014-01-01

    The purpose of this program evaluation was to evaluate the first year of an acceleration program that allowed students who were retained a grade level for not performing on academic level in early elementary school an opportunity to rejoin their age appropriate class. The primary focus of the evaluation was to evaluate the effectiveness of an…

  2. Cosmological Acceleration from Gravitational Waves

    CERN Document Server

    Marochnik, Leonid

    2015-01-01

    It is shown that the classical gravitational waves of super-horizon wavelengths are able to form the de Sitter accelerated expansion of the empty (with no matter fields) Universe. The contemporary Universe is about 70% empty and asymptotically is going to become completely empty, so the effect caused by emptiness should be already very noticeable. It could manifest itself as the dark energy.

  3. Observations of Collective Ion Acceleration.

    Science.gov (United States)

    1981-01-01

    possible benefit can be listed. In cancer therapy, radiation produced by ion beams may be more selectively directed into tumors. Ion beams in spallation...34Autoresonant Accelerator Concept," Phys. Rev. Lett. 31, 1234 (1973). 50. S. Humphries, J. J. Lee, and R. N. Sudan, "Generation of Incense Pulsed Ion Beams

  4. CLIC Drive Beam Accelerating Structures

    CERN Document Server

    Wegner, Rolf

    2012-01-01

    Travelling structures for accelerating the high-current (4.2 A) CLIC Drive Beam to an energy of 2.37 GeV are presented. The structures are optimised for efficiency (full beam loading operation) and a desired filling time. Higher order modes are studied and are reduced by detuning along the structure and by damping with silicon carbide loads.

  5. Physics Needs for Future Accelerators

    CERN Document Server

    Lykken, J D

    2000-01-01

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  6. Post-LHC accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  7. Repair of overheating linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

    2004-01-01

    Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

  8. Theoretical and experimental modeling of a rail gun accelerator

    Science.gov (United States)

    Zheleznyj, V. B.; Zagorskij, A. V.; Katsnel'Son, S. S.; Kudryavtsev, A. V.; Plekhanov, A. V.

    1993-04-01

    Results of a series of experiments in the acceleration of macrobodies are analyzed using an integral model of a current arc and a quasi-1D magnetic gasdynamic model. The integral model uses gasdynamic equations averaged by the size of a plasma pump and equations based on the second Kirchhoff's law for electrical current. The quasi-1D model is based on 1D magnetic gasdynamic equations for mean values of density, pressure, velocity, and internal power. Electromagnetic parameters are determined from Maxwell integral equations. It is concluded that the proposed models take into account the major mechanisms of momentum loss and are capable of adequately describing electromagnetic rail accelerators.

  9. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    Energy Technology Data Exchange (ETDEWEB)

    Mares, G. [EUROTEST S.A., Bucharest (Romania). Research, Equipment Testing, Industrial Engineering and Scientific Services; Notingher, P. [Univ. Politehnica, Bucharest (Romania). Faculty of Electrical Engineering

    1996-12-31

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation.

  10. Electron acceleration by Landau resonance with whistler mode wave packets

    Science.gov (United States)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  11. Studies of polarized beam acceleration and Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined.

  12. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  13. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  14. Ion acceleration in a solitary wave by an intense picosecond laser pulse.

    Science.gov (United States)

    Zhidkov, A; Uesaka, M; Sasaki, A; Daido, H

    2002-11-18

    Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.

  15. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  16. Abrupt plate accelerations shape rifted continental margins.

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  17. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Science.gov (United States)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  18. 120 Years of Accelerators that Heal

    CERN Document Server

    CERN. Geneva

    2013-01-01

    The discovery of X rays was made possible by the intelligent use of the best accelerator of the time. Since then, the development of particle accelerators has been at the root of both fundamental discoveries in physics and unforeseeable medical applications. The lecture will describe the major steps in this 120-year history of diagnostics and tumour therapy.   The first attempts to heal tumours with X rays were made only one month after Röntgen’s discovery, but the understanding of the mechanisms by which the radiation kills the cells and the introduction of dose fractionation took much longer. The use of X rays in diagnostics developed much faster and its benefits were very visible during the First World War. Today no tumour could be treated and no patient could be operated without a CT scan, which employs an X ray tube that is not very different from the one introduced by William Coolidge in 1912.   On the particle therapy frontier, more sophisticated and larger pa...

  19. Abrupt plate accelerations shape rifted continental margins

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength-velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  20. Laser energized traveling wave accelerator - a novel scheme for simultaneous focusing, energy selection and post-acceleration of laser-driven ions

    Science.gov (United States)

    Kar, Satyabrata

    2015-11-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  1. CAS - CERN Accelerator School: Advanced Accelerator Physics Course

    CERN Document Server

    Herr, W

    2014-01-01

    This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN- 2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course.

  2. Angular Impact Mitigation system for bicycle helmets to reduce head acceleration and risk of traumatic brain injury.

    Science.gov (United States)

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M; Bottlang, Michael

    2013-10-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (pbicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required.

  3. Acceleration results from the microwave inverse FEL experiment

    Science.gov (United States)

    Yoder, R. B.; Marshall, T. C.; Hirshfield, J. L.

    2001-05-01

    An inverse free-electron-laser accelerator has been developed, built, and operated in the microwave regime. Development of this device has been described at previous Workshops; the accelerator is driven by RF power at 2.8 GHz propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator with tapered pitch, while an array of solenoid coils provides an axial guide magnetic field. In low-power experiments, injected electron beams at energies between 5 and 6 MeV have gained up to 0.35 MeV with minimal energy spread, and the phase sensitivity of the IFEL mechanism has been clearly demonstrated for the first time. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling the device to high power and high frequency is discussed.

  4. Terahertz IFEL/FEL Microbunching for Plasma Beatwave Accelerators

    CERN Document Server

    Sung, Chieh; Joshi, Chandrashekhar; Musumeci, Pietro; Pellegrini, Claudio; Ralph, Joseph; Reiche, Sven; Rosenzweig, James E; Tochitsky, Sergei Ya

    2005-01-01

    In order to obtain monoenergetic acceleration of electrons, phase-locked injection using electron microbunches shorter than the accelerating structure is necessary. For a laser-driven plasma beatwave accelerator experiment, we propose to microbunch the electrons by interaction with terahertz (THz) radiation in an undulator via two mechanisms– free electron laser (FEL) and inverse free electron laser (IFEL). Since the high power FIR radiation will be generated via difference frequency mixing in GaAs by the same CO2 beatwave used to drive the plasma wave, electrons could be phase-locked and pre-bunched into a series of microbunches separated with the same periodicity. Here we examine the criteria for undulator design and present simulation results for both IFEL and FEL approaches. Using different CO2 laser lines, electrons can be microbunched with different periodicity 300 – 100 mm suitable for injection into plasma densities in the range 1016 – 1017 cm-3, respectively. The requiremen...

  5. FIRST-ORDER PARTICLE ACCELERATION IN MAGNETICALLY DRIVEN FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Beresnyak, Andrey [Naval Research Laboratory, Washington, DC 20375 (United States); Li, Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-03-10

    We demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution in magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.

  6. Acceleration and Particle Field Interactions of Cosmic Rays I: Formalism

    CERN Document Server

    Tawfik, A; Ghoneim, M T; Hady, A A

    2010-01-01

    The acceleration of cosmic rays is conjectured to be the output from various interactions with the electromagnetic fields in astrophysical bodies, like magnetic matter clumps, and from the well-known shock and stochastic Fermi mechanism. The latter apparently does not depend on the particle's charge, quantitatively. Therefore, the motion of the charged particle parallel to magnetic field $\\mathbf{B}$ and under the influence of the force $\\mathbf{F}$. is assumed to be composed in an acceleration by non-magnetic force $\\mathbf{F}_{\\parallel}$ and gyromotion along $\\mathbf{B}$, plus a drift in direction of $\\mathbf{F}_{\\perp}$. In this letter, the model and its formalism are introduced. Also various examples for drift and accelerating forces are studied.

  7. Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks

    CERN Document Server

    Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki

    2011-01-01

    An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.

  8. DC-like Phase Space Manipulation and Particle Acceleration Using Chirped AC Fields

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit and N.J. Fisch

    2009-06-17

    Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an accelerating potential waveform, which could, for example, represent the average ponderomotive effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent DC-like time-asymptotic response of the distribution in regimes where the potential structure is accelerated adiabatically. A highly resonant population within the distribution is always present, and we characterize its nonadiabatic response during wave-particle resonance using an integral method in the noninertial reference frame moving with the wave. Finally, we show that in the limit of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response

  9. GPU-accelerated computation of electron transfer.

    Science.gov (United States)

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes.

  10. Test particle acceleration in explosive magnetohydrodynamic reconnection

    CERN Document Server

    Ripperda, Bart; Xia, Chun; Keppens, Rony

    2016-01-01

    Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...

  11. Efficient Acceleration of Relativistic Magnetohydrodynamic Jets

    CERN Document Server

    Toma, Kenji

    2013-01-01

    Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although conversion mechanism from Poynting into particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences ...

  12. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  13. Heavy Ion Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2002-01-01

    The abundance enhancements of heavy ions Ne, Mg, Si and Fe in impulsive solar energetic particle (SEP) eventsare explained by a plasma acceleration mechanism. In consideration of the fact that the coronal plasma is mainlycomposed of hydrogen and helium ions, we think that theion-ion hybrid wave and quasi-perpendicular wave can.be excited by the energetic electron beam in impulsive solar flares. These waves may resonantly be absorbed byheavy ions when the frequencies of these waves are close to the second-harmonic gyrofrequencies of these heavyions. This requires the coronal plasma temperature to be located in the range ofT ~ (5 - 9) × 106 K in impulsivesolar flares and makes the average ionic charge state of these heavy ions in impulsive SEP events higher than theaverage ionic charge state of these heavy ions in gradual SEP events. These pre-heated and enhanced heavy ionsin impulsive SEP events.

  14. Advanced Accelerator Concepts Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S.

    2014-05-13

    physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  15. Accelerate!

    Science.gov (United States)

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  16. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  17. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  18. Accelerating Expansion of the Universe

    CERN Document Server

    Chakraborty, Writambhara

    2011-01-01

    This thesis concentrates on the accelerated expansion of the Universe recently explored by measurements of redshift and luminosity-distance relations of type Ia Supernovae. We have considered a model of the universe filled with modified Chaplygin gas and barotropic fluid. The role of dynamical cosmological constant has been explored with Modified Chaplygin Gas as the background fluid. Various phenomenological models for \\Lambda have been studied in presence of the gravitational constant G to be constant or time dependent. A new form of the well known Chaplygin gas model has been presented by introducing inhomogeneity in the EOS. This model explains w=-1 crossing. An interaction of this model with the scalar field has also been investigated through a phenomenological coupling function. Tachyonic field has been depicted as dark energy model to represent the present acceleration of the Universe. A mixture of the tachyonic fluid has been considered with Generalized Chaplygin Gas to show the role of the later as a...

  19. History of hadron therapy accelerators.

    Science.gov (United States)

    Degiovanni, Alberto; Amaldi, Ugo

    2015-06-01

    In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.

  20. Hardware-Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-08-04

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

  1. Self accelerating electron Airy beams

    CERN Document Server

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  2. Accelerating optimization by tracing valley

    Science.gov (United States)

    Li, Qing-Xiao; He, Rong-Qiang; Lu, Zhong-Yi

    2016-06-01

    We propose an algorithm to accelerate optimization when an objective function locally resembles a long narrow valley. In such a case, a conventional optimization algorithm usually wanders with too many tiny steps in the valley. The new algorithm approximates the valley bottom locally by a parabola that is obtained by fitting a set of successive points generated recently by a conventional optimization method. Then large steps are taken along the parabola, accompanied by fine adjustment to trace the valley bottom. The effectiveness of the new algorithm has been demonstrated by accelerating the Newton trust-region minimization method and the Levenberg-Marquardt method on the nonlinear fitting problem in exact diagonalization dynamical mean-field theory and on the classic minimization problem of the Rosenbrock's function. Many times speedup has been achieved for both problems, showing the high efficiency of the new algorithm.

  3. The US Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Y.; /IIT, Chicago; Kirk, H.; /Brookhaven; Bross, A.; Geer, Steve; Shiltsev, Vladimir; /Fermilab; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  4. Industrial Applications of Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, Jaewon; Lee, Chanyoung; and others

    2013-02-15

    PEFP(Proton Engineering Frontier Project) put its aim on development of high power linear proton accelerator and its beam applications. So, it has, since late 1990's, accumulated accelerator and ion source technologies, supplied beam utilization service to related industry. As of now, right after 10 year long project(PEFP), many of its low energy beam technologies seem to be successfully utilized for industrial purpose to meet the market needs, especially in improvement of production process and manufacturing performance, new substance development, etc. In this context, it is high time to carry out in-depth industrialization development on PEFP's retained ion beam technology prowess: To help them diffused profitable markets as soon as possible. So, in this work, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products.

  5. Particle Accelerators for PET radionuclides

    DEFF Research Database (Denmark)

    Jensen, Mikael

    2012-01-01

    The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost-effectively achie......The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost...... different manufacturers will be discussed the light of what is actually needed for a given PET site operation. Alternatives to the conventional cyclotron have been proposed and tested but have at present very limited use. These alternatives will be discussed, as well as the future possibilities of supplying...

  6. Observational Probes of Cosmic Acceleration

    CERN Document Server

    Weinberg, David H; Eisenstein, Daniel J; Hirata, Christopher; Riess, Adam G; Rozo, Eduardo

    2012-01-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of "dark energy" with exotic physical properties, or that Einstein's theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious experimental efforts to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit "Stage IV" dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski test, and direct meas...

  7. Greece welcomes CERN Accelerator School

    CERN Multimedia

    CAS School

    2011-01-01

    The CERN Accelerator School (CAS) and the University of the Aegean jointly organised a course on intermediate-level Accelerator Physics in Chios, Greece, from 19 to 30 September, 2011.   CAS Students pose for a group photo in Chios, Greece. This course followed the established format of the intermediate school, with lectures in the mornings and specialised courses in the afternoons. The latter provided “hands-on” education and experience in three topics: “RF Measurement Techniques”, “Beam Instrumentation and Diagnostics” and “Optics Design and Correction”.  Participants selected one of the three courses and followed the chosen topic throughout the school. Guided studies and tutorials on core subjects, seminars and a poster session completed the programme. An excursion included a visit to the Nea Moni monastery, a guided tour of two medieval villages, Pyrgi and Mesta, and finished with a typical Greek me...

  8. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  9. Accelerating structure with linear excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.; Srinivasan-Rao, T.

    1988-03-01

    The switched power linac (SPL) structures require a ring-shaped laser beam pulse of uniform intensity to avoid transverse field components of the accelerating field at the center. In order to also utilize the reflection of the outgoing EM wave, the switching element has to be very close to the outer edge of the structure to ensure nearly synchronous superposition at the beam hole with the original inward going wave. It is sometimes easier to produce linear (flat) laser beams, e.g., from powerful excimer lasers which have beams of rectangular cross section. Such flat beams could be used to excite linear photocathode switches or be used to produce flat electron beam pulses in electron sources. In this paper, an accelerator structure is proposed which may be considered a variant of the SPL disk structure, but could be used with linear beams. The structure utilizes a double parabolic horn. 8 refs., 9 figs.

  10. String worldsheet for accelerating quark

    Science.gov (United States)

    Hubeny, Veronika E.; Semenoff, Gordon W.

    2015-10-01

    We consider the AdS bulk dual to an external massive quark in SYM following an arbitrary trajectory on Minkowski background. While a purely outgoing boundary condition on the gluonic field allows one to express the corresponding string worldsheet in a closed form, the setup has curious consequences. In particular, we argue that any quark whose trajectory on flat spacetime approaches that of a light ray in the remote past (as happens e.g. in the case of uniform acceleration) must necessarily be accompanied by an anti-quark. This is puzzling from the field theory standpoint, since one would expect that a sole quark following any timelike trajectory should be allowed. We explain the resolution in terms of boundary and initial conditions. We analyze the configuration in global AdS, which naturally suggests a modification to the boundary conditions allowing for a single accelerated quark without accompanying anti-quark. We contrast this resolution with earlier proposals.

  11. Cosmic-ray acceleration at collisionless astrophysical shocks using Monte-Carlo simulations

    CERN Document Server

    Wolff, M

    2015-01-01

    Context. The diffusive shock acceleration mechanism has been widely accepted as the acceleration mechanism for galactic cosmic rays. While self-consistent hybrid simulations have shown how power-law spectra are produced, detailed information on the interplay of diffusive particle motion and the turbulent electromagnetic fields responsible for repeated shock crossings are still elusive. Aims. The framework of test-particle theory is applied to investigate the effect of diffusive shock acceleration by inspecting the obtained cosmic-ray energy spectra. The resulting energy spectra can be obtained this way from the particle motion and, depending on the prescribed turbulence model, the influence of stochastic acceleration through plasma waves can be studied. Methods. A numerical Monte-Carlo simulation code is extended to include collisionless shock waves. This allows one to trace the trajectories of test particle while they are being accelerated. In addition, the diffusion coefficients can be obtained directly fro...

  12. Shock-Wave Acceleration of Protons on OMEGA EP

    Science.gov (United States)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2016-10-01

    The creation of an electrostatic shock wave and ensuing ion acceleration is studied on the OMEGA EP Laser System at the Laboratory for Laser Energetics. Previous work using a 10- μm CO2 laser in a H2 gas jet shows promising results for obtaining narrow spectral features in the accelerated proton spectra. Scaling the shock-wave acceleration mechanism to the 1- μm-wavelength drive laser makes it possible to use petawatt-scale laser systems such as OMEGA-EP, but involves tailoring of the plasma profile. To accomplish the necessitated sharp rise to near-critical plasma density and a long exponential fall, an 1- μm-thick CH foil is illuminated on the back side by thermal x rays produced from an irradiated gold foil. The plasma density is measured using the fourth-harmonic probe system, the accelerating fields are probed using an orthogonal proton source, and the accelerated protons and ions are detected with a Thomson parabola. These results will be presented and compared with particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and LLNL's Laboratory Directed Research and Development program under project 15-LW-095.

  13. Electron Acceleration in Contracting Magnetic Islands during Solar Flares

    Science.gov (United States)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I.; Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Antiochos, S. K.

    2017-01-01

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  14. MESSENGER observations of energetic electron acceleration in Mercury's magnetotail

    Science.gov (United States)

    Dewey, Ryan; Slavin, James A.; Baker, Daniel; Raines, Jim; Lawrence, David

    2016-10-01

    Energetic particle bursts within Mercury's magnetosphere have been a source of curiosity and controversy since Mariner 10's flybys. Unfortunately, instrumental effects prevent an unambiguous determination of species, flux, and energy spectrum for the Mariner 10 events. MESSENGER data taken by the Energetic Particle Spectrometer (EPS) have now shown that these energetic particle bursts are composed entirely of electrons. EPS made directional measurements of these electrons from ~30 to 300 keV at 3 s resolution, and while the energy of these electrons sometimes exceeded 200 keV, the energy distributions usually exhibited a cutoff near 100 keV. The Gamma Ray Spectrometer (GRS) has also provided measurements of these electron events, at higher time resolution (10 ms) and energetic threshold (> 50 keV) compared to EPS. We focus on GRS electron events near the plasma sheet in Mercury's magnetotail to identify reconnection-associated acceleration mechanisms. We present observations of acceleration associated with dipolarization events (betratron acceleration), flux ropes (Fermi acceleration), and tail loading/unloading (X-line acceleration). We find that the most common source of energetic electron events in Mercury's magnetosphere are dipolarization events similar to those first observed by Mariner 10. Further, a significant dawn-dusk asymmetry is found with dipolarization-associated energetic particle bursts being more common on the dawn side of the magnetotail.

  15. Particle acceleration, magnetization and radiation in relativistic shocks

    CERN Document Server

    Derishev, Evgeny V

    2015-01-01

    What are the mechanisms of particle acceleration and radiation, as well as magnetic field build up and decay in relativistic shocks are open questions with important implications to various phenomena in high energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build up and diffusive shock acceleration is a model for acceleration, both have problems and current PIC simulation show that particles are accelerated only under special conditions and the magnetic field decays on a short length scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplificaiton of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the s...

  16. The acceleration of a neutron in a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cappelletti, R.L., E-mail: ron.cappelletti@nist.gov [NIST Center for Neutron Research, Gaithersburg, MD 20899 (United States)

    2012-06-18

    We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov–Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov–Casher effect, there is no acceleration, while in Mott–Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction. -- Highlights: ► Acceleration of a neutron in an E field is orthogonal to velocity. KE is conserved. ► For the Aharonov–Casher (AC) effect, acceleration is 0. ► The AC phase arises from the field term in the canonical momentum. ► In a static B field there is no field term in the canonical momentum. ► In a static B field KE is exchanged with Zeeman energy to conserve energy.

  17. Surrogate headform accelerations associated with stick checks in girls' lacrosse.

    Science.gov (United States)

    Crisco, Joseph J; Costa, Laura; Rich, Ryan; Schwartz, Joel B; Wilcox, Bethany

    2015-04-01

    Girls' lacrosse is fundamentally a different sport than boys' lacrosse, and girls are not required to wear protective headgear. Recent epidemiological studies have found that stick checks are the leading cause of concussion injury in girls' lacrosse. The purpose of this study was to determine stick check speeds and estimate the head acceleration associated with direct checks to the head. In addition, we briefly examine if commercially available headgear can mitigate the accelerations. Seven (n = 7) experienced female lacrosse players checked, with varying severity, a NOSCAE and an ASTM headform. Stick speed at impact and the associated peak linear accelerations of the headform were recorded. The NOCSAE headform was fitted with four commercially available headgear and similar stick impact testing was performed. The median stick impact speed was 8.1 m/s and 777 deg/s. At these speeds, peak linear acceleration was approximately 60g. Three out of the four headgear significantly reduced the peak linear acceleration when compared with the bare headform. These data serve as baseline for understanding the potential mechanism and reduction of concussions from stick impacts in girls' lacrosse.

  18. Test particle acceleration in torsional spine magnetic reconnection

    Science.gov (United States)

    Hosseinpour, M.

    2014-10-01

    Three-dimensional (3D) magnetic reconnection is taking place commonly in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. One of the proposed mechanisms for steady-state 3D magnetic reconnection is "torsional spine reconnection". By using the magnetic and electric fields for "torsional spine reconnection", we numerically investigate the features of test particle acceleration with input parameters for the solar corona. We show that efficient acceleration of a relativistic proton is possible near the null point where it can gain up to 100 MeV of kinetic energy within a few milliseconds. However, varying the injection position results in different scenarios for proton acceleration. A proton is most efficiently accelerated when it is injected at the point where the magnetic field lines change their curvature in the fan plane. Moreover, a proton injected far away from the null point cannot be accelerated and, even in some cases, it is trapped in the magnetic field. In addition, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  19. Progress on Diamond-Based Cylindrical Dielectric Accelerating Structures

    Science.gov (United States)

    Kanareykin, A.; Schoessow, P.; Conde, M.; Gai, W.

    2006-11-01

    The development of a high gradient diamond-based cylindrical dielectric loaded accelerator (DLA) is presented. A diamond-loaded DLA can potentially sustain accelerating gradients far in excess of the limits experimentally observed for conventional metallic accelerating structures. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerators: high rf breakdown level, extremely low dielectric losses and the highest available thermoconductive coefficient. We used the hot-filament Chemical Vapor Deposition (CVD) process to produce high quality 5-10 cm long cylindrical diamond layers. Our collaboration has also been developing a new method of CVD diamond surface preparation that reduces the secondary electron emission coefficient below unity. Special attention was paid to the numerical optimization of the waveguide to structure rf coupling section, where the surface magnetic and electric fields were minimized relative to the accelerating gradient and within known metal surface breakdown limits. We conclude with a brief overview of the use of diamond microstructures for use in compact rf sources.

  20. Accelerating Around an Unbanked Curve

    Science.gov (United States)

    Mungan, Carl E.

    2006-02-01

    The December 2004 issue of TPT presented a problem concerning how a car should accelerate around an unbanked curve of constant radius r starting from rest if it is to avoid skidding. Interestingly enough, two solutions were proffered by readers.2 The purpose of this note is to compare and contrast the two approaches. Further experimental investigation of various turning strategies using a remote-controlled car and overhead video analysis could make for an interesting student project.